ggml.c 697 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "sgemm.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_METAL
  29. #include <unistd.h>
  30. #endif
  31. #ifdef __ARM_FEATURE_MATMUL_INT8
  32. #undef GGML_USE_LLAMAFILE
  33. #endif
  34. #if defined(_MSC_VER)
  35. // disable "possible loss of data" to avoid hundreds of casts
  36. // we should just be careful :)
  37. #pragma warning(disable: 4244 4267)
  38. // disable POSIX deprecation warnings
  39. // these functions are never going away, anyway
  40. #pragma warning(disable: 4996)
  41. #endif
  42. #if defined(_WIN32)
  43. #define WIN32_LEAN_AND_MEAN
  44. #ifndef NOMINMAX
  45. #define NOMINMAX
  46. #endif
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. #if defined(__APPLE__)
  96. #include <TargetConditionals.h>
  97. #endif
  98. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  99. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  100. #include <sys/wait.h>
  101. void ggml_print_backtrace(void) {
  102. /*
  103. #include <execinfo.h>
  104. #include <dlfcn.h>
  105. void * trace[100];
  106. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  107. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  108. */
  109. // backtrack_symbols does not show line numbers, use gdb instead
  110. char attach[32];
  111. snprintf(attach, sizeof(attach), "attach %d", getpid());
  112. int pid = fork();
  113. if (pid == 0) {
  114. execlp("gdb", "gdb", "--batch",
  115. "-ex", "set style enabled on",
  116. "-ex", attach,
  117. "-ex", "bt -frame-info source-and-location",
  118. "-ex", "detach",
  119. "-ex", "quit",
  120. (char *) NULL);
  121. } else {
  122. waitpid(pid, NULL, 0);
  123. }
  124. }
  125. #else
  126. void ggml_print_backtrace(void) {
  127. // platform not supported
  128. }
  129. #endif
  130. /*#define GGML_PERF*/
  131. #define GGML_DEBUG 0
  132. #define GGML_GELU_FP16
  133. #define GGML_GELU_QUICK_FP16
  134. #define GGML_SILU_FP16
  135. // #define GGML_CROSS_ENTROPY_EXP_FP16
  136. // #define GGML_FLASH_ATTN_EXP_FP16
  137. #define GGML_SOFT_MAX_UNROLL 4
  138. #define GGML_VEC_DOT_UNROLL 2
  139. #define GGML_VEC_MAD_UNROLL 32
  140. //
  141. // logging
  142. //
  143. #if (GGML_DEBUG >= 1)
  144. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG(...)
  147. #endif
  148. #if (GGML_DEBUG >= 5)
  149. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_5(...)
  152. #endif
  153. #if (GGML_DEBUG >= 10)
  154. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG_10(...)
  157. #endif
  158. #define GGML_PRINT(...) printf(__VA_ARGS__)
  159. //
  160. // end of logging block
  161. //
  162. #ifdef GGML_USE_ACCELERATE
  163. // uncomment to use vDSP for soft max computation
  164. // note: not sure if it is actually faster
  165. //#define GGML_SOFT_MAX_ACCELERATE
  166. #endif
  167. #if defined(_MSC_VER) || defined(__MINGW32__)
  168. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  169. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  170. #else
  171. inline static void * ggml_aligned_malloc(size_t size) {
  172. if (size == 0) {
  173. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  174. return NULL;
  175. }
  176. void * aligned_memory = NULL;
  177. #ifdef GGML_USE_CPU_HBM
  178. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  179. #elif GGML_USE_METAL
  180. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  181. #else
  182. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  183. #endif
  184. if (result != 0) {
  185. // Handle allocation failure
  186. const char *error_desc = "unknown allocation error";
  187. switch (result) {
  188. case EINVAL:
  189. error_desc = "invalid alignment value";
  190. break;
  191. case ENOMEM:
  192. error_desc = "insufficient memory";
  193. break;
  194. }
  195. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  196. GGML_ASSERT(false);
  197. return NULL;
  198. }
  199. return aligned_memory;
  200. }
  201. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  202. #ifdef GGML_USE_CPU_HBM
  203. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  204. #else
  205. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  206. #endif
  207. #endif
  208. inline static void * ggml_malloc(size_t size) {
  209. if (size == 0) {
  210. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  211. return NULL;
  212. }
  213. void * result = malloc(size);
  214. if (result == NULL) {
  215. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  216. GGML_ASSERT(false);
  217. }
  218. return result;
  219. }
  220. // calloc
  221. inline static void * ggml_calloc(size_t num, size_t size) {
  222. if (num == 0 || size == 0) {
  223. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  224. return NULL;
  225. }
  226. void * result = calloc(num, size);
  227. if (result == NULL) {
  228. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  229. GGML_ASSERT(false);
  230. }
  231. return result;
  232. }
  233. #define GGML_MALLOC(size) ggml_malloc(size)
  234. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  235. #define GGML_FREE(ptr) free(ptr)
  236. #define UNUSED GGML_UNUSED
  237. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  238. #if defined(GGML_USE_ACCELERATE)
  239. #include <Accelerate/Accelerate.h>
  240. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  241. #include "ggml-opencl.h"
  242. #endif
  243. #elif defined(GGML_USE_OPENBLAS)
  244. #if defined(GGML_BLAS_USE_MKL)
  245. #include <mkl.h>
  246. #else
  247. #include <cblas.h>
  248. #endif
  249. #elif defined(GGML_USE_CLBLAST)
  250. #include "ggml-opencl.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  289. for (int64_t i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  294. int64_t i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. #if defined(__ARM_NEON)
  778. #if !defined(__aarch64__)
  779. // 64-bit compatibility
  780. inline static float vaddvq_f32(float32x4_t v) {
  781. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  782. }
  783. #endif
  784. #endif
  785. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  786. // we then implement the fundamental computation operations below using only these macros
  787. // adding support for new architectures requires to define the corresponding SIMD macros
  788. //
  789. // GGML_F32_STEP / GGML_F16_STEP
  790. // number of elements to process in a single step
  791. //
  792. // GGML_F32_EPR / GGML_F16_EPR
  793. // number of elements to fit in a single register
  794. //
  795. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  796. #define GGML_SIMD
  797. // F32 NEON
  798. #define GGML_F32_STEP 16
  799. #define GGML_F32_EPR 4
  800. #define GGML_F32x4 float32x4_t
  801. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  802. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  803. #define GGML_F32x4_LOAD vld1q_f32
  804. #define GGML_F32x4_STORE vst1q_f32
  805. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  806. #define GGML_F32x4_ADD vaddq_f32
  807. #define GGML_F32x4_MUL vmulq_f32
  808. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  809. #define GGML_F32x4_REDUCE(res, x) \
  810. { \
  811. int offset = GGML_F32_ARR >> 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. offset >>= 1; \
  820. for (int i = 0; i < offset; ++i) { \
  821. x[i] = vaddq_f32(x[i], x[offset+i]); \
  822. } \
  823. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  824. }
  825. #define GGML_F32_VEC GGML_F32x4
  826. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  827. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  828. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  829. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  830. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  831. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  832. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  833. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  834. // F16 NEON
  835. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  836. #define GGML_F16_STEP 32
  837. #define GGML_F16_EPR 8
  838. #define GGML_F16x8 float16x8_t
  839. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  840. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  841. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  842. #define GGML_F16x8_STORE vst1q_f16
  843. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  844. #define GGML_F16x8_ADD vaddq_f16
  845. #define GGML_F16x8_MUL vmulq_f16
  846. #define GGML_F16x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F16_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = vaddq_f16(x[i], x[offset+i]); \
  859. } \
  860. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  861. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  862. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  863. } while (0)
  864. #define GGML_F16_VEC GGML_F16x8
  865. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  866. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  867. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  869. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  870. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  871. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  872. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  873. #else
  874. // if FP16 vector arithmetic is not supported, we use FP32 instead
  875. // and take advantage of the vcvt_ functions to convert to/from FP16
  876. #define GGML_F16_STEP 16
  877. #define GGML_F16_EPR 4
  878. #define GGML_F32Cx4 float32x4_t
  879. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  880. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  881. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  882. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  883. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  884. #define GGML_F32Cx4_ADD vaddq_f32
  885. #define GGML_F32Cx4_MUL vmulq_f32
  886. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  887. #define GGML_F16_VEC GGML_F32Cx4
  888. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  890. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  891. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  892. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  893. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  894. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  895. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  896. #endif
  897. #elif defined(__AVX512F__)
  898. #define GGML_SIMD
  899. // F32 AVX512
  900. #define GGML_F32_STEP 64
  901. #define GGML_F32_EPR 16
  902. #define GGML_F32x16 __m512
  903. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  904. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  905. #define GGML_F32x16_LOAD _mm512_loadu_ps
  906. #define GGML_F32x16_STORE _mm512_storeu_ps
  907. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  908. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  909. #define GGML_F32x16_ADD _mm512_add_ps
  910. #define GGML_F32x16_MUL _mm512_mul_ps
  911. #define GGML_F32x16_REDUCE(res, x) \
  912. do { \
  913. int offset = GGML_F32_ARR >> 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  924. } \
  925. res = _mm512_reduce_add_ps(x[0]); \
  926. } while (0)
  927. // TODO: is this optimal ?
  928. #define GGML_F32_VEC GGML_F32x16
  929. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  930. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  931. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  932. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  933. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  934. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  935. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  936. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  937. // F16 AVX512
  938. // F16 AVX
  939. #define GGML_F16_STEP 64
  940. #define GGML_F16_EPR 16
  941. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  942. #define GGML_F32Cx16 __m512
  943. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  944. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  945. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  946. // so F16C guard isn't required
  947. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  948. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  949. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  950. #define GGML_F32Cx16_ADD _mm512_add_ps
  951. #define GGML_F32Cx16_MUL _mm512_mul_ps
  952. #define GGML_F32Cx16_REDUCE(res, x) \
  953. do { \
  954. int offset = GGML_F32_ARR >> 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  965. } \
  966. res = _mm512_reduce_add_ps(x[0]); \
  967. } while (0)
  968. #define GGML_F16_VEC GGML_F32Cx16
  969. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  971. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  972. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  973. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  974. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  975. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  976. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  977. #elif defined(__AVX__)
  978. #define GGML_SIMD
  979. // F32 AVX
  980. #define GGML_F32_STEP 32
  981. #define GGML_F32_EPR 8
  982. #define GGML_F32x8 __m256
  983. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  984. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  985. #define GGML_F32x8_LOAD _mm256_loadu_ps
  986. #define GGML_F32x8_STORE _mm256_storeu_ps
  987. #if defined(__FMA__)
  988. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  989. #else
  990. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  991. #endif
  992. #define GGML_F32x8_ADD _mm256_add_ps
  993. #define GGML_F32x8_MUL _mm256_mul_ps
  994. #define GGML_F32x8_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1009. _mm256_extractf128_ps(x[0], 1)); \
  1010. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1011. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1012. } while (0)
  1013. // TODO: is this optimal ?
  1014. #define GGML_F32_VEC GGML_F32x8
  1015. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1016. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1017. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1018. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1019. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1020. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1021. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1022. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1023. // F16 AVX
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1027. #define GGML_F32Cx8 __m256
  1028. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1029. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1030. #if defined(__F16C__)
  1031. // the _mm256_cvt intrinsics require F16C
  1032. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1033. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1034. #else
  1035. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1036. float tmp[8];
  1037. for (int i = 0; i < 8; i++) {
  1038. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1039. }
  1040. return _mm256_loadu_ps(tmp);
  1041. }
  1042. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1043. float arr[8];
  1044. _mm256_storeu_ps(arr, y);
  1045. for (int i = 0; i < 8; i++)
  1046. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1047. }
  1048. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1049. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1050. #endif
  1051. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1052. #define GGML_F32Cx8_ADD _mm256_add_ps
  1053. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1054. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1055. #define GGML_F16_VEC GGML_F32Cx8
  1056. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1058. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1059. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1060. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1061. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1062. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1063. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1064. #elif defined(__POWER9_VECTOR__)
  1065. #define GGML_SIMD
  1066. // F32 POWER9
  1067. #define GGML_F32_STEP 32
  1068. #define GGML_F32_EPR 4
  1069. #define GGML_F32x4 vector float
  1070. #define GGML_F32x4_ZERO 0.0f
  1071. #define GGML_F32x4_SET1 vec_splats
  1072. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1073. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1074. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1075. #define GGML_F32x4_ADD vec_add
  1076. #define GGML_F32x4_MUL vec_mul
  1077. #define GGML_F32x4_REDUCE(res, x) \
  1078. { \
  1079. int offset = GGML_F32_ARR >> 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = vec_add(x[i], x[offset+i]); \
  1090. } \
  1091. res = vec_extract(x[0], 0) + \
  1092. vec_extract(x[0], 1) + \
  1093. vec_extract(x[0], 2) + \
  1094. vec_extract(x[0], 3); \
  1095. }
  1096. #define GGML_F32_VEC GGML_F32x4
  1097. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1098. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1099. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1100. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1101. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1102. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1103. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1104. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // F16 POWER9
  1106. #define GGML_F16_STEP GGML_F32_STEP
  1107. #define GGML_F16_EPR GGML_F32_EPR
  1108. #define GGML_F16_VEC GGML_F32x4
  1109. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1111. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1113. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1114. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1115. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1116. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1117. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1118. #define GGML_F16_VEC_STORE(p, r, i) \
  1119. if (i & 0x1) \
  1120. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1121. r[i - GGML_ENDIAN_BYTE(0)]), \
  1122. 0, p - GGML_F16_EPR)
  1123. #elif defined(__wasm_simd128__)
  1124. #define GGML_SIMD
  1125. // F32 WASM
  1126. #define GGML_F32_STEP 16
  1127. #define GGML_F32_EPR 4
  1128. #define GGML_F32x4 v128_t
  1129. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1130. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1131. #define GGML_F32x4_LOAD wasm_v128_load
  1132. #define GGML_F32x4_STORE wasm_v128_store
  1133. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1134. #define GGML_F32x4_ADD wasm_f32x4_add
  1135. #define GGML_F32x4_MUL wasm_f32x4_mul
  1136. #define GGML_F32x4_REDUCE(res, x) \
  1137. { \
  1138. int offset = GGML_F32_ARR >> 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1151. wasm_f32x4_extract_lane(x[0], 1) + \
  1152. wasm_f32x4_extract_lane(x[0], 2) + \
  1153. wasm_f32x4_extract_lane(x[0], 3); \
  1154. }
  1155. #define GGML_F32_VEC GGML_F32x4
  1156. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1157. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1158. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1159. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1160. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1161. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1162. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1163. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1164. // F16 WASM
  1165. #define GGML_F16_STEP 16
  1166. #define GGML_F16_EPR 4
  1167. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1168. float tmp[4];
  1169. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1170. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1171. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1172. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1173. return wasm_v128_load(tmp);
  1174. }
  1175. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1176. float tmp[4];
  1177. wasm_v128_store(tmp, x);
  1178. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1179. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1180. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1181. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1182. }
  1183. #define GGML_F16x4 v128_t
  1184. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1187. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1188. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1189. #define GGML_F16x4_ADD wasm_f32x4_add
  1190. #define GGML_F16x4_MUL wasm_f32x4_mul
  1191. #define GGML_F16x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F16_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F16_VEC GGML_F16x4
  1211. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1212. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1213. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1214. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1215. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1216. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1217. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1218. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1219. #elif defined(__SSE3__)
  1220. #define GGML_SIMD
  1221. // F32 SSE
  1222. #define GGML_F32_STEP 32
  1223. #define GGML_F32_EPR 4
  1224. #define GGML_F32x4 __m128
  1225. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1226. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1227. #define GGML_F32x4_LOAD _mm_loadu_ps
  1228. #define GGML_F32x4_STORE _mm_storeu_ps
  1229. #if defined(__FMA__)
  1230. // TODO: Does this work?
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1232. #else
  1233. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1234. #endif
  1235. #define GGML_F32x4_ADD _mm_add_ps
  1236. #define GGML_F32x4_MUL _mm_mul_ps
  1237. #define GGML_F32x4_REDUCE(res, x) \
  1238. { \
  1239. int offset = GGML_F32_ARR >> 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1252. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1253. }
  1254. // TODO: is this optimal ?
  1255. #define GGML_F32_VEC GGML_F32x4
  1256. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1257. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1258. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1259. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1260. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1261. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1262. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1263. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1264. // F16 SSE
  1265. #define GGML_F16_STEP 32
  1266. #define GGML_F16_EPR 4
  1267. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1268. float tmp[4];
  1269. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1270. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1271. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1272. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1273. return _mm_loadu_ps(tmp);
  1274. }
  1275. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1276. float arr[4];
  1277. _mm_storeu_ps(arr, y);
  1278. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1279. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1280. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1281. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1282. }
  1283. #define GGML_F32Cx4 __m128
  1284. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1285. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1286. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1287. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1288. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1289. #define GGML_F32Cx4_ADD _mm_add_ps
  1290. #define GGML_F32Cx4_MUL _mm_mul_ps
  1291. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1292. #define GGML_F16_VEC GGML_F32Cx4
  1293. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1301. #endif
  1302. // GGML_F32_ARR / GGML_F16_ARR
  1303. // number of registers to use per step
  1304. #ifdef GGML_SIMD
  1305. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1306. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1307. #endif
  1308. //
  1309. // fundamental operations
  1310. //
  1311. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1312. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1314. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1316. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1317. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1318. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1319. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1320. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1321. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1322. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1323. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1324. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1325. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1326. assert(nrc == 1);
  1327. UNUSED(nrc);
  1328. UNUSED(bx);
  1329. UNUSED(by);
  1330. UNUSED(bs);
  1331. #ifdef GGML_SIMD
  1332. float sumf = 0.0f;
  1333. const int np = (n & ~(GGML_F32_STEP - 1));
  1334. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1335. GGML_F32_VEC ax[GGML_F32_ARR];
  1336. GGML_F32_VEC ay[GGML_F32_ARR];
  1337. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1338. for (int j = 0; j < GGML_F32_ARR; j++) {
  1339. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1340. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1341. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1342. }
  1343. }
  1344. // reduce sum0..sum3 to sum0
  1345. GGML_F32_VEC_REDUCE(sumf, sum);
  1346. // leftovers
  1347. for (int i = np; i < n; ++i) {
  1348. sumf += x[i]*y[i];
  1349. }
  1350. #else
  1351. // scalar
  1352. ggml_float sumf = 0.0;
  1353. for (int i = 0; i < n; ++i) {
  1354. sumf += (ggml_float)(x[i]*y[i]);
  1355. }
  1356. #endif
  1357. *s = sumf;
  1358. }
  1359. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1360. assert(nrc == 1);
  1361. UNUSED(nrc);
  1362. UNUSED(bx);
  1363. UNUSED(by);
  1364. UNUSED(bs);
  1365. ggml_float sumf = 0.0;
  1366. #if defined(GGML_SIMD)
  1367. const int np = (n & ~(GGML_F16_STEP - 1));
  1368. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1369. GGML_F16_VEC ax[GGML_F16_ARR];
  1370. GGML_F16_VEC ay[GGML_F16_ARR];
  1371. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1372. for (int j = 0; j < GGML_F16_ARR; j++) {
  1373. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1374. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1375. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1376. }
  1377. }
  1378. // reduce sum0..sum3 to sum0
  1379. GGML_F16_VEC_REDUCE(sumf, sum);
  1380. // leftovers
  1381. for (int i = np; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #else
  1385. for (int i = 0; i < n; ++i) {
  1386. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1387. }
  1388. #endif
  1389. *s = sumf;
  1390. }
  1391. // compute GGML_VEC_DOT_UNROLL dot products at once
  1392. // xs - x row stride in bytes
  1393. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1394. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1395. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1396. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1397. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1398. }
  1399. #if defined(GGML_SIMD)
  1400. const int np = (n & ~(GGML_F16_STEP - 1));
  1401. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1402. GGML_F16_VEC ax[GGML_F16_ARR];
  1403. GGML_F16_VEC ay[GGML_F16_ARR];
  1404. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1405. for (int j = 0; j < GGML_F16_ARR; j++) {
  1406. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1407. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1408. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1409. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. }
  1413. // reduce sum0..sum3 to sum0
  1414. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1415. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1416. }
  1417. // leftovers
  1418. for (int i = np; i < n; ++i) {
  1419. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1420. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1421. }
  1422. }
  1423. #else
  1424. for (int i = 0; i < n; ++i) {
  1425. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1426. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1427. }
  1428. }
  1429. #endif
  1430. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1431. s[i] = sumf[i];
  1432. }
  1433. }
  1434. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1435. #if defined(GGML_SIMD)
  1436. const int np = (n & ~(GGML_F32_STEP - 1));
  1437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1438. GGML_F32_VEC ax[GGML_F32_ARR];
  1439. GGML_F32_VEC ay[GGML_F32_ARR];
  1440. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1441. for (int j = 0; j < GGML_F32_ARR; j++) {
  1442. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1443. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1444. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1445. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1446. }
  1447. }
  1448. // leftovers
  1449. for (int i = np; i < n; ++i) {
  1450. y[i] += x[i]*v;
  1451. }
  1452. #else
  1453. // scalar
  1454. for (int i = 0; i < n; ++i) {
  1455. y[i] += x[i]*v;
  1456. }
  1457. #endif
  1458. }
  1459. // xs and vs are byte strides of x and v
  1460. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1461. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1462. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1463. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1464. x[i] = (const float *) ((const char *) xv + i*xs);
  1465. v[i] = (const float *) ((const char *) vv + i*vs);
  1466. }
  1467. #if defined(GGML_SIMD)
  1468. const int np = (n & ~(GGML_F32_STEP - 1));
  1469. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1472. }
  1473. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1474. GGML_F32_VEC ay[GGML_F32_ARR];
  1475. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1476. for (int j = 0; j < GGML_F32_ARR; j++) {
  1477. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1478. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1479. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1480. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1481. }
  1482. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1483. }
  1484. }
  1485. // leftovers
  1486. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1487. for (int i = np; i < n; ++i) {
  1488. y[i] += x[k][i]*v[k][0];
  1489. }
  1490. }
  1491. #else
  1492. // scalar
  1493. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1494. for (int i = 0; i < n; ++i) {
  1495. y[i] += x[k][i]*v[k][0];
  1496. }
  1497. }
  1498. #endif
  1499. }
  1500. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1501. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1502. #if defined(GGML_USE_ACCELERATE)
  1503. vDSP_vsmul(y, 1, &v, y, 1, n);
  1504. #elif defined(GGML_SIMD)
  1505. const int np = (n & ~(GGML_F32_STEP - 1));
  1506. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1507. GGML_F32_VEC ay[GGML_F32_ARR];
  1508. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1509. for (int j = 0; j < GGML_F32_ARR; j++) {
  1510. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1511. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1512. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1513. }
  1514. }
  1515. // leftovers
  1516. for (int i = np; i < n; ++i) {
  1517. y[i] *= v;
  1518. }
  1519. #else
  1520. // scalar
  1521. for (int i = 0; i < n; ++i) {
  1522. y[i] *= v;
  1523. }
  1524. #endif
  1525. }
  1526. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1527. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1528. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1529. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1530. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1531. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1532. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1533. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1534. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1535. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1536. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1537. // TODO: optimize performance
  1538. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1539. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1540. static const float GELU_COEF_A = 0.044715f;
  1541. static const float GELU_QUICK_COEF = -1.702f;
  1542. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1543. inline static float ggml_gelu_f32(float x) {
  1544. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1545. }
  1546. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1547. const uint16_t * i16 = (const uint16_t *) x;
  1548. for (int i = 0; i < n; ++i) {
  1549. y[i] = ggml_table_gelu_f16[i16[i]];
  1550. }
  1551. }
  1552. #ifdef GGML_GELU_FP16
  1553. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1554. uint16_t t;
  1555. for (int i = 0; i < n; ++i) {
  1556. if (x[i] <= -10.0f) {
  1557. y[i] = 0.0f;
  1558. } else if (x[i] >= 10.0f) {
  1559. y[i] = x[i];
  1560. } else {
  1561. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1562. memcpy(&t, &fp16, sizeof(uint16_t));
  1563. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1564. }
  1565. }
  1566. }
  1567. #else
  1568. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1569. for (int i = 0; i < n; ++i) {
  1570. y[i] = ggml_gelu_f32(x[i]);
  1571. }
  1572. }
  1573. #endif
  1574. inline static float ggml_gelu_quick_f32(float x) {
  1575. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1576. }
  1577. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1578. // const uint16_t * i16 = (const uint16_t *) x;
  1579. // for (int i = 0; i < n; ++i) {
  1580. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1581. // }
  1582. //}
  1583. #ifdef GGML_GELU_QUICK_FP16
  1584. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1585. uint16_t t;
  1586. for (int i = 0; i < n; ++i) {
  1587. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1588. memcpy(&t, &fp16, sizeof(uint16_t));
  1589. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1590. }
  1591. }
  1592. #else
  1593. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1594. for (int i = 0; i < n; ++i) {
  1595. y[i] = ggml_gelu_quick_f32(x[i]);
  1596. }
  1597. }
  1598. #endif
  1599. // Sigmoid Linear Unit (SiLU) function
  1600. inline static float ggml_silu_f32(float x) {
  1601. return x/(1.0f + expf(-x));
  1602. }
  1603. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1604. // const uint16_t * i16 = (const uint16_t *) x;
  1605. // for (int i = 0; i < n; ++i) {
  1606. // y[i] = ggml_table_silu_f16[i16[i]];
  1607. // }
  1608. //}
  1609. #ifdef GGML_SILU_FP16
  1610. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1611. uint16_t t;
  1612. for (int i = 0; i < n; ++i) {
  1613. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1614. memcpy(&t, &fp16, sizeof(uint16_t));
  1615. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1616. }
  1617. }
  1618. #else
  1619. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1620. for (int i = 0; i < n; ++i) {
  1621. y[i] = ggml_silu_f32(x[i]);
  1622. }
  1623. }
  1624. #endif
  1625. inline static float ggml_silu_backward_f32(float x, float dy) {
  1626. const float s = 1.0f/(1.0f + expf(-x));
  1627. return dy*s*(1.0f + x*(1.0f - s));
  1628. }
  1629. #ifdef GGML_SILU_FP16
  1630. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1631. for (int i = 0; i < n; ++i) {
  1632. // we did not use x[i] to compute forward silu but its f16 equivalent
  1633. // take derivative at f16 of x[i]:
  1634. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1635. float usedx = GGML_FP16_TO_FP32(fp16);
  1636. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1637. }
  1638. }
  1639. #else
  1640. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1641. for (int i = 0; i < n; ++i) {
  1642. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1643. }
  1644. }
  1645. #endif
  1646. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1647. #ifndef GGML_USE_ACCELERATE
  1648. ggml_float sum = 0.0;
  1649. for (int i = 0; i < n; ++i) {
  1650. sum += (ggml_float)x[i];
  1651. }
  1652. *s = sum;
  1653. #else
  1654. vDSP_sve(x, 1, s, n);
  1655. #endif
  1656. }
  1657. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1658. ggml_float sum = 0.0;
  1659. for (int i = 0; i < n; ++i) {
  1660. sum += (ggml_float)x[i];
  1661. }
  1662. *s = sum;
  1663. }
  1664. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1665. float sum = 0.0f;
  1666. for (int i = 0; i < n; ++i) {
  1667. sum += GGML_FP16_TO_FP32(x[i]);
  1668. }
  1669. *s = sum;
  1670. }
  1671. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1672. #ifndef GGML_USE_ACCELERATE
  1673. float max = -INFINITY;
  1674. for (int i = 0; i < n; ++i) {
  1675. max = MAX(max, x[i]);
  1676. }
  1677. *s = max;
  1678. #else
  1679. vDSP_maxv(x, 1, s, n);
  1680. #endif
  1681. }
  1682. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1683. ggml_vec_norm_f32(n, s, x);
  1684. *s = 1.f/(*s);
  1685. }
  1686. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1687. float max = -INFINITY;
  1688. int idx = 0;
  1689. for (int i = 0; i < n; ++i) {
  1690. max = MAX(max, x[i]);
  1691. if (max == x[i]) { idx = i; }
  1692. }
  1693. *s = idx;
  1694. }
  1695. //
  1696. // data types
  1697. //
  1698. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1699. "NONE",
  1700. "DUP",
  1701. "ADD",
  1702. "ADD1",
  1703. "ACC",
  1704. "SUB",
  1705. "MUL",
  1706. "DIV",
  1707. "SQR",
  1708. "SQRT",
  1709. "LOG",
  1710. "SUM",
  1711. "SUM_ROWS",
  1712. "MEAN",
  1713. "ARGMAX",
  1714. "REPEAT",
  1715. "REPEAT_BACK",
  1716. "CONCAT",
  1717. "SILU_BACK",
  1718. "NORM",
  1719. "RMS_NORM",
  1720. "RMS_NORM_BACK",
  1721. "GROUP_NORM",
  1722. "MUL_MAT",
  1723. "MUL_MAT_ID",
  1724. "OUT_PROD",
  1725. "SCALE",
  1726. "SET",
  1727. "CPY",
  1728. "CONT",
  1729. "RESHAPE",
  1730. "VIEW",
  1731. "PERMUTE",
  1732. "TRANSPOSE",
  1733. "GET_ROWS",
  1734. "GET_ROWS_BACK",
  1735. "DIAG",
  1736. "DIAG_MASK_INF",
  1737. "DIAG_MASK_ZERO",
  1738. "SOFT_MAX",
  1739. "SOFT_MAX_BACK",
  1740. "ROPE",
  1741. "ROPE_BACK",
  1742. "ALIBI",
  1743. "CLAMP",
  1744. "CONV_TRANSPOSE_1D",
  1745. "IM2COL",
  1746. "CONV_TRANSPOSE_2D",
  1747. "POOL_1D",
  1748. "POOL_2D",
  1749. "UPSCALE",
  1750. "PAD",
  1751. "ARANGE",
  1752. "TIMESTEP_EMBEDDING",
  1753. "ARGSORT",
  1754. "LEAKY_RELU",
  1755. "FLASH_ATTN",
  1756. "FLASH_FF",
  1757. "FLASH_ATTN_BACK",
  1758. "SSM_CONV",
  1759. "SSM_SCAN",
  1760. "WIN_PART",
  1761. "WIN_UNPART",
  1762. "GET_REL_POS",
  1763. "ADD_REL_POS",
  1764. "UNARY",
  1765. "MAP_UNARY",
  1766. "MAP_BINARY",
  1767. "MAP_CUSTOM1_F32",
  1768. "MAP_CUSTOM2_F32",
  1769. "MAP_CUSTOM3_F32",
  1770. "MAP_CUSTOM1",
  1771. "MAP_CUSTOM2",
  1772. "MAP_CUSTOM3",
  1773. "CROSS_ENTROPY_LOSS",
  1774. "CROSS_ENTROPY_LOSS_BACK",
  1775. };
  1776. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1777. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1778. "none",
  1779. "x",
  1780. "x+y",
  1781. "x+y",
  1782. "view(x,nb,offset)+=y->x",
  1783. "x-y",
  1784. "x*y",
  1785. "x/y",
  1786. "x^2",
  1787. "√x",
  1788. "log(x)",
  1789. "Σx",
  1790. "Σx_k",
  1791. "Σx/n",
  1792. "argmax(x)",
  1793. "repeat(x)",
  1794. "repeat_back(x)",
  1795. "concat(x, y)",
  1796. "silu_back(x)",
  1797. "norm(x)",
  1798. "rms_norm(x)",
  1799. "rms_norm_back(x)",
  1800. "group_norm(x)",
  1801. "X*Y",
  1802. "X[i]*Y",
  1803. "X*Y",
  1804. "x*v",
  1805. "y-\\>view(x)",
  1806. "x-\\>y",
  1807. "cont(x)",
  1808. "reshape(x)",
  1809. "view(x)",
  1810. "permute(x)",
  1811. "transpose(x)",
  1812. "get_rows(x)",
  1813. "get_rows_back(x)",
  1814. "diag(x)",
  1815. "diag_mask_inf(x)",
  1816. "diag_mask_zero(x)",
  1817. "soft_max(x)",
  1818. "soft_max_back(x)",
  1819. "rope(x)",
  1820. "rope_back(x)",
  1821. "alibi(x)",
  1822. "clamp(x)",
  1823. "conv_transpose_1d(x)",
  1824. "im2col(x)",
  1825. "conv_transpose_2d(x)",
  1826. "pool_1d(x)",
  1827. "pool_2d(x)",
  1828. "upscale(x)",
  1829. "pad(x)",
  1830. "arange(start, stop, step)",
  1831. "timestep_embedding(timesteps, dim, max_period)",
  1832. "argsort(x)",
  1833. "leaky_relu(x)",
  1834. "flash_attn(x)",
  1835. "flash_ff(x)",
  1836. "flash_attn_back(x)",
  1837. "ssm_conv(x)",
  1838. "ssm_scan(x)",
  1839. "win_part(x)",
  1840. "win_unpart(x)",
  1841. "get_rel_pos(x)",
  1842. "add_rel_pos(x)",
  1843. "unary(x)",
  1844. "f(x)",
  1845. "f(x,y)",
  1846. "custom_f32(x)",
  1847. "custom_f32(x,y)",
  1848. "custom_f32(x,y,z)",
  1849. "custom(x)",
  1850. "custom(x,y)",
  1851. "custom(x,y,z)",
  1852. "cross_entropy_loss(x,y)",
  1853. "cross_entropy_loss_back(x,y)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1856. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1857. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1858. "ABS",
  1859. "SGN",
  1860. "NEG",
  1861. "STEP",
  1862. "TANH",
  1863. "ELU",
  1864. "RELU",
  1865. "GELU",
  1866. "GELU_QUICK",
  1867. "SILU",
  1868. "HARDSWISH",
  1869. "HARDSIGMOID",
  1870. };
  1871. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1872. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1873. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1874. // WARN:
  1875. // Mis-configuration can lead to problem that's hard to reason about:
  1876. // * At best it crash or talks nosense.
  1877. // * At worst it talks slightly difference but hard to perceive.
  1878. //
  1879. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1880. // Take care about compile options (e.g., GGML_USE_xxx).
  1881. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1882. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1883. static void ggml_setup_op_has_task_pass(void) {
  1884. { // INIT
  1885. bool * p = GGML_OP_HAS_INIT;
  1886. p[GGML_OP_ACC ] = true;
  1887. p[GGML_OP_MUL_MAT ] = true;
  1888. p[GGML_OP_MUL_MAT_ID ] = true;
  1889. p[GGML_OP_OUT_PROD ] = true;
  1890. p[GGML_OP_SET ] = true;
  1891. p[GGML_OP_GET_ROWS_BACK ] = true;
  1892. p[GGML_OP_DIAG_MASK_INF ] = true;
  1893. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1894. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1895. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1896. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1897. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1898. p[GGML_OP_ADD_REL_POS ] = true;
  1899. }
  1900. { // FINALIZE
  1901. bool * p = GGML_OP_HAS_FINALIZE;
  1902. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1903. }
  1904. }
  1905. //
  1906. // ggml context
  1907. //
  1908. struct ggml_context {
  1909. size_t mem_size;
  1910. void * mem_buffer;
  1911. bool mem_buffer_owned;
  1912. bool no_alloc;
  1913. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1914. int n_objects;
  1915. struct ggml_object * objects_begin;
  1916. struct ggml_object * objects_end;
  1917. struct ggml_scratch scratch;
  1918. struct ggml_scratch scratch_save;
  1919. };
  1920. struct ggml_context_container {
  1921. bool used;
  1922. struct ggml_context context;
  1923. };
  1924. //
  1925. // NUMA support
  1926. //
  1927. #define GGML_NUMA_MAX_NODES 8
  1928. #define GGML_NUMA_MAX_CPUS 512
  1929. struct ggml_numa_node {
  1930. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1931. uint32_t n_cpus;
  1932. };
  1933. struct ggml_numa_nodes {
  1934. enum ggml_numa_strategy numa_strategy;
  1935. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1936. uint32_t n_nodes;
  1937. uint32_t total_cpus; // hardware threads on system
  1938. uint32_t current_node; // node on which main process is execting
  1939. #if defined(__gnu_linux__)
  1940. cpu_set_t cpuset; // cpuset from numactl
  1941. #else
  1942. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1943. #endif
  1944. };
  1945. //
  1946. // ggml state
  1947. //
  1948. struct ggml_state {
  1949. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1950. struct ggml_numa_nodes numa;
  1951. };
  1952. // global state
  1953. static struct ggml_state g_state;
  1954. static atomic_int g_state_barrier = 0;
  1955. // barrier via spin lock
  1956. inline static void ggml_critical_section_start(void) {
  1957. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1958. while (processing > 0) {
  1959. // wait for other threads to finish
  1960. atomic_fetch_sub(&g_state_barrier, 1);
  1961. sched_yield(); // TODO: reconsider this
  1962. processing = atomic_fetch_add(&g_state_barrier, 1);
  1963. }
  1964. }
  1965. // TODO: make this somehow automatically executed
  1966. // some sort of "sentry" mechanism
  1967. inline static void ggml_critical_section_end(void) {
  1968. atomic_fetch_sub(&g_state_barrier, 1);
  1969. }
  1970. #if defined(__gnu_linux__)
  1971. static cpu_set_t ggml_get_numa_affinity(void) {
  1972. cpu_set_t cpuset;
  1973. pthread_t thread;
  1974. thread = pthread_self();
  1975. CPU_ZERO(&cpuset);
  1976. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1977. return cpuset;
  1978. }
  1979. #else
  1980. static uint32_t ggml_get_numa_affinity(void) {
  1981. return 0; // no NUMA support
  1982. }
  1983. #endif
  1984. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1985. if (g_state.numa.n_nodes > 0) {
  1986. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1987. return;
  1988. }
  1989. #if defined(__gnu_linux__)
  1990. struct stat st;
  1991. char path[256];
  1992. int rv;
  1993. // set numa scheme
  1994. g_state.numa.numa_strategy = numa_flag;
  1995. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1996. g_state.numa.cpuset = ggml_get_numa_affinity();
  1997. // enumerate nodes
  1998. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1999. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2000. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2001. if (stat(path, &st) != 0) { break; }
  2002. ++g_state.numa.n_nodes;
  2003. }
  2004. // enumerate CPUs
  2005. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2006. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2007. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2008. if (stat(path, &st) != 0) { break; }
  2009. ++g_state.numa.total_cpus;
  2010. }
  2011. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2012. // figure out which node we're on
  2013. uint current_cpu;
  2014. int getcpu_ret = 0;
  2015. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2016. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2017. #else
  2018. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2019. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2020. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2021. # endif
  2022. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2023. #endif
  2024. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2025. g_state.numa.n_nodes = 0;
  2026. return;
  2027. }
  2028. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2029. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2030. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2031. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2032. node->n_cpus = 0;
  2033. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2034. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2035. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2036. if (stat(path, &st) == 0) {
  2037. node->cpus[node->n_cpus++] = c;
  2038. GGML_PRINT_DEBUG(" %u", c);
  2039. }
  2040. }
  2041. GGML_PRINT_DEBUG("\n");
  2042. }
  2043. if (ggml_is_numa()) {
  2044. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2045. if (fptr != NULL) {
  2046. char buf[42];
  2047. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2048. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2049. }
  2050. fclose(fptr);
  2051. }
  2052. }
  2053. #else
  2054. GGML_UNUSED(numa_flag);
  2055. // TODO
  2056. #endif
  2057. }
  2058. bool ggml_is_numa(void) {
  2059. return g_state.numa.n_nodes > 1;
  2060. }
  2061. ////////////////////////////////////////////////////////////////////////////////
  2062. void ggml_print_object(const struct ggml_object * obj) {
  2063. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2064. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2065. }
  2066. void ggml_print_objects(const struct ggml_context * ctx) {
  2067. struct ggml_object * obj = ctx->objects_begin;
  2068. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2069. while (obj != NULL) {
  2070. ggml_print_object(obj);
  2071. obj = obj->next;
  2072. }
  2073. GGML_PRINT("%s: --- end ---\n", __func__);
  2074. }
  2075. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2082. }
  2083. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2084. size_t nbytes;
  2085. size_t blck_size = ggml_blck_size(tensor->type);
  2086. if (blck_size == 1) {
  2087. nbytes = ggml_type_size(tensor->type);
  2088. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2089. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2090. }
  2091. }
  2092. else {
  2093. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2094. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2095. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2096. }
  2097. }
  2098. return nbytes;
  2099. }
  2100. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2101. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2102. }
  2103. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2104. return type_traits[type].blck_size;
  2105. }
  2106. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2107. return type_traits[type].type_size;
  2108. }
  2109. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2110. assert(ne % ggml_blck_size(type) == 0);
  2111. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2112. }
  2113. double ggml_type_sizef(enum ggml_type type) {
  2114. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2115. }
  2116. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2117. return type_traits[type].type_name;
  2118. }
  2119. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2120. return type_traits[type].is_quantized;
  2121. }
  2122. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2123. return GGML_OP_NAME[op];
  2124. }
  2125. const char * ggml_op_symbol(enum ggml_op op) {
  2126. return GGML_OP_SYMBOL[op];
  2127. }
  2128. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2129. return GGML_UNARY_OP_NAME[op];
  2130. }
  2131. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2132. if (t->op == GGML_OP_UNARY) {
  2133. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2134. return ggml_unary_op_name(uop);
  2135. }
  2136. else {
  2137. return ggml_op_name(t->op);
  2138. }
  2139. }
  2140. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2141. return ggml_type_size(tensor->type);
  2142. }
  2143. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2152. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2153. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2154. }
  2155. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2156. return tensor->ne[3] == 1;
  2157. }
  2158. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2159. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2160. if (tensor->ne[i] > 1) {
  2161. return i + 1;
  2162. }
  2163. }
  2164. return 1;
  2165. }
  2166. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2168. return (t0->ne[0] == t1->ne[0]) &&
  2169. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2170. (t1->ne[3]%t0->ne[3] == 0);
  2171. }
  2172. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2174. return (t0->ne[1] == t1->ne[1]) &&
  2175. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2176. (t1->ne[3]%t0->ne[3] == 0);
  2177. }
  2178. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2179. enum ggml_type wtype = GGML_TYPE_COUNT;
  2180. switch (ftype) {
  2181. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2182. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2183. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2185. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2186. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2187. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2188. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2189. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2190. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2191. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2192. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2193. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2194. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2195. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2198. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2199. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2200. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2201. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2202. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2203. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2204. }
  2205. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2206. return wtype;
  2207. }
  2208. size_t ggml_tensor_overhead(void) {
  2209. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2210. }
  2211. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2212. return tensor->nb[0] > tensor->nb[1];
  2213. }
  2214. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return
  2217. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2218. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2219. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2220. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2221. }
  2222. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2224. return
  2225. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2226. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2227. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2228. }
  2229. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2232. }
  2233. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2235. return
  2236. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2237. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2238. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2239. }
  2240. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2241. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2242. if (tensor->ne[i] == 0) {
  2243. // empty if any dimension has no elements
  2244. return true;
  2245. }
  2246. }
  2247. return false;
  2248. }
  2249. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return
  2252. (t0->ne[0] == t1->ne[0] ) &&
  2253. (t0->ne[1] == t1->ne[1] ) &&
  2254. (t0->ne[2] == t1->ne[2] ) &&
  2255. (t0->ne[3] == t1->ne[3] );
  2256. }
  2257. // check if t1 can be represented as a repeatition of t0
  2258. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2260. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2261. (t1->ne[0]%t0->ne[0] == 0) &&
  2262. (t1->ne[1]%t0->ne[1] == 0) &&
  2263. (t1->ne[2]%t0->ne[2] == 0) &&
  2264. (t1->ne[3]%t0->ne[3] == 0);
  2265. }
  2266. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2267. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2268. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2269. }
  2270. static inline int ggml_up32(int n) {
  2271. return (n + 31) & ~31;
  2272. }
  2273. //static inline int ggml_up64(int n) {
  2274. // return (n + 63) & ~63;
  2275. //}
  2276. static inline int ggml_up(int n, int m) {
  2277. // assert m is a power of 2
  2278. GGML_ASSERT((m & (m - 1)) == 0);
  2279. return (n + m - 1) & ~(m - 1);
  2280. }
  2281. // assert that pointer is aligned to GGML_MEM_ALIGN
  2282. #define ggml_assert_aligned(ptr) \
  2283. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2284. ////////////////////////////////////////////////////////////////////////////////
  2285. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2286. // make this function thread safe
  2287. ggml_critical_section_start();
  2288. static bool is_first_call = true;
  2289. if (is_first_call) {
  2290. // initialize time system (required on Windows)
  2291. ggml_time_init();
  2292. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2293. {
  2294. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2295. ggml_fp16_t ii;
  2296. for (int i = 0; i < (1 << 16); ++i) {
  2297. uint16_t ui = i;
  2298. memcpy(&ii, &ui, sizeof(ii));
  2299. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2300. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2301. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2302. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2303. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2304. }
  2305. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2306. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2307. }
  2308. // initialize g_state
  2309. {
  2310. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2311. g_state = (struct ggml_state) {
  2312. /*.contexts =*/ { { 0 } },
  2313. /*.numa =*/ {
  2314. .n_nodes = 0,
  2315. .total_cpus = 0,
  2316. },
  2317. };
  2318. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2319. g_state.contexts[i].used = false;
  2320. }
  2321. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2322. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2323. }
  2324. #if defined(GGML_USE_CLBLAST)
  2325. ggml_cl_init();
  2326. #endif
  2327. ggml_setup_op_has_task_pass();
  2328. is_first_call = false;
  2329. }
  2330. // find non-used context in g_state
  2331. struct ggml_context * ctx = NULL;
  2332. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2333. if (!g_state.contexts[i].used) {
  2334. g_state.contexts[i].used = true;
  2335. ctx = &g_state.contexts[i].context;
  2336. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2337. break;
  2338. }
  2339. }
  2340. if (ctx == NULL) {
  2341. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2342. ggml_critical_section_end();
  2343. return NULL;
  2344. }
  2345. // allow to call ggml_init with 0 size
  2346. if (params.mem_size == 0) {
  2347. params.mem_size = GGML_MEM_ALIGN;
  2348. }
  2349. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2350. *ctx = (struct ggml_context) {
  2351. /*.mem_size =*/ mem_size,
  2352. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2353. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2354. /*.no_alloc =*/ params.no_alloc,
  2355. /*.no_alloc_save =*/ params.no_alloc,
  2356. /*.n_objects =*/ 0,
  2357. /*.objects_begin =*/ NULL,
  2358. /*.objects_end =*/ NULL,
  2359. /*.scratch =*/ { 0, 0, NULL, },
  2360. /*.scratch_save =*/ { 0, 0, NULL, },
  2361. };
  2362. GGML_ASSERT(ctx->mem_buffer != NULL);
  2363. ggml_assert_aligned(ctx->mem_buffer);
  2364. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2365. ggml_critical_section_end();
  2366. return ctx;
  2367. }
  2368. void ggml_free(struct ggml_context * ctx) {
  2369. if (ctx == NULL) {
  2370. return;
  2371. }
  2372. // make this function thread safe
  2373. ggml_critical_section_start();
  2374. bool found = false;
  2375. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2376. if (&g_state.contexts[i].context == ctx) {
  2377. g_state.contexts[i].used = false;
  2378. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2379. __func__, i, ggml_used_mem(ctx));
  2380. if (ctx->mem_buffer_owned) {
  2381. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2382. }
  2383. found = true;
  2384. break;
  2385. }
  2386. }
  2387. if (!found) {
  2388. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2389. }
  2390. ggml_critical_section_end();
  2391. }
  2392. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2393. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2394. }
  2395. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2396. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2397. ctx->scratch = scratch;
  2398. return result;
  2399. }
  2400. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2401. return ctx->no_alloc;
  2402. }
  2403. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2404. ctx->no_alloc = no_alloc;
  2405. }
  2406. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2407. return ctx->mem_buffer;
  2408. }
  2409. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2410. return ctx->mem_size;
  2411. }
  2412. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2413. size_t max_size = 0;
  2414. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2415. size_t bytes = ggml_nbytes(tensor);
  2416. max_size = MAX(max_size, bytes);
  2417. }
  2418. return max_size;
  2419. }
  2420. // IMPORTANT:
  2421. // when creating "opt" tensors, always save and load the scratch buffer
  2422. // this is an error prone process, but it is necessary to support inplace
  2423. // operators when using scratch buffers
  2424. // TODO: implement a better way
  2425. static void ggml_scratch_save(struct ggml_context * ctx) {
  2426. // this is needed to allow opt tensors to store their data
  2427. // TODO: again, need to find a better way
  2428. ctx->no_alloc_save = ctx->no_alloc;
  2429. ctx->no_alloc = false;
  2430. ctx->scratch_save = ctx->scratch;
  2431. ctx->scratch.data = NULL;
  2432. }
  2433. static void ggml_scratch_load(struct ggml_context * ctx) {
  2434. ctx->no_alloc = ctx->no_alloc_save;
  2435. ctx->scratch = ctx->scratch_save;
  2436. }
  2437. ////////////////////////////////////////////////////////////////////////////////
  2438. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2439. // always insert objects at the end of the context's memory pool
  2440. struct ggml_object * obj_cur = ctx->objects_end;
  2441. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2442. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2443. const size_t cur_end = cur_offs + cur_size;
  2444. // align to GGML_MEM_ALIGN
  2445. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2446. char * const mem_buffer = ctx->mem_buffer;
  2447. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2448. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2449. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2450. __func__, cur_end + size_needed, ctx->mem_size);
  2451. assert(false);
  2452. return NULL;
  2453. }
  2454. *obj_new = (struct ggml_object) {
  2455. .offs = cur_end + GGML_OBJECT_SIZE,
  2456. .size = size_needed,
  2457. .next = NULL,
  2458. .type = type,
  2459. };
  2460. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2461. if (obj_cur != NULL) {
  2462. obj_cur->next = obj_new;
  2463. } else {
  2464. // this is the first object in this context
  2465. ctx->objects_begin = obj_new;
  2466. }
  2467. ctx->objects_end = obj_new;
  2468. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2469. return obj_new;
  2470. }
  2471. static struct ggml_tensor * ggml_new_tensor_impl(
  2472. struct ggml_context * ctx,
  2473. enum ggml_type type,
  2474. int n_dims,
  2475. const int64_t * ne,
  2476. struct ggml_tensor * view_src,
  2477. size_t view_offs) {
  2478. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2479. // find the base tensor and absolute offset
  2480. if (view_src != NULL && view_src->view_src != NULL) {
  2481. view_offs += view_src->view_offs;
  2482. view_src = view_src->view_src;
  2483. }
  2484. size_t data_size = ggml_row_size(type, ne[0]);
  2485. for (int i = 1; i < n_dims; i++) {
  2486. data_size *= ne[i];
  2487. }
  2488. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2489. void * data = view_src != NULL ? view_src->data : NULL;
  2490. if (data != NULL) {
  2491. data = (char *) data + view_offs;
  2492. }
  2493. size_t obj_alloc_size = 0;
  2494. if (view_src == NULL && !ctx->no_alloc) {
  2495. if (ctx->scratch.data != NULL) {
  2496. // allocate tensor data in the scratch buffer
  2497. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2498. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2499. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2500. assert(false);
  2501. return NULL;
  2502. }
  2503. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2504. ctx->scratch.offs += data_size;
  2505. } else {
  2506. // allocate tensor data in the context's memory pool
  2507. obj_alloc_size = data_size;
  2508. }
  2509. }
  2510. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2511. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2512. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2513. *result = (struct ggml_tensor) {
  2514. /*.type =*/ type,
  2515. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2516. /*.buffer =*/ NULL,
  2517. /*.ne =*/ { 1, 1, 1, 1 },
  2518. /*.nb =*/ { 0, 0, 0, 0 },
  2519. /*.op =*/ GGML_OP_NONE,
  2520. /*.op_params =*/ { 0 },
  2521. /*.flags =*/ 0,
  2522. /*.grad =*/ NULL,
  2523. /*.src =*/ { NULL },
  2524. /*.perf_runs =*/ 0,
  2525. /*.perf_cycles =*/ 0,
  2526. /*.perf_time_us =*/ 0,
  2527. /*.view_src =*/ view_src,
  2528. /*.view_offs =*/ view_offs,
  2529. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2530. /*.name =*/ { 0 },
  2531. /*.extra =*/ NULL,
  2532. /*.padding =*/ { 0 },
  2533. };
  2534. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2535. //ggml_assert_aligned(result->data);
  2536. for (int i = 0; i < n_dims; i++) {
  2537. result->ne[i] = ne[i];
  2538. }
  2539. result->nb[0] = ggml_type_size(type);
  2540. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2541. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2542. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2543. }
  2544. ctx->n_objects++;
  2545. return result;
  2546. }
  2547. struct ggml_tensor * ggml_new_tensor(
  2548. struct ggml_context * ctx,
  2549. enum ggml_type type,
  2550. int n_dims,
  2551. const int64_t * ne) {
  2552. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2553. }
  2554. struct ggml_tensor * ggml_new_tensor_1d(
  2555. struct ggml_context * ctx,
  2556. enum ggml_type type,
  2557. int64_t ne0) {
  2558. return ggml_new_tensor(ctx, type, 1, &ne0);
  2559. }
  2560. struct ggml_tensor * ggml_new_tensor_2d(
  2561. struct ggml_context * ctx,
  2562. enum ggml_type type,
  2563. int64_t ne0,
  2564. int64_t ne1) {
  2565. const int64_t ne[2] = { ne0, ne1 };
  2566. return ggml_new_tensor(ctx, type, 2, ne);
  2567. }
  2568. struct ggml_tensor * ggml_new_tensor_3d(
  2569. struct ggml_context * ctx,
  2570. enum ggml_type type,
  2571. int64_t ne0,
  2572. int64_t ne1,
  2573. int64_t ne2) {
  2574. const int64_t ne[3] = { ne0, ne1, ne2 };
  2575. return ggml_new_tensor(ctx, type, 3, ne);
  2576. }
  2577. struct ggml_tensor * ggml_new_tensor_4d(
  2578. struct ggml_context * ctx,
  2579. enum ggml_type type,
  2580. int64_t ne0,
  2581. int64_t ne1,
  2582. int64_t ne2,
  2583. int64_t ne3) {
  2584. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2585. return ggml_new_tensor(ctx, type, 4, ne);
  2586. }
  2587. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2588. ggml_scratch_save(ctx);
  2589. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2590. ggml_scratch_load(ctx);
  2591. ggml_set_i32(result, value);
  2592. return result;
  2593. }
  2594. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2595. ggml_scratch_save(ctx);
  2596. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2597. ggml_scratch_load(ctx);
  2598. ggml_set_f32(result, value);
  2599. return result;
  2600. }
  2601. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2602. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2603. }
  2604. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2605. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2606. assert(params_size <= GGML_MAX_OP_PARAMS);
  2607. memcpy(tensor->op_params, params, params_size);
  2608. }
  2609. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2610. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2611. return ((const int32_t *)(tensor->op_params))[i];
  2612. }
  2613. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2614. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2615. return ((const float *)(tensor->op_params))[i];
  2616. }
  2617. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2618. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2619. ((int32_t *)(tensor->op_params))[i] = value;
  2620. }
  2621. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2622. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2623. ((float *)(tensor->op_params))[i] = value;
  2624. }
  2625. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2626. memset(tensor->data, 0, ggml_nbytes(tensor));
  2627. return tensor;
  2628. }
  2629. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2630. const int n = ggml_nrows(tensor);
  2631. const int nc = tensor->ne[0];
  2632. const size_t n1 = tensor->nb[1];
  2633. char * const data = tensor->data;
  2634. switch (tensor->type) {
  2635. case GGML_TYPE_I8:
  2636. {
  2637. assert(tensor->nb[0] == sizeof(int8_t));
  2638. for (int i = 0; i < n; i++) {
  2639. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2640. }
  2641. } break;
  2642. case GGML_TYPE_I16:
  2643. {
  2644. assert(tensor->nb[0] == sizeof(int16_t));
  2645. for (int i = 0; i < n; i++) {
  2646. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2647. }
  2648. } break;
  2649. case GGML_TYPE_I32:
  2650. {
  2651. assert(tensor->nb[0] == sizeof(int32_t));
  2652. for (int i = 0; i < n; i++) {
  2653. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2654. }
  2655. } break;
  2656. case GGML_TYPE_F16:
  2657. {
  2658. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2659. for (int i = 0; i < n; i++) {
  2660. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2661. }
  2662. } break;
  2663. case GGML_TYPE_F32:
  2664. {
  2665. assert(tensor->nb[0] == sizeof(float));
  2666. for (int i = 0; i < n; i++) {
  2667. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2668. }
  2669. } break;
  2670. default:
  2671. {
  2672. GGML_ASSERT(false);
  2673. } break;
  2674. }
  2675. return tensor;
  2676. }
  2677. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2678. const int n = ggml_nrows(tensor);
  2679. const int nc = tensor->ne[0];
  2680. const size_t n1 = tensor->nb[1];
  2681. char * const data = tensor->data;
  2682. switch (tensor->type) {
  2683. case GGML_TYPE_I8:
  2684. {
  2685. assert(tensor->nb[0] == sizeof(int8_t));
  2686. for (int i = 0; i < n; i++) {
  2687. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2688. }
  2689. } break;
  2690. case GGML_TYPE_I16:
  2691. {
  2692. assert(tensor->nb[0] == sizeof(int16_t));
  2693. for (int i = 0; i < n; i++) {
  2694. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2695. }
  2696. } break;
  2697. case GGML_TYPE_I32:
  2698. {
  2699. assert(tensor->nb[0] == sizeof(int32_t));
  2700. for (int i = 0; i < n; i++) {
  2701. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2702. }
  2703. } break;
  2704. case GGML_TYPE_F16:
  2705. {
  2706. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2707. for (int i = 0; i < n; i++) {
  2708. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2709. }
  2710. } break;
  2711. case GGML_TYPE_F32:
  2712. {
  2713. assert(tensor->nb[0] == sizeof(float));
  2714. for (int i = 0; i < n; i++) {
  2715. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2716. }
  2717. } break;
  2718. default:
  2719. {
  2720. GGML_ASSERT(false);
  2721. } break;
  2722. }
  2723. return tensor;
  2724. }
  2725. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2726. const int64_t ne2 = tensor->ne[2];
  2727. const int64_t ne1 = tensor->ne[1];
  2728. const int64_t ne0 = tensor->ne[0];
  2729. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2730. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2731. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2732. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2733. if (i0) {
  2734. * i0 = i0_;
  2735. }
  2736. if (i1) {
  2737. * i1 = i1_;
  2738. }
  2739. if (i2) {
  2740. * i2 = i2_;
  2741. }
  2742. if (i3) {
  2743. * i3 = i3_;
  2744. }
  2745. }
  2746. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2747. if (!ggml_is_contiguous(tensor)) {
  2748. int64_t id[4] = { 0, 0, 0, 0 };
  2749. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2750. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2751. }
  2752. switch (tensor->type) {
  2753. case GGML_TYPE_I8:
  2754. {
  2755. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2756. return ((int8_t *)(tensor->data))[i];
  2757. }
  2758. case GGML_TYPE_I16:
  2759. {
  2760. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2761. return ((int16_t *)(tensor->data))[i];
  2762. }
  2763. case GGML_TYPE_I32:
  2764. {
  2765. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2766. return ((int32_t *)(tensor->data))[i];
  2767. }
  2768. case GGML_TYPE_F16:
  2769. {
  2770. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2771. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2772. }
  2773. case GGML_TYPE_F32:
  2774. {
  2775. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2776. return ((float *)(tensor->data))[i];
  2777. }
  2778. default:
  2779. {
  2780. GGML_ASSERT(false);
  2781. }
  2782. }
  2783. return 0.0f;
  2784. }
  2785. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2786. if (!ggml_is_contiguous(tensor)) {
  2787. int64_t id[4] = { 0, 0, 0, 0 };
  2788. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2789. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2790. return;
  2791. }
  2792. switch (tensor->type) {
  2793. case GGML_TYPE_I8:
  2794. {
  2795. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2796. ((int8_t *)(tensor->data))[i] = value;
  2797. } break;
  2798. case GGML_TYPE_I16:
  2799. {
  2800. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2801. ((int16_t *)(tensor->data))[i] = value;
  2802. } break;
  2803. case GGML_TYPE_I32:
  2804. {
  2805. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2806. ((int32_t *)(tensor->data))[i] = value;
  2807. } break;
  2808. case GGML_TYPE_F16:
  2809. {
  2810. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2811. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2812. } break;
  2813. case GGML_TYPE_F32:
  2814. {
