ops.cpp 388 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472
  1. #include "ops.h"
  2. #include "ggml-cpu.h"
  3. #include "ggml-impl.h"
  4. #include "binary-ops.h"
  5. #include "ggml.h"
  6. #include "unary-ops.h"
  7. #include "vec.h"
  8. #include <float.h>
  9. #include <algorithm>
  10. #include <cmath>
  11. // ggml_compute_forward_dup
  12. static void ggml_compute_forward_dup_same_cont(
  13. const ggml_compute_params * params,
  14. ggml_tensor * dst) {
  15. const ggml_tensor * src0 = dst->src[0];
  16. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  17. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  18. GGML_ASSERT(src0->type == dst->type);
  19. const size_t nb0 = ggml_type_size(src0->type);
  20. const int ith = params->ith; // thread index
  21. const int nth = params->nth; // number of threads
  22. // parallelize by blocks
  23. const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
  24. const int dr = (nk + nth - 1) / nth;
  25. const int k0 = dr * ith;
  26. const int k1 = MIN(k0 + dr, nk);
  27. if (k0 < k1) {
  28. memcpy(
  29. ((char *) dst->data + k0*nb0),
  30. ((char *) src0->data + k0*nb0),
  31. (k1 - k0) * nb0);
  32. }
  33. }
  34. static void ggml_compute_forward_dup_f16(
  35. const ggml_compute_params * params,
  36. ggml_tensor * dst) {
  37. const ggml_tensor * src0 = dst->src[0];
  38. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  39. GGML_TENSOR_UNARY_OP_LOCALS
  40. const int ith = params->ith; // thread index
  41. const int nth = params->nth; // number of threads
  42. // parallelize by rows
  43. const int nr = ne01;
  44. // number of rows per thread
  45. const int dr = (nr + nth - 1) / nth;
  46. // row range for this thread
  47. const int ir0 = dr * ith;
  48. const int ir1 = MIN(ir0 + dr, nr);
  49. if (src0->type == dst->type &&
  50. ne00 == ne0 &&
  51. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  52. // copy by rows
  53. const size_t rs = ne00*nb00;
  54. for (int64_t i03 = 0; i03 < ne03; i03++) {
  55. for (int64_t i02 = 0; i02 < ne02; i02++) {
  56. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  57. memcpy(
  58. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  59. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  60. rs);
  61. }
  62. }
  63. }
  64. return;
  65. }
  66. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  67. if (ggml_is_contiguous(dst)) {
  68. if (nb00 == sizeof(ggml_fp16_t)) {
  69. if (dst->type == GGML_TYPE_F16) {
  70. size_t id = 0;
  71. const size_t rs = ne00 * nb00;
  72. char * dst_ptr = (char *) dst->data;
  73. for (int i03 = 0; i03 < ne03; i03++) {
  74. for (int i02 = 0; i02 < ne02; i02++) {
  75. id += rs * ir0;
  76. for (int i01 = ir0; i01 < ir1; i01++) {
  77. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  78. memcpy(dst_ptr + id, src0_ptr, rs);
  79. id += rs;
  80. }
  81. id += rs * (ne01 - ir1);
  82. }
  83. }
  84. } else if (dst->type == GGML_TYPE_F32) {
  85. size_t id = 0;
  86. float * dst_ptr = (float *) dst->data;
  87. for (int i03 = 0; i03 < ne03; i03++) {
  88. for (int i02 = 0; i02 < ne02; i02++) {
  89. id += ne00 * ir0;
  90. for (int i01 = ir0; i01 < ir1; i01++) {
  91. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  92. for (int i00 = 0; i00 < ne00; i00++) {
  93. dst_ptr[id] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
  94. id++;
  95. }
  96. }
  97. id += ne00 * (ne01 - ir1);
  98. }
  99. }
  100. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  101. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  102. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  103. size_t id = 0;
  104. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  105. char * dst_ptr = (char *) dst->data;
  106. for (int i03 = 0; i03 < ne03; i03++) {
  107. for (int i02 = 0; i02 < ne02; i02++) {
  108. id += rs * ir0;
  109. for (int i01 = ir0; i01 < ir1; i01++) {
  110. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  111. for (int i00 = 0; i00 < ne00; i00++) {
  112. src0_f32[i00] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
  113. }
  114. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  115. id += rs;
  116. }
  117. id += rs * (ne01 - ir1);
  118. }
  119. }
  120. } else {
  121. GGML_ABORT("fatal error"); // TODO: implement
  122. }
  123. } else {
  124. //printf("%s: this is not optimal - fix me\n", __func__);
  125. if (dst->type == GGML_TYPE_F32) {
  126. size_t id = 0;
  127. float * dst_ptr = (float *) dst->data;
  128. for (int i03 = 0; i03 < ne03; i03++) {
  129. for (int i02 = 0; i02 < ne02; i02++) {
  130. id += ne00 * ir0;
  131. for (int i01 = ir0; i01 < ir1; i01++) {
  132. for (int i00 = 0; i00 < ne00; i00++) {
  133. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  134. dst_ptr[id] = GGML_CPU_FP16_TO_FP32(*src0_ptr);
  135. id++;
  136. }
  137. }
  138. id += ne00 * (ne01 - ir1);
  139. }
  140. }
  141. } else if (dst->type == GGML_TYPE_F16) {
  142. size_t id = 0;
  143. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  144. for (int i03 = 0; i03 < ne03; i03++) {
  145. for (int i02 = 0; i02 < ne02; i02++) {
  146. id += ne00 * ir0;
  147. for (int i01 = ir0; i01 < ir1; i01++) {
  148. for (int i00 = 0; i00 < ne00; i00++) {
  149. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  150. dst_ptr[id] = *src0_ptr;
  151. id++;
  152. }
  153. }
  154. id += ne00 * (ne01 - ir1);
  155. }
  156. }
  157. } else {
  158. GGML_ABORT("fatal error"); // TODO: implement
  159. }
  160. }
  161. return;
  162. }
  163. // dst counters
  164. int64_t i10 = 0;
  165. int64_t i11 = 0;
  166. int64_t i12 = 0;
  167. int64_t i13 = 0;
  168. if (dst->type == GGML_TYPE_F16) {
  169. for (int64_t i03 = 0; i03 < ne03; i03++) {
  170. for (int64_t i02 = 0; i02 < ne02; i02++) {
  171. i10 += ne00 * ir0;
  172. while (i10 >= ne0) {
  173. i10 -= ne0;
  174. if (++i11 == ne1) {
  175. i11 = 0;
  176. if (++i12 == ne2) {
  177. i12 = 0;
  178. if (++i13 == ne3) {
  179. i13 = 0;
  180. }
  181. }
  182. }
  183. }
  184. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  185. for (int64_t i00 = 0; i00 < ne00; i00++) {
  186. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  187. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  188. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  189. if (++i10 == ne00) {
  190. i10 = 0;
  191. if (++i11 == ne01) {
  192. i11 = 0;
  193. if (++i12 == ne02) {
  194. i12 = 0;
  195. if (++i13 == ne03) {
  196. i13 = 0;
  197. }
  198. }
  199. }
  200. }
  201. }
  202. }
  203. i10 += ne00 * (ne01 - ir1);
  204. while (i10 >= ne0) {
  205. i10 -= ne0;
  206. if (++i11 == ne1) {
  207. i11 = 0;
  208. if (++i12 == ne2) {
  209. i12 = 0;
  210. if (++i13 == ne3) {
  211. i13 = 0;
  212. }
  213. }
  214. }
  215. }
  216. }
  217. }
  218. } else if (dst->type == GGML_TYPE_F32) {
  219. for (int64_t i03 = 0; i03 < ne03; i03++) {
  220. for (int64_t i02 = 0; i02 < ne02; i02++) {
  221. i10 += ne00 * ir0;
  222. while (i10 >= ne0) {
  223. i10 -= ne0;
  224. if (++i11 == ne1) {
  225. i11 = 0;
  226. if (++i12 == ne2) {
  227. i12 = 0;
  228. if (++i13 == ne3) {
  229. i13 = 0;
  230. }
  231. }
  232. }
  233. }
  234. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  235. for (int64_t i00 = 0; i00 < ne00; i00++) {
  236. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  237. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  238. *(float *) dst_ptr = GGML_CPU_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  239. if (++i10 == ne0) {
  240. i10 = 0;
  241. if (++i11 == ne1) {
  242. i11 = 0;
  243. if (++i12 == ne2) {
  244. i12 = 0;
  245. if (++i13 == ne3) {
  246. i13 = 0;
  247. }
  248. }
  249. }
  250. }
  251. }
  252. }
  253. i10 += ne00 * (ne01 - ir1);
  254. while (i10 >= ne0) {
  255. i10 -= ne0;
  256. if (++i11 == ne1) {
  257. i11 = 0;
  258. if (++i12 == ne2) {
  259. i12 = 0;
  260. if (++i13 == ne3) {
  261. i13 = 0;
  262. }
  263. }
  264. }
  265. }
  266. }
  267. }
  268. } else {
  269. GGML_ABORT("fatal error"); // TODO: implement
  270. }
  271. }
  272. static void ggml_compute_forward_dup_bf16(
  273. const ggml_compute_params * params,
  274. ggml_tensor * dst) {
  275. const ggml_tensor * src0 = dst->src[0];
  276. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  277. GGML_TENSOR_UNARY_OP_LOCALS
  278. const int ith = params->ith; // thread index
  279. const int nth = params->nth; // number of threads
  280. // parallelize by rows
  281. const int nr = ne01;
  282. // number of rows per thread
  283. const int dr = (nr + nth - 1) / nth;
  284. // row range for this thread
  285. const int ir0 = dr * ith;
  286. const int ir1 = MIN(ir0 + dr, nr);
  287. if (src0->type == dst->type &&
  288. ne00 == ne0 &&
  289. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  290. // copy by rows
  291. const size_t rs = ne00*nb00;
  292. for (int64_t i03 = 0; i03 < ne03; i03++) {
  293. for (int64_t i02 = 0; i02 < ne02; i02++) {
  294. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  295. memcpy(
  296. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  297. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  298. rs);
  299. }
  300. }
  301. }
  302. return;
  303. }
  304. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  305. if (ggml_is_contiguous(dst)) {
  306. if (nb00 == sizeof(ggml_bf16_t)) {
  307. if (dst->type == GGML_TYPE_BF16) {
  308. size_t id = 0;
  309. const size_t rs = ne00 * nb00;
  310. char * dst_ptr = (char *) dst->data;
  311. for (int i03 = 0; i03 < ne03; i03++) {
  312. for (int i02 = 0; i02 < ne02; i02++) {
  313. id += rs * ir0;
  314. for (int i01 = ir0; i01 < ir1; i01++) {
  315. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  316. memcpy(dst_ptr + id, src0_ptr, rs);
  317. id += rs;
  318. }
  319. id += rs * (ne01 - ir1);
  320. }
  321. }
  322. } else if (dst->type == GGML_TYPE_F16) {
  323. size_t id = 0;
  324. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  325. for (int i03 = 0; i03 < ne03; i03++) {
  326. for (int i02 = 0; i02 < ne02; i02++) {
  327. id += ne00 * ir0;
  328. for (int i01 = ir0; i01 < ir1; i01++) {
  329. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  330. for (int i00 = 0; i00 < ne00; i00++) {
  331. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  332. id++;
  333. }
  334. }
  335. id += ne00 * (ne01 - ir1);
  336. }
  337. }
  338. } else if (dst->type == GGML_TYPE_F32) {
  339. size_t id = 0;
  340. float * dst_ptr = (float *) dst->data;
  341. for (int i03 = 0; i03 < ne03; i03++) {
  342. for (int i02 = 0; i02 < ne02; i02++) {
  343. id += ne00 * ir0;
  344. for (int i01 = ir0; i01 < ir1; i01++) {
  345. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  346. for (int i00 = 0; i00 < ne00; i00++) {
  347. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  348. id++;
  349. }
  350. }
  351. id += ne00 * (ne01 - ir1);
  352. }
  353. }
  354. } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  355. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
  356. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  357. size_t id = 0;
  358. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  359. char * dst_ptr = (char *) dst->data;
  360. for (int i03 = 0; i03 < ne03; i03++) {
  361. for (int i02 = 0; i02 < ne02; i02++) {
  362. id += rs * ir0;
  363. for (int i01 = ir0; i01 < ir1; i01++) {
  364. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  365. for (int i00 = 0; i00 < ne00; i00++) {
  366. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  367. }
  368. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  369. id += rs;
  370. }
  371. id += rs * (ne01 - ir1);
  372. }
  373. }
  374. } else {
  375. GGML_ABORT("fatal error"); // TODO: implement
  376. }
  377. } else {
  378. //printf("%s: this is not optimal - fix me\n", __func__);
  379. if (dst->type == GGML_TYPE_F32) {
  380. size_t id = 0;
  381. float * dst_ptr = (float *) dst->data;
  382. for (int i03 = 0; i03 < ne03; i03++) {
  383. for (int i02 = 0; i02 < ne02; i02++) {
  384. id += ne00 * ir0;
  385. for (int i01 = ir0; i01 < ir1; i01++) {
  386. for (int i00 = 0; i00 < ne00; i00++) {
  387. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  388. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  389. id++;
  390. }
  391. }
  392. id += ne00 * (ne01 - ir1);
  393. }
  394. }
  395. } else if (dst->type == GGML_TYPE_BF16) {
  396. size_t id = 0;
  397. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  398. for (int i03 = 0; i03 < ne03; i03++) {
  399. for (int i02 = 0; i02 < ne02; i02++) {
  400. id += ne00 * ir0;
  401. for (int i01 = ir0; i01 < ir1; i01++) {
  402. for (int i00 = 0; i00 < ne00; i00++) {
  403. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  404. dst_ptr[id] = *src0_ptr;
  405. id++;
  406. }
  407. }
  408. id += ne00 * (ne01 - ir1);
  409. }
  410. }
  411. } else if (dst->type == GGML_TYPE_F16) {
  412. size_t id = 0;
  413. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  414. for (int i03 = 0; i03 < ne03; i03++) {
  415. for (int i02 = 0; i02 < ne02; i02++) {
  416. id += ne00 * ir0;
  417. for (int i01 = ir0; i01 < ir1; i01++) {
  418. for (int i00 = 0; i00 < ne00; i00++) {
  419. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  420. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  421. id++;
  422. }
  423. }
  424. id += ne00 * (ne01 - ir1);
  425. }
  426. }
  427. } else {
  428. GGML_ABORT("fatal error"); // TODO: implement
  429. }
  430. }
  431. return;
  432. }
  433. // dst counters
  434. int64_t i10 = 0;
  435. int64_t i11 = 0;
  436. int64_t i12 = 0;
  437. int64_t i13 = 0;
  438. if (dst->type == GGML_TYPE_BF16) {
  439. for (int64_t i03 = 0; i03 < ne03; i03++) {
  440. for (int64_t i02 = 0; i02 < ne02; i02++) {
  441. i10 += ne00 * ir0;
  442. while (i10 >= ne0) {
  443. i10 -= ne0;
  444. if (++i11 == ne1) {
  445. i11 = 0;
  446. if (++i12 == ne2) {
  447. i12 = 0;
  448. if (++i13 == ne3) {
  449. i13 = 0;
  450. }
  451. }
  452. }
  453. }
  454. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  455. for (int64_t i00 = 0; i00 < ne00; i00++) {
  456. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  457. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  458. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  459. if (++i10 == ne00) {
  460. i10 = 0;
  461. if (++i11 == ne01) {
  462. i11 = 0;
  463. if (++i12 == ne02) {
  464. i12 = 0;
  465. if (++i13 == ne03) {
  466. i13 = 0;
  467. }
  468. }
  469. }
  470. }
  471. }
  472. }
  473. i10 += ne00 * (ne01 - ir1);
  474. while (i10 >= ne0) {
  475. i10 -= ne0;
  476. if (++i11 == ne1) {
  477. i11 = 0;
  478. if (++i12 == ne2) {
  479. i12 = 0;
  480. if (++i13 == ne3) {
  481. i13 = 0;
  482. }
  483. }
  484. }
  485. }
  486. }
  487. }
  488. } else if (dst->type == GGML_TYPE_F16) {
  489. for (int64_t i03 = 0; i03 < ne03; i03++) {
  490. for (int64_t i02 = 0; i02 < ne02; i02++) {
  491. i10 += ne00 * ir0;
  492. while (i10 >= ne0) {
  493. i10 -= ne0;
  494. if (++i11 == ne1) {
  495. i11 = 0;
  496. if (++i12 == ne2) {
  497. i12 = 0;
  498. if (++i13 == ne3) {
  499. i13 = 0;
  500. }
  501. }
  502. }
  503. }
  504. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  505. for (int64_t i00 = 0; i00 < ne00; i00++) {
  506. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  507. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  508. *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  509. if (++i10 == ne0) {
  510. i10 = 0;
  511. if (++i11 == ne1) {
  512. i11 = 0;
  513. if (++i12 == ne2) {
  514. i12 = 0;
  515. if (++i13 == ne3) {
  516. i13 = 0;
  517. }
  518. }
  519. }
  520. }
  521. }
  522. }
  523. i10 += ne00 * (ne01 - ir1);
  524. while (i10 >= ne0) {
  525. i10 -= ne0;
  526. if (++i11 == ne1) {
  527. i11 = 0;
  528. if (++i12 == ne2) {
  529. i12 = 0;
  530. if (++i13 == ne3) {
  531. i13 = 0;
  532. }
  533. }
  534. }
  535. }
  536. }
  537. }
  538. } else if (dst->type == GGML_TYPE_F32) {
  539. for (int64_t i03 = 0; i03 < ne03; i03++) {
  540. for (int64_t i02 = 0; i02 < ne02; i02++) {
  541. i10 += ne00 * ir0;
  542. while (i10 >= ne0) {
  543. i10 -= ne0;
  544. if (++i11 == ne1) {
  545. i11 = 0;
  546. if (++i12 == ne2) {
  547. i12 = 0;
  548. if (++i13 == ne3) {
  549. i13 = 0;
  550. }
  551. }
  552. }
  553. }
  554. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  555. for (int64_t i00 = 0; i00 < ne00; i00++) {
  556. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  557. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  558. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  559. if (++i10 == ne0) {
  560. i10 = 0;
  561. if (++i11 == ne1) {
  562. i11 = 0;
  563. if (++i12 == ne2) {
  564. i12 = 0;
  565. if (++i13 == ne3) {
  566. i13 = 0;
  567. }
  568. }
  569. }
  570. }
  571. }
  572. }
  573. i10 += ne00 * (ne01 - ir1);
  574. while (i10 >= ne0) {
  575. i10 -= ne0;
  576. if (++i11 == ne1) {
  577. i11 = 0;
  578. if (++i12 == ne2) {
  579. i12 = 0;
  580. if (++i13 == ne3) {
  581. i13 = 0;
  582. }
  583. }
  584. }
  585. }
  586. }
  587. }
  588. } else {
  589. GGML_ABORT("fatal error"); // TODO: implement
  590. }
  591. }
  592. static void ggml_compute_forward_dup_f32(
  593. const ggml_compute_params * params,
  594. ggml_tensor * dst) {
  595. const ggml_tensor * src0 = dst->src[0];
  596. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  597. GGML_TENSOR_UNARY_OP_LOCALS
  598. const int ith = params->ith; // thread index
  599. const int nth = params->nth; // number of threads
  600. // parallelize by rows
  601. const int nr = ne01;
  602. // number of rows per thread
  603. const int dr = (nr + nth - 1) / nth;
  604. // row range for this thread
  605. const int ir0 = dr * ith;
  606. const int ir1 = MIN(ir0 + dr, nr);
  607. if (src0->type == dst->type &&
  608. ne00 == ne0 &&
  609. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  610. // copy by rows
  611. const size_t rs = ne00*nb00;
  612. for (int64_t i03 = 0; i03 < ne03; i03++) {
  613. for (int64_t i02 = 0; i02 < ne02; i02++) {
  614. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  615. memcpy(
  616. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  617. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  618. rs);
  619. }
  620. }
  621. }
  622. return;
  623. }
  624. if (ggml_is_contiguous(dst)) {
  625. // TODO: simplify
  626. if (nb00 == sizeof(float)) {
  627. if (ggml_get_type_traits_cpu(dst->type)->from_float) {
  628. ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
  629. size_t id = 0;
  630. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  631. char * dst_ptr = (char *) dst->data;
  632. for (int i03 = 0; i03 < ne03; i03++) {
  633. for (int i02 = 0; i02 < ne02; i02++) {
  634. id += rs * ir0;
  635. for (int i01 = ir0; i01 < ir1; i01++) {
  636. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  637. from_float(src0_ptr, dst_ptr + id, ne00);
  638. id += rs;
  639. }
  640. id += rs * (ne01 - ir1);
  641. }
  642. }
  643. } else {
  644. GGML_ABORT("fatal error"); // TODO: implement
  645. }
  646. } else {
  647. //printf("%s: this is not optimal - fix me\n", __func__);
  648. if (dst->type == GGML_TYPE_F32) {
  649. size_t id = 0;
  650. float * dst_ptr = (float *) dst->data;
  651. for (int i03 = 0; i03 < ne03; i03++) {
  652. for (int i02 = 0; i02 < ne02; i02++) {
  653. id += ne00 * ir0;
  654. for (int i01 = ir0; i01 < ir1; i01++) {
  655. for (int i00 = 0; i00 < ne00; i00++) {
  656. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  657. dst_ptr[id] = *src0_ptr;
  658. id++;
  659. }
  660. }
  661. id += ne00 * (ne01 - ir1);
  662. }
  663. }
  664. } else if (dst->type == GGML_TYPE_F16) {
  665. size_t id = 0;
  666. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  667. for (int i03 = 0; i03 < ne03; i03++) {
  668. for (int i02 = 0; i02 < ne02; i02++) {
  669. id += ne00 * ir0;
  670. for (int i01 = ir0; i01 < ir1; i01++) {
  671. for (int i00 = 0; i00 < ne00; i00++) {
  672. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  673. dst_ptr[id] = GGML_CPU_FP32_TO_FP16(*src0_ptr);
  674. id++;
  675. }
  676. }
  677. id += ne00 * (ne01 - ir1);
  678. }
  679. }
  680. } else if (dst->type == GGML_TYPE_BF16) {
  681. size_t id = 0;
  682. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  683. for (int i03 = 0; i03 < ne03; i03++) {
  684. for (int i02 = 0; i02 < ne02; i02++) {
  685. id += ne00 * ir0;
  686. for (int i01 = ir0; i01 < ir1; i01++) {
  687. for (int i00 = 0; i00 < ne00; i00++) {
  688. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  689. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  690. id++;
  691. }
  692. }
  693. id += ne00 * (ne01 - ir1);
  694. }
  695. }
  696. } else if (dst->type == GGML_TYPE_I32) {
  697. size_t id = 0;
  698. int32_t * dst_ptr = (int32_t *) dst->data;
  699. for (int i03 = 0; i03 < ne03; i03++) {
  700. for (int i02 = 0; i02 < ne02; i02++) {
  701. id += ne00 * ir0;
  702. for (int i01 = ir0; i01 < ir1; i01++) {
  703. for (int i00 = 0; i00 < ne00; i00++) {
  704. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  705. dst_ptr[id] = *src0_ptr;
  706. id++;
  707. }
  708. }
  709. id += ne00 * (ne01 - ir1);
  710. }
  711. }
  712. } else {
  713. GGML_ABORT("fatal error"); // TODO: implement
  714. }
  715. }
  716. return;
  717. }
  718. // dst counters
  719. int64_t i10 = 0;
  720. int64_t i11 = 0;
  721. int64_t i12 = 0;
  722. int64_t i13 = 0;
  723. if (dst->type == GGML_TYPE_F32) {
  724. for (int64_t i03 = 0; i03 < ne03; i03++) {
  725. for (int64_t i02 = 0; i02 < ne02; i02++) {
  726. i10 += ne00 * ir0;
  727. while (i10 >= ne0) {
  728. i10 -= ne0;
  729. if (++i11 == ne1) {
  730. i11 = 0;
  731. if (++i12 == ne2) {
  732. i12 = 0;
  733. if (++i13 == ne3) {
  734. i13 = 0;
  735. }
  736. }
  737. }
  738. }
  739. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  740. for (int64_t i00 = 0; i00 < ne00; i00++) {
  741. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  742. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  743. memcpy(dst_ptr, src0_ptr, sizeof(float));
  744. if (++i10 == ne0) {
  745. i10 = 0;
  746. if (++i11 == ne1) {
  747. i11 = 0;
  748. if (++i12 == ne2) {
  749. i12 = 0;
  750. if (++i13 == ne3) {
  751. i13 = 0;
  752. }
  753. }
  754. }
  755. }
  756. }
  757. }
  758. i10 += ne00 * (ne01 - ir1);
  759. while (i10 >= ne0) {
  760. i10 -= ne0;
  761. if (++i11 == ne1) {
  762. i11 = 0;
  763. if (++i12 == ne2) {
  764. i12 = 0;
  765. if (++i13 == ne3) {
  766. i13 = 0;
  767. }
  768. }
  769. }
  770. }
  771. }
  772. }
  773. } else if (dst->type == GGML_TYPE_F16) {
  774. for (int64_t i03 = 0; i03 < ne03; i03++) {
  775. for (int64_t i02 = 0; i02 < ne02; i02++) {
  776. i10 += ne00 * ir0;
  777. while (i10 >= ne0) {
  778. i10 -= ne0;
  779. if (++i11 == ne1) {
  780. i11 = 0;
  781. if (++i12 == ne2) {
  782. i12 = 0;
  783. if (++i13 == ne3) {
  784. i13 = 0;
  785. }
  786. }
  787. }
  788. }
  789. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  790. for (int64_t i00 = 0; i00 < ne00; i00++) {
  791. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  792. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  793. *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(*(const float *) src0_ptr);
  794. if (++i10 == ne0) {
  795. i10 = 0;
  796. if (++i11 == ne1) {
  797. i11 = 0;
  798. if (++i12 == ne2) {
  799. i12 = 0;
  800. if (++i13 == ne3) {
  801. i13 = 0;
  802. }
  803. }
  804. }
  805. }
  806. }
  807. }
  808. i10 += ne00 * (ne01 - ir1);
  809. while (i10 >= ne0) {
  810. i10 -= ne0;
  811. if (++i11 == ne1) {
  812. i11 = 0;
  813. if (++i12 == ne2) {
  814. i12 = 0;
  815. if (++i13 == ne3) {
  816. i13 = 0;
  817. }
  818. }
  819. }
  820. }
  821. }
  822. }
  823. } else if (dst->type == GGML_TYPE_BF16) {
  824. for (int64_t i03 = 0; i03 < ne03; i03++) {
  825. for (int64_t i02 = 0; i02 < ne02; i02++) {
  826. i10 += ne00 * ir0;
  827. while (i10 >= ne0) {
  828. i10 -= ne0;
  829. if (++i11 == ne1) {
  830. i11 = 0;
  831. if (++i12 == ne2) {
  832. i12 = 0;
  833. if (++i13 == ne3) {
  834. i13 = 0;
  835. }
  836. }
  837. }
  838. }
  839. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  840. for (int64_t i00 = 0; i00 < ne00; i00++) {
  841. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  842. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  843. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  844. if (++i10 == ne0) {
  845. i10 = 0;
  846. if (++i11 == ne1) {
  847. i11 = 0;
  848. if (++i12 == ne2) {
  849. i12 = 0;
  850. if (++i13 == ne3) {
  851. i13 = 0;
  852. }
  853. }
  854. }
  855. }
  856. }
  857. }
  858. i10 += ne00 * (ne01 - ir1);
  859. while (i10 >= ne0) {
  860. i10 -= ne0;
  861. if (++i11 == ne1) {
  862. i11 = 0;
  863. if (++i12 == ne2) {
  864. i12 = 0;
  865. if (++i13 == ne3) {
  866. i13 = 0;
  867. }
  868. }
  869. }
  870. }
  871. }
  872. }
  873. } else if (dst->type == GGML_TYPE_I32) {
  874. for (int64_t i03 = 0; i03 < ne03; i03++) {
  875. for (int64_t i02 = 0; i02 < ne02; i02++) {
  876. i10 += ne00 * ir0;
  877. while (i10 >= ne0) {
  878. i10 -= ne0;
  879. if (++i11 == ne1) {
  880. i11 = 0;
  881. if (++i12 == ne2) {
  882. i12 = 0;
  883. if (++i13 == ne3) {
  884. i13 = 0;
  885. }
  886. }
  887. }
  888. }
  889. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  890. for (int64_t i00 = 0; i00 < ne00; i00++) {
  891. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  892. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  893. *(int32_t *) dst_ptr = *(const float *) src0_ptr;
  894. if (++i10 == ne0) {
  895. i10 = 0;
  896. if (++i11 == ne1) {
  897. i11 = 0;
  898. if (++i12 == ne2) {
  899. i12 = 0;
  900. if (++i13 == ne3) {
  901. i13 = 0;
  902. }
  903. }
  904. }
  905. }
  906. }
  907. }
  908. i10 += ne00 * (ne01 - ir1);
  909. while (i10 >= ne0) {
  910. i10 -= ne0;
  911. if (++i11 == ne1) {
  912. i11 = 0;
  913. if (++i12 == ne2) {
  914. i12 = 0;
  915. if (++i13 == ne3) {
  916. i13 = 0;
  917. }
  918. }
  919. }
  920. }
  921. }
  922. }
  923. } else {
  924. GGML_ABORT("fatal error"); // TODO: implement
  925. }
  926. }
  927. static void ggml_compute_forward_dup_i32(
  928. const ggml_compute_params * params,
  929. ggml_tensor * dst) {
  930. const ggml_tensor * src0 = dst->src[0];
  931. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  932. GGML_TENSOR_UNARY_OP_LOCALS
  933. const int ith = params->ith; // thread index
  934. const int nth = params->nth; // number of threads
  935. // parallelize by rows
  936. const int nr = ne01;