  2815. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2816. ((float *)(tensor->data))[i] = value;
  2817. } break;
  2818. default:
  2819. {
  2820. GGML_ASSERT(false);
  2821. } break;
  2822. }
  2823. }
  2824. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2825. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2826. switch (tensor->type) {
  2827. case GGML_TYPE_I8:
  2828. return ((int8_t *) data)[0];
  2829. case GGML_TYPE_I16:
  2830. return ((int16_t *) data)[0];
  2831. case GGML_TYPE_I32:
  2832. return ((int32_t *) data)[0];
  2833. case GGML_TYPE_F16:
  2834. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2835. case GGML_TYPE_F32:
  2836. return ((float *) data)[0];
  2837. default:
  2838. GGML_ASSERT(false);
  2839. }
  2840. return 0.0f;
  2841. }
  2842. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2843. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2844. switch (tensor->type) {
  2845. case GGML_TYPE_I8:
  2846. {
  2847. ((int8_t *)(data))[0] = value;
  2848. } break;
  2849. case GGML_TYPE_I16:
  2850. {
  2851. ((int16_t *)(data))[0] = value;
  2852. } break;
  2853. case GGML_TYPE_I32:
  2854. {
  2855. ((int32_t *)(data))[0] = value;
  2856. } break;
  2857. case GGML_TYPE_F16:
  2858. {
  2859. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2860. } break;
  2861. case GGML_TYPE_F32:
  2862. {
  2863. ((float *)(data))[0] = value;
  2864. } break;
  2865. default:
  2866. {
  2867. GGML_ASSERT(false);
  2868. } break;
  2869. }
  2870. }
  2871. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2872. if (!ggml_is_contiguous(tensor)) {
  2873. int64_t id[4] = { 0, 0, 0, 0 };
  2874. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2875. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2876. }
  2877. switch (tensor->type) {
  2878. case GGML_TYPE_I8:
  2879. {
  2880. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2881. return ((int8_t *)(tensor->data))[i];
  2882. }
  2883. case GGML_TYPE_I16:
  2884. {
  2885. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2886. return ((int16_t *)(tensor->data))[i];
  2887. }
  2888. case GGML_TYPE_I32:
  2889. {
  2890. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2891. return ((int32_t *)(tensor->data))[i];
  2892. }
  2893. case GGML_TYPE_F16:
  2894. {
  2895. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2896. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2897. }
  2898. case GGML_TYPE_F32:
  2899. {
  2900. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2901. return ((float *)(tensor->data))[i];
  2902. }
  2903. default:
  2904. {
  2905. GGML_ASSERT(false);
  2906. }
  2907. }
  2908. return 0.0f;
  2909. }
  2910. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2911. if (!ggml_is_contiguous(tensor)) {
  2912. int64_t id[4] = { 0, 0, 0, 0 };
  2913. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2914. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2915. return;
  2916. }
  2917. switch (tensor->type) {
  2918. case GGML_TYPE_I8:
  2919. {
  2920. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2921. ((int8_t *)(tensor->data))[i] = value;
  2922. } break;
  2923. case GGML_TYPE_I16:
  2924. {
  2925. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2926. ((int16_t *)(tensor->data))[i] = value;
  2927. } break;
  2928. case GGML_TYPE_I32:
  2929. {
  2930. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2931. ((int32_t *)(tensor->data))[i] = value;
  2932. } break;
  2933. case GGML_TYPE_F16:
  2934. {
  2935. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2936. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2937. } break;
  2938. case GGML_TYPE_F32:
  2939. {
  2940. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2941. ((float *)(tensor->data))[i] = value;
  2942. } break;
  2943. default:
  2944. {
  2945. GGML_ASSERT(false);
  2946. } break;
  2947. }
  2948. }
  2949. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2950. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2951. switch (tensor->type) {
  2952. case GGML_TYPE_I8:
  2953. return ((int8_t *) data)[0];
  2954. case GGML_TYPE_I16:
  2955. return ((int16_t *) data)[0];
  2956. case GGML_TYPE_I32:
  2957. return ((int32_t *) data)[0];
  2958. case GGML_TYPE_F16:
  2959. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2960. case GGML_TYPE_F32:
  2961. return ((float *) data)[0];
  2962. default:
  2963. GGML_ASSERT(false);
  2964. }
  2965. return 0.0f;
  2966. }
  2967. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2968. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2969. switch (tensor->type) {
  2970. case GGML_TYPE_I8:
  2971. {
  2972. ((int8_t *)(data))[0] = value;
  2973. } break;
  2974. case GGML_TYPE_I16:
  2975. {
  2976. ((int16_t *)(data))[0] = value;
  2977. } break;
  2978. case GGML_TYPE_I32:
  2979. {
  2980. ((int32_t *)(data))[0] = value;
  2981. } break;
  2982. case GGML_TYPE_F16:
  2983. {
  2984. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2985. } break;
  2986. case GGML_TYPE_F32:
  2987. {
  2988. ((float *)(data))[0] = value;
  2989. } break;
  2990. default:
  2991. {
  2992. GGML_ASSERT(false);
  2993. } break;
  2994. }
  2995. }
  2996. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2997. return tensor->data;
  2998. }
  2999. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3000. assert(tensor->type == GGML_TYPE_F32);
  3001. return (float *)(tensor->data);
  3002. }
  3003. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3004. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3005. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3006. }
  3007. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3008. return tensor->name;
  3009. }
  3010. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3011. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3012. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3013. return tensor;
  3014. }
  3015. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3016. va_list args;
  3017. va_start(args, fmt);
  3018. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3019. va_end(args);
  3020. return tensor;
  3021. }
  3022. struct ggml_tensor * ggml_view_tensor(
  3023. struct ggml_context * ctx,
  3024. struct ggml_tensor * src) {
  3025. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3026. ggml_format_name(result, "%s (view)", src->name);
  3027. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3028. result->nb[i] = src->nb[i];
  3029. }
  3030. return result;
  3031. }
  3032. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3033. struct ggml_object * obj = ctx->objects_begin;
  3034. char * const mem_buffer = ctx->mem_buffer;
  3035. while (obj != NULL) {
  3036. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3037. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3038. }
  3039. obj = obj->next;
  3040. }
  3041. return NULL;
  3042. }
  3043. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3044. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3045. obj = obj->next;
  3046. char * const mem_buffer = ctx->mem_buffer;
  3047. while (obj != NULL) {
  3048. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3049. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3050. }
  3051. obj = obj->next;
  3052. }
  3053. return NULL;
  3054. }
  3055. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3056. struct ggml_object * obj = ctx->objects_begin;
  3057. char * const mem_buffer = ctx->mem_buffer;
  3058. while (obj != NULL) {
  3059. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3060. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3061. if (strcmp(cur->name, name) == 0) {
  3062. return cur;
  3063. }
  3064. }
  3065. obj = obj->next;
  3066. }
  3067. return NULL;
  3068. }
  3069. ////////////////////////////////////////////////////////////////////////////////
  3070. // ggml_dup
  3071. static struct ggml_tensor * ggml_dup_impl(
  3072. struct ggml_context * ctx,
  3073. struct ggml_tensor * a,
  3074. bool inplace) {
  3075. bool is_node = false;
  3076. if (!inplace && (a->grad)) {
  3077. is_node = true;
  3078. }
  3079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3080. result->op = GGML_OP_DUP;
  3081. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3082. result->src[0] = a;
  3083. return result;
  3084. }
  3085. struct ggml_tensor * ggml_dup(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a) {
  3088. return ggml_dup_impl(ctx, a, false);
  3089. }
  3090. struct ggml_tensor * ggml_dup_inplace(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_dup_impl(ctx, a, true);
  3094. }
  3095. // ggml_add
  3096. static struct ggml_tensor * ggml_add_impl(
  3097. struct ggml_context * ctx,
  3098. struct ggml_tensor * a,
  3099. struct ggml_tensor * b,
  3100. bool inplace) {
  3101. GGML_ASSERT(ggml_can_repeat(b, a));
  3102. bool is_node = false;
  3103. if (!inplace && (a->grad || b->grad)) {
  3104. // TODO: support backward pass for broadcasting
  3105. GGML_ASSERT(ggml_are_same_shape(a, b));
  3106. is_node = true;
  3107. }
  3108. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3109. result->op = GGML_OP_ADD;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src[0] = a;
  3112. result->src[1] = b;
  3113. return result;
  3114. }
  3115. struct ggml_tensor * ggml_add(
  3116. struct ggml_context * ctx,
  3117. struct ggml_tensor * a,
  3118. struct ggml_tensor * b) {
  3119. return ggml_add_impl(ctx, a, b, false);
  3120. }
  3121. struct ggml_tensor * ggml_add_inplace(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a,
  3124. struct ggml_tensor * b) {
  3125. return ggml_add_impl(ctx, a, b, true);
  3126. }
  3127. // ggml_add_cast
  3128. static struct ggml_tensor * ggml_add_cast_impl(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a,
  3131. struct ggml_tensor * b,
  3132. enum ggml_type type) {
  3133. // TODO: support less-strict constraint
  3134. // GGML_ASSERT(ggml_can_repeat(b, a));
  3135. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3136. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3137. bool is_node = false;
  3138. if (a->grad || b->grad) {
  3139. // TODO: support backward pass for broadcasting
  3140. GGML_ASSERT(ggml_are_same_shape(a, b));
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3144. result->op = GGML_OP_ADD;
  3145. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3146. result->src[0] = a;
  3147. result->src[1] = b;
  3148. return result;
  3149. }
  3150. struct ggml_tensor * ggml_add_cast(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. struct ggml_tensor * b,
  3154. enum ggml_type type) {
  3155. return ggml_add_cast_impl(ctx, a, b, type);
  3156. }
  3157. // ggml_add1
  3158. static struct ggml_tensor * ggml_add1_impl(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a,
  3161. struct ggml_tensor * b,
  3162. bool inplace) {
  3163. GGML_ASSERT(ggml_is_scalar(b));
  3164. GGML_ASSERT(ggml_is_padded_1d(a));
  3165. bool is_node = false;
  3166. if (a->grad || b->grad) {
  3167. is_node = true;
  3168. }
  3169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3170. result->op = GGML_OP_ADD1;
  3171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3172. result->src[0] = a;
  3173. result->src[1] = b;
  3174. return result;
  3175. }
  3176. struct ggml_tensor * ggml_add1(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a,
  3179. struct ggml_tensor * b) {
  3180. return ggml_add1_impl(ctx, a, b, false);
  3181. }
  3182. struct ggml_tensor * ggml_add1_inplace(
  3183. struct ggml_context * ctx,
  3184. struct ggml_tensor * a,
  3185. struct ggml_tensor * b) {
  3186. return ggml_add1_impl(ctx, a, b, true);
  3187. }
  3188. // ggml_acc
  3189. static struct ggml_tensor * ggml_acc_impl(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. struct ggml_tensor * b,
  3193. size_t nb1,
  3194. size_t nb2,
  3195. size_t nb3,
  3196. size_t offset,
  3197. bool inplace) {
  3198. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3199. GGML_ASSERT(ggml_is_contiguous(a));
  3200. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3201. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3202. bool is_node = false;
  3203. if (!inplace && (a->grad || b->grad)) {
  3204. is_node = true;
  3205. }
  3206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3207. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3208. ggml_set_op_params(result, params, sizeof(params));
  3209. result->op = GGML_OP_ACC;
  3210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3211. result->src[0] = a;
  3212. result->src[1] = b;
  3213. return result;
  3214. }
  3215. struct ggml_tensor * ggml_acc(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a,
  3218. struct ggml_tensor * b,
  3219. size_t nb1,
  3220. size_t nb2,
  3221. size_t nb3,
  3222. size_t offset) {
  3223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3224. }
  3225. struct ggml_tensor * ggml_acc_inplace(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a,
  3228. struct ggml_tensor * b,
  3229. size_t nb1,
  3230. size_t nb2,
  3231. size_t nb3,
  3232. size_t offset) {
  3233. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3234. }
  3235. // ggml_sub
  3236. static struct ggml_tensor * ggml_sub_impl(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a,
  3239. struct ggml_tensor * b,
  3240. bool inplace) {
  3241. GGML_ASSERT(ggml_are_same_shape(a, b));
  3242. bool is_node = false;
  3243. if (!inplace && (a->grad || b->grad)) {
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SUB;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src[0] = a;
  3250. result->src[1] = b;
  3251. return result;
  3252. }
  3253. struct ggml_tensor * ggml_sub(
  3254. struct ggml_context * ctx,
  3255. struct ggml_tensor * a,
  3256. struct ggml_tensor * b) {
  3257. return ggml_sub_impl(ctx, a, b, false);
  3258. }
  3259. struct ggml_tensor * ggml_sub_inplace(
  3260. struct ggml_context * ctx,
  3261. struct ggml_tensor * a,
  3262. struct ggml_tensor * b) {
  3263. return ggml_sub_impl(ctx, a, b, true);
  3264. }
  3265. // ggml_mul
  3266. static struct ggml_tensor * ggml_mul_impl(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a,
  3269. struct ggml_tensor * b,
  3270. bool inplace) {
  3271. GGML_ASSERT(ggml_can_repeat(b, a));
  3272. bool is_node = false;
  3273. if (!inplace && (a->grad || b->grad)) {
  3274. // TODO: support backward pass for broadcasting
  3275. GGML_ASSERT(ggml_are_same_shape(a, b));
  3276. is_node = true;
  3277. }
  3278. if (inplace) {
  3279. GGML_ASSERT(!is_node);
  3280. }
  3281. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3282. result->op = GGML_OP_MUL;
  3283. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3284. result->src[0] = a;
  3285. result->src[1] = b;
  3286. return result;
  3287. }
  3288. struct ggml_tensor * ggml_mul(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. struct ggml_tensor * b) {
  3292. return ggml_mul_impl(ctx, a, b, false);
  3293. }
  3294. struct ggml_tensor * ggml_mul_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. struct ggml_tensor * b) {
  3298. return ggml_mul_impl(ctx, a, b, true);
  3299. }
  3300. // ggml_div
  3301. static struct ggml_tensor * ggml_div_impl(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. struct ggml_tensor * b,
  3305. bool inplace) {
  3306. GGML_ASSERT(ggml_can_repeat(b, a));
  3307. bool is_node = false;
  3308. if (!inplace && (a->grad || b->grad)) {
  3309. is_node = true;
  3310. }
  3311. if (inplace) {
  3312. GGML_ASSERT(!is_node);
  3313. }
  3314. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3315. result->op = GGML_OP_DIV;
  3316. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3317. result->src[0] = a;
  3318. result->src[1] = b;
  3319. return result;
  3320. }
  3321. struct ggml_tensor * ggml_div(
  3322. struct ggml_context * ctx,
  3323. struct ggml_tensor * a,
  3324. struct ggml_tensor * b) {
  3325. return ggml_div_impl(ctx, a, b, false);
  3326. }
  3327. struct ggml_tensor * ggml_div_inplace(
  3328. struct ggml_context * ctx,
  3329. struct ggml_tensor * a,
  3330. struct ggml_tensor * b) {
  3331. return ggml_div_impl(ctx, a, b, true);
  3332. }
  3333. // ggml_sqr
  3334. static struct ggml_tensor * ggml_sqr_impl(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. bool inplace) {
  3338. bool is_node = false;
  3339. if (!inplace && (a->grad)) {
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op = GGML_OP_SQR;
  3344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3345. result->src[0] = a;
  3346. return result;
  3347. }
  3348. struct ggml_tensor * ggml_sqr(
  3349. struct ggml_context * ctx,
  3350. struct ggml_tensor * a) {
  3351. return ggml_sqr_impl(ctx, a, false);
  3352. }
  3353. struct ggml_tensor * ggml_sqr_inplace(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_sqr_impl(ctx, a, true);
  3357. }
  3358. // ggml_sqrt
  3359. static struct ggml_tensor * ggml_sqrt_impl(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a,
  3362. bool inplace) {
  3363. bool is_node = false;
  3364. if (!inplace && (a->grad)) {
  3365. is_node = true;
  3366. }
  3367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3368. result->op = GGML_OP_SQRT;
  3369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3370. result->src[0] = a;
  3371. return result;
  3372. }
  3373. struct ggml_tensor * ggml_sqrt(
  3374. struct ggml_context * ctx,
  3375. struct ggml_tensor * a) {
  3376. return ggml_sqrt_impl(ctx, a, false);
  3377. }
  3378. struct ggml_tensor * ggml_sqrt_inplace(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a) {
  3381. return ggml_sqrt_impl(ctx, a, true);
  3382. }
  3383. // ggml_log
  3384. static struct ggml_tensor * ggml_log_impl(
  3385. struct ggml_context * ctx,
  3386. struct ggml_tensor * a,
  3387. bool inplace) {
  3388. bool is_node = false;
  3389. if (!inplace && (a->grad)) {
  3390. is_node = true;
  3391. }
  3392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3393. result->op = GGML_OP_LOG;
  3394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3395. result->src[0] = a;
  3396. return result;
  3397. }
  3398. struct ggml_tensor * ggml_log(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. return ggml_log_impl(ctx, a, false);
  3402. }
  3403. struct ggml_tensor * ggml_log_inplace(
  3404. struct ggml_context * ctx,
  3405. struct ggml_tensor * a) {
  3406. return ggml_log_impl(ctx, a, true);
  3407. }
  3408. // ggml_sum
  3409. struct ggml_tensor * ggml_sum(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a) {
  3412. bool is_node = false;
  3413. if (a->grad) {
  3414. is_node = true;
  3415. }
  3416. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3417. result->op = GGML_OP_SUM;
  3418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3419. result->src[0] = a;
  3420. return result;
  3421. }
  3422. // ggml_sum_rows
  3423. struct ggml_tensor * ggml_sum_rows(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a) {
  3426. bool is_node = false;
  3427. if (a->grad) {
  3428. is_node = true;
  3429. }
  3430. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3431. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3432. ne[i] = a->ne[i];
  3433. }
  3434. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3435. result->op = GGML_OP_SUM_ROWS;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. return result;
  3439. }
  3440. // ggml_mean
  3441. struct ggml_tensor * ggml_mean(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a) {
  3444. bool is_node = false;
  3445. if (a->grad) {
  3446. GGML_ASSERT(false); // TODO: implement
  3447. is_node = true;
  3448. }
  3449. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3451. result->op = GGML_OP_MEAN;
  3452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3453. result->src[0] = a;
  3454. return result;
  3455. }
  3456. // ggml_argmax
  3457. struct ggml_tensor * ggml_argmax(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a) {
  3460. GGML_ASSERT(ggml_is_matrix(a));
  3461. bool is_node = false;
  3462. if (a->grad) {
  3463. GGML_ASSERT(false);
  3464. is_node = true;
  3465. }
  3466. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3467. result->op = GGML_OP_ARGMAX;
  3468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3469. result->src[0] = a;
  3470. return result;
  3471. }
  3472. // ggml_repeat
  3473. struct ggml_tensor * ggml_repeat(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b) {
  3477. GGML_ASSERT(ggml_can_repeat(a, b));
  3478. bool is_node = false;
  3479. if (a->grad) {
  3480. is_node = true;
  3481. }
  3482. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3483. result->op = GGML_OP_REPEAT;
  3484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3485. result->src[0] = a;
  3486. return result;
  3487. }
  3488. // ggml_repeat_back
  3489. struct ggml_tensor * ggml_repeat_back(
  3490. struct ggml_context * ctx,
  3491. struct ggml_tensor * a,
  3492. struct ggml_tensor * b) {
  3493. GGML_ASSERT(ggml_can_repeat(b, a));
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. is_node = true;
  3497. }
  3498. if (ggml_are_same_shape(a, b) && !is_node) {
  3499. return a;
  3500. }
  3501. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3502. result->op = GGML_OP_REPEAT_BACK;
  3503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3504. result->src[0] = a;
  3505. return result;
  3506. }
  3507. // ggml_concat
  3508. struct ggml_tensor * ggml_concat(
  3509. struct ggml_context* ctx,
  3510. struct ggml_tensor* a,
  3511. struct ggml_tensor* b) {
  3512. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3513. bool is_node = false;
  3514. if (a->grad || b->grad) {
  3515. is_node = true;
  3516. }
  3517. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3518. result->op = GGML_OP_CONCAT;
  3519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3520. result->src[0] = a;
  3521. result->src[1] = b;
  3522. return result;
  3523. }
  3524. // ggml_abs
  3525. struct ggml_tensor * ggml_abs(
  3526. struct ggml_context * ctx,
  3527. struct ggml_tensor * a) {
  3528. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3529. }
  3530. struct ggml_tensor * ggml_abs_inplace(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a) {
  3533. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3534. }
  3535. // ggml_sgn
  3536. struct ggml_tensor * ggml_sgn(
  3537. struct ggml_context * ctx,
  3538. struct ggml_tensor * a) {
  3539. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3540. }
  3541. struct ggml_tensor * ggml_sgn_inplace(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a) {
  3544. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3545. }
  3546. // ggml_neg
  3547. struct ggml_tensor * ggml_neg(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a) {
  3550. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3551. }
  3552. struct ggml_tensor * ggml_neg_inplace(
  3553. struct ggml_context * ctx,
  3554. struct ggml_tensor * a) {
  3555. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3556. }
  3557. // ggml_step
  3558. struct ggml_tensor * ggml_step(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a) {
  3561. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3562. }
  3563. struct ggml_tensor * ggml_step_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a) {
  3566. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3567. }
  3568. // ggml_tanh
  3569. struct ggml_tensor * ggml_tanh(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3573. }
  3574. struct ggml_tensor * ggml_tanh_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3578. }
  3579. // ggml_elu
  3580. struct ggml_tensor * ggml_elu(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a) {
  3583. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3584. }
  3585. struct ggml_tensor * ggml_elu_inplace(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3589. }
  3590. // ggml_relu
  3591. struct ggml_tensor * ggml_relu(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a) {
  3594. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3595. }
  3596. struct ggml_tensor * ggml_relu_inplace(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a) {
  3599. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3600. }
  3601. // ggml_leaky_relu
  3602. struct ggml_tensor * ggml_leaky_relu(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3605. bool is_node = false;
  3606. if (!inplace && (a->grad)) {
  3607. is_node = true;
  3608. }
  3609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3610. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3611. result->op = GGML_OP_LEAKY_RELU;
  3612. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3613. result->src[0] = a;
  3614. return result;
  3615. }
  3616. // ggml_gelu
  3617. struct ggml_tensor * ggml_gelu(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a) {
  3620. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3621. }
  3622. struct ggml_tensor * ggml_gelu_inplace(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a) {
  3625. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3626. }
  3627. // ggml_gelu_quick
  3628. struct ggml_tensor * ggml_gelu_quick(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a) {
  3631. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3632. }
  3633. struct ggml_tensor * ggml_gelu_quick_inplace(
  3634. struct ggml_context * ctx,
  3635. struct ggml_tensor * a) {
  3636. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3637. }
  3638. // ggml_silu
  3639. struct ggml_tensor * ggml_silu(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3643. }
  3644. struct ggml_tensor * ggml_silu_inplace(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3648. }
  3649. // ggml_silu_back
  3650. struct ggml_tensor * ggml_silu_back(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. struct ggml_tensor * b) {
  3654. bool is_node = false;
  3655. if (a->grad || b->grad) {
  3656. // TODO: implement backward
  3657. is_node = true;
  3658. }
  3659. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3660. result->op = GGML_OP_SILU_BACK;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src[0] = a;
  3663. result->src[1] = b;
  3664. return result;
  3665. }
  3666. // ggml hardswish
  3667. struct ggml_tensor * ggml_hardswish(
  3668. struct ggml_context * ctx,
  3669. struct ggml_tensor * a) {
  3670. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3671. }
  3672. // ggml hardsigmoid
  3673. struct ggml_tensor * ggml_hardsigmoid(
  3674. struct ggml_context * ctx,
  3675. struct ggml_tensor * a) {
  3676. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3677. }
  3678. // ggml_norm
  3679. static struct ggml_tensor * ggml_norm_impl(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. float eps,
  3683. bool inplace) {
  3684. bool is_node = false;
  3685. if (!inplace && (a->grad)) {
  3686. GGML_ASSERT(false); // TODO: implement backward
  3687. is_node = true;
  3688. }
  3689. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3690. ggml_set_op_params(result, &eps, sizeof(eps));
  3691. result->op = GGML_OP_NORM;
  3692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3693. result->src[0] = a;
  3694. return result;
  3695. }
  3696. struct ggml_tensor * ggml_norm(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. float eps) {
  3700. return ggml_norm_impl(ctx, a, eps, false);
  3701. }
  3702. struct ggml_tensor * ggml_norm_inplace(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. float eps) {
  3706. return ggml_norm_impl(ctx, a, eps, true);
  3707. }
  3708. // ggml_rms_norm
  3709. static struct ggml_tensor * ggml_rms_norm_impl(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. float eps,
  3713. bool inplace) {
  3714. bool is_node = false;
  3715. if (!inplace && (a->grad)) {
  3716. is_node = true;
  3717. }
  3718. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3719. ggml_set_op_params(result, &eps, sizeof(eps));
  3720. result->op = GGML_OP_RMS_NORM;
  3721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3722. result->src[0] = a;
  3723. return result;
  3724. }
  3725. struct ggml_tensor * ggml_rms_norm(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. float eps) {
  3729. return ggml_rms_norm_impl(ctx, a, eps, false);
  3730. }
  3731. struct ggml_tensor * ggml_rms_norm_inplace(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. float eps) {
  3735. return ggml_rms_norm_impl(ctx, a, eps, true);
  3736. }
  3737. // ggml_rms_norm_back
  3738. struct ggml_tensor * ggml_rms_norm_back(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. struct ggml_tensor * b,
  3742. float eps) {
  3743. bool is_node = false;
  3744. if (a->grad) {
  3745. // TODO: implement backward
  3746. is_node = true;
  3747. }
  3748. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3749. ggml_set_op_params(result, &eps, sizeof(eps));
  3750. result->op = GGML_OP_RMS_NORM_BACK;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src[0] = a;
  3753. result->src[1] = b;
  3754. return result;
  3755. }
  3756. // ggml_group_norm
  3757. static struct ggml_tensor * ggml_group_norm_impl(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. int n_groups,
  3761. bool inplace) {
  3762. bool is_node = false;
  3763. if (!inplace && (a->grad)) {
  3764. GGML_ASSERT(false); // TODO: implement backward
  3765. is_node = true;
  3766. }
  3767. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3768. result->op_params[0] = n_groups;
  3769. result->op = GGML_OP_GROUP_NORM;
  3770. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3771. result->src[0] = a;
  3772. return result;
  3773. }
  3774. struct ggml_tensor * ggml_group_norm(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a,
  3777. int n_groups) {
  3778. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3779. }
  3780. struct ggml_tensor * ggml_group_norm_inplace(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. int n_groups) {
  3784. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3785. }
  3786. // ggml_mul_mat
  3787. struct ggml_tensor * ggml_mul_mat(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a,
  3790. struct ggml_tensor * b) {
  3791. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3792. GGML_ASSERT(!ggml_is_transposed(a));
  3793. bool is_node = false;
  3794. if (a->grad || b->grad) {
  3795. is_node = true;
  3796. }
  3797. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3798. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3799. result->op = GGML_OP_MUL_MAT;
  3800. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3801. result->src[0] = a;
  3802. result->src[1] = b;
  3803. return result;
  3804. }
  3805. void ggml_mul_mat_set_prec(
  3806. struct ggml_tensor * a,
  3807. enum ggml_prec prec) {
  3808. const int32_t prec_i32 = (int32_t) prec;
  3809. ggml_set_op_params_i32(a, 0, prec_i32);
  3810. }
  3811. // ggml_mul_mat_id
  3812. // NOTE: id will be removed in the future and instead all the experts listed in ids will be computed
  3813. // this will allow computing all the used experts in a single matrix multiplication
  3814. struct ggml_tensor * ggml_mul_mat_id(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * as,
  3817. struct ggml_tensor * ids,
  3818. int id,
  3819. struct ggml_tensor * b) {
  3820. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3821. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  3822. GGML_ASSERT(ids->ne[1] == b->ne[1]); // must have an expert per b row
  3823. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3824. GGML_ASSERT(id >= 0 && id < ids->ne[0]); // valid id
  3825. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  3826. bool is_node = false;
  3827. if (as->grad || b->grad) {
  3828. is_node = true;
  3829. }
  3830. const int64_t ne[4] = { as->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3831. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3832. ggml_set_op_params_i32(result, 0, id);
  3833. result->op = GGML_OP_MUL_MAT_ID;
  3834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3835. result->src[0] = as;
  3836. result->src[1] = b;
  3837. result->src[2] = ids;
  3838. return result;
  3839. }
  3840. // ggml_out_prod
  3841. struct ggml_tensor * ggml_out_prod(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a,
  3844. struct ggml_tensor * b) {
  3845. GGML_ASSERT(ggml_can_out_prod(a, b));
  3846. GGML_ASSERT(!ggml_is_transposed(a));
  3847. bool is_node = false;
  3848. if (a->grad || b->grad) {
  3849. is_node = true;
  3850. }
  3851. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3852. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3853. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3854. result->op = GGML_OP_OUT_PROD;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src[0] = a;
  3857. result->src[1] = b;
  3858. return result;
  3859. }
  3860. // ggml_scale
  3861. static struct ggml_tensor * ggml_scale_impl(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a,
  3864. float s,
  3865. bool inplace) {
  3866. GGML_ASSERT(ggml_is_padded_1d(a));
  3867. bool is_node = false;
  3868. if (a->grad) {
  3869. is_node = true;
  3870. }
  3871. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3872. ggml_set_op_params(result, &s, sizeof(s));
  3873. result->op = GGML_OP_SCALE;
  3874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3875. result->src[0] = a;
  3876. return result;
  3877. }
  3878. struct ggml_tensor * ggml_scale(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * a,
  3881. float s) {
  3882. return ggml_scale_impl(ctx, a, s, false);
  3883. }
  3884. struct ggml_tensor * ggml_scale_inplace(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. float s) {
  3888. return ggml_scale_impl(ctx, a, s, true);
  3889. }
  3890. // ggml_set
  3891. static struct ggml_tensor * ggml_set_impl(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b,
  3895. size_t nb1,
  3896. size_t nb2,
  3897. size_t nb3,
  3898. size_t offset,
  3899. bool inplace) {
  3900. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3901. bool is_node = false;
  3902. if (a->grad || b->grad) {
  3903. is_node = true;
  3904. }
  3905. // make a view of the destination
  3906. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3907. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3908. ggml_set_op_params(result, params, sizeof(params));
  3909. result->op = GGML_OP_SET;
  3910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3911. result->src[0] = a;
  3912. result->src[1] = b;
  3913. return result;
  3914. }
  3915. struct ggml_tensor * ggml_set(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a,
  3918. struct ggml_tensor * b,
  3919. size_t nb1,
  3920. size_t nb2,
  3921. size_t nb3,
  3922. size_t offset) {
  3923. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3924. }
  3925. struct ggml_tensor * ggml_set_inplace(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. struct ggml_tensor * b,
  3929. size_t nb1,
  3930. size_t nb2,
  3931. size_t nb3,
  3932. size_t offset) {
  3933. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3934. }
  3935. struct ggml_tensor * ggml_set_1d(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. struct ggml_tensor * b,
  3939. size_t offset) {
  3940. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3941. }
  3942. struct ggml_tensor * ggml_set_1d_inplace(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. struct ggml_tensor * b,
  3946. size_t offset) {
  3947. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3948. }
  3949. struct ggml_tensor * ggml_set_2d(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. size_t nb1,
  3954. size_t offset) {
  3955. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3956. }
  3957. struct ggml_tensor * ggml_set_2d_inplace(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b,
  3961. size_t nb1,
  3962. size_t offset) {
  3963. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3964. }
  3965. // ggml_cpy
  3966. static struct ggml_tensor * ggml_cpy_impl(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. struct ggml_tensor * b) {
  3970. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3971. bool is_node = false;
  3972. if (a->grad || b->grad) {
  3973. // inplace is false and either one have a grad
  3974. is_node = true;
  3975. }
  3976. // make a view of the destination
  3977. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3978. if (strlen(b->name) > 0) {
  3979. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3980. } else {
  3981. ggml_format_name(result, "%s (copy)", a->name);
  3982. }
  3983. result->op = GGML_OP_CPY;
  3984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3985. result->src[0] = a;
  3986. result->src[1] = b;
  3987. return result;
  3988. }
  3989. struct ggml_tensor * ggml_cpy(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. struct ggml_tensor * b) {
  3993. return ggml_cpy_impl(ctx, a, b);
  3994. }
  3995. struct ggml_tensor * ggml_cast(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. enum ggml_type type) {
  3999. bool is_node = false;
  4000. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4001. ggml_format_name(result, "%s (copy)", a->name);
  4002. result->op = GGML_OP_CPY;
  4003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4004. result->src[0] = a;
  4005. result->src[1] = result;
  4006. return result;
  4007. }
  4008. // ggml_cont
  4009. static struct ggml_tensor * ggml_cont_impl(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a) {
  4012. bool is_node = false;
  4013. if (a->grad) {
  4014. is_node = true;
  4015. }
  4016. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4017. ggml_format_name(result, "%s (cont)", a->name);
  4018. result->op = GGML_OP_CONT;
  4019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4020. result->src[0] = a;
  4021. return result;
  4022. }
  4023. struct ggml_tensor * ggml_cont(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a) {
  4026. return ggml_cont_impl(ctx, a);
  4027. }
  4028. // make contiguous, with new shape
  4029. GGML_API struct ggml_tensor * ggml_cont_1d(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. int64_t ne0) {
  4033. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4034. }
  4035. GGML_API struct ggml_tensor * ggml_cont_2d(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. int64_t ne0,
  4039. int64_t ne1) {
  4040. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4041. }
  4042. GGML_API struct ggml_tensor * ggml_cont_3d(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. int64_t ne0,
  4046. int64_t ne1,
  4047. int64_t ne2) {
  4048. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4049. }
  4050. struct ggml_tensor * ggml_cont_4d(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. int64_t ne0,
  4054. int64_t ne1,
  4055. int64_t ne2,
  4056. int64_t ne3) {
  4057. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4058. bool is_node = false;
  4059. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4060. ggml_format_name(result, "%s (cont)", a->name);
  4061. result->op = GGML_OP_CONT;
  4062. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4063. result->src[0] = a;
  4064. return result;
  4065. }
  4066. // ggml_reshape
  4067. struct ggml_tensor * ggml_reshape(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. struct ggml_tensor * b) {
  4071. GGML_ASSERT(ggml_is_contiguous(a));
  4072. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4073. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4074. bool is_node = false;
  4075. if (a->grad) {
  4076. is_node = true;
  4077. }
  4078. if (b->grad) {
  4079. // gradient propagation is not supported
  4080. //GGML_ASSERT(false);
  4081. }
  4082. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4083. ggml_format_name(result, "%s (reshaped)", a->name);
  4084. result->op = GGML_OP_RESHAPE;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src[0] = a;
  4087. return result;
  4088. }
  4089. struct ggml_tensor * ggml_reshape_1d(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. int64_t ne0) {
  4093. GGML_ASSERT(ggml_is_contiguous(a));
  4094. GGML_ASSERT(ggml_nelements(a) == ne0);
  4095. bool is_node = false;
  4096. if (a->grad) {
  4097. is_node = true;
  4098. }
  4099. const int64_t ne[1] = { ne0 };
  4100. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4101. ggml_format_name(result, "%s (reshaped)", a->name);
  4102. result->op = GGML_OP_RESHAPE;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. struct ggml_tensor * ggml_reshape_2d(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. int64_t ne0,
  4111. int64_t ne1) {
  4112. GGML_ASSERT(ggml_is_contiguous(a));
  4113. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4114. bool is_node = false;
  4115. if (a->grad) {
  4116. is_node = true;
  4117. }
  4118. const int64_t ne[2] = { ne0, ne1 };
  4119. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4120. ggml_format_name(result, "%s (reshaped)", a->name);
  4121. result->op = GGML_OP_RESHAPE;
  4122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4123. result->src[0] = a;
  4124. return result;
  4125. }
  4126. struct ggml_tensor * ggml_reshape_3d(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a,
  4129. int64_t ne0,
  4130. int64_t ne1,
  4131. int64_t ne2) {
  4132. GGML_ASSERT(ggml_is_contiguous(a));
  4133. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4134. bool is_node = false;
  4135. if (a->grad) {
  4136. is_node = true;
  4137. }
  4138. const int64_t ne[3] = { ne0, ne1, ne2 };
  4139. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4140. ggml_format_name(result, "%s (reshaped)", a->name);
  4141. result->op = GGML_OP_RESHAPE;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src[0] = a;
  4144. return result;
  4145. }
  4146. struct ggml_tensor * ggml_reshape_4d(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a,
  4149. int64_t ne0,
  4150. int64_t ne1,
  4151. int64_t ne2,
  4152. int64_t ne3) {
  4153. GGML_ASSERT(ggml_is_contiguous(a));
  4154. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4155. bool is_node = false;
  4156. if (a->grad) {
  4157. is_node = true;
  4158. }
  4159. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4160. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4161. ggml_format_name(result, "%s (reshaped)", a->name);
  4162. result->op = GGML_OP_RESHAPE;
  4163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4164. result->src[0] = a;
  4165. return result;
  4166. }
  4167. static struct ggml_tensor * ggml_view_impl(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. int n_dims,
  4171. const int64_t * ne,
  4172. size_t offset) {
  4173. bool is_node = false;
  4174. if (a->grad) {
  4175. is_node = true;
  4176. }
  4177. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4178. ggml_format_name(result, "%s (view)", a->name);
  4179. ggml_set_op_params(result, &offset, sizeof(offset));
  4180. result->op = GGML_OP_VIEW;
  4181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4182. result->src[0] = a;
  4183. return result;
  4184. }
  4185. // ggml_view_1d
  4186. struct ggml_tensor * ggml_view_1d(
  4187. struct ggml_context * ctx,
  4188. struct ggml_tensor * a,
  4189. int64_t ne0,
  4190. size_t offset) {
  4191. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4192. return result;
  4193. }
  4194. // ggml_view_2d
  4195. struct ggml_tensor * ggml_view_2d(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. int64_t ne0,
  4199. int64_t ne1,
  4200. size_t nb1,
  4201. size_t offset) {
  4202. const int64_t ne[2] = { ne0, ne1 };
  4203. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4204. result->nb[1] = nb1;
  4205. result->nb[2] = result->nb[1]*ne1;
  4206. result->nb[3] = result->nb[2];
  4207. return result;
  4208. }
  4209. // ggml_view_3d
  4210. struct ggml_tensor * ggml_view_3d(
  4211. struct ggml_context * ctx,
  4212. struct ggml_tensor * a,
  4213. int64_t ne0,
  4214. int64_t ne1,
  4215. int64_t ne2,
  4216. size_t nb1,
  4217. size_t nb2,
  4218. size_t offset) {
  4219. const int64_t ne[3] = { ne0, ne1, ne2 };
  4220. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4221. result->nb[1] = nb1;
  4222. result->nb[2] = nb2;
  4223. result->nb[3] = result->nb[2]*ne2;
  4224. return result;
  4225. }
  4226. // ggml_view_4d
  4227. struct ggml_tensor * ggml_view_4d(
  4228. struct ggml_context * ctx,
  4229. struct ggml_tensor * a,
  4230. int64_t ne0,
  4231. int64_t ne1,
  4232. int64_t ne2,
  4233. int64_t ne3,
  4234. size_t nb1,
  4235. size_t nb2,
  4236. size_t nb3,
  4237. size_t offset) {
  4238. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4239. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4240. result->nb[1] = nb1;
  4241. result->nb[2] = nb2;
  4242. result->nb[3] = nb3;
  4243. return result;
  4244. }
  4245. // ggml_permute
  4246. struct ggml_tensor * ggml_permute(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. int axis0,
  4250. int axis1,
  4251. int axis2,
  4252. int axis3) {
  4253. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4254. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4255. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4256. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4257. GGML_ASSERT(axis0 != axis1);
  4258. GGML_ASSERT(axis0 != axis2);
  4259. GGML_ASSERT(axis0 != axis3);
  4260. GGML_ASSERT(axis1 != axis2);
  4261. GGML_ASSERT(axis1 != axis3);
  4262. GGML_ASSERT(axis2 != axis3);
  4263. bool is_node = false;
  4264. if (a->grad) {
  4265. is_node = true;
  4266. }
  4267. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4268. ggml_format_name(result, "%s (permuted)", a->name);
  4269. int ne[GGML_MAX_DIMS];
  4270. int nb[GGML_MAX_DIMS];
  4271. ne[axis0] = a->ne[0];
  4272. ne[axis1] = a->ne[1];
  4273. ne[axis2] = a->ne[2];
  4274. ne[axis3] = a->ne[3];
  4275. nb[axis0] = a->nb[0];
  4276. nb[axis1] = a->nb[1];
  4277. nb[axis2] = a->nb[2];
  4278. nb[axis3] = a->nb[3];
  4279. result->ne[0] = ne[0];
  4280. result->ne[1] = ne[1];
  4281. result->ne[2] = ne[2];
  4282. result->ne[3] = ne[3];
  4283. result->nb[0] = nb[0];
  4284. result->nb[1] = nb[1];
  4285. result->nb[2] = nb[2];
  4286. result->nb[3] = nb[3];
  4287. result->op = GGML_OP_PERMUTE;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src[0] = a;
  4290. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4291. ggml_set_op_params(result, params, sizeof(params));
  4292. return result;
  4293. }
  4294. // ggml_transpose
  4295. struct ggml_tensor * ggml_transpose(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. bool is_node = false;
  4299. if (a->grad) {
  4300. is_node = true;
  4301. }
  4302. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4303. ggml_format_name(result, "%s (transposed)", a->name);
  4304. result->ne[0] = a->ne[1];
  4305. result->ne[1] = a->ne[0];
  4306. result->nb[0] = a->nb[1];
  4307. result->nb[1] = a->nb[0];
  4308. result->op = GGML_OP_TRANSPOSE;
  4309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4310. result->src[0] = a;
  4311. return result;
  4312. }
  4313. // ggml_get_rows
  4314. struct ggml_tensor * ggml_get_rows(
  4315. struct ggml_context * ctx,
  4316. struct ggml_tensor * a,
  4317. struct ggml_tensor * b) {
  4318. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4319. GGML_ASSERT(b->ne[3] == 1);
  4320. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4321. bool is_node = false;
  4322. if (a->grad || b->grad) {
  4323. is_node = true;
  4324. }
  4325. // TODO: implement non F32 return
  4326. enum ggml_type type = GGML_TYPE_F32;
  4327. if (a->type == GGML_TYPE_I32) {
  4328. type = a->type;
  4329. }
  4330. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4331. result->op = GGML_OP_GET_ROWS;
  4332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4333. result->src[0] = a;
  4334. result->src[1] = b;
  4335. return result;
  4336. }
  4337. // ggml_get_rows_back
  4338. struct ggml_tensor * ggml_get_rows_back(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a,
  4341. struct ggml_tensor * b,
  4342. struct ggml_tensor * c) {
  4343. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4344. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4345. bool is_node = false;
  4346. if (a->grad || b->grad) {
  4347. is_node = true;
  4348. }
  4349. // TODO: implement non F32 return
  4350. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4351. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4352. result->op = GGML_OP_GET_ROWS_BACK;
  4353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4354. result->src[0] = a;
  4355. result->src[1] = b;
  4356. return result;
  4357. }
  4358. // ggml_diag
  4359. struct ggml_tensor * ggml_diag(
  4360. struct ggml_context * ctx,
  4361. struct ggml_tensor * a) {
  4362. GGML_ASSERT(a->ne[1] == 1);
  4363. bool is_node = false;
  4364. if (a->grad) {
  4365. is_node = true;
  4366. }
  4367. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4368. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4369. result->op = GGML_OP_DIAG;
  4370. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4371. result->src[0] = a;
  4372. return result;
  4373. }
  4374. // ggml_diag_mask_inf
  4375. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. int n_past,
  4379. bool inplace) {
  4380. bool is_node = false;
  4381. if (a->grad) {
  4382. is_node = true;
  4383. }
  4384. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4385. int32_t params[] = { n_past };
  4386. ggml_set_op_params(result, params, sizeof(params));
  4387. result->op = GGML_OP_DIAG_MASK_INF;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src[0] = a;
  4390. return result;
  4391. }
  4392. struct ggml_tensor * ggml_diag_mask_inf(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. int n_past) {
  4396. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4397. }
  4398. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. int n_past) {
  4402. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4403. }
  4404. // ggml_diag_mask_zero
  4405. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a,
  4408. int n_past,
  4409. bool inplace) {
  4410. bool is_node = false;
  4411. if (a->grad) {
  4412. is_node = true;
  4413. }
  4414. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4415. int32_t params[] = { n_past };
  4416. ggml_set_op_params(result, params, sizeof(params));
  4417. result->op = GGML_OP_DIAG_MASK_ZERO;
  4418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4419. result->src[0] = a;
  4420. return result;
  4421. }
  4422. struct ggml_tensor * ggml_diag_mask_zero(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. int n_past) {
  4426. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4427. }
  4428. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. int n_past) {
  4432. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4433. }
  4434. // ggml_soft_max
  4435. static struct ggml_tensor * ggml_soft_max_impl(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a,
  4438. struct ggml_tensor * mask,
  4439. struct ggml_tensor * pos,
  4440. float scale,
  4441. float max_bias,
  4442. bool inplace) {
  4443. GGML_ASSERT(ggml_is_contiguous(a));
  4444. if (mask) {
  4445. GGML_ASSERT(ggml_is_contiguous(mask));
  4446. GGML_ASSERT(ggml_is_matrix(mask));
  4447. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4448. }
  4449. if (pos) {
  4450. GGML_ASSERT(ggml_is_vector(pos));
  4451. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4452. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4453. }
  4454. if (max_bias > 0.0f) {
  4455. GGML_ASSERT(pos);
  4456. }
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. is_node = true;
  4460. }
  4461. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4462. float params[] = { scale, max_bias };
  4463. ggml_set_op_params(result, params, sizeof(params));
  4464. result->op = GGML_OP_SOFT_MAX;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src[0] = a;
  4467. result->src[1] = mask;
  4468. result->src[2] = pos;
  4469. return result;
  4470. }
  4471. struct ggml_tensor * ggml_soft_max(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a) {
  4474. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4475. }
  4476. struct ggml_tensor * ggml_soft_max_inplace(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a) {
  4479. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4480. }
  4481. struct ggml_tensor * ggml_soft_max_ext(
  4482. struct ggml_context * ctx,
  4483. struct ggml_tensor * a,
  4484. struct ggml_tensor * mask,
  4485. struct ggml_tensor * pos,
  4486. float scale,
  4487. float max_bias) {
  4488. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4489. }
  4490. // ggml_soft_max_back
  4491. static struct ggml_tensor * ggml_soft_max_back_impl(
  4492. struct ggml_context * ctx,
  4493. struct ggml_tensor * a,
  4494. struct ggml_tensor * b,
  4495. bool inplace) {
  4496. bool is_node = false;
  4497. if (a->grad || b->grad) {
  4498. is_node = true; // TODO : implement backward pass
  4499. }
  4500. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4501. result->op = GGML_OP_SOFT_MAX_BACK;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src[0] = a;
  4504. result->src[1] = b;
  4505. return result;
  4506. }
  4507. struct ggml_tensor * ggml_soft_max_back(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. struct ggml_tensor * b) {
  4511. return ggml_soft_max_back_impl(ctx, a, b, false);
  4512. }
  4513. struct ggml_tensor * ggml_soft_max_back_inplace(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. struct ggml_tensor * b) {
  4517. return ggml_soft_max_back_impl(ctx, a, b, true);
  4518. }
  4519. // ggml_rope
  4520. static struct ggml_tensor * ggml_rope_impl(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. struct ggml_tensor * b,
  4524. int n_dims,
  4525. int mode,
  4526. int n_ctx,
  4527. int n_orig_ctx,
  4528. float freq_base,
  4529. float freq_scale,
  4530. float ext_factor,
  4531. float attn_factor,
  4532. float beta_fast,
  4533. float beta_slow,
  4534. float xpos_base,
  4535. bool xpos_down,
  4536. bool inplace) {
  4537. GGML_ASSERT(ggml_is_vector(b));
  4538. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4539. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4540. bool is_node = false;
  4541. if (a->grad) {
  4542. is_node = true;
  4543. }
  4544. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4545. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4546. memcpy(params + 5, &freq_base, sizeof(float));
  4547. memcpy(params + 6, &freq_scale, sizeof(float));
  4548. memcpy(params + 7, &ext_factor, sizeof(float));
  4549. memcpy(params + 8, &attn_factor, sizeof(float));
  4550. memcpy(params + 9, &beta_fast, sizeof(float));
  4551. memcpy(params + 10, &beta_slow, sizeof(float));
  4552. memcpy(params + 11, &xpos_base, sizeof(float));
  4553. memcpy(params + 12, &xpos_down, sizeof(bool));
  4554. ggml_set_op_params(result, params, sizeof(params));
  4555. result->op = GGML_OP_ROPE;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src[0] = a;
  4558. result->src[1] = b;
  4559. return result;
  4560. }
  4561. struct ggml_tensor * ggml_rope(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. int n_dims,
  4566. int mode,
  4567. int n_ctx) {
  4568. return ggml_rope_impl(
  4569. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4570. );
  4571. }
  4572. struct ggml_tensor * ggml_rope_inplace(
  4573. struct ggml_context * ctx,
  4574. struct ggml_tensor * a,
  4575. struct ggml_tensor * b,
  4576. int n_dims,
  4577. int mode,
  4578. int n_ctx) {
  4579. return ggml_rope_impl(
  4580. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4581. );
  4582. }
  4583. struct ggml_tensor * ggml_rope_custom(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a,
  4586. struct ggml_tensor * b,
  4587. int n_dims,
  4588. int mode,
  4589. int n_ctx,
  4590. int n_orig_ctx,
  4591. float freq_base,
  4592. float freq_scale,
  4593. float ext_factor,
  4594. float attn_factor,
  4595. float beta_fast,
  4596. float beta_slow) {
  4597. return ggml_rope_impl(
  4598. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4599. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4600. );
  4601. }
  4602. struct ggml_tensor * ggml_rope_custom_inplace(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. struct ggml_tensor * b,
  4606. int n_dims,
  4607. int mode,
  4608. int n_ctx,
  4609. int n_orig_ctx,
  4610. float freq_base,
  4611. float freq_scale,
  4612. float ext_factor,
  4613. float attn_factor,
  4614. float beta_fast,
  4615. float beta_slow) {
  4616. return ggml_rope_impl(
  4617. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4618. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4619. );
  4620. }
  4621. struct ggml_tensor * ggml_rope_xpos_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a,
  4624. struct ggml_tensor * b,
  4625. int n_dims,
  4626. float base,
  4627. bool down) {
  4628. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4629. }
  4630. // ggml_rope_back
  4631. struct ggml_tensor * ggml_rope_back(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a,
  4634. struct ggml_tensor * b,
  4635. int n_dims,
  4636. int mode,
  4637. int n_ctx,
  4638. int n_orig_ctx,
  4639. float freq_base,
  4640. float freq_scale,
  4641. float ext_factor,
  4642. float attn_factor,
  4643. float beta_fast,
  4644. float beta_slow,
  4645. float xpos_base,
  4646. bool xpos_down) {
  4647. GGML_ASSERT(ggml_is_vector(b));
  4648. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4649. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4650. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4651. bool is_node = false;
  4652. if (a->grad) {
  4653. is_node = false; // TODO: implement backward
  4654. }
  4655. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4656. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4657. memcpy(params + 5, &freq_base, sizeof(float));
  4658. memcpy(params + 6, &freq_scale, sizeof(float));
  4659. memcpy(params + 7, &ext_factor, sizeof(float));
  4660. memcpy(params + 8, &attn_factor, sizeof(float));
  4661. memcpy(params + 9, &beta_fast, sizeof(float));
  4662. memcpy(params + 10, &beta_slow, sizeof(float));
  4663. memcpy(params + 11, &xpos_base, sizeof(float));
  4664. memcpy(params + 12, &xpos_down, sizeof(bool));
  4665. ggml_set_op_params(result, params, sizeof(params));
  4666. result->op = GGML_OP_ROPE_BACK;
  4667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4668. result->src[0] = a;
  4669. result->src[1] = b;
  4670. return result;
  4671. }
  4672. // ggml_alibi
  4673. struct ggml_tensor * ggml_alibi(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. int n_past,
  4677. int n_head,
  4678. float bias_max) {
  4679. GGML_ASSERT(n_past >= 0);
  4680. bool is_node = false;
  4681. if (a->grad) {
  4682. GGML_ASSERT(false); // TODO: implement backward
  4683. is_node = true;
  4684. }
  4685. // TODO: when implement backward, fix this:
  4686. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4687. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4688. int32_t op_params[3] = { n_past, n_head };
  4689. memcpy(op_params + 2, &bias_max, sizeof(float));
  4690. ggml_set_op_params(result, op_params, sizeof(op_params));
  4691. result->op = GGML_OP_ALIBI;
  4692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4693. result->src[0] = a;
  4694. return result;
  4695. }
  4696. // ggml_clamp
  4697. struct ggml_tensor * ggml_clamp(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. float min,
  4701. float max) {
  4702. bool is_node = false;
  4703. if (a->grad) {
  4704. GGML_ASSERT(false); // TODO: implement backward
  4705. is_node = true;
  4706. }
  4707. // TODO: when implement backward, fix this:
  4708. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4709. float params[] = { min, max };
  4710. ggml_set_op_params(result, params, sizeof(params));
  4711. result->op = GGML_OP_CLAMP;
  4712. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4713. result->src[0] = a;
  4714. return result;
  4715. }
  4716. // ggml_conv_1d
  4717. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4718. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4719. }
  4720. GGML_API struct ggml_tensor * ggml_conv_1d(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. struct ggml_tensor * b,
  4724. int s0,
  4725. int p0,
  4726. int d0) {
  4727. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4728. struct ggml_tensor * result =
  4729. ggml_mul_mat(ctx,
  4730. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4731. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4732. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4733. return result;
  4734. }
  4735. // ggml_conv_1d_ph
  4736. struct ggml_tensor* ggml_conv_1d_ph(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * b,
  4740. int s,
  4741. int d) {
  4742. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4743. }
  4744. // ggml_conv_transpose_1d
  4745. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4746. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4747. }
  4748. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. struct ggml_tensor * b,
  4752. int s0,
  4753. int p0,
  4754. int d0) {
  4755. GGML_ASSERT(ggml_is_matrix(b));
  4756. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4757. GGML_ASSERT(a->ne[3] == 1);
  4758. GGML_ASSERT(p0 == 0);
  4759. GGML_ASSERT(d0 == 1);
  4760. bool is_node = false;
  4761. if (a->grad || b->grad) {
  4762. GGML_ASSERT(false); // TODO: implement backward
  4763. is_node = true;
  4764. }
  4765. const int64_t ne[4] = {
  4766. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4767. a->ne[1], b->ne[2], 1,
  4768. };
  4769. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4770. int32_t params[] = { s0, p0, d0 };
  4771. ggml_set_op_params(result, params, sizeof(params));
  4772. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4774. result->src[0] = a;
  4775. result->src[1] = b;
  4776. return result;
  4777. }
  4778. // ggml_conv_depthwise
  4779. struct ggml_tensor * ggml_conv_depthwise_2d(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a,
  4782. struct ggml_tensor * b,
  4783. int s0,
  4784. int s1,
  4785. int p0,
  4786. int p1,
  4787. int d0,
  4788. int d1) {
  4789. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4790. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4791. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4792. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4793. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4794. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4795. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4796. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4797. return result;
  4798. }
  4799. // ggml_conv_2d
  4800. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4801. // a: [OC,IC, KH, KW]
  4802. // b: [N, IC, IH, IW]
  4803. // result: [N, OH, OW, IC*KH*KW]
  4804. struct ggml_tensor * ggml_im2col(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a,
  4807. struct ggml_tensor * b,
  4808. int s0,
  4809. int s1,
  4810. int p0,
  4811. int p1,
  4812. int d0,
  4813. int d1,
  4814. bool is_2D,
  4815. enum ggml_type dst_type) {
  4816. if(is_2D) {
  4817. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4818. } else {
  4819. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4820. }
  4821. bool is_node = false;
  4822. if (a->grad || b->grad) {
  4823. GGML_ASSERT(false); // TODO: implement backward
  4824. is_node = true;
  4825. }
  4826. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4827. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4828. const int64_t ne[4] = {
  4829. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4830. OW,
  4831. is_2D ? OH : b->ne[2],
  4832. is_2D ? b->ne[3] : 1,
  4833. };
  4834. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4835. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4836. ggml_set_op_params(result, params, sizeof(params));
  4837. result->op = GGML_OP_IM2COL;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src[0] = a;
  4840. result->src[1] = b;
  4841. return result;
  4842. }
  4843. // a: [OC,IC, KH, KW]
  4844. // b: [N, IC, IH, IW]
  4845. // result: [N, OC, OH, OW]
  4846. struct ggml_tensor * ggml_conv_2d(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. struct ggml_tensor * b,
  4850. int s0,
  4851. int s1,
  4852. int p0,
  4853. int p1,
  4854. int d0,
  4855. int d1) {
  4856. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4857. struct ggml_tensor * result =
  4858. ggml_mul_mat(ctx,
  4859. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4860. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4861. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4862. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4863. return result;
  4864. }
  4865. // ggml_conv_2d_sk_p0
  4866. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. struct ggml_tensor * b) {
  4870. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4871. }
  4872. // ggml_conv_2d_s1_ph
  4873. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b) {
  4877. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4878. }
  4879. // ggml_conv_transpose_2d_p0
  4880. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4881. return (ins - 1) * s - 2 * p + ks;
  4882. }
  4883. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. struct ggml_tensor * b,
  4887. int stride) {
  4888. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4889. bool is_node = false;
  4890. if (a->grad || b->grad) {
  4891. GGML_ASSERT(false); // TODO: implement backward
  4892. is_node = true;
  4893. }
  4894. const int64_t ne[4] = {
  4895. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4896. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4897. a->ne[2], b->ne[3],
  4898. };
  4899. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4900. ggml_set_op_params_i32(result, 0, stride);
  4901. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4903. result->src[0] = a;
  4904. result->src[1] = b;
  4905. return result;
  4906. }
  4907. // ggml_pool_*
  4908. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4909. return (ins + 2 * p - ks) / s + 1;
  4910. }
  4911. // ggml_pool_1d
  4912. struct ggml_tensor * ggml_pool_1d(
  4913. struct ggml_context * ctx,
  4914. struct ggml_tensor * a,
  4915. enum ggml_op_pool op,
  4916. int k0,
  4917. int s0,
  4918. int p0) {
  4919. bool is_node = false;
  4920. if (a->grad) {
  4921. GGML_ASSERT(false); // TODO: implement backward
  4922. is_node = true;
  4923. }
  4924. const int64_t ne[4] = {
  4925. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4926. a->ne[1],
  4927. a->ne[2],
  4928. a->ne[3],
  4929. };
  4930. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4931. int32_t params[] = { op, k0, s0, p0 };
  4932. ggml_set_op_params(result, params, sizeof(params));
  4933. result->op = GGML_OP_POOL_1D;
  4934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4935. result->src[0] = a;
  4936. return result;
  4937. }
  4938. // ggml_pool_2d
  4939. struct ggml_tensor * ggml_pool_2d(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. enum ggml_op_pool op,
  4943. int k0,
  4944. int k1,
  4945. int s0,
  4946. int s1,
  4947. float p0,
  4948. float p1) {
  4949. bool is_node = false;
  4950. if (a->grad) {
  4951. GGML_ASSERT(false); // TODO: implement backward
  4952. is_node = true;
  4953. }
  4954. struct ggml_tensor * result;
  4955. const int64_t ne[3] = {
  4956. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4957. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4958. a->ne[2],
  4959. };
  4960. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4961. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4962. ggml_set_op_params(result, params, sizeof(params));
  4963. result->op = GGML_OP_POOL_2D;
  4964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4965. result->src[0] = a;
  4966. return result;
  4967. }
  4968. // ggml_upscale
  4969. static struct ggml_tensor * ggml_upscale_impl(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. int scale_factor) {
  4973. bool is_node = false;
  4974. if (a->grad) {
  4975. GGML_ASSERT(false); // TODO: implement backward
  4976. is_node = true;
  4977. }
  4978. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4979. a->ne[0] * scale_factor,
  4980. a->ne[1] * scale_factor,
  4981. a->ne[2], a->ne[3]);
  4982. result->op = GGML_OP_UPSCALE;
  4983. result->op_params[0] = scale_factor;
  4984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4985. result->src[0] = a;
  4986. return result;
  4987. }
  4988. struct ggml_tensor * ggml_pad(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. int p0, int p1, int p2, int p3) {
  4992. bool is_node = false;
  4993. if (a->grad) {
  4994. GGML_ASSERT(false); // TODO: implement backward
  4995. is_node = true;
  4996. }
  4997. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4998. a->ne[0] + p0,
  4999. a->ne[1] + p1,
  5000. a->ne[2] + p2,
  5001. a->ne[3] + p3);
  5002. result->op = GGML_OP_PAD;
  5003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5004. result->src[0] = a;
  5005. return result;
  5006. }
  5007. struct ggml_tensor * ggml_upscale(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. int scale_factor) {
  5011. return ggml_upscale_impl(ctx, a, scale_factor);
  5012. }
  5013. struct ggml_tensor * ggml_arange(
  5014. struct ggml_context * ctx,
  5015. float start,
  5016. float stop,
  5017. float step) {
  5018. GGML_ASSERT(stop > start);
  5019. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5020. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5021. result->op = GGML_OP_ARANGE;
  5022. ggml_set_op_params_f32(result, 0, start);
  5023. ggml_set_op_params_f32(result, 1, stop);
  5024. ggml_set_op_params_f32(result, 2, step);
  5025. return result;
  5026. }
  5027. struct ggml_tensor * ggml_timestep_embedding(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * timesteps,
  5030. int dim,
  5031. int max_period) {
  5032. bool is_node = false;
  5033. if (timesteps->grad) {
  5034. GGML_ASSERT(false); // TODO: implement backward
  5035. is_node = true;
  5036. }
  5037. int actual_dim = dim;
  5038. if (dim % 2 != 0) {
  5039. actual_dim = dim + 1;
  5040. }
  5041. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5042. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5043. ggml_set_op_params_i32(result, 0, dim);
  5044. ggml_set_op_params_i32(result, 1, max_period);
  5045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5046. result->src[0] = timesteps;
  5047. return result;
  5048. }
  5049. // ggml_argsort
  5050. struct ggml_tensor * ggml_argsort(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. enum ggml_sort_order order) {
  5054. bool is_node = false;
  5055. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5056. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5057. result->op = GGML_OP_ARGSORT;
  5058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5059. result->src[0] = a;
  5060. return result;
  5061. }
  5062. // ggml_top_k
  5063. struct ggml_tensor * ggml_top_k(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. int k) {
  5067. GGML_ASSERT(a->ne[0] >= k);
  5068. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5069. result = ggml_view_4d(ctx, result,
  5070. k, result->ne[1], result->ne[2], result->ne[3],
  5071. result->nb[1], result->nb[2], result->nb[3],
  5072. 0);
  5073. return result;
  5074. }
  5075. // ggml_flash_attn
  5076. struct ggml_tensor * ggml_flash_attn(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * q,
  5079. struct ggml_tensor * k,
  5080. struct ggml_tensor * v,
  5081. bool masked) {
  5082. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5083. // TODO: check if vT can be multiplied by (k*qT)
  5084. bool is_node = false;
  5085. if (q->grad || k->grad || v->grad) {
  5086. is_node = true;
  5087. }
  5088. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5089. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5090. int32_t t = masked ? 1 : 0;
  5091. ggml_set_op_params(result, &t, sizeof(t));
  5092. result->op = GGML_OP_FLASH_ATTN;
  5093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5094. result->src[0] = q;
  5095. result->src[1] = k;
  5096. result->src[2] = v;
  5097. return result;
  5098. }
  5099. // ggml_flash_ff
  5100. struct ggml_tensor * ggml_flash_ff(
  5101. struct ggml_context * ctx,
  5102. struct ggml_tensor * a,
  5103. struct ggml_tensor * b0,
  5104. struct ggml_tensor * b1,
  5105. struct ggml_tensor * c0,
  5106. struct ggml_tensor * c1) {
  5107. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5108. // TODO: more checks
  5109. bool is_node = false;
  5110. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5111. is_node = true;
  5112. }
  5113. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5114. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5115. result->op = GGML_OP_FLASH_FF;
  5116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5117. result->src[0] = a;
  5118. result->src[1] = b0;
  5119. result->src[2] = b1;
  5120. result->src[3] = c0;
  5121. result->src[4] = c1;
  5122. return result;
  5123. }
  5124. // ggml_flash_attn_back
  5125. struct ggml_tensor * ggml_flash_attn_back(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * q,
  5128. struct ggml_tensor * k,
  5129. struct ggml_tensor * v,
  5130. struct ggml_tensor * d,
  5131. bool masked) {
  5132. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5133. // TODO: check if vT can be multiplied by (k*qT)
  5134. // d shape [D,N,ne2,ne3]
  5135. // q shape [D,N,ne2,ne3]
  5136. // k shape [D,M,kvne2,ne3]
  5137. // v shape [M,D,kvne2,ne3]
  5138. const int64_t D = q->ne[0];
  5139. const int64_t N = q->ne[1];
  5140. const int64_t M = k->ne[1];
  5141. const int64_t ne2 = q->ne[2];
  5142. const int64_t ne3 = q->ne[3];
  5143. const int64_t kvne2 = k->ne[2];
  5144. GGML_ASSERT(k->ne[0] == D);
  5145. GGML_ASSERT(v->ne[0] == M);
  5146. GGML_ASSERT(v->ne[1] == D);
  5147. GGML_ASSERT(d->ne[0] == D);
  5148. GGML_ASSERT(d->ne[1] == N);
  5149. GGML_ASSERT(k->ne[2] == kvne2);
  5150. GGML_ASSERT(k->ne[3] == ne3);
  5151. GGML_ASSERT(v->ne[2] == kvne2);
  5152. GGML_ASSERT(v->ne[3] == ne3);
  5153. GGML_ASSERT(d->ne[2] == ne2);
  5154. GGML_ASSERT(d->ne[3] == ne3);
  5155. GGML_ASSERT(ne2 % kvne2 == 0);
  5156. bool is_node = false;
  5157. if (q->grad || k->grad || v->grad) {
  5158. // when using this operation (in backwards pass) these grads are set.
  5159. // we don't want to create (big) grad of our result, so is_node is false.
  5160. is_node = false;
  5161. }
  5162. // store gradients of q, k and v as continuous tensors concatenated in result.
  5163. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5164. const int64_t elem_q = ggml_nelements(q);
  5165. const int64_t elem_k = ggml_nelements(k);
  5166. const int64_t elem_v = ggml_nelements(v);
  5167. enum ggml_type result_type = GGML_TYPE_F32;
  5168. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5169. const size_t tsize = ggml_type_size(result_type);
  5170. const size_t offs_q = 0;
  5171. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5172. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5173. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5174. const size_t nelements = (end + tsize - 1)/tsize;
  5175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5176. int32_t masked_i = masked ? 1 : 0;
  5177. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5178. result->op = GGML_OP_FLASH_ATTN_BACK;
  5179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5180. result->src[0] = q;
  5181. result->src[1] = k;
  5182. result->src[2] = v;
  5183. result->src[3] = d;
  5184. return result;
  5185. }
  5186. // ggml_ssm_conv
  5187. struct ggml_tensor * ggml_ssm_conv(
  5188. struct ggml_context * ctx,
  5189. struct ggml_tensor * s,
  5190. struct ggml_tensor * x,
  5191. struct ggml_tensor * c,
  5192. struct ggml_tensor * sq) {
  5193. GGML_ASSERT(ggml_is_3d(s));
  5194. GGML_ASSERT(ggml_is_matrix(x));
  5195. GGML_ASSERT(ggml_is_matrix(c));
  5196. GGML_ASSERT(ggml_is_matrix(sq));
  5197. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5198. const int64_t d_conv = c->ne[0];
  5199. const int64_t d_inner = c->ne[1];
  5200. const int64_t n_tokens = x->ne[1];
  5201. const int64_t n_kv = s->ne[2];
  5202. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5203. GGML_ASSERT( s->ne[1] == d_inner);
  5204. GGML_ASSERT( x->ne[0] == d_inner);
  5205. GGML_ASSERT(sq->ne[0] == n_kv);
  5206. GGML_ASSERT(sq->ne[1] == n_tokens);
  5207. bool is_node = false;
  5208. if (s->grad || x->grad || c->grad || sq->grad) {
  5209. GGML_ASSERT(false); // TODO: implement
  5210. is_node = true;
  5211. }
  5212. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5213. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5214. result->op = GGML_OP_SSM_CONV;
  5215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5216. result->src[0] = s;
  5217. result->src[1] = x;
  5218. result->src[2] = c;
  5219. result->src[3] = sq;
  5220. return result;
  5221. }
  5222. // ggml_ssm_scan
  5223. struct ggml_tensor * ggml_ssm_scan(
  5224. struct ggml_context * ctx,
  5225. struct ggml_tensor * s,
  5226. struct ggml_tensor * x,
  5227. struct ggml_tensor * dt,
  5228. struct ggml_tensor * A,
  5229. struct ggml_tensor * B,
  5230. struct ggml_tensor * C,
  5231. struct ggml_tensor * sq) {
  5232. GGML_ASSERT(ggml_is_contiguous(s));
  5233. GGML_ASSERT(ggml_is_contiguous(x));
  5234. GGML_ASSERT(ggml_is_contiguous(dt));
  5235. GGML_ASSERT(ggml_is_contiguous(A));
  5236. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5237. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5238. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5239. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5240. {
  5241. const int64_t d_state = s->ne[0];
  5242. const int64_t d_inner = s->ne[1];
  5243. const int64_t n_tokens = x->ne[1];
  5244. GGML_ASSERT(x->ne[0] == d_inner);
  5245. GGML_ASSERT(A->ne[0] == d_state);
  5246. GGML_ASSERT(A->ne[1] == d_inner);
  5247. GGML_ASSERT(B->ne[0] == d_state);
  5248. GGML_ASSERT(B->ne[1] == n_tokens);
  5249. GGML_ASSERT(C->ne[0] == d_state);
  5250. GGML_ASSERT(C->ne[1] == n_tokens);
  5251. }
  5252. bool is_node = false;
  5253. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5254. GGML_ASSERT(false); // TODO: implement
  5255. is_node = true;
  5256. }
  5257. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5258. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5259. result->op = GGML_OP_SSM_SCAN;
  5260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5261. result->src[0] = s;
  5262. result->src[1] = x;
  5263. result->src[2] = dt;
  5264. result->src[3] = A;
  5265. result->src[4] = B;
  5266. result->src[5] = C;
  5267. result->src[6] = sq;
  5268. return result;
  5269. }
  5270. // ggml_win_part
  5271. struct ggml_tensor * ggml_win_part(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. int w) {
  5275. GGML_ASSERT(a->ne[3] == 1);
  5276. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5277. bool is_node = false;
  5278. if (a->grad) {
  5279. GGML_ASSERT(false); // TODO: implement backward
  5280. is_node = true;
  5281. }
  5282. // padding
  5283. const int px = (w - a->ne[1]%w)%w;
  5284. const int py = (w - a->ne[2]%w)%w;
  5285. const int npx = (px + a->ne[1])/w;
  5286. const int npy = (py + a->ne[2])/w;
  5287. const int np = npx*npy;
  5288. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5289. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5290. int32_t params[] = { npx, npy, w };
  5291. ggml_set_op_params(result, params, sizeof(params));
  5292. result->op = GGML_OP_WIN_PART;
  5293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5294. result->src[0] = a;
  5295. return result;
  5296. }
  5297. // ggml_win_unpart
  5298. struct ggml_tensor * ggml_win_unpart(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. int w0,
  5302. int h0,
  5303. int w) {
  5304. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5305. bool is_node = false;
  5306. if (a->grad) {
  5307. GGML_ASSERT(false); // TODO: implement backward
  5308. is_node = true;
  5309. }
  5310. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5311. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5312. int32_t params[] = { w };
  5313. ggml_set_op_params(result, params, sizeof(params));
  5314. result->op = GGML_OP_WIN_UNPART;
  5315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5316. result->src[0] = a;
  5317. return result;
  5318. }
  5319. // ggml_get_rel_pos
  5320. struct ggml_tensor * ggml_get_rel_pos(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. int qh,
  5324. int kh) {
  5325. GGML_ASSERT(qh == kh);
  5326. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5327. bool is_node = false;
  5328. if (a->grad) {
  5329. GGML_ASSERT(false); // TODO: implement backward
  5330. is_node = true;
  5331. }
  5332. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5333. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5334. result->op = GGML_OP_GET_REL_POS;
  5335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5336. result->src[0] = a;
  5337. return result;
  5338. }
  5339. // ggml_add_rel_pos
  5340. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. struct ggml_tensor * pw,
  5344. struct ggml_tensor * ph,
  5345. bool inplace) {
  5346. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5347. GGML_ASSERT(ggml_is_contiguous(a));
  5348. GGML_ASSERT(ggml_is_contiguous(pw));
  5349. GGML_ASSERT(ggml_is_contiguous(ph));
  5350. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5351. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5352. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5353. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5354. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5355. bool is_node = false;
  5356. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5357. is_node = true;
  5358. }
  5359. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5360. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5361. result->op = GGML_OP_ADD_REL_POS;
  5362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5363. result->src[0] = a;
  5364. result->src[1] = pw;
  5365. result->src[2] = ph;
  5366. return result;
  5367. }
  5368. struct ggml_tensor * ggml_add_rel_pos(
  5369. struct ggml_context * ctx,
  5370. struct ggml_tensor * a,
  5371. struct ggml_tensor * pw,
  5372. struct ggml_tensor * ph) {
  5373. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5374. }
  5375. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. struct ggml_tensor * pw,
  5379. struct ggml_tensor * ph) {
  5380. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5381. }
  5382. // gmml_unary
  5383. static struct ggml_tensor * ggml_unary_impl(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. enum ggml_unary_op op,
  5387. bool inplace) {
  5388. bool is_node = false;
  5389. if (!inplace && (a->grad)) {
  5390. is_node = true;
  5391. }
  5392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5393. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5394. result->op = GGML_OP_UNARY;
  5395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5396. result->src[0] = a;
  5397. return result;
  5398. }
  5399. struct ggml_tensor * ggml_unary(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a,
  5402. enum ggml_unary_op op) {
  5403. return ggml_unary_impl(ctx, a, op, false);
  5404. }
  5405. struct ggml_tensor * ggml_unary_inplace(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a,
  5408. enum ggml_unary_op op) {
  5409. return ggml_unary_impl(ctx, a, op, true);
  5410. }
  5411. // ggml_map_unary
  5412. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5413. struct ggml_context * ctx,
  5414. struct ggml_tensor * a,
  5415. const ggml_unary_op_f32_t fun,
  5416. bool inplace) {
  5417. bool is_node = false;
  5418. if (!inplace && a->grad) {
  5419. is_node = true;
  5420. }
  5421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5422. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5423. result->op = GGML_OP_MAP_UNARY;
  5424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5425. result->src[0] = a;
  5426. return result;
  5427. }
  5428. struct ggml_tensor * ggml_map_unary_f32(
  5429. struct ggml_context * ctx,
  5430. struct ggml_tensor * a,
  5431. const ggml_unary_op_f32_t fun) {
  5432. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5433. }
  5434. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5435. struct ggml_context * ctx,
  5436. struct ggml_tensor * a,
  5437. const ggml_unary_op_f32_t fun) {
  5438. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5439. }
  5440. // ggml_map_binary
  5441. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. struct ggml_tensor * b,
  5445. const ggml_binary_op_f32_t fun,
  5446. bool inplace) {
  5447. GGML_ASSERT(ggml_are_same_shape(a, b));
  5448. bool is_node = false;
  5449. if (!inplace && (a->grad || b->grad)) {
  5450. is_node = true;
  5451. }
  5452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5453. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5454. result->op = GGML_OP_MAP_BINARY;
  5455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5456. result->src[0] = a;
  5457. result->src[1] = b;
  5458. return result;
  5459. }
  5460. struct ggml_tensor * ggml_map_binary_f32(
  5461. struct ggml_context * ctx,
  5462. struct ggml_tensor * a,
  5463. struct ggml_tensor * b,
  5464. const ggml_binary_op_f32_t fun) {
  5465. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5466. }
  5467. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5468. struct ggml_context * ctx,
  5469. struct ggml_tensor * a,
  5470. struct ggml_tensor * b,
  5471. const ggml_binary_op_f32_t fun) {
  5472. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5473. }
  5474. // ggml_map_custom1_f32
  5475. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5476. struct ggml_context * ctx,
  5477. struct ggml_tensor * a,
  5478. const ggml_custom1_op_f32_t fun,
  5479. bool inplace) {
  5480. bool is_node = false;
  5481. if (!inplace && a->grad) {
  5482. is_node = true;
  5483. }
  5484. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5485. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5486. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5488. result->src[0] = a;
  5489. return result;
  5490. }
  5491. struct ggml_tensor * ggml_map_custom1_f32(
  5492. struct ggml_context * ctx,
  5493. struct ggml_tensor * a,
  5494. const ggml_custom1_op_f32_t fun) {
  5495. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5496. }
  5497. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5498. struct ggml_context * ctx,
  5499. struct ggml_tensor * a,
  5500. const ggml_custom1_op_f32_t fun) {
  5501. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5502. }
  5503. // ggml_map_custom2_f32
  5504. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. struct ggml_tensor * b,
  5508. const ggml_custom2_op_f32_t fun,
  5509. bool inplace) {
  5510. bool is_node = false;
  5511. if (!inplace && (a->grad || b->grad)) {
  5512. is_node = true;
  5513. }
  5514. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5515. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5516. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5518. result->src[0] = a;
  5519. result->src[1] = b;
  5520. return result;
  5521. }
  5522. struct ggml_tensor * ggml_map_custom2_f32(
  5523. struct ggml_context * ctx,
  5524. struct ggml_tensor * a,
  5525. struct ggml_tensor * b,
  5526. const ggml_custom2_op_f32_t fun) {
  5527. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5528. }
  5529. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. const ggml_custom2_op_f32_t fun) {
  5534. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5535. }
  5536. // ggml_map_custom3_f32
  5537. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5538. struct ggml_context * ctx,
  5539. struct ggml_tensor * a,
  5540. struct ggml_tensor * b,
  5541. struct ggml_tensor * c,
  5542. const ggml_custom3_op_f32_t fun,
  5543. bool inplace) {
  5544. bool is_node = false;
  5545. if (!inplace && (a->grad || b->grad || c->grad)) {
  5546. is_node = true;
  5547. }
  5548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5549. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5550. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5552. result->src[0] = a;
  5553. result->src[1] = b;
  5554. result->src[2] = c;
  5555. return result;
  5556. }
  5557. struct ggml_tensor * ggml_map_custom3_f32(
  5558. struct ggml_context * ctx,
  5559. struct ggml_tensor * a,
  5560. struct ggml_tensor * b,
  5561. struct ggml_tensor * c,
  5562. const ggml_custom3_op_f32_t fun) {
  5563. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5564. }
  5565. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. struct ggml_tensor * b,
  5569. struct ggml_tensor * c,
  5570. const ggml_custom3_op_f32_t fun) {
  5571. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5572. }
  5573. // ggml_map_custom1
  5574. struct ggml_map_custom1_op_params {
  5575. ggml_custom1_op_t fun;
  5576. int n_tasks;
  5577. void * userdata;
  5578. };
  5579. static struct ggml_tensor * ggml_map_custom1_impl(
  5580. struct ggml_context * ctx,
  5581. struct ggml_tensor * a,
  5582. const ggml_custom1_op_t fun,
  5583. int n_tasks,
  5584. void * userdata,
  5585. bool inplace) {
  5586. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5587. bool is_node = false;
  5588. if (!inplace && a->grad) {
  5589. is_node = true;
  5590. }
  5591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5592. struct ggml_map_custom1_op_params params = {
  5593. /*.fun =*/ fun,
  5594. /*.n_tasks =*/ n_tasks,
  5595. /*.userdata =*/ userdata
  5596. };
  5597. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5598. result->op = GGML_OP_MAP_CUSTOM1;
  5599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5600. result->src[0] = a;
  5601. return result;
  5602. }
  5603. struct ggml_tensor * ggml_map_custom1(
  5604. struct ggml_context * ctx,
  5605. struct ggml_tensor * a,
  5606. const ggml_custom1_op_t fun,
  5607. int n_tasks,
  5608. void * userdata) {
  5609. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5610. }
  5611. struct ggml_tensor * ggml_map_custom1_inplace(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. const ggml_custom1_op_t fun,
  5615. int n_tasks,
  5616. void * userdata) {
  5617. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5618. }
  5619. // ggml_map_custom2
  5620. struct ggml_map_custom2_op_params {
  5621. ggml_custom2_op_t fun;
  5622. int n_tasks;
  5623. void * userdata;
  5624. };
  5625. static struct ggml_tensor * ggml_map_custom2_impl(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * a,
  5628. struct ggml_tensor * b,
  5629. const ggml_custom2_op_t fun,
  5630. int n_tasks,
  5631. void * userdata,
  5632. bool inplace) {
  5633. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5634. bool is_node = false;
  5635. if (!inplace && (a->grad || b->grad)) {
  5636. is_node = true;
  5637. }
  5638. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5639. struct ggml_map_custom2_op_params params = {
  5640. /*.fun =*/ fun,
  5641. /*.n_tasks =*/ n_tasks,
  5642. /*.userdata =*/ userdata
  5643. };
  5644. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5645. result->op = GGML_OP_MAP_CUSTOM2;
  5646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5647. result->src[0] = a;
  5648. result->src[1] = b;
  5649. return result;
  5650. }
  5651. struct ggml_tensor * ggml_map_custom2(
  5652. struct ggml_context * ctx,
  5653. struct ggml_tensor * a,
  5654. struct ggml_tensor * b,
  5655. const ggml_custom2_op_t fun,
  5656. int n_tasks,
  5657. void * userdata) {
  5658. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5659. }
  5660. struct ggml_tensor * ggml_map_custom2_inplace(
  5661. struct ggml_context * ctx,
  5662. struct ggml_tensor * a,
  5663. struct ggml_tensor * b,
  5664. const ggml_custom2_op_t fun,
  5665. int n_tasks,
  5666. void * userdata) {
  5667. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5668. }
  5669. // ggml_map_custom3
  5670. struct ggml_map_custom3_op_params {
  5671. ggml_custom3_op_t fun;
  5672. int n_tasks;
  5673. void * userdata;
  5674. };
  5675. static struct ggml_tensor * ggml_map_custom3_impl(
  5676. struct ggml_context * ctx,
  5677. struct ggml_tensor * a,
  5678. struct ggml_tensor * b,
  5679. struct ggml_tensor * c,
  5680. const ggml_custom3_op_t fun,
  5681. int n_tasks,
  5682. void * userdata,
  5683. bool inplace) {
  5684. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5685. bool is_node = false;
  5686. if (!inplace && (a->grad || b->grad || c->grad)) {
  5687. is_node = true;
  5688. }
  5689. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5690. struct ggml_map_custom3_op_params params = {
  5691. /*.fun =*/ fun,
  5692. /*.n_tasks =*/ n_tasks,
  5693. /*.userdata =*/ userdata
  5694. };
  5695. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5696. result->op = GGML_OP_MAP_CUSTOM3;
  5697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5698. result->src[0] = a;
  5699. result->src[1] = b;
  5700. result->src[2] = c;
  5701. return result;
  5702. }
  5703. struct ggml_tensor * ggml_map_custom3(
  5704. struct ggml_context * ctx,
  5705. struct ggml_tensor * a,
  5706. struct ggml_tensor * b,
  5707. struct ggml_tensor * c,
  5708. const ggml_custom3_op_t fun,
  5709. int n_tasks,
  5710. void * userdata) {
  5711. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5712. }
  5713. struct ggml_tensor * ggml_map_custom3_inplace(
  5714. struct ggml_context * ctx,
  5715. struct ggml_tensor * a,
  5716. struct ggml_tensor * b,
  5717. struct ggml_tensor * c,
  5718. const ggml_custom3_op_t fun,
  5719. int n_tasks,
  5720. void * userdata) {
  5721. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5722. }
  5723. // ggml_cross_entropy_loss
  5724. struct ggml_tensor * ggml_cross_entropy_loss(
  5725. struct ggml_context * ctx,
  5726. struct ggml_tensor * a,
  5727. struct ggml_tensor * b) {
  5728. GGML_ASSERT(ggml_are_same_shape(a, b));
  5729. bool is_node = false;
  5730. if (a->grad || b->grad) {
  5731. is_node = true;
  5732. }
  5733. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5734. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5736. result->src[0] = a;
  5737. result->src[1] = b;
  5738. return result;
  5739. }
  5740. // ggml_cross_entropy_loss_back
  5741. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5742. struct ggml_context * ctx,
  5743. struct ggml_tensor * a,
  5744. struct ggml_tensor * b,
  5745. struct ggml_tensor * c) {
  5746. GGML_ASSERT(ggml_are_same_shape(a, b));
  5747. GGML_ASSERT(ggml_is_scalar(c));
  5748. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5749. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5750. result->grad = NULL;
  5751. result->src[0] = a;
  5752. result->src[1] = b;
  5753. result->src[2] = c;
  5754. return result;
  5755. }
  5756. ////////////////////////////////////////////////////////////////////////////////
  5757. void ggml_set_param(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * tensor) {
  5760. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5761. GGML_ASSERT(tensor->grad == NULL);
  5762. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5763. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5764. }
  5765. // ggml_compute_forward_dup
  5766. static void ggml_compute_forward_dup_same_cont(
  5767. const struct ggml_compute_params * params,
  5768. struct ggml_tensor * dst) {
  5769. const struct ggml_tensor * src0 = dst->src[0];
  5770. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5771. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5772. GGML_ASSERT(src0->type == dst->type);
  5773. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5774. return;
  5775. }
  5776. const size_t nb00 = src0->nb[0];
  5777. const size_t nb0 = dst->nb[0];
  5778. const int ith = params->ith; // thread index
  5779. const int nth = params->nth; // number of threads
  5780. // parallelize by elements
  5781. const int ne = ggml_nelements(dst);
  5782. const int dr = (ne + nth - 1) / nth;
  5783. const int ie0 = dr * ith;
  5784. const int ie1 = MIN(ie0 + dr, ne);
  5785. if (ie0 < ie1) {
  5786. memcpy(
  5787. ((char *) dst->data + ie0*nb0),
  5788. ((char *) src0->data + ie0*nb00),
  5789. (ie1 - ie0) * ggml_type_size(src0->type));
  5790. }
  5791. }
  5792. static void ggml_compute_forward_dup_f16(
  5793. const struct ggml_compute_params * params,
  5794. struct ggml_tensor * dst) {
  5795. const struct ggml_tensor * src0 = dst->src[0];
  5796. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5797. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5798. return;
  5799. }
  5800. GGML_TENSOR_UNARY_OP_LOCALS
  5801. const int ith = params->ith; // thread index
  5802. const int nth = params->nth; // number of threads
  5803. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5804. ggml_compute_forward_dup_same_cont(params, dst);
  5805. return;
  5806. }
  5807. // parallelize by rows
  5808. const int nr = ne01;
  5809. // number of rows per thread
  5810. const int dr = (nr + nth - 1) / nth;
  5811. // row range for this thread
  5812. const int ir0 = dr * ith;
  5813. const int ir1 = MIN(ir0 + dr, nr);
  5814. if (src0->type == dst->type &&
  5815. ne00 == ne0 &&
  5816. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5817. // copy by rows
  5818. const size_t rs = ne00*nb00;
  5819. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5821. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5822. memcpy(
  5823. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5824. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5825. rs);
  5826. }
  5827. }
  5828. }
  5829. return;
  5830. }
  5831. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5832. if (ggml_is_contiguous(dst)) {
  5833. if (nb00 == sizeof(ggml_fp16_t)) {
  5834. if (dst->type == GGML_TYPE_F16) {
  5835. size_t id = 0;
  5836. const size_t rs = ne00 * nb00;
  5837. char * dst_ptr = (char *) dst->data;
  5838. for (int i03 = 0; i03 < ne03; i03++) {
  5839. for (int i02 = 0; i02 < ne02; i02++) {
  5840. id += rs * ir0;
  5841. for (int i01 = ir0; i01 < ir1; i01++) {
  5842. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5843. memcpy(dst_ptr + id, src0_ptr, rs);
  5844. id += rs;
  5845. }
  5846. id += rs * (ne01 - ir1);
  5847. }
  5848. }
  5849. } else if (dst->type == GGML_TYPE_F32) {
  5850. size_t id = 0;
  5851. float * dst_ptr = (float *) dst->data;
  5852. for (int i03 = 0; i03 < ne03; i03++) {
  5853. for (int i02 = 0; i02 < ne02; i02++) {
  5854. id += ne00 * ir0;
  5855. for (int i01 = ir0; i01 < ir1; i01++) {
  5856. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5857. for (int i00 = 0; i00 < ne00; i00++) {
  5858. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5859. id++;
  5860. }
  5861. }
  5862. id += ne00 * (ne01 - ir1);
  5863. }
  5864. }
  5865. } else if (type_traits[dst->type].from_float) {
  5866. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5867. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5868. size_t id = 0;
  5869. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5870. char * dst_ptr = (char *) dst->data;
  5871. for (int i03 = 0; i03 < ne03; i03++) {
  5872. for (int i02 = 0; i02 < ne02; i02++) {
  5873. id += rs * ir0;
  5874. for (int i01 = ir0; i01 < ir1; i01++) {
  5875. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5876. for (int i00 = 0; i00 < ne00; i00++) {
  5877. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5878. }
  5879. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5880. id += rs;
  5881. }
  5882. id += rs * (ne01 - ir1);
  5883. }
  5884. }
  5885. } else {
  5886. GGML_ASSERT(false); // TODO: implement
  5887. }
  5888. } else {
  5889. //printf("%s: this is not optimal - fix me\n", __func__);
  5890. if (dst->type == GGML_TYPE_F32) {
  5891. size_t id = 0;
  5892. float * dst_ptr = (float *) dst->data;
  5893. for (int i03 = 0; i03 < ne03; i03++) {
  5894. for (int i02 = 0; i02 < ne02; i02++) {
  5895. id += ne00 * ir0;
  5896. for (int i01 = ir0; i01 < ir1; i01++) {
  5897. for (int i00 = 0; i00 < ne00; i00++) {
  5898. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5899. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5900. id++;
  5901. }
  5902. }
  5903. id += ne00 * (ne01 - ir1);
  5904. }
  5905. }
  5906. } else if (dst->type == GGML_TYPE_F16) {
  5907. size_t id = 0;
  5908. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5909. for (int i03 = 0; i03 < ne03; i03++) {
  5910. for (int i02 = 0; i02 < ne02; i02++) {
  5911. id += ne00 * ir0;
  5912. for (int i01 = ir0; i01 < ir1; i01++) {
  5913. for (int i00 = 0; i00 < ne00; i00++) {
  5914. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5915. dst_ptr[id] = *src0_ptr;
  5916. id++;
  5917. }
  5918. }
  5919. id += ne00 * (ne01 - ir1);
  5920. }
  5921. }
  5922. } else {
  5923. GGML_ASSERT(false); // TODO: implement
  5924. }
  5925. }
  5926. return;
  5927. }
  5928. // dst counters
  5929. int64_t i10 = 0;
  5930. int64_t i11 = 0;
  5931. int64_t i12 = 0;
  5932. int64_t i13 = 0;
  5933. if (dst->type == GGML_TYPE_F16) {
  5934. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5935. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5936. i10 += ne00 * ir0;
  5937. while (i10 >= ne0) {
  5938. i10 -= ne0;
  5939. if (++i11 == ne1) {
  5940. i11 = 0;
  5941. if (++i12 == ne2) {
  5942. i12 = 0;
  5943. if (++i13 == ne3) {
  5944. i13 = 0;
  5945. }
  5946. }
  5947. }
  5948. }
  5949. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5950. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5951. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5952. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5953. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5954. if (++i10 == ne00) {
  5955. i10 = 0;
  5956. if (++i11 == ne01) {
  5957. i11 = 0;
  5958. if (++i12 == ne02) {
  5959. i12 = 0;
  5960. if (++i13 == ne03) {
  5961. i13 = 0;
  5962. }
  5963. }
  5964. }
  5965. }
  5966. }
  5967. }
  5968. i10 += ne00 * (ne01 - ir1);
  5969. while (i10 >= ne0) {
  5970. i10 -= ne0;
  5971. if (++i11 == ne1) {
  5972. i11 = 0;
  5973. if (++i12 == ne2) {
  5974. i12 = 0;
  5975. if (++i13 == ne3) {
  5976. i13 = 0;
  5977. }
  5978. }
  5979. }
  5980. }
  5981. }
  5982. }
  5983. } else if (dst->type == GGML_TYPE_F32) {
  5984. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5985. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5986. i10 += ne00 * ir0;
  5987. while (i10 >= ne0) {
  5988. i10 -= ne0;
  5989. if (++i11 == ne1) {
  5990. i11 = 0;
  5991. if (++i12 == ne2) {
  5992. i12 = 0;
  5993. if (++i13 == ne3) {
  5994. i13 = 0;
  5995. }
  5996. }
  5997. }
  5998. }
  5999. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6000. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6001. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6002. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6003. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6004. if (++i10 == ne0) {
  6005. i10 = 0;
  6006. if (++i11 == ne1) {
  6007. i11 = 0;
  6008. if (++i12 == ne2) {
  6009. i12 = 0;
  6010. if (++i13 == ne3) {
  6011. i13 = 0;
  6012. }
  6013. }
  6014. }
  6015. }
  6016. }
  6017. }
  6018. i10 += ne00 * (ne01 - ir1);
  6019. while (i10 >= ne0) {
  6020. i10 -= ne0;
  6021. if (++i11 == ne1) {
  6022. i11 = 0;
  6023. if (++i12 == ne2) {
  6024. i12 = 0;
  6025. if (++i13 == ne3) {
  6026. i13 = 0;
  6027. }
  6028. }
  6029. }
  6030. }
  6031. }
  6032. }
  6033. } else {
  6034. GGML_ASSERT(false); // TODO: implement
  6035. }
  6036. }
  6037. static void ggml_compute_forward_dup_f32(
  6038. const struct ggml_compute_params * params,
  6039. struct ggml_tensor * dst) {
  6040. const struct ggml_tensor * src0 = dst->src[0];
  6041. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6043. return;
  6044. }
  6045. GGML_TENSOR_UNARY_OP_LOCALS
  6046. const int ith = params->ith; // thread index
  6047. const int nth = params->nth; // number of threads
  6048. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6049. ggml_compute_forward_dup_same_cont(params, dst);
  6050. return;
  6051. }
  6052. // parallelize by rows
  6053. const int nr = ne01;
  6054. // number of rows per thread
  6055. const int dr = (nr + nth - 1) / nth;
  6056. // row range for this thread
  6057. const int ir0 = dr * ith;
  6058. const int ir1 = MIN(ir0 + dr, nr);
  6059. if (src0->type == dst->type &&
  6060. ne00 == ne0 &&
  6061. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6062. // copy by rows
  6063. const size_t rs = ne00*nb00;
  6064. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6065. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6066. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6067. memcpy(
  6068. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6069. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6070. rs);
  6071. }
  6072. }
  6073. }
  6074. return;
  6075. }
  6076. if (ggml_is_contiguous(dst)) {
  6077. // TODO: simplify
  6078. if (nb00 == sizeof(float)) {
  6079. if (dst->type == GGML_TYPE_F32) {
  6080. size_t id = 0;
  6081. const size_t rs = ne00 * nb00;
  6082. char * dst_ptr = (char *) dst->data;
  6083. for (int i03 = 0; i03 < ne03; i03++) {
  6084. for (int i02 = 0; i02 < ne02; i02++) {
  6085. id += rs * ir0;
  6086. for (int i01 = ir0; i01 < ir1; i01++) {
  6087. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6088. memcpy(dst_ptr + id, src0_ptr, rs);
  6089. id += rs;
  6090. }
  6091. id += rs * (ne01 - ir1);
  6092. }
  6093. }
  6094. } else if (type_traits[dst->type].from_float) {
  6095. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6096. size_t id = 0;
  6097. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6098. char * dst_ptr = (char *) dst->data;
  6099. for (int i03 = 0; i03 < ne03; i03++) {
  6100. for (int i02 = 0; i02 < ne02; i02++) {
  6101. id += rs * ir0;
  6102. for (int i01 = ir0; i01 < ir1; i01++) {
  6103. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6104. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6105. id += rs;
  6106. }
  6107. id += rs * (ne01 - ir1);
  6108. }
  6109. }
  6110. } else {
  6111. GGML_ASSERT(false); // TODO: implement
  6112. }
  6113. } else {
  6114. //printf("%s: this is not optimal - fix me\n", __func__);
  6115. if (dst->type == GGML_TYPE_F32) {
  6116. size_t id = 0;
  6117. float * dst_ptr = (float *) dst->data;
  6118. for (int i03 = 0; i03 < ne03; i03++) {
  6119. for (int i02 = 0; i02 < ne02; i02++) {
  6120. id += ne00 * ir0;
  6121. for (int i01 = ir0; i01 < ir1; i01++) {
  6122. for (int i00 = 0; i00 < ne00; i00++) {
  6123. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6124. dst_ptr[id] = *src0_ptr;
  6125. id++;
  6126. }
  6127. }
  6128. id += ne00 * (ne01 - ir1);
  6129. }
  6130. }
  6131. } else if (dst->type == GGML_TYPE_F16) {
  6132. size_t id = 0;
  6133. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6134. for (int i03 = 0; i03 < ne03; i03++) {
  6135. for (int i02 = 0; i02 < ne02; i02++) {
  6136. id += ne00 * ir0;
  6137. for (int i01 = ir0; i01 < ir1; i01++) {
  6138. for (int i00 = 0; i00 < ne00; i00++) {
  6139. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6140. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6141. id++;
  6142. }
  6143. }
  6144. id += ne00 * (ne01 - ir1);
  6145. }
  6146. }
  6147. } else {
  6148. GGML_ASSERT(false); // TODO: implement
  6149. }
  6150. }
  6151. return;
  6152. }
  6153. // dst counters
  6154. int64_t i10 = 0;
  6155. int64_t i11 = 0;
  6156. int64_t i12 = 0;
  6157. int64_t i13 = 0;
  6158. if (dst->type == GGML_TYPE_F32) {
  6159. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6160. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6161. i10 += ne00 * ir0;
  6162. while (i10 >= ne0) {
  6163. i10 -= ne0;
  6164. if (++i11 == ne1) {
  6165. i11 = 0;
  6166. if (++i12 == ne2) {
  6167. i12 = 0;
  6168. if (++i13 == ne3) {
  6169. i13 = 0;
  6170. }
  6171. }
  6172. }
  6173. }
  6174. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6175. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6176. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6177. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6178. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6179. if (++i10 == ne0) {
  6180. i10 = 0;
  6181. if (++i11 == ne1) {
  6182. i11 = 0;
  6183. if (++i12 == ne2) {
  6184. i12 = 0;
  6185. if (++i13 == ne3) {
  6186. i13 = 0;
  6187. }
  6188. }
  6189. }
  6190. }
  6191. }
  6192. }
  6193. i10 += ne00 * (ne01 - ir1);
  6194. while (i10 >= ne0) {
  6195. i10 -= ne0;
  6196. if (++i11 == ne1) {
  6197. i11 = 0;
  6198. if (++i12 == ne2) {
  6199. i12 = 0;
  6200. if (++i13 == ne3) {
  6201. i13 = 0;
  6202. }
  6203. }
  6204. }
  6205. }
  6206. }
  6207. }
  6208. } else if (dst->type == GGML_TYPE_F16) {
  6209. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6210. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6211. i10 += ne00 * ir0;
  6212. while (i10 >= ne0) {
  6213. i10 -= ne0;
  6214. if (++i11 == ne1) {
  6215. i11 = 0;
  6216. if (++i12 == ne2) {
  6217. i12 = 0;
  6218. if (++i13 == ne3) {
  6219. i13 = 0;
  6220. }
  6221. }
  6222. }
  6223. }
  6224. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6225. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6226. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6227. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6228. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6229. if (++i10 == ne0) {
  6230. i10 = 0;
  6231. if (++i11 == ne1) {
  6232. i11 = 0;
  6233. if (++i12 == ne2) {
  6234. i12 = 0;
  6235. if (++i13 == ne3) {
  6236. i13 = 0;
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. }
  6243. i10 += ne00 * (ne01 - ir1);
  6244. while (i10 >= ne0) {
  6245. i10 -= ne0;
  6246. if (++i11 == ne1) {
  6247. i11 = 0;
  6248. if (++i12 == ne2) {
  6249. i12 = 0;
  6250. if (++i13 == ne3) {
  6251. i13 = 0;
  6252. }
  6253. }
  6254. }
  6255. }
  6256. }
  6257. }
  6258. } else {
  6259. GGML_ASSERT(false); // TODO: implement
  6260. }
  6261. }
  6262. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6263. static void ggml_compute_forward_dup_bytes(
  6264. const struct ggml_compute_params * params,
  6265. struct ggml_tensor * dst) {
  6266. const struct ggml_tensor * src0 = dst->src[0];
  6267. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6268. GGML_ASSERT(src0->type == dst->type);
  6269. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6270. return;
  6271. }
  6272. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6273. ggml_compute_forward_dup_same_cont(params, dst);
  6274. return;
  6275. }
  6276. GGML_TENSOR_UNARY_OP_LOCALS;
  6277. const size_t type_size = ggml_type_size(src0->type);
  6278. const int ith = params->ith; // thread index
  6279. const int nth = params->nth; // number of threads
  6280. // parallelize by rows
  6281. const int nr = ne01;
  6282. // number of rows per thread
  6283. const int dr = (nr + nth - 1) / nth;
  6284. // row range for this thread
  6285. const int ir0 = dr * ith;
  6286. const int ir1 = MIN(ir0 + dr, nr);
  6287. if (src0->type == dst->type &&
  6288. ne00 == ne0 &&
  6289. nb00 == type_size && nb0 == type_size) {
  6290. // copy by rows
  6291. const size_t rs = ne00 * type_size;
  6292. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6293. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6294. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6295. memcpy(
  6296. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6297. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6298. rs);
  6299. }
  6300. }
  6301. }
  6302. return;
  6303. }
  6304. if (ggml_is_contiguous(dst)) {
  6305. size_t id = 0;
  6306. char * dst_ptr = (char *) dst->data;
  6307. const size_t rs = ne00 * type_size;
  6308. if (nb00 == type_size) {
  6309. // src0 is contigous on first dimension, copy by rows
  6310. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6311. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6312. id += rs * ir0;
  6313. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6314. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6315. memcpy(dst_ptr + id, src0_ptr, rs);
  6316. id += rs;
  6317. }
  6318. id += rs * (ne01 - ir1);
  6319. }
  6320. }
  6321. } else {
  6322. //printf("%s: this is not optimal - fix me\n", __func__);
  6323. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6324. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6325. id += rs * ir0;
  6326. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6327. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6328. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6329. memcpy(dst_ptr + id, src0_ptr, type_size);
  6330. id += type_size;
  6331. }
  6332. }
  6333. id += rs * (ne01 - ir1);
  6334. }
  6335. }
  6336. }
  6337. return;
  6338. }
  6339. // dst counters
  6340. int64_t i10 = 0;
  6341. int64_t i11 = 0;
  6342. int64_t i12 = 0;
  6343. int64_t i13 = 0;
  6344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6346. i10 += ne00 * ir0;
  6347. while (i10 >= ne0) {
  6348. i10 -= ne0;
  6349. if (++i11 == ne1) {
  6350. i11 = 0;
  6351. if (++i12 == ne2) {
  6352. i12 = 0;
  6353. if (++i13 == ne3) {
  6354. i13 = 0;
  6355. }
  6356. }
  6357. }
  6358. }
  6359. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6360. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6361. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6362. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6363. memcpy(dst_ptr, src0_ptr, type_size);
  6364. if (++i10 == ne0) {
  6365. i10 = 0;
  6366. if (++i11 == ne1) {
  6367. i11 = 0;
  6368. if (++i12 == ne2) {
  6369. i12 = 0;
  6370. if (++i13 == ne3) {
  6371. i13 = 0;
  6372. }
  6373. }
  6374. }
  6375. }
  6376. }
  6377. }
  6378. i10 += ne00 * (ne01 - ir1);
  6379. while (i10 >= ne0) {
  6380. i10 -= ne0;
  6381. if (++i11 == ne1) {
  6382. i11 = 0;
  6383. if (++i12 == ne2) {
  6384. i12 = 0;
  6385. if (++i13 == ne3) {
  6386. i13 = 0;
  6387. }
  6388. }
  6389. }
  6390. }
  6391. }
  6392. }
  6393. }
  6394. static void ggml_compute_forward_dup(
  6395. const struct ggml_compute_params * params,
  6396. struct ggml_tensor * dst) {
  6397. const struct ggml_tensor * src0 = dst->src[0];
  6398. if (src0->type == dst->type) {
  6399. ggml_compute_forward_dup_bytes(params, dst);
  6400. return;
  6401. }
  6402. switch (src0->type) {
  6403. case GGML_TYPE_F16:
  6404. {
  6405. ggml_compute_forward_dup_f16(params, dst);
  6406. } break;
  6407. case GGML_TYPE_F32:
  6408. {
  6409. ggml_compute_forward_dup_f32(params, dst);
  6410. } break;
  6411. default:
  6412. {
  6413. GGML_ASSERT(false);
  6414. } break;
  6415. }
  6416. }
  6417. // ggml_compute_forward_add
  6418. static void ggml_compute_forward_add_f32(
  6419. const struct ggml_compute_params * params,
  6420. struct ggml_tensor * dst) {
  6421. const struct ggml_tensor * src0 = dst->src[0];
  6422. const struct ggml_tensor * src1 = dst->src[1];
  6423. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6424. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6425. return;
  6426. }
  6427. const int ith = params->ith;
  6428. const int nth = params->nth;
  6429. #ifdef GGML_USE_CLBLAST
  6430. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6431. // TODO: OpenCL kernel support full broadcast
  6432. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6433. if (ith == 0) {
  6434. ggml_cl_add(src0, src1, dst);
  6435. }
  6436. return;
  6437. }
  6438. #endif
  6439. const int nr = ggml_nrows(src0);
  6440. GGML_TENSOR_BINARY_OP_LOCALS
  6441. GGML_ASSERT( nb0 == sizeof(float));
  6442. GGML_ASSERT(nb00 == sizeof(float));
  6443. // rows per thread
  6444. const int dr = (nr + nth - 1)/nth;
  6445. // row range for this thread
  6446. const int ir0 = dr*ith;
  6447. const int ir1 = MIN(ir0 + dr, nr);
  6448. if (nb10 == sizeof(float)) {
  6449. for (int ir = ir0; ir < ir1; ++ir) {
  6450. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6451. const int64_t i03 = ir/(ne02*ne01);
  6452. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6453. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6454. const int64_t i13 = i03 % ne13;
  6455. const int64_t i12 = i02 % ne12;
  6456. const int64_t i11 = i01 % ne11;
  6457. const int64_t nr0 = ne00 / ne10;
  6458. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6459. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6460. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6461. for (int64_t r = 0; r < nr0; ++r) {
  6462. #ifdef GGML_USE_ACCELERATE
  6463. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6464. #else
  6465. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6466. #endif
  6467. }
  6468. }
  6469. } else {
  6470. // src1 is not contiguous
  6471. for (int ir = ir0; ir < ir1; ++ir) {
  6472. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6473. const int64_t i03 = ir/(ne02*ne01);
  6474. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6475. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6476. const int64_t i13 = i03 % ne13;
  6477. const int64_t i12 = i02 % ne12;
  6478. const int64_t i11 = i01 % ne11;
  6479. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6480. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6481. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6482. const int64_t i10 = i0 % ne10;
  6483. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6484. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6485. }
  6486. }
  6487. }
  6488. }
  6489. static void ggml_compute_forward_add_f16_f32(
  6490. const struct ggml_compute_params * params,
  6491. struct ggml_tensor * dst) {
  6492. const struct ggml_tensor * src0 = dst->src[0];
  6493. const struct ggml_tensor * src1 = dst->src[1];
  6494. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6495. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6496. return;
  6497. }
  6498. const int ith = params->ith;
  6499. const int nth = params->nth;
  6500. const int nr = ggml_nrows(src0);
  6501. GGML_TENSOR_BINARY_OP_LOCALS
  6502. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6503. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6504. if (dst->type == GGML_TYPE_F32) {
  6505. GGML_ASSERT( nb0 == sizeof(float));
  6506. }
  6507. else {
  6508. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6509. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6510. }
  6511. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6512. // rows per thread
  6513. const int dr = (nr + nth - 1)/nth;
  6514. // row range for this thread
  6515. const int ir0 = dr*ith;
  6516. const int ir1 = MIN(ir0 + dr, nr);
  6517. if (nb10 == sizeof(float)) {
  6518. if (dst->type == GGML_TYPE_F16) {
  6519. for (int ir = ir0; ir < ir1; ++ir) {
  6520. // src0, src1 and dst are same shape => same indices
  6521. const int i3 = ir/(ne2*ne1);
  6522. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6523. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6524. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6525. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6526. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6527. for (int i = 0; i < ne0; i++) {
  6528. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6529. }
  6530. }
  6531. } else {
  6532. for (int ir = ir0; ir < ir1; ++ir) {
  6533. // src0, src1 and dst are same shape => same indices
  6534. const int i3 = ir/(ne2*ne1);
  6535. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6536. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6537. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6538. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6539. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6540. for (int i = 0; i < ne0; i++) {
  6541. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6542. }
  6543. }
  6544. }
  6545. }
  6546. else {
  6547. // src1 is not contiguous
  6548. GGML_ASSERT(false);
  6549. }
  6550. }
  6551. static void ggml_compute_forward_add_f16_f16(
  6552. const struct ggml_compute_params * params,
  6553. struct ggml_tensor * dst) {
  6554. const struct ggml_tensor * src0 = dst->src[0];
  6555. const struct ggml_tensor * src1 = dst->src[1];
  6556. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6558. return;
  6559. }
  6560. const int ith = params->ith;
  6561. const int nth = params->nth;
  6562. const int nr = ggml_nrows(src0);
  6563. GGML_TENSOR_BINARY_OP_LOCALS
  6564. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6565. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6566. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6567. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6568. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6569. // rows per thread
  6570. const int dr = (nr + nth - 1)/nth;
  6571. // row range for this thread
  6572. const int ir0 = dr*ith;
  6573. const int ir1 = MIN(ir0 + dr, nr);
  6574. if (nb10 == sizeof(ggml_fp16_t)) {
  6575. for (int ir = ir0; ir < ir1; ++ir) {
  6576. // src0, src1 and dst are same shape => same indices
  6577. const int i3 = ir/(ne2*ne1);
  6578. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6579. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6580. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6581. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6582. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6583. for (int i = 0; i < ne0; i++) {
  6584. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6585. }
  6586. }
  6587. }
  6588. else {
  6589. // src1 is not contiguous
  6590. GGML_ASSERT(false);
  6591. }
  6592. }
  6593. static void ggml_compute_forward_add_q_f32(
  6594. const struct ggml_compute_params * params,
  6595. struct ggml_tensor * dst) {
  6596. const struct ggml_tensor * src0 = dst->src[0];
  6597. const struct ggml_tensor * src1 = dst->src[1];
  6598. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6599. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6600. return;
  6601. }
  6602. const int nr = ggml_nrows(src0);
  6603. GGML_TENSOR_BINARY_OP_LOCALS
  6604. const int ith = params->ith;
  6605. const int nth = params->nth;
  6606. const enum ggml_type type = src0->type;
  6607. const enum ggml_type dtype = dst->type;
  6608. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6609. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6610. // we don't support permuted src0 or src1
  6611. GGML_ASSERT(nb00 == ggml_type_size(type));
  6612. GGML_ASSERT(nb10 == sizeof(float));
  6613. // dst cannot be transposed or permuted
  6614. GGML_ASSERT(nb0 <= nb1);
  6615. GGML_ASSERT(nb1 <= nb2);
  6616. GGML_ASSERT(nb2 <= nb3);
  6617. GGML_ASSERT(ggml_is_quantized(src0->type));
  6618. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6619. // rows per thread
  6620. const int dr = (nr + nth - 1)/nth;
  6621. // row range for this thread
  6622. const int ir0 = dr*ith;
  6623. const int ir1 = MIN(ir0 + dr, nr);
  6624. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6625. for (int ir = ir0; ir < ir1; ++ir) {
  6626. // src0 indices
  6627. const int i03 = ir/(ne02*ne01);
  6628. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6629. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6630. // src1 and dst are same shape as src0 => same indices
  6631. const int i13 = i03;
  6632. const int i12 = i02;
  6633. const int i11 = i01;
  6634. const int i3 = i03;
  6635. const int i2 = i02;
  6636. const int i1 = i01;
  6637. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6638. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6639. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6640. assert(ne00 % 32 == 0);
  6641. // unquantize row from src0 to temp buffer
  6642. dequantize_row_q(src0_row, wdata, ne00);
  6643. // add src1
  6644. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6645. // quantize row to dst
  6646. if (quantize_row_q != NULL) {
  6647. quantize_row_q(wdata, dst_row, ne00);
  6648. } else {
  6649. memcpy(dst_row, wdata, ne0*nb0);
  6650. }
  6651. }
  6652. }
  6653. static void ggml_compute_forward_add(
  6654. const struct ggml_compute_params * params,
  6655. struct ggml_tensor * dst) {
  6656. const struct ggml_tensor * src0 = dst->src[0];
  6657. const struct ggml_tensor * src1 = dst->src[1];
  6658. switch (src0->type) {
  6659. case GGML_TYPE_F32:
  6660. {
  6661. if (src1->type == GGML_TYPE_F32) {
  6662. ggml_compute_forward_add_f32(params, dst);
  6663. }
  6664. else {
  6665. GGML_ASSERT(false);
  6666. }
  6667. } break;
  6668. case GGML_TYPE_F16:
  6669. {
  6670. if (src1->type == GGML_TYPE_F16) {
  6671. ggml_compute_forward_add_f16_f16(params, dst);
  6672. }
  6673. else if (src1->type == GGML_TYPE_F32) {
  6674. ggml_compute_forward_add_f16_f32(params, dst);
  6675. }
  6676. else {
  6677. GGML_ASSERT(false);
  6678. }
  6679. } break;
  6680. case GGML_TYPE_Q4_0:
  6681. case GGML_TYPE_Q4_1:
  6682. case GGML_TYPE_Q5_0:
  6683. case GGML_TYPE_Q5_1:
  6684. case GGML_TYPE_Q8_0:
  6685. case GGML_TYPE_Q2_K:
  6686. case GGML_TYPE_Q3_K:
  6687. case GGML_TYPE_Q4_K:
  6688. case GGML_TYPE_Q5_K:
  6689. case GGML_TYPE_Q6_K:
  6690. case GGML_TYPE_IQ2_XXS:
  6691. case GGML_TYPE_IQ2_XS:
  6692. case GGML_TYPE_IQ3_XXS:
  6693. case GGML_TYPE_IQ1_S:
  6694. case GGML_TYPE_IQ1_M:
  6695. case GGML_TYPE_IQ4_NL:
  6696. case GGML_TYPE_IQ4_XS:
  6697. case GGML_TYPE_IQ3_S:
  6698. case GGML_TYPE_IQ2_S:
  6699. {
  6700. ggml_compute_forward_add_q_f32(params, dst);
  6701. } break;
  6702. default:
  6703. {
  6704. GGML_ASSERT(false);
  6705. } break;
  6706. }
  6707. }
  6708. // ggml_compute_forward_add1
  6709. static void ggml_compute_forward_add1_f32(
  6710. const struct ggml_compute_params * params,
  6711. struct ggml_tensor * dst) {
  6712. const struct ggml_tensor * src0 = dst->src[0];
  6713. const struct ggml_tensor * src1 = dst->src[1];
  6714. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6715. GGML_ASSERT(ggml_is_scalar(src1));
  6716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6717. return;
  6718. }
  6719. const int ith = params->ith;
  6720. const int nth = params->nth;
  6721. const int nr = ggml_nrows(src0);
  6722. GGML_TENSOR_UNARY_OP_LOCALS
  6723. GGML_ASSERT( nb0 == sizeof(float));
  6724. GGML_ASSERT(nb00 == sizeof(float));
  6725. // rows per thread
  6726. const int dr = (nr + nth - 1)/nth;
  6727. // row range for this thread
  6728. const int ir0 = dr*ith;
  6729. const int ir1 = MIN(ir0 + dr, nr);
  6730. for (int ir = ir0; ir < ir1; ++ir) {
  6731. // src0 and dst are same shape => same indices
  6732. const int i3 = ir/(ne2*ne1);
  6733. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6734. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6735. #ifdef GGML_USE_ACCELERATE
  6736. UNUSED(ggml_vec_add1_f32);
  6737. vDSP_vadd(
  6738. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6739. (float *) ((char *) src1->data), 0,
  6740. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6741. ne0);
  6742. #else
  6743. ggml_vec_add1_f32(ne0,
  6744. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6745. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6746. *(float *) src1->data);
  6747. #endif
  6748. }
  6749. }
  6750. static void ggml_compute_forward_add1_f16_f32(
  6751. const struct ggml_compute_params * params,
  6752. struct ggml_tensor * dst) {
  6753. const struct ggml_tensor * src0 = dst->src[0];
  6754. const struct ggml_tensor * src1 = dst->src[1];
  6755. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6756. GGML_ASSERT(ggml_is_scalar(src1));
  6757. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6758. return;
  6759. }
  6760. // scalar to add
  6761. const float v = *(float *) src1->data;
  6762. const int ith = params->ith;
  6763. const int nth = params->nth;
  6764. const int nr = ggml_nrows(src0);
  6765. GGML_TENSOR_UNARY_OP_LOCALS
  6766. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6767. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6768. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6769. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6770. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6771. // rows per thread
  6772. const int dr = (nr + nth - 1)/nth;
  6773. // row range for this thread
  6774. const int ir0 = dr*ith;
  6775. const int ir1 = MIN(ir0 + dr, nr);
  6776. for (int ir = ir0; ir < ir1; ++ir) {
  6777. // src0 and dst are same shape => same indices
  6778. const int i3 = ir/(ne2*ne1);
  6779. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6780. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6781. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6782. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6783. for (int i = 0; i < ne0; i++) {
  6784. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6785. }
  6786. }
  6787. }
  6788. static void ggml_compute_forward_add1_f16_f16(
  6789. const struct ggml_compute_params * params,
  6790. struct ggml_tensor * dst) {
  6791. const struct ggml_tensor * src0 = dst->src[0];
  6792. const struct ggml_tensor * src1 = dst->src[1];
  6793. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6794. GGML_ASSERT(ggml_is_scalar(src1));
  6795. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6796. return;
  6797. }
  6798. // scalar to add
  6799. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6800. const int ith = params->ith;
  6801. const int nth = params->nth;
  6802. const int nr = ggml_nrows(src0);
  6803. GGML_TENSOR_UNARY_OP_LOCALS
  6804. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6805. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6806. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6807. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6808. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6809. // rows per thread
  6810. const int dr = (nr + nth - 1)/nth;
  6811. // row range for this thread
  6812. const int ir0 = dr*ith;
  6813. const int ir1 = MIN(ir0 + dr, nr);
  6814. for (int ir = ir0; ir < ir1; ++ir) {
  6815. // src0 and dst are same shape => same indices
  6816. const int i3 = ir/(ne2*ne1);
  6817. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6818. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6819. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6820. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6821. for (int i = 0; i < ne0; i++) {
  6822. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6823. }
  6824. }
  6825. }
  6826. static void ggml_compute_forward_add1_q_f32(
  6827. const struct ggml_compute_params * params,
  6828. struct ggml_tensor * dst) {
  6829. const struct ggml_tensor * src0 = dst->src[0];
  6830. const struct ggml_tensor * src1 = dst->src[1];
  6831. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6832. GGML_ASSERT(ggml_is_scalar(src1));
  6833. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6834. return;
  6835. }
  6836. // scalar to add
  6837. const float v = *(float *) src1->data;
  6838. const int ith = params->ith;
  6839. const int nth = params->nth;
  6840. const int nr = ggml_nrows(src0);
  6841. GGML_TENSOR_UNARY_OP_LOCALS
  6842. const enum ggml_type type = src0->type;
  6843. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6844. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6845. // we don't support permuted src0
  6846. GGML_ASSERT(nb00 == ggml_type_size(type));
  6847. // dst cannot be transposed or permuted
  6848. GGML_ASSERT(nb0 <= nb1);
  6849. GGML_ASSERT(nb1 <= nb2);
  6850. GGML_ASSERT(nb2 <= nb3);
  6851. GGML_ASSERT(ggml_is_quantized(src0->type));
  6852. GGML_ASSERT(dst->type == src0->type);
  6853. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6854. // rows per thread
  6855. const int dr = (nr + nth - 1)/nth;
  6856. // row range for this thread
  6857. const int ir0 = dr*ith;
  6858. const int ir1 = MIN(ir0 + dr, nr);
  6859. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6860. for (int ir = ir0; ir < ir1; ++ir) {
  6861. // src0 and dst are same shape => same indices
  6862. const int i3 = ir/(ne2*ne1);
  6863. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6864. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6865. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6866. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6867. assert(ne0 % 32 == 0);
  6868. // unquantize row from src0 to temp buffer
  6869. dequantize_row_q(src0_row, wdata, ne0);
  6870. // add src1
  6871. ggml_vec_acc1_f32(ne0, wdata, v);
  6872. // quantize row to dst
  6873. quantize_row_q(wdata, dst_row, ne0);
  6874. }
  6875. }
  6876. static void ggml_compute_forward_add1(
  6877. const struct ggml_compute_params * params,
  6878. struct ggml_tensor * dst) {
  6879. const struct ggml_tensor * src0 = dst->src[0];
  6880. const struct ggml_tensor * src1 = dst->src[1];
  6881. switch (src0->type) {
  6882. case GGML_TYPE_F32:
  6883. {
  6884. ggml_compute_forward_add1_f32(params, dst);
  6885. } break;
  6886. case GGML_TYPE_F16:
  6887. {
  6888. if (src1->type == GGML_TYPE_F16) {
  6889. ggml_compute_forward_add1_f16_f16(params, dst);
  6890. }
  6891. else if (src1->type == GGML_TYPE_F32) {
  6892. ggml_compute_forward_add1_f16_f32(params, dst);
  6893. }
  6894. else {
  6895. GGML_ASSERT(false);
  6896. }
  6897. } break;
  6898. case GGML_TYPE_Q4_0:
  6899. case GGML_TYPE_Q4_1:
  6900. case GGML_TYPE_Q5_0:
  6901. case GGML_TYPE_Q5_1:
  6902. case GGML_TYPE_Q8_0:
  6903. case GGML_TYPE_Q8_1:
  6904. case GGML_TYPE_Q2_K:
  6905. case GGML_TYPE_Q3_K:
  6906. case GGML_TYPE_Q4_K:
  6907. case GGML_TYPE_Q5_K:
  6908. case GGML_TYPE_Q6_K:
  6909. case GGML_TYPE_IQ2_XXS:
  6910. case GGML_TYPE_IQ2_XS:
  6911. case GGML_TYPE_IQ3_XXS:
  6912. case GGML_TYPE_IQ1_S:
  6913. case GGML_TYPE_IQ1_M:
  6914. case GGML_TYPE_IQ4_NL:
  6915. case GGML_TYPE_IQ4_XS:
  6916. case GGML_TYPE_IQ3_S:
  6917. case GGML_TYPE_IQ2_S:
  6918. {
  6919. ggml_compute_forward_add1_q_f32(params, dst);
  6920. } break;
  6921. default:
  6922. {
  6923. GGML_ASSERT(false);
  6924. } break;
  6925. }
  6926. }
  6927. // ggml_compute_forward_acc
  6928. static void ggml_compute_forward_acc_f32(
  6929. const struct ggml_compute_params * params,
  6930. struct ggml_tensor * dst) {
  6931. const struct ggml_tensor * src0 = dst->src[0];
  6932. const struct ggml_tensor * src1 = dst->src[1];
  6933. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6934. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6935. // view src0 and dst with these strides and data offset inbytes during acc
  6936. // nb0 is implicitly element_size because src0 and dst are contiguous
  6937. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6938. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6939. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6940. size_t offset = ((int32_t *) dst->op_params)[3];
  6941. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6942. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6943. if (params->ith != 0) {
  6944. return;
  6945. }
  6946. // memcpy needs to be synchronized across threads to avoid race conditions.
  6947. // => do it in INIT phase
  6948. memcpy(
  6949. ((char *) dst->data),
  6950. ((char *) src0->data),
  6951. ggml_nbytes(dst));
  6952. }
  6953. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6954. return;
  6955. }
  6956. const int ith = params->ith;
  6957. const int nth = params->nth;
  6958. const int nr = ggml_nrows(src1);
  6959. const int nc = src1->ne[0];
  6960. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6961. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6962. // src0 and dst as viewed during acc
  6963. const size_t nb0 = ggml_element_size(src0);
  6964. const size_t nb00 = nb0;
  6965. const size_t nb01 = nb1;
  6966. const size_t nb02 = nb2;
  6967. const size_t nb03 = nb3;
  6968. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6969. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6970. GGML_ASSERT(nb10 == sizeof(float));
  6971. // rows per thread
  6972. const int dr = (nr + nth - 1)/nth;
  6973. // row range for this thread
  6974. const int ir0 = dr*ith;
  6975. const int ir1 = MIN(ir0 + dr, nr);
  6976. for (int ir = ir0; ir < ir1; ++ir) {
  6977. // src0 and dst are viewed with shape of src1 and offset
  6978. // => same indices
  6979. const int i3 = ir/(ne12*ne11);
  6980. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6981. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6982. #ifdef GGML_USE_ACCELERATE
  6983. vDSP_vadd(
  6984. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6985. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6986. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6987. #else
  6988. ggml_vec_add_f32(nc,
  6989. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6990. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6991. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6992. #endif
  6993. }
  6994. }
  6995. static void ggml_compute_forward_acc(
  6996. const struct ggml_compute_params * params,
  6997. struct ggml_tensor * dst) {
  6998. const struct ggml_tensor * src0 = dst->src[0];
  6999. switch (src0->type) {
  7000. case GGML_TYPE_F32:
  7001. {
  7002. ggml_compute_forward_acc_f32(params, dst);
  7003. } break;
  7004. case GGML_TYPE_F16:
  7005. case GGML_TYPE_Q4_0:
  7006. case GGML_TYPE_Q4_1:
  7007. case GGML_TYPE_Q5_0:
  7008. case GGML_TYPE_Q5_1:
  7009. case GGML_TYPE_Q8_0:
  7010. case GGML_TYPE_Q8_1:
  7011. case GGML_TYPE_Q2_K:
  7012. case GGML_TYPE_Q3_K:
  7013. case GGML_TYPE_Q4_K:
  7014. case GGML_TYPE_Q5_K:
  7015. case GGML_TYPE_Q6_K:
  7016. case GGML_TYPE_IQ2_XXS:
  7017. case GGML_TYPE_IQ2_XS:
  7018. case GGML_TYPE_IQ3_XXS:
  7019. case GGML_TYPE_IQ1_S:
  7020. case GGML_TYPE_IQ1_M:
  7021. case GGML_TYPE_IQ4_NL:
  7022. case GGML_TYPE_IQ4_XS:
  7023. case GGML_TYPE_IQ3_S:
  7024. case GGML_TYPE_IQ2_S:
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_sub
  7032. static void ggml_compute_forward_sub_f32(
  7033. const struct ggml_compute_params * params,
  7034. struct ggml_tensor * dst) {
  7035. const struct ggml_tensor * src0 = dst->src[0];
  7036. const struct ggml_tensor * src1 = dst->src[1];
  7037. assert(params->ith == 0);
  7038. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7039. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7040. return;
  7041. }
  7042. const int nr = ggml_nrows(src0);
  7043. GGML_TENSOR_BINARY_OP_LOCALS
  7044. GGML_ASSERT( nb0 == sizeof(float));
  7045. GGML_ASSERT(nb00 == sizeof(float));
  7046. if (nb10 == sizeof(float)) {
  7047. for (int ir = 0; ir < nr; ++ir) {
  7048. // src0, src1 and dst are same shape => same indices
  7049. const int i3 = ir/(ne2*ne1);
  7050. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7051. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7052. #ifdef GGML_USE_ACCELERATE
  7053. vDSP_vsub(
  7054. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7055. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7056. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7057. ne0);
  7058. #else
  7059. ggml_vec_sub_f32(ne0,
  7060. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7061. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7062. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7063. #endif
  7064. // }
  7065. // }
  7066. }
  7067. } else {
  7068. // src1 is not contiguous
  7069. for (int ir = 0; ir < nr; ++ir) {
  7070. // src0, src1 and dst are same shape => same indices
  7071. const int i3 = ir/(ne2*ne1);
  7072. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7073. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7074. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7075. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7076. for (int i0 = 0; i0 < ne0; i0++) {
  7077. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7078. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7079. }
  7080. }
  7081. }
  7082. }
  7083. static void ggml_compute_forward_sub(
  7084. const struct ggml_compute_params * params,
  7085. struct ggml_tensor * dst) {
  7086. const struct ggml_tensor * src0 = dst->src[0];
  7087. switch (src0->type) {
  7088. case GGML_TYPE_F32:
  7089. {
  7090. ggml_compute_forward_sub_f32(params, dst);
  7091. } break;
  7092. default:
  7093. {
  7094. GGML_ASSERT(false);
  7095. } break;
  7096. }
  7097. }
  7098. // ggml_compute_forward_mul
  7099. static void ggml_compute_forward_mul_f32(
  7100. const struct ggml_compute_params * params,
  7101. struct ggml_tensor * dst) {
  7102. const struct ggml_tensor * src0 = dst->src[0];
  7103. const struct ggml_tensor * src1 = dst->src[1];
  7104. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7105. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7106. return;
  7107. }
  7108. const int ith = params->ith;
  7109. const int nth = params->nth;
  7110. #if defined(GGML_USE_CLBLAST)
  7111. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7112. // TODO: OpenCL kernel support full broadcast
  7113. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7114. if (ith == 0) {
  7115. ggml_cl_mul(src0, src1, dst);
  7116. }
  7117. return;
  7118. }
  7119. #endif
  7120. const int64_t nr = ggml_nrows(src0);
  7121. GGML_TENSOR_BINARY_OP_LOCALS
  7122. GGML_ASSERT( nb0 == sizeof(float));
  7123. GGML_ASSERT(nb00 == sizeof(float));
  7124. if (nb10 == sizeof(float)) {
  7125. for (int64_t ir = ith; ir < nr; ir += nth) {
  7126. // src0 and dst are same shape => same indices
  7127. const int64_t i03 = ir/(ne02*ne01);
  7128. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7129. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7130. const int64_t i13 = i03 % ne13;
  7131. const int64_t i12 = i02 % ne12;
  7132. const int64_t i11 = i01 % ne11;
  7133. const int64_t nr0 = ne00 / ne10;
  7134. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7135. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7136. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7137. for (int64_t r = 0 ; r < nr0; ++r) {
  7138. #ifdef GGML_USE_ACCELERATE
  7139. UNUSED(ggml_vec_mul_f32);
  7140. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7141. #else
  7142. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7143. #endif
  7144. }
  7145. }
  7146. } else {
  7147. // src1 is not contiguous
  7148. for (int64_t ir = ith; ir < nr; ir += nth) {
  7149. // src0 and dst are same shape => same indices
  7150. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7151. const int64_t i03 = ir/(ne02*ne01);
  7152. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7153. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7154. const int64_t i13 = i03 % ne13;
  7155. const int64_t i12 = i02 % ne12;
  7156. const int64_t i11 = i01 % ne11;
  7157. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7158. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7159. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7160. const int64_t i10 = i0 % ne10;
  7161. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7162. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7163. }
  7164. }
  7165. }
  7166. }
  7167. static void ggml_compute_forward_mul(
  7168. const struct ggml_compute_params * params,
  7169. struct ggml_tensor * dst) {
  7170. const struct ggml_tensor * src0 = dst->src[0];
  7171. const struct ggml_tensor * src1 = dst->src[1];
  7172. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7173. switch (src0->type) {
  7174. case GGML_TYPE_F32:
  7175. {
  7176. ggml_compute_forward_mul_f32(params, dst);
  7177. } break;
  7178. default:
  7179. {
  7180. GGML_ASSERT(false);
  7181. } break;
  7182. }
  7183. }
  7184. // ggml_compute_forward_div
  7185. static void ggml_compute_forward_div_f32(
  7186. const struct ggml_compute_params * params,
  7187. struct ggml_tensor * dst) {
  7188. const struct ggml_tensor * src0 = dst->src[0];
  7189. const struct ggml_tensor * src1 = dst->src[1];
  7190. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7191. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7192. return;
  7193. }
  7194. const int ith = params->ith;
  7195. const int nth = params->nth;
  7196. const int64_t nr = ggml_nrows(src0);
  7197. GGML_TENSOR_BINARY_OP_LOCALS
  7198. GGML_ASSERT( nb0 == sizeof(float));
  7199. GGML_ASSERT(nb00 == sizeof(float));
  7200. if (nb10 == sizeof(float)) {
  7201. for (int64_t ir = ith; ir < nr; ir += nth) {
  7202. // src0 and dst are same shape => same indices
  7203. const int64_t i03 = ir/(ne02*ne01);
  7204. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7205. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7206. const int64_t i13 = i03 % ne13;
  7207. const int64_t i12 = i02 % ne12;
  7208. const int64_t i11 = i01 % ne11;
  7209. const int64_t nr0 = ne00 / ne10;
  7210. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7211. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7212. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7213. for (int64_t r = 0; r < nr0; ++r) {
  7214. #ifdef GGML_USE_ACCELERATE
  7215. UNUSED(ggml_vec_div_f32);
  7216. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7217. #else
  7218. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7219. #endif
  7220. }
  7221. }
  7222. } else {
  7223. // src1 is not contiguous
  7224. for (int64_t ir = ith; ir < nr; ir += nth) {
  7225. // src0 and dst are same shape => same indices
  7226. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7227. const int64_t i03 = ir/(ne02*ne01);
  7228. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7229. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7230. const int64_t i13 = i03 % ne13;
  7231. const int64_t i12 = i02 % ne12;
  7232. const int64_t i11 = i01 % ne11;
  7233. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7234. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7235. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7236. const int64_t i10 = i0 % ne10;
  7237. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7238. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7239. }
  7240. }
  7241. }
  7242. }
  7243. static void ggml_compute_forward_div(
  7244. const struct ggml_compute_params * params,
  7245. struct ggml_tensor * dst) {
  7246. const struct ggml_tensor * src0 = dst->src[0];
  7247. switch (src0->type) {
  7248. case GGML_TYPE_F32:
  7249. {
  7250. ggml_compute_forward_div_f32(params, dst);
  7251. } break;
  7252. default:
  7253. {
  7254. GGML_ASSERT(false);
  7255. } break;
  7256. }
  7257. }
  7258. // ggml_compute_forward_sqr
  7259. static void ggml_compute_forward_sqr_f32(
  7260. const struct ggml_compute_params * params,
  7261. struct ggml_tensor * dst) {
  7262. const struct ggml_tensor * src0 = dst->src[0];
  7263. assert(params->ith == 0);
  7264. assert(ggml_are_same_shape(src0, dst));
  7265. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7266. return;
  7267. }
  7268. const int n = ggml_nrows(src0);
  7269. const int nc = src0->ne[0];
  7270. assert( dst->nb[0] == sizeof(float));
  7271. assert(src0->nb[0] == sizeof(float));
  7272. for (int i = 0; i < n; i++) {
  7273. ggml_vec_sqr_f32(nc,
  7274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7276. }
  7277. }
  7278. static void ggml_compute_forward_sqr(
  7279. const struct ggml_compute_params * params,
  7280. struct ggml_tensor * dst) {
  7281. const struct ggml_tensor * src0 = dst->src[0];
  7282. switch (src0->type) {
  7283. case GGML_TYPE_F32:
  7284. {
  7285. ggml_compute_forward_sqr_f32(params, dst);
  7286. } break;
  7287. default:
  7288. {
  7289. GGML_ASSERT(false);
  7290. } break;
  7291. }
  7292. }
  7293. // ggml_compute_forward_sqrt
  7294. static void ggml_compute_forward_sqrt_f32(
  7295. const struct ggml_compute_params * params,
  7296. struct ggml_tensor * dst) {
  7297. const struct ggml_tensor * src0 = dst->src[0];
  7298. assert(params->ith == 0);
  7299. assert(ggml_are_same_shape(src0, dst));
  7300. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7301. return;
  7302. }
  7303. const int n = ggml_nrows(src0);
  7304. const int nc = src0->ne[0];
  7305. assert( dst->nb[0] == sizeof(float));
  7306. assert(src0->nb[0] == sizeof(float));
  7307. for (int i = 0; i < n; i++) {
  7308. ggml_vec_sqrt_f32(nc,
  7309. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7310. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7311. }
  7312. }
  7313. static void ggml_compute_forward_sqrt(
  7314. const struct ggml_compute_params * params,
  7315. struct ggml_tensor * dst) {
  7316. const struct ggml_tensor * src0 = dst->src[0];
  7317. switch (src0->type) {
  7318. case GGML_TYPE_F32:
  7319. {
  7320. ggml_compute_forward_sqrt_f32(params, dst);
  7321. } break;
  7322. default:
  7323. {
  7324. GGML_ASSERT(false);
  7325. } break;
  7326. }
  7327. }
  7328. // ggml_compute_forward_log
  7329. static void ggml_compute_forward_log_f32(
  7330. const struct ggml_compute_params * params,
  7331. struct ggml_tensor * dst) {
  7332. const struct ggml_tensor * src0 = dst->src[0];
  7333. GGML_ASSERT(params->ith == 0);
  7334. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7335. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7336. return;
  7337. }
  7338. const int n = ggml_nrows(src0);
  7339. const int nc = src0->ne[0];
  7340. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7341. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7342. for (int i = 0; i < n; i++) {
  7343. ggml_vec_log_f32(nc,
  7344. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7345. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7346. }
  7347. }
  7348. static void ggml_compute_forward_log(
  7349. const struct ggml_compute_params * params,
  7350. struct ggml_tensor * dst) {
  7351. const struct ggml_tensor * src0 = dst->src[0];
  7352. switch (src0->type) {
  7353. case GGML_TYPE_F32:
  7354. {
  7355. ggml_compute_forward_log_f32(params, dst);
  7356. } break;
  7357. default:
  7358. {
  7359. GGML_ASSERT(false);
  7360. } break;
  7361. }
  7362. }
  7363. // ggml_compute_forward_sum
  7364. static void ggml_compute_forward_sum_f32(
  7365. const struct ggml_compute_params * params,
  7366. struct ggml_tensor * dst) {
  7367. const struct ggml_tensor * src0 = dst->src[0];
  7368. assert(params->ith == 0);
  7369. assert(ggml_is_scalar(dst));
  7370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7371. return;
  7372. }
  7373. assert(ggml_is_scalar(dst));
  7374. assert(src0->nb[0] == sizeof(float));
  7375. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7376. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7377. ggml_float sum = 0;
  7378. ggml_float row_sum = 0;
  7379. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7380. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7381. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7382. ggml_vec_sum_f32_ggf(ne00,
  7383. &row_sum,
  7384. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7385. sum += row_sum;
  7386. }
  7387. }
  7388. }
  7389. ((float *) dst->data)[0] = sum;
  7390. }
  7391. static void ggml_compute_forward_sum_f16(
  7392. const struct ggml_compute_params * params,
  7393. struct ggml_tensor * dst) {
  7394. const struct ggml_tensor * src0 = dst->src[0];
  7395. assert(params->ith == 0);
  7396. assert(ggml_is_scalar(dst));
  7397. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7398. return;
  7399. }
  7400. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7401. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7402. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7403. float sum = 0;
  7404. float row_sum = 0;
  7405. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7406. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7407. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7408. ggml_vec_sum_f16_ggf(ne00,
  7409. &row_sum,
  7410. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7411. sum += row_sum;
  7412. }
  7413. }
  7414. }
  7415. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7416. }
  7417. static void ggml_compute_forward_sum(
  7418. const struct ggml_compute_params * params,
  7419. struct ggml_tensor * dst) {
  7420. const struct ggml_tensor * src0 = dst->src[0];
  7421. switch (src0->type) {
  7422. case GGML_TYPE_F32:
  7423. {
  7424. ggml_compute_forward_sum_f32(params, dst);
  7425. } break;
  7426. case GGML_TYPE_F16:
  7427. {
  7428. ggml_compute_forward_sum_f16(params, dst);
  7429. } break;
  7430. default:
  7431. {
  7432. GGML_ASSERT(false);
  7433. } break;
  7434. }
  7435. }
  7436. // ggml_compute_forward_sum_rows
  7437. static void ggml_compute_forward_sum_rows_f32(
  7438. const struct ggml_compute_params * params,
  7439. struct ggml_tensor * dst) {
  7440. const struct ggml_tensor * src0 = dst->src[0];
  7441. GGML_ASSERT(params->ith == 0);
  7442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7443. return;
  7444. }
  7445. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7446. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7447. GGML_TENSOR_UNARY_OP_LOCALS
  7448. GGML_ASSERT(ne0 == 1);
  7449. GGML_ASSERT(ne1 == ne01);
  7450. GGML_ASSERT(ne2 == ne02);
  7451. GGML_ASSERT(ne3 == ne03);
  7452. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7453. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7454. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7455. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7456. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7457. float row_sum = 0;
  7458. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7459. dst_row[0] = row_sum;
  7460. }
  7461. }
  7462. }
  7463. }
  7464. static void ggml_compute_forward_sum_rows(
  7465. const struct ggml_compute_params * params,
  7466. struct ggml_tensor * dst) {
  7467. const struct ggml_tensor * src0 = dst->src[0];
  7468. switch (src0->type) {
  7469. case GGML_TYPE_F32:
  7470. {
  7471. ggml_compute_forward_sum_rows_f32(params, dst);
  7472. } break;
  7473. default:
  7474. {
  7475. GGML_ASSERT(false);
  7476. } break;
  7477. }
  7478. }
  7479. // ggml_compute_forward_mean
  7480. static void ggml_compute_forward_mean_f32(
  7481. const struct ggml_compute_params * params,
  7482. struct ggml_tensor * dst) {
  7483. const struct ggml_tensor * src0 = dst->src[0];
  7484. assert(params->ith == 0);
  7485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7486. return;
  7487. }
  7488. assert(src0->nb[0] == sizeof(float));
  7489. GGML_TENSOR_UNARY_OP_LOCALS
  7490. assert(ne0 == 1);
  7491. assert(ne1 == ne01);
  7492. assert(ne2 == ne02);
  7493. assert(ne3 == ne03);
  7494. UNUSED(ne0);
  7495. UNUSED(ne1);
  7496. UNUSED(ne2);
  7497. UNUSED(ne3);
  7498. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7499. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7500. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7501. ggml_vec_sum_f32(ne00,
  7502. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7503. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7504. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7505. }
  7506. }
  7507. }
  7508. }
  7509. static void ggml_compute_forward_mean(
  7510. const struct ggml_compute_params * params,
  7511. struct ggml_tensor * dst) {
  7512. const struct ggml_tensor * src0 = dst->src[0];
  7513. switch (src0->type) {
  7514. case GGML_TYPE_F32:
  7515. {
  7516. ggml_compute_forward_mean_f32(params, dst);
  7517. } break;
  7518. default:
  7519. {
  7520. GGML_ASSERT(false);
  7521. } break;
  7522. }
  7523. }
  7524. // ggml_compute_forward_argmax
  7525. static void ggml_compute_forward_argmax_f32(
  7526. const struct ggml_compute_params * params,
  7527. struct ggml_tensor * dst) {
  7528. const struct ggml_tensor * src0 = dst->src[0];
  7529. assert(params->ith == 0);
  7530. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7531. return;
  7532. }
  7533. assert(src0->nb[0] == sizeof(float));
  7534. assert(dst->nb[0] == sizeof(float));
  7535. const int64_t ne00 = src0->ne[0];
  7536. const int64_t ne01 = src0->ne[1];
  7537. const size_t nb01 = src0->nb[1];
  7538. const size_t nb0 = dst->nb[0];
  7539. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7540. float * src = (float *) ((char *) src0->data + i1*nb01);
  7541. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7542. int v = 0;
  7543. ggml_vec_argmax_f32(ne00, &v, src);
  7544. dst_[0] = v;
  7545. }
  7546. }
  7547. static void ggml_compute_forward_argmax(
  7548. const struct ggml_compute_params * params,
  7549. struct ggml_tensor * dst) {
  7550. const struct ggml_tensor * src0 = dst->src[0];
  7551. switch (src0->type) {
  7552. case GGML_TYPE_F32:
  7553. {
  7554. ggml_compute_forward_argmax_f32(params, dst);
  7555. } break;
  7556. default:
  7557. {
  7558. GGML_ASSERT(false);
  7559. } break;
  7560. }
  7561. }
  7562. // ggml_compute_forward_repeat
  7563. static void ggml_compute_forward_repeat_f32(
  7564. const struct ggml_compute_params * params,
  7565. struct ggml_tensor * dst) {
  7566. const struct ggml_tensor * src0 = dst->src[0];
  7567. GGML_ASSERT(params->ith == 0);
  7568. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7569. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7570. return;
  7571. }
  7572. GGML_TENSOR_UNARY_OP_LOCALS
  7573. // guaranteed to be an integer due to the check in ggml_can_repeat
  7574. const int nr0 = (int)(ne0/ne00);
  7575. const int nr1 = (int)(ne1/ne01);
  7576. const int nr2 = (int)(ne2/ne02);
  7577. const int nr3 = (int)(ne3/ne03);
  7578. // TODO: support for transposed / permuted tensors
  7579. GGML_ASSERT(nb0 == sizeof(float));
  7580. GGML_ASSERT(nb00 == sizeof(float));
  7581. // TODO: maybe this is not optimal?