  937. // number of rows per thread
  938. const int dr = (nr + nth - 1) / nth;
  939. // row range for this thread
  940. const int ir0 = dr * ith;
  941. const int ir1 = MIN(ir0 + dr, nr);
  942. // dst counters
  943. int64_t i10 = 0;
  944. int64_t i11 = 0;
  945. int64_t i12 = 0;
  946. int64_t i13 = 0;
  947. // TODO: not optimal, but works
  948. if (dst->type == GGML_TYPE_F32) {
  949. for (int64_t i03 = 0; i03 < ne03; i03++) {
  950. for (int64_t i02 = 0; i02 < ne02; i02++) {
  951. i10 += ne00 * ir0;
  952. while (i10 >= ne0) {
  953. i10 -= ne0;
  954. if (++i11 == ne1) {
  955. i11 = 0;
  956. if (++i12 == ne2) {
  957. i12 = 0;
  958. if (++i13 == ne3) {
  959. i13 = 0;
  960. }
  961. }
  962. }
  963. }
  964. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  965. for (int64_t i00 = 0; i00 < ne00; i00++) {
  966. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  967. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  968. *(float *) dst_ptr = *(const int32_t *) src0_ptr;
  969. if (++i10 == ne0) {
  970. i10 = 0;
  971. if (++i11 == ne1) {
  972. i11 = 0;
  973. if (++i12 == ne2) {
  974. i12 = 0;
  975. if (++i13 == ne3) {
  976. i13 = 0;
  977. }
  978. }
  979. }
  980. }
  981. }
  982. }
  983. i10 += ne00 * (ne01 - ir1);
  984. while (i10 >= ne0) {
  985. i10 -= ne0;
  986. if (++i11 == ne1) {
  987. i11 = 0;
  988. if (++i12 == ne2) {
  989. i12 = 0;
  990. if (++i13 == ne3) {
  991. i13 = 0;
  992. }
  993. }
  994. }
  995. }
  996. }
  997. }
  998. } else {
  999. GGML_ABORT("fatal error"); // TODO: implement
  1000. }
  1001. }
  1002. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  1003. static void ggml_compute_forward_dup_bytes(
  1004. const ggml_compute_params * params,
  1005. ggml_tensor * dst) {
  1006. const ggml_tensor * src0 = dst->src[0];
  1007. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  1008. GGML_ASSERT(src0->type == dst->type);
  1009. GGML_TENSOR_UNARY_OP_LOCALS;
  1010. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  1011. ggml_compute_forward_dup_same_cont(params, dst);
  1012. return;
  1013. }
  1014. const size_t type_size = ggml_type_size(src0->type);
  1015. const int ith = params->ith; // thread index
  1016. const int nth = params->nth; // number of threads
  1017. // parallelize by rows
  1018. const int nr = ne01;
  1019. // number of rows per thread
  1020. const int dr = (nr + nth - 1) / nth;
  1021. // row range for this thread
  1022. const int ir0 = dr * ith;
  1023. const int ir1 = MIN(ir0 + dr, nr);
  1024. if (src0->type == dst->type &&
  1025. ggml_are_same_shape(src0, dst) &&
  1026. nb00 == type_size && nb0 == type_size) {
  1027. // copy by rows
  1028. const size_t rs = ggml_row_size(src0->type, ne00);
  1029. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1030. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1031. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1032. memcpy(
  1033. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  1034. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  1035. rs);
  1036. }
  1037. }
  1038. }
  1039. return;
  1040. }
  1041. if (ggml_is_contiguous(dst)) {
  1042. size_t id = 0;
  1043. char * dst_ptr = (char *) dst->data;
  1044. const size_t rs = ne00 * type_size;
  1045. if (nb00 == type_size) {
  1046. // src0 is contigous on first dimension, copy by rows
  1047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1049. id += rs * ir0;
  1050. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1051. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  1052. memcpy(dst_ptr + id, src0_ptr, rs);
  1053. id += rs;
  1054. }
  1055. id += rs * (ne01 - ir1);
  1056. }
  1057. }
  1058. } else {
  1059. //printf("%s: this is not optimal - fix me\n", __func__);
  1060. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1061. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1062. id += rs * ir0;
  1063. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1064. for (int64_t i00 = 0; i00 < ne00; i00++) {
  1065. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  1066. memcpy(dst_ptr + id, src0_ptr, type_size);
  1067. id += type_size;
  1068. }
  1069. }
  1070. id += rs * (ne01 - ir1);
  1071. }
  1072. }
  1073. }
  1074. return;
  1075. }
  1076. // dst counters
  1077. int64_t k10 = 0;
  1078. int64_t i11 = 0;
  1079. int64_t i12 = 0;
  1080. int64_t i13 = 0;
  1081. // number of blocks in a row
  1082. const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
  1083. const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
  1084. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1085. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1086. k10 += nk00 * ir0;
  1087. while (k10 >= nk0) {
  1088. k10 -= nk0;
  1089. if (++i11 == ne1) {
  1090. i11 = 0;
  1091. if (++i12 == ne2) {
  1092. i12 = 0;
  1093. if (++i13 == ne3) {
  1094. i13 = 0;
  1095. }
  1096. }
  1097. }
  1098. }
  1099. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  1100. for (int64_t k00 = 0; k00 < nk00; k00++) {
  1101. const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  1102. char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  1103. memcpy(dst_ptr, src0_ptr, type_size);
  1104. if (++k10 == nk0) {
  1105. k10 = 0;
  1106. if (++i11 == ne1) {
  1107. i11 = 0;
  1108. if (++i12 == ne2) {
  1109. i12 = 0;
  1110. if (++i13 == ne3) {
  1111. i13 = 0;
  1112. }
  1113. }
  1114. }
  1115. }
  1116. }
  1117. }
  1118. k10 += nk00 * (ne01 - ir1);
  1119. while (k10 >= nk0) {
  1120. k10 -= nk0;
  1121. if (++i11 == ne1) {
  1122. i11 = 0;
  1123. if (++i12 == ne2) {
  1124. i12 = 0;
  1125. if (++i13 == ne3) {
  1126. i13 = 0;
  1127. }
  1128. }
  1129. }
  1130. }
  1131. }
  1132. }
  1133. }
  1134. static void ggml_compute_forward_dup_q(
  1135. const ggml_compute_params * params,
  1136. ggml_tensor * dst) {
  1137. const ggml_tensor * src0 = dst->src[0];
  1138. const ggml_tensor * src1 = dst->src[1];
  1139. GGML_TENSOR_BINARY_OP_LOCALS
  1140. const ggml_type type = src0->type;
  1141. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1142. size_t qk = ggml_blck_size(type);
  1143. const int64_t nr = ggml_nelements(src1) / qk;
  1144. // destination must be contiguous in the first dimension
  1145. GGML_ASSERT(nb10 == ggml_type_size(dst->type));
  1146. // must either have first dimension large enough to hold a row, or fully contiguous
  1147. GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
  1148. const int ith = params->ith;
  1149. const int nth = params->nth;
  1150. const int dr = (nr + nth - 1)/nth;
  1151. // row range for this thread
  1152. const int ir0 = dr*ith;
  1153. const int ir1 = MIN(ir0 + dr, nr);
  1154. for (int64_t ir = ir0; ir < ir1; ++ir) {
  1155. uint32_t i = ir * qk;
  1156. const int64_t i03 = i/(ne00 * ne01 * ne02);
  1157. const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
  1158. const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
  1159. const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
  1160. const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
  1161. const int64_t i13 = i/(ne10 * ne11 * ne12);
  1162. const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
  1163. const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
  1164. const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
  1165. const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
  1166. dequantize_row_q(
  1167. (const void *) ((char *) src0->data + x_offset),
  1168. (float *) ((char *) dst->data + dst_offset), qk);
  1169. }
  1170. }
  1171. void ggml_compute_forward_dup(
  1172. const ggml_compute_params * params,
  1173. ggml_tensor * dst) {
  1174. const ggml_tensor * src0 = dst->src[0];
  1175. if (src0->type == dst->type) {
  1176. ggml_compute_forward_dup_bytes(params, dst);
  1177. return;
  1178. }
  1179. switch (src0->type) {
  1180. case GGML_TYPE_F16:
  1181. {
  1182. ggml_compute_forward_dup_f16(params, dst);
  1183. } break;
  1184. case GGML_TYPE_BF16:
  1185. {
  1186. ggml_compute_forward_dup_bf16(params, dst);
  1187. } break;
  1188. case GGML_TYPE_F32:
  1189. {
  1190. ggml_compute_forward_dup_f32(params, dst);
  1191. } break;
  1192. case GGML_TYPE_I32:
  1193. {
  1194. ggml_compute_forward_dup_i32(params, dst);
  1195. } break;
  1196. default:
  1197. {
  1198. if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
  1199. ggml_compute_forward_dup_q(params, dst);
  1200. break;
  1201. }
  1202. GGML_ABORT("fatal error");
  1203. }
  1204. }
  1205. }
  1206. // ggml_compute_forward_add
  1207. static void ggml_compute_forward_add_q_f32(
  1208. const ggml_compute_params * params,
  1209. ggml_tensor * dst) {
  1210. const ggml_tensor * src0 = dst->src[0];
  1211. const ggml_tensor * src1 = dst->src[1];
  1212. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  1213. const int nr = ggml_nrows(src0);
  1214. GGML_TENSOR_BINARY_OP_LOCALS
  1215. const int ith = params->ith;
  1216. const int nth = params->nth;
  1217. const ggml_type type = src0->type;
  1218. const ggml_type dtype = dst->type;
  1219. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1220. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
  1221. // we don't support permuted src0 or src1
  1222. GGML_ASSERT(nb00 == ggml_type_size(type));
  1223. GGML_ASSERT(nb10 == sizeof(float));
  1224. // dst cannot be transposed or permuted
  1225. GGML_ASSERT(nb0 <= nb1);
  1226. GGML_ASSERT(nb1 <= nb2);
  1227. GGML_ASSERT(nb2 <= nb3);
  1228. GGML_ASSERT(ggml_is_quantized(src0->type));
  1229. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1230. // rows per thread
  1231. const int dr = (nr + nth - 1)/nth;
  1232. // row range for this thread
  1233. const int ir0 = dr*ith;
  1234. const int ir1 = MIN(ir0 + dr, nr);
  1235. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  1236. for (int ir = ir0; ir < ir1; ++ir) {
  1237. // src0 indices
  1238. const int i03 = ir/(ne02*ne01);
  1239. const int i02 = (ir - i03*ne02*ne01)/ne01;
  1240. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  1241. // src1 and dst are same shape as src0 => same indices
  1242. const int i13 = i03;
  1243. const int i12 = i02;
  1244. const int i11 = i01;
  1245. const int i3 = i03;
  1246. const int i2 = i02;
  1247. const int i1 = i01;
  1248. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  1249. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  1250. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  1251. assert(ne00 % 32 == 0);
  1252. // unquantize row from src0 to temp buffer
  1253. dequantize_row_q(src0_row, wdata, ne00);
  1254. // add src1
  1255. ggml_vec_acc_f32(ne00, wdata, src1_row);
  1256. // quantize row to dst
  1257. if (quantize_row_q != NULL) {
  1258. quantize_row_q(wdata, dst_row, ne00);
  1259. } else {
  1260. memcpy(dst_row, wdata, ne0*nb0);
  1261. }
  1262. }
  1263. }
  1264. void ggml_compute_forward_add(
  1265. const ggml_compute_params * params,
  1266. ggml_tensor * dst) {
  1267. const ggml_tensor * src0 = dst->src[0];
  1268. switch (src0->type) {
  1269. case GGML_TYPE_F32:
  1270. case GGML_TYPE_F16:
  1271. case GGML_TYPE_BF16:
  1272. {
  1273. ggml_compute_forward_add_non_quantized(params, dst);
  1274. } break;
  1275. case GGML_TYPE_Q4_0:
  1276. case GGML_TYPE_Q4_1:
  1277. case GGML_TYPE_Q5_0:
  1278. case GGML_TYPE_Q5_1:
  1279. case GGML_TYPE_Q8_0:
  1280. case GGML_TYPE_MXFP4:
  1281. case GGML_TYPE_Q2_K:
  1282. case GGML_TYPE_Q3_K:
  1283. case GGML_TYPE_Q4_K:
  1284. case GGML_TYPE_Q5_K:
  1285. case GGML_TYPE_Q6_K:
  1286. case GGML_TYPE_TQ1_0:
  1287. case GGML_TYPE_TQ2_0:
  1288. case GGML_TYPE_IQ2_XXS:
  1289. case GGML_TYPE_IQ2_XS:
  1290. case GGML_TYPE_IQ3_XXS:
  1291. case GGML_TYPE_IQ1_S:
  1292. case GGML_TYPE_IQ1_M:
  1293. case GGML_TYPE_IQ4_NL:
  1294. case GGML_TYPE_IQ4_XS:
  1295. case GGML_TYPE_IQ3_S:
  1296. case GGML_TYPE_IQ2_S:
  1297. {
  1298. ggml_compute_forward_add_q_f32(params, dst);
  1299. } break;
  1300. default:
  1301. {
  1302. GGML_ABORT("fatal error");
  1303. }
  1304. }
  1305. }
  1306. // ggml_compute_forward_add_id
  1307. static void ggml_compute_forward_add_id_f32(
  1308. const ggml_compute_params * params,
  1309. ggml_tensor * dst) {
  1310. const ggml_tensor * src0 = dst->src[0];
  1311. const ggml_tensor * src1 = dst->src[1];
  1312. const ggml_tensor * src2 = dst->src[2];
  1313. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  1314. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  1315. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1316. GGML_ASSERT(src2->type == GGML_TYPE_I32);
  1317. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1318. GGML_ASSERT(src1->nb[0] == sizeof(float));
  1319. const int ith = params->ith;
  1320. const int nth = params->nth;
  1321. const int nr = ggml_nrows(src0);
  1322. GGML_TENSOR_TERNARY_OP_LOCALS
  1323. GGML_ASSERT( nb0 == sizeof(float));
  1324. GGML_ASSERT(nb10 == sizeof(float));
  1325. // rows per thread
  1326. const int dr = (nr + nth - 1)/nth;
  1327. // row range for this thread
  1328. const int ir0 = dr*ith;
  1329. const int ir1 = MIN(ir0 + dr, nr);
  1330. for (int ir = ir0; ir < ir1; ++ir) {
  1331. // src0 indices
  1332. const int i3 = ir/(ne2*ne1);
  1333. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1334. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1335. // src1 indices
  1336. const int i11 = *(int32_t *) ((char *) src2->data + i1*nb20 + i2*nb21);
  1337. GGML_ASSERT(i11 >= 0 && i11 < ne11);
  1338. ggml_vec_add_f32(ne0,
  1339. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  1340. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  1341. (float *) ((char *) src1->data + i11*nb11));
  1342. }
  1343. }
  1344. void ggml_compute_forward_add_id(
  1345. const ggml_compute_params * params,
  1346. ggml_tensor * dst) {
  1347. const ggml_tensor * src0 = dst->src[0];
  1348. switch (src0->type) {
  1349. case GGML_TYPE_F32:
  1350. {
  1351. ggml_compute_forward_add_id_f32(params, dst);
  1352. } break;
  1353. default:
  1354. {
  1355. GGML_ABORT("unsupported type for ggml_compute_forward_add_id: %s", ggml_type_name(src0->type));
  1356. }
  1357. }
  1358. }
  1359. // ggml_compute_forward_add1
  1360. static void ggml_compute_forward_add1_f32(
  1361. const ggml_compute_params * params,
  1362. ggml_tensor * dst) {
  1363. const ggml_tensor * src0 = dst->src[0];
  1364. const ggml_tensor * src1 = dst->src[1];
  1365. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1366. GGML_ASSERT(ggml_is_scalar(src1));
  1367. const int ith = params->ith;
  1368. const int nth = params->nth;
  1369. const int nr = ggml_nrows(src0);
  1370. GGML_TENSOR_UNARY_OP_LOCALS
  1371. GGML_ASSERT( nb0 == sizeof(float));
  1372. GGML_ASSERT(nb00 == sizeof(float));
  1373. // rows per thread
  1374. const int dr = (nr + nth - 1)/nth;
  1375. // row range for this thread
  1376. const int ir0 = dr*ith;
  1377. const int ir1 = MIN(ir0 + dr, nr);
  1378. for (int ir = ir0; ir < ir1; ++ir) {
  1379. // src0 and dst are same shape => same indices
  1380. const int i3 = ir/(ne2*ne1);
  1381. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1382. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1383. #ifdef GGML_USE_ACCELERATE
  1384. GGML_UNUSED(ggml_vec_add1_f32);
  1385. vDSP_vadd(
  1386. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  1387. (float *) ((char *) src1->data), 0,
  1388. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  1389. ne0);
  1390. #else
  1391. ggml_vec_add1_f32(ne0,
  1392. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  1393. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  1394. *(float *) src1->data);
  1395. #endif
  1396. }
  1397. }
  1398. static void ggml_compute_forward_add1_f16_f32(
  1399. const ggml_compute_params * params,
  1400. ggml_tensor * dst) {
  1401. const ggml_tensor * src0 = dst->src[0];
  1402. const ggml_tensor * src1 = dst->src[1];
  1403. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1404. GGML_ASSERT(ggml_is_scalar(src1));
  1405. // scalar to add
  1406. const float v = *(float *) src1->data;
  1407. const int ith = params->ith;
  1408. const int nth = params->nth;
  1409. const int nr = ggml_nrows(src0);
  1410. GGML_TENSOR_UNARY_OP_LOCALS
  1411. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1412. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1413. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  1414. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  1415. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1416. // rows per thread
  1417. const int dr = (nr + nth - 1)/nth;
  1418. // row range for this thread
  1419. const int ir0 = dr*ith;
  1420. const int ir1 = MIN(ir0 + dr, nr);
  1421. for (int ir = ir0; ir < ir1; ++ir) {
  1422. // src0 and dst are same shape => same indices
  1423. const int i3 = ir/(ne2*ne1);
  1424. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1425. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1426. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1427. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1428. for (int i = 0; i < ne0; i++) {
  1429. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
  1430. }
  1431. }
  1432. }
  1433. static void ggml_compute_forward_add1_f16_f16(
  1434. const ggml_compute_params * params,
  1435. ggml_tensor * dst) {
  1436. const ggml_tensor * src0 = dst->src[0];
  1437. const ggml_tensor * src1 = dst->src[1];
  1438. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1439. GGML_ASSERT(ggml_is_scalar(src1));
  1440. // scalar to add
  1441. const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  1442. const int ith = params->ith;
  1443. const int nth = params->nth;
  1444. const int nr = ggml_nrows(src0);
  1445. GGML_TENSOR_UNARY_OP_LOCALS
  1446. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1447. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  1448. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  1449. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  1450. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  1451. // rows per thread
  1452. const int dr = (nr + nth - 1)/nth;
  1453. // row range for this thread
  1454. const int ir0 = dr*ith;
  1455. const int ir1 = MIN(ir0 + dr, nr);
  1456. for (int ir = ir0; ir < ir1; ++ir) {
  1457. // src0 and dst are same shape => same indices
  1458. const int i3 = ir/(ne2*ne1);
  1459. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1460. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1461. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1462. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1463. for (int i = 0; i < ne0; i++) {
  1464. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
  1465. }
  1466. }
  1467. }
  1468. static void ggml_compute_forward_add1_q_f32(
  1469. const ggml_compute_params * params,
  1470. ggml_tensor * dst) {
  1471. const ggml_tensor * src0 = dst->src[0];
  1472. const ggml_tensor * src1 = dst->src[1];
  1473. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1474. GGML_ASSERT(ggml_is_scalar(src1));
  1475. // scalar to add
  1476. const float v = *(float *) src1->data;
  1477. const int ith = params->ith;
  1478. const int nth = params->nth;
  1479. const int nr = ggml_nrows(src0);
  1480. GGML_TENSOR_UNARY_OP_LOCALS
  1481. const ggml_type type = src0->type;
  1482. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  1483. ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
  1484. // we don't support permuted src0
  1485. GGML_ASSERT(nb00 == ggml_type_size(type));
  1486. // dst cannot be transposed or permuted
  1487. GGML_ASSERT(nb0 <= nb1);
  1488. GGML_ASSERT(nb1 <= nb2);
  1489. GGML_ASSERT(nb2 <= nb3);
  1490. GGML_ASSERT(ggml_is_quantized(src0->type));
  1491. GGML_ASSERT(dst->type == src0->type);
  1492. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1493. // rows per thread
  1494. const int dr = (nr + nth - 1)/nth;
  1495. // row range for this thread
  1496. const int ir0 = dr*ith;
  1497. const int ir1 = MIN(ir0 + dr, nr);
  1498. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  1499. for (int ir = ir0; ir < ir1; ++ir) {
  1500. // src0 and dst are same shape => same indices
  1501. const int i3 = ir/(ne2*ne1);
  1502. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1503. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1504. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  1505. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  1506. assert(ne0 % 32 == 0);
  1507. // unquantize row from src0 to temp buffer
  1508. dequantize_row_q(src0_row, wdata, ne0);
  1509. // add src1
  1510. ggml_vec_acc1_f32(ne0, wdata, v);
  1511. // quantize row to dst
  1512. quantize_row_q(wdata, dst_row, ne0);
  1513. }
  1514. }
  1515. static void ggml_compute_forward_add1_bf16_f32(
  1516. const ggml_compute_params * params,
  1517. ggml_tensor * dst) {
  1518. const ggml_tensor * src0 = dst->src[0];
  1519. const ggml_tensor * src1 = dst->src[1];
  1520. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1521. GGML_ASSERT(ggml_is_scalar(src1));
  1522. // scalar to add
  1523. const float v = *(float *) src1->data;
  1524. const int ith = params->ith;
  1525. const int nth = params->nth;
  1526. const int nr = ggml_nrows(src0);
  1527. GGML_TENSOR_UNARY_OP_LOCALS
  1528. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  1529. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1530. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  1531. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  1532. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  1533. // rows per thread
  1534. const int dr = (nr + nth - 1)/nth;
  1535. // row range for this thread
  1536. const int ir0 = dr*ith;
  1537. const int ir1 = MIN(ir0 + dr, nr);
  1538. for (int ir = ir0; ir < ir1; ++ir) {
  1539. // src0 and dst are same shape => same indices
  1540. const int i3 = ir/(ne2*ne1);
  1541. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1542. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1543. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1544. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1545. for (int i = 0; i < ne0; i++) {
  1546. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  1547. }
  1548. }
  1549. }
  1550. static void ggml_compute_forward_add1_bf16_bf16(
  1551. const ggml_compute_params * params,
  1552. ggml_tensor * dst) {
  1553. const ggml_tensor * src0 = dst->src[0];
  1554. const ggml_tensor * src1 = dst->src[1];
  1555. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1556. GGML_ASSERT(ggml_is_scalar(src1));
  1557. // scalar to add
  1558. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  1559. const int ith = params->ith;
  1560. const int nth = params->nth;
  1561. const int nr = ggml_nrows(src0);
  1562. GGML_TENSOR_UNARY_OP_LOCALS
  1563. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  1564. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  1565. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  1566. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  1567. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  1568. // rows per thread
  1569. const int dr = (nr + nth - 1)/nth;
  1570. // row range for this thread
  1571. const int ir0 = dr*ith;
  1572. const int ir1 = MIN(ir0 + dr, nr);
  1573. for (int ir = ir0; ir < ir1; ++ir) {
  1574. // src0 and dst are same shape => same indices
  1575. const int i3 = ir/(ne2*ne1);
  1576. const int i2 = (ir - i3*ne2*ne1)/ne1;
  1577. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  1578. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  1579. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  1580. for (int i = 0; i < ne0; i++) {
  1581. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  1582. }
  1583. }
  1584. }
  1585. void ggml_compute_forward_add1(
  1586. const ggml_compute_params * params,
  1587. ggml_tensor * dst) {
  1588. const ggml_tensor * src0 = dst->src[0];
  1589. const ggml_tensor * src1 = dst->src[1];
  1590. switch (src0->type) {
  1591. case GGML_TYPE_F32:
  1592. {
  1593. ggml_compute_forward_add1_f32(params, dst);
  1594. } break;
  1595. case GGML_TYPE_F16:
  1596. {
  1597. if (src1->type == GGML_TYPE_F16) {
  1598. ggml_compute_forward_add1_f16_f16(params, dst);
  1599. }
  1600. else if (src1->type == GGML_TYPE_F32) {
  1601. ggml_compute_forward_add1_f16_f32(params, dst);
  1602. }
  1603. else {
  1604. GGML_ABORT("fatal error");
  1605. }
  1606. } break;
  1607. case GGML_TYPE_BF16:
  1608. {
  1609. if (src1->type == GGML_TYPE_BF16) {
  1610. ggml_compute_forward_add1_bf16_bf16(params, dst);
  1611. }
  1612. else if (src1->type == GGML_TYPE_F32) {
  1613. ggml_compute_forward_add1_bf16_f32(params, dst);
  1614. }
  1615. else {
  1616. GGML_ABORT("fatal error");
  1617. }
  1618. } break;
  1619. case GGML_TYPE_Q4_0:
  1620. case GGML_TYPE_Q4_1:
  1621. case GGML_TYPE_Q5_0:
  1622. case GGML_TYPE_Q5_1:
  1623. case GGML_TYPE_Q8_0:
  1624. case GGML_TYPE_Q8_1:
  1625. case GGML_TYPE_MXFP4:
  1626. case GGML_TYPE_Q2_K:
  1627. case GGML_TYPE_Q3_K:
  1628. case GGML_TYPE_Q4_K:
  1629. case GGML_TYPE_Q5_K:
  1630. case GGML_TYPE_Q6_K:
  1631. case GGML_TYPE_TQ1_0:
  1632. case GGML_TYPE_TQ2_0:
  1633. case GGML_TYPE_IQ2_XXS:
  1634. case GGML_TYPE_IQ2_XS:
  1635. case GGML_TYPE_IQ3_XXS:
  1636. case GGML_TYPE_IQ1_S:
  1637. case GGML_TYPE_IQ1_M:
  1638. case GGML_TYPE_IQ4_NL:
  1639. case GGML_TYPE_IQ4_XS:
  1640. case GGML_TYPE_IQ3_S:
  1641. case GGML_TYPE_IQ2_S:
  1642. {
  1643. ggml_compute_forward_add1_q_f32(params, dst);
  1644. } break;
  1645. default:
  1646. {
  1647. GGML_ABORT("fatal error");
  1648. }
  1649. }
  1650. }
  1651. // ggml_compute_forward_acc
  1652. static void ggml_compute_forward_acc_f32(
  1653. const ggml_compute_params * params,
  1654. ggml_tensor * dst) {
  1655. const ggml_tensor * src0 = dst->src[0];
  1656. const ggml_tensor * src1 = dst->src[1];
  1657. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  1658. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  1659. // view src0 and dst with these strides and data offset inbytes during acc
  1660. // nb0 is implicitly element_size because src0 and dst are contiguous
  1661. size_t nb1 = ((int32_t *) dst->op_params)[0];
  1662. size_t nb2 = ((int32_t *) dst->op_params)[1];
  1663. size_t nb3 = ((int32_t *) dst->op_params)[2];
  1664. size_t offset = ((int32_t *) dst->op_params)[3];
  1665. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  1666. if (!inplace) {
  1667. if (params->ith == 0) {
  1668. // memcpy needs to be synchronized across threads to avoid race conditions.