  7582. for (int i3 = 0; i3 < nr3; i3++) {
  7583. for (int k3 = 0; k3 < ne03; k3++) {
  7584. for (int i2 = 0; i2 < nr2; i2++) {
  7585. for (int k2 = 0; k2 < ne02; k2++) {
  7586. for (int i1 = 0; i1 < nr1; i1++) {
  7587. for (int k1 = 0; k1 < ne01; k1++) {
  7588. for (int i0 = 0; i0 < nr0; i0++) {
  7589. ggml_vec_cpy_f32(ne00,
  7590. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7591. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7592. }
  7593. }
  7594. }
  7595. }
  7596. }
  7597. }
  7598. }
  7599. }
  7600. static void ggml_compute_forward_repeat_f16(
  7601. const struct ggml_compute_params * params,
  7602. struct ggml_tensor * dst) {
  7603. const struct ggml_tensor * src0 = dst->src[0];
  7604. GGML_ASSERT(params->ith == 0);
  7605. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7606. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7607. return;
  7608. }
  7609. GGML_TENSOR_UNARY_OP_LOCALS
  7610. // guaranteed to be an integer due to the check in ggml_can_repeat
  7611. const int nr0 = (int)(ne0/ne00);
  7612. const int nr1 = (int)(ne1/ne01);
  7613. const int nr2 = (int)(ne2/ne02);
  7614. const int nr3 = (int)(ne3/ne03);
  7615. // TODO: support for transposed / permuted tensors
  7616. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7617. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7618. // TODO: maybe this is not optimal?
  7619. for (int i3 = 0; i3 < nr3; i3++) {
  7620. for (int k3 = 0; k3 < ne03; k3++) {
  7621. for (int i2 = 0; i2 < nr2; i2++) {
  7622. for (int k2 = 0; k2 < ne02; k2++) {
  7623. for (int i1 = 0; i1 < nr1; i1++) {
  7624. for (int k1 = 0; k1 < ne01; k1++) {
  7625. for (int i0 = 0; i0 < nr0; i0++) {
  7626. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7627. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7628. // ggml_vec_cpy_f16(ne00, y, x)
  7629. for (int i = 0; i < ne00; ++i) {
  7630. y[i] = x[i];
  7631. }
  7632. }
  7633. }
  7634. }
  7635. }
  7636. }
  7637. }
  7638. }
  7639. }
  7640. static void ggml_compute_forward_repeat(
  7641. const struct ggml_compute_params * params,
  7642. struct ggml_tensor * dst) {
  7643. const struct ggml_tensor * src0 = dst->src[0];
  7644. switch (src0->type) {
  7645. case GGML_TYPE_F16:
  7646. case GGML_TYPE_I16:
  7647. {
  7648. ggml_compute_forward_repeat_f16(params, dst);
  7649. } break;
  7650. case GGML_TYPE_F32:
  7651. case GGML_TYPE_I32:
  7652. {
  7653. ggml_compute_forward_repeat_f32(params, dst);
  7654. } break;
  7655. default:
  7656. {
  7657. GGML_ASSERT(false);
  7658. } break;
  7659. }
  7660. }
  7661. // ggml_compute_forward_repeat_back
  7662. static void ggml_compute_forward_repeat_back_f32(
  7663. const struct ggml_compute_params * params,
  7664. struct ggml_tensor * dst) {
  7665. const struct ggml_tensor * src0 = dst->src[0];
  7666. GGML_ASSERT(params->ith == 0);
  7667. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7669. return;
  7670. }
  7671. GGML_TENSOR_UNARY_OP_LOCALS
  7672. // guaranteed to be an integer due to the check in ggml_can_repeat
  7673. const int nr0 = (int)(ne00/ne0);
  7674. const int nr1 = (int)(ne01/ne1);
  7675. const int nr2 = (int)(ne02/ne2);
  7676. const int nr3 = (int)(ne03/ne3);
  7677. // TODO: support for transposed / permuted tensors
  7678. GGML_ASSERT(nb0 == sizeof(float));
  7679. GGML_ASSERT(nb00 == sizeof(float));
  7680. if (ggml_is_contiguous(dst)) {
  7681. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7682. } else {
  7683. for (int k3 = 0; k3 < ne3; k3++) {
  7684. for (int k2 = 0; k2 < ne2; k2++) {
  7685. for (int k1 = 0; k1 < ne1; k1++) {
  7686. ggml_vec_set_f32(ne0,
  7687. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7688. 0);
  7689. }
  7690. }
  7691. }
  7692. }
  7693. // TODO: maybe this is not optimal?
  7694. for (int i3 = 0; i3 < nr3; i3++) {
  7695. for (int k3 = 0; k3 < ne3; k3++) {
  7696. for (int i2 = 0; i2 < nr2; i2++) {
  7697. for (int k2 = 0; k2 < ne2; k2++) {
  7698. for (int i1 = 0; i1 < nr1; i1++) {
  7699. for (int k1 = 0; k1 < ne1; k1++) {
  7700. for (int i0 = 0; i0 < nr0; i0++) {
  7701. ggml_vec_acc_f32(ne0,
  7702. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7703. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7704. }
  7705. }
  7706. }
  7707. }
  7708. }
  7709. }
  7710. }
  7711. }
  7712. static void ggml_compute_forward_repeat_back(
  7713. const struct ggml_compute_params * params,
  7714. struct ggml_tensor * dst) {
  7715. const struct ggml_tensor * src0 = dst->src[0];
  7716. switch (src0->type) {
  7717. case GGML_TYPE_F32:
  7718. {
  7719. ggml_compute_forward_repeat_back_f32(params, dst);
  7720. } break;
  7721. default:
  7722. {
  7723. GGML_ASSERT(false);
  7724. } break;
  7725. }
  7726. }
  7727. // ggml_compute_forward_concat
  7728. static void ggml_compute_forward_concat_f32(
  7729. const struct ggml_compute_params * params,
  7730. struct ggml_tensor * dst) {
  7731. const struct ggml_tensor * src0 = dst->src[0];
  7732. const struct ggml_tensor * src1 = dst->src[1];
  7733. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7734. return;
  7735. }
  7736. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7737. const int ith = params->ith;
  7738. const int nth = params->nth;
  7739. GGML_TENSOR_BINARY_OP_LOCALS
  7740. // TODO: support for transposed / permuted tensors
  7741. GGML_ASSERT(nb0 == sizeof(float));
  7742. GGML_ASSERT(nb00 == sizeof(float));
  7743. GGML_ASSERT(nb10 == sizeof(float));
  7744. for (int i3 = 0; i3 < ne3; i3++) {
  7745. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7746. if (i2 < ne02) { // src0
  7747. for (int i1 = 0; i1 < ne1; i1++) {
  7748. for (int i0 = 0; i0 < ne0; i0++) {
  7749. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7750. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7751. *y = *x;
  7752. }
  7753. }
  7754. } // src1
  7755. else {
  7756. for (int i1 = 0; i1 < ne1; i1++) {
  7757. for (int i0 = 0; i0 < ne0; i0++) {
  7758. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7759. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7760. *y = *x;
  7761. }
  7762. }
  7763. }
  7764. }
  7765. }
  7766. }
  7767. static void ggml_compute_forward_concat(
  7768. const struct ggml_compute_params* params,
  7769. struct ggml_tensor* dst) {
  7770. const struct ggml_tensor * src0 = dst->src[0];
  7771. switch (src0->type) {
  7772. case GGML_TYPE_F32:
  7773. case GGML_TYPE_I32:
  7774. {
  7775. ggml_compute_forward_concat_f32(params, dst);
  7776. } break;
  7777. default:
  7778. {
  7779. GGML_ASSERT(false);
  7780. } break;
  7781. }
  7782. }
  7783. // ggml_compute_forward_abs
  7784. static void ggml_compute_forward_abs_f32(
  7785. const struct ggml_compute_params * params,
  7786. struct ggml_tensor * dst) {
  7787. const struct ggml_tensor * src0 = dst->src[0];
  7788. assert(params->ith == 0);
  7789. assert(ggml_are_same_shape(src0, dst));
  7790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7791. return;
  7792. }
  7793. const int n = ggml_nrows(src0);
  7794. const int nc = src0->ne[0];
  7795. assert(dst->nb[0] == sizeof(float));
  7796. assert(src0->nb[0] == sizeof(float));
  7797. for (int i = 0; i < n; i++) {
  7798. ggml_vec_abs_f32(nc,
  7799. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7800. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7801. }
  7802. }
  7803. static void ggml_compute_forward_abs(
  7804. const struct ggml_compute_params * params,
  7805. struct ggml_tensor * dst) {
  7806. const struct ggml_tensor * src0 = dst->src[0];
  7807. switch (src0->type) {
  7808. case GGML_TYPE_F32:
  7809. {
  7810. ggml_compute_forward_abs_f32(params, dst);
  7811. } break;
  7812. default:
  7813. {
  7814. GGML_ASSERT(false);
  7815. } break;
  7816. }
  7817. }
  7818. // ggml_compute_forward_sgn
  7819. static void ggml_compute_forward_sgn_f32(
  7820. const struct ggml_compute_params * params,
  7821. struct ggml_tensor * dst) {
  7822. const struct ggml_tensor * src0 = dst->src[0];
  7823. assert(params->ith == 0);
  7824. assert(ggml_are_same_shape(src0, dst));
  7825. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7826. return;
  7827. }
  7828. const int n = ggml_nrows(src0);
  7829. const int nc = src0->ne[0];
  7830. assert(dst->nb[0] == sizeof(float));
  7831. assert(src0->nb[0] == sizeof(float));
  7832. for (int i = 0; i < n; i++) {
  7833. ggml_vec_sgn_f32(nc,
  7834. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7835. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7836. }
  7837. }
  7838. static void ggml_compute_forward_sgn(
  7839. const struct ggml_compute_params * params,
  7840. struct ggml_tensor * dst) {
  7841. const struct ggml_tensor * src0 = dst->src[0];
  7842. switch (src0->type) {
  7843. case GGML_TYPE_F32:
  7844. {
  7845. ggml_compute_forward_sgn_f32(params, dst);
  7846. } break;
  7847. default:
  7848. {
  7849. GGML_ASSERT(false);
  7850. } break;
  7851. }
  7852. }
  7853. // ggml_compute_forward_neg
  7854. static void ggml_compute_forward_neg_f32(
  7855. const struct ggml_compute_params * params,
  7856. struct ggml_tensor * dst) {
  7857. const struct ggml_tensor * src0 = dst->src[0];
  7858. assert(params->ith == 0);
  7859. assert(ggml_are_same_shape(src0, dst));
  7860. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7861. return;
  7862. }
  7863. const int n = ggml_nrows(src0);
  7864. const int nc = src0->ne[0];
  7865. assert(dst->nb[0] == sizeof(float));
  7866. assert(src0->nb[0] == sizeof(float));
  7867. for (int i = 0; i < n; i++) {
  7868. ggml_vec_neg_f32(nc,
  7869. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7870. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7871. }
  7872. }
  7873. static void ggml_compute_forward_neg(
  7874. const struct ggml_compute_params * params,
  7875. struct ggml_tensor * dst) {
  7876. const struct ggml_tensor * src0 = dst->src[0];
  7877. switch (src0->type) {
  7878. case GGML_TYPE_F32:
  7879. {
  7880. ggml_compute_forward_neg_f32(params, dst);
  7881. } break;
  7882. default:
  7883. {
  7884. GGML_ASSERT(false);
  7885. } break;
  7886. }
  7887. }
  7888. // ggml_compute_forward_step
  7889. static void ggml_compute_forward_step_f32(
  7890. const struct ggml_compute_params * params,
  7891. struct ggml_tensor * dst) {
  7892. const struct ggml_tensor * src0 = dst->src[0];
  7893. assert(params->ith == 0);
  7894. assert(ggml_are_same_shape(src0, dst));
  7895. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7896. return;
  7897. }
  7898. const int n = ggml_nrows(src0);
  7899. const int nc = src0->ne[0];
  7900. assert(dst->nb[0] == sizeof(float));
  7901. assert(src0->nb[0] == sizeof(float));
  7902. for (int i = 0; i < n; i++) {
  7903. ggml_vec_step_f32(nc,
  7904. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7905. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7906. }
  7907. }
  7908. static void ggml_compute_forward_step(
  7909. const struct ggml_compute_params * params,
  7910. struct ggml_tensor * dst) {
  7911. const struct ggml_tensor * src0 = dst->src[0];
  7912. switch (src0->type) {
  7913. case GGML_TYPE_F32:
  7914. {
  7915. ggml_compute_forward_step_f32(params, dst);
  7916. } break;
  7917. default:
  7918. {
  7919. GGML_ASSERT(false);
  7920. } break;
  7921. }
  7922. }
  7923. // ggml_compute_forward_tanh
  7924. static void ggml_compute_forward_tanh_f32(
  7925. const struct ggml_compute_params * params,
  7926. struct ggml_tensor * dst) {
  7927. const struct ggml_tensor * src0 = dst->src[0];
  7928. assert(params->ith == 0);
  7929. assert(ggml_are_same_shape(src0, dst));
  7930. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7931. return;
  7932. }
  7933. const int n = ggml_nrows(src0);
  7934. const int nc = src0->ne[0];
  7935. assert(dst->nb[0] == sizeof(float));
  7936. assert(src0->nb[0] == sizeof(float));
  7937. for (int i = 0; i < n; i++) {
  7938. ggml_vec_tanh_f32(nc,
  7939. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7940. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7941. }
  7942. }
  7943. static void ggml_compute_forward_tanh(
  7944. const struct ggml_compute_params * params,
  7945. struct ggml_tensor * dst) {
  7946. const struct ggml_tensor * src0 = dst->src[0];
  7947. switch (src0->type) {
  7948. case GGML_TYPE_F32:
  7949. {
  7950. ggml_compute_forward_tanh_f32(params, dst);
  7951. } break;
  7952. default:
  7953. {
  7954. GGML_ASSERT(false);
  7955. } break;
  7956. }
  7957. }
  7958. // ggml_compute_forward_elu
  7959. static void ggml_compute_forward_elu_f32(
  7960. const struct ggml_compute_params * params,
  7961. struct ggml_tensor * dst) {
  7962. const struct ggml_tensor * src0 = dst->src[0];
  7963. assert(params->ith == 0);
  7964. assert(ggml_are_same_shape(src0, dst));
  7965. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7966. return;
  7967. }
  7968. const int n = ggml_nrows(src0);
  7969. const int nc = src0->ne[0];
  7970. assert(dst->nb[0] == sizeof(float));
  7971. assert(src0->nb[0] == sizeof(float));
  7972. for (int i = 0; i < n; i++) {
  7973. ggml_vec_elu_f32(nc,
  7974. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7975. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7976. }
  7977. }
  7978. static void ggml_compute_forward_elu(
  7979. const struct ggml_compute_params * params,
  7980. struct ggml_tensor * dst) {
  7981. const struct ggml_tensor * src0 = dst->src[0];
  7982. switch (src0->type) {
  7983. case GGML_TYPE_F32:
  7984. {
  7985. ggml_compute_forward_elu_f32(params, dst);
  7986. } break;
  7987. default:
  7988. {
  7989. GGML_ASSERT(false);
  7990. } break;
  7991. }
  7992. }
  7993. // ggml_compute_forward_relu
  7994. static void ggml_compute_forward_relu_f32(
  7995. const struct ggml_compute_params * params,
  7996. struct ggml_tensor * dst) {
  7997. const struct ggml_tensor * src0 = dst->src[0];
  7998. assert(params->ith == 0);
  7999. assert(ggml_are_same_shape(src0, dst));
  8000. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8001. return;
  8002. }
  8003. const int n = ggml_nrows(src0);
  8004. const int nc = src0->ne[0];
  8005. assert(dst->nb[0] == sizeof(float));
  8006. assert(src0->nb[0] == sizeof(float));
  8007. for (int i = 0; i < n; i++) {
  8008. ggml_vec_relu_f32(nc,
  8009. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8010. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8011. }
  8012. }
  8013. static void ggml_compute_forward_relu(
  8014. const struct ggml_compute_params * params,
  8015. struct ggml_tensor * dst) {
  8016. const struct ggml_tensor * src0 = dst->src[0];
  8017. switch (src0->type) {
  8018. case GGML_TYPE_F32:
  8019. {
  8020. ggml_compute_forward_relu_f32(params, dst);
  8021. } break;
  8022. default:
  8023. {
  8024. GGML_ASSERT(false);
  8025. } break;
  8026. }
  8027. }
  8028. // ggml_compute_forward_gelu
  8029. static void ggml_compute_forward_gelu_f32(
  8030. const struct ggml_compute_params * params,
  8031. struct ggml_tensor * dst) {
  8032. const struct ggml_tensor * src0 = dst->src[0];
  8033. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8034. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8035. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8036. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8037. return;
  8038. }
  8039. const int ith = params->ith;
  8040. const int nth = params->nth;
  8041. const int nc = src0->ne[0];
  8042. const int nr = ggml_nrows(src0);
  8043. // rows per thread
  8044. const int dr = (nr + nth - 1)/nth;
  8045. // row range for this thread
  8046. const int ir0 = dr*ith;
  8047. const int ir1 = MIN(ir0 + dr, nr);
  8048. for (int i1 = ir0; i1 < ir1; i1++) {
  8049. ggml_vec_gelu_f32(nc,
  8050. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8051. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8052. #ifndef NDEBUG
  8053. for (int k = 0; k < nc; k++) {
  8054. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8055. UNUSED(x);
  8056. assert(!isnan(x));
  8057. assert(!isinf(x));
  8058. }
  8059. #endif
  8060. }
  8061. }
  8062. static void ggml_compute_forward_gelu(
  8063. const struct ggml_compute_params * params,
  8064. struct ggml_tensor * dst) {
  8065. const struct ggml_tensor * src0 = dst->src[0];
  8066. switch (src0->type) {
  8067. case GGML_TYPE_F32:
  8068. {
  8069. ggml_compute_forward_gelu_f32(params, dst);
  8070. } break;
  8071. default:
  8072. {
  8073. GGML_ASSERT(false);
  8074. } break;
  8075. }
  8076. }
  8077. // ggml_compute_forward_gelu_quick
  8078. static void ggml_compute_forward_gelu_quick_f32(
  8079. const struct ggml_compute_params * params,
  8080. struct ggml_tensor * dst) {
  8081. const struct ggml_tensor * src0 = dst->src[0];
  8082. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8083. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8084. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8086. return;
  8087. }
  8088. const int ith = params->ith;
  8089. const int nth = params->nth;
  8090. const int nc = src0->ne[0];
  8091. const int nr = ggml_nrows(src0);
  8092. // rows per thread
  8093. const int dr = (nr + nth - 1)/nth;
  8094. // row range for this thread
  8095. const int ir0 = dr*ith;
  8096. const int ir1 = MIN(ir0 + dr, nr);
  8097. for (int i1 = ir0; i1 < ir1; i1++) {
  8098. ggml_vec_gelu_quick_f32(nc,
  8099. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8100. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8101. #ifndef NDEBUG
  8102. for (int k = 0; k < nc; k++) {
  8103. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8104. UNUSED(x);
  8105. assert(!isnan(x));
  8106. assert(!isinf(x));
  8107. }
  8108. #endif
  8109. }
  8110. }
  8111. static void ggml_compute_forward_gelu_quick(
  8112. const struct ggml_compute_params * params,
  8113. struct ggml_tensor * dst) {
  8114. const struct ggml_tensor * src0 = dst->src[0];
  8115. switch (src0->type) {
  8116. case GGML_TYPE_F32:
  8117. {
  8118. ggml_compute_forward_gelu_quick_f32(params, dst);
  8119. } break;
  8120. default:
  8121. {
  8122. GGML_ASSERT(false);
  8123. } break;
  8124. }
  8125. }
  8126. // ggml_compute_forward_silu
  8127. static void ggml_compute_forward_silu_f32(
  8128. const struct ggml_compute_params * params,
  8129. struct ggml_tensor * dst) {
  8130. const struct ggml_tensor * src0 = dst->src[0];
  8131. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8132. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8133. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8134. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8135. return;
  8136. }
  8137. const int ith = params->ith;
  8138. const int nth = params->nth;
  8139. const int nc = src0->ne[0];
  8140. const int nr = ggml_nrows(src0);
  8141. // rows per thread
  8142. const int dr = (nr + nth - 1)/nth;
  8143. // row range for this thread
  8144. const int ir0 = dr*ith;
  8145. const int ir1 = MIN(ir0 + dr, nr);
  8146. for (int i1 = ir0; i1 < ir1; i1++) {
  8147. ggml_vec_silu_f32(nc,
  8148. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8149. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8150. #ifndef NDEBUG
  8151. for (int k = 0; k < nc; k++) {
  8152. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8153. UNUSED(x);
  8154. assert(!isnan(x));
  8155. assert(!isinf(x));
  8156. }
  8157. #endif
  8158. }
  8159. }
  8160. static void ggml_compute_forward_silu(
  8161. const struct ggml_compute_params * params,
  8162. struct ggml_tensor * dst) {
  8163. const struct ggml_tensor * src0 = dst->src[0];
  8164. switch (src0->type) {
  8165. case GGML_TYPE_F32:
  8166. {
  8167. ggml_compute_forward_silu_f32(params, dst);
  8168. } break;
  8169. default:
  8170. {
  8171. GGML_ASSERT(false);
  8172. } break;
  8173. }
  8174. }
  8175. // ggml_compute_forward_leaky_relu
  8176. static void ggml_compute_forward_leaky_relu_f32(
  8177. const struct ggml_compute_params * params,
  8178. struct ggml_tensor * dst) {
  8179. const struct ggml_tensor * src0 = dst->src[0];
  8180. assert(params->ith == 0);
  8181. assert(ggml_are_same_shape(src0, dst));
  8182. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8183. return;
  8184. }
  8185. const int n = ggml_nrows(src0);
  8186. const int nc = src0->ne[0];
  8187. float negative_slope;
  8188. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8189. assert(dst->nb[0] == sizeof(float));
  8190. assert(src0->nb[0] == sizeof(float));
  8191. for (int i = 0; i < n; i++) {
  8192. ggml_vec_leaky_relu_f32(nc,
  8193. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8194. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8195. }
  8196. }
  8197. static void ggml_compute_forward_leaky_relu(
  8198. const struct ggml_compute_params * params,
  8199. struct ggml_tensor * dst) {
  8200. const struct ggml_tensor * src0 = dst->src[0];
  8201. switch (src0->type) {
  8202. case GGML_TYPE_F32:
  8203. {
  8204. ggml_compute_forward_leaky_relu_f32(params, dst);
  8205. } break;
  8206. default:
  8207. {
  8208. GGML_ASSERT(false);
  8209. } break;
  8210. }
  8211. }
  8212. // ggml_compute_forward_silu_back
  8213. static void ggml_compute_forward_silu_back_f32(
  8214. const struct ggml_compute_params * params,
  8215. struct ggml_tensor * dst) {
  8216. const struct ggml_tensor * src0 = dst->src[0];
  8217. const struct ggml_tensor * grad = dst->src[1];
  8218. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8219. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8220. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8221. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8222. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8223. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8224. return;
  8225. }
  8226. const int ith = params->ith;
  8227. const int nth = params->nth;
  8228. const int nc = src0->ne[0];
  8229. const int nr = ggml_nrows(src0);
  8230. // rows per thread
  8231. const int dr = (nr + nth - 1)/nth;
  8232. // row range for this thread
  8233. const int ir0 = dr*ith;
  8234. const int ir1 = MIN(ir0 + dr, nr);
  8235. for (int i1 = ir0; i1 < ir1; i1++) {
  8236. ggml_vec_silu_backward_f32(nc,
  8237. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8238. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8239. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8240. #ifndef NDEBUG
  8241. for (int k = 0; k < nc; k++) {
  8242. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8243. UNUSED(x);
  8244. assert(!isnan(x));
  8245. assert(!isinf(x));
  8246. }
  8247. #endif
  8248. }
  8249. }
  8250. static void ggml_compute_forward_silu_back(
  8251. const struct ggml_compute_params * params,
  8252. struct ggml_tensor * dst) {
  8253. const struct ggml_tensor * src0 = dst->src[0];
  8254. switch (src0->type) {
  8255. case GGML_TYPE_F32:
  8256. {
  8257. ggml_compute_forward_silu_back_f32(params, dst);
  8258. } break;
  8259. default:
  8260. {
  8261. GGML_ASSERT(false);
  8262. } break;
  8263. }
  8264. }
  8265. static void ggml_compute_forward_hardswish_f32(
  8266. const struct ggml_compute_params * params,
  8267. struct ggml_tensor * dst) {
  8268. const struct ggml_tensor * src0 = dst->src[0];
  8269. assert(params->ith == 0);
  8270. assert(ggml_are_same_shape(src0, dst));
  8271. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8272. return;
  8273. }
  8274. const int n = ggml_nrows(src0);
  8275. const int nc = src0->ne[0];
  8276. assert(dst->nb[0] == sizeof(float));
  8277. assert(src0->nb[0] == sizeof(float));
  8278. for (int i = 0; i < n; i++) {
  8279. ggml_vec_hardswish_f32(nc,
  8280. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8281. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8282. }
  8283. }
  8284. static void ggml_compute_forward_hardswish(
  8285. const struct ggml_compute_params * params,
  8286. struct ggml_tensor * dst) {
  8287. const struct ggml_tensor * src0 = dst->src[0];
  8288. switch (src0->type) {
  8289. case GGML_TYPE_F32:
  8290. {
  8291. ggml_compute_forward_hardswish_f32(params, dst);
  8292. } break;
  8293. default:
  8294. {
  8295. GGML_ASSERT(false);
  8296. } break;
  8297. }
  8298. }
  8299. static void ggml_compute_forward_hardsigmoid_f32(
  8300. const struct ggml_compute_params * params,
  8301. struct ggml_tensor * dst) {
  8302. const struct ggml_tensor * src0 = dst->src[0];
  8303. assert(params->ith == 0);
  8304. assert(ggml_are_same_shape(src0, dst));
  8305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8306. return;
  8307. }
  8308. const int n = ggml_nrows(src0);
  8309. const int nc = src0->ne[0];
  8310. assert(dst->nb[0] == sizeof(float));
  8311. assert(src0->nb[0] == sizeof(float));
  8312. for (int i = 0; i < n; i++) {
  8313. ggml_vec_hardsigmoid_f32(nc,
  8314. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8315. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8316. }
  8317. }
  8318. static void ggml_compute_forward_hardsigmoid(
  8319. const struct ggml_compute_params * params,
  8320. struct ggml_tensor * dst) {
  8321. const struct ggml_tensor * src0 = dst->src[0];
  8322. switch (src0->type) {
  8323. case GGML_TYPE_F32:
  8324. {
  8325. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8326. } break;
  8327. default:
  8328. {
  8329. GGML_ASSERT(false);
  8330. } break;
  8331. }
  8332. }
  8333. // ggml_compute_forward_norm
  8334. static void ggml_compute_forward_norm_f32(
  8335. const struct ggml_compute_params * params,
  8336. struct ggml_tensor * dst) {
  8337. const struct ggml_tensor * src0 = dst->src[0];
  8338. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8340. return;
  8341. }
  8342. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8343. const int ith = params->ith;
  8344. const int nth = params->nth;
  8345. GGML_TENSOR_UNARY_OP_LOCALS
  8346. float eps;
  8347. memcpy(&eps, dst->op_params, sizeof(float));
  8348. GGML_ASSERT(eps > 0.0f);
  8349. // TODO: optimize
  8350. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8351. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8352. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8353. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8354. ggml_float sum = 0.0;
  8355. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8356. sum += (ggml_float)x[i00];
  8357. }
  8358. float mean = sum/ne00;
  8359. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8360. ggml_float sum2 = 0.0;
  8361. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8362. float v = x[i00] - mean;
  8363. y[i00] = v;
  8364. sum2 += (ggml_float)(v*v);
  8365. }
  8366. float variance = sum2/ne00;
  8367. const float scale = 1.0f/sqrtf(variance + eps);
  8368. ggml_vec_scale_f32(ne00, y, scale);
  8369. }
  8370. }
  8371. }
  8372. }
  8373. static void ggml_compute_forward_norm(
  8374. const struct ggml_compute_params * params,
  8375. struct ggml_tensor * dst) {
  8376. const struct ggml_tensor * src0 = dst->src[0];
  8377. switch (src0->type) {
  8378. case GGML_TYPE_F32:
  8379. {
  8380. ggml_compute_forward_norm_f32(params, dst);
  8381. } break;
  8382. default:
  8383. {
  8384. GGML_ASSERT(false);
  8385. } break;
  8386. }
  8387. }
  8388. // ggml_compute_forward_group_rms_norm
  8389. static void ggml_compute_forward_rms_norm_f32(
  8390. const struct ggml_compute_params * params,
  8391. struct ggml_tensor * dst) {
  8392. const struct ggml_tensor * src0 = dst->src[0];
  8393. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8394. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8395. return;
  8396. }
  8397. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8398. const int ith = params->ith;
  8399. const int nth = params->nth;
  8400. GGML_TENSOR_UNARY_OP_LOCALS
  8401. float eps;
  8402. memcpy(&eps, dst->op_params, sizeof(float));
  8403. GGML_ASSERT(eps > 0.0f);
  8404. // TODO: optimize
  8405. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8406. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8407. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8408. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8409. ggml_float sum = 0.0;
  8410. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8411. sum += (ggml_float)(x[i00] * x[i00]);
  8412. }
  8413. const float mean = sum/ne00;
  8414. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8415. memcpy(y, x, ne00 * sizeof(float));
  8416. // for (int i00 = 0; i00 < ne00; i00++) {
  8417. // y[i00] = x[i00];
  8418. // }
  8419. const float scale = 1.0f/sqrtf(mean + eps);
  8420. ggml_vec_scale_f32(ne00, y, scale);
  8421. }
  8422. }
  8423. }
  8424. }
  8425. static void ggml_compute_forward_rms_norm(
  8426. const struct ggml_compute_params * params,
  8427. struct ggml_tensor * dst) {
  8428. const struct ggml_tensor * src0 = dst->src[0];
  8429. switch (src0->type) {
  8430. case GGML_TYPE_F32:
  8431. {
  8432. ggml_compute_forward_rms_norm_f32(params, dst);
  8433. } break;
  8434. default:
  8435. {
  8436. GGML_ASSERT(false);
  8437. } break;
  8438. }
  8439. }
  8440. static void ggml_compute_forward_rms_norm_back_f32(
  8441. const struct ggml_compute_params * params,
  8442. struct ggml_tensor * dst) {
  8443. const struct ggml_tensor * src0 = dst->src[0];
  8444. const struct ggml_tensor * src1 = dst->src[1];
  8445. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8446. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8447. return;
  8448. }
  8449. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8450. const int ith = params->ith;
  8451. const int nth = params->nth;
  8452. GGML_TENSOR_BINARY_OP_LOCALS
  8453. float eps;
  8454. memcpy(&eps, dst->op_params, sizeof(float));
  8455. // TODO: optimize
  8456. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8457. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8458. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8459. // src1 is same shape as src0 => same indices
  8460. const int64_t i11 = i01;
  8461. const int64_t i12 = i02;
  8462. const int64_t i13 = i03;
  8463. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8464. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8465. ggml_float sum_xx = 0.0;
  8466. ggml_float sum_xdz = 0.0;
  8467. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8468. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8469. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8470. }
  8471. //const float mean = (float)(sum_xx)/ne00;
  8472. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8473. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8474. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8475. // we could cache rms from forward pass to improve performance.
  8476. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8477. //const float rms = sqrtf(mean_eps);
  8478. const float rrms = 1.0f / sqrtf(mean_eps);
  8479. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8480. {
  8481. // z = rms_norm(x)
  8482. //
  8483. // rms_norm(src0) =
  8484. // scale(
  8485. // src0,
  8486. // div(
  8487. // 1,
  8488. // sqrt(
  8489. // add(
  8490. // scale(
  8491. // sum(
  8492. // sqr(
  8493. // src0)),
  8494. // (1.0/N)),
  8495. // eps))));
  8496. // postorder:
  8497. // ## op args grad
  8498. // 00 param src0 grad[#00]
  8499. // 01 const 1
  8500. // 02 sqr (#00) grad[#02]
  8501. // 03 sum (#02) grad[#03]
  8502. // 04 const 1/N
  8503. // 05 scale (#03, #04) grad[#05]
  8504. // 06 const eps
  8505. // 07 add (#05, #06) grad[#07]
  8506. // 08 sqrt (#07) grad[#08]
  8507. // 09 div (#01,#08) grad[#09]
  8508. // 10 scale (#00,#09) grad[#10]
  8509. //
  8510. // backward pass, given grad[#10]
  8511. // #10: scale
  8512. // grad[#00] += scale(grad[#10],#09)
  8513. // grad[#09] += sum(mul(grad[#10],#00))
  8514. // #09: div
  8515. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8516. // #08: sqrt
  8517. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8518. // #07: add
  8519. // grad[#05] += grad[#07]
  8520. // #05: scale
  8521. // grad[#03] += scale(grad[#05],#04)
  8522. // #03: sum
  8523. // grad[#02] += repeat(grad[#03], #02)
  8524. // #02:
  8525. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8526. //
  8527. // substitute and simplify:
  8528. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8529. // grad[#02] = repeat(grad[#03], #02)
  8530. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8531. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8532. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8533. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8534. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8535. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8536. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8537. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8538. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8539. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8540. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8541. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8542. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8543. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8544. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8545. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8546. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8547. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8548. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8549. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8550. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8551. // a = b*c + d*e
  8552. // a = b*c*f/f + d*e*f/f
  8553. // a = (b*c*f + d*e*f)*(1/f)
  8554. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8555. // a = (b + d*e/c)*c
  8556. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8557. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8558. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8559. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8560. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8561. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8562. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8563. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8564. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8565. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8566. }
  8567. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8568. // post-order:
  8569. // dx := x
  8570. // dx := scale(dx,-mean_xdz/mean_eps)
  8571. // dx := add(dx, dz)
  8572. // dx := scale(dx, rrms)
  8573. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8574. ggml_vec_cpy_f32 (ne00, dx, x);
  8575. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8576. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8577. ggml_vec_acc_f32 (ne00, dx, dz);
  8578. ggml_vec_scale_f32(ne00, dx, rrms);
  8579. }
  8580. }
  8581. }
  8582. }
  8583. static void ggml_compute_forward_rms_norm_back(
  8584. const struct ggml_compute_params * params,
  8585. struct ggml_tensor * dst) {
  8586. const struct ggml_tensor * src0 = dst->src[0];
  8587. switch (src0->type) {
  8588. case GGML_TYPE_F32:
  8589. {
  8590. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8591. } break;
  8592. default:
  8593. {
  8594. GGML_ASSERT(false);
  8595. } break;
  8596. }
  8597. }
  8598. // ggml_compute_forward_group_norm
  8599. static void ggml_compute_forward_group_norm_f32(
  8600. const struct ggml_compute_params * params,
  8601. struct ggml_tensor * dst) {
  8602. const struct ggml_tensor * src0 = dst->src[0];
  8603. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8604. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8605. return;
  8606. }
  8607. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8608. const int ith = params->ith;
  8609. const int nth = params->nth;
  8610. GGML_TENSOR_UNARY_OP_LOCALS
  8611. const float eps = 1e-6f; // TODO: make this a parameter
  8612. // TODO: optimize
  8613. int n_channels = src0->ne[2];
  8614. int n_groups = dst->op_params[0];
  8615. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8616. for (int i = ith; i < n_groups; i += nth) {
  8617. int start = i * n_channels_per_group;
  8618. int end = start + n_channels_per_group;
  8619. if (end > n_channels) {
  8620. end = n_channels;
  8621. }
  8622. int step = end - start;
  8623. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8624. ggml_float sum = 0.0;
  8625. for (int64_t i02 = start; i02 < end; i02++) {
  8626. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8627. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8628. ggml_float sumr = 0.0;
  8629. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8630. sumr += (ggml_float)x[i00];
  8631. }
  8632. sum += sumr;
  8633. }
  8634. }
  8635. const float mean = sum / (ne00 * ne01 * step);
  8636. ggml_float sum2 = 0.0;
  8637. for (int64_t i02 = start; i02 < end; i02++) {
  8638. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8639. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8640. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8641. ggml_float sumr = 0.0;
  8642. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8643. float v = x[i00] - mean;
  8644. y[i00] = v;
  8645. sumr += (ggml_float)(v * v);
  8646. }
  8647. sum2 += sumr;
  8648. }
  8649. }
  8650. const float variance = sum2 / (ne00 * ne01 * step);
  8651. const float scale = 1.0f / sqrtf(variance + eps);
  8652. for (int64_t i02 = start; i02 < end; i02++) {
  8653. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8654. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8655. ggml_vec_scale_f32(ne00, y, scale);
  8656. }
  8657. }
  8658. }
  8659. }
  8660. }
  8661. static void ggml_compute_forward_group_norm(
  8662. const struct ggml_compute_params * params,
  8663. struct ggml_tensor * dst) {
  8664. const struct ggml_tensor * src0 = dst->src[0];
  8665. switch (src0->type) {
  8666. case GGML_TYPE_F32:
  8667. {
  8668. ggml_compute_forward_group_norm_f32(params, dst);
  8669. } break;
  8670. default:
  8671. {
  8672. GGML_ASSERT(false);
  8673. } break;
  8674. }
  8675. }
  8676. // ggml_compute_forward_mul_mat
  8677. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8678. // helper function to determine if it is better to use BLAS or not
  8679. // for large matrices, BLAS is faster
  8680. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8681. const struct ggml_tensor * src0 = dst->src[0];
  8682. const struct ggml_tensor * src1 = dst->src[1];
  8683. //const int64_t ne00 = src0->ne[0];
  8684. //const int64_t ne01 = src0->ne[1];
  8685. const int64_t ne10 = src1->ne[0];
  8686. const int64_t ne0 = dst->ne[0];
  8687. const int64_t ne1 = dst->ne[1];
  8688. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8689. // all the experts for each batch element and the processing would become incredibly slow
  8690. // TODO: find the optimal values for these
  8691. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8692. ggml_is_contiguous(src0) &&
  8693. ggml_is_contiguous(src1) &&
  8694. //src0->type == GGML_TYPE_F32 &&
  8695. src1->type == GGML_TYPE_F32 &&
  8696. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8697. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8698. return true;
  8699. }
  8700. return false;
  8701. }
  8702. #endif
  8703. static void ggml_compute_forward_mul_mat(
  8704. const struct ggml_compute_params * params,
  8705. struct ggml_tensor * dst) {
  8706. const struct ggml_tensor * src0 = dst->src[0];
  8707. const struct ggml_tensor * src1 = dst->src[1];
  8708. int64_t t0 = ggml_perf_time_us();
  8709. UNUSED(t0);
  8710. GGML_TENSOR_BINARY_OP_LOCALS
  8711. const int ith = params->ith;
  8712. const int nth = params->nth;
  8713. const enum ggml_type type = src0->type;
  8714. const bool src1_cont = ggml_is_contiguous(src1);
  8715. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8716. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8717. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8718. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8719. GGML_ASSERT(ne0 == ne01);
  8720. GGML_ASSERT(ne1 == ne11);
  8721. GGML_ASSERT(ne2 == ne12);
  8722. GGML_ASSERT(ne3 == ne13);
  8723. // we don't support permuted src0 or src1
  8724. GGML_ASSERT(nb00 == ggml_type_size(type));
  8725. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8726. // dst cannot be transposed or permuted
  8727. GGML_ASSERT(nb0 == sizeof(float));
  8728. GGML_ASSERT(nb0 <= nb1);
  8729. GGML_ASSERT(nb1 <= nb2);
  8730. GGML_ASSERT(nb2 <= nb3);
  8731. // broadcast factors
  8732. const int64_t r2 = ne12/ne02;
  8733. const int64_t r3 = ne13/ne03;
  8734. // nb01 >= nb00 - src0 is not transposed
  8735. // compute by src0 rows
  8736. #if defined(GGML_USE_CLBLAST)
  8737. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8738. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8739. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8740. }
  8741. return;
  8742. }
  8743. #endif
  8744. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8745. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8746. const int64_t ne_plane = ne01*ne00;
  8747. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8748. UNUSED(desired_wsize);
  8749. if (params->type == GGML_TASK_TYPE_INIT) {
  8750. if (type != GGML_TYPE_F32) {
  8751. assert(params->wsize >= desired_wsize);
  8752. // parallelize by src0 rows
  8753. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8754. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8755. // broadcast src0 into src1 across 2nd,3rd dimension
  8756. const int64_t i03 = i13/r3;
  8757. const int64_t i02 = i12/r2;
  8758. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8759. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8760. ggml_to_float_t const to_float = type_traits[type].to_float;
  8761. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8762. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8763. }
  8764. }
  8765. }
  8766. }
  8767. return;
  8768. }
  8769. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8770. return;
  8771. }
  8772. // perform sgemm, parallelization controlled by blas lib
  8773. if (ith != 0) {
  8774. return;
  8775. }
  8776. //const int64_t tgemm0 = ggml_perf_time_us();
  8777. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8778. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8779. const int64_t i03 = i13/r3;
  8780. const int64_t i02 = i12/r2;
  8781. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8782. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8783. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8784. if (type != GGML_TYPE_F32) {
  8785. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8786. }
  8787. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8788. ne1, ne01, ne10,
  8789. 1.0f, y, ne10,
  8790. x, ne00,
  8791. 0.0f, d, ne01);
  8792. }
  8793. }
  8794. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8795. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8796. return;
  8797. }
  8798. #endif
  8799. #if GGML_USE_LLAMAFILE
  8800. if (nb10 == ggml_type_size(src1->type)) {
  8801. for (int64_t i13 = 0; i13 < ne13; i13++)
  8802. for (int64_t i12 = 0; i12 < ne12; i12++)
  8803. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8804. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8805. nb01/ggml_type_size(src0->type),
  8806. (const char *)src1->data + i12*nb12 + i13*nb13,
  8807. nb11/ggml_type_size(src1->type),
  8808. (char *)dst->data + i12*nb2 + i13*nb3,
  8809. nb1/ggml_type_size(dst->type),
  8810. ith, nth,
  8811. params->type,
  8812. src0->type,
  8813. src1->type,
  8814. dst->type))
  8815. goto UseGgmlGemm1;
  8816. return;
  8817. }
  8818. UseGgmlGemm1:;
  8819. #endif
  8820. if (params->type == GGML_TASK_TYPE_INIT) {
  8821. if (ith != 0) {
  8822. return;
  8823. }
  8824. if (src1->type != vec_dot_type) {
  8825. char * wdata = params->wdata;
  8826. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8827. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8828. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8829. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8830. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8831. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8832. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8833. wdata += row_size;
  8834. }
  8835. }
  8836. }
  8837. }
  8838. return;
  8839. }
  8840. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8841. return;
  8842. }
  8843. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8844. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8845. #if GGML_USE_LLAMAFILE
  8846. if (nb10 == ggml_type_size(src1->type) || src1->type != vec_dot_type) {
  8847. for (int64_t i13 = 0; i13 < ne13; i13++)
  8848. for (int64_t i12 = 0; i12 < ne12; i12++)
  8849. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  8850. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  8851. nb01/ggml_type_size(src0->type),
  8852. (const char *)wdata + ggml_row_size(vec_dot_type,
  8853. nb12/ggml_type_size(src1->type)*i12 +
  8854. nb13/ggml_type_size(src1->type)*i13),
  8855. row_size/ggml_type_size(vec_dot_type),
  8856. (char *)dst->data + i12*nb2 + i13*nb3,
  8857. nb1/ggml_type_size(dst->type),
  8858. ith, nth,
  8859. params->type,
  8860. src0->type,
  8861. vec_dot_type,
  8862. dst->type))
  8863. goto UseGgmlGemm2;
  8864. return;
  8865. }
  8866. UseGgmlGemm2:;
  8867. #endif
  8868. const int64_t nr0 = ne01; // src0 rows
  8869. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8870. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8871. // distribute the thread work across the inner or outer loop based on which one is larger
  8872. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8873. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8874. const int64_t ith0 = ith % nth0;
  8875. const int64_t ith1 = ith / nth0;
  8876. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8877. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8878. const int64_t ir010 = dr0*ith0;
  8879. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8880. const int64_t ir110 = dr1*ith1;
  8881. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8882. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8883. // threads with no work simply yield (not sure if it helps)
  8884. if (ir010 >= ir011 || ir110 >= ir111) {
  8885. sched_yield();
  8886. return;
  8887. }
  8888. assert(ne12 % ne02 == 0);
  8889. assert(ne13 % ne03 == 0);
  8890. // block-tiling attempt
  8891. const int64_t blck_0 = 16;
  8892. const int64_t blck_1 = 16;
  8893. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8894. int64_t nrc = vec_dot_num_rows;
  8895. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8896. // this check can be removed once they are extended to support odd numbered rows/cols too
  8897. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8898. nrc = 1;
  8899. }
  8900. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8901. // attempt to reduce false-sharing (does not seem to make a difference)
  8902. // 16 * 2, accounting for mmla kernels
  8903. float tmp[32];
  8904. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8905. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8906. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8907. const int64_t i13 = (ir1/(ne12*ne1));
  8908. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8909. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8910. // broadcast src0 into src1
  8911. const int64_t i03 = i13/r3;
  8912. const int64_t i02 = i12/r2;
  8913. const int64_t i1 = i11;
  8914. const int64_t i2 = i12;
  8915. const int64_t i3 = i13;
  8916. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8917. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8918. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8919. // the original src1 data pointer, so we should index using the indices directly
  8920. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8921. const char * src1_col = (const char *) wdata +
  8922. (src1_cont || src1->type != vec_dot_type
  8923. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8924. : (i11*nb11 + i12*nb12 + i13*nb13));
  8925. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8926. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8927. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8928. //}
  8929. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8930. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8931. }
  8932. for (int cn = 0; cn < nrc; ++cn) {
  8933. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8934. }
  8935. }
  8936. }
  8937. }
  8938. }
  8939. // ggml_compute_forward_mul_mat_id
  8940. static void ggml_compute_forward_mul_mat_id(
  8941. const struct ggml_compute_params * params,
  8942. struct ggml_tensor * dst) {
  8943. const struct ggml_tensor * src0 = dst->src[0];
  8944. const struct ggml_tensor * src1 = dst->src[1];
  8945. const struct ggml_tensor * ids = dst->src[2];
  8946. GGML_TENSOR_BINARY_OP_LOCALS
  8947. const int ith = params->ith;
  8948. const int nth = params->nth;
  8949. const enum ggml_type type = src0->type;
  8950. const bool src1_cont = ggml_is_contiguous(src1);
  8951. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8952. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8953. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8954. GGML_ASSERT(ne0 == ne01);
  8955. GGML_ASSERT(ne1 == ne11);
  8956. GGML_ASSERT(ne2 == ne12);
  8957. GGML_ASSERT(ne3 == ne13);
  8958. // we don't support permuted src0 or src1
  8959. GGML_ASSERT(nb00 == ggml_type_size(type));
  8960. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8961. // dst cannot be transposed or permuted
  8962. GGML_ASSERT(nb0 == sizeof(float));
  8963. GGML_ASSERT(nb0 <= nb1);
  8964. GGML_ASSERT(nb1 <= nb2);
  8965. GGML_ASSERT(nb2 <= nb3);
  8966. // broadcast is not supported with mmid
  8967. assert(ne12 == 1);
  8968. assert(ne13 == 1);
  8969. // row groups
  8970. const int id = ggml_get_op_params_i32(dst, 0);
  8971. const int n_as = src0->ne[2];
  8972. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8973. (char *) params->wdata :
  8974. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8975. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8976. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8977. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8978. if (params->type == GGML_TASK_TYPE_INIT) {
  8979. if (ith != 0) {
  8980. return;
  8981. }
  8982. char * wdata = params->wdata;
  8983. if (src1->type != vec_dot_type) {
  8984. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8985. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8986. assert(src1->type == GGML_TYPE_F32);
  8987. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8988. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8989. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8990. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8991. wdata += row_size;
  8992. }
  8993. }
  8994. }
  8995. }
  8996. // initialize matrix_row_counts
  8997. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8998. // group rows by src0 matrix
  8999. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  9000. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  9001. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  9002. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  9003. matrix_row_counts[row_id] += 1;
  9004. }
  9005. return;
  9006. }
  9007. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9008. return;
  9009. }
  9010. // compute each matrix multiplication in sequence
  9011. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9012. const int64_t cne1 = matrix_row_counts[cur_a];
  9013. if (cne1 == 0) {
  9014. continue;
  9015. }
  9016. size_t src0_offset = cur_a*src0->nb[2];
  9017. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9018. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9019. const int64_t nr0 = ne01; // src0 rows
  9020. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  9021. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9022. // distribute the thread work across the inner or outer loop based on which one is larger
  9023. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9024. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9025. const int64_t ith0 = ith % nth0;
  9026. const int64_t ith1 = ith / nth0;
  9027. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9028. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9029. const int64_t ir010 = dr0*ith0;
  9030. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9031. const int64_t ir110 = dr1*ith1;
  9032. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9033. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9034. // threads with no work simply yield (not sure if it helps)
  9035. if (ir010 >= ir011 || ir110 >= ir111) {
  9036. sched_yield();
  9037. continue;
  9038. }
  9039. // block-tiling attempt
  9040. const int64_t blck_0 = 16;
  9041. const int64_t blck_1 = 16;
  9042. // attempt to reduce false-sharing (does not seem to make a difference)
  9043. float tmp[16];
  9044. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9045. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9046. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9047. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  9048. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  9049. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  9050. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  9051. // broadcast src0 into src1
  9052. //const int64_t i03 = i13/r3;
  9053. //const int64_t i02 = i12/r2;
  9054. const int64_t i1 = i11;
  9055. const int64_t i2 = i12;
  9056. const int64_t i3 = i13;
  9057. const char * src0_row = (const char *) src0->data + src0_offset;
  9058. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9059. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9060. // the original src1 data pointer, so we should index using the indices directly
  9061. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9062. const char * src1_col = (const char *) wdata +
  9063. (src1_cont || src1->type != vec_dot_type
  9064. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9065. : (i11*nb11 + i12*nb12 + i13*nb13));
  9066. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9067. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9068. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9069. //}
  9070. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9071. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9072. }
  9073. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9074. }
  9075. }
  9076. }
  9077. }
  9078. #undef MMID_MATRIX_ROW
  9079. }
  9080. // ggml_compute_forward_out_prod
  9081. static void ggml_compute_forward_out_prod_f32(
  9082. const struct ggml_compute_params * params,
  9083. struct ggml_tensor * dst) {
  9084. const struct ggml_tensor * src0 = dst->src[0];
  9085. const struct ggml_tensor * src1 = dst->src[1];
  9086. // int64_t t0 = ggml_perf_time_us();
  9087. // UNUSED(t0);
  9088. GGML_TENSOR_BINARY_OP_LOCALS
  9089. const int ith = params->ith;
  9090. const int nth = params->nth;
  9091. GGML_ASSERT(ne0 == ne00);
  9092. GGML_ASSERT(ne1 == ne10);
  9093. GGML_ASSERT(ne2 == ne02);
  9094. GGML_ASSERT(ne02 == ne12);
  9095. GGML_ASSERT(ne3 == ne13);
  9096. GGML_ASSERT(ne03 == ne13);
  9097. // we don't support permuted src0 or src1
  9098. GGML_ASSERT(nb00 == sizeof(float));
  9099. // dst cannot be transposed or permuted
  9100. GGML_ASSERT(nb0 == sizeof(float));
  9101. // GGML_ASSERT(nb0 <= nb1);
  9102. // GGML_ASSERT(nb1 <= nb2);
  9103. // GGML_ASSERT(nb2 <= nb3);
  9104. // nb01 >= nb00 - src0 is not transposed
  9105. // compute by src0 rows
  9106. // TODO: #if defined(GGML_USE_CLBLAST)
  9107. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9108. bool use_blas = ggml_is_matrix(src0) &&
  9109. ggml_is_matrix(src1) &&
  9110. ggml_is_contiguous(src0) &&
  9111. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9112. #endif
  9113. if (params->type == GGML_TASK_TYPE_INIT) {
  9114. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9115. if (use_blas) {
  9116. return;
  9117. }
  9118. #endif
  9119. if (ith != 0) {
  9120. return;
  9121. }
  9122. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9123. return;
  9124. }
  9125. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9126. return;
  9127. }
  9128. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9129. if (use_blas) {
  9130. if (params->ith != 0) { // All threads other than the first do no work.
  9131. return;
  9132. }
  9133. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9134. // src0: (k,n)
  9135. // src1: (k,m)
  9136. // dst: (m,n)
  9137. //
  9138. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9139. // Also expressed as (major,minor)
  9140. // a: (m,k): so src1 transposed
  9141. // b: (k,n): so src0
  9142. // c: (m,n)
  9143. //
  9144. // However, if ggml_is_transposed(src1) is true, then
  9145. // src1->data already contains a transposed version, so sgemm mustn't
  9146. // transpose it further.
  9147. int n = src0->ne[0];
  9148. int k = src0->ne[1];
  9149. int m = src1->ne[0];
  9150. int transposeA, lda;
  9151. if (!ggml_is_transposed(src1)) {
  9152. transposeA = CblasTrans;
  9153. lda = m;
  9154. } else {
  9155. transposeA = CblasNoTrans;
  9156. lda = k;
  9157. }
  9158. float * a = (float *) ((char *) src1->data);
  9159. float * b = (float *) ((char *) src0->data);
  9160. float * c = (float *) ((char *) dst->data);
  9161. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9162. return;
  9163. }
  9164. #endif
  9165. // dst[:,:,:,:] = 0
  9166. // for i2,i3:
  9167. // for i1:
  9168. // for i01:
  9169. // for i0:
  9170. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9171. // parallelize by last three dimensions
  9172. // total rows in dst
  9173. const int64_t nr = ne1*ne2*ne3;
  9174. // rows per thread
  9175. const int64_t dr = (nr + nth - 1)/nth;
  9176. // row range for this thread
  9177. const int64_t ir0 = dr*ith;
  9178. const int64_t ir1 = MIN(ir0 + dr, nr);
  9179. // block-tiling attempt
  9180. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9181. const int64_t blck_1 = 16;
  9182. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9183. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9184. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9185. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9186. for (int64_t ir = bir; ir < bir1; ++ir) {
  9187. // dst indices
  9188. const int64_t i3 = ir/(ne2*ne1);
  9189. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9190. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9191. const int64_t i02 = i2;
  9192. const int64_t i03 = i3;
  9193. //const int64_t i10 = i1;
  9194. const int64_t i12 = i2;
  9195. const int64_t i13 = i3;
  9196. #if GGML_VEC_MAD_UNROLL > 2
  9197. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9198. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9199. const int64_t i11 = i01;
  9200. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9201. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9202. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9203. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9204. }
  9205. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9206. const int64_t i11 = i01;
  9207. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9208. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9209. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9210. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9211. }
  9212. #else
  9213. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9214. const int64_t i11 = i01;
  9215. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9216. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9217. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9218. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9219. }
  9220. #endif
  9221. }
  9222. }
  9223. }
  9224. //int64_t t1 = ggml_perf_time_us();
  9225. //static int64_t acc = 0;
  9226. //acc += t1 - t0;
  9227. //if (t1 - t0 > 10) {
  9228. // printf("\n");
  9229. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9230. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9231. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9232. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9233. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9234. //}
  9235. }
  9236. static void ggml_compute_forward_out_prod_q_f32(
  9237. const struct ggml_compute_params * params,
  9238. struct ggml_tensor * dst) {
  9239. const struct ggml_tensor * src0 = dst->src[0];
  9240. const struct ggml_tensor * src1 = dst->src[1];
  9241. // int64_t t0 = ggml_perf_time_us();
  9242. // UNUSED(t0);
  9243. GGML_TENSOR_BINARY_OP_LOCALS;
  9244. const int ith = params->ith;
  9245. const int nth = params->nth;
  9246. const enum ggml_type type = src0->type;
  9247. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9248. GGML_ASSERT(ne02 == ne12);
  9249. GGML_ASSERT(ne03 == ne13);
  9250. GGML_ASSERT(ne2 == ne12);
  9251. GGML_ASSERT(ne3 == ne13);
  9252. // we don't support permuted src0 dim0
  9253. GGML_ASSERT(nb00 == ggml_type_size(type));
  9254. // dst dim0 cannot be transposed or permuted
  9255. GGML_ASSERT(nb0 == sizeof(float));
  9256. // GGML_ASSERT(nb0 <= nb1);
  9257. // GGML_ASSERT(nb1 <= nb2);
  9258. // GGML_ASSERT(nb2 <= nb3);
  9259. GGML_ASSERT(ne0 == ne00);
  9260. GGML_ASSERT(ne1 == ne10);
  9261. GGML_ASSERT(ne2 == ne02);
  9262. GGML_ASSERT(ne3 == ne03);
  9263. // nb01 >= nb00 - src0 is not transposed
  9264. // compute by src0 rows
  9265. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9266. if (params->type == GGML_TASK_TYPE_INIT) {
  9267. if (ith != 0) {
  9268. return;
  9269. }
  9270. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9271. return;
  9272. }
  9273. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9274. return;
  9275. }
  9276. // parallelize by last three dimensions
  9277. // total rows in dst
  9278. const int64_t nr = ne1*ne2*ne3;
  9279. // rows per thread
  9280. const int64_t dr = (nr + nth - 1)/nth;
  9281. // row range for this thread
  9282. const int64_t ir0 = dr*ith;
  9283. const int64_t ir1 = MIN(ir0 + dr, nr);
  9284. // dst[:,:,:,:] = 0
  9285. // for i2,i3:
  9286. // for i1:
  9287. // for i01:
  9288. // for i0:
  9289. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9290. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9291. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9292. // dst indices
  9293. const int64_t i3 = ir/(ne2*ne1);
  9294. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9295. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9296. const int64_t i02 = i2;
  9297. const int64_t i03 = i3;
  9298. //const int64_t i10 = i1;
  9299. const int64_t i12 = i2;
  9300. const int64_t i13 = i3;
  9301. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9302. const int64_t i11 = i01;
  9303. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9304. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9305. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9306. dequantize_row_q(s0, wdata, ne0);
  9307. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9308. }
  9309. }
  9310. //int64_t t1 = ggml_perf_time_us();
  9311. //static int64_t acc = 0;
  9312. //acc += t1 - t0;
  9313. //if (t1 - t0 > 10) {
  9314. // printf("\n");
  9315. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9316. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9317. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9318. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9319. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9320. //}
  9321. }
  9322. static void ggml_compute_forward_out_prod(
  9323. const struct ggml_compute_params * params,
  9324. struct ggml_tensor * dst) {
  9325. const struct ggml_tensor * src0 = dst->src[0];
  9326. switch (src0->type) {
  9327. case GGML_TYPE_Q4_0:
  9328. case GGML_TYPE_Q4_1:
  9329. case GGML_TYPE_Q5_0:
  9330. case GGML_TYPE_Q5_1:
  9331. case GGML_TYPE_Q8_0:
  9332. case GGML_TYPE_Q2_K:
  9333. case GGML_TYPE_Q3_K:
  9334. case GGML_TYPE_Q4_K:
  9335. case GGML_TYPE_Q5_K:
  9336. case GGML_TYPE_Q6_K:
  9337. case GGML_TYPE_IQ2_XXS:
  9338. case GGML_TYPE_IQ2_XS:
  9339. case GGML_TYPE_IQ3_XXS:
  9340. case GGML_TYPE_IQ1_S:
  9341. case GGML_TYPE_IQ1_M:
  9342. case GGML_TYPE_IQ4_NL:
  9343. case GGML_TYPE_IQ4_XS:
  9344. case GGML_TYPE_IQ3_S:
  9345. case GGML_TYPE_IQ2_S:
  9346. {
  9347. ggml_compute_forward_out_prod_q_f32(params, dst);
  9348. } break;
  9349. case GGML_TYPE_F16:
  9350. {
  9351. GGML_ASSERT(false); // todo
  9352. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9353. } break;
  9354. case GGML_TYPE_F32:
  9355. {
  9356. ggml_compute_forward_out_prod_f32(params, dst);
  9357. } break;
  9358. default:
  9359. {
  9360. GGML_ASSERT(false);
  9361. } break;
  9362. }
  9363. }
  9364. // ggml_compute_forward_scale
  9365. static void ggml_compute_forward_scale_f32(
  9366. const struct ggml_compute_params * params,
  9367. struct ggml_tensor * dst) {
  9368. const struct ggml_tensor * src0 = dst->src[0];
  9369. GGML_ASSERT(ggml_is_contiguous(src0));
  9370. GGML_ASSERT(ggml_is_contiguous(dst));
  9371. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9372. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9373. return;
  9374. }
  9375. // scale factor
  9376. float v;
  9377. memcpy(&v, dst->op_params, sizeof(float));
  9378. const int ith = params->ith;
  9379. const int nth = params->nth;
  9380. const int nc = src0->ne[0];
  9381. const int nr = ggml_nrows(src0);
  9382. // rows per thread
  9383. const int dr = (nr + nth - 1)/nth;
  9384. // row range for this thread
  9385. const int ir0 = dr*ith;
  9386. const int ir1 = MIN(ir0 + dr, nr);
  9387. const size_t nb01 = src0->nb[1];
  9388. const size_t nb1 = dst->nb[1];
  9389. for (int i1 = ir0; i1 < ir1; i1++) {
  9390. if (dst->data != src0->data) {
  9391. // src0 is same shape as dst => same indices
  9392. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9393. }
  9394. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9395. }
  9396. }
  9397. static void ggml_compute_forward_scale(
  9398. const struct ggml_compute_params * params,
  9399. struct ggml_tensor * dst) {
  9400. const struct ggml_tensor * src0 = dst->src[0];
  9401. switch (src0->type) {
  9402. case GGML_TYPE_F32:
  9403. {
  9404. ggml_compute_forward_scale_f32(params, dst);
  9405. } break;
  9406. default:
  9407. {
  9408. GGML_ASSERT(false);
  9409. } break;
  9410. }
  9411. }
  9412. // ggml_compute_forward_set
  9413. static void ggml_compute_forward_set_f32(
  9414. const struct ggml_compute_params * params,
  9415. struct ggml_tensor * dst) {
  9416. const struct ggml_tensor * src0 = dst->src[0];
  9417. const struct ggml_tensor * src1 = dst->src[1];
  9418. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9419. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9420. // view src0 and dst with these strides and data offset inbytes during set
  9421. // nb0 is implicitly element_size because src0 and dst are contiguous
  9422. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9423. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9424. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9425. size_t offset = ((int32_t *) dst->op_params)[3];
  9426. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9427. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9428. if (params->ith != 0) {
  9429. return;
  9430. }
  9431. // memcpy needs to be synchronized across threads to avoid race conditions.
  9432. // => do it in INIT phase
  9433. memcpy(
  9434. ((char *) dst->data),
  9435. ((char *) src0->data),
  9436. ggml_nbytes(dst));
  9437. }
  9438. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9439. return;
  9440. }
  9441. const int ith = params->ith;
  9442. const int nth = params->nth;
  9443. const int nr = ggml_nrows(src1);
  9444. const int nc = src1->ne[0];
  9445. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9446. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9447. // src0 and dst as viewed during set
  9448. const size_t nb0 = ggml_element_size(src0);
  9449. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9450. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9451. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9452. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9453. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9454. GGML_ASSERT(nb10 == sizeof(float));
  9455. // rows per thread
  9456. const int dr = (nr + nth - 1)/nth;
  9457. // row range for this thread
  9458. const int ir0 = dr*ith;
  9459. const int ir1 = MIN(ir0 + dr, nr);
  9460. for (int ir = ir0; ir < ir1; ++ir) {
  9461. // src0 and dst are viewed with shape of src1 and offset
  9462. // => same indices
  9463. const int i3 = ir/(ne12*ne11);
  9464. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9465. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9466. ggml_vec_cpy_f32(nc,
  9467. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9468. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9469. }
  9470. }
  9471. static void ggml_compute_forward_set(
  9472. const struct ggml_compute_params * params,
  9473. struct ggml_tensor * dst) {
  9474. const struct ggml_tensor * src0 = dst->src[0];
  9475. switch (src0->type) {
  9476. case GGML_TYPE_F32:
  9477. {
  9478. ggml_compute_forward_set_f32(params, dst);
  9479. } break;
  9480. case GGML_TYPE_F16:
  9481. case GGML_TYPE_Q4_0:
  9482. case GGML_TYPE_Q4_1:
  9483. case GGML_TYPE_Q5_0:
  9484. case GGML_TYPE_Q5_1:
  9485. case GGML_TYPE_Q8_0:
  9486. case GGML_TYPE_Q8_1:
  9487. case GGML_TYPE_Q2_K:
  9488. case GGML_TYPE_Q3_K:
  9489. case GGML_TYPE_Q4_K:
  9490. case GGML_TYPE_Q5_K:
  9491. case GGML_TYPE_Q6_K:
  9492. case GGML_TYPE_IQ2_XXS:
  9493. case GGML_TYPE_IQ2_XS:
  9494. case GGML_TYPE_IQ3_XXS:
  9495. case GGML_TYPE_IQ1_S:
  9496. case GGML_TYPE_IQ1_M:
  9497. case GGML_TYPE_IQ4_NL:
  9498. case GGML_TYPE_IQ4_XS:
  9499. case GGML_TYPE_IQ3_S:
  9500. case GGML_TYPE_IQ2_S:
  9501. default:
  9502. {
  9503. GGML_ASSERT(false);
  9504. } break;
  9505. }
  9506. }
  9507. // ggml_compute_forward_cpy
  9508. static void ggml_compute_forward_cpy(
  9509. const struct ggml_compute_params * params,
  9510. struct ggml_tensor * dst) {
  9511. ggml_compute_forward_dup(params, dst);
  9512. }
  9513. // ggml_compute_forward_cont
  9514. static void ggml_compute_forward_cont(
  9515. const struct ggml_compute_params * params,
  9516. struct ggml_tensor * dst) {
  9517. ggml_compute_forward_dup(params, dst);
  9518. }
  9519. // ggml_compute_forward_reshape
  9520. static void ggml_compute_forward_reshape(
  9521. const struct ggml_compute_params * params,
  9522. struct ggml_tensor * dst) {
  9523. // NOP
  9524. UNUSED(params);
  9525. UNUSED(dst);
  9526. }
  9527. // ggml_compute_forward_view
  9528. static void ggml_compute_forward_view(
  9529. const struct ggml_compute_params * params,
  9530. const struct ggml_tensor * dst) {
  9531. // NOP
  9532. UNUSED(params);
  9533. UNUSED(dst);
  9534. }
  9535. // ggml_compute_forward_permute
  9536. static void ggml_compute_forward_permute(
  9537. const struct ggml_compute_params * params,
  9538. const struct ggml_tensor * dst) {
  9539. // NOP
  9540. UNUSED(params);
  9541. UNUSED(dst);
  9542. }
  9543. // ggml_compute_forward_transpose
  9544. static void ggml_compute_forward_transpose(
  9545. const struct ggml_compute_params * params,
  9546. const struct ggml_tensor * dst) {
  9547. // NOP
  9548. UNUSED(params);
  9549. UNUSED(dst);
  9550. }
  9551. // ggml_compute_forward_get_rows
  9552. static void ggml_compute_forward_get_rows_q(
  9553. const struct ggml_compute_params * params,
  9554. struct ggml_tensor * dst) {
  9555. const struct ggml_tensor * src0 = dst->src[0];
  9556. const struct ggml_tensor * src1 = dst->src[1];
  9557. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9558. return;
  9559. }
  9560. GGML_TENSOR_BINARY_OP_LOCALS
  9561. const int64_t nc = ne00;
  9562. const int64_t nr = ggml_nelements(src1);
  9563. const enum ggml_type type = src0->type;
  9564. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9565. assert(ne0 == nc);
  9566. assert(ne02 == ne11);
  9567. assert(nb00 == ggml_type_size(type));
  9568. assert(ggml_nrows(dst) == nr);
  9569. const int ith = params->ith;
  9570. const int nth = params->nth;
  9571. // rows per thread
  9572. const int dr = (nr + nth - 1)/nth;
  9573. // row range for this thread
  9574. const int ir0 = dr*ith;
  9575. const int ir1 = MIN(ir0 + dr, nr);
  9576. for (int64_t i = ir0; i < ir1; ++i) {
  9577. const int64_t i12 = i/(ne11*ne10);
  9578. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9579. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9580. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9581. dequantize_row_q(
  9582. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9583. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9584. }
  9585. }
  9586. static void ggml_compute_forward_get_rows_f16(
  9587. const struct ggml_compute_params * params,
  9588. struct ggml_tensor * dst) {
  9589. const struct ggml_tensor * src0 = dst->src[0];
  9590. const struct ggml_tensor * src1 = dst->src[1];
  9591. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9592. return;
  9593. }
  9594. GGML_TENSOR_BINARY_OP_LOCALS
  9595. const int64_t nc = ne00;
  9596. const int64_t nr = ggml_nelements(src1);
  9597. assert(ne0 == nc);
  9598. assert(ne02 == ne11);
  9599. assert(nb00 == sizeof(ggml_fp16_t));
  9600. assert(ggml_nrows(dst) == nr);
  9601. const int ith = params->ith;
  9602. const int nth = params->nth;
  9603. // rows per thread
  9604. const int dr = (nr + nth - 1)/nth;
  9605. // row range for this thread
  9606. const int ir0 = dr*ith;
  9607. const int ir1 = MIN(ir0 + dr, nr);
  9608. for (int64_t i = ir0; i < ir1; ++i) {
  9609. const int64_t i12 = i/(ne11*ne10);
  9610. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9611. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9612. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9613. ggml_fp16_to_fp32_row(
  9614. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9615. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9616. }
  9617. }
  9618. static void ggml_compute_forward_get_rows_f32(
  9619. const struct ggml_compute_params * params,
  9620. struct ggml_tensor * dst) {
  9621. const struct ggml_tensor * src0 = dst->src[0];
  9622. const struct ggml_tensor * src1 = dst->src[1];
  9623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9624. return;
  9625. }
  9626. GGML_TENSOR_BINARY_OP_LOCALS
  9627. const int64_t nc = ne00;
  9628. const int64_t nr = ggml_nelements(src1);
  9629. assert(ne0 == nc);
  9630. assert(ne02 == ne11);
  9631. assert(nb00 == sizeof(float));
  9632. assert(ggml_nrows(dst) == nr);
  9633. const int ith = params->ith;
  9634. const int nth = params->nth;
  9635. // rows per thread
  9636. const int dr = (nr + nth - 1)/nth;
  9637. // row range for this thread
  9638. const int ir0 = dr*ith;
  9639. const int ir1 = MIN(ir0 + dr, nr);
  9640. for (int64_t i = ir0; i < ir1; ++i) {
  9641. const int64_t i12 = i/(ne11*ne10);
  9642. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9643. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9644. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9645. ggml_vec_cpy_f32(nc,
  9646. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9647. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9648. }
  9649. }
  9650. static void ggml_compute_forward_get_rows(
  9651. const struct ggml_compute_params * params,
  9652. struct ggml_tensor * dst) {
  9653. const struct ggml_tensor * src0 = dst->src[0];
  9654. switch (src0->type) {
  9655. case GGML_TYPE_Q4_0:
  9656. case GGML_TYPE_Q4_1:
  9657. case GGML_TYPE_Q5_0:
  9658. case GGML_TYPE_Q5_1:
  9659. case GGML_TYPE_Q8_0:
  9660. case GGML_TYPE_Q8_1:
  9661. case GGML_TYPE_Q2_K:
  9662. case GGML_TYPE_Q3_K:
  9663. case GGML_TYPE_Q4_K:
  9664. case GGML_TYPE_Q5_K:
  9665. case GGML_TYPE_Q6_K:
  9666. case GGML_TYPE_IQ2_XXS:
  9667. case GGML_TYPE_IQ2_XS:
  9668. case GGML_TYPE_IQ3_XXS:
  9669. case GGML_TYPE_IQ1_S:
  9670. case GGML_TYPE_IQ1_M:
  9671. case GGML_TYPE_IQ4_NL:
  9672. case GGML_TYPE_IQ4_XS:
  9673. case GGML_TYPE_IQ3_S:
  9674. case GGML_TYPE_IQ2_S:
  9675. {
  9676. ggml_compute_forward_get_rows_q(params, dst);
  9677. } break;
  9678. case GGML_TYPE_F16:
  9679. {
  9680. ggml_compute_forward_get_rows_f16(params, dst);
  9681. } break;
  9682. case GGML_TYPE_F32:
  9683. case GGML_TYPE_I32:
  9684. {
  9685. ggml_compute_forward_get_rows_f32(params, dst);
  9686. } break;
  9687. default:
  9688. {
  9689. GGML_ASSERT(false);
  9690. } break;
  9691. }
  9692. //static bool first = true;
  9693. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9694. //if (first) {
  9695. // first = false;
  9696. //} else {
  9697. // for (int k = 0; k < dst->ne[1]; ++k) {
  9698. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9699. // for (int i = 0; i < 16; ++i) {
  9700. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9701. // }
  9702. // printf("\n");
  9703. // }
  9704. // printf("\n");
  9705. // }
  9706. // printf("\n");
  9707. // exit(0);
  9708. //}
  9709. }
  9710. // ggml_compute_forward_get_rows_back
  9711. static void ggml_compute_forward_get_rows_back_f32_f16(
  9712. const struct ggml_compute_params * params,
  9713. struct ggml_tensor * dst) {
  9714. const struct ggml_tensor * src0 = dst->src[0];
  9715. const struct ggml_tensor * src1 = dst->src[1];
  9716. GGML_ASSERT(params->ith == 0);
  9717. GGML_ASSERT(ggml_is_contiguous(dst));
  9718. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9719. if (params->type == GGML_TASK_TYPE_INIT) {
  9720. if (params->ith != 0) {
  9721. return;
  9722. }
  9723. memset(dst->data, 0, ggml_nbytes(dst));
  9724. }
  9725. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9726. return;
  9727. }
  9728. const int nc = src0->ne[0];
  9729. const int nr = ggml_nelements(src1);
  9730. GGML_ASSERT( dst->ne[0] == nc);
  9731. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9732. for (int i = 0; i < nr; ++i) {
  9733. const int r = ((int32_t *) src1->data)[i];
  9734. for (int j = 0; j < nc; ++j) {
  9735. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9736. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9737. }
  9738. }
  9739. }
  9740. static void ggml_compute_forward_get_rows_back_f32(
  9741. const struct ggml_compute_params * params,
  9742. struct ggml_tensor * dst) {
  9743. const struct ggml_tensor * src0 = dst->src[0];
  9744. const struct ggml_tensor * src1 = dst->src[1];
  9745. GGML_ASSERT(params->ith == 0);
  9746. GGML_ASSERT(ggml_is_contiguous(dst));
  9747. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9748. if (params->type == GGML_TASK_TYPE_INIT) {
  9749. if (params->ith != 0) {
  9750. return;
  9751. }
  9752. memset(dst->data, 0, ggml_nbytes(dst));
  9753. }
  9754. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9755. return;
  9756. }
  9757. const int nc = src0->ne[0];
  9758. const int nr = ggml_nelements(src1);
  9759. GGML_ASSERT( dst->ne[0] == nc);
  9760. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9761. for (int i = 0; i < nr; ++i) {
  9762. const int r = ((int32_t *) src1->data)[i];
  9763. ggml_vec_add_f32(nc,
  9764. (float *) ((char *) dst->data + r*dst->nb[1]),
  9765. (float *) ((char *) dst->data + r*dst->nb[1]),
  9766. (float *) ((char *) src0->data + i*src0->nb[1]));
  9767. }
  9768. }
  9769. static void ggml_compute_forward_get_rows_back(
  9770. const struct ggml_compute_params * params,
  9771. struct ggml_tensor * dst) {
  9772. const struct ggml_tensor * src0 = dst->src[0];
  9773. switch (src0->type) {
  9774. case GGML_TYPE_F16:
  9775. {
  9776. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9777. } break;
  9778. case GGML_TYPE_F32:
  9779. {
  9780. ggml_compute_forward_get_rows_back_f32(params, dst);
  9781. } break;
  9782. default:
  9783. {
  9784. GGML_ASSERT(false);
  9785. } break;
  9786. }
  9787. //static bool first = true;
  9788. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9789. //if (first) {
  9790. // first = false;
  9791. //} else {
  9792. // for (int k = 0; k < dst->ne[1]; ++k) {
  9793. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9794. // for (int i = 0; i < 16; ++i) {
  9795. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9796. // }
  9797. // printf("\n");
  9798. // }
  9799. // printf("\n");
  9800. // }
  9801. // printf("\n");
  9802. // exit(0);
  9803. //}
  9804. }
  9805. // ggml_compute_forward_diag
  9806. static void ggml_compute_forward_diag_f32(
  9807. const struct ggml_compute_params * params,
  9808. struct ggml_tensor * dst) {
  9809. const struct ggml_tensor * src0 = dst->src[0];
  9810. GGML_ASSERT(params->ith == 0);
  9811. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9812. return;
  9813. }
  9814. // TODO: handle transposed/permuted matrices
  9815. GGML_TENSOR_UNARY_OP_LOCALS
  9816. GGML_ASSERT(ne00 == ne0);
  9817. GGML_ASSERT(ne00 == ne1);
  9818. GGML_ASSERT(ne01 == 1);
  9819. GGML_ASSERT(ne02 == ne2);
  9820. GGML_ASSERT(ne03 == ne3);
  9821. GGML_ASSERT(nb00 == sizeof(float));
  9822. GGML_ASSERT(nb0 == sizeof(float));
  9823. for (int i3 = 0; i3 < ne3; i3++) {
  9824. for (int i2 = 0; i2 < ne2; i2++) {
  9825. for (int i1 = 0; i1 < ne1; i1++) {
  9826. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9827. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9828. for (int i0 = 0; i0 < i1; i0++) {
  9829. d[i0] = 0;
  9830. }
  9831. d[i1] = s[i1];
  9832. for (int i0 = i1+1; i0 < ne0; i0++) {
  9833. d[i0] = 0;
  9834. }
  9835. }
  9836. }
  9837. }
  9838. }
  9839. static void ggml_compute_forward_diag(
  9840. const struct ggml_compute_params * params,
  9841. struct ggml_tensor * dst) {
  9842. const struct ggml_tensor * src0 = dst->src[0];
  9843. switch (src0->type) {
  9844. case GGML_TYPE_F32:
  9845. {
  9846. ggml_compute_forward_diag_f32(params, dst);
  9847. } break;
  9848. default:
  9849. {
  9850. GGML_ASSERT(false);
  9851. } break;
  9852. }
  9853. }
  9854. // ggml_compute_forward_diag_mask_inf
  9855. static void ggml_compute_forward_diag_mask_f32(
  9856. const struct ggml_compute_params * params,
  9857. struct ggml_tensor * dst,
  9858. const float value) {
  9859. const struct ggml_tensor * src0 = dst->src[0];
  9860. const int ith = params->ith;
  9861. const int nth = params->nth;
  9862. const int n_past = ((int32_t *) dst->op_params)[0];
  9863. const bool inplace = src0->data == dst->data;
  9864. GGML_ASSERT(n_past >= 0);
  9865. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9866. if (ith != 0) {
  9867. return;
  9868. }
  9869. // memcpy needs to be synchronized across threads to avoid race conditions.
  9870. // => do it in INIT phase
  9871. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9872. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9873. memcpy(
  9874. ((char *) dst->data),
  9875. ((char *) src0->data),
  9876. ggml_nbytes(dst));
  9877. }
  9878. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9879. return;
  9880. }
  9881. // TODO: handle transposed/permuted matrices
  9882. const int n = ggml_nrows(src0);
  9883. const int nc = src0->ne[0];
  9884. const int nr = src0->ne[1];
  9885. const int nz = n/nr;
  9886. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9887. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9888. for (int k = 0; k < nz; k++) {
  9889. for (int j = ith; j < nr; j += nth) {
  9890. for (int i = n_past; i < nc; i++) {
  9891. if (i > n_past + j) {
  9892. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9893. }
  9894. }
  9895. }
  9896. }
  9897. }
  9898. static void ggml_compute_forward_diag_mask_inf(
  9899. const struct ggml_compute_params * params,
  9900. struct ggml_tensor * dst) {
  9901. const struct ggml_tensor * src0 = dst->src[0];
  9902. switch (src0->type) {
  9903. case GGML_TYPE_F32:
  9904. {
  9905. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9906. } break;
  9907. default:
  9908. {
  9909. GGML_ASSERT(false);
  9910. } break;
  9911. }
  9912. }
  9913. static void ggml_compute_forward_diag_mask_zero(
  9914. const struct ggml_compute_params * params,
  9915. struct ggml_tensor * dst) {
  9916. const struct ggml_tensor * src0 = dst->src[0];
  9917. switch (src0->type) {
  9918. case GGML_TYPE_F32:
  9919. {
  9920. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9921. } break;
  9922. default:
  9923. {
  9924. GGML_ASSERT(false);
  9925. } break;
  9926. }
  9927. }
  9928. // ggml_compute_forward_soft_max
  9929. static void ggml_compute_forward_soft_max_f32(
  9930. const struct ggml_compute_params * params,
  9931. struct ggml_tensor * dst) {
  9932. const struct ggml_tensor * src0 = dst->src[0];
  9933. const struct ggml_tensor * src1 = dst->src[1];
  9934. const struct ggml_tensor * src2 = dst->src[2];
  9935. assert(ggml_is_contiguous(dst));
  9936. assert(ggml_are_same_shape(src0, dst));
  9937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9938. return;
  9939. }
  9940. float scale = 1.0f;
  9941. float max_bias = 0.0f;
  9942. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9943. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9944. // TODO: handle transposed/permuted matrices
  9945. const int ith = params->ith;
  9946. const int nth = params->nth;
  9947. GGML_TENSOR_UNARY_OP_LOCALS
  9948. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9949. // TODO: is this supposed to be ceil instead of floor?
  9950. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9951. const uint32_t n_head_kv = ne02;
  9952. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9953. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9954. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9955. const int nc = src0->ne[0];
  9956. const int nr = ggml_nrows(src0);
  9957. // rows per thread
  9958. const int dr = (nr + nth - 1)/nth;
  9959. // row range for this thread
  9960. const int ir0 = dr*ith;
  9961. const int ir1 = MIN(ir0 + dr, nr);
  9962. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9963. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9964. float * pos = src2 ? (float *) src2->data : src0->data;
  9965. for (int i1 = ir0; i1 < ir1; i1++) {
  9966. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9967. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9968. // broadcast the mask across rows
  9969. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9970. ggml_vec_cpy_f32 (nc, wp, sp);
  9971. ggml_vec_scale_f32(nc, wp, scale);
  9972. if (mp) {
  9973. ggml_vec_acc_f32(nc, wp, mp);
  9974. }
  9975. // ALiBi bias
  9976. if (max_bias > 0.0f) {
  9977. const uint32_t h = (i1/ne01)%ne02; // head
  9978. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9979. for (int i = 0; i < nc; i++) {
  9980. wp[i] = wp[i] + slope*pos[i];
  9981. }
  9982. }
  9983. #ifndef NDEBUG
  9984. for (int i = 0; i < nc; ++i) {
  9985. //printf("p[%d] = %f\n", i, p[i]);
  9986. assert(!isnan(wp[i]));
  9987. }
  9988. #endif
  9989. float max = -INFINITY;
  9990. ggml_vec_max_f32(nc, &max, wp);
  9991. ggml_float sum = 0.0;
  9992. uint16_t scvt;
  9993. for (int i = 0; i < nc; i++) {
  9994. if (wp[i] == -INFINITY) {
  9995. dp[i] = 0.0f;
  9996. } else {
  9997. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9998. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9999. memcpy(&scvt, &s, sizeof(scvt));
  10000. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10001. sum += (ggml_float)val;
  10002. dp[i] = val;
  10003. }
  10004. }
  10005. assert(sum > 0.0);
  10006. sum = 1.0/sum;
  10007. ggml_vec_scale_f32(nc, dp, sum);
  10008. #ifndef NDEBUG
  10009. for (int i = 0; i < nc; ++i) {
  10010. assert(!isnan(dp[i]));
  10011. assert(!isinf(dp[i]));
  10012. }
  10013. #endif
  10014. }
  10015. }
  10016. static void ggml_compute_forward_soft_max(
  10017. const struct ggml_compute_params * params,
  10018. struct ggml_tensor * dst) {
  10019. const struct ggml_tensor * src0 = dst->src[0];
  10020. switch (src0->type) {
  10021. case GGML_TYPE_F32:
  10022. {
  10023. ggml_compute_forward_soft_max_f32(params, dst);
  10024. } break;
  10025. default:
  10026. {
  10027. GGML_ASSERT(false);
  10028. } break;
  10029. }
  10030. }
  10031. // ggml_compute_forward_soft_max_back
  10032. static void ggml_compute_forward_soft_max_back_f32(
  10033. const struct ggml_compute_params * params,
  10034. struct ggml_tensor * dst) {
  10035. const struct ggml_tensor * src0 = dst->src[0];
  10036. const struct ggml_tensor * src1 = dst->src[1];
  10037. GGML_ASSERT(ggml_is_contiguous(src0));
  10038. GGML_ASSERT(ggml_is_contiguous(src1));
  10039. GGML_ASSERT(ggml_is_contiguous(dst));
  10040. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10041. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10043. return;
  10044. }
  10045. // TODO: handle transposed/permuted matrices
  10046. const int ith = params->ith;
  10047. const int nth = params->nth;
  10048. const int nc = src0->ne[0];
  10049. const int nr = ggml_nrows(src0);
  10050. // rows per thread
  10051. const int dr = (nr + nth - 1)/nth;
  10052. // row range for this thread
  10053. const int ir0 = dr*ith;
  10054. const int ir1 = MIN(ir0 + dr, nr);
  10055. for (int i1 = ir0; i1 < ir1; i1++) {
  10056. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10057. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10058. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10059. #ifndef NDEBUG
  10060. for (int i = 0; i < nc; ++i) {
  10061. //printf("p[%d] = %f\n", i, p[i]);
  10062. assert(!isnan(dy[i]));
  10063. assert(!isnan(y[i]));
  10064. }
  10065. #endif
  10066. // Jii = yi - yi*yi
  10067. // Jij = -yi*yj
  10068. // J = diag(y)-y.T*y
  10069. // dx = J * dy
  10070. // dxk = sum_i(Jki * dyi)
  10071. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10072. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10073. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10074. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10075. // dxk = -yk * dot(y, dy) + yk*dyk
  10076. // dxk = yk * (- dot(y, dy) + dyk)
  10077. // dxk = yk * (dyk - dot(y, dy))
  10078. //
  10079. // post-order:
  10080. // dot_y_dy := dot(y, dy)
  10081. // dx := dy
  10082. // dx := dx - dot_y_dy
  10083. // dx := dx * y
  10084. // linear runtime, no additional memory
  10085. float dot_y_dy = 0;
  10086. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10087. ggml_vec_cpy_f32 (nc, dx, dy);
  10088. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10089. ggml_vec_mul_f32 (nc, dx, dx, y);
  10090. #ifndef NDEBUG
  10091. for (int i = 0; i < nc; ++i) {
  10092. assert(!isnan(dx[i]));
  10093. assert(!isinf(dx[i]));
  10094. }
  10095. #endif
  10096. }
  10097. }
  10098. static void ggml_compute_forward_soft_max_back(
  10099. const struct ggml_compute_params * params,
  10100. struct ggml_tensor * dst) {
  10101. const struct ggml_tensor * src0 = dst->src[0];
  10102. switch (src0->type) {
  10103. case GGML_TYPE_F32:
  10104. {
  10105. ggml_compute_forward_soft_max_back_f32(params, dst);
  10106. } break;
  10107. default:
  10108. {
  10109. GGML_ASSERT(false);
  10110. } break;
  10111. }
  10112. }
  10113. // ggml_compute_forward_alibi
  10114. static void ggml_compute_forward_alibi_f32(
  10115. const struct ggml_compute_params * params,
  10116. struct ggml_tensor * dst) {
  10117. const struct ggml_tensor * src0 = dst->src[0];
  10118. assert(params->ith == 0);
  10119. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10120. return;
  10121. }
  10122. //const int n_past = ((int32_t *) dst->op_params)[0];
  10123. const int n_head = ((int32_t *) dst->op_params)[1];
  10124. float max_bias;
  10125. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10126. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10127. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10128. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10129. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10130. const int64_t n = ggml_nrows(src0);
  10131. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10132. const size_t nb0 = src0->nb[0];
  10133. const size_t nb1 = src0->nb[1];
  10134. const size_t nb2 = src0->nb[2];
  10135. //const int nb3 = src0->nb[3];
  10136. GGML_ASSERT(nb0 == sizeof(float));
  10137. GGML_ASSERT(n_head == ne2);
  10138. // add alibi to src0 (KQ_scaled)
  10139. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10140. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10141. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10142. for (int64_t k = 0; k < ne2_ne3; k++) {
  10143. // TODO: k*nb2 or k*nb3
  10144. float m_k;
  10145. if (k < n_heads_log2_floor) {
  10146. m_k = powf(m0, k + 1);
  10147. } else {
  10148. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10149. }
  10150. for (int64_t i = 0; i < ne0; i++) {
  10151. for (int64_t j = 0; j < ne1; j++) {
  10152. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10153. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10154. pdst[0] = i * m_k + src[0];
  10155. }
  10156. }
  10157. }
  10158. }
  10159. static void ggml_compute_forward_alibi_f16(
  10160. const struct ggml_compute_params * params,
  10161. struct ggml_tensor * dst) {
  10162. const struct ggml_tensor * src0 = dst->src[0];
  10163. assert(params->ith == 0);
  10164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10165. return;
  10166. }
  10167. //const int n_past = ((int32_t *) dst->op_params)[0];
  10168. const int n_head = ((int32_t *) dst->op_params)[1];
  10169. float max_bias;
  10170. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10171. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10172. const int ne1 = src0->ne[1]; // seq_len_without_past
  10173. const int ne2 = src0->ne[2]; // n_head -> this is k
  10174. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10175. const int n = ggml_nrows(src0);
  10176. const int ne2_ne3 = n/ne1; // ne2*ne3
  10177. const int nb0 = src0->nb[0];
  10178. const int nb1 = src0->nb[1];
  10179. const int nb2 = src0->nb[2];
  10180. //const int nb3 = src0->nb[3];
  10181. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10182. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10183. GGML_ASSERT(n_head == ne2);
  10184. // add alibi to src0 (KQ_scaled)
  10185. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10186. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10187. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10188. for (int k = 0; k < ne2_ne3; k++) {
  10189. // TODO: k*nb2 or k*nb3
  10190. float m_k;
  10191. if (k < n_heads_log2_floor) {
  10192. m_k = powf(m0, k + 1);
  10193. } else {
  10194. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10195. }
  10196. for (int i = 0; i < ne0; i++) {
  10197. for (int j = 0; j < ne1; j++) {
  10198. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10199. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10200. // we return F32
  10201. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10202. }
  10203. }
  10204. }
  10205. }
  10206. static void ggml_compute_forward_alibi(
  10207. const struct ggml_compute_params * params,
  10208. struct ggml_tensor * dst) {
  10209. const struct ggml_tensor * src0 = dst->src[0];
  10210. switch (src0->type) {
  10211. case GGML_TYPE_F16:
  10212. {
  10213. ggml_compute_forward_alibi_f16(params, dst);
  10214. } break;
  10215. case GGML_TYPE_F32:
  10216. {
  10217. ggml_compute_forward_alibi_f32(params, dst);
  10218. } break;
  10219. case GGML_TYPE_Q4_0:
  10220. case GGML_TYPE_Q4_1:
  10221. case GGML_TYPE_Q5_0:
  10222. case GGML_TYPE_Q5_1:
  10223. case GGML_TYPE_Q8_0:
  10224. case GGML_TYPE_Q8_1:
  10225. case GGML_TYPE_Q2_K:
  10226. case GGML_TYPE_Q3_K:
  10227. case GGML_TYPE_Q4_K:
  10228. case GGML_TYPE_Q5_K:
  10229. case GGML_TYPE_Q6_K:
  10230. case GGML_TYPE_IQ2_XXS:
  10231. case GGML_TYPE_IQ2_XS:
  10232. case GGML_TYPE_IQ3_XXS:
  10233. case GGML_TYPE_IQ1_S:
  10234. case GGML_TYPE_IQ1_M:
  10235. case GGML_TYPE_IQ4_NL:
  10236. case GGML_TYPE_IQ4_XS:
  10237. case GGML_TYPE_IQ3_S:
  10238. case GGML_TYPE_IQ2_S:
  10239. case GGML_TYPE_Q8_K:
  10240. case GGML_TYPE_I8:
  10241. case GGML_TYPE_I16:
  10242. case GGML_TYPE_I32:
  10243. case GGML_TYPE_I64:
  10244. case GGML_TYPE_F64:
  10245. case GGML_TYPE_COUNT:
  10246. {
  10247. GGML_ASSERT(false);
  10248. } break;
  10249. }
  10250. }
  10251. // ggml_compute_forward_clamp
  10252. static void ggml_compute_forward_clamp_f32(
  10253. const struct ggml_compute_params * params,
  10254. struct ggml_tensor * dst) {
  10255. const struct ggml_tensor * src0 = dst->src[0];
  10256. assert(params->ith == 0);
  10257. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10258. return;
  10259. }
  10260. float min;
  10261. float max;
  10262. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10263. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10264. const int ith = params->ith;
  10265. const int nth = params->nth;
  10266. const int n = ggml_nrows(src0);
  10267. const int nc = src0->ne[0];
  10268. const size_t nb00 = src0->nb[0];
  10269. const size_t nb01 = src0->nb[1];
  10270. const size_t nb0 = dst->nb[0];
  10271. const size_t nb1 = dst->nb[1];
  10272. GGML_ASSERT( nb0 == sizeof(float));
  10273. GGML_ASSERT(nb00 == sizeof(float));
  10274. for (int j = ith; j < n; j += nth) {
  10275. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10276. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10277. for (int i = 0; i < nc; i++) {
  10278. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10279. }
  10280. }
  10281. }
  10282. static void ggml_compute_forward_clamp(
  10283. const struct ggml_compute_params * params,
  10284. struct ggml_tensor * dst) {
  10285. const struct ggml_tensor * src0 = dst->src[0];
  10286. switch (src0->type) {
  10287. case GGML_TYPE_F32:
  10288. {
  10289. ggml_compute_forward_clamp_f32(params, dst);
  10290. } break;
  10291. case GGML_TYPE_F16:
  10292. case GGML_TYPE_Q4_0:
  10293. case GGML_TYPE_Q4_1:
  10294. case GGML_TYPE_Q5_0:
  10295. case GGML_TYPE_Q5_1:
  10296. case GGML_TYPE_Q8_0:
  10297. case GGML_TYPE_Q8_1:
  10298. case GGML_TYPE_Q2_K:
  10299. case GGML_TYPE_Q3_K:
  10300. case GGML_TYPE_Q4_K:
  10301. case GGML_TYPE_Q5_K:
  10302. case GGML_TYPE_Q6_K:
  10303. case GGML_TYPE_IQ2_XXS:
  10304. case GGML_TYPE_IQ2_XS:
  10305. case GGML_TYPE_IQ3_XXS:
  10306. case GGML_TYPE_IQ1_S:
  10307. case GGML_TYPE_IQ1_M:
  10308. case GGML_TYPE_IQ4_NL:
  10309. case GGML_TYPE_IQ4_XS:
  10310. case GGML_TYPE_IQ3_S:
  10311. case GGML_TYPE_IQ2_S:
  10312. case GGML_TYPE_Q8_K:
  10313. case GGML_TYPE_I8:
  10314. case GGML_TYPE_I16:
  10315. case GGML_TYPE_I32:
  10316. case GGML_TYPE_I64:
  10317. case GGML_TYPE_F64:
  10318. case GGML_TYPE_COUNT:
  10319. {
  10320. GGML_ASSERT(false);
  10321. } break;
  10322. }
  10323. }
  10324. // ggml_compute_forward_rope
  10325. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10326. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10327. return 1 - MIN(1, MAX(0, y));
  10328. }
  10329. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10330. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10331. static void rope_yarn(
  10332. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10333. float * cos_theta, float * sin_theta
  10334. ) {
  10335. // Get n-d rotational scaling corrected for extrapolation
  10336. float theta_interp = freq_scale * theta_extrap;
  10337. float theta = theta_interp;
  10338. if (ext_factor != 0.0f) {
  10339. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10340. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10341. // Get n-d magnitude scaling corrected for interpolation
  10342. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10343. }
  10344. *cos_theta = cosf(theta) * mscale;
  10345. *sin_theta = sinf(theta) * mscale;
  10346. }
  10347. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10348. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10349. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10350. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10351. }
  10352. static void ggml_rope_cache_init(
  10353. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10354. float * cache, float sin_sign, float theta_scale
  10355. ) {
  10356. float theta = theta_base;
  10357. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10358. rope_yarn(
  10359. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10360. );
  10361. cache[i0 + 1] *= sin_sign;
  10362. theta *= theta_scale;
  10363. }
  10364. }
  10365. GGML_CALL void ggml_rope_yarn_corr_dims(
  10366. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10367. ) {
  10368. // start and end correction dims
  10369. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10370. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10371. dims[0] = MAX(0, start);
  10372. dims[1] = MIN(n_dims - 1, end);
  10373. }
  10374. static void ggml_compute_forward_rope_f32(
  10375. const struct ggml_compute_params * params,
  10376. struct ggml_tensor * dst,
  10377. const bool forward) {
  10378. const struct ggml_tensor * src0 = dst->src[0];
  10379. const struct ggml_tensor * src1 = dst->src[1];
  10380. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10381. return;
  10382. }
  10383. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10384. // these two only relevant for xPos RoPE:
  10385. float xpos_base;
  10386. bool xpos_down;
  10387. //const int n_past = ((int32_t *) dst->op_params)[0];
  10388. const int n_dims = ((int32_t *) dst->op_params)[1];
  10389. const int mode = ((int32_t *) dst->op_params)[2];
  10390. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10391. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10392. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10393. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10394. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10395. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10396. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10397. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10398. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10399. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10400. GGML_TENSOR_UNARY_OP_LOCALS
  10401. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10402. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10403. GGML_ASSERT(nb00 == sizeof(float));
  10404. const int ith = params->ith;
  10405. const int nth = params->nth;
  10406. const int nr = ggml_nrows(dst);
  10407. GGML_ASSERT(n_dims <= ne0);
  10408. GGML_ASSERT(n_dims % 2 == 0);
  10409. // rows per thread
  10410. const int dr = (nr + nth - 1)/nth;
  10411. // row range for this thread
  10412. const int ir0 = dr*ith;
  10413. const int ir1 = MIN(ir0 + dr, nr);
  10414. // row index used to determine which thread to use
  10415. int ir = 0;
  10416. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10417. const float inv_ndims = -1.f/n_dims;
  10418. float corr_dims[2];
  10419. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10420. const bool is_neox = mode & 2;
  10421. const bool is_glm = mode & 4;
  10422. // backward process uses inverse rotation by cos and sin.
  10423. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10424. // this essentially just switches the sign of sin.
  10425. const float sin_sign = forward ? 1.0f : -1.0f;
  10426. const int32_t * pos = (const int32_t *) src1->data;
  10427. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10428. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10429. const int64_t p = pos[i2];
  10430. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10431. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10432. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10433. }
  10434. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10435. if (ir++ < ir0) continue;
  10436. if (ir > ir1) break;
  10437. float theta_base = (float)p;
  10438. if (is_glm) {
  10439. theta_base = MIN(p, n_ctx - 2);
  10440. float block_theta = MAX(p - (n_ctx - 2), 0);
  10441. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10442. const float cos_theta = cosf(theta_base);
  10443. const float sin_theta = sinf(theta_base) * sin_sign;
  10444. const float cos_block_theta = cosf(block_theta);
  10445. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10446. theta_base *= theta_scale;
  10447. block_theta *= theta_scale;
  10448. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10449. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10450. const float x0 = src[0];
  10451. const float x1 = src[n_dims/2];
  10452. const float x2 = src[n_dims];
  10453. const float x3 = src[n_dims/2*3];
  10454. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10455. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10456. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10457. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10458. }
  10459. } else if (!is_neox) {
  10460. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10461. const float cos_theta = cache[i0 + 0];
  10462. const float sin_theta = cache[i0 + 1];
  10463. // zeta scaling for xPos only:
  10464. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10465. if (xpos_down) zeta = 1.0f / zeta;
  10466. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10467. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10468. const float x0 = src[0];
  10469. const float x1 = src[1];
  10470. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10471. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10472. }
  10473. } else {
  10474. // TODO: this might be wrong for ne0 != n_dims - need double check
  10475. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10476. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10477. theta_base *= freq_scale;
  10478. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10479. if (ic < n_dims) {
  10480. const int64_t ib = 0;
  10481. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10482. float cur_rot = inv_ndims * ic - ib;
  10483. float cos_theta, sin_theta;
  10484. rope_yarn(
  10485. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10486. &cos_theta, &sin_theta
  10487. );
  10488. sin_theta *= sin_sign;
  10489. theta_base *= theta_scale;
  10490. const int64_t i0 = ib*n_dims + ic/2;
  10491. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10492. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10493. const float x0 = src[0];
  10494. const float x1 = src[n_dims/2];
  10495. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10496. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10497. } else {
  10498. const int64_t i0 = ic;
  10499. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10500. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10501. dst_data[0] = src[0];
  10502. dst_data[1] = src[1];
  10503. }
  10504. }
  10505. }
  10506. }
  10507. }
  10508. }
  10509. }
  10510. static void ggml_compute_forward_rope_f16(
  10511. const struct ggml_compute_params * params,
  10512. struct ggml_tensor * dst,
  10513. const bool forward) {
  10514. const struct ggml_tensor * src0 = dst->src[0];
  10515. const struct ggml_tensor * src1 = dst->src[1];
  10516. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10517. return;
  10518. }
  10519. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10520. //const int n_past = ((int32_t *) dst->op_params)[0];
  10521. const int n_dims = ((int32_t *) dst->op_params)[1];
  10522. const int mode = ((int32_t *) dst->op_params)[2];
  10523. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10524. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10525. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10526. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10527. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10528. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10529. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10530. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10531. GGML_TENSOR_UNARY_OP_LOCALS
  10532. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10533. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10534. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10535. const int ith = params->ith;
  10536. const int nth = params->nth;
  10537. const int nr = ggml_nrows(dst);
  10538. GGML_ASSERT(n_dims <= ne0);
  10539. GGML_ASSERT(n_dims % 2 == 0);
  10540. // rows per thread
  10541. const int dr = (nr + nth - 1)/nth;
  10542. // row range for this thread
  10543. const int ir0 = dr*ith;
  10544. const int ir1 = MIN(ir0 + dr, nr);
  10545. // row index used to determine which thread to use
  10546. int ir = 0;
  10547. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10548. const float inv_ndims = -1.f/n_dims;
  10549. float corr_dims[2];
  10550. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10551. const bool is_neox = mode & 2;
  10552. const bool is_glm = mode & 4;
  10553. // backward process uses inverse rotation by cos and sin.
  10554. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10555. // this essentially just switches the sign of sin.
  10556. const float sin_sign = forward ? 1.0f : -1.0f;
  10557. const int32_t * pos = (const int32_t *) src1->data;
  10558. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10559. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10560. const int64_t p = pos[i2];
  10561. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10562. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10563. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10564. }
  10565. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10566. if (ir++ < ir0) continue;
  10567. if (ir > ir1) break;
  10568. float theta_base = (float)p;
  10569. if (is_glm) {
  10570. theta_base = MIN(p, n_ctx - 2);
  10571. float block_theta = MAX(p - (n_ctx - 2), 0);
  10572. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10573. const float cos_theta = cosf(theta_base);
  10574. const float sin_theta = sinf(theta_base) * sin_sign;
  10575. const float cos_block_theta = cosf(block_theta);
  10576. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10577. theta_base *= theta_scale;
  10578. block_theta *= theta_scale;
  10579. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10580. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10581. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10582. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10583. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10584. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10585. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10586. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10587. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10588. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10589. }
  10590. } else if (!is_neox) {
  10591. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10592. const float cos_theta = cache[i0 + 0];
  10593. const float sin_theta = cache[i0 + 1];
  10594. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10595. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10596. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10597. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10598. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10599. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10600. }
  10601. } else {
  10602. // TODO: this might be wrong for ne0 != n_dims - need double check
  10603. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10604. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10605. theta_base *= freq_scale;
  10606. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10607. if (ic < n_dims) {
  10608. const int64_t ib = 0;
  10609. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10610. float cur_rot = inv_ndims * ic - ib;
  10611. float cos_theta, sin_theta;
  10612. rope_yarn(
  10613. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10614. &cos_theta, &sin_theta
  10615. );
  10616. sin_theta *= sin_sign;
  10617. theta_base *= theta_scale;
  10618. const int64_t i0 = ib*n_dims + ic/2;
  10619. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10620. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10621. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10622. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10623. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10624. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10625. } else {
  10626. const int64_t i0 = ic;
  10627. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10628. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10629. dst_data[0] = src[0];
  10630. dst_data[1] = src[1];
  10631. }
  10632. }
  10633. }
  10634. }
  10635. }
  10636. }
  10637. }
  10638. static void ggml_compute_forward_rope(
  10639. const struct ggml_compute_params * params,
  10640. struct ggml_tensor * dst) {
  10641. const struct ggml_tensor * src0 = dst->src[0];
  10642. switch (src0->type) {
  10643. case GGML_TYPE_F16:
  10644. {
  10645. ggml_compute_forward_rope_f16(params, dst, true);
  10646. } break;
  10647. case GGML_TYPE_F32:
  10648. {
  10649. ggml_compute_forward_rope_f32(params, dst, true);
  10650. } break;
  10651. default:
  10652. {
  10653. GGML_ASSERT(false);
  10654. } break;
  10655. }
  10656. }
  10657. // ggml_compute_forward_rope_back
  10658. static void ggml_compute_forward_rope_back(
  10659. const struct ggml_compute_params * params,
  10660. struct ggml_tensor * dst) {
  10661. const struct ggml_tensor * src0 = dst->src[0];
  10662. switch (src0->type) {
  10663. case GGML_TYPE_F16:
  10664. {
  10665. ggml_compute_forward_rope_f16(params, dst, false);
  10666. } break;
  10667. case GGML_TYPE_F32:
  10668. {
  10669. ggml_compute_forward_rope_f32(params, dst, false);
  10670. } break;
  10671. default:
  10672. {
  10673. GGML_ASSERT(false);
  10674. } break;
  10675. }
  10676. }
  10677. // ggml_compute_forward_conv_transpose_1d
  10678. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10679. const struct ggml_compute_params * params,
  10680. struct ggml_tensor * dst) {
  10681. const struct ggml_tensor * src0 = dst->src[0];
  10682. const struct ggml_tensor * src1 = dst->src[1];
  10683. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10684. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10685. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10686. int64_t t0 = ggml_perf_time_us();
  10687. UNUSED(t0);
  10688. GGML_TENSOR_BINARY_OP_LOCALS
  10689. const int ith = params->ith;
  10690. const int nth = params->nth;
  10691. const int nk = ne00*ne01*ne02;
  10692. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10693. GGML_ASSERT(nb10 == sizeof(float));
  10694. if (params->type == GGML_TASK_TYPE_INIT) {
  10695. if (ith != 0) {
  10696. return;
  10697. }
  10698. memset(params->wdata, 0, params->wsize);
  10699. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10700. {
  10701. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10702. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10703. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10704. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10705. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10706. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10707. dst_data[i00*ne02 + i02] = src[i00];
  10708. }
  10709. }
  10710. }
  10711. }
  10712. // permute source data (src1) from (L x Cin) to (Cin x L)
  10713. {
  10714. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10715. ggml_fp16_t * dst_data = wdata;
  10716. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10717. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10718. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10719. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10720. }
  10721. }
  10722. }
  10723. // need to zero dst since we are accumulating into it
  10724. memset(dst->data, 0, ggml_nbytes(dst));
  10725. return;
  10726. }
  10727. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10728. return;
  10729. }
  10730. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10731. // total rows in dst
  10732. const int nr = ne1;
  10733. // rows per thread
  10734. const int dr = (nr + nth - 1)/nth;
  10735. // row range for this thread
  10736. const int ir0 = dr*ith;
  10737. const int ir1 = MIN(ir0 + dr, nr);
  10738. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10739. ggml_fp16_t * const wdata_src = wdata + nk;
  10740. for (int i1 = ir0; i1 < ir1; i1++) {
  10741. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10742. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10743. for (int i10 = 0; i10 < ne10; i10++) {
  10744. const int i1n = i10*ne11;
  10745. for (int i00 = 0; i00 < ne00; i00++) {
  10746. float v = 0;
  10747. ggml_vec_dot_f16(ne02, &v, 0,
  10748. (ggml_fp16_t *) wdata_src + i1n, 0,
  10749. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10750. dst_data[i10*s0 + i00] += v;
  10751. }
  10752. }
  10753. }
  10754. }
  10755. static void ggml_compute_forward_conv_transpose_1d_f32(
  10756. const struct ggml_compute_params * params,
  10757. struct ggml_tensor * dst) {
  10758. const struct ggml_tensor * src0 = dst->src[0];
  10759. const struct ggml_tensor * src1 = dst->src[1];
  10760. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10761. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10762. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10763. int64_t t0 = ggml_perf_time_us();
  10764. UNUSED(t0);
  10765. GGML_TENSOR_BINARY_OP_LOCALS
  10766. const int ith = params->ith;
  10767. const int nth = params->nth;
  10768. const int nk = ne00*ne01*ne02;
  10769. GGML_ASSERT(nb00 == sizeof(float));
  10770. GGML_ASSERT(nb10 == sizeof(float));
  10771. if (params->type == GGML_TASK_TYPE_INIT) {
  10772. if (ith != 0) {
  10773. return;
  10774. }
  10775. memset(params->wdata, 0, params->wsize);
  10776. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10777. {
  10778. float * const wdata = (float *) params->wdata + 0;
  10779. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10780. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10781. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10782. float * dst_data = wdata + i01*ne00*ne02;
  10783. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10784. dst_data[i00*ne02 + i02] = src[i00];
  10785. }
  10786. }
  10787. }
  10788. }
  10789. // prepare source data (src1)
  10790. {
  10791. float * const wdata = (float *) params->wdata + nk;
  10792. float * dst_data = wdata;
  10793. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10794. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10795. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10796. dst_data[i10*ne11 + i11] = src[i10];
  10797. }
  10798. }
  10799. }
  10800. // need to zero dst since we are accumulating into it
  10801. memset(dst->data, 0, ggml_nbytes(dst));
  10802. return;
  10803. }
  10804. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10805. return;
  10806. }
  10807. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10808. // total rows in dst
  10809. const int nr = ne1;
  10810. // rows per thread
  10811. const int dr = (nr + nth - 1)/nth;
  10812. // row range for this thread
  10813. const int ir0 = dr*ith;
  10814. const int ir1 = MIN(ir0 + dr, nr);
  10815. float * const wdata = (float *) params->wdata + 0;
  10816. float * const wdata_src = wdata + nk;
  10817. for (int i1 = ir0; i1 < ir1; i1++) {
  10818. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10819. float * wdata_kernel = wdata + i1*ne02*ne00;
  10820. for (int i10 = 0; i10 < ne10; i10++) {
  10821. const int i1n = i10*ne11;
  10822. for (int i00 = 0; i00 < ne00; i00++) {
  10823. float v = 0;
  10824. ggml_vec_dot_f32(ne02, &v, 0,
  10825. wdata_src + i1n, 0,
  10826. wdata_kernel + i00*ne02, 0, 1);
  10827. dst_data[i10*s0 + i00] += v;
  10828. }
  10829. }
  10830. }
  10831. }
  10832. static void ggml_compute_forward_conv_transpose_1d(
  10833. const struct ggml_compute_params * params,
  10834. struct ggml_tensor * dst) {
  10835. const struct ggml_tensor * src0 = dst->src[0];
  10836. switch (src0->type) {
  10837. case GGML_TYPE_F16:
  10838. {
  10839. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10840. } break;
  10841. case GGML_TYPE_F32:
  10842. {
  10843. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10844. } break;
  10845. default:
  10846. {
  10847. GGML_ASSERT(false);
  10848. } break;
  10849. }
  10850. }
  10851. // src0: kernel [OC, IC, KH, KW]
  10852. // src1: image [N, IC, IH, IW]
  10853. // dst: result [N, OH, OW, IC*KH*KW]
  10854. static void ggml_compute_forward_im2col_f32(
  10855. const struct ggml_compute_params * params,
  10856. struct ggml_tensor * dst) {
  10857. const struct ggml_tensor * src0 = dst->src[0];
  10858. const struct ggml_tensor * src1 = dst->src[1];
  10859. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10860. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10861. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10862. int64_t t0 = ggml_perf_time_us();
  10863. UNUSED(t0);
  10864. GGML_TENSOR_BINARY_OP_LOCALS;
  10865. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10866. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10867. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10868. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10869. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10870. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10871. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10872. const int ith = params->ith;
  10873. const int nth = params->nth;
  10874. const int64_t N = is_2D ? ne13 : ne12;
  10875. const int64_t IC = is_2D ? ne12 : ne11;
  10876. const int64_t IH = is_2D ? ne11 : 1;
  10877. const int64_t IW = ne10;
  10878. const int64_t KH = is_2D ? ne01 : 1;
  10879. const int64_t KW = ne00;
  10880. const int64_t OH = is_2D ? ne2 : 1;
  10881. const int64_t OW = ne1;
  10882. int ofs0 = is_2D ? nb13 : nb12;
  10883. int ofs1 = is_2D ? nb12 : nb11;
  10884. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10885. GGML_ASSERT(nb10 == sizeof(float));
  10886. if (params->type == GGML_TASK_TYPE_INIT) {
  10887. return;
  10888. }
  10889. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10890. return;
  10891. }
  10892. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10893. {
  10894. float * const wdata = (float *) dst->data;
  10895. for (int64_t in = 0; in < N; in++) {
  10896. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10897. for (int64_t iow = 0; iow < OW; iow++) {
  10898. for (int64_t iic = ith; iic < IC; iic += nth) {
  10899. // micro kernel
  10900. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10901. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10902. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10903. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10904. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10905. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10906. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10907. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10908. } else {
  10909. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10910. }
  10911. }
  10912. }
  10913. }
  10914. }
  10915. }
  10916. }
  10917. }
  10918. }
  10919. // src0: kernel [OC, IC, KH, KW]
  10920. // src1: image [N, IC, IH, IW]
  10921. // dst: result [N, OH, OW, IC*KH*KW]
  10922. static void ggml_compute_forward_im2col_f16(
  10923. const struct ggml_compute_params * params,
  10924. struct ggml_tensor * dst) {
  10925. const struct ggml_tensor * src0 = dst->src[0];
  10926. const struct ggml_tensor * src1 = dst->src[1];
  10927. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10928. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10929. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10930. int64_t t0 = ggml_perf_time_us();
  10931. UNUSED(t0);
  10932. GGML_TENSOR_BINARY_OP_LOCALS;
  10933. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10934. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10935. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10936. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10937. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10938. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10939. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10940. const int ith = params->ith;
  10941. const int nth = params->nth;
  10942. const int64_t N = is_2D ? ne13 : ne12;
  10943. const int64_t IC = is_2D ? ne12 : ne11;
  10944. const int64_t IH = is_2D ? ne11 : 1;
  10945. const int64_t IW = ne10;
  10946. const int64_t KH = is_2D ? ne01 : 1;
  10947. const int64_t KW = ne00;
  10948. const int64_t OH = is_2D ? ne2 : 1;
  10949. const int64_t OW = ne1;
  10950. int ofs0 = is_2D ? nb13 : nb12;
  10951. int ofs1 = is_2D ? nb12 : nb11;
  10952. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10953. GGML_ASSERT(nb10 == sizeof(float));
  10954. if (params->type == GGML_TASK_TYPE_INIT) {
  10955. return;
  10956. }
  10957. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10958. return;
  10959. }
  10960. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10961. {
  10962. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10963. for (int64_t in = 0; in < N; in++) {
  10964. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10965. for (int64_t iow = 0; iow < OW; iow++) {
  10966. for (int64_t iic = ith; iic < IC; iic += nth) {
  10967. // micro kernel
  10968. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10969. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10970. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10971. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10972. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10973. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10974. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10975. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10976. } else {
  10977. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10978. }
  10979. }
  10980. }
  10981. }
  10982. }
  10983. }
  10984. }
  10985. }
  10986. }
  10987. static void ggml_compute_forward_im2col(
  10988. const struct ggml_compute_params * params,
  10989. struct ggml_tensor * dst) {
  10990. switch (dst->type) {
  10991. case GGML_TYPE_F16:
  10992. {
  10993. ggml_compute_forward_im2col_f16(params, dst);
  10994. } break;
  10995. case GGML_TYPE_F32:
  10996. {
  10997. ggml_compute_forward_im2col_f32(params, dst);
  10998. } break;
  10999. default:
  11000. {
  11001. GGML_ASSERT(false);
  11002. } break;
  11003. }
  11004. }
  11005. // ggml_compute_forward_conv_transpose_2d
  11006. static void ggml_compute_forward_conv_transpose_2d(
  11007. const struct ggml_compute_params * params,
  11008. struct ggml_tensor * dst) {
  11009. const struct ggml_tensor * src0 = dst->src[0];
  11010. const struct ggml_tensor * src1 = dst->src[1];
  11011. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11012. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11013. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11014. int64_t t0 = ggml_perf_time_us();
  11015. UNUSED(t0);
  11016. GGML_TENSOR_BINARY_OP_LOCALS
  11017. const int ith = params->ith;
  11018. const int nth = params->nth;
  11019. const int nk = ne00*ne01*ne02*ne03;
  11020. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11021. GGML_ASSERT(nb10 == sizeof(float));
  11022. if (params->type == GGML_TASK_TYPE_INIT) {
  11023. if (ith != 0) {
  11024. return;
  11025. }
  11026. memset(params->wdata, 0, params->wsize);
  11027. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11028. {
  11029. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11030. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11031. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11032. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11033. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11035. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11036. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11037. }
  11038. }
  11039. }
  11040. }
  11041. }
  11042. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11043. {
  11044. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11045. for (int i12 = 0; i12 < ne12; i12++) {
  11046. for (int i11 = 0; i11 < ne11; i11++) {
  11047. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11048. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11049. for (int i10 = 0; i10 < ne10; i10++) {
  11050. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11051. }
  11052. }
  11053. }
  11054. }
  11055. memset(dst->data, 0, ggml_nbytes(dst));
  11056. return;
  11057. }
  11058. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11059. return;
  11060. }
  11061. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11062. // total patches in dst
  11063. const int np = ne2;
  11064. // patches per thread
  11065. const int dp = (np + nth - 1)/nth;
  11066. // patch range for this thread
  11067. const int ip0 = dp*ith;
  11068. const int ip1 = MIN(ip0 + dp, np);
  11069. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11070. ggml_fp16_t * const wdata_src = wdata + nk;
  11071. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11072. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11073. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11074. for (int i11 = 0; i11 < ne11; i11++) {
  11075. for (int i10 = 0; i10 < ne10; i10++) {
  11076. const int i1n = i11*ne10*ne12 + i10*ne12;
  11077. for (int i01 = 0; i01 < ne01; i01++) {
  11078. for (int i00 = 0; i00 < ne00; i00++) {
  11079. float v = 0;
  11080. ggml_vec_dot_f16(ne03, &v, 0,
  11081. wdata_src + i1n, 0,
  11082. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11083. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11084. }
  11085. }
  11086. }
  11087. }
  11088. }
  11089. }
  11090. // ggml_compute_forward_pool_1d_sk_p0
  11091. static void ggml_compute_forward_pool_1d_sk_p0(
  11092. const struct ggml_compute_params * params,
  11093. const enum ggml_op_pool op,
  11094. const int k,
  11095. struct ggml_tensor * dst) {
  11096. const struct ggml_tensor * src = dst->src[0];
  11097. assert(src->type == GGML_TYPE_F32);
  11098. assert(params->ith == 0);
  11099. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11100. return;
  11101. }
  11102. const char * cdata = (const char *)src->data;
  11103. const char * const data_end = cdata + ggml_nbytes(src);
  11104. float * drow = (float *)dst->data;
  11105. const int64_t rs = dst->ne[0];
  11106. while (cdata < data_end) {
  11107. const float * const srow = (const float *)cdata;
  11108. int j = 0;
  11109. for (int64_t i = 0; i < rs; ++i) {
  11110. switch (op) {
  11111. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11112. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11113. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11114. }
  11115. for (int ki = 0; ki < k; ++ki) {
  11116. switch (op) {
  11117. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11118. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11119. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11120. }
  11121. ++j;
  11122. }
  11123. switch (op) {
  11124. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11125. case GGML_OP_POOL_MAX: break;
  11126. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11127. }
  11128. }
  11129. cdata += src->nb[1];
  11130. drow += rs;
  11131. }
  11132. }
  11133. // ggml_compute_forward_pool_1d
  11134. static void ggml_compute_forward_pool_1d(
  11135. const struct ggml_compute_params * params,
  11136. struct ggml_tensor * dst) {
  11137. const int32_t * opts = (const int32_t *)dst->op_params;
  11138. enum ggml_op_pool op = opts[0];
  11139. const int k0 = opts[1];
  11140. const int s0 = opts[2];
  11141. const int p0 = opts[3];
  11142. GGML_ASSERT(p0 == 0); // padding not supported
  11143. GGML_ASSERT(k0 == s0); // only s = k supported
  11144. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11145. }
  11146. // ggml_compute_forward_pool_2d
  11147. static void ggml_compute_forward_pool_2d(
  11148. const struct ggml_compute_params * params,
  11149. struct ggml_tensor * dst) {
  11150. const struct ggml_tensor * src = dst->src[0];
  11151. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11152. GGML_ASSERT(params->ith == 0);
  11153. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11154. return;
  11155. }
  11156. const int32_t * opts = (const int32_t *)dst->op_params;
  11157. enum ggml_op_pool op = opts[0];
  11158. const int k0 = opts[1];
  11159. const int k1 = opts[2];
  11160. const int s0 = opts[3];
  11161. const int s1 = opts[4];
  11162. const int p0 = opts[5];
  11163. const int p1 = opts[6];
  11164. const char * cdata = (const char*)src->data;
  11165. const char * const data_end = cdata + ggml_nbytes(src);
  11166. const int64_t px = dst->ne[0];
  11167. const int64_t py = dst->ne[1];
  11168. const int64_t pa = px * py;
  11169. float * dplane = (float *)dst->data;
  11170. const int ka = k0 * k1;
  11171. const int offset0 = -p0;
  11172. const int offset1 = -p1;
  11173. while (cdata < data_end) {
  11174. for (int oy = 0; oy < py; ++oy) {
  11175. float * const drow = dplane + oy * px;
  11176. for (int ox = 0; ox < px; ++ox) {
  11177. float * const out = drow + ox;
  11178. switch (op) {
  11179. case GGML_OP_POOL_AVG: *out = 0; break;
  11180. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11181. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11182. }
  11183. const int ix = offset0 + ox * s0;
  11184. const int iy = offset1 + oy * s1;
  11185. for (int ky = 0; ky < k1; ++ky) {
  11186. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11187. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11188. for (int kx = 0; kx < k0; ++kx) {
  11189. int j = ix + kx;
  11190. if (j < 0 || j >= src->ne[0]) continue;
  11191. switch (op) {
  11192. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11193. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11194. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11195. }
  11196. }
  11197. }
  11198. switch (op) {
  11199. case GGML_OP_POOL_AVG: *out /= ka; break;
  11200. case GGML_OP_POOL_MAX: break;
  11201. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11202. }
  11203. }
  11204. }
  11205. cdata += src->nb[2];
  11206. dplane += pa;
  11207. }
  11208. }
  11209. // ggml_compute_forward_upscale
  11210. static void ggml_compute_forward_upscale_f32(
  11211. const struct ggml_compute_params * params,
  11212. struct ggml_tensor * dst) {
  11213. const struct ggml_tensor * src0 = dst->src[0];
  11214. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11215. return;
  11216. }
  11217. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11218. const int ith = params->ith;
  11219. const int nth = params->nth;
  11220. GGML_TENSOR_UNARY_OP_LOCALS
  11221. const int scale_factor = dst->op_params[0];
  11222. // TODO: optimize
  11223. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11224. const int64_t i03 = i3;
  11225. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11226. const int64_t i02 = i2;
  11227. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11228. const int64_t i01 = i1 / scale_factor;
  11229. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11230. const int64_t i00 = i0 / scale_factor;
  11231. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11232. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11233. *y = *x;
  11234. }
  11235. }
  11236. }
  11237. }
  11238. }
  11239. static void ggml_compute_forward_upscale(
  11240. const struct ggml_compute_params * params,
  11241. struct ggml_tensor * dst) {
  11242. const struct ggml_tensor * src0 = dst->src[0];
  11243. switch (src0->type) {
  11244. case GGML_TYPE_F32:
  11245. {
  11246. ggml_compute_forward_upscale_f32(params, dst);
  11247. } break;
  11248. default:
  11249. {
  11250. GGML_ASSERT(false);
  11251. } break;
  11252. }
  11253. }
  11254. // ggml_compute_forward_pad
  11255. static void ggml_compute_forward_pad_f32(
  11256. const struct ggml_compute_params * params,
  11257. struct ggml_tensor * dst) {
  11258. const struct ggml_tensor * src0 = dst->src[0];
  11259. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11260. return;
  11261. }
  11262. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11263. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11264. const int ith = params->ith;
  11265. const int nth = params->nth;
  11266. GGML_TENSOR_UNARY_OP_LOCALS
  11267. float * dst_ptr = (float *) dst->data;
  11268. // TODO: optimize
  11269. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11270. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11271. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11272. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11273. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11274. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11275. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11276. dst_ptr[dst_idx] = *src_ptr;
  11277. } else {
  11278. dst_ptr[dst_idx] = 0;
  11279. }
  11280. }
  11281. }
  11282. }
  11283. }
  11284. }
  11285. static void ggml_compute_forward_pad(
  11286. const struct ggml_compute_params * params,
  11287. struct ggml_tensor * dst) {
  11288. const struct ggml_tensor * src0 = dst->src[0];
  11289. switch (src0->type) {
  11290. case GGML_TYPE_F32:
  11291. {
  11292. ggml_compute_forward_pad_f32(params, dst);
  11293. } break;
  11294. default:
  11295. {
  11296. GGML_ASSERT(false);
  11297. } break;
  11298. }
  11299. }
  11300. // ggml_compute_forward_arange
  11301. static void ggml_compute_forward_arange_f32(
  11302. const struct ggml_compute_params * params,
  11303. struct ggml_tensor * dst) {
  11304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11305. return;
  11306. }
  11307. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11308. const int ith = params->ith;
  11309. const int nth = params->nth;
  11310. const float start = ggml_get_op_params_f32(dst, 0);
  11311. const float stop = ggml_get_op_params_f32(dst, 1);
  11312. const float step = ggml_get_op_params_f32(dst, 2);
  11313. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11314. GGML_ASSERT(ggml_nelements(dst) == steps);
  11315. for (int64_t i = ith; i < steps; i+= nth) {
  11316. float value = start + step * i;
  11317. ((float *)dst->data)[i] = value;
  11318. }
  11319. }
  11320. static void ggml_compute_forward_arange(
  11321. const struct ggml_compute_params * params,
  11322. struct ggml_tensor * dst) {
  11323. switch (dst->type) {
  11324. case GGML_TYPE_F32:
  11325. {
  11326. ggml_compute_forward_arange_f32(params, dst);
  11327. } break;
  11328. default:
  11329. {
  11330. GGML_ASSERT(false);
  11331. } break;
  11332. }
  11333. }
  11334. static void ggml_compute_forward_timestep_embedding_f32(
  11335. const struct ggml_compute_params * params,
  11336. struct ggml_tensor * dst) {
  11337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11338. return;
  11339. }
  11340. const struct ggml_tensor * src0 = dst->src[0];
  11341. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11342. const int ith = params->ith;
  11343. const int nth = params->nth;
  11344. GGML_TENSOR_UNARY_OP_LOCALS
  11345. const int dim = ggml_get_op_params_i32(dst, 0);
  11346. const int max_period = ggml_get_op_params_i32(dst, 1);
  11347. int half = dim / 2;
  11348. for (int64_t i = 0; i < ne00; i++) {
  11349. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11350. for (int64_t j = ith; j < half; j += nth) {
  11351. float timestep = ((float *)src0->data)[i];
  11352. float freq = (float)expf(-logf(max_period) * j / half);
  11353. float arg = timestep * freq;
  11354. embed_data[j] = cosf(arg);
  11355. embed_data[j + half] = sinf(arg);
  11356. }
  11357. if (dim % 2 != 0 && ith == 0) {
  11358. embed_data[dim] = 0.f;
  11359. }
  11360. }
  11361. }
  11362. static void ggml_compute_forward_timestep_embedding(
  11363. const struct ggml_compute_params * params,
  11364. struct ggml_tensor * dst) {
  11365. const struct ggml_tensor * src0 = dst->src[0];
  11366. switch (src0->type) {
  11367. case GGML_TYPE_F32:
  11368. {
  11369. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11370. } break;
  11371. default:
  11372. {
  11373. GGML_ASSERT(false);
  11374. } break;
  11375. }
  11376. }
  11377. // ggml_compute_forward_argsort
  11378. static void ggml_compute_forward_argsort_f32(
  11379. const struct ggml_compute_params * params,
  11380. struct ggml_tensor * dst) {
  11381. const struct ggml_tensor * src0 = dst->src[0];
  11382. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11383. return;
  11384. }
  11385. GGML_TENSOR_UNARY_OP_LOCALS
  11386. GGML_ASSERT(nb0 == sizeof(float));
  11387. const int ith = params->ith;
  11388. const int nth = params->nth;
  11389. const int64_t nr = ggml_nrows(src0);
  11390. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11391. for (int64_t i = ith; i < nr; i += nth) {
  11392. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11393. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11394. for (int64_t j = 0; j < ne0; j++) {
  11395. dst_data[j] = j;
  11396. }
  11397. // C doesn't have a functional sort, so we do a bubble sort instead
  11398. for (int64_t j = 0; j < ne0; j++) {
  11399. for (int64_t k = j + 1; k < ne0; k++) {
  11400. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11401. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11402. int32_t tmp = dst_data[j];
  11403. dst_data[j] = dst_data[k];
  11404. dst_data[k] = tmp;
  11405. }
  11406. }
  11407. }
  11408. }
  11409. }
  11410. static void ggml_compute_forward_argsort(
  11411. const struct ggml_compute_params * params,
  11412. struct ggml_tensor * dst) {
  11413. const struct ggml_tensor * src0 = dst->src[0];
  11414. switch (src0->type) {
  11415. case GGML_TYPE_F32:
  11416. {
  11417. ggml_compute_forward_argsort_f32(params, dst);
  11418. } break;
  11419. default:
  11420. {
  11421. GGML_ASSERT(false);
  11422. } break;
  11423. }
  11424. }
  11425. // ggml_compute_forward_flash_attn
  11426. static void ggml_compute_forward_flash_attn_f32(
  11427. const struct ggml_compute_params * params,
  11428. const bool masked,
  11429. struct ggml_tensor * dst) {
  11430. const struct ggml_tensor * q = dst->src[0];
  11431. const struct ggml_tensor * k = dst->src[1];
  11432. const struct ggml_tensor * v = dst->src[2];
  11433. int64_t t0 = ggml_perf_time_us();
  11434. UNUSED(t0);
  11435. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11436. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11437. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11438. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11439. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11440. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11441. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11442. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11443. const int ith = params->ith;
  11444. const int nth = params->nth;
  11445. const int64_t D = neq0;
  11446. const int64_t N = neq1;
  11447. const int64_t P = nek1 - N;
  11448. const int64_t M = P + N;
  11449. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11450. GGML_ASSERT(ne0 == D);
  11451. GGML_ASSERT(ne1 == N);
  11452. GGML_ASSERT(P >= 0);
  11453. GGML_ASSERT(nbq0 == sizeof(float));
  11454. GGML_ASSERT(nbk0 == sizeof(float));
  11455. GGML_ASSERT(nbv0 == sizeof(float));
  11456. GGML_ASSERT(neq0 == D);
  11457. GGML_ASSERT(nek0 == D);
  11458. GGML_ASSERT(nev1 == D);
  11459. GGML_ASSERT(neq1 == N);
  11460. GGML_ASSERT(nek1 == N + P);
  11461. GGML_ASSERT(nev1 == D);
  11462. // dst cannot be transposed or permuted
  11463. GGML_ASSERT(nb0 == sizeof(float));
  11464. GGML_ASSERT(nb0 <= nb1);
  11465. GGML_ASSERT(nb1 <= nb2);
  11466. GGML_ASSERT(nb2 <= nb3);
  11467. if (params->type == GGML_TASK_TYPE_INIT) {
  11468. return;
  11469. }
  11470. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11471. return;
  11472. }
  11473. // parallelize by q rows using ggml_vec_dot_f32
  11474. // total rows in q
  11475. const int nr = neq1*neq2*neq3;
  11476. // rows per thread
  11477. const int dr = (nr + nth - 1)/nth;
  11478. // row range for this thread
  11479. const int ir0 = dr*ith;
  11480. const int ir1 = MIN(ir0 + dr, nr);
  11481. const float scale = 1.0f/sqrtf(D);
  11482. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11483. for (int ir = ir0; ir < ir1; ++ir) {
  11484. // q indices
  11485. const int iq3 = ir/(neq2*neq1);
  11486. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11487. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11488. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11489. for (int i = M; i < Mup; ++i) {
  11490. S[i] = -INFINITY;
  11491. }
  11492. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11493. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11494. // k indices
  11495. const int ik3 = iq3;
  11496. const int ik2 = iq2 % nek2;
  11497. const int ik1 = ic;
  11498. // S indices
  11499. const int i1 = ik1;
  11500. ggml_vec_dot_f32(neq0,
  11501. S + i1, 0,
  11502. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11503. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11504. }
  11505. // scale
  11506. ggml_vec_scale_f32(masked_begin, S, scale);
  11507. for (int64_t i = masked_begin; i < M; i++) {
  11508. S[i] = -INFINITY;
  11509. }
  11510. // softmax
  11511. // exclude known -INF S[..] values from max and loop
  11512. // dont forget to set their SW values to zero
  11513. {
  11514. float max = -INFINITY;
  11515. ggml_vec_max_f32(masked_begin, &max, S);
  11516. ggml_float sum = 0.0;
  11517. {
  11518. #ifdef GGML_SOFT_MAX_ACCELERATE
  11519. max = -max;
  11520. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11521. vvexpf(S, S, &Mup);
  11522. ggml_vec_sum_f32(Mup, &sum, S);
  11523. #else
  11524. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11525. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11526. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11527. if (i >= masked_begin) {
  11528. break;
  11529. }
  11530. float * SS = S + i;
  11531. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11532. if (i + j >= masked_begin) {
  11533. break;
  11534. } else if (SS[j] == -INFINITY) {
  11535. SS[j] = 0.0f;
  11536. } else {
  11537. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11538. const float val = expf(SS[j] - max);
  11539. #else
  11540. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11541. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11542. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11543. #endif
  11544. sump[j] += (ggml_float)val;
  11545. SS[j] = val;
  11546. }
  11547. }
  11548. }
  11549. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11550. sum += sump[i];
  11551. }
  11552. #endif
  11553. }
  11554. assert(sum > 0.0);
  11555. sum = 1.0/sum;
  11556. ggml_vec_scale_f32(masked_begin, S, sum);
  11557. #ifndef NDEBUG
  11558. for (int i = 0; i < masked_begin; ++i) {
  11559. assert(!isnan(S[i]));
  11560. assert(!isinf(S[i]));
  11561. }
  11562. #endif
  11563. }
  11564. for (int64_t ic = 0; ic < nev1; ++ic) {
  11565. // dst indices
  11566. const int i1 = iq1;
  11567. const int i2 = iq2;
  11568. const int i3 = iq3;
  11569. // v indices
  11570. const int iv2 = iq2 % nev2;
  11571. const int iv3 = iq3;
  11572. ggml_vec_dot_f32(masked_begin,
  11573. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11574. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11575. S, 0, 1);
  11576. }
  11577. }
  11578. }
  11579. static void ggml_compute_forward_flash_attn_f16(
  11580. const struct ggml_compute_params * params,
  11581. const bool masked,
  11582. struct ggml_tensor * dst) {
  11583. const struct ggml_tensor * q = dst->src[0];
  11584. const struct ggml_tensor * k = dst->src[1];
  11585. const struct ggml_tensor * v = dst->src[2];
  11586. int64_t t0 = ggml_perf_time_us();
  11587. UNUSED(t0);
  11588. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11589. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11590. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11591. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11592. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11593. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11594. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11595. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11596. const int ith = params->ith;
  11597. const int nth = params->nth;
  11598. const int64_t D = neq0;
  11599. const int64_t N = neq1;
  11600. const int64_t P = nek1 - N;
  11601. const int64_t M = P + N;
  11602. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11603. GGML_ASSERT(ne0 == D);
  11604. GGML_ASSERT(ne1 == N);
  11605. GGML_ASSERT(P >= 0);
  11606. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11607. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11608. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11609. GGML_ASSERT(neq0 == D);
  11610. GGML_ASSERT(nek0 == D);
  11611. GGML_ASSERT(nev1 == D);
  11612. GGML_ASSERT(neq1 == N);
  11613. GGML_ASSERT(nek1 == N + P);
  11614. GGML_ASSERT(nev1 == D);
  11615. // dst cannot be transposed or permuted
  11616. GGML_ASSERT(nb0 == sizeof(float));
  11617. GGML_ASSERT(nb0 <= nb1);
  11618. GGML_ASSERT(nb1 <= nb2);
  11619. GGML_ASSERT(nb2 <= nb3);
  11620. if (params->type == GGML_TASK_TYPE_INIT) {
  11621. return;
  11622. }
  11623. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11624. return;
  11625. }
  11626. // parallelize by q rows using ggml_vec_dot_f32
  11627. // total rows in q
  11628. const int nr = neq1*neq2*neq3;
  11629. // rows per thread
  11630. const int dr = (nr + nth - 1)/nth;
  11631. // row range for this thread
  11632. const int ir0 = dr*ith;
  11633. const int ir1 = MIN(ir0 + dr, nr);
  11634. const float scale = 1.0f/sqrtf(D);
  11635. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11636. for (int ir = ir0; ir < ir1; ++ir) {
  11637. // q indices
  11638. const int iq3 = ir/(neq2*neq1);
  11639. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11640. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11641. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11642. for (int i = M; i < Mup; ++i) {
  11643. S[i] = -INFINITY;
  11644. }
  11645. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11646. for (int64_t ic = 0; ic < nek1; ++ic) {
  11647. // k indices
  11648. const int ik3 = iq3;
  11649. const int ik2 = iq2 % nek2;
  11650. const int ik1 = ic;
  11651. // S indices
  11652. const int i1 = ik1;
  11653. ggml_vec_dot_f16(neq0,
  11654. S + i1, 0,
  11655. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11656. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11657. }
  11658. } else {
  11659. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11660. // k indices
  11661. const int ik3 = iq3;
  11662. const int ik2 = iq2 % nek2;
  11663. const int ik1 = ic;
  11664. // S indices
  11665. const int i1 = ik1;
  11666. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11667. S + i1,
  11668. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11669. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11670. }
  11671. }
  11672. // scale
  11673. ggml_vec_scale_f32(nek1, S, scale);
  11674. if (masked) {
  11675. for (int64_t i = P; i < M; i++) {
  11676. if (i > P + iq1) {
  11677. S[i] = -INFINITY;
  11678. }
  11679. }
  11680. }
  11681. // softmax
  11682. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11683. // dont forget to set their S values to zero
  11684. {
  11685. float max = -INFINITY;
  11686. ggml_vec_max_f32(M, &max, S);
  11687. ggml_float sum = 0.0;
  11688. {
  11689. #ifdef GGML_SOFT_MAX_ACCELERATE
  11690. max = -max;
  11691. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11692. vvexpf(S, S, &Mup);
  11693. ggml_vec_sum_f32(Mup, &sum, S);
  11694. #else
  11695. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11696. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11697. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11698. float * SS = S + i;
  11699. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11700. if (SS[j] == -INFINITY) {
  11701. SS[j] = 0.0f;
  11702. } else {
  11703. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11704. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11705. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11706. sump[j] += (ggml_float)val;
  11707. SS[j] = val;
  11708. }
  11709. }
  11710. }
  11711. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11712. sum += sump[i];
  11713. }
  11714. #endif
  11715. }
  11716. assert(sum > 0.0);
  11717. sum = 1.0/sum;
  11718. ggml_vec_scale_f32(M, S, sum);
  11719. #ifndef NDEBUG
  11720. for (int i = 0; i < M; ++i) {
  11721. assert(!isnan(S[i]));
  11722. assert(!isinf(S[i]));
  11723. }
  11724. #endif
  11725. }
  11726. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11727. for (int64_t i = 0; i < M; i++) {
  11728. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11729. }
  11730. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11731. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11732. for (int64_t ic = 0; ic < nev1; ++ic) {
  11733. // dst indices
  11734. const int i1 = iq1;
  11735. const int i2 = iq2;
  11736. const int i3 = iq3;
  11737. // v indices
  11738. const int iv2 = iq2 % nev2;
  11739. const int iv3 = iq3;
  11740. ggml_vec_dot_f16(nev0,
  11741. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11742. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11743. S16, 0, 1);
  11744. }
  11745. } else {
  11746. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11747. // dst indices
  11748. const int i1 = iq1;
  11749. const int i2 = iq2;
  11750. const int i3 = iq3;
  11751. // v indices
  11752. const int iv2 = iq2 % nev2;
  11753. const int iv3 = iq3;
  11754. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11755. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11756. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11757. S16);
  11758. }
  11759. }
  11760. }
  11761. }
  11762. static void ggml_compute_forward_flash_attn(
  11763. const struct ggml_compute_params * params,
  11764. const bool masked,
  11765. struct ggml_tensor * dst) {
  11766. const struct ggml_tensor * q = dst->src[0];
  11767. switch (q->type) {
  11768. case GGML_TYPE_F16:
  11769. {
  11770. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11771. } break;
  11772. case GGML_TYPE_F32:
  11773. {
  11774. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11775. } break;
  11776. default:
  11777. {
  11778. GGML_ASSERT(false);
  11779. } break;
  11780. }
  11781. }
  11782. // ggml_compute_forward_flash_ff
  11783. static void ggml_compute_forward_flash_ff_f16(
  11784. const struct ggml_compute_params * params,
  11785. struct ggml_tensor * dst) {
  11786. const struct ggml_tensor * a = dst->src[0]; // F16
  11787. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11788. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11789. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11790. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11791. int64_t t0 = ggml_perf_time_us();
  11792. UNUSED(t0);
  11793. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11794. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11795. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11796. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11797. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11798. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11799. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11800. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11801. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11802. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11803. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11804. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11805. const int ith = params->ith;
  11806. const int nth = params->nth;
  11807. const int64_t D = nea0;
  11808. //const int64_t N = nea1;
  11809. const int64_t M = neb01;
  11810. GGML_ASSERT(ne0 == nea0);
  11811. GGML_ASSERT(ne1 == nea1);
  11812. GGML_ASSERT(ne2 == nea2);
  11813. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11814. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11815. GGML_ASSERT(nbb10 == sizeof(float));
  11816. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11817. GGML_ASSERT(nbc10 == sizeof(float));
  11818. GGML_ASSERT(neb00 == D);
  11819. GGML_ASSERT(neb01 == M);
  11820. GGML_ASSERT(neb10 == M);
  11821. GGML_ASSERT(neb11 == 1);
  11822. GGML_ASSERT(nec00 == M);
  11823. GGML_ASSERT(nec01 == D);
  11824. GGML_ASSERT(nec10 == D);
  11825. GGML_ASSERT(nec11 == 1);
  11826. // dst cannot be transposed or permuted
  11827. GGML_ASSERT(nb0 == sizeof(float));
  11828. GGML_ASSERT(nb0 <= nb1);
  11829. GGML_ASSERT(nb1 <= nb2);
  11830. GGML_ASSERT(nb2 <= nb3);
  11831. if (params->type == GGML_TASK_TYPE_INIT) {
  11832. return;
  11833. }
  11834. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11835. return;
  11836. }
  11837. // parallelize by a rows using ggml_vec_dot_f32
  11838. // total rows in a
  11839. const int nr = nea1*nea2*nea3;
  11840. // rows per thread
  11841. const int dr = (nr + nth - 1)/nth;
  11842. // row range for this thread
  11843. const int ir0 = dr*ith;
  11844. const int ir1 = MIN(ir0 + dr, nr);
  11845. for (int ir = ir0; ir < ir1; ++ir) {
  11846. // a indices
  11847. const int ia3 = ir/(nea2*nea1);
  11848. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11849. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11850. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11851. for (int64_t ic = 0; ic < neb01; ++ic) {
  11852. // b0 indices
  11853. const int ib03 = ia3;
  11854. const int ib02 = ia2;
  11855. const int ib01 = ic;
  11856. // S indices
  11857. const int i1 = ib01;
  11858. ggml_vec_dot_f16(nea0,
  11859. S + i1, 0,
  11860. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11861. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11862. }
  11863. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11864. //ggml_vec_gelu_f32(neb01, S, S);
  11865. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11866. for (int64_t i = 0; i < M; i++) {
  11867. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11868. }
  11869. ggml_vec_gelu_f16(neb01, S16, S16);
  11870. {
  11871. // dst indices
  11872. const int i1 = ia1;
  11873. const int i2 = ia2;
  11874. const int i3 = ia3;
  11875. for (int64_t ic = 0; ic < nec01; ++ic) {
  11876. ggml_vec_dot_f16(neb01,
  11877. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11878. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11879. S16, 0, 1);
  11880. }
  11881. ggml_vec_add_f32(nec01,
  11882. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11883. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11884. (float *) c1->data);
  11885. }
  11886. }
  11887. }
  11888. static void ggml_compute_forward_flash_ff(
  11889. const struct ggml_compute_params * params,
  11890. struct ggml_tensor * dst) {
  11891. const struct ggml_tensor * b0 = dst->src[1];
  11892. switch (b0->type) {
  11893. case GGML_TYPE_F16:
  11894. {
  11895. ggml_compute_forward_flash_ff_f16(params, dst);
  11896. } break;
  11897. case GGML_TYPE_F32:
  11898. {
  11899. GGML_ASSERT(false); // TODO
  11900. } break;
  11901. default:
  11902. {
  11903. GGML_ASSERT(false);
  11904. } break;
  11905. }
  11906. }
  11907. // ggml_compute_forward_flash_attn_back
  11908. static void ggml_compute_forward_flash_attn_back_f32(
  11909. const struct ggml_compute_params * params,
  11910. const bool masked,
  11911. struct ggml_tensor * dst) {
  11912. const struct ggml_tensor * q = dst->src[0];
  11913. const struct ggml_tensor * k = dst->src[1];
  11914. const struct ggml_tensor * v = dst->src[2];
  11915. const struct ggml_tensor * d = dst->src[3];
  11916. int64_t t0 = ggml_perf_time_us();
  11917. UNUSED(t0);
  11918. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11919. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11920. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11921. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11922. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11923. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11924. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11925. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11926. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11927. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11928. const int ith = params->ith;
  11929. const int nth = params->nth;
  11930. const int64_t D = neq0;
  11931. const int64_t N = neq1;
  11932. const int64_t P = nek1 - N;
  11933. const int64_t M = P + N;
  11934. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11935. const int mxDM = MAX(D, Mup);
  11936. // GGML_ASSERT(ne0 == D);
  11937. // GGML_ASSERT(ne1 == N);
  11938. GGML_ASSERT(P >= 0);
  11939. GGML_ASSERT(nbq0 == sizeof(float));
  11940. GGML_ASSERT(nbk0 == sizeof(float));
  11941. GGML_ASSERT(nbv0 == sizeof(float));
  11942. GGML_ASSERT(neq0 == D);
  11943. GGML_ASSERT(nek0 == D);
  11944. GGML_ASSERT(nev1 == D);
  11945. GGML_ASSERT(ned0 == D);
  11946. GGML_ASSERT(neq1 == N);
  11947. GGML_ASSERT(nek1 == N + P);
  11948. GGML_ASSERT(nev1 == D);
  11949. GGML_ASSERT(ned1 == N);
  11950. // dst cannot be transposed or permuted
  11951. GGML_ASSERT(nb0 == sizeof(float));
  11952. GGML_ASSERT(nb0 <= nb1);
  11953. GGML_ASSERT(nb1 <= nb2);
  11954. GGML_ASSERT(nb2 <= nb3);
  11955. if (params->type == GGML_TASK_TYPE_INIT) {
  11956. if (ith == 0) {
  11957. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11958. }
  11959. return;
  11960. }
  11961. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11962. return;
  11963. }
  11964. const int64_t elem_q = ggml_nelements(q);
  11965. const int64_t elem_k = ggml_nelements(k);
  11966. enum ggml_type result_type = dst->type;
  11967. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11968. const size_t tsize = ggml_type_size(result_type);
  11969. const size_t offs_q = 0;
  11970. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11971. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11972. void * grad_q = (char *) dst->data;
  11973. void * grad_k = (char *) dst->data + offs_k;
  11974. void * grad_v = (char *) dst->data + offs_v;
  11975. const size_t nbgq1 = nb0*neq0;
  11976. const size_t nbgq2 = nb0*neq0*neq1;
  11977. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11978. const size_t nbgk1 = nb0*nek0;
  11979. const size_t nbgk2 = nb0*nek0*nek1;
  11980. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11981. const size_t nbgv1 = nb0*nev0;
  11982. const size_t nbgv2 = nb0*nev0*nev1;
  11983. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11984. // parallelize by k rows using ggml_vec_dot_f32
  11985. // total rows in k
  11986. const int nr = nek2*nek3;
  11987. // rows per thread
  11988. const int dr = (nr + nth - 1)/nth;
  11989. // row range for this thread
  11990. const int ir0 = dr*ith;
  11991. const int ir1 = MIN(ir0 + dr, nr);
  11992. const float scale = 1.0f/sqrtf(D);
  11993. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11994. // how often k2 (and v2) is repeated in q2
  11995. int nrep = neq2/nek2;
  11996. for (int ir = ir0; ir < ir1; ++ir) {
  11997. // q indices
  11998. const int ik3 = ir/(nek2);
  11999. const int ik2 = ir - ik3*nek2;
  12000. const int iq3 = ik3;
  12001. const int id3 = ik3;
  12002. const int iv3 = ik3;
  12003. const int iv2 = ik2;
  12004. for (int irep = 0; irep < nrep; ++irep) {
  12005. const int iq2 = ik2 + irep*nek2;
  12006. const int id2 = iq2;
  12007. // (ik2 + irep*nek2) % nek2 == ik2
  12008. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12009. const int id1 = iq1;
  12010. // not sure about CACHE_LINE_SIZE_F32..