  1669. // => do it in INIT phase
  1670. memcpy(
  1671. ((char *) dst->data),
  1672. ((char *) src0->data),
  1673. ggml_nbytes(dst));
  1674. }
  1675. ggml_barrier(params->threadpool);
  1676. }
  1677. const int ith = params->ith;
  1678. const int nth = params->nth;
  1679. const int nr = ggml_nrows(src1);
  1680. const int nc = src1->ne[0];
  1681. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  1682. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  1683. // src0 and dst as viewed during acc
  1684. const size_t nb0 = ggml_element_size(src0);
  1685. const size_t nb00 = nb0;
  1686. const size_t nb01 = nb1;
  1687. const size_t nb02 = nb2;
  1688. const size_t nb03 = nb3;
  1689. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  1690. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  1691. GGML_ASSERT(nb10 == sizeof(float));
  1692. // rows per thread
  1693. const int dr = (nr + nth - 1)/nth;
  1694. // row range for this thread
  1695. const int ir0 = dr*ith;
  1696. const int ir1 = MIN(ir0 + dr, nr);
  1697. for (int ir = ir0; ir < ir1; ++ir) {
  1698. // src0 and dst are viewed with shape of src1 and offset
  1699. // => same indices
  1700. const int i3 = ir/(ne12*ne11);
  1701. const int i2 = (ir - i3*ne12*ne11)/ne11;
  1702. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  1703. #ifdef GGML_USE_ACCELERATE
  1704. vDSP_vadd(
  1705. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  1706. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  1707. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  1708. #else
  1709. ggml_vec_add_f32(nc,
  1710. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  1711. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  1712. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  1713. #endif
  1714. }
  1715. }
  1716. void ggml_compute_forward_acc(
  1717. const ggml_compute_params * params,
  1718. ggml_tensor * dst) {
  1719. const ggml_tensor * src0 = dst->src[0];
  1720. switch (src0->type) {
  1721. case GGML_TYPE_F32:
  1722. {
  1723. ggml_compute_forward_acc_f32(params, dst);
  1724. } break;
  1725. case GGML_TYPE_F16:
  1726. case GGML_TYPE_BF16:
  1727. case GGML_TYPE_Q4_0:
  1728. case GGML_TYPE_Q4_1:
  1729. case GGML_TYPE_Q5_0:
  1730. case GGML_TYPE_Q5_1:
  1731. case GGML_TYPE_Q8_0:
  1732. case GGML_TYPE_Q8_1:
  1733. case GGML_TYPE_MXFP4:
  1734. case GGML_TYPE_Q2_K:
  1735. case GGML_TYPE_Q3_K:
  1736. case GGML_TYPE_Q4_K:
  1737. case GGML_TYPE_Q5_K:
  1738. case GGML_TYPE_Q6_K:
  1739. case GGML_TYPE_TQ1_0:
  1740. case GGML_TYPE_TQ2_0:
  1741. case GGML_TYPE_IQ2_XXS:
  1742. case GGML_TYPE_IQ2_XS:
  1743. case GGML_TYPE_IQ3_XXS:
  1744. case GGML_TYPE_IQ1_S:
  1745. case GGML_TYPE_IQ1_M:
  1746. case GGML_TYPE_IQ4_NL:
  1747. case GGML_TYPE_IQ4_XS:
  1748. case GGML_TYPE_IQ3_S:
  1749. case GGML_TYPE_IQ2_S:
  1750. default:
  1751. {
  1752. GGML_ABORT("fatal error");
  1753. }
  1754. }
  1755. }
  1756. // ggml_compute_forward_sum
  1757. static void ggml_compute_forward_sum_f32(
  1758. const ggml_compute_params * params,
  1759. ggml_tensor * dst) {
  1760. const ggml_tensor * src0 = dst->src[0];
  1761. if (params->ith != 0) {
  1762. return;
  1763. }
  1764. assert(ggml_is_scalar(dst));
  1765. assert(src0->nb[0] == sizeof(float));
  1766. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1767. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1768. ggml_float sum = 0;
  1769. ggml_float row_sum = 0;
  1770. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1771. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1772. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1773. ggml_vec_sum_f32_ggf(ne00,
  1774. &row_sum,
  1775. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  1776. sum += row_sum;
  1777. }
  1778. }
  1779. }
  1780. ((float *) dst->data)[0] = sum;
  1781. }
  1782. static void ggml_compute_forward_sum_f16(
  1783. const ggml_compute_params * params,
  1784. ggml_tensor * dst) {
  1785. const ggml_tensor * src0 = dst->src[0];
  1786. if (params->ith != 0) {
  1787. return;
  1788. }
  1789. assert(ggml_is_scalar(dst));
  1790. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  1791. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1792. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1793. float sum = 0;
  1794. float row_sum = 0;
  1795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1797. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1798. ggml_vec_sum_f16_ggf(ne00,
  1799. &row_sum,
  1800. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  1801. sum += row_sum;
  1802. }
  1803. }
  1804. }
  1805. ((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum);
  1806. }
  1807. static void ggml_compute_forward_sum_bf16(
  1808. const ggml_compute_params * params,
  1809. ggml_tensor * dst) {
  1810. const ggml_tensor * src0 = dst->src[0];
  1811. if (params->ith != 0) {
  1812. return;
  1813. }
  1814. assert(ggml_is_scalar(dst));
  1815. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  1816. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  1817. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  1818. float sum = 0;
  1819. float row_sum = 0;
  1820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1821. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1822. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1823. ggml_vec_sum_bf16_ggf(ne00,
  1824. &row_sum,
  1825. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  1826. sum += row_sum;
  1827. }
  1828. }
  1829. }
  1830. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  1831. }
  1832. void ggml_compute_forward_sum(
  1833. const ggml_compute_params * params,
  1834. ggml_tensor * dst) {
  1835. const ggml_tensor * src0 = dst->src[0];
  1836. switch (src0->type) {
  1837. case GGML_TYPE_F32:
  1838. {
  1839. ggml_compute_forward_sum_f32(params, dst);
  1840. } break;
  1841. case GGML_TYPE_F16:
  1842. {
  1843. ggml_compute_forward_sum_f16(params, dst);
  1844. } break;
  1845. case GGML_TYPE_BF16:
  1846. {
  1847. ggml_compute_forward_sum_bf16(params, dst);
  1848. } break;
  1849. default:
  1850. {
  1851. GGML_ABORT("fatal error");
  1852. }
  1853. }
  1854. }
  1855. // ggml_compute_forward_cumsum
  1856. static void ggml_compute_forward_cumsum_f32(
  1857. const ggml_compute_params * params,
  1858. ggml_tensor * dst) {
  1859. const ggml_tensor * src0 = dst->src[0];
  1860. if (params->ith != 0) {
  1861. return;
  1862. }
  1863. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1864. GGML_ASSERT(dst->nb[0] == sizeof(float));
  1865. GGML_TENSOR_UNARY_OP_LOCALS
  1866. GGML_ASSERT(ne0 == ne00);
  1867. GGML_ASSERT(ne1 == ne01);
  1868. GGML_ASSERT(ne2 == ne02);
  1869. GGML_ASSERT(ne3 == ne03);
  1870. for (int64_t i3 = 0; i3 < ne03; i3++) {
  1871. for (int64_t i2 = 0; i2 < ne02; i2++) {
  1872. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1873. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  1874. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  1875. ggml_vec_cumsum_f32(ne00, dst_row, src_row);
  1876. }
  1877. }
  1878. }
  1879. }
  1880. void ggml_compute_forward_cumsum(
  1881. const ggml_compute_params * params,
  1882. ggml_tensor * dst) {
  1883. const ggml_tensor * src0 = dst->src[0];
  1884. switch (src0->type) {
  1885. case GGML_TYPE_F32:
  1886. {
  1887. ggml_compute_forward_cumsum_f32(params, dst);
  1888. } break;
  1889. default:
  1890. {
  1891. GGML_ABORT("fatal error");
  1892. }
  1893. }
  1894. }
  1895. // ggml_compute_forward_sum_rows
  1896. static void ggml_compute_forward_sum_rows_f32(
  1897. const ggml_compute_params * params,
  1898. ggml_tensor * dst) {
  1899. const ggml_tensor * src0 = dst->src[0];
  1900. if (params->ith != 0) {
  1901. return;
  1902. }
  1903. GGML_ASSERT(src0->nb[0] == sizeof(float));
  1904. GGML_ASSERT(dst->nb[0] == sizeof(float));
  1905. GGML_TENSOR_UNARY_OP_LOCALS
  1906. GGML_ASSERT(ne0 == 1);
  1907. GGML_ASSERT(ne1 == ne01);
  1908. GGML_ASSERT(ne2 == ne02);
  1909. GGML_ASSERT(ne3 == ne03);
  1910. for (int64_t i3 = 0; i3 < ne03; i3++) {
  1911. for (int64_t i2 = 0; i2 < ne02; i2++) {
  1912. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1913. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  1914. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  1915. float row_sum = 0;
  1916. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  1917. dst_row[0] = row_sum;
  1918. }
  1919. }
  1920. }
  1921. }
  1922. void ggml_compute_forward_sum_rows(
  1923. const ggml_compute_params * params,
  1924. ggml_tensor * dst) {
  1925. const ggml_tensor * src0 = dst->src[0];
  1926. switch (src0->type) {
  1927. case GGML_TYPE_F32:
  1928. {
  1929. ggml_compute_forward_sum_rows_f32(params, dst);
  1930. } break;
  1931. default:
  1932. {
  1933. GGML_ABORT("fatal error");
  1934. }
  1935. }
  1936. }
  1937. // ggml_compute_forward_mean
  1938. static void ggml_compute_forward_mean_f32(
  1939. const ggml_compute_params * params,
  1940. ggml_tensor * dst) {
  1941. const ggml_tensor * src0 = dst->src[0];
  1942. if (params->ith != 0) {
  1943. return;
  1944. }
  1945. assert(src0->nb[0] == sizeof(float));
  1946. GGML_TENSOR_UNARY_OP_LOCALS
  1947. assert(ne0 == 1);
  1948. assert(ne1 == ne01);
  1949. assert(ne2 == ne02);
  1950. assert(ne3 == ne03);
  1951. GGML_UNUSED(ne0);
  1952. GGML_UNUSED(ne1);
  1953. GGML_UNUSED(ne2);
  1954. GGML_UNUSED(ne3);
  1955. for (int64_t i03 = 0; i03 < ne03; i03++) {
  1956. for (int64_t i02 = 0; i02 < ne02; i02++) {
  1957. for (int64_t i01 = 0; i01 < ne01; i01++) {
  1958. ggml_vec_sum_f32(ne00,
  1959. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  1960. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  1961. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  1962. }
  1963. }
  1964. }
  1965. }
  1966. void ggml_compute_forward_mean(
  1967. const ggml_compute_params * params,
  1968. ggml_tensor * dst) {
  1969. const ggml_tensor * src0 = dst->src[0];
  1970. switch (src0->type) {
  1971. case GGML_TYPE_F32:
  1972. {
  1973. ggml_compute_forward_mean_f32(params, dst);
  1974. } break;
  1975. default:
  1976. {
  1977. GGML_ABORT("fatal error");
  1978. }
  1979. }
  1980. }
  1981. // ggml_compute_forward_argmax
  1982. static void ggml_compute_forward_argmax_f32(
  1983. const ggml_compute_params * params,
  1984. ggml_tensor * dst) {
  1985. const ggml_tensor * src0 = dst->src[0];
  1986. if (params->ith != 0) {
  1987. return;
  1988. }
  1989. assert(src0->nb[0] == sizeof(float));
  1990. assert(dst->nb[0] == sizeof(float));
  1991. const int64_t ne00 = src0->ne[0];
  1992. const int64_t ne01 = src0->ne[1];
  1993. const size_t nb01 = src0->nb[1];
  1994. const size_t nb0 = dst->nb[0];
  1995. for (int64_t i1 = 0; i1 < ne01; i1++) {
  1996. float * src = (float *) ((char *) src0->data + i1*nb01);
  1997. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  1998. int v = 0;
  1999. ggml_vec_argmax_f32(ne00, &v, src);
  2000. dst_[0] = v;
  2001. }
  2002. }
  2003. void ggml_compute_forward_argmax(
  2004. const ggml_compute_params * params,
  2005. ggml_tensor * dst) {
  2006. const ggml_tensor * src0 = dst->src[0];
  2007. switch (src0->type) {
  2008. case GGML_TYPE_F32:
  2009. {
  2010. ggml_compute_forward_argmax_f32(params, dst);
  2011. } break;
  2012. default:
  2013. {
  2014. GGML_ABORT("fatal error");
  2015. }
  2016. }
  2017. }
  2018. // ggml_compute_forward_count_equal
  2019. static void ggml_compute_forward_count_equal_i32(
  2020. const ggml_compute_params * params,
  2021. ggml_tensor * dst) {
  2022. const ggml_tensor * src0 = dst->src[0];
  2023. const ggml_tensor * src1 = dst->src[1];
  2024. GGML_TENSOR_BINARY_OP_LOCALS;
  2025. GGML_ASSERT(src0->type == GGML_TYPE_I32);
  2026. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  2027. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  2028. GGML_ASSERT(ggml_is_scalar(dst));
  2029. GGML_ASSERT(dst->type == GGML_TYPE_I64);
  2030. const int64_t nr = ggml_nrows(src0);
  2031. const int ith = params->ith;
  2032. const int nth = params->nth;
  2033. int64_t * sums = (int64_t *) params->wdata;
  2034. int64_t sum_thread = 0;
  2035. // rows per thread
  2036. const int64_t dr = (nr + nth - 1)/nth;
  2037. // row range for this thread
  2038. const int64_t ir0 = dr*ith;
  2039. const int64_t ir1 = MIN(ir0 + dr, nr);
  2040. for (int64_t ir = ir0; ir < ir1; ++ir) {
  2041. const int64_t i03 = ir / (ne02*ne01);
  2042. const int64_t i02 = (ir - i03*ne03) / ne01;
  2043. const int64_t i01 = ir - i03*ne03 - i02*ne02;
  2044. const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
  2045. const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
  2046. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  2047. const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
  2048. const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
  2049. sum_thread += val0 == val1;
  2050. }
  2051. }
  2052. if (ith != 0) {
  2053. sums[ith] = sum_thread;
  2054. }
  2055. ggml_barrier(params->threadpool);
  2056. if (ith != 0) {
  2057. return;
  2058. }
  2059. for (int ith_other = 1; ith_other < nth; ++ith_other) {
  2060. sum_thread += sums[ith_other];
  2061. }
  2062. *((int64_t *) dst->data) = sum_thread;
  2063. }
  2064. void ggml_compute_forward_count_equal(
  2065. const ggml_compute_params * params,
  2066. ggml_tensor * dst) {
  2067. const ggml_tensor * src0 = dst->src[0];
  2068. switch (src0->type) {
  2069. case GGML_TYPE_I32:
  2070. {
  2071. ggml_compute_forward_count_equal_i32(params, dst);
  2072. } break;
  2073. default:
  2074. {
  2075. GGML_ABORT("fatal error");
  2076. }
  2077. }
  2078. }
  2079. // ggml_compute_forward_repeat
  2080. static void ggml_compute_forward_repeat_f32(
  2081. const ggml_compute_params * params,
  2082. ggml_tensor * dst) {
  2083. const ggml_tensor * src0 = dst->src[0];
  2084. if (params->ith != 0) {
  2085. return;
  2086. }
  2087. GGML_ASSERT(ggml_can_repeat(src0, dst));
  2088. GGML_TENSOR_UNARY_OP_LOCALS
  2089. // guaranteed to be an integer due to the check in ggml_can_repeat
  2090. const int nr0 = (int)(ne0/ne00);
  2091. const int nr1 = (int)(ne1/ne01);
  2092. const int nr2 = (int)(ne2/ne02);
  2093. const int nr3 = (int)(ne3/ne03);
  2094. // TODO: support for transposed / permuted tensors
  2095. GGML_ASSERT(nb0 == sizeof(float));
  2096. GGML_ASSERT(nb00 == sizeof(float));
  2097. // TODO: maybe this is not optimal?
  2098. for (int i3 = 0; i3 < nr3; i3++) {
  2099. for (int k3 = 0; k3 < ne03; k3++) {
  2100. for (int i2 = 0; i2 < nr2; i2++) {
  2101. for (int k2 = 0; k2 < ne02; k2++) {
  2102. for (int i1 = 0; i1 < nr1; i1++) {
  2103. for (int k1 = 0; k1 < ne01; k1++) {
  2104. for (int i0 = 0; i0 < nr0; i0++) {
  2105. ggml_vec_cpy_f32(ne00,
  2106. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  2107. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  2108. }
  2109. }
  2110. }
  2111. }
  2112. }
  2113. }
  2114. }
  2115. }
  2116. static void ggml_compute_forward_repeat_f16(
  2117. const ggml_compute_params * params,
  2118. ggml_tensor * dst) {
  2119. const ggml_tensor * src0 = dst->src[0];
  2120. if (params->ith != 0) {
  2121. return;
  2122. }
  2123. GGML_ASSERT(ggml_can_repeat(src0, dst));
  2124. GGML_TENSOR_UNARY_OP_LOCALS
  2125. // guaranteed to be an integer due to the check in ggml_can_repeat
  2126. const int nr0 = (int)(ne0/ne00);
  2127. const int nr1 = (int)(ne1/ne01);
  2128. const int nr2 = (int)(ne2/ne02);
  2129. const int nr3 = (int)(ne3/ne03);
  2130. // TODO: support for transposed / permuted tensors
  2131. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  2132. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  2133. // TODO: maybe this is not optimal?
  2134. for (int i3 = 0; i3 < nr3; i3++) {
  2135. for (int k3 = 0; k3 < ne03; k3++) {
  2136. for (int i2 = 0; i2 < nr2; i2++) {
  2137. for (int k2 = 0; k2 < ne02; k2++) {
  2138. for (int i1 = 0; i1 < nr1; i1++) {
  2139. for (int k1 = 0; k1 < ne01; k1++) {
  2140. for (int i0 = 0; i0 < nr0; i0++) {
  2141. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  2142. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  2143. // ggml_vec_cpy_f16(ne00, y, x)
  2144. for (int i = 0; i < ne00; ++i) {
  2145. y[i] = x[i];
  2146. }
  2147. }
  2148. }
  2149. }
  2150. }
  2151. }
  2152. }
  2153. }
  2154. }
  2155. void ggml_compute_forward_repeat(
  2156. const ggml_compute_params * params,
  2157. ggml_tensor * dst) {
  2158. const ggml_tensor * src0 = dst->src[0];
  2159. switch (src0->type) {
  2160. case GGML_TYPE_F16:
  2161. case GGML_TYPE_BF16:
  2162. case GGML_TYPE_I16:
  2163. {
  2164. ggml_compute_forward_repeat_f16(params, dst);
  2165. } break;
  2166. case GGML_TYPE_F32:
  2167. case GGML_TYPE_I32:
  2168. {
  2169. ggml_compute_forward_repeat_f32(params, dst);
  2170. } break;
  2171. // TODO: templateify the implemenation and support for I64
  2172. // ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
  2173. //case GGML_TYPE_I64:
  2174. // {
  2175. // ggml_compute_forward_repeat_i64(params, dst);
  2176. // } break;
  2177. default:
  2178. {
  2179. GGML_ABORT("fatal error");
  2180. }
  2181. }
  2182. }
  2183. // ggml_compute_forward_repeat_back
  2184. static void ggml_compute_forward_repeat_back_f32(
  2185. const ggml_compute_params * params,
  2186. ggml_tensor * dst) {
  2187. const ggml_tensor * src0 = dst->src[0];
  2188. if (params->ith != 0) {
  2189. return;
  2190. }
  2191. GGML_ASSERT(ggml_can_repeat(dst, src0));
  2192. GGML_TENSOR_UNARY_OP_LOCALS
  2193. // guaranteed to be an integer due to the check in ggml_can_repeat
  2194. const int nr0 = (int)(ne00/ne0);
  2195. const int nr1 = (int)(ne01/ne1);
  2196. const int nr2 = (int)(ne02/ne2);
  2197. const int nr3 = (int)(ne03/ne3);
  2198. // TODO: support for transposed / permuted tensors
  2199. GGML_ASSERT(nb0 == sizeof(float));
  2200. GGML_ASSERT(nb00 == sizeof(float));
  2201. if (ggml_is_contiguous(dst)) {
  2202. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  2203. } else {
  2204. for (int k3 = 0; k3 < ne3; k3++) {
  2205. for (int k2 = 0; k2 < ne2; k2++) {
  2206. for (int k1 = 0; k1 < ne1; k1++) {
  2207. ggml_vec_set_f32(ne0,
  2208. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  2209. 0);
  2210. }
  2211. }
  2212. }
  2213. }
  2214. // TODO: maybe this is not optimal?
  2215. for (int i3 = 0; i3 < nr3; i3++) {
  2216. for (int k3 = 0; k3 < ne3; k3++) {
  2217. for (int i2 = 0; i2 < nr2; i2++) {
  2218. for (int k2 = 0; k2 < ne2; k2++) {
  2219. for (int i1 = 0; i1 < nr1; i1++) {
  2220. for (int k1 = 0; k1 < ne1; k1++) {
  2221. for (int i0 = 0; i0 < nr0; i0++) {
  2222. ggml_vec_acc_f32(ne0,
  2223. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  2224. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  2225. }
  2226. }
  2227. }
  2228. }
  2229. }
  2230. }
  2231. }
  2232. }
  2233. void ggml_compute_forward_repeat_back(
  2234. const ggml_compute_params * params,
  2235. ggml_tensor * dst) {
  2236. const ggml_tensor * src0 = dst->src[0];
  2237. switch (src0->type) {
  2238. case GGML_TYPE_F32:
  2239. {
  2240. ggml_compute_forward_repeat_back_f32(params, dst);
  2241. } break;
  2242. default:
  2243. {
  2244. GGML_ABORT("fatal error");
  2245. }
  2246. }
  2247. }
  2248. // ggml_compute_forward_concat
  2249. static void ggml_compute_forward_concat_any(
  2250. const ggml_compute_params * params,
  2251. ggml_tensor * dst) {
  2252. const ggml_tensor * src0 = dst->src[0];
  2253. const ggml_tensor * src1 = dst->src[1];
  2254. const size_t len = ggml_type_size(src0->type);
  2255. const int ith = params->ith;
  2256. const int nth = params->nth;
  2257. GGML_TENSOR_BINARY_OP_LOCALS
  2258. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2259. GGML_ASSERT(dim >= 0 && dim < 4);
  2260. int64_t o[4] = {0, 0, 0, 0};
  2261. o[dim] = src0->ne[dim];
  2262. const char * x;
  2263. // TODO: smarter multi-theading
  2264. for (int i3 = 0; i3 < ne3; i3++) {
  2265. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2266. for (int i1 = 0; i1 < ne1; i1++) {
  2267. for (int i0 = 0; i0 < ne0; i0++) {
  2268. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2269. x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
  2270. } else {
  2271. x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
  2272. }
  2273. char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
  2274. memcpy(y, x, len);
  2275. }
  2276. }
  2277. }
  2278. }
  2279. }
  2280. static void ggml_compute_forward_concat_i8(
  2281. const ggml_compute_params * params,
  2282. ggml_tensor * dst) {
  2283. const ggml_tensor * src0 = dst->src[0];
  2284. const ggml_tensor * src1 = dst->src[1];
  2285. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
  2286. const int ith = params->ith;
  2287. const int nth = params->nth;
  2288. GGML_TENSOR_BINARY_OP_LOCALS
  2289. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2290. GGML_ASSERT(dim >= 0 && dim < 4);
  2291. int64_t o[4] = {0, 0, 0, 0};
  2292. o[dim] = src0->ne[dim];
  2293. const int8_t * x;
  2294. // TODO: smarter multi-theading
  2295. for (int i3 = 0; i3 < ne3; i3++) {
  2296. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2297. for (int i1 = 0; i1 < ne1; i1++) {
  2298. for (int i0 = 0; i0 < ne0; i0++) {
  2299. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2300. x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2301. } else {
  2302. x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2303. }
  2304. int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2305. *y = *x;
  2306. }
  2307. }
  2308. }
  2309. }
  2310. }
  2311. static void ggml_compute_forward_concat_f16(
  2312. const ggml_compute_params * params,
  2313. ggml_tensor * dst) {
  2314. const ggml_tensor * src0 = dst->src[0];
  2315. const ggml_tensor * src1 = dst->src[1];
  2316. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
  2317. const int ith = params->ith;
  2318. const int nth = params->nth;
  2319. GGML_TENSOR_BINARY_OP_LOCALS
  2320. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2321. GGML_ASSERT(dim >= 0 && dim < 4);
  2322. int64_t o[4] = {0, 0, 0, 0};
  2323. o[dim] = src0->ne[dim];
  2324. const ggml_fp16_t * x;
  2325. // TODO: smarter multi-theading
  2326. for (int i3 = 0; i3 < ne3; i3++) {
  2327. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2328. for (int i1 = 0; i1 < ne1; i1++) {
  2329. for (int i0 = 0; i0 < ne0; i0++) {
  2330. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2331. x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2332. } else {
  2333. x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2334. }
  2335. ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2336. *y = *x;
  2337. }
  2338. }
  2339. }
  2340. }
  2341. }
  2342. static void ggml_compute_forward_concat_f32(
  2343. const ggml_compute_params * params,
  2344. ggml_tensor * dst) {
  2345. const ggml_tensor * src0 = dst->src[0];
  2346. const ggml_tensor * src1 = dst->src[1];
  2347. GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
  2348. const int ith = params->ith;
  2349. const int nth = params->nth;
  2350. GGML_TENSOR_BINARY_OP_LOCALS
  2351. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  2352. GGML_ASSERT(dim >= 0 && dim < 4);
  2353. int64_t o[4] = {0, 0, 0, 0};
  2354. o[dim] = src0->ne[dim];
  2355. const float * x;
  2356. // TODO: smarter multi-theading
  2357. for (int i3 = 0; i3 < ne3; i3++) {
  2358. for (int i2 = ith; i2 < ne2; i2 += nth) {
  2359. for (int i1 = 0; i1 < ne1; i1++) {
  2360. for (int i0 = 0; i0 < ne0; i0++) {
  2361. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  2362. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  2363. } else {
  2364. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  2365. }
  2366. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  2367. *y = *x;
  2368. }
  2369. }
  2370. }
  2371. }
  2372. }
  2373. void ggml_compute_forward_concat(
  2374. const ggml_compute_params * params,
  2375. ggml_tensor * dst) {
  2376. const ggml_tensor * src0 = dst->src[0];
  2377. switch (src0->type) {
  2378. case GGML_TYPE_F16:
  2379. case GGML_TYPE_BF16:
  2380. case GGML_TYPE_I16:
  2381. {
  2382. ggml_compute_forward_concat_f16(params, dst);
  2383. } break;
  2384. case GGML_TYPE_I8:
  2385. {
  2386. ggml_compute_forward_concat_i8(params, dst);
  2387. } break;
  2388. case GGML_TYPE_F32:
  2389. case GGML_TYPE_I32:
  2390. {
  2391. ggml_compute_forward_concat_f32(params, dst);
  2392. } break;
  2393. default:
  2394. {
  2395. ggml_compute_forward_concat_any(params, dst);
  2396. }
  2397. }
  2398. }
  2399. // ggml_compute_forward_gelu
  2400. static void ggml_compute_forward_gelu_f32(
  2401. const ggml_compute_params * params,
  2402. ggml_tensor * dst) {
  2403. const ggml_tensor * src0 = dst->src[0];
  2404. assert(ggml_is_contiguous_1(src0));
  2405. assert(ggml_is_contiguous_1(dst));
  2406. assert(ggml_are_same_shape(src0, dst));
  2407. const int ith = params->ith;
  2408. const int nth = params->nth;
  2409. const int nc = src0->ne[0];
  2410. const int nr = ggml_nrows(src0);
  2411. // rows per thread
  2412. const int dr = (nr + nth - 1)/nth;
  2413. // row range for this thread
  2414. const int ir0 = dr*ith;
  2415. const int ir1 = MIN(ir0 + dr, nr);
  2416. for (int i1 = ir0; i1 < ir1; i1++) {
  2417. ggml_vec_gelu_f32(nc,
  2418. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2419. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2420. #ifndef NDEBUG
  2421. for (int k = 0; k < nc; k++) {
  2422. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2423. GGML_UNUSED(x);
  2424. assert(!isnan(x));
  2425. assert(!isinf(x));
  2426. }
  2427. #endif
  2428. }
  2429. }
  2430. static void ggml_compute_forward_gelu_f16(
  2431. const ggml_compute_params * params,
  2432. ggml_tensor * dst) {
  2433. const ggml_tensor * src0 = dst->src[0];
  2434. assert(ggml_is_contiguous_1(src0));
  2435. assert(ggml_is_contiguous_1(dst));
  2436. assert(ggml_are_same_shape(src0, dst));
  2437. const int ith = params->ith;
  2438. const int nth = params->nth;
  2439. const int nc = src0->ne[0];
  2440. const int nr = ggml_nrows(src0);
  2441. // rows per thread
  2442. const int dr = (nr + nth - 1)/nth;
  2443. // row range for this thread
  2444. const int ir0 = dr*ith;
  2445. const int ir1 = MIN(ir0 + dr, nr);
  2446. for (int i1 = ir0; i1 < ir1; i1++) {
  2447. ggml_vec_gelu_f16(nc,
  2448. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2449. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2450. #ifndef NDEBUG
  2451. for (int k = 0; k < nc; k++) {
  2452. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2453. const float v = GGML_CPU_FP16_TO_FP32(x);
  2454. GGML_UNUSED(v);
  2455. assert(!isnan(v));
  2456. assert(!isinf(v));
  2457. }
  2458. #endif
  2459. }
  2460. }
  2461. static void ggml_compute_forward_gelu(
  2462. const ggml_compute_params * params,
  2463. ggml_tensor * dst) {
  2464. const ggml_tensor * src0 = dst->src[0];
  2465. switch (src0->type) {
  2466. case GGML_TYPE_F32:
  2467. {
  2468. ggml_compute_forward_gelu_f32(params, dst);
  2469. } break;
  2470. case GGML_TYPE_F16:
  2471. {
  2472. ggml_compute_forward_gelu_f16(params, dst);
  2473. } break;
  2474. default:
  2475. {
  2476. GGML_ABORT("fatal error");
  2477. }
  2478. }
  2479. }
  2480. // ggml_compute_tri
  2481. static void ggml_compute_forward_tri_f32(const ggml_compute_params * params, ggml_tensor * dst) {
  2482. const ggml_tensor * src0 = dst->src[0];
  2483. ggml_tri_type ttype = (ggml_tri_type) dst->op_params[0];
  2484. float c = *((float *) &(dst->op_params[1]));
  2485. bool keep_org_val = isnan(c);
  2486. GGML_ASSERT(ggml_is_contiguous(src0));
  2487. GGML_ASSERT(src0->ne[0] == src0->ne[1]);
  2488. GGML_TENSOR_UNARY_OP_LOCALS
  2489. const auto [ir0, ir1] = get_thread_range(params, src0);
  2490. for (int64_t ir = ir0; ir < ir1; ++ir) {
  2491. const int64_t i03 = ir/(ne02*ne01);
  2492. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  2493. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  2494. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  2495. float * src = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 );
  2496. ggml_vec_tri_f32(ne0, i01, dst_ptr, src, keep_org_val, c, ttype);
  2497. }
  2498. }
  2499. void ggml_compute_forward_tri(const ggml_compute_params * params, ggml_tensor * dst) {
  2500. const ggml_tensor * src0 = dst->src[0];
  2501. switch (src0->type) {
  2502. case GGML_TYPE_F32:
  2503. {
  2504. ggml_compute_forward_tri_f32(params, dst);
  2505. } break;
  2506. default:
  2507. {
  2508. GGML_ABORT("fatal error");
  2509. }
  2510. }
  2511. }
  2512. // ggml_compute_forward_gelu_erf
  2513. static void ggml_compute_forward_gelu_erf_f32(
  2514. const ggml_compute_params * params,
  2515. ggml_tensor * dst) {
  2516. const ggml_tensor * src0 = dst->src[0];
  2517. assert(ggml_is_contiguous_1(src0));
  2518. assert(ggml_is_contiguous_1(dst));
  2519. assert(ggml_are_same_shape(src0, dst));
  2520. const int ith = params->ith;
  2521. const int nth = params->nth;
  2522. const int nc = src0->ne[0];
  2523. const int nr = ggml_nrows(src0);
  2524. // rows per thread
  2525. const int dr = (nr + nth - 1)/nth;
  2526. // row range for this thread
  2527. const int ir0 = dr*ith;
  2528. const int ir1 = MIN(ir0 + dr, nr);
  2529. for (int i1 = ir0; i1 < ir1; i1++) {
  2530. ggml_vec_gelu_erf_f32(nc,
  2531. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2532. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2533. #ifndef NDEBUG
  2534. for (int k = 0; k < nc; k++) {
  2535. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2536. GGML_UNUSED(x);
  2537. assert(!isnan(x));
  2538. assert(!isinf(x));
  2539. }
  2540. #endif
  2541. }
  2542. }
  2543. static void ggml_compute_forward_gelu_erf_f16(
  2544. const ggml_compute_params * params,
  2545. ggml_tensor * dst) {
  2546. const ggml_tensor * src0 = dst->src[0];