  12011. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12012. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12013. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12014. for (int i = M; i < Mup; ++i) {
  12015. S[i] = -INFINITY;
  12016. }
  12017. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12018. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12019. // k indices
  12020. const int ik1 = ic;
  12021. // S indices
  12022. const int i1 = ik1;
  12023. ggml_vec_dot_f32(neq0,
  12024. S + i1, 0,
  12025. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12026. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12027. }
  12028. // scale
  12029. ggml_vec_scale_f32(masked_begin, S, scale);
  12030. for (int64_t i = masked_begin; i < M; i++) {
  12031. S[i] = -INFINITY;
  12032. }
  12033. // softmax
  12034. // exclude known -INF S[..] values from max and loop
  12035. // dont forget to set their SM values to zero
  12036. {
  12037. float max = -INFINITY;
  12038. ggml_vec_max_f32(masked_begin, &max, S);
  12039. ggml_float sum = 0.0;
  12040. {
  12041. #ifdef GGML_SOFT_MAX_ACCELERATE
  12042. max = -max;
  12043. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12044. vvexpf(SM, SM, &Mup);
  12045. ggml_vec_sum_f32(Mup, &sum, SM);
  12046. #else
  12047. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12048. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12049. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12050. if (i >= masked_begin) {
  12051. break;
  12052. }
  12053. float * SR = S + i;
  12054. float * SW = SM + i;
  12055. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12056. if (i + j >= masked_begin) {
  12057. break;
  12058. } else if (SR[j] == -INFINITY) {
  12059. SW[j] = 0.0f;
  12060. } else {
  12061. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12062. const float val = expf(SR[j] - max);
  12063. #else
  12064. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12065. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12066. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12067. #endif
  12068. sump[j] += (ggml_float)val;
  12069. SW[j] = val;
  12070. }
  12071. }
  12072. }
  12073. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12074. sum += sump[i];
  12075. }
  12076. #endif
  12077. }
  12078. assert(sum > 0.0);
  12079. sum = 1.0/sum;
  12080. ggml_vec_scale_f32(masked_begin, SM, sum);
  12081. }
  12082. // step-by-step explanation
  12083. {
  12084. // forward-process shape grads from backward process
  12085. // parallel_for ik2,ik3:
  12086. // for irep:
  12087. // iq2 = ik2 + irep*nek2
  12088. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12089. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12090. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12091. // for iq1:
  12092. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12093. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12094. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12095. // S0 = -Inf [D,1,1,1]
  12096. // ~S1[i] = dot(kcur[:D,i], qcur)
  12097. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12098. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12099. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12100. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12101. // ~S5[i] = dot(vcur[:,i], S4)
  12102. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12103. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12104. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12105. // dst backward-/ grad[dst] = d
  12106. //
  12107. // output gradients with their dependencies:
  12108. //
  12109. // grad[kcur] = grad[S1].T @ qcur
  12110. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12111. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12112. // grad[S4] = grad[S5] @ vcur
  12113. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12114. // grad[qcur] = grad[S1] @ kcur
  12115. // grad[vcur] = grad[S5].T @ S4
  12116. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12117. //
  12118. // in post-order:
  12119. //
  12120. // S1 = qcur @ kcur.T
  12121. // S2 = S1 * scale
  12122. // S3 = diag_mask_inf(S2, P)
  12123. // S4 = softmax(S3)
  12124. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12125. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12126. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12127. // grad[qcur] = grad[S1] @ kcur
  12128. // grad[kcur] = grad[S1].T @ qcur
  12129. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12130. //
  12131. // using less variables (SM=S4):
  12132. //
  12133. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12134. // SM = softmax(S)
  12135. // S = d[:D,iq1,iq2,iq3] @ vcur
  12136. // dot_SM_gradSM = dot(SM, S)
  12137. // S = SM * (S - dot(SM, S))
  12138. // S = diag_mask_zero(S, P) * scale
  12139. //
  12140. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12141. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12142. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12143. }
  12144. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12145. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12146. // for ic:
  12147. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12148. // exclude known future zero S[..] values from operation
  12149. ggml_vec_set_f32(masked_begin, S, 0);
  12150. for (int64_t ic = 0; ic < D; ++ic) {
  12151. ggml_vec_mad_f32(masked_begin,
  12152. S,
  12153. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12154. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12155. }
  12156. // S = SM * (S - dot(SM, S))
  12157. float dot_SM_gradSM = 0;
  12158. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12159. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12160. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12161. // S = diag_mask_zero(S, P) * scale
  12162. // already done by above ggml_vec_set_f32
  12163. // exclude known zero S[..] values from operation
  12164. ggml_vec_scale_f32(masked_begin, S, scale);
  12165. // S shape [M,1]
  12166. // SM shape [M,1]
  12167. // kcur shape [D,M]
  12168. // qcur shape [D,1]
  12169. // vcur shape [M,D]
  12170. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12171. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12172. // for ic:
  12173. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12174. // exclude known zero S[..] values from loop
  12175. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12176. ggml_vec_mad_f32(D,
  12177. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12178. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12179. S[ic]);
  12180. }
  12181. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12182. // for ic:
  12183. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12184. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12185. // exclude known zero S[..] values from loop
  12186. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12187. ggml_vec_mad_f32(D,
  12188. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12189. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12190. S[ic]);
  12191. }
  12192. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12193. // for ic:
  12194. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12195. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12196. // exclude known zero SM[..] values from mad
  12197. for (int64_t ic = 0; ic < D; ++ic) {
  12198. ggml_vec_mad_f32(masked_begin,
  12199. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12200. SM,
  12201. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12202. }
  12203. }
  12204. }
  12205. }
  12206. }
  12207. static void ggml_compute_forward_flash_attn_back(
  12208. const struct ggml_compute_params * params,
  12209. const bool masked,
  12210. struct ggml_tensor * dst) {
  12211. const struct ggml_tensor * q = dst->src[0];
  12212. switch (q->type) {
  12213. case GGML_TYPE_F32:
  12214. {
  12215. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12216. } break;
  12217. default:
  12218. {
  12219. GGML_ASSERT(false);
  12220. } break;
  12221. }
  12222. }
  12223. // ggml_compute_forward_ssm_conv
  12224. static void ggml_compute_forward_ssm_conv_f32(
  12225. const struct ggml_compute_params * params,
  12226. struct ggml_tensor * dst) {
  12227. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12228. return;
  12229. }
  12230. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12231. const struct ggml_tensor * src1 = dst->src[1]; // x
  12232. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12233. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12234. const int ith = params->ith;
  12235. const int nth = params->nth;
  12236. const int nc = src2->ne[0]; // d_conv
  12237. const int nr = src0->ne[1]; // d_inner
  12238. const int n_t = src1->ne[1]; // n_tokens
  12239. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12240. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12241. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12242. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12243. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12244. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12245. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12246. // for use with the destination state offset between sequences
  12247. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12248. // rows per thread
  12249. const int dr = (nr + nth - 1)/nth;
  12250. // row range for this thread
  12251. const int ir0 = dr*ith;
  12252. const int ir1 = MIN(ir0 + dr, nr);
  12253. const int ir = ir1 - ir0;
  12254. if (n_kv > 1) {
  12255. // multiple sequences means it's hard to know when it's the first time a state is read,
  12256. // so copy them all over to the destination, just to be sure.
  12257. for (int i3 = 0; i3 < n_kv; ++i3) {
  12258. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12259. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12260. // can't use memcpy because of d_conv vs d_conv - 1
  12261. for (int i1 = 0; i1 < ir; ++i1) {
  12262. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12263. // copy s0 to last (d_conv - 1) columns of s
  12264. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12265. }
  12266. }
  12267. }
  12268. }
  12269. for (int i2 = 0; i2 < n_t; ++i2) {
  12270. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12271. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12272. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12273. float * s0; // {d_conv - 1, d_inner, n_kv}
  12274. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12275. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12276. int ne0s0;
  12277. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12278. // avoid needing to copy the state for the first token
  12279. if (i2 == 0) {
  12280. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12281. ne0s0 = src0->ne[0];
  12282. } else {
  12283. // the source is the last (d_conv - 1) columns of the destination
  12284. s0 = s + 1;
  12285. ne0s0 = nc;
  12286. }
  12287. // d_inner
  12288. for (int i1 = 0; i1 < ir; ++i1) {
  12289. // shift state left
  12290. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12291. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12292. }
  12293. // insert x on the last column
  12294. s[(nc - 1) + i1*nc] = x0[i1];
  12295. }
  12296. // handle copies when there are multiple output states
  12297. for (int i3 = 1; i3 < n_kv; ++i3) {
  12298. int32_t seq = sq[i3];
  12299. if (0 <= seq && seq < n_kv) {
  12300. float * s1 = s + (seq - sq[0])*nc*nr;
  12301. memcpy(s1, s, nc*ir*sizeof(float));
  12302. } else {
  12303. // stop at negative or too big seq_ids
  12304. break;
  12305. }
  12306. }
  12307. // it seems a little faster when this is separate from the state shift
  12308. for (int i1 = 0; i1 < ir; ++i1) {
  12309. // rowwise dot product
  12310. float sumf = 0.0f;
  12311. for (int i0 = 0; i0 < nc; ++i0) {
  12312. int i = i0 + i1*nc;
  12313. sumf += s[i] * c[i];
  12314. }
  12315. x[i1] = sumf;
  12316. }
  12317. }
  12318. }
  12319. static void ggml_compute_forward_ssm_conv(
  12320. const struct ggml_compute_params * params,
  12321. struct ggml_tensor * dst) {
  12322. switch (dst->src[0]->type) {
  12323. case GGML_TYPE_F32:
  12324. {
  12325. ggml_compute_forward_ssm_conv_f32(params, dst);
  12326. } break;
  12327. default:
  12328. {
  12329. GGML_ASSERT(false);
  12330. } break;
  12331. }
  12332. }
  12333. // ggml_compute_forward_ssm_scan
  12334. static void ggml_compute_forward_ssm_scan_f32(
  12335. const struct ggml_compute_params * params,
  12336. struct ggml_tensor * dst) {
  12337. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12338. return;
  12339. }
  12340. const struct ggml_tensor * src0 = dst->src[0]; // s
  12341. const struct ggml_tensor * src1 = dst->src[1]; // x
  12342. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12343. const struct ggml_tensor * src3 = dst->src[3]; // A
  12344. const struct ggml_tensor * src4 = dst->src[4]; // B
  12345. const struct ggml_tensor * src5 = dst->src[5]; // C
  12346. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12347. const int ith = params->ith;
  12348. const int nth = params->nth;
  12349. const int64_t nc = src0->ne[0]; // d_state
  12350. const int64_t nr = src0->ne[1]; // d_inner
  12351. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12352. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12353. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12354. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12355. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12356. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12357. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12358. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12359. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12360. // required for the dot product between s and C, and when copying the states
  12361. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12362. // required for per-sequence offsets for states
  12363. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12364. // required to get correct offset for state destination (i.e. src1->nb[2])
  12365. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12366. // rows per thread
  12367. const int dr = (nr + nth - 1)/nth;
  12368. // row range for this thread
  12369. const int ir0 = dr*ith;
  12370. const int ir1 = MIN(ir0 + dr, nr);
  12371. const int ir = ir1 - ir0;
  12372. if (n_kv > 1) {
  12373. // it's hard to know if the source states have already been copied
  12374. // when there are multiple, so copy them already.
  12375. for (int i3 = 0; i3 < n_kv; ++i3) {
  12376. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12377. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12378. memcpy(s, s0, nc*ir*sizeof(float));
  12379. }
  12380. }
  12381. for (int i2 = 0; i2 < n_t; ++i2) {
  12382. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12383. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12384. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12385. float * s0;
  12386. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12387. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12388. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12389. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12390. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12391. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12392. // avoid needing to copy the state for the first token
  12393. if (i2 == 0) {
  12394. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12395. } else {
  12396. // otherwise the source is the same as the destination
  12397. s0 = s;
  12398. }
  12399. // d_inner
  12400. for (int i1 = 0; i1 < ir; ++i1) {
  12401. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12402. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12403. float x_dt = x[i1] * dt_soft_plus;
  12404. float sumf = 0.0f;
  12405. // d_state
  12406. for (int i0 = 0; i0 < nc; ++i0) {
  12407. int i = i0 + i1*nc;
  12408. // state = prev_state * dA + dB * x
  12409. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12410. // y = rowwise_dotprod(state, C)
  12411. sumf += state * C[i0];
  12412. s[i] = state;
  12413. }
  12414. y[i1] = sumf;
  12415. }
  12416. // handle copies when there are multiple output states
  12417. for (int i3 = 1; i3 < n_kv; ++i3) {
  12418. int32_t seq = sq[i3];
  12419. if (0 <= seq && seq < n_kv) {
  12420. float * s1 = s + (seq - sq[0])*nc*nr;
  12421. memcpy(s1, s, nc*ir*sizeof(float));
  12422. } else {
  12423. // stop at negative or too big seq_ids
  12424. break;
  12425. }
  12426. }
  12427. }
  12428. }
  12429. static void ggml_compute_forward_ssm_scan(
  12430. const struct ggml_compute_params * params,
  12431. struct ggml_tensor * dst) {
  12432. switch (dst->src[0]->type) {
  12433. case GGML_TYPE_F32:
  12434. {
  12435. ggml_compute_forward_ssm_scan_f32(params, dst);
  12436. } break;
  12437. default:
  12438. {
  12439. GGML_ASSERT(false);
  12440. } break;
  12441. }
  12442. }
  12443. // ggml_compute_forward_win_part
  12444. static void ggml_compute_forward_win_part_f32(
  12445. const struct ggml_compute_params * params,
  12446. struct ggml_tensor * dst) {
  12447. const struct ggml_tensor * src0 = dst->src[0];
  12448. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12449. return;
  12450. }
  12451. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12452. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12453. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12454. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12455. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12456. assert(ne00 == ne0);
  12457. assert(ne3 == nep0*nep1);
  12458. // TODO: optimize / multi-thread
  12459. for (int py = 0; py < nep1; ++py) {
  12460. for (int px = 0; px < nep0; ++px) {
  12461. const int64_t i3 = py*nep0 + px;
  12462. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12463. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12464. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12465. const int64_t i02 = py*w + i2;
  12466. const int64_t i01 = px*w + i1;
  12467. const int64_t i00 = i0;
  12468. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12469. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12470. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12471. ((float *) dst->data)[i] = 0.0f;
  12472. } else {
  12473. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12474. }
  12475. }
  12476. }
  12477. }
  12478. }
  12479. }
  12480. }
  12481. static void ggml_compute_forward_win_part(
  12482. const struct ggml_compute_params * params,
  12483. struct ggml_tensor * dst) {
  12484. const struct ggml_tensor * src0 = dst->src[0];
  12485. switch (src0->type) {
  12486. case GGML_TYPE_F32:
  12487. {
  12488. ggml_compute_forward_win_part_f32(params, dst);
  12489. } break;
  12490. default:
  12491. {
  12492. GGML_ASSERT(false);
  12493. } break;
  12494. }
  12495. }
  12496. // ggml_compute_forward_win_unpart
  12497. static void ggml_compute_forward_win_unpart_f32(
  12498. const struct ggml_compute_params * params,
  12499. struct ggml_tensor * dst) {
  12500. const struct ggml_tensor * src0 = dst->src[0];
  12501. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12502. return;
  12503. }
  12504. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12505. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12506. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12507. // padding
  12508. const int px = (w - ne1%w)%w;
  12509. //const int py = (w - ne2%w)%w;
  12510. const int npx = (px + ne1)/w;
  12511. //const int npy = (py + ne2)/w;
  12512. assert(ne0 == ne00);
  12513. // TODO: optimize / multi-thread
  12514. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12515. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12516. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12517. const int ip2 = i2/w;
  12518. const int ip1 = i1/w;
  12519. const int64_t i02 = i2%w;
  12520. const int64_t i01 = i1%w;
  12521. const int64_t i00 = i0;
  12522. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12523. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12524. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12525. }
  12526. }
  12527. }
  12528. }
  12529. static void ggml_compute_forward_win_unpart(
  12530. const struct ggml_compute_params * params,
  12531. struct ggml_tensor * dst) {
  12532. const struct ggml_tensor * src0 = dst->src[0];
  12533. switch (src0->type) {
  12534. case GGML_TYPE_F32:
  12535. {
  12536. ggml_compute_forward_win_unpart_f32(params, dst);
  12537. } break;
  12538. default:
  12539. {
  12540. GGML_ASSERT(false);
  12541. } break;
  12542. }
  12543. }
  12544. //gmml_compute_forward_unary
  12545. static void ggml_compute_forward_unary(
  12546. const struct ggml_compute_params * params,
  12547. struct ggml_tensor * dst) {
  12548. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12549. switch (op) {
  12550. case GGML_UNARY_OP_ABS:
  12551. {
  12552. ggml_compute_forward_abs(params, dst);
  12553. } break;
  12554. case GGML_UNARY_OP_SGN:
  12555. {
  12556. ggml_compute_forward_sgn(params, dst);
  12557. } break;
  12558. case GGML_UNARY_OP_NEG:
  12559. {
  12560. ggml_compute_forward_neg(params, dst);
  12561. } break;
  12562. case GGML_UNARY_OP_STEP:
  12563. {
  12564. ggml_compute_forward_step(params, dst);
  12565. } break;
  12566. case GGML_UNARY_OP_TANH:
  12567. {
  12568. ggml_compute_forward_tanh(params, dst);
  12569. } break;
  12570. case GGML_UNARY_OP_ELU:
  12571. {
  12572. ggml_compute_forward_elu(params, dst);
  12573. } break;
  12574. case GGML_UNARY_OP_RELU:
  12575. {
  12576. ggml_compute_forward_relu(params, dst);
  12577. } break;
  12578. case GGML_UNARY_OP_GELU:
  12579. {
  12580. ggml_compute_forward_gelu(params, dst);
  12581. } break;
  12582. case GGML_UNARY_OP_GELU_QUICK:
  12583. {
  12584. ggml_compute_forward_gelu_quick(params, dst);
  12585. } break;
  12586. case GGML_UNARY_OP_SILU:
  12587. {
  12588. ggml_compute_forward_silu(params, dst);
  12589. } break;
  12590. case GGML_UNARY_OP_HARDSWISH:
  12591. {
  12592. ggml_compute_forward_hardswish(params, dst);
  12593. } break;
  12594. case GGML_UNARY_OP_HARDSIGMOID:
  12595. {
  12596. ggml_compute_forward_hardsigmoid(params, dst);
  12597. } break;
  12598. default:
  12599. {
  12600. GGML_ASSERT(false);
  12601. } break;
  12602. }
  12603. }
  12604. // ggml_compute_forward_get_rel_pos
  12605. static void ggml_compute_forward_get_rel_pos_f16(
  12606. const struct ggml_compute_params * params,
  12607. struct ggml_tensor * dst) {
  12608. const struct ggml_tensor * src0 = dst->src[0];
  12609. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12610. return;
  12611. }
  12612. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12613. GGML_TENSOR_UNARY_OP_LOCALS
  12614. const int64_t w = ne1;
  12615. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12616. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12617. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12618. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12619. const int64_t pos = (w - i1 - 1) + i2;
  12620. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12621. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12622. }
  12623. }
  12624. }
  12625. }
  12626. static void ggml_compute_forward_get_rel_pos(
  12627. const struct ggml_compute_params * params,
  12628. struct ggml_tensor * dst) {
  12629. const struct ggml_tensor * src0 = dst->src[0];
  12630. switch (src0->type) {
  12631. case GGML_TYPE_F16:
  12632. {
  12633. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12634. } break;
  12635. default:
  12636. {
  12637. GGML_ASSERT(false);
  12638. } break;
  12639. }
  12640. }
  12641. // ggml_compute_forward_add_rel_pos
  12642. static void ggml_compute_forward_add_rel_pos_f32(
  12643. const struct ggml_compute_params * params,
  12644. struct ggml_tensor * dst) {
  12645. const struct ggml_tensor * src0 = dst->src[0];
  12646. const struct ggml_tensor * src1 = dst->src[1];
  12647. const struct ggml_tensor * src2 = dst->src[2];
  12648. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12649. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12650. if (params->ith != 0) {
  12651. return;
  12652. }
  12653. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12654. return;
  12655. }
  12656. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12657. return;
  12658. }
  12659. int64_t t0 = ggml_perf_time_us();
  12660. UNUSED(t0);
  12661. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12662. float * src1_data = (float *) src1->data;
  12663. float * src2_data = (float *) src2->data;
  12664. float * dst_data = (float *) dst->data;
  12665. const int64_t ne10 = src1->ne[0];
  12666. const int64_t ne11 = src1->ne[1];
  12667. const int64_t ne12 = src1->ne[2];
  12668. const int64_t ne13 = src1->ne[3];
  12669. const int ith = params->ith;
  12670. const int nth = params->nth;
  12671. // total patches in dst
  12672. const int np = ne13;
  12673. // patches per thread
  12674. const int dp = (np + nth - 1)/nth;
  12675. // patch range for this thread
  12676. const int ip0 = dp*ith;
  12677. const int ip1 = MIN(ip0 + dp, np);
  12678. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12679. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12680. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12681. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12682. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12683. const int64_t jp0 = jp1 + i10;
  12684. const float src1_e = src1_data[jp0];
  12685. const float src2_e = src2_data[jp0];
  12686. const int64_t jdh = jp0 * ne10;
  12687. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12688. for (int64_t j = 0; j < ne10; ++j) {
  12689. dst_data[jdh + j ] += src2_e;
  12690. dst_data[jdw + j*ne10] += src1_e;
  12691. }
  12692. }
  12693. }
  12694. }
  12695. }
  12696. }
  12697. static void ggml_compute_forward_add_rel_pos(
  12698. const struct ggml_compute_params * params,
  12699. struct ggml_tensor * dst) {
  12700. const struct ggml_tensor * src0 = dst->src[0];
  12701. switch (src0->type) {
  12702. case GGML_TYPE_F32:
  12703. {
  12704. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12705. } break;
  12706. default:
  12707. {
  12708. GGML_ASSERT(false);
  12709. } break;
  12710. }
  12711. }
  12712. // ggml_compute_forward_map_unary
  12713. static void ggml_compute_forward_map_unary_f32(
  12714. const struct ggml_compute_params * params,
  12715. struct ggml_tensor * dst,
  12716. const ggml_unary_op_f32_t fun) {
  12717. const struct ggml_tensor * src0 = dst->src[0];
  12718. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12720. return;
  12721. }
  12722. const int n = ggml_nrows(src0);
  12723. const int nc = src0->ne[0];
  12724. assert( dst->nb[0] == sizeof(float));
  12725. assert(src0->nb[0] == sizeof(float));
  12726. for (int i = 0; i < n; i++) {
  12727. fun(nc,
  12728. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12729. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12730. }
  12731. }
  12732. static void ggml_compute_forward_map_unary(
  12733. const struct ggml_compute_params * params,
  12734. struct ggml_tensor * dst,
  12735. const ggml_unary_op_f32_t fun) {
  12736. const struct ggml_tensor * src0 = dst->src[0];
  12737. switch (src0->type) {
  12738. case GGML_TYPE_F32:
  12739. {
  12740. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12741. } break;
  12742. default:
  12743. {
  12744. GGML_ASSERT(false);
  12745. } break;
  12746. }
  12747. }
  12748. // ggml_compute_forward_map_binary
  12749. static void ggml_compute_forward_map_binary_f32(
  12750. const struct ggml_compute_params * params,
  12751. struct ggml_tensor * dst,
  12752. const ggml_binary_op_f32_t fun) {
  12753. const struct ggml_tensor * src0 = dst->src[0];
  12754. const struct ggml_tensor * src1 = dst->src[1];
  12755. assert(params->ith == 0);
  12756. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12757. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12758. return;
  12759. }
  12760. const int n = ggml_nrows(src0);
  12761. const int nc = src0->ne[0];
  12762. assert( dst->nb[0] == sizeof(float));
  12763. assert(src0->nb[0] == sizeof(float));
  12764. assert(src1->nb[0] == sizeof(float));
  12765. for (int i = 0; i < n; i++) {
  12766. fun(nc,
  12767. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12768. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12769. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12770. }
  12771. }
  12772. static void ggml_compute_forward_map_binary(
  12773. const struct ggml_compute_params * params,
  12774. struct ggml_tensor * dst,
  12775. const ggml_binary_op_f32_t fun) {
  12776. const struct ggml_tensor * src0 = dst->src[0];
  12777. switch (src0->type) {
  12778. case GGML_TYPE_F32:
  12779. {
  12780. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12781. } break;
  12782. default:
  12783. {
  12784. GGML_ASSERT(false);
  12785. } break;
  12786. }
  12787. }
  12788. // ggml_compute_forward_map_custom1
  12789. static void ggml_compute_forward_map_custom1_f32(
  12790. const struct ggml_compute_params * params,
  12791. struct ggml_tensor * dst,
  12792. const ggml_custom1_op_f32_t fun) {
  12793. const struct ggml_tensor * a = dst->src[0];
  12794. assert(params->ith == 0);
  12795. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12796. return;
  12797. }
  12798. fun(dst, a);
  12799. }
  12800. // ggml_compute_forward_map_custom2
  12801. static void ggml_compute_forward_map_custom2_f32(
  12802. const struct ggml_compute_params * params,
  12803. struct ggml_tensor * dst,
  12804. const ggml_custom2_op_f32_t fun) {
  12805. const struct ggml_tensor * a = dst->src[0];
  12806. const struct ggml_tensor * b = dst->src[1];
  12807. assert(params->ith == 0);
  12808. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12809. return;
  12810. }
  12811. fun(dst, a, b);
  12812. }
  12813. // ggml_compute_forward_map_custom3
  12814. static void ggml_compute_forward_map_custom3_f32(
  12815. const struct ggml_compute_params * params,
  12816. struct ggml_tensor * dst,
  12817. const ggml_custom3_op_f32_t fun) {
  12818. const struct ggml_tensor * a = dst->src[0];
  12819. const struct ggml_tensor * b = dst->src[1];
  12820. const struct ggml_tensor * c = dst->src[1];
  12821. assert(params->ith == 0);
  12822. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12823. return;
  12824. }
  12825. fun(dst, a, b, c);
  12826. }
  12827. // ggml_compute_forward_map_custom1
  12828. static void ggml_compute_forward_map_custom1(
  12829. const struct ggml_compute_params * params,
  12830. struct ggml_tensor * dst) {
  12831. const struct ggml_tensor * a = dst->src[0];
  12832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12833. return;
  12834. }
  12835. struct ggml_map_custom1_op_params p;
  12836. memcpy(&p, dst->op_params, sizeof(p));
  12837. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12838. }
  12839. // ggml_compute_forward_map_custom2
  12840. static void ggml_compute_forward_map_custom2(
  12841. const struct ggml_compute_params * params,
  12842. struct ggml_tensor * dst) {
  12843. const struct ggml_tensor * a = dst->src[0];
  12844. const struct ggml_tensor * b = dst->src[1];
  12845. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12846. return;
  12847. }
  12848. struct ggml_map_custom2_op_params p;
  12849. memcpy(&p, dst->op_params, sizeof(p));
  12850. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12851. }
  12852. // ggml_compute_forward_map_custom3
  12853. static void ggml_compute_forward_map_custom3(
  12854. const struct ggml_compute_params * params,
  12855. struct ggml_tensor * dst) {
  12856. const struct ggml_tensor * a = dst->src[0];
  12857. const struct ggml_tensor * b = dst->src[1];
  12858. const struct ggml_tensor * c = dst->src[2];
  12859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12860. return;
  12861. }
  12862. struct ggml_map_custom3_op_params p;
  12863. memcpy(&p, dst->op_params, sizeof(p));
  12864. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12865. }
  12866. // ggml_compute_forward_cross_entropy_loss
  12867. static void ggml_compute_forward_cross_entropy_loss_f32(
  12868. const struct ggml_compute_params * params,
  12869. struct ggml_tensor * dst) {
  12870. const struct ggml_tensor * src0 = dst->src[0];
  12871. const struct ggml_tensor * src1 = dst->src[1];
  12872. GGML_ASSERT(ggml_is_contiguous(src0));
  12873. GGML_ASSERT(ggml_is_contiguous(src1));
  12874. GGML_ASSERT(ggml_is_scalar(dst));
  12875. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12876. const int ith = params->ith;
  12877. const int nth = params->nth;
  12878. float * sums = (float *) params->wdata;
  12879. // TODO: handle transposed/permuted matrices
  12880. const int nc = src0->ne[0];
  12881. const int nr = ggml_nrows(src0);
  12882. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12883. if (params->type == GGML_TASK_TYPE_INIT) {
  12884. if (ith == 0) {
  12885. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12886. }
  12887. return;
  12888. }
  12889. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12890. if (ith == 0) {
  12891. float * dp = (float *) dst->data;
  12892. ggml_vec_sum_f32(nth, dp, sums);
  12893. dp[0] *= -1.0f / (float) nr;
  12894. }
  12895. return;
  12896. }
  12897. const double eps = 1e-9;
  12898. // rows per thread
  12899. const int dr = (nr + nth - 1)/nth;
  12900. // row range for this thread
  12901. const int ir0 = dr*ith;
  12902. const int ir1 = MIN(ir0 + dr, nr);
  12903. for (int i1 = ir0; i1 < ir1; i1++) {
  12904. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12905. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12906. float * st = ((float *) params->wdata) + nth + ith*nc;
  12907. #ifndef NDEBUG
  12908. for (int i = 0; i < nc; ++i) {
  12909. //printf("p[%d] = %f\n", i, p[i]);
  12910. assert(!isnan(s0[i]));
  12911. assert(!isnan(s1[i]));
  12912. }
  12913. #endif
  12914. // soft_max
  12915. ggml_float sum = 0.0;
  12916. {
  12917. float max = -INFINITY;
  12918. ggml_vec_max_f32(nc, &max, s0);
  12919. uint16_t scvt; UNUSED(scvt);
  12920. for (int i = 0; i < nc; i++) {
  12921. if (s0[i] == -INFINITY) {
  12922. st[i] = 0.0f;
  12923. } else {
  12924. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12925. const float s = s0[i] - max;
  12926. const float val = expf(s);
  12927. #else
  12928. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12929. memcpy(&scvt, &s, sizeof(scvt));
  12930. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12931. #endif
  12932. sum += (ggml_float)val;
  12933. st[i] = val;
  12934. }
  12935. }
  12936. assert(sum > 0.0);
  12937. // sum = 1.0/sum;
  12938. }
  12939. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12940. sum = (1.0 - eps) / sum;
  12941. ggml_vec_scale_f32(nc, st, sum);
  12942. ggml_vec_add1_f32(nc, st, st, eps);
  12943. ggml_vec_log_f32(nc, st, st);
  12944. ggml_vec_mul_f32(nc, st, st, s1);
  12945. float st_sum = 0;
  12946. ggml_vec_sum_f32(nc, &st_sum, st);
  12947. sums[ith] += st_sum;
  12948. #ifndef NDEBUG
  12949. for (int i = 0; i < nc; ++i) {
  12950. assert(!isnan(st[i]));
  12951. assert(!isinf(st[i]));
  12952. }
  12953. #endif
  12954. }
  12955. }
  12956. static void ggml_compute_forward_cross_entropy_loss(
  12957. const struct ggml_compute_params * params,
  12958. struct ggml_tensor * dst) {
  12959. const struct ggml_tensor * src0 = dst->src[0];
  12960. switch (src0->type) {
  12961. case GGML_TYPE_F32:
  12962. {
  12963. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12964. } break;
  12965. default:
  12966. {
  12967. GGML_ASSERT(false);
  12968. } break;
  12969. }
  12970. }
  12971. // ggml_compute_forward_cross_entropy_loss_back
  12972. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12973. const struct ggml_compute_params * params,
  12974. struct ggml_tensor * dst) {
  12975. const struct ggml_tensor * src0 = dst->src[0];
  12976. const struct ggml_tensor * src1 = dst->src[1];
  12977. const struct ggml_tensor * opt0 = dst->src[2];
  12978. GGML_ASSERT(ggml_is_contiguous(dst));
  12979. GGML_ASSERT(ggml_is_contiguous(src0));
  12980. GGML_ASSERT(ggml_is_contiguous(src1));
  12981. GGML_ASSERT(ggml_is_contiguous(opt0));
  12982. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12983. const int64_t ith = params->ith;
  12984. const int64_t nth = params->nth;
  12985. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12986. return;
  12987. }
  12988. const double eps = 1e-9;
  12989. // TODO: handle transposed/permuted matrices
  12990. const int64_t nc = src0->ne[0];
  12991. const int64_t nr = ggml_nrows(src0);
  12992. // rows per thread
  12993. const int64_t dr = (nr + nth - 1)/nth;
  12994. // row range for this thread
  12995. const int64_t ir0 = dr*ith;
  12996. const int64_t ir1 = MIN(ir0 + dr, nr);
  12997. float * d = (float *) opt0->data;
  12998. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12999. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13000. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13001. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13002. #ifndef NDEBUG
  13003. for (int i = 0; i < nc; ++i) {
  13004. //printf("p[%d] = %f\n", i, p[i]);
  13005. assert(!isnan(s0[i]));
  13006. assert(!isnan(s1[i]));
  13007. }
  13008. #endif
  13009. // soft_max
  13010. ggml_float sum = 0.0;
  13011. {
  13012. float max = -INFINITY;
  13013. ggml_vec_max_f32(nc, &max, s0);
  13014. uint16_t scvt; UNUSED(scvt);
  13015. for (int i = 0; i < nc; i++) {
  13016. if (s0[i] == -INFINITY) {
  13017. ds0[i] = 0.0f;
  13018. } else {
  13019. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13020. const float s = s0[i] - max;
  13021. const float val = expf(s);
  13022. #else
  13023. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13024. memcpy(&scvt, &s, sizeof(scvt));
  13025. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13026. #endif
  13027. sum += (ggml_float)val;
  13028. ds0[i] = val;
  13029. }
  13030. }
  13031. assert(sum > 0.0);
  13032. sum = (1.0 - eps)/sum;
  13033. }
  13034. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13035. ggml_vec_scale_f32(nc, ds0, sum);
  13036. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13037. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13038. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13039. #ifndef NDEBUG
  13040. for (int i = 0; i < nc; ++i) {
  13041. assert(!isnan(ds0[i]));
  13042. assert(!isinf(ds0[i]));
  13043. }
  13044. #endif
  13045. }
  13046. }
  13047. static void ggml_compute_forward_cross_entropy_loss_back(
  13048. const struct ggml_compute_params * params,
  13049. struct ggml_tensor * dst) {
  13050. const struct ggml_tensor * src0 = dst->src[0];
  13051. switch (src0->type) {
  13052. case GGML_TYPE_F32:
  13053. {
  13054. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13055. } break;
  13056. default:
  13057. {
  13058. GGML_ASSERT(false);
  13059. } break;
  13060. }
  13061. }
  13062. /////////////////////////////////
  13063. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13064. GGML_ASSERT(params);
  13065. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13066. return;
  13067. }
  13068. switch (tensor->op) {
  13069. case GGML_OP_DUP:
  13070. {
  13071. ggml_compute_forward_dup(params, tensor);
  13072. } break;
  13073. case GGML_OP_ADD:
  13074. {
  13075. ggml_compute_forward_add(params, tensor);
  13076. } break;
  13077. case GGML_OP_ADD1:
  13078. {
  13079. ggml_compute_forward_add1(params, tensor);
  13080. } break;
  13081. case GGML_OP_ACC:
  13082. {
  13083. ggml_compute_forward_acc(params, tensor);
  13084. } break;
  13085. case GGML_OP_SUB:
  13086. {
  13087. ggml_compute_forward_sub(params, tensor);
  13088. } break;
  13089. case GGML_OP_MUL:
  13090. {
  13091. ggml_compute_forward_mul(params, tensor);
  13092. } break;
  13093. case GGML_OP_DIV:
  13094. {
  13095. ggml_compute_forward_div(params, tensor);
  13096. } break;
  13097. case GGML_OP_SQR:
  13098. {
  13099. ggml_compute_forward_sqr(params, tensor);
  13100. } break;
  13101. case GGML_OP_SQRT:
  13102. {
  13103. ggml_compute_forward_sqrt(params, tensor);
  13104. } break;
  13105. case GGML_OP_LOG:
  13106. {
  13107. ggml_compute_forward_log(params, tensor);
  13108. } break;
  13109. case GGML_OP_SUM:
  13110. {
  13111. ggml_compute_forward_sum(params, tensor);
  13112. } break;
  13113. case GGML_OP_SUM_ROWS:
  13114. {
  13115. ggml_compute_forward_sum_rows(params, tensor);
  13116. } break;
  13117. case GGML_OP_MEAN:
  13118. {
  13119. ggml_compute_forward_mean(params, tensor);
  13120. } break;
  13121. case GGML_OP_ARGMAX:
  13122. {
  13123. ggml_compute_forward_argmax(params, tensor);
  13124. } break;
  13125. case GGML_OP_REPEAT:
  13126. {
  13127. ggml_compute_forward_repeat(params, tensor);
  13128. } break;
  13129. case GGML_OP_REPEAT_BACK:
  13130. {
  13131. ggml_compute_forward_repeat_back(params, tensor);
  13132. } break;
  13133. case GGML_OP_CONCAT:
  13134. {
  13135. ggml_compute_forward_concat(params, tensor);
  13136. } break;
  13137. case GGML_OP_SILU_BACK:
  13138. {
  13139. ggml_compute_forward_silu_back(params, tensor);
  13140. } break;
  13141. case GGML_OP_NORM:
  13142. {
  13143. ggml_compute_forward_norm(params, tensor);
  13144. } break;
  13145. case GGML_OP_RMS_NORM:
  13146. {
  13147. ggml_compute_forward_rms_norm(params, tensor);
  13148. } break;
  13149. case GGML_OP_RMS_NORM_BACK:
  13150. {
  13151. ggml_compute_forward_rms_norm_back(params, tensor);
  13152. } break;
  13153. case GGML_OP_GROUP_NORM:
  13154. {
  13155. ggml_compute_forward_group_norm(params, tensor);
  13156. } break;
  13157. case GGML_OP_MUL_MAT:
  13158. {
  13159. ggml_compute_forward_mul_mat(params, tensor);
  13160. } break;
  13161. case GGML_OP_MUL_MAT_ID:
  13162. {
  13163. ggml_compute_forward_mul_mat_id(params, tensor);
  13164. } break;
  13165. case GGML_OP_OUT_PROD:
  13166. {
  13167. ggml_compute_forward_out_prod(params, tensor);
  13168. } break;
  13169. case GGML_OP_SCALE:
  13170. {
  13171. ggml_compute_forward_scale(params, tensor);
  13172. } break;
  13173. case GGML_OP_SET:
  13174. {
  13175. ggml_compute_forward_set(params, tensor);
  13176. } break;
  13177. case GGML_OP_CPY:
  13178. {
  13179. ggml_compute_forward_cpy(params, tensor);
  13180. } break;
  13181. case GGML_OP_CONT:
  13182. {
  13183. ggml_compute_forward_cont(params, tensor);
  13184. } break;
  13185. case GGML_OP_RESHAPE:
  13186. {
  13187. ggml_compute_forward_reshape(params, tensor);
  13188. } break;
  13189. case GGML_OP_VIEW:
  13190. {
  13191. ggml_compute_forward_view(params, tensor);
  13192. } break;
  13193. case GGML_OP_PERMUTE:
  13194. {
  13195. ggml_compute_forward_permute(params, tensor);
  13196. } break;
  13197. case GGML_OP_TRANSPOSE:
  13198. {
  13199. ggml_compute_forward_transpose(params, tensor);
  13200. } break;
  13201. case GGML_OP_GET_ROWS:
  13202. {
  13203. ggml_compute_forward_get_rows(params, tensor);
  13204. } break;
  13205. case GGML_OP_GET_ROWS_BACK:
  13206. {
  13207. ggml_compute_forward_get_rows_back(params, tensor);
  13208. } break;
  13209. case GGML_OP_DIAG:
  13210. {
  13211. ggml_compute_forward_diag(params, tensor);
  13212. } break;
  13213. case GGML_OP_DIAG_MASK_INF:
  13214. {
  13215. ggml_compute_forward_diag_mask_inf(params, tensor);
  13216. } break;
  13217. case GGML_OP_DIAG_MASK_ZERO:
  13218. {
  13219. ggml_compute_forward_diag_mask_zero(params, tensor);
  13220. } break;
  13221. case GGML_OP_SOFT_MAX:
  13222. {
  13223. ggml_compute_forward_soft_max(params, tensor);
  13224. } break;
  13225. case GGML_OP_SOFT_MAX_BACK:
  13226. {
  13227. ggml_compute_forward_soft_max_back(params, tensor);
  13228. } break;
  13229. case GGML_OP_ROPE:
  13230. {
  13231. ggml_compute_forward_rope(params, tensor);
  13232. } break;
  13233. case GGML_OP_ROPE_BACK:
  13234. {
  13235. ggml_compute_forward_rope_back(params, tensor);
  13236. } break;
  13237. case GGML_OP_ALIBI:
  13238. {
  13239. ggml_compute_forward_alibi(params, tensor);
  13240. } break;
  13241. case GGML_OP_CLAMP:
  13242. {
  13243. ggml_compute_forward_clamp(params, tensor);
  13244. } break;
  13245. case GGML_OP_CONV_TRANSPOSE_1D:
  13246. {
  13247. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13248. } break;
  13249. case GGML_OP_IM2COL:
  13250. {
  13251. ggml_compute_forward_im2col(params, tensor);
  13252. } break;
  13253. case GGML_OP_CONV_TRANSPOSE_2D:
  13254. {
  13255. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13256. } break;
  13257. case GGML_OP_POOL_1D:
  13258. {
  13259. ggml_compute_forward_pool_1d(params, tensor);
  13260. } break;
  13261. case GGML_OP_POOL_2D:
  13262. {
  13263. ggml_compute_forward_pool_2d(params, tensor);
  13264. } break;
  13265. case GGML_OP_UPSCALE:
  13266. {
  13267. ggml_compute_forward_upscale(params, tensor);
  13268. } break;
  13269. case GGML_OP_PAD:
  13270. {
  13271. ggml_compute_forward_pad(params, tensor);
  13272. } break;
  13273. case GGML_OP_ARANGE:
  13274. {
  13275. ggml_compute_forward_arange(params, tensor);
  13276. } break;
  13277. case GGML_OP_TIMESTEP_EMBEDDING:
  13278. {
  13279. ggml_compute_forward_timestep_embedding(params, tensor);
  13280. } break;
  13281. case GGML_OP_ARGSORT:
  13282. {
  13283. ggml_compute_forward_argsort(params, tensor);
  13284. } break;
  13285. case GGML_OP_LEAKY_RELU:
  13286. {
  13287. ggml_compute_forward_leaky_relu(params, tensor);
  13288. } break;
  13289. case GGML_OP_FLASH_ATTN:
  13290. {
  13291. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13292. GGML_ASSERT(t == 0 || t == 1);
  13293. const bool masked = t != 0;
  13294. ggml_compute_forward_flash_attn(params, masked, tensor);
  13295. } break;
  13296. case GGML_OP_FLASH_FF:
  13297. {
  13298. ggml_compute_forward_flash_ff(params, tensor);
  13299. } break;
  13300. case GGML_OP_FLASH_ATTN_BACK:
  13301. {
  13302. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13303. GGML_ASSERT(t == 0 || t == 1);
  13304. bool masked = t != 0;
  13305. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13306. } break;
  13307. case GGML_OP_SSM_CONV:
  13308. {
  13309. ggml_compute_forward_ssm_conv(params, tensor);
  13310. } break;
  13311. case GGML_OP_SSM_SCAN:
  13312. {
  13313. ggml_compute_forward_ssm_scan(params, tensor);
  13314. } break;
  13315. case GGML_OP_WIN_PART:
  13316. {
  13317. ggml_compute_forward_win_part(params, tensor);
  13318. } break;
  13319. case GGML_OP_WIN_UNPART:
  13320. {
  13321. ggml_compute_forward_win_unpart(params, tensor);
  13322. } break;
  13323. case GGML_OP_UNARY:
  13324. {
  13325. ggml_compute_forward_unary(params, tensor);
  13326. } break;
  13327. case GGML_OP_GET_REL_POS:
  13328. {
  13329. ggml_compute_forward_get_rel_pos(params, tensor);
  13330. } break;
  13331. case GGML_OP_ADD_REL_POS:
  13332. {
  13333. ggml_compute_forward_add_rel_pos(params, tensor);
  13334. } break;
  13335. case GGML_OP_MAP_UNARY:
  13336. {
  13337. ggml_unary_op_f32_t fun;
  13338. memcpy(&fun, tensor->op_params, sizeof(fun));
  13339. ggml_compute_forward_map_unary(params, tensor, fun);
  13340. }
  13341. break;
  13342. case GGML_OP_MAP_BINARY:
  13343. {
  13344. ggml_binary_op_f32_t fun;
  13345. memcpy(&fun, tensor->op_params, sizeof(fun));
  13346. ggml_compute_forward_map_binary(params, tensor, fun);
  13347. }
  13348. break;
  13349. case GGML_OP_MAP_CUSTOM1_F32:
  13350. {
  13351. ggml_custom1_op_f32_t fun;
  13352. memcpy(&fun, tensor->op_params, sizeof(fun));
  13353. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13354. }
  13355. break;
  13356. case GGML_OP_MAP_CUSTOM2_F32:
  13357. {
  13358. ggml_custom2_op_f32_t fun;
  13359. memcpy(&fun, tensor->op_params, sizeof(fun));
  13360. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13361. }
  13362. break;
  13363. case GGML_OP_MAP_CUSTOM3_F32:
  13364. {
  13365. ggml_custom3_op_f32_t fun;
  13366. memcpy(&fun, tensor->op_params, sizeof(fun));
  13367. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13368. }
  13369. break;
  13370. case GGML_OP_MAP_CUSTOM1:
  13371. {
  13372. ggml_compute_forward_map_custom1(params, tensor);
  13373. }
  13374. break;
  13375. case GGML_OP_MAP_CUSTOM2:
  13376. {
  13377. ggml_compute_forward_map_custom2(params, tensor);
  13378. }
  13379. break;
  13380. case GGML_OP_MAP_CUSTOM3:
  13381. {
  13382. ggml_compute_forward_map_custom3(params, tensor);
  13383. }
  13384. break;
  13385. case GGML_OP_CROSS_ENTROPY_LOSS:
  13386. {
  13387. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13388. }
  13389. break;
  13390. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13391. {
  13392. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13393. }
  13394. break;
  13395. case GGML_OP_NONE:
  13396. {
  13397. // nop
  13398. } break;
  13399. case GGML_OP_COUNT:
  13400. {
  13401. GGML_ASSERT(false);
  13402. } break;
  13403. }
  13404. }
  13405. ////////////////////////////////////////////////////////////////////////////////
  13406. static size_t ggml_hash_size(size_t min_sz) {
  13407. // next primes after powers of two
  13408. static const size_t primes[] = {
  13409. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13410. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13411. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13412. 16777259, 33554467, 67108879, 134217757, 268435459,
  13413. 536870923, 1073741827, 2147483659
  13414. };
  13415. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13416. // find the smallest prime that is larger or equal to min_sz
  13417. size_t l = 0;
  13418. size_t r = n_primes;
  13419. while (l < r) {
  13420. size_t m = (l + r)/2;
  13421. if (primes[m] < min_sz) {
  13422. l = m + 1;
  13423. } else {
  13424. r = m;
  13425. }
  13426. }
  13427. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13428. return sz;
  13429. }
  13430. static size_t ggml_hash(const void * p) {
  13431. return (size_t)p;
  13432. }
  13433. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13434. size_t h = ggml_hash(key) % hash_set.size;
  13435. // linear probing
  13436. size_t i = h;
  13437. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13438. i = (i + 1) % hash_set.size;
  13439. if (i == h) {
  13440. // visited all hash table entries -> not found
  13441. return GGML_HASHTABLE_FULL;
  13442. }
  13443. }
  13444. return i;
  13445. }
  13446. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13447. size_t i = ggml_hash_find(hash_set, key);
  13448. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13449. }
  13450. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13451. size_t i = ggml_hash_find(hash_set, key);
  13452. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13453. if (hash_set.keys[i] == key) {
  13454. return GGML_HASHTABLE_ALREADY_EXISTS;
  13455. }
  13456. // insert
  13457. GGML_ASSERT(hash_set.keys[i] == NULL);
  13458. hash_set.keys[i] = key;
  13459. return i;
  13460. }
  13461. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13462. size_t i = ggml_hash_find(hash_set, key);
  13463. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13464. hash_set.keys[i] = key;
  13465. return i;
  13466. }
  13467. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13468. size = ggml_hash_size(size);
  13469. struct ggml_hash_set result;
  13470. result.size = size;
  13471. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13472. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13473. return result;
  13474. }
  13475. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13476. GGML_FREE(hash_set.keys);
  13477. }
  13478. struct hash_map {
  13479. struct ggml_hash_set set;
  13480. struct ggml_tensor ** vals;
  13481. };
  13482. static struct hash_map * ggml_new_hash_map(size_t size) {
  13483. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13484. result->set = ggml_hash_set_new(size);
  13485. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13486. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13487. return result;
  13488. }
  13489. static void ggml_hash_map_free(struct hash_map * map) {
  13490. ggml_hash_set_free(map->set);
  13491. GGML_FREE(map->vals);
  13492. GGML_FREE(map);
  13493. }
  13494. // gradient checkpointing
  13495. static struct ggml_tensor * ggml_recompute_graph_node(
  13496. struct ggml_context * ctx,
  13497. struct ggml_cgraph * graph,
  13498. struct hash_map * replacements,
  13499. struct ggml_tensor * node) {
  13500. if (node == NULL) {
  13501. return NULL;
  13502. }
  13503. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13504. return node;
  13505. }
  13506. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13507. return node;
  13508. }
  13509. int count_children = 0;
  13510. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13511. if (node->src[k]) {
  13512. ++count_children;
  13513. }
  13514. }
  13515. if (count_children == 0) {
  13516. return node;
  13517. }
  13518. size_t i = ggml_hash_find(replacements->set, node);
  13519. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13520. if (replacements->set.keys[i] == node) {
  13521. return replacements->vals[i];
  13522. }
  13523. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13524. // insert clone into replacements
  13525. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13526. replacements->set.keys[i] = node;
  13527. replacements->vals[i] = clone;
  13528. clone->op = node->op;
  13529. clone->grad = node->grad;
  13530. clone->flags = node->flags;
  13531. clone->extra = node->extra;
  13532. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13533. clone->nb[k] = node->nb[k];
  13534. }
  13535. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13536. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13537. }
  13538. if (node->view_src != NULL) {
  13539. clone->data = (node->view_src->data == NULL)
  13540. ? NULL // view_src not yet allocated
  13541. : (char *) node->view_src->data // view_src already allocated
  13542. + node->view_offs;
  13543. clone->view_src = node->view_src;
  13544. clone->view_offs = node->view_offs;
  13545. }
  13546. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13547. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13548. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13549. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13550. return clone;
  13551. }
  13552. void ggml_build_backward_gradient_checkpointing(
  13553. struct ggml_context * ctx,
  13554. struct ggml_cgraph * gf,
  13555. struct ggml_cgraph * gb,
  13556. struct ggml_cgraph * gb_tmp,
  13557. struct ggml_tensor * * checkpoints,
  13558. int n_checkpoints) {
  13559. ggml_graph_cpy(gf, gb_tmp);
  13560. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13561. if (n_checkpoints <= 0) {
  13562. ggml_graph_cpy(gb_tmp, gb);
  13563. return;
  13564. }
  13565. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13566. // insert checkpoints in replacements
  13567. for (int i = 0; i < n_checkpoints; ++i) {
  13568. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13569. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13570. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13571. replacements->set.keys[k] = checkpoints[i];
  13572. replacements->vals[k] = checkpoints[i];
  13573. }
  13574. ggml_graph_cpy(gf, gb);
  13575. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13576. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13577. // by recomputing them from checkpoints
  13578. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13579. struct ggml_tensor * node = gb_tmp->nodes[i];
  13580. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13581. // insert new tensors recomputing src, reusing already made replacements,
  13582. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13583. // recurse for input tensors,
  13584. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13585. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13586. }
  13587. // insert rewritten backward node with replacements made into resulting backward graph gb
  13588. ggml_build_forward_expand(gb, node);
  13589. }
  13590. ggml_hash_map_free(replacements);
  13591. }
  13592. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13593. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13594. if (ggml_hash_contains(zero_table, a)) {
  13595. return b;
  13596. } else {
  13597. return ggml_add_impl(ctx, a, b, false);
  13598. }
  13599. }
  13600. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13601. if (ggml_hash_contains(zero_table, a)) {
  13602. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13603. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13604. } else {
  13605. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13606. }
  13607. }
  13608. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13609. if (ggml_hash_contains(zero_table, a)) {
  13610. return ggml_repeat(ctx, b, a);
  13611. } else {
  13612. return ggml_add1_impl(ctx, a, b, false);
  13613. }
  13614. }
  13615. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13616. if (ggml_hash_contains(zero_table, a)) {
  13617. return ggml_neg(ctx, b);
  13618. } else {
  13619. return ggml_sub_impl(ctx, a, b, false);
  13620. }
  13621. }
  13622. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13623. struct ggml_tensor * src0 = tensor->src[0];
  13624. struct ggml_tensor * src1 = tensor->src[1];
  13625. switch (tensor->op) {
  13626. case GGML_OP_DUP:
  13627. {
  13628. if (src0->grad) {
  13629. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13630. }
  13631. } break;
  13632. case GGML_OP_ADD:
  13633. {
  13634. if (src0->grad) {
  13635. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13636. }
  13637. if (src1->grad) {
  13638. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13639. }
  13640. } break;
  13641. case GGML_OP_ADD1:
  13642. {
  13643. if (src0->grad) {
  13644. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13645. }
  13646. if (src1->grad) {
  13647. src1->grad = ggml_add_or_set(ctx,
  13648. src1->grad,
  13649. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13650. zero_table);
  13651. }
  13652. } break;
  13653. case GGML_OP_ACC:
  13654. {
  13655. if (src0->grad) {
  13656. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13657. }
  13658. if (src1->grad) {
  13659. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13660. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13661. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13662. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13663. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13664. tensor->grad,
  13665. src1->grad->ne[0],
  13666. src1->grad->ne[1],
  13667. src1->grad->ne[2],
  13668. src1->grad->ne[3],
  13669. nb1, nb2, nb3, offset);
  13670. src1->grad =
  13671. ggml_add_or_set(ctx,
  13672. src1->grad,
  13673. ggml_reshape(ctx,
  13674. ggml_cont(ctx, tensor_grad_view),
  13675. src1->grad),
  13676. zero_table);
  13677. }
  13678. } break;
  13679. case GGML_OP_SUB:
  13680. {
  13681. if (src0->grad) {
  13682. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13683. }
  13684. if (src1->grad) {
  13685. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13686. }
  13687. } break;
  13688. case GGML_OP_MUL:
  13689. {
  13690. if (src0->grad) {
  13691. src0->grad =
  13692. ggml_add_or_set(ctx,
  13693. src0->grad,
  13694. ggml_mul(ctx, src1, tensor->grad),
  13695. zero_table);
  13696. }
  13697. if (src1->grad) {
  13698. src1->grad =
  13699. ggml_add_or_set(ctx,
  13700. src1->grad,
  13701. ggml_mul(ctx, src0, tensor->grad),
  13702. zero_table);
  13703. }
  13704. } break;
  13705. case GGML_OP_DIV:
  13706. {
  13707. if (src0->grad) {
  13708. src0->grad =
  13709. ggml_add_or_set(ctx,
  13710. src0->grad,
  13711. ggml_div(ctx, tensor->grad, src1),
  13712. zero_table);
  13713. }
  13714. if (src1->grad) {
  13715. src1->grad =
  13716. ggml_sub_or_set(ctx,
  13717. src1->grad,
  13718. ggml_mul(ctx,
  13719. tensor->grad,
  13720. ggml_div(ctx, tensor, src1)),
  13721. zero_table);
  13722. }
  13723. } break;
  13724. case GGML_OP_SQR:
  13725. {
  13726. if (src0->grad) {
  13727. src0->grad =
  13728. ggml_add_or_set(ctx,
  13729. src0->grad,
  13730. ggml_scale(ctx,
  13731. ggml_mul(ctx, src0, tensor->grad),
  13732. 2.0f),
  13733. zero_table);
  13734. }
  13735. } break;
  13736. case GGML_OP_SQRT:
  13737. {
  13738. if (src0->grad) {
  13739. src0->grad =
  13740. ggml_add_or_set(ctx,
  13741. src0->grad,
  13742. ggml_scale(ctx,
  13743. ggml_div(ctx,
  13744. tensor->grad,
  13745. tensor),
  13746. 0.5f),
  13747. zero_table);
  13748. }
  13749. } break;
  13750. case GGML_OP_LOG:
  13751. {
  13752. if (src0->grad) {
  13753. src0->grad =
  13754. ggml_add_or_set(ctx,
  13755. src0->grad,
  13756. ggml_div(ctx,
  13757. tensor->grad,
  13758. src0),
  13759. zero_table);
  13760. }
  13761. } break;
  13762. case GGML_OP_SUM:
  13763. {
  13764. if (src0->grad) {
  13765. src0->grad =
  13766. ggml_add1_or_set(ctx,
  13767. src0->grad,
  13768. tensor->grad,
  13769. zero_table);
  13770. }
  13771. } break;
  13772. case GGML_OP_SUM_ROWS:
  13773. {
  13774. if (src0->grad) {
  13775. src0->grad =
  13776. ggml_add_or_set(ctx,
  13777. src0->grad,
  13778. ggml_repeat(ctx,
  13779. tensor->grad,
  13780. src0->grad),
  13781. zero_table);
  13782. }
  13783. } break;
  13784. case GGML_OP_MEAN:
  13785. case GGML_OP_ARGMAX:
  13786. {
  13787. GGML_ASSERT(false); // TODO: implement
  13788. } break;
  13789. case GGML_OP_REPEAT:
  13790. {
  13791. // necessary for llama
  13792. if (src0->grad) {
  13793. src0->grad = ggml_add_or_set(ctx,
  13794. src0->grad,
  13795. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13796. zero_table);
  13797. }
  13798. } break;
  13799. case GGML_OP_REPEAT_BACK:
  13800. {
  13801. if (src0->grad) {
  13802. // TODO: test this
  13803. src0->grad = ggml_add_or_set(ctx,
  13804. src0->grad,
  13805. ggml_repeat(ctx, tensor->grad, src0->grad),
  13806. zero_table);
  13807. }
  13808. } break;
  13809. case GGML_OP_CONCAT:
  13810. {
  13811. GGML_ASSERT(false); // TODO: implement
  13812. } break;
  13813. case GGML_OP_SILU_BACK:
  13814. {
  13815. GGML_ASSERT(false); // TODO: not implemented
  13816. } break;
  13817. case GGML_OP_NORM:
  13818. {
  13819. GGML_ASSERT(false); // TODO: not implemented
  13820. } break;
  13821. case GGML_OP_RMS_NORM:
  13822. {
  13823. // necessary for llama
  13824. if (src0->grad) {
  13825. float eps;
  13826. memcpy(&eps, tensor->op_params, sizeof(float));
  13827. src0->grad = ggml_add_or_set(ctx,
  13828. src0->grad,
  13829. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13830. zero_table);
  13831. }
  13832. } break;
  13833. case GGML_OP_RMS_NORM_BACK:
  13834. {
  13835. GGML_ASSERT(false); // TODO: not implemented
  13836. } break;
  13837. case GGML_OP_GROUP_NORM:
  13838. {
  13839. GGML_ASSERT(false); // TODO: not implemented
  13840. } break;
  13841. case GGML_OP_MUL_MAT:
  13842. {
  13843. // https://cs231n.github.io/optimization-2/#staged
  13844. // # forward pass
  13845. // s0 = np.random.randn(5, 10)
  13846. // s1 = np.random.randn(10, 3)
  13847. // t = s0.dot(s1)
  13848. // # now suppose we had the gradient on t from above in the circuit
  13849. // dt = np.random.randn(*t.shape) # same shape as t
  13850. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13851. // ds1 = t.T.dot(dt)
  13852. // tensor.shape [m,p,qq,rr]
  13853. // src0.shape [n,m,q1,r1]
  13854. // src1.shape [n,p,qq,rr]
  13855. // necessary for llama
  13856. if (src0->grad) {
  13857. struct ggml_tensor * s1_tg =
  13858. ggml_out_prod(ctx, // [n,m,qq,rr]
  13859. src1, // [n,p,qq,rr]
  13860. tensor->grad); // [m,p,qq,rr]
  13861. const int64_t qq = s1_tg->ne[2];
  13862. const int64_t rr = s1_tg->ne[3];
  13863. const int64_t q1 = src0->ne[2];
  13864. const int64_t r1 = src0->ne[3];
  13865. const bool ne2_broadcasted = qq > q1;
  13866. const bool ne3_broadcasted = rr > r1;
  13867. if (ne2_broadcasted || ne3_broadcasted) {
  13868. // sum broadcast repetitions of s1_tg into shape of src0
  13869. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13870. }
  13871. src0->grad =
  13872. ggml_add_or_set(ctx,
  13873. src0->grad, // [n,m,q1,r1]
  13874. s1_tg, // [n,m,q1,r1]
  13875. zero_table);
  13876. }
  13877. if (src1->grad) {
  13878. src1->grad =
  13879. ggml_add_or_set(ctx,
  13880. src1->grad, // [n,p,qq,rr]
  13881. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13882. // ggml_cont(ctx, // [m,n,q1,r1]
  13883. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13884. // tensor->grad), // [m,p,qq,rr]
  13885. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13886. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13887. // // and then use ggml_out_prod
  13888. ggml_out_prod(ctx, // [n,p,qq,rr]
  13889. src0, // [n,m,q1,r1]
  13890. ggml_transpose(ctx, // [p,m,qq,rr]
  13891. tensor->grad)), // [m,p,qq,rr]
  13892. zero_table);
  13893. }
  13894. } break;
  13895. case GGML_OP_MUL_MAT_ID:
  13896. {
  13897. GGML_ASSERT(false); // TODO: not implemented
  13898. } break;
  13899. case GGML_OP_OUT_PROD:
  13900. {
  13901. GGML_ASSERT(false); // TODO: not implemented
  13902. } break;
  13903. case GGML_OP_SCALE:
  13904. {
  13905. // necessary for llama
  13906. if (src0->grad) {
  13907. float s;
  13908. memcpy(&s, tensor->op_params, sizeof(float));
  13909. src0->grad =
  13910. ggml_add_or_set(ctx,
  13911. src0->grad,
  13912. ggml_scale_impl(ctx, tensor->grad, s, false),
  13913. zero_table);
  13914. }
  13915. } break;
  13916. case GGML_OP_SET:
  13917. {
  13918. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13919. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13920. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13921. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13922. struct ggml_tensor * tensor_grad_view = NULL;
  13923. if (src0->grad || src1->grad) {
  13924. GGML_ASSERT(src0->type == tensor->type);
  13925. GGML_ASSERT(tensor->grad->type == tensor->type);
  13926. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13927. tensor_grad_view = ggml_view_4d(ctx,
  13928. tensor->grad,
  13929. src1->grad->ne[0],
  13930. src1->grad->ne[1],
  13931. src1->grad->ne[2],
  13932. src1->grad->ne[3],
  13933. nb1, nb2, nb3, offset);
  13934. }
  13935. if (src0->grad) {
  13936. src0->grad = ggml_add_or_set(ctx,
  13937. src0->grad,
  13938. ggml_acc_impl(ctx,
  13939. tensor->grad,
  13940. ggml_neg(ctx, tensor_grad_view),
  13941. nb1, nb2, nb3, offset, false),
  13942. zero_table);
  13943. }
  13944. if (src1->grad) {
  13945. src1->grad =
  13946. ggml_add_or_set(ctx,
  13947. src1->grad,
  13948. ggml_reshape(ctx,
  13949. ggml_cont(ctx, tensor_grad_view),
  13950. src1->grad),
  13951. zero_table);
  13952. }
  13953. } break;
  13954. case GGML_OP_CPY:
  13955. {
  13956. // necessary for llama
  13957. // cpy overwrites value of src1 by src0 and returns view(src1)
  13958. // the overwriting is mathematically equivalent to:
  13959. // tensor = src0 * 1 + src1 * 0
  13960. if (src0->grad) {
  13961. // dsrc0 = dtensor * 1
  13962. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13963. }
  13964. if (src1->grad) {
  13965. // dsrc1 = dtensor * 0 -> noop
  13966. }
  13967. } break;
  13968. case GGML_OP_CONT:
  13969. {
  13970. // same as cpy
  13971. if (src0->grad) {
  13972. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13973. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13974. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13975. }
  13976. } break;
  13977. case GGML_OP_RESHAPE:
  13978. {
  13979. // necessary for llama
  13980. if (src0->grad) {
  13981. src0->grad =
  13982. ggml_add_or_set(ctx, src0->grad,
  13983. ggml_reshape(ctx,
  13984. ggml_is_contiguous(tensor->grad)
  13985. ? tensor->grad
  13986. : ggml_cont(ctx, tensor->grad),
  13987. src0->grad),
  13988. zero_table);
  13989. }
  13990. } break;
  13991. case GGML_OP_VIEW:
  13992. {
  13993. // necessary for llama
  13994. if (src0->grad) {
  13995. size_t offset;
  13996. memcpy(&offset, tensor->op_params, sizeof(offset));
  13997. size_t nb1 = tensor->nb[1];
  13998. size_t nb2 = tensor->nb[2];
  13999. size_t nb3 = tensor->nb[3];
  14000. if (src0->type != src0->grad->type) {
  14001. // gradient is typically F32, but src0 could be other type
  14002. size_t ng = ggml_element_size(src0->grad);
  14003. size_t n0 = ggml_element_size(src0);
  14004. GGML_ASSERT(offset % n0 == 0);
  14005. GGML_ASSERT(nb1 % n0 == 0);
  14006. GGML_ASSERT(nb2 % n0 == 0);
  14007. GGML_ASSERT(nb3 % n0 == 0);
  14008. offset = (offset / n0) * ng;
  14009. nb1 = (nb1 / n0) * ng;
  14010. nb2 = (nb2 / n0) * ng;
  14011. nb3 = (nb3 / n0) * ng;
  14012. }
  14013. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14014. }
  14015. } break;
  14016. case GGML_OP_PERMUTE:
  14017. {
  14018. // necessary for llama
  14019. if (src0->grad) {
  14020. int32_t * axes = (int32_t *) tensor->op_params;
  14021. int axis0 = axes[0] & 0x3;
  14022. int axis1 = axes[1] & 0x3;
  14023. int axis2 = axes[2] & 0x3;
  14024. int axis3 = axes[3] & 0x3;
  14025. int axes_backward[4] = {0,0,0,0};
  14026. axes_backward[axis0] = 0;
  14027. axes_backward[axis1] = 1;
  14028. axes_backward[axis2] = 2;
  14029. axes_backward[axis3] = 3;
  14030. src0->grad =
  14031. ggml_add_or_set(ctx, src0->grad,
  14032. ggml_permute(ctx,
  14033. tensor->grad,
  14034. axes_backward[0],
  14035. axes_backward[1],
  14036. axes_backward[2],
  14037. axes_backward[3]),
  14038. zero_table);
  14039. }
  14040. } break;
  14041. case GGML_OP_TRANSPOSE:
  14042. {
  14043. // necessary for llama
  14044. if (src0->grad) {
  14045. src0->grad =
  14046. ggml_add_or_set(ctx, src0->grad,
  14047. ggml_transpose(ctx, tensor->grad),
  14048. zero_table);
  14049. }
  14050. } break;
  14051. case GGML_OP_GET_ROWS:
  14052. {
  14053. // necessary for llama (only for tokenizer)
  14054. if (src0->grad) {
  14055. src0->grad =
  14056. ggml_add_or_set(ctx, src0->grad,
  14057. // last ggml_get_rows_back argument src0->grad is only
  14058. // necessary to setup correct output shape
  14059. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14060. zero_table);
  14061. }
  14062. if (src1->grad) {
  14063. // noop
  14064. }
  14065. } break;
  14066. case GGML_OP_GET_ROWS_BACK:
  14067. {
  14068. GGML_ASSERT(false); // TODO: not implemented
  14069. } break;
  14070. case GGML_OP_DIAG:
  14071. {
  14072. GGML_ASSERT(false); // TODO: not implemented
  14073. } break;
  14074. case GGML_OP_DIAG_MASK_INF:
  14075. {
  14076. // necessary for llama
  14077. if (src0->grad) {
  14078. const int n_past = ((int32_t *) tensor->op_params)[0];
  14079. src0->grad =
  14080. ggml_add_or_set(ctx, src0->grad,
  14081. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14082. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14083. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14084. zero_table);
  14085. }
  14086. } break;
  14087. case GGML_OP_DIAG_MASK_ZERO:
  14088. {
  14089. // necessary for llama
  14090. if (src0->grad) {
  14091. const int n_past = ((int32_t *) tensor->op_params)[0];
  14092. src0->grad =
  14093. ggml_add_or_set(ctx, src0->grad,
  14094. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14095. zero_table);
  14096. }
  14097. } break;
  14098. case GGML_OP_SOFT_MAX:
  14099. {
  14100. // necessary for llama
  14101. if (src0->grad) {
  14102. src0->grad =
  14103. ggml_add_or_set(ctx, src0->grad,
  14104. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14105. zero_table);
  14106. }
  14107. } break;
  14108. case GGML_OP_SOFT_MAX_BACK:
  14109. {
  14110. GGML_ASSERT(false); // TODO: not implemented
  14111. } break;
  14112. case GGML_OP_ROPE:
  14113. {
  14114. // necessary for llama
  14115. if (src0->grad) {
  14116. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14117. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14118. const int mode = ((int32_t *) tensor->op_params)[2];
  14119. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14120. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14121. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14122. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14123. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14124. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14125. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14126. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14127. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14128. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14129. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14130. src0->grad = ggml_add_or_set(ctx,
  14131. src0->grad,
  14132. ggml_rope_back(ctx,
  14133. tensor->grad,
  14134. src1,
  14135. n_dims,
  14136. mode,
  14137. n_ctx,
  14138. n_orig_ctx,
  14139. freq_base,
  14140. freq_scale,
  14141. ext_factor,
  14142. attn_factor,
  14143. beta_fast,
  14144. beta_slow,
  14145. xpos_base,
  14146. xpos_down),
  14147. zero_table);
  14148. }
  14149. } break;
  14150. case GGML_OP_ROPE_BACK:
  14151. {
  14152. if (src0->grad) {
  14153. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14154. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14155. const int mode = ((int32_t *) tensor->op_params)[2];
  14156. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14157. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14158. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14159. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14160. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14161. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14162. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14163. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14164. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14165. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14166. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14167. src0->grad = ggml_add_or_set(ctx,
  14168. src0->grad,
  14169. ggml_rope_impl(ctx,
  14170. tensor->grad,
  14171. src1,
  14172. n_dims,
  14173. mode,
  14174. n_ctx,
  14175. n_orig_ctx,
  14176. freq_base,
  14177. freq_scale,
  14178. ext_factor,
  14179. attn_factor,
  14180. beta_fast,
  14181. beta_slow,
  14182. xpos_base,
  14183. xpos_down,
  14184. false),
  14185. zero_table);
  14186. }
  14187. } break;
  14188. case GGML_OP_ALIBI:
  14189. {
  14190. GGML_ASSERT(false); // TODO: not implemented
  14191. } break;
  14192. case GGML_OP_CLAMP:
  14193. {
  14194. GGML_ASSERT(false); // TODO: not implemented
  14195. } break;
  14196. case GGML_OP_CONV_TRANSPOSE_1D:
  14197. {
  14198. GGML_ASSERT(false); // TODO: not implemented
  14199. } break;
  14200. case GGML_OP_IM2COL:
  14201. {
  14202. GGML_ASSERT(false); // TODO: not implemented
  14203. } break;
  14204. case GGML_OP_CONV_TRANSPOSE_2D:
  14205. {
  14206. GGML_ASSERT(false); // TODO: not implemented
  14207. } break;
  14208. case GGML_OP_POOL_1D:
  14209. {
  14210. GGML_ASSERT(false); // TODO: not implemented
  14211. } break;
  14212. case GGML_OP_POOL_2D:
  14213. {
  14214. GGML_ASSERT(false); // TODO: not implemented
  14215. } break;
  14216. case GGML_OP_UPSCALE:
  14217. {
  14218. GGML_ASSERT(false); // TODO: not implemented
  14219. } break;
  14220. case GGML_OP_PAD:
  14221. {
  14222. GGML_ASSERT(false); // TODO: not implemented
  14223. } break;
  14224. case GGML_OP_ARANGE:
  14225. {
  14226. GGML_ASSERT(false); // TODO: not implemented
  14227. } break;
  14228. case GGML_OP_TIMESTEP_EMBEDDING:
  14229. {
  14230. GGML_ASSERT(false); // TODO: not implemented
  14231. } break;
  14232. case GGML_OP_ARGSORT:
  14233. {
  14234. GGML_ASSERT(false); // TODO: not implemented
  14235. } break;
  14236. case GGML_OP_LEAKY_RELU:
  14237. {
  14238. GGML_ASSERT(false); // TODO: not implemented
  14239. } break;
  14240. case GGML_OP_FLASH_ATTN:
  14241. {
  14242. struct ggml_tensor * flash_grad = NULL;
  14243. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14244. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14245. GGML_ASSERT(t == 0 || t == 1);
  14246. bool masked = t != 0;
  14247. flash_grad =
  14248. ggml_flash_attn_back(ctx,
  14249. src0,
  14250. src1,
  14251. tensor->src[2],
  14252. tensor->grad,
  14253. masked);
  14254. }
  14255. struct ggml_tensor * src2 = tensor->src[2];
  14256. const int64_t elem_q = ggml_nelements(src0);
  14257. const int64_t elem_k = ggml_nelements(src1);
  14258. const int64_t elem_v = ggml_nelements(src2);
  14259. enum ggml_type result_type = flash_grad->type;
  14260. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14261. const size_t tsize = ggml_type_size(result_type);
  14262. const size_t offs_q = 0;
  14263. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14264. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14265. if (src0->grad) {
  14266. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14267. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14268. src0->grad = ggml_add_or_set(ctx,
  14269. src0->grad,
  14270. grad_q,
  14271. zero_table);
  14272. }
  14273. if (src1->grad) {
  14274. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14275. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14276. src1->grad = ggml_add_or_set(ctx,
  14277. src1->grad,
  14278. grad_k,
  14279. zero_table);
  14280. }
  14281. if (src2->grad) {
  14282. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14283. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14284. src2->grad = ggml_add_or_set(ctx,
  14285. src2->grad,
  14286. grad_v,
  14287. zero_table);
  14288. }
  14289. } break;
  14290. case GGML_OP_FLASH_FF:
  14291. {
  14292. GGML_ASSERT(false); // not supported
  14293. } break;
  14294. case GGML_OP_FLASH_ATTN_BACK:
  14295. {
  14296. GGML_ASSERT(false); // not supported
  14297. } break;
  14298. case GGML_OP_SSM_CONV:
  14299. case GGML_OP_SSM_SCAN:
  14300. {
  14301. GGML_ASSERT(false); // TODO: not implemented
  14302. } break;
  14303. case GGML_OP_WIN_PART:
  14304. case GGML_OP_WIN_UNPART:
  14305. case GGML_OP_UNARY:
  14306. {
  14307. switch (ggml_get_unary_op(tensor)) {
  14308. case GGML_UNARY_OP_ABS:
  14309. {
  14310. if (src0->grad) {
  14311. src0->grad =
  14312. ggml_add_or_set(ctx,
  14313. src0->grad,
  14314. ggml_mul(ctx,
  14315. ggml_sgn(ctx, src0),
  14316. tensor->grad),
  14317. zero_table);
  14318. }
  14319. } break;
  14320. case GGML_UNARY_OP_SGN:
  14321. {
  14322. if (src0->grad) {
  14323. // noop
  14324. }
  14325. } break;
  14326. case GGML_UNARY_OP_NEG:
  14327. {
  14328. if (src0->grad) {
  14329. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14330. }
  14331. } break;
  14332. case GGML_UNARY_OP_STEP:
  14333. {
  14334. if (src0->grad) {
  14335. // noop
  14336. }
  14337. } break;
  14338. case GGML_UNARY_OP_TANH:
  14339. {
  14340. GGML_ASSERT(false); // TODO: not implemented
  14341. } break;
  14342. case GGML_UNARY_OP_ELU:
  14343. {
  14344. GGML_ASSERT(false); // TODO: not implemented
  14345. } break;
  14346. case GGML_UNARY_OP_RELU:
  14347. {
  14348. if (src0->grad) {
  14349. src0->grad = ggml_add_or_set(ctx,
  14350. src0->grad,
  14351. ggml_mul(ctx,
  14352. ggml_step(ctx, src0),
  14353. tensor->grad),
  14354. zero_table);
  14355. }
  14356. } break;
  14357. case GGML_UNARY_OP_GELU:
  14358. {
  14359. GGML_ASSERT(false); // TODO: not implemented
  14360. } break;
  14361. case GGML_UNARY_OP_GELU_QUICK:
  14362. {
  14363. GGML_ASSERT(false); // TODO: not implemented
  14364. } break;
  14365. case GGML_UNARY_OP_SILU:
  14366. {
  14367. // necessary for llama
  14368. if (src0->grad) {
  14369. src0->grad = ggml_add_or_set(ctx,
  14370. src0->grad,
  14371. ggml_silu_back(ctx, src0, tensor->grad),
  14372. zero_table);
  14373. }
  14374. } break;
  14375. default:
  14376. GGML_ASSERT(false);
  14377. }
  14378. } break;
  14379. case GGML_OP_GET_REL_POS:
  14380. case GGML_OP_ADD_REL_POS:
  14381. case GGML_OP_MAP_UNARY:
  14382. case GGML_OP_MAP_BINARY:
  14383. case GGML_OP_MAP_CUSTOM1_F32:
  14384. case GGML_OP_MAP_CUSTOM2_F32:
  14385. case GGML_OP_MAP_CUSTOM3_F32:
  14386. case GGML_OP_MAP_CUSTOM1:
  14387. case GGML_OP_MAP_CUSTOM2:
  14388. case GGML_OP_MAP_CUSTOM3:
  14389. {
  14390. GGML_ASSERT(false); // not supported
  14391. } break;
  14392. case GGML_OP_CROSS_ENTROPY_LOSS:
  14393. {
  14394. if (src0->grad) {
  14395. src0->grad = ggml_add_or_set(ctx,
  14396. src0->grad,
  14397. ggml_cross_entropy_loss_back(ctx,
  14398. src0,
  14399. src1,
  14400. tensor->grad),
  14401. zero_table);
  14402. }
  14403. } break;
  14404. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14405. {
  14406. GGML_ASSERT(false); // not supported
  14407. } break;
  14408. case GGML_OP_NONE:
  14409. {
  14410. // nop
  14411. } break;
  14412. case GGML_OP_COUNT:
  14413. {
  14414. GGML_ASSERT(false);
  14415. } break;
  14416. }
  14417. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14418. if (tensor->src[i] && tensor->src[i]->grad) {
  14419. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14420. }
  14421. }
  14422. }
  14423. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14424. if (node->grad == NULL) {
  14425. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14426. // it can also happen during forward pass, if the user performs computations with constants
  14427. if (node->op != GGML_OP_NONE) {
  14428. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14429. }
  14430. }
  14431. // check if already visited
  14432. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14433. return;
  14434. }
  14435. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14436. const int k =
  14437. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14438. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14439. /* unknown order, just fall back to using i*/ i;
  14440. if (node->src[k]) {
  14441. ggml_visit_parents(cgraph, node->src[k]);
  14442. }
  14443. }
  14444. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14445. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14446. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14447. if (strlen(node->name) == 0) {
  14448. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14449. }
  14450. cgraph->leafs[cgraph->n_leafs] = node;
  14451. cgraph->n_leafs++;
  14452. } else {
  14453. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14454. if (strlen(node->name) == 0) {
  14455. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14456. }
  14457. cgraph->nodes[cgraph->n_nodes] = node;
  14458. if (cgraph->grads) {
  14459. cgraph->grads[cgraph->n_nodes] = node->grad;
  14460. }
  14461. cgraph->n_nodes++;
  14462. }
  14463. }
  14464. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14465. if (!expand) {
  14466. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14467. ggml_graph_clear(cgraph);
  14468. }
  14469. const int n0 = cgraph->n_nodes;
  14470. UNUSED(n0);
  14471. ggml_visit_parents(cgraph, tensor);
  14472. const int n_new = cgraph->n_nodes - n0;
  14473. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14474. if (n_new > 0) {
  14475. // the last added node should always be starting point
  14476. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14477. }
  14478. }
  14479. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14480. ggml_build_forward_impl(cgraph, tensor, true);
  14481. }
  14482. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14483. GGML_ASSERT(gf->n_nodes > 0);
  14484. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14485. if (keep) {
  14486. for (int i = 0; i < gf->n_nodes; i++) {
  14487. struct ggml_tensor * node = gf->nodes[i];
  14488. if (node->grad) {
  14489. node->grad = ggml_dup_tensor(ctx, node);
  14490. gf->grads[i] = node->grad;
  14491. }
  14492. }
  14493. }
  14494. // remember original gradients which start with zero values
  14495. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14496. for (int i = 0; i < gf->n_nodes; i++) {
  14497. if (gf->grads[i]) {
  14498. ggml_hash_insert(zero_table, gf->grads[i]);
  14499. }
  14500. }
  14501. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14502. struct ggml_tensor * node = gf->nodes[i];
  14503. // inplace operations to add gradients are not created by ggml_compute_backward
  14504. // use allocator to automatically make inplace operations
  14505. if (node->grad) {
  14506. ggml_compute_backward(ctx, node, zero_table);
  14507. }
  14508. }
  14509. for (int i = 0; i < gf->n_nodes; i++) {
  14510. struct ggml_tensor * node = gf->nodes[i];
  14511. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14512. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14513. ggml_build_forward_expand(gb, node->grad);
  14514. }
  14515. }
  14516. ggml_hash_set_free(zero_table);
  14517. }
  14518. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14519. size_t nbytes = sizeof(struct ggml_cgraph);
  14520. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14521. if (grads) {
  14522. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14523. }
  14524. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14525. return nbytes;
  14526. }
  14527. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14528. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14529. }
  14530. size_t ggml_graph_overhead(void) {
  14531. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14532. }
  14533. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14534. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14535. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14536. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14537. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14538. size_t hash_size = ggml_hash_size(size * 2);
  14539. struct ggml_tensor ** nodes_ptr = data_start;
  14540. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14541. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14542. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14543. // check that we allocated the correct amount of memory
  14544. assert(obj_size == (size_t) (
  14545. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14546. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14547. *cgraph = (struct ggml_cgraph) {
  14548. /*.size =*/ size,
  14549. /*.n_nodes =*/ 0,
  14550. /*.n_leafs =*/ 0,
  14551. /*.nodes =*/ nodes_ptr,
  14552. /*.grads =*/ grads_ptr,
  14553. /*.leafs =*/ leafs_ptr,
  14554. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14555. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14556. /*.perf_runs =*/ 0,
  14557. /*.perf_cycles =*/ 0,
  14558. /*.perf_time_us =*/ 0,
  14559. };
  14560. return cgraph;
  14561. }
  14562. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14563. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14564. }
  14565. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14566. struct ggml_cgraph cgraph = {
  14567. /*.size =*/ 0,
  14568. /*.n_nodes =*/ i1 - i0,
  14569. /*.n_leafs =*/ 0,
  14570. /*.nodes =*/ cgraph0->nodes + i0,
  14571. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14572. /*.leafs =*/ NULL,
  14573. /*.hash_table =*/ { 0, NULL },
  14574. /*.order =*/ cgraph0->order,
  14575. /*.perf_runs =*/ 0,
  14576. /*.perf_cycles =*/ 0,
  14577. /*.perf_time_us =*/ 0,
  14578. };
  14579. return cgraph;
  14580. }
  14581. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14582. GGML_ASSERT(dst->size >= src->n_leafs);
  14583. GGML_ASSERT(dst->size >= src->n_nodes);
  14584. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14585. dst->n_leafs = src->n_leafs;
  14586. dst->n_nodes = src->n_nodes;
  14587. dst->order = src->order;
  14588. for (int i = 0; i < src->n_leafs; ++i) {
  14589. dst->leafs[i] = src->leafs[i];
  14590. }
  14591. for (int i = 0; i < src->n_nodes; ++i) {
  14592. dst->nodes[i] = src->nodes[i];
  14593. }
  14594. if (src->grads) {
  14595. GGML_ASSERT(dst->grads != NULL);
  14596. for (int i = 0; i < src->n_nodes; ++i) {
  14597. dst->grads[i] = src->grads[i];
  14598. }
  14599. }
  14600. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14601. if (src->visited_hash_table.keys[i]) {
  14602. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14603. }
  14604. }
  14605. }
  14606. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14607. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14608. ggml_graph_cpy(cgraph, result);
  14609. return result;
  14610. }
  14611. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14612. GGML_ASSERT(cgraph->grads != NULL);
  14613. for (int i = 0; i < cgraph->n_nodes; i++) {
  14614. struct ggml_tensor * grad = cgraph->grads[i];
  14615. if (grad) {
  14616. ggml_set_zero(grad);
  14617. }
  14618. }
  14619. }
  14620. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14621. cgraph->n_leafs = 0;
  14622. cgraph->n_nodes = 0;
  14623. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14624. }
  14625. //
  14626. // thread data
  14627. //
  14628. // synchronization is done via busy loops
  14629. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14630. //
  14631. #ifdef __APPLE__
  14632. //#include <os/lock.h>
  14633. //
  14634. //typedef os_unfair_lock ggml_lock_t;
  14635. //
  14636. //#define ggml_lock_init(x) UNUSED(x)
  14637. //#define ggml_lock_destroy(x) UNUSED(x)
  14638. //#define ggml_lock_lock os_unfair_lock_lock
  14639. //#define ggml_lock_unlock os_unfair_lock_unlock
  14640. //
  14641. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14642. typedef int ggml_lock_t;
  14643. #define ggml_lock_init(x) UNUSED(x)
  14644. #define ggml_lock_destroy(x) UNUSED(x)
  14645. #define ggml_lock_lock(x) UNUSED(x)
  14646. #define ggml_lock_unlock(x) UNUSED(x)
  14647. #define GGML_LOCK_INITIALIZER 0
  14648. typedef pthread_t ggml_thread_t;
  14649. #define ggml_thread_create pthread_create
  14650. #define ggml_thread_join pthread_join
  14651. #else
  14652. //typedef pthread_spinlock_t ggml_lock_t;
  14653. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14654. //#define ggml_lock_destroy pthread_spin_destroy
  14655. //#define ggml_lock_lock pthread_spin_lock
  14656. //#define ggml_lock_unlock pthread_spin_unlock
  14657. typedef int ggml_lock_t;
  14658. #define ggml_lock_init(x) UNUSED(x)
  14659. #define ggml_lock_destroy(x) UNUSED(x)
  14660. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14661. #define ggml_lock_lock(x) _mm_pause()
  14662. #else
  14663. #define ggml_lock_lock(x) UNUSED(x)
  14664. #endif
  14665. #define ggml_lock_unlock(x) UNUSED(x)
  14666. #define GGML_LOCK_INITIALIZER 0
  14667. typedef pthread_t ggml_thread_t;
  14668. #define ggml_thread_create pthread_create
  14669. #define ggml_thread_join pthread_join
  14670. #endif
  14671. // Android's libc implementation "bionic" does not support setting affinity
  14672. #if defined(__gnu_linux__)
  14673. static void set_numa_thread_affinity(int thread_n) {
  14674. if (!ggml_is_numa()) {
  14675. return;
  14676. }
  14677. int node_num;
  14678. int rv;
  14679. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14680. switch(g_state.numa.numa_strategy) {
  14681. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14682. // run thread on node_num thread_n / (threads per node)
  14683. node_num = thread_n % g_state.numa.n_nodes;
  14684. break;
  14685. case GGML_NUMA_STRATEGY_ISOLATE:
  14686. // run thread on current_node
  14687. node_num = g_state.numa.current_node;
  14688. break;
  14689. case GGML_NUMA_STRATEGY_NUMACTL:
  14690. // use the cpuset that numactl gave us
  14691. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14692. if (rv) {
  14693. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14694. }
  14695. return;
  14696. default:
  14697. return;
  14698. }
  14699. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14700. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14701. CPU_ZERO_S(setsize, cpus);
  14702. for (size_t i = 0; i < node->n_cpus; ++i) {
  14703. CPU_SET_S(node->cpus[i], setsize, cpus);
  14704. }
  14705. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14706. if (rv) {
  14707. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14708. }
  14709. CPU_FREE(cpus);
  14710. }
  14711. static void clear_numa_thread_affinity(void) {
  14712. if (!ggml_is_numa()) {
  14713. return;
  14714. }
  14715. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14716. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14717. CPU_ZERO_S(setsize, cpus);
  14718. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14719. CPU_SET_S(i, setsize, cpus);
  14720. }
  14721. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14722. if (rv) {
  14723. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14724. }
  14725. CPU_FREE(cpus);
  14726. }
  14727. #else
  14728. // TODO: Windows etc.
  14729. // (the linux implementation may also work on BSD, someone should test)
  14730. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14731. static void clear_numa_thread_affinity(void) {}
  14732. #endif
  14733. struct ggml_compute_state_shared {
  14734. const struct ggml_cgraph * cgraph;
  14735. const struct ggml_cplan * cplan;
  14736. int64_t perf_node_start_cycles;
  14737. int64_t perf_node_start_time_us;
  14738. const int n_threads;
  14739. // synchronization primitives
  14740. atomic_int n_active; // num active threads
  14741. atomic_int node_n; // active graph node
  14742. atomic_int node_task; // active graph node task phase
  14743. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14744. void * abort_callback_data;
  14745. };
  14746. struct ggml_compute_state {
  14747. ggml_thread_t thrd;
  14748. int ith;
  14749. struct ggml_compute_state_shared * shared;
  14750. enum ggml_status ec;
  14751. };
  14752. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14753. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14754. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14755. node->perf_runs++;
  14756. node->perf_cycles += cycles_cur;
  14757. node->perf_time_us += time_us_cur;
  14758. }
  14759. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14760. int n_tasks = 0;
  14761. if (ggml_is_empty(node)) {
  14762. // no need to multi-thread a no-op
  14763. n_tasks = 1;
  14764. return n_tasks;
  14765. }
  14766. switch (node->op) {
  14767. case GGML_OP_CPY:
  14768. case GGML_OP_DUP:
  14769. case GGML_OP_ADD:
  14770. case GGML_OP_ADD1:
  14771. case GGML_OP_ACC:
  14772. {
  14773. n_tasks = n_threads;
  14774. } break;
  14775. case GGML_OP_SUB:
  14776. case GGML_OP_SQR:
  14777. case GGML_OP_SQRT:
  14778. case GGML_OP_LOG:
  14779. case GGML_OP_SUM:
  14780. case GGML_OP_SUM_ROWS:
  14781. case GGML_OP_MEAN:
  14782. case GGML_OP_ARGMAX:
  14783. case GGML_OP_REPEAT:
  14784. case GGML_OP_REPEAT_BACK:
  14785. case GGML_OP_LEAKY_RELU:
  14786. {
  14787. n_tasks = 1;
  14788. } break;
  14789. case GGML_OP_UNARY:
  14790. switch (ggml_get_unary_op(node)) {
  14791. case GGML_UNARY_OP_ABS:
  14792. case GGML_UNARY_OP_SGN:
  14793. case GGML_UNARY_OP_NEG:
  14794. case GGML_UNARY_OP_STEP:
  14795. case GGML_UNARY_OP_TANH:
  14796. case GGML_UNARY_OP_ELU:
  14797. case GGML_UNARY_OP_RELU:
  14798. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14799. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14800. {
  14801. n_tasks = 1;
  14802. } break;
  14803. case GGML_UNARY_OP_GELU:
  14804. case GGML_UNARY_OP_GELU_QUICK:
  14805. case GGML_UNARY_OP_SILU:
  14806. {
  14807. n_tasks = n_threads;
  14808. } break;
  14809. default:
  14810. GGML_ASSERT(false);
  14811. }
  14812. break;
  14813. case GGML_OP_SILU_BACK:
  14814. case GGML_OP_MUL:
  14815. case GGML_OP_DIV:
  14816. case GGML_OP_NORM:
  14817. case GGML_OP_RMS_NORM:
  14818. case GGML_OP_RMS_NORM_BACK:
  14819. case GGML_OP_GROUP_NORM:
  14820. case GGML_OP_CONCAT:
  14821. {
  14822. n_tasks = n_threads;
  14823. } break;
  14824. case GGML_OP_MUL_MAT:
  14825. {
  14826. n_tasks = n_threads;
  14827. // TODO: use different scheduling for different matrix sizes
  14828. //const int nr0 = ggml_nrows(node->src[0]);
  14829. //const int nr1 = ggml_nrows(node->src[1]);
  14830. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14831. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14832. } break;
  14833. case GGML_OP_MUL_MAT_ID:
  14834. {
  14835. n_tasks = n_threads;
  14836. } break;
  14837. case GGML_OP_OUT_PROD:
  14838. {
  14839. n_tasks = n_threads;
  14840. } break;
  14841. case GGML_OP_GET_ROWS:
  14842. {
  14843. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14844. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14845. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14846. } break;
  14847. case GGML_OP_SCALE:
  14848. case GGML_OP_SET:
  14849. case GGML_OP_CONT:
  14850. case GGML_OP_RESHAPE:
  14851. case GGML_OP_VIEW:
  14852. case GGML_OP_PERMUTE:
  14853. case GGML_OP_TRANSPOSE:
  14854. case GGML_OP_GET_ROWS_BACK:
  14855. case GGML_OP_DIAG:
  14856. {
  14857. n_tasks = 1;
  14858. } break;
  14859. case GGML_OP_DIAG_MASK_ZERO:
  14860. case GGML_OP_DIAG_MASK_INF:
  14861. case GGML_OP_SOFT_MAX_BACK:
  14862. case GGML_OP_ROPE:
  14863. case GGML_OP_ROPE_BACK:
  14864. case GGML_OP_ADD_REL_POS:
  14865. {
  14866. n_tasks = n_threads;
  14867. } break;
  14868. case GGML_OP_ALIBI:
  14869. {
  14870. n_tasks = 1; //TODO
  14871. } break;
  14872. case GGML_OP_CLAMP:
  14873. {
  14874. n_tasks = 1; //TODO
  14875. } break;
  14876. case GGML_OP_SOFT_MAX:
  14877. {
  14878. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14879. } break;
  14880. case GGML_OP_CONV_TRANSPOSE_1D:
  14881. {
  14882. n_tasks = n_threads;
  14883. } break;
  14884. case GGML_OP_IM2COL:
  14885. {
  14886. n_tasks = n_threads;
  14887. } break;
  14888. case GGML_OP_CONV_TRANSPOSE_2D:
  14889. {
  14890. n_tasks = n_threads;
  14891. } break;
  14892. case GGML_OP_POOL_1D:
  14893. case GGML_OP_POOL_2D:
  14894. {
  14895. n_tasks = 1;
  14896. } break;
  14897. case GGML_OP_UPSCALE:
  14898. {
  14899. n_tasks = n_threads;
  14900. } break;
  14901. case GGML_OP_PAD:
  14902. {
  14903. n_tasks = n_threads;
  14904. } break;
  14905. case GGML_OP_ARANGE:
  14906. {
  14907. n_tasks = n_threads;
  14908. } break;
  14909. case GGML_OP_TIMESTEP_EMBEDDING:
  14910. {
  14911. n_tasks = n_threads;
  14912. } break;
  14913. case GGML_OP_ARGSORT:
  14914. {
  14915. n_tasks = n_threads;
  14916. } break;
  14917. case GGML_OP_FLASH_ATTN:
  14918. {
  14919. n_tasks = n_threads;
  14920. } break;
  14921. case GGML_OP_FLASH_FF:
  14922. {
  14923. n_tasks = n_threads;
  14924. } break;
  14925. case GGML_OP_FLASH_ATTN_BACK:
  14926. {
  14927. n_tasks = n_threads;
  14928. } break;
  14929. case GGML_OP_SSM_CONV:
  14930. case GGML_OP_SSM_SCAN:
  14931. {
  14932. n_tasks = n_threads;
  14933. } break;
  14934. case GGML_OP_WIN_PART:
  14935. case GGML_OP_WIN_UNPART:
  14936. case GGML_OP_GET_REL_POS:
  14937. case GGML_OP_MAP_UNARY:
  14938. case GGML_OP_MAP_BINARY:
  14939. case GGML_OP_MAP_CUSTOM1_F32:
  14940. case GGML_OP_MAP_CUSTOM2_F32:
  14941. case GGML_OP_MAP_CUSTOM3_F32:
  14942. {
  14943. n_tasks = 1;
  14944. } break;
  14945. case GGML_OP_MAP_CUSTOM1:
  14946. {
  14947. struct ggml_map_custom1_op_params p;
  14948. memcpy(&p, node->op_params, sizeof(p));
  14949. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14950. n_tasks = n_threads;
  14951. } else {
  14952. n_tasks = MIN(p.n_tasks, n_threads);
  14953. }
  14954. } break;
  14955. case GGML_OP_MAP_CUSTOM2:
  14956. {
  14957. struct ggml_map_custom2_op_params p;
  14958. memcpy(&p, node->op_params, sizeof(p));
  14959. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14960. n_tasks = n_threads;
  14961. } else {
  14962. n_tasks = MIN(p.n_tasks, n_threads);
  14963. }
  14964. } break;
  14965. case GGML_OP_MAP_CUSTOM3:
  14966. {
  14967. struct ggml_map_custom3_op_params p;
  14968. memcpy(&p, node->op_params, sizeof(p));
  14969. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14970. n_tasks = n_threads;
  14971. } else {
  14972. n_tasks = MIN(p.n_tasks, n_threads);
  14973. }
  14974. } break;
  14975. case GGML_OP_CROSS_ENTROPY_LOSS:
  14976. {
  14977. n_tasks = n_threads;
  14978. } break;
  14979. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14980. {
  14981. n_tasks = n_threads;
  14982. } break;
  14983. case GGML_OP_NONE:
  14984. {
  14985. n_tasks = 1;
  14986. } break;
  14987. case GGML_OP_COUNT:
  14988. {
  14989. GGML_ASSERT(false);
  14990. } break;
  14991. default:
  14992. {
  14993. fprintf(stderr, "%s: op not implemented: ", __func__);
  14994. if (node->op < GGML_OP_COUNT) {
  14995. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14996. } else {
  14997. fprintf(stderr, "%d\n", node->op);
  14998. }
  14999. GGML_ASSERT(false);
  15000. } break;
  15001. }
  15002. assert(n_tasks > 0);
  15003. return n_tasks;
  15004. }
  15005. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15006. // wait for other threads to finish
  15007. const int last_node_n = * node_n;
  15008. while (true) {
  15009. if (do_yield) {
  15010. sched_yield();
  15011. }
  15012. * node_n = atomic_load(&state->shared->node_n);
  15013. if (* node_n != last_node_n) break;
  15014. }
  15015. }
  15016. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15017. // wait for other threads to finish
  15018. const int last_task_phase = * task_phase;
  15019. while (true) {
  15020. if (do_yield) {
  15021. sched_yield();
  15022. }
  15023. * task_phase = atomic_load(&state->shared->node_task);
  15024. if (* task_phase != last_task_phase) break;
  15025. }
  15026. }
  15027. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15028. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15029. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15030. const struct ggml_cplan * cplan = state->shared->cplan;
  15031. const int n_threads = state->shared->n_threads;
  15032. set_numa_thread_affinity(state->ith);
  15033. int node_n = -1;
  15034. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15035. while (true) {
  15036. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15037. state->shared->node_n += 1;
  15038. state->ec = GGML_STATUS_ABORTED;
  15039. return 0;
  15040. }
  15041. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15042. // all other threads are finished and spinning
  15043. // do finalize and init here so we don't have synchronize again
  15044. struct ggml_compute_params params = {
  15045. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15046. /*.ith =*/ 0,
  15047. /*.nth =*/ 0,
  15048. /*.wsize =*/ cplan->work_size,
  15049. /*.wdata =*/ cplan->work_data,
  15050. };
  15051. if (node_n != -1) {
  15052. /* FINALIZE */
  15053. struct ggml_tensor * node = cgraph->nodes[node_n];
  15054. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15055. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15056. ggml_compute_forward(&params, node);
  15057. }
  15058. ggml_graph_compute_perf_stats_node(node, state->shared);
  15059. }
  15060. // distribute new work or execute it direct if 1T
  15061. while (++node_n < cgraph->n_nodes) {
  15062. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15063. struct ggml_tensor * node = cgraph->nodes[node_n];
  15064. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15065. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15066. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15067. params.nth = n_tasks;
  15068. if (n_tasks == 1) {
  15069. /* INIT */
  15070. if (GGML_OP_HAS_INIT[node->op]) {
  15071. params.type = GGML_TASK_TYPE_INIT;
  15072. ggml_compute_forward(&params, node);
  15073. }
  15074. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15075. // they do something more efficient than spinning (?)
  15076. params.type = GGML_TASK_TYPE_COMPUTE;
  15077. ggml_compute_forward(&params, node);
  15078. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15079. params.type = GGML_TASK_TYPE_FINALIZE;
  15080. ggml_compute_forward(&params, node);
  15081. }
  15082. ggml_graph_compute_perf_stats_node(node, state->shared);
  15083. } else {
  15084. break;
  15085. }
  15086. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15087. break;
  15088. }
  15089. }
  15090. task_phase = GGML_TASK_TYPE_INIT;
  15091. atomic_store(&state->shared->n_active, n_threads);
  15092. atomic_store(&state->shared->node_n, node_n);
  15093. atomic_store(&state->shared->node_task, task_phase);
  15094. } else {
  15095. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15096. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15097. }
  15098. // check if we should stop
  15099. if (node_n >= cgraph->n_nodes) break;
  15100. /* INIT & COMPUTE */
  15101. struct ggml_tensor * node = cgraph->nodes[node_n];
  15102. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15103. struct ggml_compute_params params = {
  15104. /*.type =*/ GGML_TASK_TYPE_INIT,
  15105. /*.ith =*/ state->ith,
  15106. /*.nth =*/ n_tasks,
  15107. /*.wsize =*/ cplan->work_size,
  15108. /*.wdata =*/ cplan->work_data,
  15109. };
  15110. if (state->ith < n_tasks) {
  15111. if (GGML_OP_HAS_INIT[node->op]) {
  15112. ggml_compute_forward(&params, node);
  15113. }
  15114. }
  15115. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15116. task_phase = GGML_TASK_TYPE_COMPUTE;
  15117. atomic_store(&state->shared->n_active, n_threads);
  15118. atomic_store(&state->shared->node_task, task_phase);
  15119. }
  15120. else {
  15121. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15122. // depending on the workload and the operating system.
  15123. // since it is not clear what is the best approach, it should potentially become user-configurable
  15124. // ref: https://github.com/ggerganov/ggml/issues/291
  15125. // UPD: adding the do_yield flag seems to resolve the issue universally
  15126. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15127. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15128. }
  15129. if (state->ith < n_tasks) {
  15130. params.type = GGML_TASK_TYPE_COMPUTE;
  15131. ggml_compute_forward(&params, node);
  15132. }
  15133. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15134. task_phase = GGML_TASK_TYPE_FINALIZE;
  15135. atomic_store(&state->shared->n_active, n_threads);
  15136. atomic_store(&state->shared->node_task, task_phase);
  15137. }
  15138. else {
  15139. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15140. }
  15141. }
  15142. return 0;
  15143. }
  15144. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15145. if (n_threads <= 0) {
  15146. n_threads = GGML_DEFAULT_N_THREADS;
  15147. }
  15148. size_t work_size = 0;
  15149. struct ggml_cplan cplan;
  15150. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15151. int max_tasks = 1;
  15152. // thread scheduling for the different operations + work buffer size estimation
  15153. for (int i = 0; i < cgraph->n_nodes; i++) {
  15154. struct ggml_tensor * node = cgraph->nodes[i];
  15155. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15156. max_tasks = MAX(max_tasks, n_tasks);
  15157. size_t cur = 0;
  15158. switch (node->op) {
  15159. case GGML_OP_CPY:
  15160. case GGML_OP_DUP:
  15161. {
  15162. if (ggml_is_quantized(node->type)) {
  15163. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15164. }
  15165. } break;
  15166. case GGML_OP_ADD:
  15167. case GGML_OP_ADD1:
  15168. {
  15169. if (ggml_is_quantized(node->src[0]->type)) {
  15170. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15171. }
  15172. } break;
  15173. case GGML_OP_ACC:
  15174. {
  15175. if (ggml_is_quantized(node->src[0]->type)) {
  15176. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15177. }
  15178. } break;
  15179. case GGML_OP_MUL_MAT:
  15180. {
  15181. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15182. #if defined(GGML_USE_CLBLAST)
  15183. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15184. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15185. } else
  15186. #endif
  15187. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15188. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15189. if (node->src[0]->type != GGML_TYPE_F32) {
  15190. // here we need memory for fully dequantized matrix from src0
  15191. // take into account that src0 can be broadcasted into src1[2,3]
  15192. cur = ggml_type_size(GGML_TYPE_F32)
  15193. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15194. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15195. }
  15196. } else
  15197. #endif
  15198. if (node->src[1]->type != vec_dot_type) {
  15199. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15200. }
  15201. } break;
  15202. case GGML_OP_MUL_MAT_ID:
  15203. {
  15204. cur = 0;
  15205. const struct ggml_tensor * src0 = node->src[0];
  15206. const struct ggml_tensor * src1 = node->src[1];
  15207. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15208. if (src1->type != vec_dot_type) {
  15209. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15210. }
  15211. const int n_as = src0->ne[2];
  15212. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15213. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15214. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15215. } break;
  15216. case GGML_OP_OUT_PROD:
  15217. {
  15218. if (ggml_is_quantized(node->src[0]->type)) {
  15219. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15220. }
  15221. } break;
  15222. case GGML_OP_SOFT_MAX:
  15223. case GGML_OP_ROPE:
  15224. {
  15225. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15226. } break;
  15227. case GGML_OP_CONV_TRANSPOSE_1D:
  15228. {
  15229. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15230. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15231. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15232. const int64_t ne00 = node->src[0]->ne[0]; // K
  15233. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15234. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15235. const int64_t ne10 = node->src[1]->ne[0]; // L
  15236. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15237. if (node->src[0]->type == GGML_TYPE_F16 &&
  15238. node->src[1]->type == GGML_TYPE_F32) {
  15239. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15240. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15241. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15242. node->src[1]->type == GGML_TYPE_F32) {
  15243. cur += sizeof(float)*ne00*ne01*ne02;
  15244. cur += sizeof(float)*ne10*ne11;
  15245. } else {
  15246. GGML_ASSERT(false);
  15247. }
  15248. } break;
  15249. case GGML_OP_CONV_TRANSPOSE_2D:
  15250. {
  15251. const int64_t ne00 = node->src[0]->ne[0]; // W
  15252. const int64_t ne01 = node->src[0]->ne[1]; // H
  15253. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15254. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15255. const int64_t ne10 = node->src[1]->ne[0]; // W
  15256. const int64_t ne11 = node->src[1]->ne[1]; // H
  15257. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15258. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15259. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15260. } break;
  15261. case GGML_OP_FLASH_ATTN:
  15262. {
  15263. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15264. if (node->src[1]->type == GGML_TYPE_F32) {
  15265. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15266. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15267. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15268. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15269. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15270. }
  15271. } break;
  15272. case GGML_OP_FLASH_FF:
  15273. {
  15274. if (node->src[1]->type == GGML_TYPE_F32) {
  15275. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15276. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15277. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15278. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15279. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15280. }
  15281. } break;
  15282. case GGML_OP_FLASH_ATTN_BACK:
  15283. {
  15284. const int64_t D = node->src[0]->ne[0];
  15285. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15286. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15287. if (node->src[1]->type == GGML_TYPE_F32) {
  15288. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15289. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15290. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15291. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15292. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15293. }
  15294. } break;
  15295. case GGML_OP_CROSS_ENTROPY_LOSS:
  15296. {
  15297. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15298. } break;
  15299. case GGML_OP_COUNT:
  15300. {
  15301. GGML_ASSERT(false);
  15302. } break;
  15303. default:
  15304. break;
  15305. }
  15306. work_size = MAX(work_size, cur);
  15307. }
  15308. if (work_size > 0) {
  15309. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15310. }
  15311. cplan.n_threads = MIN(max_tasks, n_threads);
  15312. cplan.work_size = work_size;
  15313. cplan.work_data = NULL;
  15314. return cplan;
  15315. }
  15316. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15317. {
  15318. GGML_ASSERT(cplan);
  15319. GGML_ASSERT(cplan->n_threads > 0);
  15320. if (cplan->work_size > 0) {
  15321. GGML_ASSERT(cplan->work_data);
  15322. }
  15323. }
  15324. const int n_threads = cplan->n_threads;
  15325. struct ggml_compute_state_shared state_shared = {
  15326. /*.cgraph =*/ cgraph,
  15327. /*.cgraph_plan =*/ cplan,
  15328. /*.perf_node_start_cycles =*/ 0,
  15329. /*.perf_node_start_time_us =*/ 0,
  15330. /*.n_threads =*/ n_threads,
  15331. /*.n_active =*/ n_threads,
  15332. /*.node_n =*/ -1,
  15333. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15334. /*.abort_callback =*/ NULL,
  15335. /*.abort_callback_data =*/ NULL,
  15336. };
  15337. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15338. // create thread pool
  15339. if (n_threads > 1) {
  15340. for (int j = 1; j < n_threads; ++j) {
  15341. workers[j] = (struct ggml_compute_state) {
  15342. .thrd = 0,
  15343. .ith = j,
  15344. .shared = &state_shared,
  15345. .ec = GGML_STATUS_SUCCESS,
  15346. };
  15347. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15348. GGML_ASSERT(rc == 0);
  15349. UNUSED(rc);
  15350. }
  15351. }
  15352. workers[0].ith = 0;
  15353. workers[0].shared = &state_shared;
  15354. workers[0].ec = GGML_STATUS_SUCCESS;
  15355. const int64_t perf_start_cycles = ggml_perf_cycles();
  15356. const int64_t perf_start_time_us = ggml_perf_time_us();
  15357. // this is a work thread too
  15358. ggml_graph_compute_thread(&workers[0]);
  15359. enum ggml_status compute_status = workers[0].ec;
  15360. // don't leave affinity set on the main thread
  15361. clear_numa_thread_affinity();
  15362. // join or kill thread pool
  15363. if (n_threads > 1) {
  15364. for (int j = 1; j < n_threads; j++) {
  15365. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15366. GGML_ASSERT(rc == 0);
  15367. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15368. compute_status = workers[j].ec;
  15369. }
  15370. }
  15371. // performance stats (graph)
  15372. {
  15373. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15374. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15375. cgraph->perf_runs++;
  15376. cgraph->perf_cycles += perf_cycles_cur;
  15377. cgraph->perf_time_us += perf_time_us_cur;
  15378. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15379. __func__, cgraph->perf_runs,
  15380. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15381. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15382. (double) perf_time_us_cur / 1000.0,
  15383. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15384. }
  15385. return compute_status;
  15386. }
  15387. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15388. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15389. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15390. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15391. return ggml_graph_compute(cgraph, &cplan);
  15392. }
  15393. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15394. for (int i = 0; i < cgraph->n_leafs; i++) {
  15395. struct ggml_tensor * leaf = cgraph->leafs[i];
  15396. if (strcmp(leaf->name, name) == 0) {
  15397. return leaf;
  15398. }
  15399. }
  15400. for (int i = 0; i < cgraph->n_nodes; i++) {
  15401. struct ggml_tensor * node = cgraph->nodes[i];
  15402. if (strcmp(node->name, name) == 0) {
  15403. return node;
  15404. }
  15405. }
  15406. return NULL;
  15407. }
  15408. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15409. const int64_t * ne = tensor->ne;
  15410. const size_t * nb = tensor->nb;
  15411. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15412. ggml_type_name(tensor->type),
  15413. ggml_op_name (tensor->op),
  15414. ggml_n_dims(tensor),
  15415. ne[0], ne[1], ne[2], ne[3],
  15416. nb[0], nb[1], nb[2], nb[3],
  15417. tensor->data,
  15418. tensor->name);
  15419. }
  15420. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15421. const int64_t * ne = tensor->ne;
  15422. const size_t * nb = tensor->nb;
  15423. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15424. arg,
  15425. ggml_type_name(tensor->type),
  15426. ggml_op_name (tensor->op),
  15427. ggml_n_dims(tensor),
  15428. ne[0], ne[1], ne[2], ne[3],
  15429. nb[0], nb[1], nb[2], nb[3],
  15430. tensor->data,
  15431. tensor->name);
  15432. }
  15433. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15434. uint64_t size_eval = 0;
  15435. // compute size of intermediate results
  15436. // TODO: does not take into account scratch buffers !!!!