  2547. assert(ggml_is_contiguous_1(src0));
  2548. assert(ggml_is_contiguous_1(dst));
  2549. assert(ggml_are_same_shape(src0, dst));
  2550. const int ith = params->ith;
  2551. const int nth = params->nth;
  2552. const int nc = src0->ne[0];
  2553. const int nr = ggml_nrows(src0);
  2554. // rows per thread
  2555. const int dr = (nr + nth - 1)/nth;
  2556. // row range for this thread
  2557. const int ir0 = dr*ith;
  2558. const int ir1 = MIN(ir0 + dr, nr);
  2559. for (int i1 = ir0; i1 < ir1; i1++) {
  2560. ggml_vec_gelu_erf_f16(nc,
  2561. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2562. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2563. #ifndef NDEBUG
  2564. for (int k = 0; k < nc; k++) {
  2565. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2566. const float v = GGML_CPU_FP16_TO_FP32(x);
  2567. GGML_UNUSED(v);
  2568. assert(!isnan(v));
  2569. assert(!isinf(v));
  2570. }
  2571. #endif
  2572. }
  2573. }
  2574. static void ggml_compute_forward_gelu_erf(
  2575. const ggml_compute_params * params,
  2576. ggml_tensor * dst) {
  2577. const ggml_tensor * src0 = dst->src[0];
  2578. switch (src0->type) {
  2579. case GGML_TYPE_F32:
  2580. {
  2581. ggml_compute_forward_gelu_erf_f32(params, dst);
  2582. } break;
  2583. case GGML_TYPE_F16:
  2584. {
  2585. ggml_compute_forward_gelu_erf_f16(params, dst);
  2586. } break;
  2587. default:
  2588. {
  2589. GGML_ABORT("fatal error");
  2590. }
  2591. }
  2592. }
  2593. // ggml_compute_forward_gelu_quick
  2594. static void ggml_compute_forward_gelu_quick_f32(
  2595. const ggml_compute_params * params,
  2596. ggml_tensor * dst) {
  2597. const ggml_tensor * src0 = dst->src[0];
  2598. assert(ggml_is_contiguous_1(src0));
  2599. assert(ggml_is_contiguous_1(dst));
  2600. assert(ggml_are_same_shape(src0, dst));
  2601. const int ith = params->ith;
  2602. const int nth = params->nth;
  2603. const int nc = src0->ne[0];
  2604. const int nr = ggml_nrows(src0);
  2605. // rows per thread
  2606. const int dr = (nr + nth - 1)/nth;
  2607. // row range for this thread
  2608. const int ir0 = dr*ith;
  2609. const int ir1 = MIN(ir0 + dr, nr);
  2610. for (int i1 = ir0; i1 < ir1; i1++) {
  2611. ggml_vec_gelu_quick_f32(nc,
  2612. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2613. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2614. #ifndef NDEBUG
  2615. for (int k = 0; k < nc; k++) {
  2616. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2617. GGML_UNUSED(x);
  2618. assert(!isnan(x));
  2619. assert(!isinf(x));
  2620. }
  2621. #endif
  2622. }
  2623. }
  2624. static void ggml_compute_forward_gelu_quick_f16(
  2625. const ggml_compute_params * params,
  2626. ggml_tensor * dst) {
  2627. const ggml_tensor * src0 = dst->src[0];
  2628. assert(ggml_is_contiguous_1(src0));
  2629. assert(ggml_is_contiguous_1(dst));
  2630. assert(ggml_are_same_shape(src0, dst));
  2631. const int ith = params->ith;
  2632. const int nth = params->nth;
  2633. const int nc = src0->ne[0];
  2634. const int nr = ggml_nrows(src0);
  2635. // rows per thread
  2636. const int dr = (nr + nth - 1)/nth;
  2637. // row range for this thread
  2638. const int ir0 = dr*ith;
  2639. const int ir1 = MIN(ir0 + dr, nr);
  2640. for (int i1 = ir0; i1 < ir1; i1++) {
  2641. ggml_vec_gelu_quick_f16(nc,
  2642. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2643. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2644. #ifndef NDEBUG
  2645. for (int k = 0; k < nc; k++) {
  2646. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2647. const float v = GGML_CPU_FP16_TO_FP32(x);
  2648. GGML_UNUSED(v);
  2649. assert(!isnan(v));
  2650. assert(!isinf(v));
  2651. }
  2652. #endif
  2653. }
  2654. }
  2655. static void ggml_compute_forward_gelu_quick(
  2656. const ggml_compute_params * params,
  2657. ggml_tensor * dst) {
  2658. const ggml_tensor * src0 = dst->src[0];
  2659. switch (src0->type) {
  2660. case GGML_TYPE_F32:
  2661. {
  2662. ggml_compute_forward_gelu_quick_f32(params, dst);
  2663. } break;
  2664. case GGML_TYPE_F16:
  2665. {
  2666. ggml_compute_forward_gelu_quick_f16(params, dst);
  2667. } break;
  2668. default:
  2669. {
  2670. GGML_ABORT("fatal error");
  2671. }
  2672. }
  2673. }
  2674. // ggml_compute_forward_silu
  2675. static void ggml_compute_forward_silu_f32(
  2676. const ggml_compute_params * params,
  2677. ggml_tensor * dst) {
  2678. const ggml_tensor * src0 = dst->src[0];
  2679. assert(ggml_is_contiguous_1(src0));
  2680. assert(ggml_is_contiguous_1(dst));
  2681. assert(ggml_are_same_shape(src0, dst));
  2682. const int ith = params->ith;
  2683. const int nth = params->nth;
  2684. const int nc = src0->ne[0];
  2685. const int nr = ggml_nrows(src0);
  2686. // rows per thread
  2687. const int dr = (nr + nth - 1)/nth;
  2688. // row range for this thread
  2689. const int ir0 = dr*ith;
  2690. const int ir1 = MIN(ir0 + dr, nr);
  2691. for (int i1 = ir0; i1 < ir1; i1++) {
  2692. ggml_vec_silu_f32(nc,
  2693. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2694. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  2695. #ifndef NDEBUG
  2696. for (int k = 0; k < nc; k++) {
  2697. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  2698. GGML_UNUSED(x);
  2699. assert(!isnan(x));
  2700. assert(!isinf(x));
  2701. }
  2702. #endif
  2703. }
  2704. }
  2705. static void ggml_compute_forward_silu_f16(
  2706. const ggml_compute_params * params,
  2707. ggml_tensor * dst) {
  2708. const ggml_tensor * src0 = dst->src[0];
  2709. assert(ggml_is_contiguous_1(src0));
  2710. assert(ggml_is_contiguous_1(dst));
  2711. assert(ggml_are_same_shape(src0, dst));
  2712. const int ith = params->ith;
  2713. const int nth = params->nth;
  2714. const int nc = src0->ne[0];
  2715. const int nr = ggml_nrows(src0);
  2716. // rows per thread
  2717. const int dr = (nr + nth - 1)/nth;
  2718. // row range for this thread
  2719. const int ir0 = dr*ith;
  2720. const int ir1 = MIN(ir0 + dr, nr);
  2721. for (int i1 = ir0; i1 < ir1; i1++) {
  2722. ggml_vec_silu_f16(nc,
  2723. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2724. (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
  2725. #ifndef NDEBUG
  2726. for (int k = 0; k < nc; k++) {
  2727. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  2728. const float v = GGML_CPU_FP16_TO_FP32(x);
  2729. GGML_UNUSED(v);
  2730. assert(!isnan(v));
  2731. assert(!isinf(v));
  2732. }
  2733. #endif
  2734. }
  2735. }
  2736. static void ggml_compute_forward_silu(
  2737. const ggml_compute_params * params,
  2738. ggml_tensor * dst) {
  2739. const ggml_tensor * src0 = dst->src[0];
  2740. switch (src0->type) {
  2741. case GGML_TYPE_F32:
  2742. {
  2743. ggml_compute_forward_silu_f32(params, dst);
  2744. } break;
  2745. case GGML_TYPE_F16:
  2746. {
  2747. ggml_compute_forward_silu_f16(params, dst);
  2748. } break;
  2749. default:
  2750. {
  2751. GGML_ABORT("fatal error");
  2752. }
  2753. }
  2754. }
  2755. // ggml_compute_forward_leaky_relu
  2756. static void ggml_compute_forward_leaky_relu_f32(
  2757. const ggml_compute_params * params,
  2758. ggml_tensor * dst) {
  2759. const ggml_tensor * src0 = dst->src[0];
  2760. if (params->ith != 0) {
  2761. return;
  2762. }
  2763. assert(ggml_is_contiguous_1(src0));
  2764. assert(ggml_is_contiguous_1(dst));
  2765. assert(ggml_are_same_shape(src0, dst));
  2766. const int n = ggml_nrows(src0);
  2767. const int nc = src0->ne[0];
  2768. float negative_slope;
  2769. memcpy(&negative_slope, dst->op_params, sizeof(float));
  2770. assert(dst->nb[0] == sizeof(float));
  2771. assert(src0->nb[0] == sizeof(float));
  2772. for (int i = 0; i < n; i++) {
  2773. ggml_vec_leaky_relu_f32(nc,
  2774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  2775. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  2776. }
  2777. }
  2778. static void ggml_compute_forward_leaky_relu_f16(
  2779. const ggml_compute_params * params,
  2780. ggml_tensor * dst) {
  2781. const ggml_tensor * src0 = dst->src[0];
  2782. if (params->ith != 0) {
  2783. return;
  2784. }
  2785. assert(ggml_is_contiguous_1(src0));
  2786. assert(ggml_is_contiguous_1(dst));
  2787. assert(ggml_are_same_shape(src0, dst));
  2788. const int n = ggml_nrows(src0);
  2789. const int nc = src0->ne[0];
  2790. float negative_slope;
  2791. memcpy(&negative_slope, dst->op_params, sizeof(float));
  2792. assert(dst->nb[0] == sizeof(ggml_fp16_t));
  2793. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  2794. for (int i = 0; i < n; i++) {
  2795. ggml_vec_leaky_relu_f16(nc,
  2796. (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
  2797. (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  2798. }
  2799. }
  2800. void ggml_compute_forward_leaky_relu(
  2801. const ggml_compute_params * params,
  2802. ggml_tensor * dst) {
  2803. const ggml_tensor * src0 = dst->src[0];
  2804. switch (src0->type) {
  2805. case GGML_TYPE_F32:
  2806. {
  2807. ggml_compute_forward_leaky_relu_f32(params, dst);
  2808. } break;
  2809. case GGML_TYPE_F16:
  2810. {
  2811. ggml_compute_forward_leaky_relu_f16(params, dst);
  2812. } break;
  2813. default:
  2814. {
  2815. GGML_ABORT("fatal error");
  2816. }
  2817. }
  2818. }
  2819. // ggml_compute_forward_silu_back
  2820. static void ggml_compute_forward_silu_back_f32(
  2821. const ggml_compute_params * params,
  2822. ggml_tensor * dst) {
  2823. const ggml_tensor * grad = dst->src[0];
  2824. const ggml_tensor * src1 = dst->src[1];
  2825. assert(ggml_is_contiguous_1(grad));
  2826. assert(ggml_is_contiguous_1(src1));
  2827. assert(ggml_is_contiguous_1(dst));
  2828. assert(ggml_are_same_shape(src1, dst));
  2829. assert(ggml_are_same_shape(src1, grad));
  2830. const int ith = params->ith;
  2831. const int nth = params->nth;
  2832. const int nc = src1->ne[0];
  2833. const int nr = ggml_nrows(src1);
  2834. // rows per thread
  2835. const int dr = (nr + nth - 1)/nth;
  2836. // row range for this thread
  2837. const int ir0 = dr*ith;
  2838. const int ir1 = MIN(ir0 + dr, nr);
  2839. for (int i1 = ir0; i1 < ir1; i1++) {
  2840. ggml_vec_silu_backward_f32(nc,
  2841. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  2842. (float *) ((char *) src1->data + i1*(src1->nb[1])),
  2843. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  2844. #ifndef NDEBUG
  2845. for (int k = 0; k < nc; k++) {
  2846. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2847. GGML_UNUSED(x);
  2848. assert(!isnan(x));
  2849. assert(!isinf(x));
  2850. }
  2851. #endif
  2852. }
  2853. }
  2854. static void ggml_compute_forward_silu_back_f16(
  2855. const ggml_compute_params * params,
  2856. ggml_tensor * dst) {
  2857. const ggml_tensor * grad = dst->src[0];
  2858. const ggml_tensor * src1 = dst->src[1];
  2859. assert(ggml_is_contiguous_1(grad));
  2860. assert(ggml_is_contiguous_1(src1));
  2861. assert(ggml_is_contiguous_1(dst));
  2862. assert(ggml_are_same_shape(src1, dst));
  2863. assert(ggml_are_same_shape(src1, grad));
  2864. const int ith = params->ith;
  2865. const int nth = params->nth;
  2866. const int nc = src1->ne[0];
  2867. const int nr = ggml_nrows(src1);
  2868. // rows per thread
  2869. const int dr = (nr + nth - 1)/nth;
  2870. // row range for this thread
  2871. const int ir0 = dr*ith;
  2872. const int ir1 = MIN(ir0 + dr, nr);
  2873. for (int i1 = ir0; i1 < ir1; i1++) {
  2874. ggml_vec_silu_backward_f16(nc,
  2875. (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
  2876. (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
  2877. (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
  2878. #ifndef NDEBUG
  2879. for (int k = 0; k < nc; k++) {
  2880. const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2881. const float v = GGML_CPU_FP16_TO_FP32(x);
  2882. GGML_UNUSED(v);
  2883. assert(!isnan(v));
  2884. assert(!isinf(v));
  2885. }
  2886. #endif
  2887. }
  2888. }
  2889. void ggml_compute_forward_silu_back(
  2890. const ggml_compute_params * params,
  2891. ggml_tensor * dst) {
  2892. const ggml_tensor * src0 = dst->src[0];
  2893. switch (src0->type) {
  2894. case GGML_TYPE_F32:
  2895. {
  2896. ggml_compute_forward_silu_back_f32(params, dst);
  2897. } break;
  2898. case GGML_TYPE_F16:
  2899. {
  2900. ggml_compute_forward_silu_back_f16(params, dst);
  2901. } break;
  2902. default:
  2903. {
  2904. GGML_ABORT("fatal error");
  2905. }
  2906. }
  2907. }
  2908. // ggml_compute_forward_reglu
  2909. static void ggml_compute_forward_reglu_f32(
  2910. const ggml_compute_params * params,
  2911. ggml_tensor * dst) {
  2912. const ggml_tensor * src0 = dst->src[0];
  2913. const ggml_tensor * src1 = dst->src[1];
  2914. char * src0_d = (char *) src0->data;
  2915. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2916. const size_t src0_o = src0->nb[1];
  2917. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2918. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2919. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2920. if (src1) {
  2921. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2922. GGML_ASSERT(src0->type == src1->type);
  2923. }
  2924. const int ith = params->ith;
  2925. const int nth = params->nth;
  2926. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2927. const int nr = ggml_nrows(src0);
  2928. GGML_ASSERT(dst->ne[0] == nc);
  2929. GGML_ASSERT(ggml_nrows(dst) == nr);
  2930. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2931. // rows per thread
  2932. const int dr = (nr + nth - 1)/nth;
  2933. // row range for this thread
  2934. const int ir0 = dr*ith;
  2935. const int ir1 = MIN(ir0 + dr, nr);
  2936. for (int i1 = ir0; i1 < ir1; i1++) {
  2937. float * src0_p = (float *) (src0_d + i1*src0_o);
  2938. float * src1_p = (float *) (src1_d + i1*src1_o);
  2939. if (!src1) {
  2940. src0_p += swapped ? nc : 0;
  2941. src1_p += swapped ? 0 : nc;
  2942. }
  2943. ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2944. #ifndef NDEBUG
  2945. for (int k = 0; k < nc; k++) {
  2946. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2947. GGML_UNUSED(x);
  2948. assert(!isnan(x));
  2949. assert(!isinf(x));
  2950. }
  2951. #endif
  2952. }
  2953. }
  2954. static void ggml_compute_forward_reglu_f16(
  2955. const ggml_compute_params * params,
  2956. ggml_tensor * dst) {
  2957. const ggml_tensor * src0 = dst->src[0];
  2958. const ggml_tensor * src1 = dst->src[1];
  2959. char * src0_d = (char *) src0->data;
  2960. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  2961. const size_t src0_o = src0->nb[1];
  2962. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  2963. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2964. GGML_ASSERT(ggml_is_contiguous_1(dst));
  2965. if (src1) {
  2966. GGML_ASSERT(ggml_is_contiguous_1(src1));
  2967. GGML_ASSERT(src0->type == src1->type);
  2968. }
  2969. const int ith = params->ith;
  2970. const int nth = params->nth;
  2971. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  2972. const int nr = ggml_nrows(src0);
  2973. GGML_ASSERT(dst->ne[0] == nc);
  2974. GGML_ASSERT(ggml_nrows(dst) == nr);
  2975. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  2976. // rows per thread
  2977. const int dr = (nr + nth - 1)/nth;
  2978. // row range for this thread
  2979. const int ir0 = dr*ith;
  2980. const int ir1 = MIN(ir0 + dr, nr);
  2981. for (int i1 = ir0; i1 < ir1; i1++) {
  2982. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  2983. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  2984. if (!src1) {
  2985. src0_p += swapped ? nc : 0;
  2986. src1_p += swapped ? 0 : nc;
  2987. }
  2988. ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  2989. #ifndef NDEBUG
  2990. for (int k = 0; k < nc; k++) {
  2991. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  2992. const float v = GGML_FP16_TO_FP32(x);
  2993. GGML_UNUSED(v);
  2994. assert(!isnan(v));
  2995. assert(!isinf(v));
  2996. }
  2997. #endif
  2998. }
  2999. }
  3000. static void ggml_compute_forward_reglu(
  3001. const ggml_compute_params * params,
  3002. ggml_tensor * dst) {
  3003. const ggml_tensor * src0 = dst->src[0];
  3004. switch (src0->type) {
  3005. case GGML_TYPE_F32:
  3006. {
  3007. ggml_compute_forward_reglu_f32(params, dst);
  3008. } break;
  3009. case GGML_TYPE_F16:
  3010. {
  3011. ggml_compute_forward_reglu_f16(params, dst);
  3012. } break;
  3013. default:
  3014. {
  3015. GGML_ABORT("fatal error");
  3016. }
  3017. }
  3018. }
  3019. // ggml_compute_forward_geglu
  3020. static void ggml_compute_forward_geglu_f32(
  3021. const ggml_compute_params * params,
  3022. ggml_tensor * dst) {
  3023. const ggml_tensor * src0 = dst->src[0];
  3024. const ggml_tensor * src1 = dst->src[1];
  3025. char * src0_d = (char *) src0->data;
  3026. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3027. const size_t src0_o = src0->nb[1];
  3028. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3029. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3030. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3031. if (src1) {
  3032. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3033. GGML_ASSERT(src0->type == src1->type);
  3034. }
  3035. const int ith = params->ith;
  3036. const int nth = params->nth;
  3037. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3038. const int nr = ggml_nrows(src0);
  3039. GGML_ASSERT(dst->ne[0] == nc);
  3040. GGML_ASSERT(ggml_nrows(dst) == nr);
  3041. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3042. // rows per thread
  3043. const int dr = (nr + nth - 1)/nth;
  3044. // row range for this thread
  3045. const int ir0 = dr*ith;
  3046. const int ir1 = MIN(ir0 + dr, nr);
  3047. for (int i1 = ir0; i1 < ir1; i1++) {
  3048. float * src0_p = (float *) (src0_d + i1*src0_o);
  3049. float * src1_p = (float *) (src1_d + i1*src1_o);
  3050. if (!src1) {
  3051. src0_p += swapped ? nc : 0;
  3052. src1_p += swapped ? 0 : nc;
  3053. }
  3054. ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3055. #ifndef NDEBUG
  3056. for (int k = 0; k < nc; k++) {
  3057. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3058. GGML_UNUSED(x);
  3059. assert(!isnan(x));
  3060. assert(!isinf(x));
  3061. }
  3062. #endif
  3063. }
  3064. }
  3065. static void ggml_compute_forward_geglu_f16(
  3066. const ggml_compute_params * params,
  3067. ggml_tensor * dst) {
  3068. const ggml_tensor * src0 = dst->src[0];
  3069. const ggml_tensor * src1 = dst->src[1];
  3070. char * src0_d = (char *) src0->data;
  3071. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3072. const size_t src0_o = src0->nb[1];
  3073. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3074. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3075. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3076. if (src1) {
  3077. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3078. GGML_ASSERT(src0->type == src1->type);
  3079. }
  3080. const int ith = params->ith;
  3081. const int nth = params->nth;
  3082. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3083. const int nr = ggml_nrows(src0);
  3084. GGML_ASSERT(dst->ne[0] == nc);
  3085. GGML_ASSERT(ggml_nrows(dst) == nr);
  3086. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3087. // rows per thread
  3088. const int dr = (nr + nth - 1)/nth;
  3089. // row range for this thread
  3090. const int ir0 = dr*ith;
  3091. const int ir1 = MIN(ir0 + dr, nr);
  3092. for (int i1 = ir0; i1 < ir1; i1++) {
  3093. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3094. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3095. if (!src1) {
  3096. src0_p += swapped ? nc : 0;
  3097. src1_p += swapped ? 0 : nc;
  3098. }
  3099. ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3100. #ifndef NDEBUG
  3101. for (int k = 0; k < nc; k++) {
  3102. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3103. const float v = GGML_FP16_TO_FP32(x);
  3104. GGML_UNUSED(v);
  3105. assert(!isnan(v));
  3106. assert(!isinf(v));
  3107. }
  3108. #endif
  3109. }
  3110. }
  3111. static void ggml_compute_forward_geglu(
  3112. const ggml_compute_params * params,
  3113. ggml_tensor * dst) {
  3114. const ggml_tensor * src0 = dst->src[0];
  3115. switch (src0->type) {
  3116. case GGML_TYPE_F32:
  3117. {
  3118. ggml_compute_forward_geglu_f32(params, dst);
  3119. } break;
  3120. case GGML_TYPE_F16:
  3121. {
  3122. ggml_compute_forward_geglu_f16(params, dst);
  3123. } break;
  3124. default:
  3125. {
  3126. GGML_ABORT("fatal error");
  3127. }
  3128. }
  3129. }
  3130. // ggml_compute_forward_swiglu
  3131. static void ggml_compute_forward_swiglu_f32(
  3132. const ggml_compute_params * params,
  3133. ggml_tensor * dst) {
  3134. const ggml_tensor * src0 = dst->src[0];
  3135. const ggml_tensor * src1 = dst->src[1];
  3136. char * src0_d = (char *) src0->data;
  3137. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3138. const size_t src0_o = src0->nb[1];
  3139. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3140. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3141. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3142. if (src1) {
  3143. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3144. GGML_ASSERT(src0->type == src1->type);
  3145. }
  3146. const int ith = params->ith;
  3147. const int nth = params->nth;
  3148. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3149. const int nr = ggml_nrows(src0);
  3150. GGML_ASSERT(dst->ne[0] == nc);
  3151. GGML_ASSERT(ggml_nrows(dst) == nr);
  3152. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3153. // rows per thread
  3154. const int dr = (nr + nth - 1)/nth;
  3155. // row range for this thread
  3156. const int ir0 = dr*ith;
  3157. const int ir1 = MIN(ir0 + dr, nr);
  3158. for (int i1 = ir0; i1 < ir1; i1++) {
  3159. float * src0_p = (float *) (src0_d + i1*src0_o);
  3160. float * src1_p = (float *) (src1_d + i1*src1_o);
  3161. if (!src1) {
  3162. src0_p += swapped ? nc : 0;
  3163. src1_p += swapped ? 0 : nc;
  3164. }
  3165. ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3166. #ifndef NDEBUG
  3167. for (int k = 0; k < nc; k++) {
  3168. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3169. GGML_UNUSED(x);
  3170. assert(!isnan(x));
  3171. assert(!isinf(x));
  3172. }
  3173. #endif
  3174. }
  3175. }
  3176. static void ggml_compute_forward_swiglu_f16(
  3177. const ggml_compute_params * params,
  3178. ggml_tensor * dst) {
  3179. const ggml_tensor * src0 = dst->src[0];
  3180. const ggml_tensor * src1 = dst->src[1];
  3181. char * src0_d = (char *) src0->data;
  3182. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3183. const size_t src0_o = src0->nb[1];
  3184. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3185. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3186. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3187. if (src1) {
  3188. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3189. GGML_ASSERT(src0->type == src1->type);
  3190. }
  3191. const int ith = params->ith;
  3192. const int nth = params->nth;
  3193. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3194. const int nr = ggml_nrows(src0);
  3195. GGML_ASSERT(dst->ne[0] == nc);
  3196. GGML_ASSERT(ggml_nrows(dst) == nr);
  3197. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3198. // rows per thread
  3199. const int dr = (nr + nth - 1)/nth;
  3200. // row range for this thread
  3201. const int ir0 = dr*ith;
  3202. const int ir1 = MIN(ir0 + dr, nr);
  3203. for (int i1 = ir0; i1 < ir1; i1++) {
  3204. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3205. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3206. if (!src1) {
  3207. src0_p += swapped ? nc : 0;
  3208. src1_p += swapped ? 0 : nc;
  3209. }
  3210. ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3211. #ifndef NDEBUG
  3212. for (int k = 0; k < nc; k++) {
  3213. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3214. const float v = GGML_FP16_TO_FP32(x);
  3215. GGML_UNUSED(v);
  3216. assert(!isnan(v));
  3217. assert(!isinf(v));
  3218. }
  3219. #endif
  3220. }
  3221. }
  3222. static void ggml_compute_forward_swiglu(
  3223. const ggml_compute_params * params,
  3224. ggml_tensor * dst) {
  3225. const ggml_tensor * src0 = dst->src[0];
  3226. switch (src0->type) {
  3227. case GGML_TYPE_F32:
  3228. {
  3229. ggml_compute_forward_swiglu_f32(params, dst);
  3230. } break;
  3231. case GGML_TYPE_F16:
  3232. {
  3233. ggml_compute_forward_swiglu_f16(params, dst);
  3234. } break;
  3235. default:
  3236. {
  3237. GGML_ABORT("fatal error");
  3238. }
  3239. }
  3240. }
  3241. // ggml_compute_forward_swiglu_oai
  3242. static void ggml_compute_forward_swiglu_oai_f32(
  3243. const ggml_compute_params * params,
  3244. ggml_tensor * dst) {
  3245. const ggml_tensor * src0 = dst->src[0];
  3246. const ggml_tensor * src1 = dst->src[1];
  3247. char * src0_d = (char *) src0->data;
  3248. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3249. const size_t src0_o = src0->nb[1];
  3250. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3251. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3252. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3253. if (src1) {
  3254. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3255. GGML_ASSERT(src0->type == src1->type);
  3256. }
  3257. const int ith = params->ith;
  3258. const int nth = params->nth;
  3259. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3260. const int nr = ggml_nrows(src0);
  3261. GGML_ASSERT(dst->ne[0] == nc);
  3262. GGML_ASSERT(ggml_nrows(dst) == nr);
  3263. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3264. const float alpha = ggml_get_op_params_f32(dst, 2);
  3265. const float limit = ggml_get_op_params_f32(dst, 3);
  3266. // rows per thread
  3267. const int dr = (nr + nth - 1)/nth;
  3268. // row range for this thread
  3269. const int ir0 = dr*ith;
  3270. const int ir1 = MIN(ir0 + dr, nr);
  3271. for (int i1 = ir0; i1 < ir1; i1++) {
  3272. float * src0_p = (float *) (src0_d + i1*src0_o);
  3273. float * src1_p = (float *) (src1_d + i1*src1_o);
  3274. float * dst_p = (float *) ((char *) dst->data + i1*(dst->nb[1]));
  3275. if (!src1) {
  3276. src0_p += swapped ? nc : 0;
  3277. src1_p += swapped ? 0 : nc;
  3278. }
  3279. for (int k = 0; k < nc; k++) {
  3280. const float x = std::min(src0_p[k], limit);
  3281. const float y = std::clamp(src1_p[k], -limit, limit);
  3282. const float out_glu = x / (1.f + expf(alpha * (-x)));
  3283. dst_p[k] = out_glu * (y + 1.f);
  3284. }
  3285. #ifndef NDEBUG
  3286. for (int k = 0; k < nc; k++) {
  3287. const float x = dst_p[k];
  3288. GGML_UNUSED(x);
  3289. assert(!isnan(x));
  3290. assert(!isinf(x));
  3291. }
  3292. #endif
  3293. }
  3294. }
  3295. static void ggml_compute_forward_swiglu_oai(
  3296. const ggml_compute_params * params,
  3297. ggml_tensor * dst) {
  3298. const ggml_tensor * src0 = dst->src[0];
  3299. switch (src0->type) {
  3300. case GGML_TYPE_F32:
  3301. {
  3302. ggml_compute_forward_swiglu_oai_f32(params, dst);
  3303. } break;
  3304. default:
  3305. {
  3306. GGML_ABORT("fatal error");
  3307. }
  3308. }
  3309. }
  3310. // ggml_compute_forward_geglu_erf
  3311. static void ggml_compute_forward_geglu_erf_f32(
  3312. const ggml_compute_params * params,
  3313. ggml_tensor * dst) {
  3314. const ggml_tensor * src0 = dst->src[0];
  3315. const ggml_tensor * src1 = dst->src[1];
  3316. char * src0_d = (char *) src0->data;
  3317. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3318. const size_t src0_o = src0->nb[1];
  3319. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3320. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3321. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3322. if (src1) {
  3323. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3324. GGML_ASSERT(src0->type == src1->type);
  3325. }
  3326. const int ith = params->ith;
  3327. const int nth = params->nth;
  3328. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3329. const int nr = ggml_nrows(src0);
  3330. GGML_ASSERT(dst->ne[0] == nc);
  3331. GGML_ASSERT(ggml_nrows(dst) == nr);
  3332. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3333. // rows per thread
  3334. const int dr = (nr + nth - 1)/nth;
  3335. // row range for this thread
  3336. const int ir0 = dr*ith;
  3337. const int ir1 = MIN(ir0 + dr, nr);
  3338. for (int i1 = ir0; i1 < ir1; i1++) {
  3339. float * src0_p = (float *) (src0_d + i1*src0_o);
  3340. float * src1_p = (float *) (src1_d + i1*src1_o);
  3341. if (!src1) {
  3342. src0_p += swapped ? nc : 0;
  3343. src1_p += swapped ? 0 : nc;
  3344. }
  3345. ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3346. #ifndef NDEBUG
  3347. for (int k = 0; k < nc; k++) {
  3348. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3349. GGML_UNUSED(x);
  3350. assert(!isnan(x));
  3351. assert(!isinf(x));
  3352. }
  3353. #endif
  3354. }
  3355. }
  3356. static void ggml_compute_forward_geglu_erf_f16(
  3357. const ggml_compute_params * params,
  3358. ggml_tensor * dst) {
  3359. const ggml_tensor * src0 = dst->src[0];
  3360. const ggml_tensor * src1 = dst->src[1];
  3361. char * src0_d = (char *) src0->data;
  3362. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3363. const size_t src0_o = src0->nb[1];
  3364. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3365. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3366. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3367. if (src1) {
  3368. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3369. GGML_ASSERT(src0->type == src1->type);
  3370. }
  3371. const int ith = params->ith;
  3372. const int nth = params->nth;
  3373. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3374. const int nr = ggml_nrows(src0);
  3375. GGML_ASSERT(dst->ne[0] == nc);
  3376. GGML_ASSERT(ggml_nrows(dst) == nr);
  3377. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3378. // rows per thread
  3379. const int dr = (nr + nth - 1)/nth;
  3380. // row range for this thread
  3381. const int ir0 = dr*ith;