  15437. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15438. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15439. }
  15440. // print
  15441. {
  15442. FILE * fout = stdout;
  15443. fprintf(fout, "\n");
  15444. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15445. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15446. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15447. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15448. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15449. // header
  15450. fprintf(fout, "\n");
  15451. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15452. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15453. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15454. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15455. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15456. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15457. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15458. }
  15459. // header
  15460. fprintf(fout, "\n");
  15461. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15462. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15463. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15464. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15465. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15466. if (cgraph->nodes[i]->src[j]) {
  15467. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15468. }
  15469. }
  15470. fprintf(fout, "\n");
  15471. }
  15472. fprintf(fout, "\n");
  15473. }
  15474. // write binary data
  15475. {
  15476. FILE * fout = ggml_fopen(fname, "wb");
  15477. if (!fout) {
  15478. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15479. return;
  15480. }
  15481. // header
  15482. {
  15483. const uint32_t magic = GGML_FILE_MAGIC;
  15484. const uint32_t version = GGML_FILE_VERSION;
  15485. const uint32_t n_leafs = cgraph->n_leafs;
  15486. const uint32_t n_nodes = cgraph->n_nodes;
  15487. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15488. fwrite(&version, sizeof(uint32_t), 1, fout);
  15489. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15490. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15491. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15492. }
  15493. // leafs
  15494. {
  15495. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15496. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15497. const uint32_t type = tensor->type;
  15498. const uint32_t op = tensor->op;
  15499. fwrite(&type, sizeof(uint32_t), 1, fout);
  15500. fwrite(&op, sizeof(uint32_t), 1, fout);
  15501. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15502. const uint64_t ne = tensor->ne[j];
  15503. const uint64_t nb = tensor->nb[j];
  15504. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15505. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15506. }
  15507. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15508. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15509. // dump the data
  15510. // TODO: pad this to 32 byte boundary
  15511. {
  15512. const size_t size = ggml_nbytes(tensor);
  15513. fwrite(tensor->data, sizeof(char), size, fout);
  15514. }
  15515. }
  15516. }
  15517. // nodes
  15518. {
  15519. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15520. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15521. const uint32_t type = tensor->type;
  15522. const uint32_t op = tensor->op;
  15523. fwrite(&type, sizeof(uint32_t), 1, fout);
  15524. fwrite(&op, sizeof(uint32_t), 1, fout);
  15525. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15526. const uint64_t ne = tensor->ne[j];
  15527. const uint64_t nb = tensor->nb[j];
  15528. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15529. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15530. }
  15531. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15532. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15533. // output the op arguments
  15534. {
  15535. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15536. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15537. args[j] = tensor->src[j];
  15538. }
  15539. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15540. if (args[j]) {
  15541. int32_t idx = -1;
  15542. // check if leaf
  15543. {
  15544. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15545. if (args[j] == cgraph->leafs[k]) {
  15546. idx = k;
  15547. break;
  15548. }
  15549. }
  15550. }
  15551. // check if node
  15552. if (idx == -1) {
  15553. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15554. if (args[j] == cgraph->nodes[k]) {
  15555. idx = cgraph->n_leafs + k;
  15556. break;
  15557. }
  15558. }
  15559. }
  15560. if (idx == -1) {
  15561. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15562. fclose(fout);
  15563. return;
  15564. }
  15565. fwrite(&idx, sizeof(int32_t), 1, fout);
  15566. } else {
  15567. const int32_t nul = -1;
  15568. fwrite(&nul, sizeof(int32_t), 1, fout);
  15569. }
  15570. }
  15571. }
  15572. }
  15573. }
  15574. fclose(fout);
  15575. }
  15576. }
  15577. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15578. assert(*ctx_data == NULL);
  15579. assert(*ctx_eval == NULL);
  15580. struct ggml_cgraph * result = NULL;
  15581. struct ggml_tensor * data = NULL;
  15582. // read file into data
  15583. {
  15584. FILE * fin = ggml_fopen(fname, "rb");
  15585. if (!fin) {
  15586. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15587. return result;
  15588. }
  15589. size_t fsize = 0;
  15590. fseek(fin, 0, SEEK_END);
  15591. fsize = ftell(fin);
  15592. fseek(fin, 0, SEEK_SET);
  15593. // create the data context
  15594. {
  15595. const size_t overhead = 1*ggml_tensor_overhead();
  15596. struct ggml_init_params params = {
  15597. .mem_size = fsize + overhead,
  15598. .mem_buffer = NULL,
  15599. .no_alloc = false,
  15600. };
  15601. *ctx_data = ggml_init(params);
  15602. if (!*ctx_data) {
  15603. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15604. fclose(fin);
  15605. return result;
  15606. }
  15607. }
  15608. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15609. {
  15610. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15611. if (ret != fsize) {
  15612. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15613. fclose(fin);
  15614. return result;
  15615. }
  15616. }
  15617. fclose(fin);
  15618. }
  15619. // populate result
  15620. {
  15621. char * ptr = (char *) data->data;
  15622. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15623. if (magic != GGML_FILE_MAGIC) {
  15624. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15625. return result;
  15626. }
  15627. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15628. if (version != GGML_FILE_VERSION) {
  15629. fprintf(stderr, "%s: invalid version number\n", __func__);
  15630. return result;
  15631. }
  15632. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15633. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15634. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15635. const int graph_size = MAX(n_leafs, n_nodes);
  15636. // create the data context
  15637. {
  15638. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15639. struct ggml_init_params params = {
  15640. .mem_size = size_eval + overhead,
  15641. .mem_buffer = NULL,
  15642. .no_alloc = true,
  15643. };
  15644. *ctx_eval = ggml_init(params);
  15645. if (!*ctx_eval) {
  15646. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15647. return result;
  15648. }
  15649. }
  15650. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15651. result->n_leafs = n_leafs;
  15652. result->n_nodes = n_nodes;
  15653. // leafs
  15654. {
  15655. uint32_t type;
  15656. uint32_t op;
  15657. for (uint32_t i = 0; i < n_leafs; ++i) {
  15658. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15659. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15660. int64_t ne[GGML_MAX_DIMS];
  15661. size_t nb[GGML_MAX_DIMS];
  15662. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15663. uint64_t ne_cur;
  15664. uint64_t nb_cur;
  15665. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15666. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15667. ne[j] = ne_cur;
  15668. nb[j] = nb_cur;
  15669. }
  15670. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15671. tensor->op = (enum ggml_op) op;
  15672. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15673. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15674. tensor->data = (void *) ptr;
  15675. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15676. tensor->nb[j] = nb[j];
  15677. }
  15678. result->leafs[i] = tensor;
  15679. ptr += ggml_nbytes(tensor);
  15680. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15681. }
  15682. }
  15683. ggml_set_no_alloc(*ctx_eval, false);
  15684. // nodes
  15685. {
  15686. uint32_t type;
  15687. uint32_t op;
  15688. for (uint32_t i = 0; i < n_nodes; ++i) {
  15689. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15690. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15691. enum ggml_op eop = (enum ggml_op) op;
  15692. int64_t ne[GGML_MAX_DIMS];
  15693. size_t nb[GGML_MAX_DIMS];
  15694. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15695. uint64_t ne_cur;
  15696. uint64_t nb_cur;
  15697. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15698. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15699. ne[j] = ne_cur;
  15700. nb[j] = nb_cur;
  15701. }
  15702. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15703. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15704. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15705. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15706. // parse args
  15707. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15708. const int32_t arg_idx = ptr_arg_idx[j];
  15709. if (arg_idx == -1) {
  15710. continue;
  15711. }
  15712. if (arg_idx < result->n_leafs) {
  15713. args[j] = result->leafs[arg_idx];
  15714. } else {
  15715. args[j] = result->nodes[arg_idx - result->n_leafs];
  15716. }
  15717. }
  15718. // create the tensor
  15719. // "view" operations are handled differently
  15720. // TODO: handle inplace ops - currently a copy is always made
  15721. struct ggml_tensor * tensor = NULL;
  15722. switch (eop) {
  15723. // TODO: implement other view ops
  15724. case GGML_OP_RESHAPE:
  15725. {
  15726. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15727. } break;
  15728. case GGML_OP_VIEW:
  15729. {
  15730. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15731. size_t offs;
  15732. memcpy(&offs, ptr_op_params, sizeof(offs));
  15733. tensor->data = ((char *) tensor->data) + offs;
  15734. } break;
  15735. case GGML_OP_TRANSPOSE:
  15736. {
  15737. tensor = ggml_transpose(*ctx_eval, args[0]);
  15738. } break;
  15739. case GGML_OP_PERMUTE:
  15740. {
  15741. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15742. } break;
  15743. default:
  15744. {
  15745. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15746. tensor->op = eop;
  15747. } break;
  15748. }
  15749. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15750. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15751. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15752. tensor->nb[j] = nb[j];
  15753. }
  15754. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15755. tensor->src[j] = args[j];
  15756. }
  15757. result->nodes[i] = tensor;
  15758. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15759. }
  15760. }
  15761. }
  15762. return result;
  15763. }
  15764. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15765. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15766. GGML_PRINT("=== GRAPH ===\n");
  15767. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15768. for (int i = 0; i < cgraph->n_nodes; i++) {
  15769. struct ggml_tensor * node = cgraph->nodes[i];
  15770. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15771. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15772. i,
  15773. node->ne[0], node->ne[1], node->ne[2],
  15774. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15775. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15776. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15777. (double) node->perf_time_us / 1000.0,
  15778. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15779. }
  15780. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15781. for (int i = 0; i < cgraph->n_leafs; i++) {
  15782. struct ggml_tensor * node = cgraph->leafs[i];
  15783. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15784. i,
  15785. node->ne[0], node->ne[1],
  15786. ggml_op_name(node->op),
  15787. ggml_get_name(node));
  15788. }
  15789. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15790. if (perf_total_per_op_us[i] == 0) {
  15791. continue;
  15792. }
  15793. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15794. }
  15795. GGML_PRINT("========================================\n");
  15796. }
  15797. // check if node is part of the graph
  15798. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15799. if (cgraph == NULL) {
  15800. return true;
  15801. }
  15802. for (int i = 0; i < cgraph->n_nodes; i++) {
  15803. if (cgraph->nodes[i] == node) {
  15804. return true;
  15805. }
  15806. }
  15807. return false;
  15808. }
  15809. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15810. for (int i = 0; i < cgraph->n_nodes; i++) {
  15811. struct ggml_tensor * parent = cgraph->nodes[i];
  15812. if (parent->grad == node) {
  15813. return parent;
  15814. }
  15815. }
  15816. return NULL;
  15817. }
  15818. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15819. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15820. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15821. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15822. gparent0 ? (void *) gparent0 : (void *) parent,
  15823. gparent0 ? "g" : "x",
  15824. gparent ? (void *) gparent : (void *) node,
  15825. gparent ? "g" : "x",
  15826. gparent ? "empty" : "vee",
  15827. gparent ? "dashed" : "solid",
  15828. label);
  15829. }
  15830. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15831. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15832. (void *) parent, "x",
  15833. (void *) node, "x",
  15834. label);
  15835. }
  15836. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15837. char color[16];
  15838. FILE * fp = ggml_fopen(filename, "w");
  15839. GGML_ASSERT(fp);
  15840. fprintf(fp, "digraph G {\n");
  15841. fprintf(fp, " newrank = true;\n");
  15842. fprintf(fp, " rankdir = LR;\n");
  15843. for (int i = 0; i < gb->n_nodes; i++) {
  15844. struct ggml_tensor * node = gb->nodes[i];
  15845. if (ggml_graph_get_parent(gb, node) != NULL) {
  15846. continue;
  15847. }
  15848. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15849. snprintf(color, sizeof(color), "yellow");
  15850. } else if (node->grad) {
  15851. if (ggml_graph_find(gf, node)) {
  15852. snprintf(color, sizeof(color), "green");
  15853. } else {
  15854. snprintf(color, sizeof(color), "lightblue");
  15855. }
  15856. } else {
  15857. snprintf(color, sizeof(color), "white");
  15858. }
  15859. fprintf(fp, " \"%p\" [ "
  15860. "style = filled; fillcolor = %s; shape = record; "
  15861. "label=\"",
  15862. (void *) node, color);
  15863. if (strlen(node->name) > 0) {
  15864. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15865. } else {
  15866. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15867. }
  15868. if (ggml_is_matrix(node)) {
  15869. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15870. } else {
  15871. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15872. }
  15873. if (node->grad) {
  15874. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15875. } else {
  15876. fprintf(fp, "\"; ]\n");
  15877. }
  15878. }
  15879. for (int i = 0; i < gb->n_leafs; i++) {
  15880. struct ggml_tensor * node = gb->leafs[i];
  15881. snprintf(color, sizeof(color), "pink");
  15882. fprintf(fp, " \"%p\" [ "
  15883. "style = filled; fillcolor = %s; shape = record; "
  15884. "label=\"<x>",
  15885. (void *) node, color);
  15886. if (strlen(node->name) > 0) {
  15887. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15888. } else {
  15889. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15890. }
  15891. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15892. if (ggml_nelements(node) < 5) {
  15893. fprintf(fp, " | (");
  15894. for (int j = 0; j < ggml_nelements(node); j++) {
  15895. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15896. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15897. }
  15898. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15899. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15900. }
  15901. else {
  15902. fprintf(fp, "#");
  15903. }
  15904. if (j < ggml_nelements(node) - 1) {
  15905. fprintf(fp, ", ");
  15906. }
  15907. }
  15908. fprintf(fp, ")");
  15909. }
  15910. fprintf(fp, "\"; ]\n");
  15911. }
  15912. for (int i = 0; i < gb->n_nodes; i++) {
  15913. struct ggml_tensor * node = gb->nodes[i];
  15914. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15915. if (node->src[j]) {
  15916. char label[16];
  15917. snprintf(label, sizeof(label), "src %d", j);
  15918. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15919. }
  15920. }
  15921. }
  15922. for (int i = 0; i < gb->n_leafs; i++) {
  15923. struct ggml_tensor * node = gb->leafs[i];
  15924. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15925. if (node->src[j]) {
  15926. char label[16];
  15927. snprintf(label, sizeof(label), "src %d", j);
  15928. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15929. }
  15930. }
  15931. }
  15932. fprintf(fp, "}\n");
  15933. fclose(fp);
  15934. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15935. }
  15936. ////////////////////////////////////////////////////////////////////////////////
  15937. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15938. int i = 0;
  15939. for (int p = 0; p < np; ++p) {
  15940. const int64_t ne = ggml_nelements(ps[p]) ;
  15941. // TODO: add function to set tensor from array
  15942. for (int64_t j = 0; j < ne; ++j) {
  15943. ggml_set_f32_1d(ps[p], j, x[i++]);
  15944. }
  15945. }
  15946. }
  15947. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15948. int i = 0;
  15949. for (int p = 0; p < np; ++p) {
  15950. const int64_t ne = ggml_nelements(ps[p]) ;
  15951. // TODO: add function to get all elements at once
  15952. for (int64_t j = 0; j < ne; ++j) {
  15953. x[i++] = ggml_get_f32_1d(ps[p], j);
  15954. }
  15955. }
  15956. }
  15957. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15958. int64_t i = 0;
  15959. for (int p = 0; p < np; ++p) {
  15960. const int64_t ne = ggml_nelements(ps[p]) ;
  15961. // TODO: add function to get all elements at once
  15962. for (int64_t j = 0; j < ne; ++j) {
  15963. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15964. }
  15965. }
  15966. }
  15967. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15968. int64_t i = 0;
  15969. for (int p = 0; p < np; ++p) {
  15970. const int64_t ne = ggml_nelements(ps[p]) ;
  15971. // TODO: add function to get all elements at once
  15972. for (int64_t j = 0; j < ne; ++j) {
  15973. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15974. }
  15975. }
  15976. }
  15977. //
  15978. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15979. //
  15980. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15981. //
  15982. static enum ggml_opt_result ggml_opt_adam(
  15983. struct ggml_context * ctx,
  15984. struct ggml_opt_context * opt,
  15985. struct ggml_opt_params params,
  15986. struct ggml_tensor * f,
  15987. struct ggml_cgraph * gf,
  15988. struct ggml_cgraph * gb,
  15989. ggml_opt_callback callback,
  15990. void * callback_data) {
  15991. GGML_ASSERT(ggml_is_scalar(f));
  15992. // these will store the parameters we want to optimize
  15993. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15994. int np = 0;
  15995. int64_t nx = 0;
  15996. for (int i = 0; i < gf->n_nodes; ++i) {
  15997. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15998. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15999. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16000. ps[np++] = gf->nodes[i];
  16001. nx += ggml_nelements(gf->nodes[i]);
  16002. }
  16003. }
  16004. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16005. int iter = opt->iter;
  16006. ggml_opt_init(opt->ctx, opt, params, nx);
  16007. opt->iter = iter;
  16008. }
  16009. // constants
  16010. float sched = params.adam.sched;
  16011. const float alpha = params.adam.alpha;
  16012. const float decay = params.adam.decay * alpha;
  16013. const float beta1 = params.adam.beta1;
  16014. const float beta2 = params.adam.beta2;
  16015. const float eps = params.adam.eps;
  16016. const float gclip = params.adam.gclip;
  16017. const int decay_min_ndim = params.adam.decay_min_ndim;
  16018. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16019. const float accum_norm = 1.0f / (float) n_accum;
  16020. float * g = opt->adam.g->data; // gradients
  16021. float * m = opt->adam.m->data; // first moment
  16022. float * v = opt->adam.v->data; // second moment
  16023. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16024. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16025. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16026. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16027. bool cancel = false;
  16028. // compute the function value
  16029. float fx = 0;
  16030. ggml_set_zero(opt->adam.g);
  16031. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16032. if (callback) {
  16033. callback(callback_data, accum_step, &sched, &cancel);
  16034. if (cancel) {
  16035. return GGML_OPT_RESULT_CANCEL;
  16036. }
  16037. }
  16038. // ggml_graph_reset (gf);
  16039. ggml_set_f32 (f->grad, 1.0f);
  16040. ggml_graph_compute(gb, &cplan);
  16041. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16042. fx += ggml_get_f32_1d(f, 0);
  16043. }
  16044. fx *= accum_norm;
  16045. opt->adam.fx_prev = fx;
  16046. opt->adam.fx_best = opt->adam.fx_prev;
  16047. if (pf) {
  16048. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16049. }
  16050. opt->loss_before = opt->adam.fx_prev;
  16051. opt->loss_after = opt->adam.fx_prev;
  16052. // initialize
  16053. if (opt->just_initialized) {
  16054. opt->adam.n_no_improvement = 0;
  16055. opt->just_initialized = false;
  16056. }
  16057. float * fx_best = &opt->adam.fx_best;
  16058. float * fx_prev = &opt->adam.fx_prev;
  16059. int * n_no_improvement = &opt->adam.n_no_improvement;
  16060. int iter0 = opt->iter;
  16061. // run the optimizer
  16062. for (int t = 0; t < params.adam.n_iter; ++t) {
  16063. opt->iter = iter0 + t + 1;
  16064. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16065. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16066. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16067. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16068. for (int i = 0; i < np; ++i) {
  16069. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16070. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16071. }
  16072. const int64_t t_start_wall = ggml_time_us();
  16073. const int64_t t_start_cpu = ggml_cycles();
  16074. UNUSED(t_start_wall);
  16075. UNUSED(t_start_cpu);
  16076. {
  16077. float gnorm = 1.0f;
  16078. if (gclip > 0.0f) {
  16079. // gradient clipping
  16080. ggml_float sum = 0.0;
  16081. for (int64_t i = 0; i < nx; ++i) {
  16082. sum += (ggml_float)(g[i]*g[i]);
  16083. }
  16084. ggml_float norm = sqrt(sum);
  16085. if (norm > (ggml_float) gclip) {
  16086. gnorm = (float) ((ggml_float) gclip / norm);
  16087. }
  16088. }
  16089. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16090. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16091. int64_t i = 0;
  16092. for (int p = 0; p < np; ++p) {
  16093. const int64_t ne = ggml_nelements(ps[p]);
  16094. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16095. for (int64_t j = 0; j < ne; ++j) {
  16096. float x = ggml_get_f32_1d(ps[p], j);
  16097. float g_ = g[i]*gnorm;
  16098. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16099. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16100. float mh = m[i]*beta1h;
  16101. float vh = v[i]*beta2h;
  16102. vh = sqrtf(vh) + eps;
  16103. x = x*(1.0f - p_decay) - mh/vh;
  16104. ggml_set_f32_1d(ps[p], j, x);
  16105. ++i;
  16106. }
  16107. }
  16108. }
  16109. fx = 0;
  16110. ggml_set_zero(opt->adam.g);
  16111. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16112. if (callback) {
  16113. callback(callback_data, accum_step, &sched, &cancel);
  16114. if (cancel) {
  16115. return GGML_OPT_RESULT_CANCEL;;
  16116. }
  16117. }
  16118. // ggml_graph_reset (gf);
  16119. ggml_set_f32 (f->grad, 1.0f);
  16120. ggml_graph_compute(gb, &cplan);
  16121. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16122. fx += ggml_get_f32_1d(f, 0);
  16123. }
  16124. fx *= accum_norm;
  16125. opt->loss_after = fx;
  16126. // check convergence
  16127. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16128. GGML_PRINT_DEBUG("converged\n");
  16129. return GGML_OPT_RESULT_OK;
  16130. }
  16131. // delta-based convergence test
  16132. if (pf != NULL) {
  16133. // need at least params.past iterations to start checking for convergence
  16134. if (params.past <= iter0 + t) {
  16135. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16136. if (fabsf(rate) < params.delta) {
  16137. return GGML_OPT_RESULT_OK;
  16138. }
  16139. }
  16140. pf[(iter0 + t)%params.past] = fx;
  16141. }
  16142. // check for improvement
  16143. if (params.max_no_improvement > 0) {
  16144. if (fx_best[0] > fx) {
  16145. fx_best[0] = fx;
  16146. n_no_improvement[0] = 0;
  16147. } else {
  16148. ++n_no_improvement[0];
  16149. if (n_no_improvement[0] >= params.max_no_improvement) {
  16150. return GGML_OPT_RESULT_OK;
  16151. }
  16152. }
  16153. }
  16154. fx_prev[0] = fx;
  16155. {
  16156. const int64_t t_end_cpu = ggml_cycles();
  16157. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16158. UNUSED(t_end_cpu);
  16159. const int64_t t_end_wall = ggml_time_us();
  16160. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16161. UNUSED(t_end_wall);
  16162. }
  16163. }
  16164. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16165. }
  16166. //
  16167. // L-BFGS
  16168. //
  16169. // the L-BFGS implementation below is based on the following implementation:
  16170. //
  16171. // https://github.com/chokkan/liblbfgs
  16172. //
  16173. struct ggml_lbfgs_iteration_data {
  16174. float alpha;
  16175. float ys;
  16176. float * s;
  16177. float * y;
  16178. };
  16179. static enum ggml_opt_result linesearch_backtracking(
  16180. const struct ggml_opt_params * params,
  16181. int nx,
  16182. float * x,
  16183. float * fx,
  16184. float * g,
  16185. float * d,
  16186. float * step,
  16187. const float * xp,
  16188. struct ggml_tensor * f,
  16189. struct ggml_cgraph * gb,
  16190. struct ggml_cplan * cplan,
  16191. const int np,
  16192. struct ggml_tensor * ps[],
  16193. bool * cancel,
  16194. ggml_opt_callback callback,
  16195. void * callback_data) {
  16196. int count = 0;
  16197. float width = 0.0f;
  16198. float dg = 0.0f;
  16199. float finit = 0.0f;
  16200. float dginit = 0.0f;
  16201. float dgtest = 0.0f;
  16202. const float dec = 0.5f;
  16203. const float inc = 2.1f;
  16204. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16205. const float accum_norm = 1.0f / (float) n_accum;
  16206. if (*step <= 0.f) {
  16207. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16208. }
  16209. // compute the initial gradient in the search direction
  16210. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16211. // make sure that d points to a descent direction
  16212. if (0 < dginit) {
  16213. return GGML_LINESEARCH_FAIL;
  16214. }
  16215. // initialize local variables
  16216. finit = *fx;
  16217. dgtest = params->lbfgs.ftol*dginit;
  16218. while (true) {
  16219. ggml_vec_cpy_f32(nx, x, xp);
  16220. ggml_vec_mad_f32(nx, x, d, *step);
  16221. // evaluate the function and gradient values
  16222. {
  16223. ggml_opt_set_params(np, ps, x);
  16224. *fx = 0;
  16225. memset(g, 0, sizeof(float)*nx);
  16226. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16227. if (callback) {
  16228. // LBFG-S does not support learning rate -> ignore learning schedule
  16229. float sched = 0;
  16230. callback(callback_data, accum_step, &sched, cancel);
  16231. if (*cancel) {
  16232. return GGML_OPT_RESULT_CANCEL;
  16233. }
  16234. }
  16235. // ggml_graph_reset (gf);
  16236. ggml_set_f32 (f->grad, 1.0f);
  16237. ggml_graph_compute(gb, cplan);
  16238. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16239. *fx += ggml_get_f32_1d(f, 0);
  16240. }
  16241. *fx *= accum_norm;
  16242. }
  16243. ++count;
  16244. if (*fx > finit + (*step)*dgtest) {
  16245. width = dec;
  16246. } else {
  16247. // Armijo condition is satisfied
  16248. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16249. return count;
  16250. }
  16251. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16252. // check the Wolfe condition
  16253. if (dg < params->lbfgs.wolfe * dginit) {
  16254. width = inc;
  16255. } else {
  16256. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16257. // regular Wolfe conditions
  16258. return count;
  16259. }
  16260. if(dg > -params->lbfgs.wolfe*dginit) {
  16261. width = dec;
  16262. } else {
  16263. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16264. return count;
  16265. }
  16266. }
  16267. }
  16268. if (*step < params->lbfgs.min_step) {
  16269. return GGML_LINESEARCH_MINIMUM_STEP;
  16270. }
  16271. if (*step > params->lbfgs.max_step) {
  16272. return GGML_LINESEARCH_MAXIMUM_STEP;
  16273. }
  16274. if (params->lbfgs.max_linesearch <= count) {
  16275. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16276. }
  16277. (*step) *= width;
  16278. }
  16279. GGML_ASSERT(false && "line search failed");
  16280. return GGML_LINESEARCH_FAIL;
  16281. }
  16282. static enum ggml_opt_result ggml_opt_lbfgs(
  16283. struct ggml_context * ctx,
  16284. struct ggml_opt_context * opt,
  16285. struct ggml_opt_params params,
  16286. struct ggml_tensor * f,
  16287. struct ggml_cgraph * gf,
  16288. struct ggml_cgraph * gb,
  16289. ggml_opt_callback callback,
  16290. void * callback_data) {
  16291. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16292. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16293. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16294. return GGML_OPT_RESULT_INVALID_WOLFE;
  16295. }
  16296. }
  16297. const int m = params.lbfgs.m;
  16298. // these will store the parameters we want to optimize
  16299. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16300. int np = 0;
  16301. int nx = 0;
  16302. for (int i = 0; i < gf->n_nodes; ++i) {
  16303. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16304. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16305. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16306. ps[np++] = gf->nodes[i];
  16307. nx += ggml_nelements(gf->nodes[i]);
  16308. }
  16309. }
  16310. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16311. int iter = opt->iter;
  16312. ggml_opt_init(ctx, opt, params, nx);
  16313. opt->iter = iter;
  16314. }
  16315. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16316. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16317. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16318. float * x = opt->lbfgs.x->data; // current parameters
  16319. float * xp = opt->lbfgs.xp->data; // previous parameters
  16320. float * g = opt->lbfgs.g->data; // current gradient
  16321. float * gp = opt->lbfgs.gp->data; // previous gradient
  16322. float * d = opt->lbfgs.d->data; // search direction
  16323. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16324. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16325. const float accum_norm = 1.0f / (float) n_accum;
  16326. float fx = 0.0f; // cost function value
  16327. float xnorm = 0.0f; // ||x||
  16328. float gnorm = 0.0f; // ||g||
  16329. // initialize x from the graph nodes
  16330. ggml_opt_get_params(np, ps, x);
  16331. // the L-BFGS memory
  16332. float * lm_alpha = opt->lbfgs.lmal->data;
  16333. float * lm_ys = opt->lbfgs.lmys->data;
  16334. float * lm_s = opt->lbfgs.lms->data;
  16335. float * lm_y = opt->lbfgs.lmy->data;
  16336. bool cancel = false;
  16337. // evaluate the function value and its gradient
  16338. {
  16339. ggml_opt_set_params(np, ps, x);
  16340. fx = 0;
  16341. memset(g, 0, sizeof(float)*nx);
  16342. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16343. if (callback) {
  16344. // LBFG-S does not support learning rate -> ignore learning schedule
  16345. float sched = 0;
  16346. callback(callback_data, accum_step, &sched, &cancel);
  16347. if (cancel) {
  16348. return GGML_OPT_RESULT_CANCEL;
  16349. }
  16350. }
  16351. // ggml_graph_reset (gf);
  16352. ggml_set_f32 (f->grad, 1.0f);
  16353. ggml_graph_compute(gb, &cplan);
  16354. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16355. fx += ggml_get_f32_1d(f, 0);
  16356. }
  16357. fx *= accum_norm;
  16358. opt->loss_before = fx;
  16359. opt->loss_after = fx;
  16360. }
  16361. // search direction = -gradient
  16362. ggml_vec_neg_f32(nx, d, g);
  16363. // ||x||, ||g||
  16364. ggml_vec_norm_f32(nx, &xnorm, x);
  16365. ggml_vec_norm_f32(nx, &gnorm, g);
  16366. if (xnorm < 1.0f) {
  16367. xnorm = 1.0f;
  16368. }
  16369. // already optimized
  16370. if (gnorm/xnorm <= params.lbfgs.eps) {
  16371. return GGML_OPT_RESULT_OK;
  16372. }
  16373. if (opt->just_initialized) {
  16374. if (pf) {
  16375. pf[0] = fx;
  16376. }
  16377. opt->lbfgs.fx_best = fx;
  16378. // initial step
  16379. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16380. opt->lbfgs.j = 0;
  16381. opt->lbfgs.k = 1;
  16382. opt->lbfgs.end = 0;
  16383. opt->lbfgs.n_no_improvement = 0;
  16384. opt->just_initialized = false;
  16385. }
  16386. float * fx_best = &opt->lbfgs.fx_best;
  16387. float * step = &opt->lbfgs.step;
  16388. int * j = &opt->lbfgs.j;
  16389. int * k = &opt->lbfgs.k;
  16390. int * end = &opt->lbfgs.end;
  16391. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16392. int ls = 0;
  16393. int bound = 0;
  16394. float ys = 0.0f;
  16395. float yy = 0.0f;
  16396. float beta = 0.0f;
  16397. int it = 0;
  16398. while (true) {
  16399. // store the current position and gradient vectors
  16400. ggml_vec_cpy_f32(nx, xp, x);
  16401. ggml_vec_cpy_f32(nx, gp, g);
  16402. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16403. // to determine if the optimization should be cancelled
  16404. // this is a simple change, but not doing this atm, since I don't have a nice
  16405. // way to test and don't want to break something with so many changes lined up
  16406. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16407. if (cancel) {
  16408. return GGML_OPT_RESULT_CANCEL;
  16409. }
  16410. if (ls < 0) {
  16411. // linesearch failed - go back to the previous point and return
  16412. ggml_vec_cpy_f32(nx, x, xp);
  16413. ggml_vec_cpy_f32(nx, g, gp);
  16414. return ls;
  16415. }
  16416. opt->loss_after = fx;
  16417. ggml_vec_norm_f32(nx, &xnorm, x);
  16418. ggml_vec_norm_f32(nx, &gnorm, g);
  16419. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16420. if (xnorm < 1.0f) {
  16421. xnorm = 1.0f;
  16422. }
  16423. if (gnorm/xnorm <= params.lbfgs.eps) {
  16424. // converged
  16425. return GGML_OPT_RESULT_OK;
  16426. }
  16427. // delta-based convergence test
  16428. if (pf != NULL) {
  16429. // need at least params.past iterations to start checking for convergence
  16430. if (params.past <= k[0]) {
  16431. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16432. if (fabsf(rate) < params.delta) {
  16433. return GGML_OPT_RESULT_OK;
  16434. }
  16435. }
  16436. pf[k[0]%params.past] = fx;
  16437. }
  16438. // check for improvement
  16439. if (params.max_no_improvement > 0) {
  16440. if (fx < fx_best[0]) {
  16441. fx_best[0] = fx;
  16442. n_no_improvement[0] = 0;
  16443. } else {
  16444. n_no_improvement[0]++;
  16445. if (n_no_improvement[0] >= params.max_no_improvement) {
  16446. return GGML_OPT_RESULT_OK;
  16447. }
  16448. }
  16449. }
  16450. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16451. // reached the maximum number of iterations
  16452. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16453. }
  16454. // update vectors s and y:
  16455. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16456. // y_{k+1} = g_{k+1} - g_{k}.
  16457. //
  16458. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16459. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16460. // compute scalars ys and yy:
  16461. // ys = y^t \cdot s -> 1 / \rho.
  16462. // yy = y^t \cdot y.
  16463. //
  16464. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16465. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16466. lm_ys[end[0]] = ys;
  16467. // find new search direction
  16468. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16469. bound = (m <= k[0]) ? m : k[0];
  16470. k[0]++;
  16471. it++;
  16472. end[0] = (end[0] + 1)%m;
  16473. // initialize search direction with -g
  16474. ggml_vec_neg_f32(nx, d, g);
  16475. j[0] = end[0];
  16476. for (int i = 0; i < bound; ++i) {
  16477. j[0] = (j[0] + m - 1) % m;
  16478. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16479. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16480. lm_alpha[j[0]] /= lm_ys[j[0]];
  16481. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16482. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16483. }
  16484. ggml_vec_scale_f32(nx, d, ys/yy);
  16485. for (int i = 0; i < bound; ++i) {
  16486. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16487. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16488. beta /= lm_ys[j[0]];
  16489. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16490. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16491. j[0] = (j[0] + 1)%m;
  16492. }
  16493. step[0] = 1.0;
  16494. }
  16495. GGML_ASSERT(false && "lbfgs failed");
  16496. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16497. }
  16498. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16499. struct ggml_opt_params result;
  16500. switch (type) {
  16501. case GGML_OPT_TYPE_ADAM:
  16502. {
  16503. result = (struct ggml_opt_params) {
  16504. .type = GGML_OPT_TYPE_ADAM,
  16505. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16506. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16507. .past = 0,
  16508. .delta = 1e-5f,
  16509. .max_no_improvement = 100,
  16510. .print_forward_graph = true,
  16511. .print_backward_graph = true,
  16512. .n_gradient_accumulation = 1,
  16513. .adam = {
  16514. .n_iter = 10000,
  16515. .sched = 1.000f,
  16516. .decay = 0.0f,
  16517. .decay_min_ndim = 2,
  16518. .alpha = 0.001f,
  16519. .beta1 = 0.9f,
  16520. .beta2 = 0.999f,
  16521. .eps = 1e-8f,
  16522. .eps_f = 1e-5f,
  16523. .eps_g = 1e-3f,
  16524. .gclip = 0.0f,
  16525. },
  16526. };
  16527. } break;
  16528. case GGML_OPT_TYPE_LBFGS:
  16529. {
  16530. result = (struct ggml_opt_params) {
  16531. .type = GGML_OPT_TYPE_LBFGS,
  16532. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16533. .n_threads = 1,
  16534. .past = 0,
  16535. .delta = 1e-5f,
  16536. .max_no_improvement = 0,
  16537. .print_forward_graph = true,
  16538. .print_backward_graph = true,
  16539. .n_gradient_accumulation = 1,
  16540. .lbfgs = {
  16541. .m = 6,
  16542. .n_iter = 100,
  16543. .max_linesearch = 20,
  16544. .eps = 1e-5f,
  16545. .ftol = 1e-4f,
  16546. .wolfe = 0.9f,
  16547. .min_step = 1e-20f,
  16548. .max_step = 1e+20f,
  16549. .linesearch = GGML_LINESEARCH_DEFAULT,
  16550. },
  16551. };
  16552. } break;
  16553. }
  16554. return result;
  16555. }
  16556. GGML_API void ggml_opt_init(
  16557. struct ggml_context * ctx,
  16558. struct ggml_opt_context * opt,
  16559. struct ggml_opt_params params,
  16560. int64_t nx) {
  16561. opt->ctx = ctx;
  16562. opt->params = params;
  16563. opt->iter = 0;
  16564. opt->nx = nx;
  16565. opt->just_initialized = true;
  16566. if (opt->ctx == NULL) {
  16567. struct ggml_init_params ctx_opt_params;
  16568. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16569. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16570. if (opt->params.past > 0) {
  16571. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16572. }
  16573. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16574. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16575. if (opt->params.past > 0) {
  16576. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16577. }
  16578. }
  16579. ctx_opt_params.mem_buffer = NULL;
  16580. ctx_opt_params.no_alloc = false;
  16581. opt->ctx = ggml_init(ctx_opt_params);
  16582. }
  16583. switch (opt->params.type) {
  16584. case GGML_OPT_TYPE_ADAM:
  16585. {
  16586. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16587. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16588. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16589. opt->adam.pf = params.past > 0
  16590. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16591. : NULL;
  16592. ggml_set_zero(opt->adam.m);
  16593. ggml_set_zero(opt->adam.v);
  16594. if (opt->adam.pf) {
  16595. ggml_set_zero(opt->adam.pf);
  16596. }
  16597. } break;
  16598. case GGML_OPT_TYPE_LBFGS:
  16599. {
  16600. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16601. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16602. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16603. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16604. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16605. opt->lbfgs.pf = params.past > 0
  16606. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16607. : NULL;
  16608. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16609. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16610. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16611. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16612. ggml_set_zero(opt->lbfgs.x);
  16613. ggml_set_zero(opt->lbfgs.xp);
  16614. ggml_set_zero(opt->lbfgs.g);
  16615. ggml_set_zero(opt->lbfgs.gp);
  16616. ggml_set_zero(opt->lbfgs.d);
  16617. if (opt->lbfgs.pf) {
  16618. ggml_set_zero(opt->lbfgs.pf);
  16619. }
  16620. ggml_set_zero(opt->lbfgs.lmal);
  16621. ggml_set_zero(opt->lbfgs.lmys);
  16622. ggml_set_zero(opt->lbfgs.lms);
  16623. ggml_set_zero(opt->lbfgs.lmy);
  16624. } break;
  16625. }
  16626. }
  16627. enum ggml_opt_result ggml_opt(
  16628. struct ggml_context * ctx,
  16629. struct ggml_opt_params params,
  16630. struct ggml_tensor * f) {
  16631. bool free_ctx = false;
  16632. if (ctx == NULL) {
  16633. struct ggml_init_params params_ctx = {
  16634. .mem_size = 16*1024*1024,
  16635. .mem_buffer = NULL,
  16636. .no_alloc = false,
  16637. };
  16638. ctx = ggml_init(params_ctx);
  16639. if (ctx == NULL) {
  16640. return GGML_OPT_RESULT_NO_CONTEXT;
  16641. }
  16642. free_ctx = true;
  16643. }
  16644. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16645. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16646. ggml_opt_init(ctx, opt, params, 0);
  16647. result = ggml_opt_resume(ctx, opt, f);
  16648. if (free_ctx) {
  16649. ggml_free(ctx);
  16650. }
  16651. return result;
  16652. }
  16653. enum ggml_opt_result ggml_opt_resume(
  16654. struct ggml_context * ctx,
  16655. struct ggml_opt_context * opt,
  16656. struct ggml_tensor * f) {
  16657. // build forward + backward compute graphs
  16658. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16659. ggml_build_forward_expand(gf, f);
  16660. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16661. ggml_build_backward_expand(ctx, gf, gb, true);
  16662. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16663. }
  16664. enum ggml_opt_result ggml_opt_resume_g(
  16665. struct ggml_context * ctx,
  16666. struct ggml_opt_context * opt,
  16667. struct ggml_tensor * f,
  16668. struct ggml_cgraph * gf,
  16669. struct ggml_cgraph * gb,
  16670. ggml_opt_callback callback,
  16671. void * callback_data) {
  16672. // build forward + backward compute graphs
  16673. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16674. switch (opt->params.type) {
  16675. case GGML_OPT_TYPE_ADAM:
  16676. {
  16677. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16678. } break;
  16679. case GGML_OPT_TYPE_LBFGS:
  16680. {
  16681. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16682. } break;
  16683. }
  16684. if (opt->params.print_forward_graph) {
  16685. ggml_graph_print (gf);
  16686. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16687. }
  16688. if (opt->params.print_backward_graph) {
  16689. ggml_graph_print (gb);
  16690. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16691. }
  16692. return result;
  16693. }
  16694. ////////////////////////////////////////////////////////////////////////////////
  16695. void ggml_set_input(struct ggml_tensor * tensor) {
  16696. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16697. }
  16698. void ggml_set_output(struct ggml_tensor * tensor) {
  16699. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16700. }
  16701. ////////////////////////////////////////////////////////////////////////////////
  16702. void ggml_quantize_init(enum ggml_type type) {
  16703. ggml_critical_section_start();
  16704. switch (type) {
  16705. case GGML_TYPE_IQ2_XXS:
  16706. case GGML_TYPE_IQ2_XS:
  16707. case GGML_TYPE_IQ2_S:
  16708. case GGML_TYPE_IQ1_S:
  16709. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16710. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16711. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16712. default: // nothing
  16713. break;
  16714. }
  16715. ggml_critical_section_end();
  16716. }
  16717. void ggml_quantize_free(void) {
  16718. ggml_critical_section_start();
  16719. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16720. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16721. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16722. iq3xs_free_impl(256);
  16723. ggml_critical_section_end();
  16724. }
  16725. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16726. return
  16727. type == GGML_TYPE_IQ2_XXS ||
  16728. type == GGML_TYPE_IQ2_XS ||
  16729. type == GGML_TYPE_IQ1_S;// ||
  16730. //type == GGML_TYPE_IQ1_M;
  16731. }
  16732. size_t ggml_quantize_chunk(
  16733. enum ggml_type type,
  16734. const float * src,
  16735. void * dst,
  16736. int64_t start,
  16737. int64_t nrows,
  16738. int64_t n_per_row,
  16739. const float * imatrix) {
  16740. const int64_t n = (int64_t) nrows * n_per_row;
  16741. if (ggml_quantize_requires_imatrix(type)) {
  16742. GGML_ASSERT(imatrix != NULL);
  16743. }
  16744. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16745. GGML_ASSERT(start % n_per_row == 0);
  16746. ggml_quantize_init(type); // this is noop if already initialized
  16747. const size_t start_row = start / n_per_row;
  16748. const size_t row_size = ggml_row_size(type, n_per_row);
  16749. size_t result = 0;
  16750. switch (type) {
  16751. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16752. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16753. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16754. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16755. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16756. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16757. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16758. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16759. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16760. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16761. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16762. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16763. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16764. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16765. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16766. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16767. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16768. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16769. #if QK_K == 64
  16770. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16771. #else
  16772. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16773. #endif
  16774. case GGML_TYPE_F16:
  16775. {
  16776. size_t elemsize = sizeof(ggml_fp16_t);
  16777. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16778. result = n * elemsize;
  16779. } break;
  16780. case GGML_TYPE_F32:
  16781. {
  16782. size_t elemsize = sizeof(float);
  16783. result = n * elemsize;
  16784. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16785. } break;
  16786. default:
  16787. assert(false);
  16788. }
  16789. GGML_ASSERT(result == nrows * row_size);
  16790. return result;
  16791. }
  16792. ////////////////////////////////////////////////////////////////////////////////
  16793. struct gguf_str {
  16794. uint64_t n; // GGUFv2
  16795. char * data;
  16796. };
  16797. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16798. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16799. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16800. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16801. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16802. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16803. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16804. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16805. [GGUF_TYPE_BOOL] = sizeof(bool),
  16806. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16807. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16808. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16809. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16810. [GGUF_TYPE_ARRAY] = 0, // undefined
  16811. };
  16812. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16813. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16814. [GGUF_TYPE_UINT8] = "u8",
  16815. [GGUF_TYPE_INT8] = "i8",
  16816. [GGUF_TYPE_UINT16] = "u16",
  16817. [GGUF_TYPE_INT16] = "i16",
  16818. [GGUF_TYPE_UINT32] = "u32",
  16819. [GGUF_TYPE_INT32] = "i32",
  16820. [GGUF_TYPE_FLOAT32] = "f32",
  16821. [GGUF_TYPE_BOOL] = "bool",
  16822. [GGUF_TYPE_STRING] = "str",
  16823. [GGUF_TYPE_ARRAY] = "arr",
  16824. [GGUF_TYPE_UINT64] = "u64",
  16825. [GGUF_TYPE_INT64] = "i64",
  16826. [GGUF_TYPE_FLOAT64] = "f64",
  16827. };
  16828. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16829. union gguf_value {
  16830. uint8_t uint8;
  16831. int8_t int8;
  16832. uint16_t uint16;
  16833. int16_t int16;
  16834. uint32_t uint32;
  16835. int32_t int32;
  16836. float float32;
  16837. uint64_t uint64;
  16838. int64_t int64;
  16839. double float64;
  16840. bool bool_;
  16841. struct gguf_str str;
  16842. struct {
  16843. enum gguf_type type;
  16844. uint64_t n; // GGUFv2
  16845. void * data;
  16846. } arr;
  16847. };
  16848. struct gguf_kv {
  16849. struct gguf_str key;
  16850. enum gguf_type type;
  16851. union gguf_value value;
  16852. };
  16853. struct gguf_header {
  16854. char magic[4];
  16855. uint32_t version;
  16856. uint64_t n_tensors; // GGUFv2
  16857. uint64_t n_kv; // GGUFv2
  16858. };
  16859. struct gguf_tensor_info {
  16860. struct gguf_str name;
  16861. uint32_t n_dims;
  16862. uint64_t ne[GGML_MAX_DIMS];
  16863. enum ggml_type type;
  16864. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16865. // for writing API
  16866. const void * data;
  16867. size_t size;
  16868. };
  16869. struct gguf_context {
  16870. struct gguf_header header;
  16871. struct gguf_kv * kv;
  16872. struct gguf_tensor_info * infos;
  16873. size_t alignment;
  16874. size_t offset; // offset of `data` from beginning of file
  16875. size_t size; // size of `data` in bytes
  16876. //uint8_t * padding;
  16877. void * data;
  16878. };
  16879. static size_t gguf_type_size(enum gguf_type type) {
  16880. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16881. return GGUF_TYPE_SIZE[type];
  16882. }
  16883. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16884. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16885. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16886. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16887. GGML_ASSERT(info->ne[i] > 0);
  16888. }
  16889. // prevent overflow for total number of elements
  16890. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16891. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16892. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16893. }
  16894. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16895. const size_t n = fread(dst, 1, size, file);
  16896. *offset += n;
  16897. return n == size;
  16898. }
  16899. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16900. p->n = 0;
  16901. p->data = NULL;
  16902. bool ok = true;
  16903. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16904. // early exit if string length is invalid, prevents from integer overflow
  16905. if (p->n == SIZE_MAX) {
  16906. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16907. return false;
  16908. }
  16909. p->data = GGML_CALLOC(p->n + 1, 1);
  16910. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16911. return ok;
  16912. }
  16913. static void gguf_free_kv(struct gguf_kv * kv) {
  16914. if (kv->key.data) {
  16915. GGML_FREE(kv->key.data);
  16916. }
  16917. if (kv->type == GGUF_TYPE_STRING) {
  16918. if (kv->value.str.data) {
  16919. GGML_FREE(kv->value.str.data);
  16920. }
  16921. }
  16922. if (kv->type == GGUF_TYPE_ARRAY) {
  16923. if (kv->value.arr.data) {
  16924. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16925. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16926. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16927. if (str->data) {
  16928. GGML_FREE(str->data);
  16929. }
  16930. }
  16931. }
  16932. GGML_FREE(kv->value.arr.data);
  16933. }
  16934. }
  16935. }
  16936. struct gguf_context * gguf_init_empty(void) {
  16937. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16938. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16939. ctx->header.version = GGUF_VERSION;
  16940. ctx->header.n_tensors = 0;
  16941. ctx->header.n_kv = 0;
  16942. ctx->kv = NULL;
  16943. ctx->infos = NULL;
  16944. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16945. ctx->offset = 0;
  16946. ctx->size = 0;
  16947. ctx->data = NULL;
  16948. return ctx;
  16949. }
  16950. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16951. FILE * file = ggml_fopen(fname, "rb");
  16952. if (!file) {
  16953. return NULL;
  16954. }
  16955. // offset from start of file
  16956. size_t offset = 0;
  16957. char magic[4];
  16958. // check the magic before making allocations
  16959. {
  16960. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16961. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16962. if (magic[i] != GGUF_MAGIC[i]) {
  16963. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16964. fclose(file);
  16965. return NULL;
  16966. }
  16967. }
  16968. }
  16969. bool ok = true;
  16970. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16971. // read the header
  16972. {
  16973. strncpy(ctx->header.magic, magic, 4);
  16974. ctx->kv = NULL;
  16975. ctx->infos = NULL;
  16976. ctx->data = NULL;
  16977. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16978. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16979. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16980. if (ctx->header.version == 1) {
  16981. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16982. fclose(file);
  16983. gguf_free(ctx);
  16984. return NULL;
  16985. }
  16986. // sanity-checks to prevent from integer/buffer overflows
  16987. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16988. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16989. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16990. if (!ok) {
  16991. fprintf(stderr, "%s: failed to read header\n", __func__);
  16992. fclose(file);
  16993. gguf_free(ctx);
  16994. return NULL;
  16995. }
  16996. }
  16997. // read the kv pairs
  16998. {
  16999. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  17000. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17001. struct gguf_kv * kv = &ctx->kv[i];
  17002. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17003. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17004. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17005. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17006. switch (kv->type) {
  17007. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17008. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17009. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17010. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17011. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17012. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17013. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17014. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17015. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17016. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17017. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17018. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17019. case GGUF_TYPE_ARRAY:
  17020. {
  17021. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17022. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17023. switch (kv->value.arr.type) {
  17024. case GGUF_TYPE_UINT8:
  17025. case GGUF_TYPE_INT8:
  17026. case GGUF_TYPE_UINT16:
  17027. case GGUF_TYPE_INT16:
  17028. case GGUF_TYPE_UINT32:
  17029. case GGUF_TYPE_INT32:
  17030. case GGUF_TYPE_FLOAT32:
  17031. case GGUF_TYPE_UINT64:
  17032. case GGUF_TYPE_INT64:
  17033. case GGUF_TYPE_FLOAT64:
  17034. case GGUF_TYPE_BOOL:
  17035. {
  17036. // prevent from integer overflow in the malloc below
  17037. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17038. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17039. fclose(file);
  17040. gguf_free(ctx);
  17041. return NULL;
  17042. }
  17043. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17044. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17045. } break;
  17046. case GGUF_TYPE_STRING:
  17047. {
  17048. // prevent from integer overflow in the malloc below
  17049. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17050. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17051. fclose(file);
  17052. gguf_free(ctx);
  17053. return NULL;
  17054. }
  17055. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17056. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17057. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17058. }
  17059. } break;
  17060. case GGUF_TYPE_ARRAY:
  17061. default: GGML_ASSERT(false && "invalid type"); break;
  17062. }
  17063. } break;
  17064. default: GGML_ASSERT(false && "invalid type");
  17065. }
  17066. if (!ok) {
  17067. break;
  17068. }
  17069. }
  17070. if (!ok) {
  17071. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17072. fclose(file);
  17073. gguf_free(ctx);
  17074. return NULL;
  17075. }
  17076. }
  17077. // read the tensor infos
  17078. {
  17079. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17080. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17081. struct gguf_tensor_info * info = &ctx->infos[i];
  17082. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17083. info->ne[j] = 1;
  17084. }
  17085. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17086. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17087. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17088. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17089. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17090. }
  17091. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17092. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17093. gguf_tensor_info_sanitize(info);
  17094. if (!ok) {
  17095. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17096. fclose(file);
  17097. gguf_free(ctx);
  17098. return NULL;
  17099. }
  17100. }
  17101. }
  17102. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17103. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17104. if (alignment_idx != -1) {
  17105. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17106. }
  17107. // we require the data section to be aligned, so take into account any padding
  17108. {
  17109. const size_t offset_pad = offset % ctx->alignment;
  17110. if (offset_pad != 0) {
  17111. offset += ctx->alignment - offset_pad;
  17112. fseek(file, offset, SEEK_SET);
  17113. }
  17114. }
  17115. // store the current file offset - this is where the data section starts
  17116. ctx->offset = offset;
  17117. // compute the total size of the data section, taking into account the alignment
  17118. {
  17119. ctx->size = 0;
  17120. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17121. struct gguf_tensor_info * info = &ctx->infos[i];
  17122. const int64_t ne =
  17123. (int64_t) info->ne[0] *
  17124. (int64_t) info->ne[1] *
  17125. (int64_t) info->ne[2] *
  17126. (int64_t) info->ne[3];
  17127. if (ne % ggml_blck_size(info->type) != 0) {
  17128. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17129. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17130. fclose(file);
  17131. gguf_free(ctx);
  17132. return NULL;
  17133. }
  17134. const size_t size_cur = ggml_row_size(info->type, ne);
  17135. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17136. }
  17137. }
  17138. // load the tensor data only if requested
  17139. if (params.ctx != NULL) {
  17140. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17141. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17142. // the ggml_tensor structs to the appropriate locations in the binary blob
  17143. // compute the exact size needed for the new ggml_context
  17144. const size_t mem_size =
  17145. params.no_alloc ?
  17146. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17147. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17148. struct ggml_init_params pdata = {
  17149. .mem_size = mem_size,
  17150. .mem_buffer = NULL,
  17151. .no_alloc = params.no_alloc,
  17152. };
  17153. *params.ctx = ggml_init(pdata);
  17154. struct ggml_context * ctx_data = *params.ctx;
  17155. struct ggml_tensor * data = NULL;
  17156. if (!params.no_alloc) {
  17157. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17158. ok = ok && data != NULL;
  17159. // read the binary blob with the tensor data
  17160. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17161. if (!ok) {
  17162. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17163. fclose(file);
  17164. ggml_free(ctx_data);
  17165. gguf_free(ctx);
  17166. return NULL;
  17167. }
  17168. ctx->data = data->data;
  17169. }
  17170. ggml_set_no_alloc(ctx_data, true);
  17171. // create the tensors
  17172. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17173. const int64_t ne[GGML_MAX_DIMS] = {
  17174. ctx->infos[i].ne[0],
  17175. ctx->infos[i].ne[1],
  17176. ctx->infos[i].ne[2],
  17177. ctx->infos[i].ne[3],
  17178. };
  17179. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17180. ok = ok && cur != NULL;
  17181. ggml_set_name(cur, ctx->infos[i].name.data);
  17182. if (!ok) {
  17183. break;
  17184. }
  17185. // point the data member to the appropriate location in the binary blob using the tensor infos
  17186. if (!params.no_alloc) {
  17187. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17188. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17189. }
  17190. }
  17191. if (!ok) {
  17192. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17193. fclose(file);
  17194. ggml_free(ctx_data);
  17195. gguf_free(ctx);
  17196. return NULL;
  17197. }
  17198. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17199. }
  17200. fclose(file);
  17201. return ctx;
  17202. }
  17203. void gguf_free(struct gguf_context * ctx) {
  17204. if (ctx == NULL) {
  17205. return;
  17206. }
  17207. if (ctx->kv) {
  17208. // free string memory - not great..
  17209. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17210. gguf_free_kv(&ctx->kv[i]);
  17211. }
  17212. GGML_FREE(ctx->kv);
  17213. }
  17214. if (ctx->infos) {
  17215. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17216. struct gguf_tensor_info * info = &ctx->infos[i];
  17217. if (info->name.data) {
  17218. GGML_FREE(info->name.data);
  17219. }
  17220. }
  17221. GGML_FREE(ctx->infos);
  17222. }
  17223. GGML_ALIGNED_FREE(ctx);
  17224. }
  17225. const char * gguf_type_name(enum gguf_type type) {
  17226. return GGUF_TYPE_NAME[type];
  17227. }
  17228. int gguf_get_version(const struct gguf_context * ctx) {
  17229. return ctx->header.version;
  17230. }
  17231. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17232. return ctx->alignment;
  17233. }
  17234. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17235. return ctx->offset;
  17236. }
  17237. void * gguf_get_data(const struct gguf_context * ctx) {
  17238. return ctx->data;
  17239. }
  17240. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17241. return ctx->header.n_kv;
  17242. }
  17243. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17244. // return -1 if key not found
  17245. int keyfound = -1;
  17246. const int n_kv = gguf_get_n_kv(ctx);
  17247. for (int i = 0; i < n_kv; ++i) {
  17248. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17249. keyfound = i;
  17250. break;
  17251. }
  17252. }
  17253. return keyfound;
  17254. }
  17255. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17256. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17257. return ctx->kv[key_id].key.data;
  17258. }
  17259. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17260. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17261. return ctx->kv[key_id].type;
  17262. }
  17263. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17266. return ctx->kv[key_id].value.arr.type;
  17267. }
  17268. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17271. return ctx->kv[key_id].value.arr.data;
  17272. }
  17273. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17276. struct gguf_kv * kv = &ctx->kv[key_id];
  17277. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17278. return str->data;
  17279. }
  17280. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17281. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17282. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17283. return ctx->kv[key_id].value.arr.n;
  17284. }
  17285. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17286. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17287. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17288. return ctx->kv[key_id].value.uint8;
  17289. }
  17290. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17291. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17293. return ctx->kv[key_id].value.int8;
  17294. }
  17295. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17298. return ctx->kv[key_id].value.uint16;
  17299. }
  17300. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17303. return ctx->kv[key_id].value.int16;
  17304. }
  17305. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17308. return ctx->kv[key_id].value.uint32;
  17309. }
  17310. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17313. return ctx->kv[key_id].value.int32;
  17314. }
  17315. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17316. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17317. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17318. return ctx->kv[key_id].value.float32;
  17319. }
  17320. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17322. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17323. return ctx->kv[key_id].value.uint64;
  17324. }
  17325. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17326. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17327. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17328. return ctx->kv[key_id].value.int64;
  17329. }
  17330. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17331. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17332. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17333. return ctx->kv[key_id].value.float64;
  17334. }
  17335. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17336. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17337. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17338. return ctx->kv[key_id].value.bool_;
  17339. }
  17340. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17341. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17342. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17343. return ctx->kv[key_id].value.str.data;
  17344. }
  17345. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17346. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17347. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17348. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17349. return &ctx->kv[key_id].value;
  17350. }
  17351. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17352. return ctx->header.n_tensors;
  17353. }
  17354. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17355. // return -1 if tensor not found
  17356. int tensorfound = -1;
  17357. const int n_tensors = gguf_get_n_tensors(ctx);
  17358. for (int i = 0; i < n_tensors; ++i) {
  17359. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17360. tensorfound = i;
  17361. break;
  17362. }
  17363. }
  17364. return tensorfound;
  17365. }
  17366. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17367. return ctx->infos[i].offset;
  17368. }
  17369. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17370. return ctx->infos[i].name.data;
  17371. }
  17372. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17373. return ctx->infos[i].type;
  17374. }
  17375. // returns the index
  17376. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17377. const int idx = gguf_find_key(ctx, key);
  17378. if (idx >= 0) {
  17379. return idx;
  17380. }
  17381. const int n_kv = gguf_get_n_kv(ctx);
  17382. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17383. ctx->kv[n_kv].key.n = strlen(key);
  17384. ctx->kv[n_kv].key.data = strdup(key);
  17385. ctx->header.n_kv++;
  17386. return n_kv;
  17387. }
  17388. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17389. const int idx = gguf_find_key(ctx, key);
  17390. if (idx >= 0) {
  17391. const int n_kv = gguf_get_n_kv(ctx);
  17392. gguf_free_kv(&ctx->kv[idx]);
  17393. for (int i = idx; i < n_kv-1; ++i) {
  17394. ctx->kv[i] = ctx->kv[i+1];
  17395. }
  17396. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17397. ctx->header.n_kv--;
  17398. }
  17399. }
  17400. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17401. const int idx = gguf_get_or_add_key(ctx, key);
  17402. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17403. ctx->kv[idx].value.uint8 = val;
  17404. }
  17405. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17406. const int idx = gguf_get_or_add_key(ctx, key);
  17407. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17408. ctx->kv[idx].value.int8 = val;
  17409. }
  17410. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17411. const int idx = gguf_get_or_add_key(ctx, key);
  17412. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17413. ctx->kv[idx].value.uint16 = val;
  17414. }
  17415. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17416. const int idx = gguf_get_or_add_key(ctx, key);
  17417. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17418. ctx->kv[idx].value.int16 = val;
  17419. }
  17420. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17421. const int idx = gguf_get_or_add_key(ctx, key);
  17422. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17423. ctx->kv[idx].value.uint32 = val;
  17424. }
  17425. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17426. const int idx = gguf_get_or_add_key(ctx, key);
  17427. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17428. ctx->kv[idx].value.int32 = val;
  17429. }
  17430. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17431. const int idx = gguf_get_or_add_key(ctx, key);
  17432. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17433. ctx->kv[idx].value.float32 = val;
  17434. }
  17435. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17436. const int idx = gguf_get_or_add_key(ctx, key);
  17437. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17438. ctx->kv[idx].value.uint64 = val;
  17439. }
  17440. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17441. const int idx = gguf_get_or_add_key(ctx, key);
  17442. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17443. ctx->kv[idx].value.int64 = val;
  17444. }
  17445. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17446. const int idx = gguf_get_or_add_key(ctx, key);
  17447. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17448. ctx->kv[idx].value.float64 = val;
  17449. }
  17450. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17451. const int idx = gguf_get_or_add_key(ctx, key);
  17452. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17453. ctx->kv[idx].value.bool_ = val;
  17454. }
  17455. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17456. const int idx = gguf_get_or_add_key(ctx, key);
  17457. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17458. ctx->kv[idx].value.str.n = strlen(val);
  17459. ctx->kv[idx].value.str.data = strdup(val);
  17460. }
  17461. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17462. const int idx = gguf_get_or_add_key(ctx, key);
  17463. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17464. ctx->kv[idx].value.arr.type = type;
  17465. ctx->kv[idx].value.arr.n = n;
  17466. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17467. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17468. }
  17469. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17470. const int idx = gguf_get_or_add_key(ctx, key);
  17471. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17472. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17473. ctx->kv[idx].value.arr.n = n;
  17474. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17475. for (int i = 0; i < n; i++) {
  17476. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17477. str->n = strlen(data[i]);
  17478. str->data = strdup(data[i]);
  17479. }
  17480. }
  17481. // set or add KV pairs from another context
  17482. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17483. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17484. switch (src->kv[i].type) {
  17485. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17486. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17487. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17488. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17489. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17490. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17491. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17492. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17493. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17494. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17495. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17496. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17497. case GGUF_TYPE_ARRAY:
  17498. {
  17499. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17500. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17501. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17502. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17503. }
  17504. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17505. GGML_FREE((void *)data);
  17506. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17507. GGML_ASSERT(false && "nested arrays not supported");
  17508. } else {
  17509. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17510. }
  17511. } break;
  17512. default: GGML_ASSERT(false && "invalid type"); break;
  17513. }
  17514. }
  17515. }
  17516. void gguf_add_tensor(
  17517. struct gguf_context * ctx,
  17518. const struct ggml_tensor * tensor) {
  17519. const int idx = ctx->header.n_tensors;
  17520. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17521. ctx->infos[idx].name.n = strlen(tensor->name);
  17522. ctx->infos[idx].name.data = strdup(tensor->name);
  17523. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17524. ctx->infos[idx].ne[i] = 1;
  17525. }
  17526. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17527. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17528. ctx->infos[idx].ne[i] = tensor->ne[i];
  17529. }
  17530. ctx->infos[idx].type = tensor->type;
  17531. ctx->infos[idx].offset = 0;
  17532. ctx->infos[idx].data = tensor->data;
  17533. ctx->infos[idx].size = ggml_nbytes(tensor);
  17534. if (ctx->header.n_tensors > 0) {
  17535. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17536. }
  17537. ctx->header.n_tensors++;
  17538. }
  17539. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17540. const int idx = gguf_find_tensor(ctx, name);
  17541. if (idx < 0) {
  17542. GGML_ASSERT(false && "tensor not found");
  17543. }
  17544. ctx->infos[idx].type = type;
  17545. }
  17546. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17547. const int idx = gguf_find_tensor(ctx, name);
  17548. if (idx < 0) {
  17549. GGML_ASSERT(false && "tensor not found");
  17550. }
  17551. ctx->infos[idx].data = data;
  17552. ctx->infos[idx].size = size;
  17553. // update offsets
  17554. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17555. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17556. }
  17557. }
  17558. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17559. // fwrite(&val->n, sizeof(val->n), 1, file);
  17560. // fwrite(val->data, sizeof(char), val->n, file);
  17561. //}
  17562. //
  17563. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17564. // fwrite(val, sizeof(char), size, file);
  17565. //}
  17566. struct gguf_buf {
  17567. void * data;
  17568. size_t size;
  17569. size_t offset;
  17570. };
  17571. static struct gguf_buf gguf_buf_init(size_t size) {
  17572. struct gguf_buf buf = {
  17573. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17574. /*buf.size =*/ size,
  17575. /*buf.offset =*/ 0,
  17576. };
  17577. return buf;
  17578. }
  17579. static void gguf_buf_free(struct gguf_buf buf) {
  17580. if (buf.data) {
  17581. GGML_FREE(buf.data);
  17582. }
  17583. }
  17584. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17585. if (buf->offset + size > buf->size) {
  17586. buf->size = 1.5*(buf->offset + size);
  17587. if (buf->data) {
  17588. buf->data = realloc(buf->data, buf->size);
  17589. }
  17590. }
  17591. }
  17592. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17593. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17594. if (buf->data) {
  17595. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17596. }
  17597. buf->offset += sizeof(val->n);
  17598. if (buf->data) {
  17599. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17600. }
  17601. buf->offset += val->n;
  17602. }
  17603. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17604. gguf_buf_grow(buf, el_size);
  17605. if (buf->data) {
  17606. memcpy((char *) buf->data + buf->offset, val, el_size);
  17607. }
  17608. buf->offset += el_size;
  17609. }
  17610. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17611. // write header
  17612. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17613. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17614. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17615. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17616. // write key-value pairs
  17617. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17618. struct gguf_kv * kv = &ctx->kv[i];
  17619. gguf_bwrite_str(buf, &kv->key);
  17620. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17621. switch (kv->type) {
  17622. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17623. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17624. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17625. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17626. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17627. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17628. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17629. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17630. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17631. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17632. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17633. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17634. case GGUF_TYPE_ARRAY:
  17635. {
  17636. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17637. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17638. switch (kv->value.arr.type) {
  17639. case GGUF_TYPE_UINT8:
  17640. case GGUF_TYPE_INT8:
  17641. case GGUF_TYPE_UINT16:
  17642. case GGUF_TYPE_INT16:
  17643. case GGUF_TYPE_UINT32:
  17644. case GGUF_TYPE_INT32:
  17645. case GGUF_TYPE_FLOAT32:
  17646. case GGUF_TYPE_UINT64:
  17647. case GGUF_TYPE_INT64:
  17648. case GGUF_TYPE_FLOAT64:
  17649. case GGUF_TYPE_BOOL:
  17650. {
  17651. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17652. } break;
  17653. case GGUF_TYPE_STRING:
  17654. {
  17655. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17656. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17657. }
  17658. } break;
  17659. case GGUF_TYPE_ARRAY:
  17660. default: GGML_ASSERT(false && "invalid type"); break;
  17661. }
  17662. } break;
  17663. default: GGML_ASSERT(false && "invalid type");
  17664. }
  17665. }
  17666. // write tensor infos
  17667. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17668. struct gguf_tensor_info * info = &ctx->infos[i];
  17669. gguf_bwrite_str(buf, &info->name);
  17670. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17671. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17672. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17673. }
  17674. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17675. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17676. }
  17677. // we require the data section to be aligned, so take into account any padding
  17678. {
  17679. const size_t offset = buf->offset;
  17680. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17681. if (offset_pad != offset) {
  17682. uint8_t pad = 0;
  17683. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17684. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17685. }
  17686. }
  17687. }
  17688. if (only_meta) {
  17689. return;
  17690. }
  17691. size_t offset = 0;
  17692. // write tensor data
  17693. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17694. struct gguf_tensor_info * info = &ctx->infos[i];
  17695. const size_t size = info->size;
  17696. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17697. gguf_bwrite_el(buf, info->data, size);
  17698. if (size_pad != size) {
  17699. uint8_t pad = 0;
  17700. for (size_t j = 0; j < size_pad - size; ++j) {
  17701. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17702. }
  17703. }
  17704. GGML_ASSERT(offset == info->offset);
  17705. offset += size_pad;
  17706. }
  17707. }
  17708. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17709. FILE * file = ggml_fopen(fname, "wb");
  17710. if (!file) {
  17711. GGML_ASSERT(false && "failed to open file for writing");
  17712. }
  17713. struct gguf_buf buf = gguf_buf_init(16*1024);
  17714. gguf_write_to_buf(ctx, &buf, only_meta);
  17715. fwrite(buf.data, 1, buf.offset, file);
  17716. gguf_buf_free(buf);
  17717. fclose(file);
  17718. }
  17719. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17720. // no allocs - only compute size
  17721. struct gguf_buf buf = gguf_buf_init(0);
  17722. gguf_write_to_buf(ctx, &buf, true);
  17723. return buf.offset;
  17724. }
  17725. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17726. struct gguf_buf buf = gguf_buf_init(16*1024);
  17727. gguf_write_to_buf(ctx, &buf, true);
  17728. memcpy(data, buf.data, buf.offset);
  17729. gguf_buf_free(buf);
  17730. }
  17731. ////////////////////////////////////////////////////////////////////////////////
  17732. int ggml_cpu_has_avx(void) {
  17733. #if defined(__AVX__)
  17734. return 1;
  17735. #else
  17736. return 0;
  17737. #endif
  17738. }
  17739. int ggml_cpu_has_avx_vnni(void) {
  17740. #if defined(__AVXVNNI__)
  17741. return 1;
  17742. #else
  17743. return 0;
  17744. #endif
  17745. }
  17746. int ggml_cpu_has_avx2(void) {
  17747. #if defined(__AVX2__)
  17748. return 1;
  17749. #else
  17750. return 0;
  17751. #endif
  17752. }
  17753. int ggml_cpu_has_avx512(void) {
  17754. #if defined(__AVX512F__)
  17755. return 1;
  17756. #else
  17757. return 0;
  17758. #endif
  17759. }
  17760. int ggml_cpu_has_avx512_vbmi(void) {
  17761. #if defined(__AVX512VBMI__)
  17762. return 1;
  17763. #else
  17764. return 0;
  17765. #endif
  17766. }
  17767. int ggml_cpu_has_avx512_vnni(void) {
  17768. #if defined(__AVX512VNNI__)
  17769. return 1;
  17770. #else
  17771. return 0;
  17772. #endif
  17773. }
  17774. int ggml_cpu_has_fma(void) {
  17775. #if defined(__FMA__)
  17776. return 1;
  17777. #else
  17778. return 0;
  17779. #endif
  17780. }
  17781. int ggml_cpu_has_neon(void) {
  17782. #if defined(__ARM_NEON)
  17783. return 1;
  17784. #else
  17785. return 0;
  17786. #endif
  17787. }
  17788. int ggml_cpu_has_arm_fma(void) {
  17789. #if defined(__ARM_FEATURE_FMA)
  17790. return 1;
  17791. #else
  17792. return 0;
  17793. #endif
  17794. }
  17795. int ggml_cpu_has_metal(void) {
  17796. #if defined(GGML_USE_METAL)
  17797. return 1;
  17798. #else
  17799. return 0;
  17800. #endif
  17801. }
  17802. int ggml_cpu_has_f16c(void) {
  17803. #if defined(__F16C__)
  17804. return 1;
  17805. #else
  17806. return 0;
  17807. #endif
  17808. }
  17809. int ggml_cpu_has_fp16_va(void) {
  17810. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17811. return 1;
  17812. #else
  17813. return 0;
  17814. #endif
  17815. }
  17816. int ggml_cpu_has_wasm_simd(void) {
  17817. #if defined(__wasm_simd128__)
  17818. return 1;
  17819. #else
  17820. return 0;
  17821. #endif
  17822. }
  17823. int ggml_cpu_has_blas(void) {
  17824. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17825. return 1;
  17826. #else
  17827. return 0;
  17828. #endif
  17829. }
  17830. int ggml_cpu_has_cuda(void) {
  17831. #if defined(GGML_USE_CUDA)
  17832. return 1;
  17833. #else
  17834. return 0;
  17835. #endif
  17836. }
  17837. int ggml_cpu_has_clblast(void) {
  17838. #if defined(GGML_USE_CLBLAST)
  17839. return 1;
  17840. #else
  17841. return 0;
  17842. #endif
  17843. }
  17844. int ggml_cpu_has_vulkan(void) {
  17845. #if defined(GGML_USE_VULKAN)
  17846. return 1;
  17847. #else
  17848. return 0;
  17849. #endif
  17850. }
  17851. int ggml_cpu_has_kompute(void) {
  17852. #if defined(GGML_USE_KOMPUTE)
  17853. return 1;
  17854. #else
  17855. return 0;
  17856. #endif
  17857. }
  17858. int ggml_cpu_has_sycl(void) {
  17859. #if defined(GGML_USE_SYCL)
  17860. return 1;
  17861. #else
  17862. return 0;
  17863. #endif
  17864. }
  17865. int ggml_cpu_has_gpublas(void) {
  17866. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17867. ggml_cpu_has_sycl();
  17868. }
  17869. int ggml_cpu_has_sse3(void) {
  17870. #if defined(__SSE3__)
  17871. return 1;
  17872. #else
  17873. return 0;
  17874. #endif
  17875. }
  17876. int ggml_cpu_has_ssse3(void) {
  17877. #if defined(__SSSE3__)
  17878. return 1;
  17879. #else
  17880. return 0;
  17881. #endif
  17882. }
  17883. int ggml_cpu_has_vsx(void) {
  17884. #if defined(__POWER9_VECTOR__)
  17885. return 1;
  17886. #else
  17887. return 0;
  17888. #endif
  17889. }
  17890. int ggml_cpu_has_matmul_int8(void) {
  17891. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17892. return 1;
  17893. #else
  17894. return 0;
  17895. #endif
  17896. }
  17897. ////////////////////////////////////////////////////////////////////////////////