  3382. const int ir1 = MIN(ir0 + dr, nr);
  3383. for (int i1 = ir0; i1 < ir1; i1++) {
  3384. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3385. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3386. if (!src1) {
  3387. src0_p += swapped ? nc : 0;
  3388. src1_p += swapped ? 0 : nc;
  3389. }
  3390. ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3391. #ifndef NDEBUG
  3392. for (int k = 0; k < nc; k++) {
  3393. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3394. const float v = GGML_FP16_TO_FP32(x);
  3395. GGML_UNUSED(v);
  3396. assert(!isnan(v));
  3397. assert(!isinf(v));
  3398. }
  3399. #endif
  3400. }
  3401. }
  3402. static void ggml_compute_forward_geglu_erf(
  3403. const ggml_compute_params * params,
  3404. ggml_tensor * dst) {
  3405. const ggml_tensor * src0 = dst->src[0];
  3406. switch (src0->type) {
  3407. case GGML_TYPE_F32:
  3408. {
  3409. ggml_compute_forward_geglu_erf_f32(params, dst);
  3410. } break;
  3411. case GGML_TYPE_F16:
  3412. {
  3413. ggml_compute_forward_geglu_erf_f16(params, dst);
  3414. } break;
  3415. default:
  3416. {
  3417. GGML_ABORT("fatal error");
  3418. }
  3419. }
  3420. }
  3421. // ggml_compute_forward_geglu_quick
  3422. static void ggml_compute_forward_geglu_quick_f32(
  3423. const ggml_compute_params * params,
  3424. ggml_tensor * dst) {
  3425. const ggml_tensor * src0 = dst->src[0];
  3426. const ggml_tensor * src1 = dst->src[1];
  3427. char * src0_d = (char *) src0->data;
  3428. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3429. const size_t src0_o = src0->nb[1];
  3430. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3431. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3432. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3433. if (src1) {
  3434. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3435. GGML_ASSERT(src0->type == src1->type);
  3436. }
  3437. const int ith = params->ith;
  3438. const int nth = params->nth;
  3439. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3440. const int nr = ggml_nrows(src0);
  3441. GGML_ASSERT(dst->ne[0] == nc);
  3442. GGML_ASSERT(ggml_nrows(dst) == nr);
  3443. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3444. // rows per thread
  3445. const int dr = (nr + nth - 1)/nth;
  3446. // row range for this thread
  3447. const int ir0 = dr*ith;
  3448. const int ir1 = MIN(ir0 + dr, nr);
  3449. for (int i1 = ir0; i1 < ir1; i1++) {
  3450. float * src0_p = (float *) (src0_d + i1*src0_o);
  3451. float * src1_p = (float *) (src1_d + i1*src1_o);
  3452. if (!src1) {
  3453. src0_p += swapped ? nc : 0;
  3454. src1_p += swapped ? 0 : nc;
  3455. }
  3456. ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3457. #ifndef NDEBUG
  3458. for (int k = 0; k < nc; k++) {
  3459. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3460. GGML_UNUSED(x);
  3461. assert(!isnan(x));
  3462. assert(!isinf(x));
  3463. }
  3464. #endif
  3465. }
  3466. }
  3467. static void ggml_compute_forward_geglu_quick_f16(
  3468. const ggml_compute_params * params,
  3469. ggml_tensor * dst) {
  3470. const ggml_tensor * src0 = dst->src[0];
  3471. const ggml_tensor * src1 = dst->src[1];
  3472. char * src0_d = (char *) src0->data;
  3473. char * src1_d = (char *) (src1 ? src1->data : src0->data);
  3474. const size_t src0_o = src0->nb[1];
  3475. const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
  3476. GGML_ASSERT(ggml_is_contiguous_1(src0));
  3477. GGML_ASSERT(ggml_is_contiguous_1(dst));
  3478. if (src1) {
  3479. GGML_ASSERT(ggml_is_contiguous_1(src1));
  3480. GGML_ASSERT(src0->type == src1->type);
  3481. }
  3482. const int ith = params->ith;
  3483. const int nth = params->nth;
  3484. const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
  3485. const int nr = ggml_nrows(src0);
  3486. GGML_ASSERT(dst->ne[0] == nc);
  3487. GGML_ASSERT(ggml_nrows(dst) == nr);
  3488. const int32_t swapped = ggml_get_op_params_i32(dst, 1);
  3489. // rows per thread
  3490. const int dr = (nr + nth - 1)/nth;
  3491. // row range for this thread
  3492. const int ir0 = dr*ith;
  3493. const int ir1 = MIN(ir0 + dr, nr);
  3494. for (int i1 = ir0; i1 < ir1; i1++) {
  3495. ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
  3496. ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
  3497. if (!src1) {
  3498. src0_p += swapped ? nc : 0;
  3499. src1_p += swapped ? 0 : nc;
  3500. }
  3501. ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
  3502. #ifndef NDEBUG
  3503. for (int k = 0; k < nc; k++) {
  3504. const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  3505. const float v = GGML_FP16_TO_FP32(x);
  3506. GGML_UNUSED(v);
  3507. assert(!isnan(v));
  3508. assert(!isinf(v));
  3509. }
  3510. #endif
  3511. }
  3512. }
  3513. static void ggml_compute_forward_geglu_quick(
  3514. const ggml_compute_params * params,
  3515. ggml_tensor * dst) {
  3516. const ggml_tensor * src0 = dst->src[0];
  3517. switch (src0->type) {
  3518. case GGML_TYPE_F32:
  3519. {
  3520. ggml_compute_forward_geglu_quick_f32(params, dst);
  3521. } break;
  3522. case GGML_TYPE_F16:
  3523. {
  3524. ggml_compute_forward_geglu_quick_f16(params, dst);
  3525. } break;
  3526. default:
  3527. {
  3528. GGML_ABORT("fatal error");
  3529. }
  3530. }
  3531. }
  3532. // ggml_compute_forward_norm
  3533. static void ggml_compute_forward_norm_f32(
  3534. const ggml_compute_params * params,
  3535. ggml_tensor * dst) {
  3536. const ggml_tensor * src0 = dst->src[0];
  3537. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3538. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3539. const int ith = params->ith;
  3540. const int nth = params->nth;
  3541. GGML_TENSOR_UNARY_OP_LOCALS
  3542. float eps;
  3543. memcpy(&eps, dst->op_params, sizeof(float));
  3544. GGML_ASSERT(eps >= 0.0f);
  3545. // TODO: optimize
  3546. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3547. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3548. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3549. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3550. ggml_float sum = 0.0;
  3551. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3552. sum += (ggml_float)x[i00];
  3553. }
  3554. float mean = sum/ne00;
  3555. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3556. ggml_float sum2 = 0.0;
  3557. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3558. float v = x[i00] - mean;
  3559. y[i00] = v;
  3560. sum2 += (ggml_float)(v*v);
  3561. }
  3562. float variance = sum2/ne00;
  3563. const float scale = 1.0f/sqrtf(variance + eps);
  3564. ggml_vec_scale_f32(ne00, y, scale);
  3565. }
  3566. }
  3567. }
  3568. }
  3569. void ggml_compute_forward_norm(
  3570. const ggml_compute_params * params,
  3571. ggml_tensor * dst) {
  3572. const ggml_tensor * src0 = dst->src[0];
  3573. switch (src0->type) {
  3574. case GGML_TYPE_F32:
  3575. {
  3576. ggml_compute_forward_norm_f32(params, dst);
  3577. } break;
  3578. default:
  3579. {
  3580. GGML_ABORT("fatal error");
  3581. }
  3582. }
  3583. }
  3584. // ggml_compute_forward_group_rms_norm
  3585. static void ggml_compute_forward_rms_norm_f32(
  3586. const ggml_compute_params * params,
  3587. ggml_tensor * dst) {
  3588. const ggml_tensor * src0 = dst->src[0];
  3589. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3590. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3591. const int ith = params->ith;
  3592. const int nth = params->nth;
  3593. GGML_TENSOR_UNARY_OP_LOCALS
  3594. float eps;
  3595. memcpy(&eps, dst->op_params, sizeof(float));
  3596. GGML_ASSERT(eps >= 0.0f);
  3597. // TODO: optimize
  3598. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3599. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3600. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3601. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3602. ggml_float sum = 0.0;
  3603. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3604. sum += (ggml_float)(x[i00] * x[i00]);
  3605. }
  3606. const float mean = sum/ne00;
  3607. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3608. memcpy(y, x, ne00 * sizeof(float));
  3609. // for (int i00 = 0; i00 < ne00; i00++) {
  3610. // y[i00] = x[i00];
  3611. // }
  3612. const float scale = 1.0f/sqrtf(mean + eps);
  3613. // if you hit this, likely you got an inf somewhere earlier
  3614. assert(scale > 0.0f);
  3615. ggml_vec_scale_f32(ne00, y, scale);
  3616. }
  3617. }
  3618. }
  3619. }
  3620. void ggml_compute_forward_rms_norm(
  3621. const ggml_compute_params * params,
  3622. ggml_tensor * dst) {
  3623. const ggml_tensor * src0 = dst->src[0];
  3624. switch (src0->type) {
  3625. case GGML_TYPE_F32:
  3626. {
  3627. ggml_compute_forward_rms_norm_f32(params, dst);
  3628. } break;
  3629. default:
  3630. {
  3631. GGML_ABORT("fatal error");
  3632. }
  3633. }
  3634. }
  3635. static void ggml_compute_forward_rms_norm_back_f32(
  3636. const ggml_compute_params * params,
  3637. ggml_tensor * dst) {
  3638. const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
  3639. const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
  3640. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  3641. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3642. GGML_ASSERT(src1->nb[0] == sizeof(float));
  3643. const int ith = params->ith;
  3644. const int nth = params->nth;
  3645. GGML_TENSOR_BINARY_OP_LOCALS
  3646. float eps;
  3647. memcpy(&eps, dst->op_params, sizeof(float));
  3648. // TODO: optimize
  3649. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3650. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3651. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3652. // src1 is same shape as src0 => same indices
  3653. const int64_t i11 = i01;
  3654. const int64_t i12 = i02;
  3655. const int64_t i13 = i03;
  3656. const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3657. const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  3658. ggml_float sum_xx = 0.0;
  3659. ggml_float sum_xdz = 0.0;
  3660. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3661. sum_xx += (ggml_float)(x[i00] * x[i00]);
  3662. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  3663. }
  3664. //const float mean = (float)(sum_xx)/ne00;
  3665. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  3666. const float sum_eps = (float)(sum_xx) + eps*ne00;
  3667. //const float mean_xdz = (float)(sum_xdz)/ne00;
  3668. // we could cache rms from forward pass to improve performance.
  3669. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  3670. //const float rms = sqrtf(mean_eps);
  3671. const float rrms = 1.0f / sqrtf(mean_eps);
  3672. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  3673. {
  3674. // z = rms_norm(x)
  3675. //
  3676. // rms_norm(src1) =
  3677. // scale(
  3678. // src1,
  3679. // div(
  3680. // 1,
  3681. // sqrt(
  3682. // add(
  3683. // scale(
  3684. // sum(
  3685. // sqr(
  3686. // src1)),
  3687. // (1.0/N)),
  3688. // eps))));
  3689. // postorder:
  3690. // ## op args grad
  3691. // 00 param src1 grad[#00]
  3692. // 01 const 1
  3693. // 02 sqr (#00) grad[#02]
  3694. // 03 sum (#02) grad[#03]
  3695. // 04 const 1/N
  3696. // 05 scale (#03, #04) grad[#05]
  3697. // 06 const eps
  3698. // 07 add (#05, #06) grad[#07]
  3699. // 08 sqrt (#07) grad[#08]
  3700. // 09 div (#01,#08) grad[#09]
  3701. // 10 scale (#00,#09) grad[#10]
  3702. //
  3703. // backward pass, given grad[#10]
  3704. // #10: scale
  3705. // grad[#00] += scale(grad[#10],#09)
  3706. // grad[#09] += sum(mul(grad[#10],#00))
  3707. // #09: div
  3708. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  3709. // #08: sqrt
  3710. // grad[#07] += mul(grad[#08], div(0.5, #08))
  3711. // #07: add
  3712. // grad[#05] += grad[#07]
  3713. // #05: scale
  3714. // grad[#03] += scale(grad[#05],#04)
  3715. // #03: sum
  3716. // grad[#02] += repeat(grad[#03], #02)
  3717. // #02:
  3718. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  3719. //
  3720. // substitute and simplify:
  3721. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  3722. // grad[#02] = repeat(grad[#03], #02)
  3723. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  3724. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  3725. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  3726. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  3727. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  3728. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  3729. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  3730. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  3731. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  3732. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  3733. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  3734. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  3735. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  3736. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  3737. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  3738. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  3739. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  3740. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  3741. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  3742. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  3743. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  3744. // a = b*c + d*e
  3745. // a = b*c*f/f + d*e*f/f
  3746. // a = (b*c*f + d*e*f)*(1/f)
  3747. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  3748. // a = (b + d*e/c)*c
  3749. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  3750. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  3751. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  3752. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  3753. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  3754. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  3755. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  3756. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  3757. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3758. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3759. }
  3760. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  3761. // post-order:
  3762. // dx := x
  3763. // dx := scale(dx,-mean_xdz/mean_eps)
  3764. // dx := add(dx, dz)
  3765. // dx := scale(dx, rrms)
  3766. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3767. // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
  3768. ggml_vec_cpy_f32 (ne00, dx, x);
  3769. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  3770. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  3771. ggml_vec_acc_f32 (ne00, dx, dz);
  3772. ggml_vec_scale_f32(ne00, dx, rrms);
  3773. }
  3774. }
  3775. }
  3776. }
  3777. void ggml_compute_forward_rms_norm_back(
  3778. const ggml_compute_params * params,
  3779. ggml_tensor * dst) {
  3780. const ggml_tensor * src0 = dst->src[0];
  3781. switch (src0->type) {
  3782. case GGML_TYPE_F32:
  3783. {
  3784. ggml_compute_forward_rms_norm_back_f32(params, dst);
  3785. } break;
  3786. default:
  3787. {
  3788. GGML_ABORT("fatal error");
  3789. }
  3790. }
  3791. }
  3792. // ggml_compute_forward_group_norm
  3793. static void ggml_compute_forward_group_norm_f32(
  3794. const ggml_compute_params * params,
  3795. ggml_tensor * dst) {
  3796. const ggml_tensor * src0 = dst->src[0];
  3797. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3798. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3799. const int ith = params->ith;
  3800. const int nth = params->nth;
  3801. GGML_TENSOR_UNARY_OP_LOCALS
  3802. // TODO: optimize
  3803. float eps;
  3804. memcpy(&eps, dst->op_params + 1, sizeof(float));
  3805. int n_channels = src0->ne[2];
  3806. int n_groups = dst->op_params[0];
  3807. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  3808. for (int i = ith; i < n_groups; i += nth) {
  3809. int start = i * n_channels_per_group;
  3810. int end = start + n_channels_per_group;
  3811. if (end > n_channels) {
  3812. end = n_channels;
  3813. }
  3814. int step = end - start;
  3815. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3816. ggml_float sum = 0.0;
  3817. for (int64_t i02 = start; i02 < end; i02++) {
  3818. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3819. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  3820. ggml_float sumr = 0.0;
  3821. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3822. sumr += (ggml_float)x[i00];
  3823. }
  3824. sum += sumr;
  3825. }
  3826. }
  3827. const float mean = sum / (ne00 * ne01 * step);
  3828. ggml_float sum2 = 0.0;
  3829. for (int64_t i02 = start; i02 < end; i02++) {
  3830. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3831. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  3832. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  3833. ggml_float sumr = 0.0;
  3834. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3835. float v = x[i00] - mean;
  3836. y[i00] = v;
  3837. sumr += (ggml_float)(v * v);
  3838. }
  3839. sum2 += sumr;
  3840. }
  3841. }
  3842. const float variance = sum2 / (ne00 * ne01 * step);
  3843. const float scale = 1.0f / sqrtf(variance + eps);
  3844. for (int64_t i02 = start; i02 < end; i02++) {
  3845. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3846. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  3847. ggml_vec_scale_f32(ne00, y, scale);
  3848. }
  3849. }
  3850. }
  3851. }
  3852. }
  3853. void ggml_compute_forward_group_norm(
  3854. const ggml_compute_params * params,
  3855. ggml_tensor * dst) {
  3856. const ggml_tensor * src0 = dst->src[0];
  3857. switch (src0->type) {
  3858. case GGML_TYPE_F32:
  3859. {
  3860. ggml_compute_forward_group_norm_f32(params, dst);
  3861. } break;
  3862. default:
  3863. {
  3864. GGML_ABORT("fatal error");
  3865. }
  3866. }
  3867. }
  3868. // ggml_compute_forward_l2_norm
  3869. static void ggml_compute_forward_l2_norm_f32(
  3870. const ggml_compute_params * params,
  3871. ggml_tensor * dst) {
  3872. const ggml_tensor * src0 = dst->src[0];
  3873. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  3874. GGML_ASSERT(src0->nb[0] == sizeof(float));
  3875. const int ith = params->ith;
  3876. const int nth = params->nth;
  3877. GGML_TENSOR_UNARY_OP_LOCALS
  3878. float eps;
  3879. memcpy(&eps, dst->op_params, sizeof(float));
  3880. GGML_ASSERT(eps >= 0.0f);
  3881. // TODO: optimize
  3882. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3883. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3884. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  3885. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  3886. ggml_float sum = 0.0;
  3887. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3888. sum += (ggml_float)(x[i00] * x[i00]);
  3889. }
  3890. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  3891. memcpy(y, x, ne00 * sizeof(float));
  3892. const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
  3893. ggml_vec_scale_f32(ne00, y, scale);
  3894. }
  3895. }
  3896. }
  3897. }
  3898. void ggml_compute_forward_l2_norm(
  3899. const ggml_compute_params * params,
  3900. ggml_tensor * dst) {
  3901. const ggml_tensor * src0 = dst->src[0];
  3902. switch (src0->type) {
  3903. case GGML_TYPE_F32:
  3904. {
  3905. ggml_compute_forward_l2_norm_f32(params, dst);
  3906. } break;
  3907. default:
  3908. {
  3909. GGML_ABORT("fatal error");
  3910. }
  3911. }
  3912. }
  3913. // ggml_compute_forward_out_prod
  3914. static void ggml_compute_forward_out_prod_f32(
  3915. const ggml_compute_params * params,
  3916. ggml_tensor * dst) {
  3917. const ggml_tensor * src0 = dst->src[0];
  3918. const ggml_tensor * src1 = dst->src[1];
  3919. GGML_TENSOR_BINARY_OP_LOCALS
  3920. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  3921. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  3922. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  3923. const int ith = params->ith;
  3924. const int nth = params->nth;
  3925. GGML_ASSERT(ne0 == ne00);
  3926. GGML_ASSERT(ne1 == ne10);
  3927. GGML_ASSERT(ne2 == ne12);
  3928. GGML_ASSERT(ne3 == ne13);
  3929. GGML_ASSERT(ne2 % ne02 == 0);
  3930. GGML_ASSERT(ne3 % ne03 == 0);
  3931. // we don't support permuted src0 or src1
  3932. GGML_ASSERT(nb00 == sizeof(float));
  3933. // dst cannot be transposed or permuted
  3934. GGML_ASSERT(nb0 == sizeof(float));
  3935. // GGML_ASSERT(nb0 <= nb1);
  3936. // GGML_ASSERT(nb1 <= nb2);
  3937. // GGML_ASSERT(nb2 <= nb3);
  3938. // nb01 >= nb00 - src0 is not transposed
  3939. // compute by src0 rows
  3940. if (ith == 0) {
  3941. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  3942. }
  3943. ggml_barrier(params->threadpool);
  3944. // dst[:,:,:,:] = 0
  3945. // for i2,i3:
  3946. // for i1:
  3947. // for i01:
  3948. // for i0:
  3949. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  3950. // parallelize by last three dimensions
  3951. // total rows in dst
  3952. const int64_t nr = ne1*ne2*ne3;
  3953. // rows per thread
  3954. const int64_t dr = (nr + nth - 1)/nth;
  3955. // row range for this thread
  3956. const int64_t ir0 = dr*ith;
  3957. const int64_t ir1 = MIN(ir0 + dr, nr);
  3958. // block-tiling attempt
  3959. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  3960. const int64_t blck_1 = 16;
  3961. // dps == dst per src0, used for group query attention
  3962. const int64_t dps2 = ne2 / ne02;
  3963. const int64_t dps3 = ne3 / ne03;
  3964. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  3965. const int64_t bir1 = MIN(bir + blck_1, ir1);
  3966. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  3967. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  3968. for (int64_t ir = bir; ir < bir1; ++ir) {
  3969. // dst indices
  3970. const int64_t i3 = ir/(ne2*ne1);
  3971. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  3972. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  3973. const int64_t i02 = i2 / dps2;
  3974. const int64_t i03 = i3 / dps3;
  3975. //const int64_t i10 = i1;
  3976. const int64_t i12 = i2;
  3977. const int64_t i13 = i3;
  3978. #if GGML_VEC_MAD_UNROLL > 2
  3979. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  3980. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  3981. const int64_t i11 = i01;
  3982. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3983. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3984. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3985. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  3986. }
  3987. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  3988. const int64_t i11 = i01;
  3989. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3990. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3991. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  3992. ggml_vec_mad_f32(ne0, d, s0, *s1);
  3993. }
  3994. #else
  3995. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  3996. const int64_t i11 = i01;
  3997. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  3998. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  3999. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  4000. ggml_vec_mad_f32(ne0, d, s0, *s1);
  4001. }
  4002. #endif
  4003. }
  4004. }
  4005. }
  4006. }
  4007. static void ggml_compute_forward_out_prod_q_f32(
  4008. const ggml_compute_params * params,
  4009. ggml_tensor * dst) {
  4010. const ggml_tensor * src0 = dst->src[0];
  4011. const ggml_tensor * src1 = dst->src[1];
  4012. GGML_TENSOR_BINARY_OP_LOCALS;
  4013. const int ith = params->ith;
  4014. const int nth = params->nth;
  4015. const ggml_type type = src0->type;
  4016. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4017. GGML_ASSERT(ne02 == ne12);
  4018. GGML_ASSERT(ne03 == ne13);
  4019. GGML_ASSERT(ne2 == ne12);
  4020. GGML_ASSERT(ne3 == ne13);
  4021. // we don't support permuted src0 dim0
  4022. GGML_ASSERT(nb00 == ggml_type_size(type));
  4023. // dst dim0 cannot be transposed or permuted
  4024. GGML_ASSERT(nb0 == sizeof(float));
  4025. // GGML_ASSERT(nb0 <= nb1);
  4026. // GGML_ASSERT(nb1 <= nb2);
  4027. // GGML_ASSERT(nb2 <= nb3);
  4028. GGML_ASSERT(ne0 == ne00);
  4029. GGML_ASSERT(ne1 == ne10);
  4030. GGML_ASSERT(ne2 == ne02);
  4031. GGML_ASSERT(ne3 == ne03);
  4032. // nb01 >= nb00 - src0 is not transposed
  4033. // compute by src0 rows
  4034. if (ith == 0) {
  4035. ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
  4036. }
  4037. ggml_barrier(params->threadpool);
  4038. // parallelize by last three dimensions
  4039. // total rows in dst
  4040. const int64_t nr = ne1*ne2*ne3;
  4041. // rows per thread
  4042. const int64_t dr = (nr + nth - 1)/nth;
  4043. // row range for this thread
  4044. const int64_t ir0 = dr*ith;
  4045. const int64_t ir1 = MIN(ir0 + dr, nr);
  4046. // dst[:,:,:,:] = 0
  4047. // for i2,i3:
  4048. // for i1:
  4049. // for i01:
  4050. // for i0:
  4051. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  4052. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  4053. for (int64_t ir = ir0; ir < ir1; ++ir) {
  4054. // dst indices
  4055. const int64_t i3 = ir/(ne2*ne1);
  4056. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  4057. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  4058. const int64_t i02 = i2;
  4059. const int64_t i03 = i3;
  4060. //const int64_t i10 = i1;
  4061. const int64_t i12 = i2;
  4062. const int64_t i13 = i3;
  4063. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  4064. const int64_t i11 = i01;
  4065. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  4066. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  4067. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  4068. dequantize_row_q(s0, wdata, ne0);
  4069. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  4070. }
  4071. }
  4072. }
  4073. void ggml_compute_forward_out_prod(
  4074. const ggml_compute_params * params,
  4075. ggml_tensor * dst) {
  4076. const ggml_tensor * src0 = dst->src[0];
  4077. switch (src0->type) {
  4078. case GGML_TYPE_Q4_0:
  4079. case GGML_TYPE_Q4_1:
  4080. case GGML_TYPE_Q5_0:
  4081. case GGML_TYPE_Q5_1:
  4082. case GGML_TYPE_Q8_0:
  4083. case GGML_TYPE_MXFP4:
  4084. case GGML_TYPE_Q2_K:
  4085. case GGML_TYPE_Q3_K:
  4086. case GGML_TYPE_Q4_K:
  4087. case GGML_TYPE_Q5_K:
  4088. case GGML_TYPE_Q6_K:
  4089. case GGML_TYPE_TQ1_0:
  4090. case GGML_TYPE_TQ2_0:
  4091. case GGML_TYPE_IQ2_XXS:
  4092. case GGML_TYPE_IQ2_XS:
  4093. case GGML_TYPE_IQ3_XXS:
  4094. case GGML_TYPE_IQ1_S:
  4095. case GGML_TYPE_IQ1_M:
  4096. case GGML_TYPE_IQ4_NL:
  4097. case GGML_TYPE_IQ4_XS:
  4098. case GGML_TYPE_IQ3_S:
  4099. case GGML_TYPE_IQ2_S:
  4100. {
  4101. ggml_compute_forward_out_prod_q_f32(params, dst);
  4102. } break;
  4103. case GGML_TYPE_F16:
  4104. {
  4105. GGML_ABORT("fatal error"); // todo
  4106. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  4107. }
  4108. case GGML_TYPE_F32:
  4109. {
  4110. ggml_compute_forward_out_prod_f32(params, dst);
  4111. } break;
  4112. default:
  4113. {
  4114. GGML_ABORT("fatal error");
  4115. }
  4116. }
  4117. }
  4118. // ggml_compute_forward_scale
  4119. static void ggml_compute_forward_scale_f32(
  4120. const ggml_compute_params * params,
  4121. ggml_tensor * dst) {
  4122. const ggml_tensor * src0 = dst->src[0];
  4123. GGML_ASSERT(ggml_is_contiguous(src0));
  4124. GGML_ASSERT(ggml_is_contiguous(dst));
  4125. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4126. float s; // scale factor
  4127. float b; // bias
  4128. memcpy(&s, (float *) dst->op_params + 0, sizeof(float));
  4129. memcpy(&b, (float *) dst->op_params + 1, sizeof(float));
  4130. const int ith = params->ith;
  4131. const int nth = params->nth;
  4132. const int nc = src0->ne[0];
  4133. const int nr = ggml_nrows(src0);
  4134. // rows per thread
  4135. const int dr = (nr + nth - 1)/nth;
  4136. // row range for this thread
  4137. const int ir0 = dr*ith;
  4138. const int ir1 = MIN(ir0 + dr, nr);
  4139. const size_t nb01 = src0->nb[1];
  4140. const size_t nb1 = dst->nb[1];
  4141. if (b == 0.0f) {
  4142. for (int i1 = ir0; i1 < ir1; i1++) {
  4143. if (dst->data != src0->data) {
  4144. // src0 is same shape as dst => same indices
  4145. // TODO: add x parameter to ggml_vec_scale_f32 and remove this memcpy
  4146. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  4147. }
  4148. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), s);
  4149. }
  4150. } else {
  4151. for (int i1 = ir0; i1 < ir1; i1++) {
  4152. ggml_vec_mad1_f32(nc,
  4153. (float *) ((char *) dst->data + i1*nb1),
  4154. (float *) ((char *) src0->data + i1*nb1),
  4155. s, b);
  4156. }
  4157. }
  4158. }
  4159. void ggml_compute_forward_scale(
  4160. const ggml_compute_params * params,
  4161. ggml_tensor * dst) {
  4162. const ggml_tensor * src0 = dst->src[0];
  4163. switch (src0->type) {
  4164. case GGML_TYPE_F32:
  4165. {
  4166. ggml_compute_forward_scale_f32(params, dst);
  4167. } break;
  4168. default:
  4169. {
  4170. GGML_ABORT("fatal error");
  4171. }
  4172. }
  4173. }
  4174. // ggml_compute_forward_set
  4175. static void ggml_compute_forward_set_f32(
  4176. const ggml_compute_params * params,
  4177. ggml_tensor * dst) {
  4178. const ggml_tensor * src0 = dst->src[0];
  4179. const ggml_tensor * src1 = dst->src[1];
  4180. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4181. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4182. // view src0 and dst with these strides and data offset inbytes during set
  4183. // nb0 is implicitly element_size because src0 and dst are contiguous
  4184. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4185. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4186. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4187. size_t offset = ((int32_t *) dst->op_params)[3];
  4188. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4189. if (!inplace) {
  4190. if (params->ith == 0) {
  4191. // memcpy needs to be synchronized across threads to avoid race conditions.
  4192. // => do it in INIT phase
  4193. memcpy(
  4194. ((char *) dst->data),
  4195. ((char *) src0->data),
  4196. ggml_nbytes(dst));
  4197. }
  4198. ggml_barrier(params->threadpool);
  4199. }
  4200. const int ith = params->ith;
  4201. const int nth = params->nth;
  4202. const int nr = ggml_nrows(src1);
  4203. const int nc = src1->ne[0];
  4204. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4205. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4206. // src0 and dst as viewed during set
  4207. const size_t nb0 = ggml_element_size(src0);
  4208. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  4209. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  4210. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  4211. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  4212. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  4213. GGML_ASSERT(nb10 == sizeof(float));
  4214. // rows per thread
  4215. const int dr = (nr + nth - 1)/nth;
  4216. // row range for this thread
  4217. const int ir0 = dr*ith;
  4218. const int ir1 = MIN(ir0 + dr, nr);
  4219. for (int ir = ir0; ir < ir1; ++ir) {
  4220. // src0 and dst are viewed with shape of src1 and offset
  4221. // => same indices
  4222. const int i3 = ir/(ne12*ne11);
  4223. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4224. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4225. ggml_vec_cpy_f32(nc,
  4226. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4227. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4228. }
  4229. }
  4230. static void ggml_compute_forward_set_i32(
  4231. const ggml_compute_params * params,
  4232. ggml_tensor * dst) {
  4233. const ggml_tensor * src0 = dst->src[0];
  4234. const ggml_tensor * src1 = dst->src[1];
  4235. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4236. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4237. // view src0 and dst with these strides and data offset inbytes during set
  4238. // nb0 is implicitly element_size because src0 and dst are contiguous
  4239. size_t nb1 = ((int32_t *) dst->op_params)[0];
  4240. size_t nb2 = ((int32_t *) dst->op_params)[1];
  4241. size_t nb3 = ((int32_t *) dst->op_params)[2];
  4242. size_t offset = ((int32_t *) dst->op_params)[3];
  4243. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  4244. if (!inplace) {
  4245. if (params->ith == 0) {
  4246. // memcpy needs to be synchronized across threads to avoid race conditions.
  4247. // => do it in INIT phase
  4248. memcpy(
  4249. ((char *) dst->data),
  4250. ((char *) src0->data),
  4251. ggml_nbytes(dst));
  4252. }
  4253. ggml_barrier(params->threadpool);
  4254. }
  4255. const int ith = params->ith;
  4256. const int nth = params->nth;
  4257. const int nr = ggml_nrows(src1);
  4258. const int nc = src1->ne[0];
  4259. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  4260. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  4261. // src0 and dst as viewed during set
  4262. const size_t nb0 = ggml_element_size(src0);
  4263. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  4264. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  4265. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  4266. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  4267. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  4268. GGML_ASSERT(nb10 == sizeof(int32_t));
  4269. // rows per thread
  4270. const int dr = (nr + nth - 1)/nth;
  4271. // row range for this thread
  4272. const int ir0 = dr*ith;
  4273. const int ir1 = MIN(ir0 + dr, nr);
  4274. for (int ir = ir0; ir < ir1; ++ir) {
  4275. // src0 and dst are viewed with shape of src1 and offset
  4276. // => same indices
  4277. const int i3 = ir/(ne12*ne11);
  4278. const int i2 = (ir - i3*ne12*ne11)/ne11;
  4279. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  4280. ggml_vec_cpy_i32(nc,
  4281. (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  4282. (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  4283. }
  4284. }
  4285. void ggml_compute_forward_set(
  4286. const ggml_compute_params * params,
  4287. ggml_tensor * dst) {
  4288. const ggml_tensor * src0 = dst->src[0];
  4289. switch (src0->type) {
  4290. case GGML_TYPE_F32:
  4291. {
  4292. ggml_compute_forward_set_f32(params, dst);
  4293. } break;
  4294. case GGML_TYPE_I32:
  4295. {
  4296. ggml_compute_forward_set_i32(params, dst);
  4297. } break;
  4298. case GGML_TYPE_F16:
  4299. case GGML_TYPE_BF16:
  4300. case GGML_TYPE_Q4_0:
  4301. case GGML_TYPE_Q4_1:
  4302. case GGML_TYPE_Q5_0:
  4303. case GGML_TYPE_Q5_1:
  4304. case GGML_TYPE_Q8_0:
  4305. case GGML_TYPE_Q8_1:
  4306. case GGML_TYPE_MXFP4:
  4307. case GGML_TYPE_Q2_K:
  4308. case GGML_TYPE_Q3_K:
  4309. case GGML_TYPE_Q4_K:
  4310. case GGML_TYPE_Q5_K:
  4311. case GGML_TYPE_Q6_K:
  4312. case GGML_TYPE_TQ1_0:
  4313. case GGML_TYPE_TQ2_0:
  4314. case GGML_TYPE_IQ2_XXS:
  4315. case GGML_TYPE_IQ2_XS:
  4316. case GGML_TYPE_IQ3_XXS:
  4317. case GGML_TYPE_IQ1_S:
  4318. case GGML_TYPE_IQ1_M:
  4319. case GGML_TYPE_IQ4_NL:
  4320. case GGML_TYPE_IQ4_XS:
  4321. case GGML_TYPE_IQ3_S:
  4322. case GGML_TYPE_IQ2_S:
  4323. default:
  4324. {
  4325. GGML_ABORT("fatal error");
  4326. }
  4327. }
  4328. }
  4329. // ggml_compute_forward_cpy
  4330. void ggml_compute_forward_cpy(
  4331. const ggml_compute_params * params,
  4332. ggml_tensor * dst) {
  4333. ggml_compute_forward_dup(params, dst);
  4334. }
  4335. // ggml_compute_forward_cont
  4336. void ggml_compute_forward_cont(
  4337. const ggml_compute_params * params,
  4338. ggml_tensor * dst) {
  4339. ggml_compute_forward_dup(params, dst);
  4340. }
  4341. // ggml_compute_forward_reshape
  4342. void ggml_compute_forward_reshape(
  4343. const ggml_compute_params * params,
  4344. ggml_tensor * dst) {
  4345. // NOP
  4346. GGML_UNUSED(params);
  4347. GGML_UNUSED(dst);
  4348. }
  4349. // ggml_compute_forward_view
  4350. void ggml_compute_forward_view(
  4351. const ggml_compute_params * params,
  4352. ggml_tensor * dst) {
  4353. // NOP
  4354. GGML_UNUSED(params);
  4355. GGML_UNUSED(dst);
  4356. }
  4357. // ggml_compute_forward_permute
  4358. void ggml_compute_forward_permute(
  4359. const ggml_compute_params * params,
  4360. ggml_tensor * dst) {
  4361. // NOP
  4362. GGML_UNUSED(params);
  4363. GGML_UNUSED(dst);
  4364. }
  4365. // ggml_compute_forward_transpose
  4366. void ggml_compute_forward_transpose(
  4367. const ggml_compute_params * params,
  4368. ggml_tensor * dst) {
  4369. // NOP
  4370. GGML_UNUSED(params);
  4371. GGML_UNUSED(dst);
  4372. }
  4373. // ggml_compute_forward_get_rows
  4374. static void ggml_compute_forward_get_rows_q(
  4375. const ggml_compute_params * params,
  4376. ggml_tensor * dst) {
  4377. const ggml_tensor * src0 = dst->src[0];
  4378. const ggml_tensor * src1 = dst->src[1];
  4379. GGML_TENSOR_BINARY_OP_LOCALS
  4380. const int64_t nc = ne00;
  4381. const int64_t nr = ggml_nelements(src1);
  4382. const ggml_type type = src0->type;
  4383. ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
  4384. assert(ne0 == nc);
  4385. assert(ne02 == ne11);
  4386. assert(nb00 == ggml_type_size(type));
  4387. assert(ggml_nrows(dst) == nr);
  4388. const int ith = params->ith;
  4389. const int nth = params->nth;
  4390. // rows per thread
  4391. const int dr = (nr + nth - 1)/nth;
  4392. // row range for this thread
  4393. const int ir0 = dr*ith;
  4394. const int ir1 = MIN(ir0 + dr, nr);
  4395. for (int64_t i = ir0; i < ir1; ++i) {
  4396. const int64_t i12 = i/(ne11*ne10);
  4397. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4398. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4399. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4400. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4401. dequantize_row_q(
  4402. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4403. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4404. }
  4405. }
  4406. static void ggml_compute_forward_get_rows_f16(
  4407. const ggml_compute_params * params,
  4408. ggml_tensor * dst) {
  4409. const ggml_tensor * src0 = dst->src[0];
  4410. const ggml_tensor * src1 = dst->src[1];
  4411. GGML_TENSOR_BINARY_OP_LOCALS
  4412. const int64_t nc = ne00;
  4413. const int64_t nr = ggml_nelements(src1);
  4414. assert(ne0 == nc);
  4415. assert(ne02 == ne11);
  4416. assert(nb00 == sizeof(ggml_fp16_t));
  4417. assert(ggml_nrows(dst) == nr);
  4418. const int ith = params->ith;
  4419. const int nth = params->nth;
  4420. // rows per thread
  4421. const int dr = (nr + nth - 1)/nth;
  4422. // row range for this thread
  4423. const int ir0 = dr*ith;
  4424. const int ir1 = MIN(ir0 + dr, nr);
  4425. for (int64_t i = ir0; i < ir1; ++i) {
  4426. const int64_t i12 = i/(ne11*ne10);
  4427. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4428. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4429. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4430. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4431. ggml_cpu_fp16_to_fp32(
  4432. (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4433. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4434. }
  4435. }
  4436. static void ggml_compute_forward_get_rows_bf16(
  4437. const ggml_compute_params * params,
  4438. ggml_tensor * dst) {
  4439. const ggml_tensor * src0 = dst->src[0];
  4440. const ggml_tensor * src1 = dst->src[1];
  4441. GGML_TENSOR_BINARY_OP_LOCALS
  4442. const int64_t nc = ne00;
  4443. const int64_t nr = ggml_nelements(src1);
  4444. assert(ne0 == nc);
  4445. assert(ne02 == ne11);
  4446. assert(nb00 == sizeof(ggml_bf16_t));
  4447. assert(ggml_nrows(dst) == nr);
  4448. const int ith = params->ith;
  4449. const int nth = params->nth;
  4450. // rows per thread
  4451. const int dr = (nr + nth - 1)/nth;
  4452. // row range for this thread
  4453. const int ir0 = dr*ith;
  4454. const int ir1 = MIN(ir0 + dr, nr);
  4455. for (int64_t i = ir0; i < ir1; ++i) {
  4456. const int64_t i12 = i/(ne11*ne10);
  4457. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4458. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4459. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4460. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4461. ggml_cpu_bf16_to_fp32(
  4462. (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  4463. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  4464. }
  4465. }
  4466. static void ggml_compute_forward_get_rows_f32(
  4467. const ggml_compute_params * params,
  4468. ggml_tensor * dst) {
  4469. const ggml_tensor * src0 = dst->src[0];
  4470. const ggml_tensor * src1 = dst->src[1];
  4471. GGML_TENSOR_BINARY_OP_LOCALS
  4472. const int64_t nc = ne00;
  4473. const int64_t nr = ggml_nelements(src1);
  4474. assert(ne0 == nc);
  4475. assert(ne02 == ne11);
  4476. assert(nb00 == sizeof(float));
  4477. assert(ggml_nrows(dst) == nr);
  4478. const int ith = params->ith;
  4479. const int nth = params->nth;
  4480. // rows per thread
  4481. const int dr = (nr + nth - 1)/nth;
  4482. // row range for this thread
  4483. const int ir0 = dr*ith;
  4484. const int ir1 = MIN(ir0 + dr, nr);
  4485. for (int64_t i = ir0; i < ir1; ++i) {
  4486. const int64_t i12 = i/(ne11*ne10);
  4487. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  4488. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  4489. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4490. GGML_ASSERT(i01 >= 0 && i01 < ne01);
  4491. ggml_vec_cpy_f32(nc,
  4492. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  4493. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  4494. }
  4495. }
  4496. void ggml_compute_forward_get_rows(
  4497. const ggml_compute_params * params,
  4498. ggml_tensor * dst) {
  4499. const ggml_tensor * src0 = dst->src[0];
  4500. switch (src0->type) {
  4501. case GGML_TYPE_Q4_0:
  4502. case GGML_TYPE_Q4_1:
  4503. case GGML_TYPE_Q5_0:
  4504. case GGML_TYPE_Q5_1:
  4505. case GGML_TYPE_Q8_0:
  4506. case GGML_TYPE_Q8_1:
  4507. case GGML_TYPE_MXFP4:
  4508. case GGML_TYPE_Q2_K:
  4509. case GGML_TYPE_Q3_K:
  4510. case GGML_TYPE_Q4_K:
  4511. case GGML_TYPE_Q5_K:
  4512. case GGML_TYPE_Q6_K:
  4513. case GGML_TYPE_TQ1_0:
  4514. case GGML_TYPE_TQ2_0:
  4515. case GGML_TYPE_IQ2_XXS:
  4516. case GGML_TYPE_IQ2_XS:
  4517. case GGML_TYPE_IQ3_XXS:
  4518. case GGML_TYPE_IQ1_S:
  4519. case GGML_TYPE_IQ1_M:
  4520. case GGML_TYPE_IQ4_NL:
  4521. case GGML_TYPE_IQ4_XS:
  4522. case GGML_TYPE_IQ3_S:
  4523. case GGML_TYPE_IQ2_S:
  4524. {
  4525. ggml_compute_forward_get_rows_q(params, dst);
  4526. } break;
  4527. case GGML_TYPE_F16:
  4528. {
  4529. ggml_compute_forward_get_rows_f16(params, dst);
  4530. } break;
  4531. case GGML_TYPE_BF16:
  4532. {
  4533. ggml_compute_forward_get_rows_bf16(params, dst);
  4534. } break;
  4535. case GGML_TYPE_F32:
  4536. case GGML_TYPE_I32:
  4537. {
  4538. ggml_compute_forward_get_rows_f32(params, dst);
  4539. } break;
  4540. default:
  4541. {
  4542. GGML_ABORT("fatal error");
  4543. }
  4544. }
  4545. //static bool first = true;
  4546. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  4547. //if (first) {
  4548. // first = false;
  4549. //} else {
  4550. // for (int k = 0; k < dst->ne[1]; ++k) {
  4551. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  4552. // for (int i = 0; i < 16; ++i) {
  4553. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  4554. // }
  4555. // printf("\n");
  4556. // }
  4557. // printf("\n");
  4558. // }
  4559. // printf("\n");
  4560. // exit(0);
  4561. //}
  4562. }
  4563. static void ggml_compute_forward_set_rows_f32(
  4564. const ggml_compute_params * params,
  4565. ggml_tensor * dst) {
  4566. const ggml_tensor * src0 = dst->src[0];
  4567. const ggml_tensor * src1 = dst->src[1];
  4568. GGML_TENSOR_BINARY_OP_LOCALS
  4569. const int64_t nc = ne00;
  4570. const int64_t nr = ne01;
  4571. assert(ne0 == nc);
  4572. assert(ne2 == ne02);
  4573. assert(ne3 == ne03);
  4574. assert(src0->type == GGML_TYPE_F32);
  4575. assert(ne02 % ne11 == 0);
  4576. assert(ne03 % ne12 == 0);
  4577. const int ith = params->ith;
  4578. const int nth = params->nth;
  4579. // rows per thread
  4580. const int64_t dr = (nr + nth - 1)/nth;
  4581. // row range for this thread
  4582. const int64_t ir0 = dr*ith;
  4583. const int64_t ir1 = std::min(ir0 + dr, nr);
  4584. ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
  4585. for (int64_t i03 = 0; i03 < ne03; ++i03) {
  4586. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  4587. for (int64_t i = ir0; i < ir1; ++i) {
  4588. const int64_t i12 = i03%ne12;
  4589. const int64_t i11 = i02%ne11;
  4590. const int64_t i10 = i;
  4591. const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  4592. GGML_ASSERT(i1 >= 0 && i1 < ne1);
  4593. from_float(
  4594. (const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
  4595. ((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
  4596. }
  4597. }
  4598. }
  4599. }
  4600. void ggml_compute_forward_set_rows(
  4601. const ggml_compute_params * params,
  4602. ggml_tensor * dst) {
  4603. const ggml_tensor * src0 = dst->src[0];
  4604. switch (src0->type) {
  4605. case GGML_TYPE_F32:
  4606. {
  4607. ggml_compute_forward_set_rows_f32(params, dst);
  4608. } break;
  4609. default:
  4610. {
  4611. GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
  4612. }
  4613. }
  4614. }
  4615. // ggml_compute_forward_get_rows_back
  4616. static void ggml_compute_forward_get_rows_back_f32_f16(
  4617. const ggml_compute_params * params,
  4618. ggml_tensor * dst) {
  4619. const ggml_tensor * src0 = dst->src[0];
  4620. const ggml_tensor * src1 = dst->src[1];
  4621. if (params->ith != 0) {
  4622. return;
  4623. }
  4624. GGML_ASSERT(ggml_is_contiguous(dst));
  4625. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  4626. memset(dst->data, 0, ggml_nbytes(dst));
  4627. const int nc = src0->ne[0];
  4628. const int nr = ggml_nelements(src1);
  4629. GGML_ASSERT( dst->ne[0] == nc);
  4630. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  4631. for (int i = 0; i < nr; ++i) {
  4632. const int r = ((int32_t *) src1->data)[i];
  4633. for (int j = 0; j < nc; ++j) {
  4634. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  4635. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v);
  4636. }
  4637. }
  4638. }
  4639. static void ggml_compute_forward_get_rows_back_f32(
  4640. const ggml_compute_params * params,
  4641. ggml_tensor * dst) {
  4642. const ggml_tensor * src0 = dst->src[0];
  4643. const ggml_tensor * src1 = dst->src[1];
  4644. if (params->ith != 0) {
  4645. return;
  4646. }
  4647. GGML_ASSERT(ggml_is_contiguous(dst));
  4648. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  4649. memset(dst->data, 0, ggml_nbytes(dst));
  4650. const int nc = src0->ne[0];
  4651. const int nr = ggml_nelements(src1);
  4652. GGML_ASSERT( dst->ne[0] == nc);
  4653. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4654. for (int i = 0; i < nr; ++i) {
  4655. const int r = ((int32_t *) src1->data)[i];
  4656. ggml_vec_add_f32(nc,
  4657. (float *) ((char *) dst->data + r*dst->nb[1]),
  4658. (float *) ((char *) dst->data + r*dst->nb[1]),
  4659. (float *) ((char *) src0->data + i*src0->nb[1]));
  4660. }
  4661. }
  4662. void ggml_compute_forward_get_rows_back(
  4663. const ggml_compute_params * params,
  4664. ggml_tensor * dst) {
  4665. const ggml_tensor * src0 = dst->src[0];
  4666. switch (src0->type) {
  4667. case GGML_TYPE_F16:
  4668. {
  4669. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  4670. } break;
  4671. case GGML_TYPE_F32:
  4672. {
  4673. ggml_compute_forward_get_rows_back_f32(params, dst);
  4674. } break;
  4675. default:
  4676. {
  4677. GGML_ABORT("fatal error");
  4678. }
  4679. }
  4680. //static bool first = true;
  4681. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  4682. //if (first) {
  4683. // first = false;
  4684. //} else {
  4685. // for (int k = 0; k < dst->ne[1]; ++k) {
  4686. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  4687. // for (int i = 0; i < 16; ++i) {
  4688. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  4689. // }
  4690. // printf("\n");
  4691. // }
  4692. // printf("\n");
  4693. // }
  4694. // printf("\n");
  4695. // exit(0);
  4696. //}
  4697. }
  4698. // ggml_compute_forward_diag
  4699. static void ggml_compute_forward_diag_f32(
  4700. const ggml_compute_params * params,
  4701. ggml_tensor * dst) {
  4702. const ggml_tensor * src0 = dst->src[0];
  4703. if (params->ith != 0) {
  4704. return;
  4705. }
  4706. // TODO: handle transposed/permuted matrices
  4707. GGML_TENSOR_UNARY_OP_LOCALS
  4708. GGML_ASSERT(ne00 == ne0);
  4709. GGML_ASSERT(ne00 == ne1);
  4710. GGML_ASSERT(ne01 == 1);
  4711. GGML_ASSERT(ne02 == ne2);
  4712. GGML_ASSERT(ne03 == ne3);
  4713. GGML_ASSERT(nb00 == sizeof(float));
  4714. GGML_ASSERT(nb0 == sizeof(float));
  4715. for (int i3 = 0; i3 < ne3; i3++) {
  4716. for (int i2 = 0; i2 < ne2; i2++) {
  4717. for (int i1 = 0; i1 < ne1; i1++) {
  4718. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  4719. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  4720. for (int i0 = 0; i0 < i1; i0++) {
  4721. d[i0] = 0;
  4722. }
  4723. d[i1] = s[i1];
  4724. for (int i0 = i1+1; i0 < ne0; i0++) {
  4725. d[i0] = 0;
  4726. }
  4727. }
  4728. }
  4729. }
  4730. }
  4731. void ggml_compute_forward_diag(
  4732. const ggml_compute_params * params,
  4733. ggml_tensor * dst) {
  4734. const ggml_tensor * src0 = dst->src[0];
  4735. switch (src0->type) {
  4736. case GGML_TYPE_F32:
  4737. {
  4738. ggml_compute_forward_diag_f32(params, dst);
  4739. } break;
  4740. default:
  4741. {
  4742. GGML_ABORT("fatal error");
  4743. }
  4744. }
  4745. }
  4746. // ggml_compute_forward_diag_mask_inf
  4747. static void ggml_compute_forward_diag_mask_f32(
  4748. const ggml_compute_params * params,
  4749. ggml_tensor * dst,
  4750. const float value) {
  4751. const ggml_tensor * src0 = dst->src[0];
  4752. const int ith = params->ith;
  4753. const int nth = params->nth;
  4754. const int n_past = ((int32_t *) dst->op_params)[0];
  4755. const bool inplace = src0->data == dst->data;
  4756. GGML_ASSERT(n_past >= 0);
  4757. if (!inplace) {
  4758. if (ith == 0) {
  4759. // memcpy needs to be synchronized across threads to avoid race conditions.
  4760. // => do it in INIT phase
  4761. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4762. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4763. memcpy(
  4764. ((char *) dst->data),
  4765. ((char *) src0->data),
  4766. ggml_nbytes(dst));
  4767. }
  4768. ggml_barrier(params->threadpool);
  4769. }
  4770. // TODO: handle transposed/permuted matrices
  4771. const int n = ggml_nrows(src0);
  4772. const int nc = src0->ne[0];
  4773. const int nr = src0->ne[1];
  4774. const int nz = n/nr;
  4775. GGML_ASSERT( dst->nb[0] == sizeof(float));
  4776. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4777. for (int k = 0; k < nz; k++) {
  4778. for (int j = ith; j < nr; j += nth) {
  4779. for (int i = n_past; i < nc; i++) {
  4780. if (i > n_past + j) {
  4781. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  4782. }
  4783. }
  4784. }
  4785. }
  4786. }
  4787. void ggml_compute_forward_diag_mask_inf(
  4788. const ggml_compute_params * params,
  4789. ggml_tensor * dst) {
  4790. const ggml_tensor * src0 = dst->src[0];
  4791. switch (src0->type) {
  4792. case GGML_TYPE_F32:
  4793. {
  4794. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  4795. } break;
  4796. default:
  4797. {
  4798. GGML_ABORT("fatal error");
  4799. }
  4800. }
  4801. }
  4802. void ggml_compute_forward_diag_mask_zero(
  4803. const ggml_compute_params * params,
  4804. ggml_tensor * dst) {
  4805. const ggml_tensor * src0 = dst->src[0];
  4806. switch (src0->type) {
  4807. case GGML_TYPE_F32:
  4808. {
  4809. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  4810. } break;
  4811. default:
  4812. {
  4813. GGML_ABORT("fatal error");
  4814. }
  4815. }
  4816. }
  4817. // ggml_compute_forward_soft_max
  4818. static void ggml_compute_forward_soft_max_f32(
  4819. const ggml_compute_params * params,
  4820. ggml_tensor * dst) {
  4821. const ggml_tensor * src0 = dst->src[0];
  4822. const ggml_tensor * src1 = dst->src[1];
  4823. const ggml_tensor * src2 = dst->src[2];
  4824. assert(ggml_is_contiguous(dst));
  4825. assert(ggml_are_same_shape(src0, dst));
  4826. float scale = 1.0f;
  4827. float max_bias = 0.0f;
  4828. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  4829. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  4830. const int ith = params->ith;
  4831. const int nth = params->nth;
  4832. GGML_TENSOR_UNARY_OP_LOCALS
  4833. const int64_t nb11 = src1 ? src1->nb[1] : 1;
  4834. const int64_t nb12 = src1 ? src1->nb[2] : 1;
  4835. const int64_t nb13 = src1 ? src1->nb[3] : 1;
  4836. const int64_t ne12 = src1 ? src1->ne[2] : 1;
  4837. const int64_t ne13 = src1 ? src1->ne[3] : 1;
  4838. // TODO: is this supposed to be ceil instead of floor?
  4839. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  4840. const uint32_t n_head = ne02;
  4841. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  4842. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  4843. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  4844. float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4845. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  4846. // sinks
  4847. const float * sk = src2 ? (float *)((char *) src2->data) : nullptr;
  4848. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4850. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4851. const int64_t i11 = i01;
  4852. const int64_t i12 = i02%ne12;
  4853. const int64_t i13 = i03%ne13;
  4854. // ALiBi
  4855. const uint32_t h = i02; // head
  4856. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  4857. float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4858. float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4859. // broadcast the mask across rows
  4860. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
  4861. float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
  4862. ggml_vec_cpy_f32 (ne00, wp, sp);
  4863. ggml_vec_scale_f32(ne00, wp, scale);
  4864. if (mp_f32) {
  4865. if (use_f16) {
  4866. for (int i = 0; i < ne00; ++i) {
  4867. wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
  4868. }
  4869. } else {
  4870. for (int i = 0; i < ne00; ++i) {
  4871. wp[i] += slope*mp_f32[i];
  4872. }
  4873. }
  4874. }
  4875. #ifndef NDEBUG
  4876. for (int i = 0; i < ne00; ++i) {
  4877. //printf("p[%d] = %f\n", i, p[i]);
  4878. assert(!isnan(wp[i]));
  4879. }
  4880. #endif
  4881. float max = -INFINITY;
  4882. ggml_vec_max_f32(ne00, &max, wp);
  4883. // if we have sinks, make a correction as if they were included in the softmax
  4884. if (sk) {
  4885. max = MAX(max, sk[i02]);
  4886. }
  4887. ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
  4888. assert(sum > 0.0);
  4889. if (sk) {
  4890. sum += (ggml_float) expf(sk[i02] - max);
  4891. }
  4892. sum = 1.0/sum;
  4893. ggml_vec_scale_f32(ne00, dp, sum);
  4894. #ifndef NDEBUG
  4895. for (int i = 0; i < ne00; ++i) {
  4896. assert(!isnan(dp[i]));
  4897. assert(!isinf(dp[i]));
  4898. }
  4899. #endif
  4900. }
  4901. }
  4902. }
  4903. }
  4904. void ggml_compute_forward_soft_max(
  4905. const ggml_compute_params * params,
  4906. ggml_tensor * dst) {
  4907. const ggml_tensor * src0 = dst->src[0];
  4908. switch (src0->type) {
  4909. case GGML_TYPE_F32:
  4910. {
  4911. ggml_compute_forward_soft_max_f32(params, dst);
  4912. } break;
  4913. default:
  4914. {
  4915. GGML_ABORT("fatal error");
  4916. }
  4917. }
  4918. }
  4919. // ggml_compute_forward_soft_max_ext_back
  4920. static void ggml_compute_forward_soft_max_ext_back_f32(
  4921. const ggml_compute_params * params,
  4922. ggml_tensor * dst) {
  4923. const ggml_tensor * src0 = dst->src[0];
  4924. const ggml_tensor * src1 = dst->src[1];
  4925. GGML_ASSERT(ggml_is_contiguous(src0));
  4926. GGML_ASSERT(ggml_is_contiguous(src1));
  4927. GGML_ASSERT(ggml_is_contiguous(dst));
  4928. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4929. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  4930. float scale = 1.0f;
  4931. float max_bias = 0.0f;
  4932. memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
  4933. memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
  4934. GGML_ASSERT(max_bias == 0.0f);
  4935. // TODO: handle transposed/permuted matrices
  4936. const int ith = params->ith;
  4937. const int nth = params->nth;
  4938. const int nc = src0->ne[0];
  4939. const int nr = ggml_nrows(src0);
  4940. // rows per thread
  4941. const int dr = (nr + nth - 1)/nth;
  4942. // row range for this thread
  4943. const int ir0 = dr*ith;
  4944. const int ir1 = MIN(ir0 + dr, nr);
  4945. for (int i1 = ir0; i1 < ir1; i1++) {
  4946. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  4947. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  4948. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  4949. #ifndef NDEBUG
  4950. for (int i = 0; i < nc; ++i) {
  4951. //printf("p[%d] = %f\n", i, p[i]);
  4952. assert(!isnan(dy[i]));
  4953. assert(!isnan(y[i]));
  4954. }
  4955. #endif
  4956. // Jii = yi - yi*yi
  4957. // Jij = -yi*yj
  4958. // J = diag(y)-y.T*y
  4959. // dx = J * dy
  4960. // dxk = sum_i(Jki * dyi)
  4961. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  4962. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  4963. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  4964. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  4965. // dxk = -yk * dot(y, dy) + yk*dyk
  4966. // dxk = yk * (- dot(y, dy) + dyk)
  4967. // dxk = yk * (dyk - dot(y, dy))
  4968. //
  4969. // post-order:
  4970. // dot_y_dy := dot(y, dy)
  4971. // dx := dy
  4972. // dx := dx - dot_y_dy
  4973. // dx := dx * y
  4974. // linear runtime, no additional memory
  4975. float dot_y_dy = 0;
  4976. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  4977. ggml_vec_cpy_f32 (nc, dx, dy);
  4978. ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
  4979. ggml_vec_mul_f32 (nc, dx, dx, y);
  4980. ggml_vec_scale_f32(nc, dx, scale);
  4981. #ifndef NDEBUG
  4982. for (int i = 0; i < nc; ++i) {
  4983. assert(!isnan(dx[i]));
  4984. assert(!isinf(dx[i]));
  4985. }
  4986. #endif
  4987. }
  4988. }
  4989. void ggml_compute_forward_soft_max_ext_back(
  4990. const ggml_compute_params * params,
  4991. ggml_tensor * dst) {
  4992. const ggml_tensor * src0 = dst->src[0];
  4993. switch (src0->type) {
  4994. case GGML_TYPE_F32:
  4995. {
  4996. ggml_compute_forward_soft_max_ext_back_f32(params, dst);
  4997. } break;
  4998. default:
  4999. {
  5000. GGML_ABORT("fatal error");
  5001. }
  5002. }
  5003. }
  5004. // ggml_compute_forward_clamp
  5005. static void ggml_compute_forward_clamp_f32(
  5006. const ggml_compute_params * params,
  5007. ggml_tensor * dst) {
  5008. const ggml_tensor * src0 = dst->src[0];
  5009. float min;
  5010. float max;
  5011. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  5012. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  5013. const int ith = params->ith;
  5014. const int nth = params->nth;
  5015. const int n = ggml_nrows(src0);
  5016. const int nc = src0->ne[0];
  5017. const size_t nb00 = src0->nb[0];
  5018. const size_t nb01 = src0->nb[1];
  5019. const size_t nb0 = dst->nb[0];
  5020. const size_t nb1 = dst->nb[1];
  5021. GGML_ASSERT( nb0 == sizeof(float));
  5022. GGML_ASSERT(nb00 == sizeof(float));
  5023. for (int j = ith; j < n; j += nth) {
  5024. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5025. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5026. for (int i = 0; i < nc; i++) {
  5027. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  5028. }
  5029. }
  5030. }
  5031. static void ggml_compute_forward_clamp_f16(
  5032. const ggml_compute_params * params,
  5033. ggml_tensor * dst) {
  5034. const ggml_tensor * src0 = dst->src[0];
  5035. float min;
  5036. float max;
  5037. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  5038. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  5039. const int ith = params->ith;
  5040. const int nth = params->nth;
  5041. const int n = ggml_nrows(src0);
  5042. const int nc = src0->ne[0];
  5043. const size_t nb00 = src0->nb[0];
  5044. const size_t nb01 = src0->nb[1];
  5045. const size_t nb0 = dst->nb[0];
  5046. const size_t nb1 = dst->nb[1];
  5047. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5048. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5049. for (int j = ith; j < n; j += nth) {
  5050. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5051. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5052. for (int i = 0; i < nc; i++) {
  5053. float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]);
  5054. dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min));
  5055. }
  5056. }
  5057. }
  5058. void ggml_compute_forward_clamp(
  5059. const ggml_compute_params * params,
  5060. ggml_tensor * dst) {
  5061. const ggml_tensor * src0 = dst->src[0];
  5062. switch (src0->type) {
  5063. case GGML_TYPE_F32:
  5064. {
  5065. ggml_compute_forward_clamp_f32(params, dst);
  5066. } break;
  5067. case GGML_TYPE_F16:
  5068. {
  5069. ggml_compute_forward_clamp_f16(params, dst);
  5070. } break;
  5071. case GGML_TYPE_BF16:
  5072. case GGML_TYPE_Q4_0:
  5073. case GGML_TYPE_Q4_1:
  5074. case GGML_TYPE_Q5_0:
  5075. case GGML_TYPE_Q5_1:
  5076. case GGML_TYPE_Q8_0:
  5077. case GGML_TYPE_Q8_1:
  5078. case GGML_TYPE_MXFP4:
  5079. case GGML_TYPE_Q2_K:
  5080. case GGML_TYPE_Q3_K:
  5081. case GGML_TYPE_Q4_K:
  5082. case GGML_TYPE_Q5_K:
  5083. case GGML_TYPE_Q6_K:
  5084. case GGML_TYPE_TQ1_0:
  5085. case GGML_TYPE_TQ2_0:
  5086. case GGML_TYPE_IQ2_XXS:
  5087. case GGML_TYPE_IQ2_XS:
  5088. case GGML_TYPE_IQ3_XXS:
  5089. case GGML_TYPE_IQ1_S:
  5090. case GGML_TYPE_IQ1_M:
  5091. case GGML_TYPE_IQ4_NL:
  5092. case GGML_TYPE_IQ4_XS:
  5093. case GGML_TYPE_IQ3_S:
  5094. case GGML_TYPE_IQ2_S:
  5095. case GGML_TYPE_Q8_K:
  5096. case GGML_TYPE_I8:
  5097. case GGML_TYPE_I16:
  5098. case GGML_TYPE_I32:
  5099. case GGML_TYPE_I64:
  5100. case GGML_TYPE_F64:
  5101. case GGML_TYPE_COUNT:
  5102. {
  5103. GGML_ABORT("fatal error");
  5104. }
  5105. }
  5106. }
  5107. // ggml_compute_forward_rope
  5108. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  5109. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  5110. return 1 - MIN(1, MAX(0, y));
  5111. }
  5112. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  5113. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  5114. static void rope_yarn(
  5115. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  5116. float * cos_theta, float * sin_theta) {
  5117. // Get n-d rotational scaling corrected for extrapolation
  5118. float theta_interp = freq_scale * theta_extrap;
  5119. float theta = theta_interp;
  5120. if (ext_factor != 0.0f) {
  5121. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  5122. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  5123. // Get n-d magnitude scaling corrected for interpolation
  5124. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  5125. }
  5126. *cos_theta = cosf(theta) * mscale;
  5127. *sin_theta = sinf(theta) * mscale;
  5128. }
  5129. static void ggml_rope_cache_init(
  5130. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  5131. float * cache, float sin_sign, float theta_scale) {
  5132. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  5133. float theta = theta_base;
  5134. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  5135. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  5136. rope_yarn(
  5137. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  5138. );
  5139. cache[i0 + 1] *= sin_sign;
  5140. theta *= theta_scale;
  5141. }
  5142. }
  5143. static void ggml_mrope_cache_init(
  5144. float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
  5145. float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  5146. float * cache, float sin_sign, float theta_scale) {
  5147. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  5148. float theta_t = theta_base_t;
  5149. float theta_h = theta_base_h;
  5150. float theta_w = theta_base_w;
  5151. float theta_e = theta_base_e; // extra position id for vision encoder
  5152. int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
  5153. int sec_w = sections[1] + sections[0];
  5154. int sec_e = sections[2] + sec_w;
  5155. GGML_ASSERT(sect_dims <= ne0);
  5156. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  5157. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  5158. int sector = (i0 / 2) % sect_dims;
  5159. if (indep_sects) {
  5160. // compute theta independently for each dim sections
  5161. // (i.e. reset corresponding theta when `i0` go from one section to another)
  5162. if (sector == 0) {
  5163. theta_t = theta_base_t;
  5164. }
  5165. else if (sector == sections[0]) {
  5166. theta_h = theta_base_h;;
  5167. }
  5168. else if (sector == sec_w) {
  5169. theta_w = theta_base_w;
  5170. }
  5171. else if (sector == sec_e) {
  5172. theta_e = theta_base_e;
  5173. }
  5174. }
  5175. float theta = theta_t;
  5176. if (sector >= sections[0] && sector < sec_w) {
  5177. theta = theta_h;
  5178. }
  5179. else if (sector >= sec_w && sector < sec_w + sections[2]) {
  5180. theta = theta_w;
  5181. }
  5182. else if (sector >= sec_w + sections[2]) {
  5183. theta = theta_e;
  5184. }
  5185. rope_yarn(
  5186. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  5187. );
  5188. cache[i0 + 1] *= sin_sign;
  5189. theta_t *= theta_scale;
  5190. theta_w *= theta_scale;
  5191. theta_h *= theta_scale;
  5192. theta_e *= theta_scale;
  5193. }
  5194. }
  5195. static void ggml_compute_forward_rope_f32(
  5196. const ggml_compute_params * params,
  5197. ggml_tensor * dst,
  5198. const bool forward) {
  5199. const ggml_tensor * src0 = dst->src[0];
  5200. const ggml_tensor * src1 = dst->src[1];
  5201. const ggml_tensor * src2 = dst->src[2];
  5202. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  5203. int sections[4];
  5204. //const int n_past = ((int32_t *) dst->op_params)[0];
  5205. const int n_dims = ((int32_t *) dst->op_params)[1];
  5206. const int mode = ((int32_t *) dst->op_params)[2];
  5207. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  5208. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5209. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5210. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5211. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5212. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5213. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5214. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5215. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
  5216. GGML_TENSOR_UNARY_OP_LOCALS
  5217. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5218. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5219. GGML_ASSERT(nb00 == sizeof(float));
  5220. const int ith = params->ith;
  5221. const int nth = params->nth;
  5222. const int nr = ggml_nrows(dst);
  5223. GGML_ASSERT(n_dims <= ne0);
  5224. GGML_ASSERT(n_dims % 2 == 0);
  5225. // rows per thread
  5226. const int dr = (nr + nth - 1)/nth;
  5227. // row range for this thread
  5228. const int ir0 = dr*ith;
  5229. const int ir1 = MIN(ir0 + dr, nr);
  5230. // row index used to determine which thread to use
  5231. int ir = 0;
  5232. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  5233. float corr_dims[2];
  5234. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  5235. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  5236. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
  5237. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5238. if (is_mrope) {
  5239. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5240. }
  5241. if (is_vision) {
  5242. GGML_ASSERT(n_dims == ne0/2);
  5243. }
  5244. const float * freq_factors = NULL;
  5245. if (src2 != NULL) {
  5246. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  5247. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  5248. freq_factors = (const float *) src2->data;
  5249. }
  5250. // backward process uses inverse rotation by cos and sin.
  5251. // cos and sin build a rotation matrix, where the inverse is the transpose.
  5252. // this essentially just switches the sign of sin.
  5253. const float sin_sign = forward ? 1.0f : -1.0f;
  5254. const int32_t * pos = (const int32_t *) src1->data;
  5255. for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
  5256. for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
  5257. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  5258. if (!is_mrope) {
  5259. const int64_t p = pos[i2];
  5260. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5261. }
  5262. else {
  5263. const int64_t p_t = pos[i2];
  5264. const int64_t p_h = pos[i2 + ne2];
  5265. const int64_t p_w = pos[i2 + ne2 * 2];
  5266. const int64_t p_e = pos[i2 + ne2 * 3];
  5267. ggml_mrope_cache_init(
  5268. p_t, p_h, p_w, p_e, sections, is_vision,
  5269. freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5270. }
  5271. for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
  5272. if (ir++ < ir0) continue;
  5273. if (ir > ir1) break;
  5274. if (is_neox || is_mrope) {
  5275. if (is_vision){
  5276. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5277. const int64_t ic = i0/2;
  5278. const float cos_theta = cache[i0 + 0];
  5279. const float sin_theta = cache[i0 + 1];
  5280. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5281. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5282. const float x0 = src[0];
  5283. const float x1 = src[n_dims];
  5284. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5285. dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
  5286. }
  5287. } else {
  5288. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5289. const int64_t ic = i0/2;
  5290. const float cos_theta = cache[i0 + 0];
  5291. const float sin_theta = cache[i0 + 1];
  5292. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5293. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5294. const float x0 = src[0];
  5295. const float x1 = src[n_dims/2];
  5296. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5297. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  5298. }
  5299. }
  5300. } else {
  5301. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5302. const float cos_theta = cache[i0 + 0];
  5303. const float sin_theta = cache[i0 + 1];
  5304. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5305. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5306. const float x0 = src[0];
  5307. const float x1 = src[1];
  5308. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5309. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5310. }
  5311. }
  5312. if (is_vision) {
  5313. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5314. const int64_t ic = i0/2;
  5315. const float cos_theta = cache[i0 + 0];
  5316. const float sin_theta = cache[i0 + 1];
  5317. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5318. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5319. const float x0 = src[0];
  5320. const float x1 = src[n_dims];
  5321. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5322. dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
  5323. }
  5324. } else {
  5325. // fill the remain channels with data from src tensor
  5326. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5327. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5328. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5329. dst_data[0] = src[0];
  5330. dst_data[1] = src[1];
  5331. }
  5332. }
  5333. }
  5334. }
  5335. }
  5336. }
  5337. // TODO: deduplicate f16/f32 code
  5338. static void ggml_compute_forward_rope_f16(
  5339. const ggml_compute_params * params,
  5340. ggml_tensor * dst,
  5341. const bool forward) {
  5342. const ggml_tensor * src0 = dst->src[0];
  5343. const ggml_tensor * src1 = dst->src[1];
  5344. const ggml_tensor * src2 = dst->src[2];
  5345. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  5346. int sections[4];
  5347. //const int n_past = ((int32_t *) dst->op_params)[0];
  5348. const int n_dims = ((int32_t *) dst->op_params)[1];
  5349. const int mode = ((int32_t *) dst->op_params)[2];
  5350. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  5351. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  5352. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  5353. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  5354. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  5355. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  5356. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  5357. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  5358. memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int)*4);
  5359. GGML_TENSOR_UNARY_OP_LOCALS
  5360. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5361. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5362. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  5363. const int ith = params->ith;
  5364. const int nth = params->nth;
  5365. const int nr = ggml_nrows(dst);
  5366. GGML_ASSERT(n_dims <= ne0);
  5367. GGML_ASSERT(n_dims % 2 == 0);
  5368. // rows per thread
  5369. const int dr = (nr + nth - 1)/nth;
  5370. // row range for this thread
  5371. const int ir0 = dr*ith;
  5372. const int ir1 = MIN(ir0 + dr, nr);
  5373. // row index used to determine which thread to use
  5374. int ir = 0;
  5375. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  5376. float corr_dims[2];
  5377. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  5378. const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
  5379. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  5380. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  5381. if (is_mrope) {
  5382. GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
  5383. }
  5384. if (is_vision) {
  5385. GGML_ASSERT(n_dims == ne0/2);
  5386. }
  5387. const float * freq_factors = NULL;
  5388. if (src2 != NULL) {
  5389. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  5390. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  5391. freq_factors = (const float *) src2->data;
  5392. }
  5393. // backward process uses inverse rotation by cos and sin.
  5394. // cos and sin build a rotation matrix, where the inverse is the transpose.
  5395. // this essentially just switches the sign of sin.
  5396. const float sin_sign = forward ? 1.0f : -1.0f;
  5397. const int32_t * pos = (const int32_t *) src1->data;
  5398. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5399. for (int64_t i2 = 0; i2 < ne2; i2++) {
  5400. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  5401. if (!is_mrope) {
  5402. const int64_t p = pos[i2];
  5403. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5404. }
  5405. else {
  5406. const int64_t p_t = pos[i2];
  5407. const int64_t p_h = pos[i2 + ne2];
  5408. const int64_t p_w = pos[i2 + ne2 * 2];
  5409. const int64_t p_e = pos[i2 + ne2 * 3];
  5410. ggml_mrope_cache_init(
  5411. p_t, p_h, p_w, p_e, sections, is_vision,
  5412. freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  5413. }
  5414. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5415. if (ir++ < ir0) continue;
  5416. if (ir > ir1) break;
  5417. if (is_neox || is_mrope) {
  5418. if (is_vision) {
  5419. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5420. const int64_t ic = i0/2;
  5421. const float cos_theta = cache[i0 + 0];
  5422. const float sin_theta = cache[i0 + 1];
  5423. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5424. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5425. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5426. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
  5427. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5428. dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5429. }
  5430. } else {
  5431. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5432. const int64_t ic = i0/2;
  5433. const float cos_theta = cache[i0 + 0];
  5434. const float sin_theta = cache[i0 + 1];
  5435. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5436. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5437. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5438. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims/2]);
  5439. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5440. dst_data[n_dims/2] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5441. }
  5442. }
  5443. } else {
  5444. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  5445. const float cos_theta = cache[i0 + 0];
  5446. const float sin_theta = cache[i0 + 1];
  5447. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5448. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5449. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5450. const float x1 = GGML_CPU_FP16_TO_FP32(src[1]);
  5451. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5452. dst_data[1] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5453. }
  5454. }
  5455. if (is_vision) {
  5456. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5457. const int64_t ic = i0/2;
  5458. const float cos_theta = cache[i0 + 0];
  5459. const float sin_theta = cache[i0 + 1];
  5460. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  5461. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  5462. const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
  5463. const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
  5464. dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  5465. dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  5466. }
  5467. } else {
  5468. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  5469. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  5470. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5471. dst_data[0] = src[0];
  5472. dst_data[1] = src[1];
  5473. }
  5474. }
  5475. }
  5476. }
  5477. }
  5478. }
  5479. void ggml_compute_forward_rope(
  5480. const ggml_compute_params * params,
  5481. ggml_tensor * dst) {
  5482. const ggml_tensor * src0 = dst->src[0];
  5483. switch (src0->type) {
  5484. case GGML_TYPE_F16:
  5485. {
  5486. ggml_compute_forward_rope_f16(params, dst, true);
  5487. } break;
  5488. case GGML_TYPE_F32:
  5489. {
  5490. ggml_compute_forward_rope_f32(params, dst, true);
  5491. } break;
  5492. default:
  5493. {
  5494. GGML_ABORT("fatal error");
  5495. }
  5496. }
  5497. }
  5498. // ggml_compute_forward_rope_back
  5499. void ggml_compute_forward_rope_back(
  5500. const ggml_compute_params * params,
  5501. ggml_tensor * dst) {
  5502. const ggml_tensor * src0 = dst->src[0];
  5503. switch (src0->type) {
  5504. case GGML_TYPE_F16:
  5505. {
  5506. ggml_compute_forward_rope_f16(params, dst, false);
  5507. } break;
  5508. case GGML_TYPE_F32:
  5509. {
  5510. ggml_compute_forward_rope_f32(params, dst, false);
  5511. } break;
  5512. default:
  5513. {
  5514. GGML_ABORT("fatal error");
  5515. }
  5516. }
  5517. }
  5518. // ggml_compute_forward_conv_transpose_1d
  5519. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  5520. const ggml_compute_params * params,
  5521. ggml_tensor * dst) {
  5522. const ggml_tensor * src0 = dst->src[0];
  5523. const ggml_tensor * src1 = dst->src[1];
  5524. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5525. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5526. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5527. GGML_TENSOR_BINARY_OP_LOCALS
  5528. const int ith = params->ith;
  5529. const int nth = params->nth;
  5530. const int nk = ne00*ne01*ne02;
  5531. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5532. GGML_ASSERT(nb10 == sizeof(float));
  5533. if (ith == 0) {
  5534. memset(params->wdata, 0, params->wsize);
  5535. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  5536. {
  5537. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5538. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5539. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5540. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5541. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  5542. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5543. dst_data[i00*ne02 + i02] = src[i00];
  5544. }
  5545. }
  5546. }
  5547. }
  5548. // permute source data (src1) from (L x Cin) to (Cin x L)
  5549. {
  5550. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  5551. ggml_fp16_t * dst_data = wdata;
  5552. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5553. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5554. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5555. dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]);
  5556. }
  5557. }
  5558. }
  5559. // need to zero dst since we are accumulating into it
  5560. memset(dst->data, 0, ggml_nbytes(dst));
  5561. }
  5562. ggml_barrier(params->threadpool);
  5563. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5564. // total rows in dst
  5565. const int nr = ne1;
  5566. // rows per thread
  5567. const int dr = (nr + nth - 1)/nth;
  5568. // row range for this thread
  5569. const int ir0 = dr*ith;
  5570. const int ir1 = MIN(ir0 + dr, nr);
  5571. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5572. ggml_fp16_t * const wdata_src = wdata + nk;
  5573. for (int i1 = ir0; i1 < ir1; i1++) {
  5574. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5575. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  5576. for (int i10 = 0; i10 < ne10; i10++) {
  5577. const int i1n = i10*ne11;
  5578. for (int i00 = 0; i00 < ne00; i00++) {
  5579. float v = 0;
  5580. ggml_vec_dot_f16(ne02, &v, 0,
  5581. (ggml_fp16_t *) wdata_src + i1n, 0,
  5582. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  5583. dst_data[i10*s0 + i00] += v;
  5584. }
  5585. }
  5586. }
  5587. }
  5588. static void ggml_compute_forward_conv_transpose_1d_f32(
  5589. const ggml_compute_params * params,
  5590. ggml_tensor * dst) {
  5591. const ggml_tensor * src0 = dst->src[0];
  5592. const ggml_tensor * src1 = dst->src[1];
  5593. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5594. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5595. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5596. GGML_TENSOR_BINARY_OP_LOCALS
  5597. const int ith = params->ith;
  5598. const int nth = params->nth;
  5599. const int nk = ne00*ne01*ne02;
  5600. GGML_ASSERT(nb00 == sizeof(float));
  5601. GGML_ASSERT(nb10 == sizeof(float));
  5602. if (ith == 0) {
  5603. memset(params->wdata, 0, params->wsize);
  5604. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  5605. {
  5606. float * const wdata = (float *) params->wdata + 0;
  5607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5608. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5609. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5610. float * dst_data = wdata + i01*ne00*ne02;
  5611. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5612. dst_data[i00*ne02 + i02] = src[i00];
  5613. }
  5614. }
  5615. }
  5616. }
  5617. // prepare source data (src1)
  5618. {
  5619. float * const wdata = (float *) params->wdata + nk;
  5620. float * dst_data = wdata;
  5621. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5622. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5623. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5624. dst_data[i10*ne11 + i11] = src[i10];
  5625. }
  5626. }
  5627. }
  5628. // need to zero dst since we are accumulating into it
  5629. memset(dst->data, 0, ggml_nbytes(dst));
  5630. }
  5631. ggml_barrier(params->threadpool);
  5632. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  5633. // total rows in dst
  5634. const int nr = ne1;
  5635. // rows per thread
  5636. const int dr = (nr + nth - 1)/nth;
  5637. // row range for this thread
  5638. const int ir0 = dr*ith;
  5639. const int ir1 = MIN(ir0 + dr, nr);
  5640. float * const wdata = (float *) params->wdata + 0;
  5641. float * const wdata_src = wdata + nk;
  5642. for (int i1 = ir0; i1 < ir1; i1++) {
  5643. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5644. float * wdata_kernel = wdata + i1*ne02*ne00;
  5645. for (int i10 = 0; i10 < ne10; i10++) {
  5646. const int i1n = i10*ne11;
  5647. for (int i00 = 0; i00 < ne00; i00++) {
  5648. float v = 0;
  5649. ggml_vec_dot_f32(ne02, &v, 0,
  5650. wdata_src + i1n, 0,
  5651. wdata_kernel + i00*ne02, 0, 1);
  5652. dst_data[i10*s0 + i00] += v;
  5653. }
  5654. }
  5655. }
  5656. }
  5657. void ggml_compute_forward_conv_transpose_1d(
  5658. const ggml_compute_params * params,
  5659. ggml_tensor * dst) {
  5660. const ggml_tensor * src0 = dst->src[0];
  5661. switch (src0->type) {
  5662. case GGML_TYPE_F16:
  5663. {
  5664. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  5665. } break;
  5666. case GGML_TYPE_F32:
  5667. {
  5668. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  5669. } break;
  5670. default:
  5671. {
  5672. GGML_ABORT("fatal error");
  5673. }
  5674. }
  5675. }
  5676. // ggml_compute_forward_im2col_f32
  5677. // src0: kernel [OC, IC, KH, KW]
  5678. // src1: image [N, IC, IH, IW]
  5679. // dst: result [N, OH, OW, IC*KH*KW]
  5680. static void ggml_compute_forward_im2col_f32(
  5681. const ggml_compute_params * params,
  5682. ggml_tensor * dst) {
  5683. const ggml_tensor * src0 = dst->src[0];
  5684. const ggml_tensor * src1 = dst->src[1];
  5685. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5686. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5687. GGML_TENSOR_BINARY_OP_LOCALS;
  5688. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5689. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5690. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5691. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5692. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5693. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5694. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5695. const int ith = params->ith;
  5696. const int nth = params->nth;
  5697. const int64_t N = is_2D ? ne13 : ne12;
  5698. const int64_t IC = is_2D ? ne12 : ne11;
  5699. const int64_t IH = is_2D ? ne11 : 1;
  5700. const int64_t IW = ne10;
  5701. const int64_t KH = is_2D ? ne01 : 1;
  5702. const int64_t KW = ne00;
  5703. const int64_t OH = is_2D ? ne2 : 1;
  5704. const int64_t OW = ne1;
  5705. int ofs0 = is_2D ? nb13 : nb12;
  5706. int ofs1 = is_2D ? nb12 : nb11;
  5707. GGML_ASSERT(nb10 == sizeof(float));
  5708. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5709. {
  5710. float * const wdata = (float *) dst->data;
  5711. for (int64_t in = 0; in < N; in++) {
  5712. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  5713. for (int64_t iow = 0; iow < OW; iow++) {
  5714. for (int64_t iic = ith; iic < IC; iic += nth) {
  5715. // micro kernel
  5716. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5717. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  5718. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  5719. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5720. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5721. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5722. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  5723. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  5724. } else {
  5725. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  5726. }
  5727. }
  5728. }
  5729. }
  5730. }
  5731. }
  5732. }
  5733. }
  5734. }
  5735. // ggml_compute_forward_im2col_f16
  5736. // src0: kernel [OC, IC, KH, KW]
  5737. // src1: image [N, IC, IH, IW]
  5738. // dst: result [N, OH, OW, IC*KH*KW]
  5739. static void ggml_compute_forward_im2col_f16(
  5740. const ggml_compute_params * params,
  5741. ggml_tensor * dst) {
  5742. const ggml_tensor * src0 = dst->src[0];
  5743. const ggml_tensor * src1 = dst->src[1];
  5744. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5745. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5746. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  5747. GGML_TENSOR_BINARY_OP_LOCALS;
  5748. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5749. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5750. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5751. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5752. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5753. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5754. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5755. const int ith = params->ith;
  5756. const int nth = params->nth;
  5757. const int64_t N = is_2D ? ne13 : ne12;
  5758. const int64_t IC = is_2D ? ne12 : ne11;
  5759. const int64_t IH = is_2D ? ne11 : 1;
  5760. const int64_t IW = ne10;
  5761. const int64_t KH = is_2D ? ne01 : 1;
  5762. const int64_t KW = ne00;
  5763. const int64_t OH = is_2D ? ne2 : 1;
  5764. const int64_t OW = ne1;
  5765. int ofs0 = is_2D ? nb13 : nb12;
  5766. int ofs1 = is_2D ? nb12 : nb11;
  5767. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5768. GGML_ASSERT(nb10 == sizeof(float));
  5769. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5770. {
  5771. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  5772. for (int64_t in = 0; in < N; in++) {
  5773. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  5774. for (int64_t iow = 0; iow < OW; iow++) {
  5775. for (int64_t iic = ith; iic < IC; iic += nth) {
  5776. // micro kernel
  5777. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5778. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  5779. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  5780. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5781. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5782. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5783. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  5784. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  5785. } else {
  5786. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]);
  5787. }
  5788. }
  5789. }
  5790. }
  5791. }
  5792. }
  5793. }
  5794. }
  5795. }
  5796. void ggml_compute_forward_im2col(
  5797. const ggml_compute_params * params,
  5798. ggml_tensor * dst) {
  5799. switch (dst->type) {
  5800. case GGML_TYPE_F16:
  5801. {
  5802. ggml_compute_forward_im2col_f16(params, dst);
  5803. } break;
  5804. case GGML_TYPE_F32:
  5805. {
  5806. ggml_compute_forward_im2col_f32(params, dst);
  5807. } break;
  5808. default:
  5809. {
  5810. GGML_ABORT("fatal error");
  5811. }
  5812. }
  5813. }
  5814. // ggml_compute_forward_im2col_back_f32
  5815. void ggml_compute_forward_im2col_back_f32(
  5816. const ggml_compute_params * params,
  5817. ggml_tensor * dst) {
  5818. const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
  5819. const ggml_tensor * src1 = dst->src[1]; // convolution kernel
  5820. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5821. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5822. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5823. GGML_TENSOR_BINARY_OP_LOCALS;
  5824. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5825. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5826. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  5827. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  5828. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  5829. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  5830. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  5831. const int ith = params->ith;
  5832. const int nth = params->nth;
  5833. const int64_t N = is_2D ? ne3 : ne2;
  5834. const int64_t IC = is_2D ? ne2 : ne1;
  5835. const int64_t IH = is_2D ? ne1 : 1;
  5836. const int64_t IW = ne0;
  5837. const int64_t KH = is_2D ? ne11 : 1;
  5838. const int64_t KW = ne10;
  5839. const int64_t OH = is_2D ? ne02 : 1;
  5840. const int64_t OW = ne01;
  5841. int ofs0 = is_2D ? nb3 : nb2;
  5842. int ofs1 = is_2D ? nb2 : nb1;
  5843. GGML_ASSERT(nb0 == sizeof(float));
  5844. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5845. {
  5846. float * const wdata = (float *) dst->data;
  5847. for (int64_t in = 0; in < N; in++) {
  5848. for (int64_t iic = ith; iic < IC; iic += nth) {
  5849. for (int64_t iih = 0; iih < IH; iih++) {
  5850. for (int64_t iiw = 0; iiw < IW; iiw++) {
  5851. // micro kernel
  5852. float grad = 0.0f;
  5853. for (int64_t ikh = 0; ikh < KH; ikh++) {
  5854. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5855. // For s0 > 1 some values were skipped over in the forward pass.
  5856. // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
  5857. const int64_t tmpw = (iiw + p0 - ikw*d0);
  5858. if (tmpw % s0 != 0) {
  5859. continue;
  5860. }
  5861. const int64_t iow = tmpw / s0;
  5862. // Equivalent logic as above except for s1.
  5863. int64_t ioh;
  5864. if (is_2D) {
  5865. const int64_t tmph = iih + p1 - ikh*d1;
  5866. if (tmph % s1 != 0) {
  5867. continue;
  5868. }
  5869. ioh = tmph / s1;
  5870. } else {
  5871. ioh = 0;
  5872. }
  5873. if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
  5874. continue;
  5875. }
  5876. const float * const grad_in = (const float *) src0->data
  5877. + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  5878. grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
  5879. }
  5880. }
  5881. float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
  5882. dst_data[iih*IW + iiw] = grad;
  5883. }
  5884. }
  5885. }
  5886. }
  5887. }
  5888. }
  5889. // ggml_compute_forward_im2col_3d_f16
  5890. // src0: kernel [OC*IC, KD, KH, KW]
  5891. // src1: image [N*IC, ID, IH, IW]
  5892. // dst: result [N*OD, OH, OW, IC * KD * KH * KW]
  5893. static void ggml_compute_forward_im2col_3d_f16(
  5894. const ggml_compute_params * params,
  5895. ggml_tensor * dst) {
  5896. const ggml_tensor * src0 = dst->src[0];
  5897. const ggml_tensor * src1 = dst->src[1];
  5898. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5899. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5900. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  5901. GGML_TENSOR_BINARY_OP_LOCALS;
  5902. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5903. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5904. const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
  5905. const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
  5906. const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
  5907. const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
  5908. const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
  5909. const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
  5910. const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
  5911. const int32_t IC = ((const int32_t *)(dst->op_params))[9];
  5912. const int ith = params->ith;
  5913. const int nth = params->nth;
  5914. const int64_t N = ne13 / IC;
  5915. const int64_t ID = ne12;
  5916. const int64_t IH = ne11;
  5917. const int64_t IW = ne10;
  5918. const int64_t OC = ne03 / IC;
  5919. GGML_UNUSED(OC);
  5920. const int64_t KD = ne02;
  5921. const int64_t KH = ne01;
  5922. const int64_t KW = ne00;
  5923. const int64_t OD = ne3 / N;
  5924. const int64_t OH = ne2;
  5925. const int64_t OW = ne1;
  5926. const int64_t OH_OW = OH*OW;
  5927. const int64_t KD_KH_KW = KD*KH*KW;
  5928. const int64_t KH_KW = KH*KW;
  5929. const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
  5930. GGML_ASSERT(nb10 == sizeof(float));
  5931. // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
  5932. {
  5933. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  5934. for (int64_t in = 0; in < N; in++) {
  5935. for (int64_t iod = 0; iod < OD; iod++) {
  5936. for (int64_t ioh = 0; ioh < OH; ioh++) {
  5937. for (int64_t iow = 0; iow < OW; iow++) {
  5938. for (int64_t iic = ith; iic < IC; iic += nth) {
  5939. // micro kernel
  5940. ggml_fp16_t * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
  5941. const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
  5942. for (int64_t ikd = 0; ikd < KD; ikd++) {
  5943. for (int64_t ikh = 0; ikh < KH; ikh++) {
  5944. for (int64_t ikw = 0; ikw < KW; ikw++) {
  5945. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  5946. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  5947. const int64_t iid = iod*s2 + ikd*d2 - p2;
  5948. if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
  5949. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
  5950. } else {
  5951. const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
  5952. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(*s);
  5953. }
  5954. }
  5955. }
  5956. }
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. }
  5963. }
  5964. // ggml_compute_forward_im2col_3d_f32
  5965. // src0: kernel [OC*IC, KD, KH, KW]
  5966. // src1: image [N*IC, ID, IH, IW]
  5967. // dst: result [N*OD, OH, OW, IC * KD * KH * KW]
  5968. static void ggml_compute_forward_im2col_3d_f32(
  5969. const ggml_compute_params * params,
  5970. ggml_tensor * dst) {
  5971. const ggml_tensor * src0 = dst->src[0];
  5972. const ggml_tensor * src1 = dst->src[1];
  5973. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5974. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5975. GGML_TENSOR_BINARY_OP_LOCALS;
  5976. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  5977. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  5978. const int32_t s2 = ((const int32_t *)(dst->op_params))[2];
  5979. const int32_t p0 = ((const int32_t *)(dst->op_params))[3];
  5980. const int32_t p1 = ((const int32_t *)(dst->op_params))[4];
  5981. const int32_t p2 = ((const int32_t *)(dst->op_params))[5];
  5982. const int32_t d0 = ((const int32_t *)(dst->op_params))[6];
  5983. const int32_t d1 = ((const int32_t *)(dst->op_params))[7];
  5984. const int32_t d2 = ((const int32_t *)(dst->op_params))[8];
  5985. const int32_t IC = ((const int32_t *)(dst->op_params))[9];
  5986. const int ith = params->ith;
  5987. const int nth = params->nth;
  5988. const int64_t N = ne13 / IC;
  5989. const int64_t ID = ne12;
  5990. const int64_t IH = ne11;
  5991. const int64_t IW = ne10;
  5992. const int64_t OC = ne03 / IC;
  5993. GGML_UNUSED(OC);
  5994. const int64_t KD = ne02;
  5995. const int64_t KH = ne01;
  5996. const int64_t KW = ne00;
  5997. const int64_t OD = ne3 / N;
  5998. const int64_t OH = ne2;
  5999. const int64_t OW = ne1;
  6000. const int64_t OH_OW = OH*OW;
  6001. const int64_t KD_KH_KW = KD*KH*KW;
  6002. const int64_t KH_KW = KH*KW;
  6003. const int64_t IC_KD_KH_KW = IC*KD*KH*KW;
  6004. GGML_ASSERT(nb10 == sizeof(float));
  6005. // im2col: [N*IC, ID, IH, IW] => [N*OD, OH, OW, IC * KD * KH * KW]
  6006. {
  6007. float * const wdata = (float *) dst->data;
  6008. for (int64_t in = 0; in < N; in++) {
  6009. for (int64_t iod = 0; iod < OD; iod++) {
  6010. for (int64_t ioh = 0; ioh < OH; ioh++) {
  6011. for (int64_t iow = 0; iow < OW; iow++) {
  6012. for (int64_t iic = ith; iic < IC; iic += nth) {
  6013. // micro kernel
  6014. float * dst_data = wdata + (in*OD*OH_OW + iod*OH_OW + ioh*OW + iow)*IC_KD_KH_KW; // [IC, KD, KH, KW]
  6015. const float * const src_data = (const float *) ((const char *)src1->data + (in*IC + iic)*nb13); // [ID, IH, IW]
  6016. for (int64_t ikd = 0; ikd < KD; ikd++) {
  6017. for (int64_t ikh = 0; ikh < KH; ikh++) {
  6018. for (int64_t ikw = 0; ikw < KW; ikw++) {
  6019. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  6020. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  6021. const int64_t iid = iod*s2 + ikd*d2 - p2;
  6022. if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
  6023. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
  6024. } else {
  6025. const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
  6026. dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = *s;
  6027. }
  6028. }
  6029. }
  6030. }
  6031. }
  6032. }
  6033. }
  6034. }
  6035. }
  6036. }
  6037. }
  6038. void ggml_compute_forward_im2col_3d(
  6039. const ggml_compute_params * params,
  6040. ggml_tensor * dst) {
  6041. switch (dst->type) {
  6042. case GGML_TYPE_F16:
  6043. {
  6044. ggml_compute_forward_im2col_3d_f16(params, dst);
  6045. } break;
  6046. case GGML_TYPE_F32:
  6047. {
  6048. ggml_compute_forward_im2col_3d_f32(params, dst);
  6049. } break;
  6050. default:
  6051. {
  6052. GGML_ABORT("fatal error");
  6053. }
  6054. }
  6055. }
  6056. static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
  6057. void * a, void * b, float * c) {
  6058. const ggml_type_traits * traits = ggml_get_type_traits(type);
  6059. struct ggml_tensor src1 = {};
  6060. src1.type = type;
  6061. src1.ne[0] = k;
  6062. src1.ne[1] = m;
  6063. src1.ne[2] = 1;
  6064. src1.ne[3] = 1;
  6065. src1.nb[0] = traits->type_size;
  6066. src1.nb[1] = k * traits->type_size;
  6067. src1.nb[2] = src1.nb[1];
  6068. src1.nb[3] = src1.nb[2];
  6069. src1.data = a;
  6070. struct ggml_tensor src0 = {};
  6071. src0.type = type;
  6072. src0.ne[0] = k;
  6073. src0.ne[1] = n;
  6074. src0.ne[2] = 1;
  6075. src0.ne[3] = 1;
  6076. src0.nb[0] = traits->type_size;
  6077. src0.nb[1] = k * traits->type_size;
  6078. src0.nb[2] = src0.nb[1];
  6079. src0.nb[3] = src0.nb[2];
  6080. src0.data = b;
  6081. struct ggml_tensor dst = {};
  6082. dst.ne[0] = n;
  6083. dst.ne[1] = m;
  6084. dst.ne[2] = 1;
  6085. dst.ne[3] = 1;
  6086. dst.nb[0] = sizeof(float);
  6087. dst.nb[1] = n * sizeof(float);
  6088. dst.nb[2] = dst.nb[1];
  6089. dst.nb[3] = dst.nb[2];
  6090. dst.data = c;
  6091. dst.src[0] = &src0;
  6092. dst.src[1] = &src1;
  6093. ggml_compute_forward_mul_mat(params, &dst);
  6094. }
  6095. // ggml_compute_forward_conv_2d
  6096. static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
  6097. const ggml_tensor * kernel, // [KW, KH, IC, OC]
  6098. const ggml_tensor * src, // [W, H, C, N]
  6099. ggml_tensor * dst, // [OW, OH, OC, N]
  6100. ggml_type kernel_type) {
  6101. GGML_ASSERT(ggml_is_contiguous(kernel));
  6102. GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
  6103. GGML_ASSERT(kernel->type == kernel_type);
  6104. const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
  6105. const int32_t stride_x = dst->op_params[0];
  6106. const int32_t stride_y = dst->op_params[1];
  6107. const int32_t pad_x = dst->op_params[2];
  6108. const int32_t pad_y = dst->op_params[3];
  6109. const int32_t dilation_x = dst->op_params[4];
  6110. const int32_t dilation_y = dst->op_params[5];
  6111. const int64_t c_in = src->ne[2];
  6112. const int64_t c_out = kernel->ne[3];
  6113. GGML_ASSERT(c_in == kernel->ne[2]);
  6114. const int64_t src_w = src->ne[0];
  6115. const int64_t src_h = src->ne[1];
  6116. const int64_t knl_w = kernel->ne[0];
  6117. const int64_t knl_h = kernel->ne[1];
  6118. const int64_t dst_w = dst->ne[0];
  6119. const int64_t dst_h = dst->ne[1];
  6120. const float * src_data = (float *) src->data;
  6121. void * knl_data = kernel->data;
  6122. float * dst_data = (float *) dst->data;
  6123. const int64_t knl_n = knl_w * knl_h * c_in;
  6124. const int64_t patch_total = dst->ne[3] * dst_w * dst_h;
  6125. const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float);
  6126. const int64_t batch_size = params->wsize / space_per_patch;
  6127. const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
  6128. const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
  6129. GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
  6130. void * tmp = params->wdata;
  6131. for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
  6132. const int64_t patch_start_batch = batch_i * patches_per_batch;
  6133. const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch,
  6134. patch_total);
  6135. const int64_t patch_n = patch_end_batch - patch_start_batch;
  6136. const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth;
  6137. const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
  6138. const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
  6139. //im2col for a patch
  6140. for (int64_t p = patch_start; p < patch_end; ++p) {
  6141. const int64_t batch_n = p / (dst_w * dst_h);
  6142. const int64_t src_x = (p / dst_w) % dst_h;
  6143. const int64_t src_y = p % dst_w;
  6144. const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]);
  6145. char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size;
  6146. for (int64_t ic = 0; ic < c_in; ++ic) {
  6147. for (int64_t ky = 0; ky < knl_h; ++ky) {
  6148. for (int64_t kx = 0; kx < knl_w; ++kx) {
  6149. const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y;
  6150. const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x;
  6151. int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx;
  6152. float src_val;
  6153. if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
  6154. src_val = 0.0f;
  6155. } else {
  6156. const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]);
  6157. src_val = *src_ptr;
  6158. }
  6159. char * element_ptr = dst_row + dst_idx * traits->type_size;
  6160. if (kernel_type == GGML_TYPE_F32) {
  6161. *(float *) element_ptr = src_val;
  6162. } else if (kernel_type == GGML_TYPE_F16) {
  6163. *(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
  6164. }
  6165. }
  6166. }
  6167. }
  6168. } // patches handled by this thread
  6169. ggml_barrier(params->threadpool);
  6170. float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size);
  6171. GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize);
  6172. // GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out]
  6173. ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output);
  6174. ggml_barrier(params->threadpool);
  6175. //permute back [OC, N, OH, OW] to [N, OC, OH, OW]
  6176. const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth;
  6177. const int64_t permute_start = params->ith * permute_per_thread;
  6178. const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n);
  6179. for (int64_t i = permute_start; i < permute_end; ++i) {
  6180. const int64_t p = patch_start_batch + i;
  6181. const int64_t batch_n = p / (dst_w * dst_h);
  6182. const int64_t dst_y = (p / dst_w) % dst_h;
  6183. const int64_t dst_x = p % dst_w;
  6184. for (int64_t oc = 0; oc < c_out; ++oc) {
  6185. const float value = gemm_output[i * c_out + oc];
  6186. float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]);
  6187. *dst_ptr = value;
  6188. }
  6189. }
  6190. }
  6191. }
  6192. void ggml_compute_forward_conv_2d(
  6193. const ggml_compute_params * params,
  6194. ggml_tensor * dst) {
  6195. const ggml_tensor * src0 = dst->src[0];
  6196. const ggml_tensor * src1 = dst->src[1];
  6197. ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
  6198. }
  6199. // ggml_compute_forward_conv_3d
  6200. static void ggml_compute_forward_conv_3d_impl(const ggml_compute_params * params,
  6201. const ggml_tensor * kernel,
  6202. const ggml_tensor * src,
  6203. ggml_tensor * dst,
  6204. ggml_type kernel_type) {
  6205. GGML_ASSERT(ggml_is_contiguous(kernel));
  6206. GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
  6207. GGML_ASSERT(kernel->type == kernel_type);
  6208. const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
  6209. const int32_t s0 = dst->op_params[0];
  6210. const int32_t s1 = dst->op_params[1];
  6211. const int32_t s2 = dst->op_params[2];
  6212. const int32_t p0 = dst->op_params[3];
  6213. const int32_t p1 = dst->op_params[4];
  6214. const int32_t p2 = dst->op_params[5];
  6215. const int32_t d0 = dst->op_params[6];
  6216. const int32_t d1 = dst->op_params[7];
  6217. const int32_t d2 = dst->op_params[8];
  6218. const int32_t c = dst->op_params[9];
  6219. const int32_t n = dst->op_params[10];
  6220. const int32_t oc = dst->op_params[11];
  6221. const int64_t src_w = src->ne[0];
  6222. const int64_t src_h = src->ne[1];
  6223. const int64_t src_d = src->ne[2];
  6224. const int64_t knl_w = kernel->ne[0];
  6225. const int64_t knl_h = kernel->ne[1];
  6226. const int64_t knl_d = kernel->ne[2];
  6227. const int64_t dst_w = dst->ne[0];
  6228. const int64_t dst_h = dst->ne[1];
  6229. const int64_t dst_d = dst->ne[2];
  6230. const float * src_data = (float *) src->data;
  6231. void * knl_data = kernel->data;
  6232. float * dst_data = (float *) dst->data;
  6233. const int64_t knl_n_per_channel = knl_w * knl_h * knl_d;
  6234. const int64_t knl_n_total = knl_n_per_channel * c;
  6235. const int64_t patch_total = n * dst_w * dst_h * dst_d;
  6236. const int64_t space_per_patch = knl_n_total * traits->type_size + oc * sizeof(float);
  6237. const int64_t batch_size = params->wsize / space_per_patch;
  6238. const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
  6239. const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
  6240. GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
  6241. void * tmp = params->wdata;
  6242. for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
  6243. const int64_t patch_start_batch = batch_i * patches_per_batch;
  6244. const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch, patch_total);
  6245. const int64_t patch_n_in_batch = patch_end_batch - patch_start_batch;
  6246. const int64_t patch_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
  6247. const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
  6248. const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
  6249. for (int64_t p = patch_start; p < patch_end; ++p) {
  6250. const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
  6251. const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
  6252. const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
  6253. const int64_t dst_z = p_in_batch / (dst_w * dst_h);
  6254. const int64_t dst_y = p_in_depth / dst_w;
  6255. const int64_t dst_x = p_in_depth % dst_w;
  6256. char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n_total * traits->type_size;
  6257. for (int64_t ic = 0; ic < c; ++ic) {
  6258. for (int64_t kz = 0; kz < knl_d; ++kz) {
  6259. for (int64_t ky = 0; ky < knl_h; ++ky) {
  6260. for (int64_t kx = 0; kx < knl_w; ++kx) {
  6261. const int64_t sz = dst_z * s2 + kz * d2 - p2;
  6262. const int64_t sy = dst_y * s1 + ky * d1 - p1;
  6263. const int64_t sx = dst_x * s0 + kx * d0 - p0;
  6264. int64_t dst_idx = ic * knl_n_per_channel + kz * (knl_h * knl_w) + ky * knl_w + kx;
  6265. float src_val;
  6266. if (sz < 0 || sz >= src_d || sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
  6267. src_val = 0.0f;
  6268. } else {
  6269. const int64_t cn_idx = batch_idx * c + ic;
  6270. const float * src_ptr = (const float *)((const char *)src_data + sx*src->nb[0] + sy*src->nb[1] + sz*src->nb[2] + cn_idx*src->nb[3]);
  6271. src_val = *src_ptr;
  6272. }
  6273. char * element_ptr = dst_row + dst_idx * traits->type_size;
  6274. if (kernel_type == GGML_TYPE_F32) {
  6275. *(float *)element_ptr = src_val;
  6276. } else if (kernel_type == GGML_TYPE_F16) {
  6277. *(ggml_fp16_t *)element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
  6278. }
  6279. }
  6280. }
  6281. }
  6282. }
  6283. }
  6284. ggml_barrier(params->threadpool);
  6285. float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n_total * traits->type_size);
  6286. ggml_call_mul_mat(kernel_type, params, patch_n_in_batch, oc, knl_n_total, tmp, knl_data, gemm_output);
  6287. ggml_barrier(params->threadpool);
  6288. const int64_t permute_per_thread = (patch_n_in_batch + params->nth - 1) / params->nth;
  6289. const int64_t permute_start = params->ith * permute_per_thread;
  6290. const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n_in_batch);
  6291. for (int64_t i = permute_start; i < permute_end; ++i) {
  6292. const int64_t p = patch_start_batch + i;
  6293. const int64_t p_in_batch = p % (dst_w * dst_h * dst_d);
  6294. const int64_t p_in_depth = p_in_batch % (dst_w * dst_h);
  6295. const int64_t batch_idx = p / (dst_w * dst_h * dst_d);
  6296. const int64_t dst_z = p_in_batch / (dst_w * dst_h);
  6297. const int64_t dst_y = p_in_depth / dst_w;
  6298. const int64_t dst_x = p_in_depth % dst_w;
  6299. for (int64_t ioc = 0; ioc < oc; ++ioc) {
  6300. const float value = gemm_output[i * oc + ioc];
  6301. const int64_t ocn_idx = batch_idx * oc + ioc;
  6302. float * dst_ptr = (float *)((char *)dst_data + dst_x*dst->nb[0] + dst_y*dst->nb[1] + dst_z*dst->nb[2] + ocn_idx*dst->nb[3]);
  6303. *dst_ptr = value;
  6304. }
  6305. }
  6306. }
  6307. }
  6308. void ggml_compute_forward_conv_3d(
  6309. const ggml_compute_params * params,
  6310. ggml_tensor * dst) {
  6311. const ggml_tensor * src0 = dst->src[0];
  6312. const ggml_tensor * src1 = dst->src[1];
  6313. ggml_compute_forward_conv_3d_impl(params, src0, src1, dst, src0->type);
  6314. }
  6315. // ggml_compute_forward_conv_transpose_2d
  6316. void ggml_compute_forward_conv_transpose_2d(
  6317. const ggml_compute_params * params,
  6318. ggml_tensor * dst) {
  6319. const ggml_tensor * src0 = dst->src[0];
  6320. const ggml_tensor * src1 = dst->src[1];
  6321. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6322. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6323. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6324. GGML_TENSOR_BINARY_OP_LOCALS
  6325. const int ith = params->ith;
  6326. const int nth = params->nth;
  6327. const int nk = ne00*ne01*ne02*ne03;
  6328. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6329. GGML_ASSERT(nb10 == sizeof(float));
  6330. if (ith == 0) {
  6331. memset(params->wdata, 0, params->wsize);
  6332. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  6333. {
  6334. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6335. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6336. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6337. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  6338. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  6339. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6340. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6341. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  6342. }
  6343. }
  6344. }
  6345. }
  6346. }
  6347. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  6348. {
  6349. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  6350. for (int i12 = 0; i12 < ne12; i12++) {
  6351. for (int i11 = 0; i11 < ne11; i11++) {
  6352. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  6353. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  6354. for (int i10 = 0; i10 < ne10; i10++) {
  6355. dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]);
  6356. }
  6357. }
  6358. }
  6359. }
  6360. memset(dst->data, 0, ggml_nbytes(dst));
  6361. }
  6362. ggml_barrier(params->threadpool);
  6363. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  6364. // total patches in dst
  6365. const int np = ne2;
  6366. // patches per thread
  6367. const int dp = (np + nth - 1)/nth;
  6368. // patch range for this thread
  6369. const int ip0 = dp*ith;
  6370. const int ip1 = MIN(ip0 + dp, np);
  6371. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6372. ggml_fp16_t * const wdata_src = wdata + nk;
  6373. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  6374. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  6375. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  6376. for (int i11 = 0; i11 < ne11; i11++) {
  6377. for (int i10 = 0; i10 < ne10; i10++) {
  6378. const int i1n = i11*ne10*ne12 + i10*ne12;
  6379. for (int i01 = 0; i01 < ne01; i01++) {
  6380. for (int i00 = 0; i00 < ne00; i00++) {
  6381. float v = 0;
  6382. ggml_vec_dot_f16(ne03, &v, 0,
  6383. wdata_src + i1n, 0,
  6384. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  6385. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  6386. }
  6387. }
  6388. }
  6389. }
  6390. }
  6391. }
  6392. // ggml_compute_forward_conv_2d_dw
  6393. struct ggml_conv_2d_dw_params {
  6394. int64_t channels;
  6395. int64_t batch;
  6396. int64_t src_w;
  6397. int64_t src_h;
  6398. int64_t dst_w;
  6399. int64_t dst_h;
  6400. int64_t knl_w;
  6401. int64_t knl_h;
  6402. int stride_x;
  6403. int stride_y;
  6404. int pad_x;
  6405. int pad_y;
  6406. int dilation_x;
  6407. int dilation_y;
  6408. };
  6409. static void ggml_compute_forward_conv_2d_dw_cwhn(
  6410. const ggml_compute_params * params,
  6411. const ggml_tensor * src,
  6412. const ggml_tensor * kernel,
  6413. ggml_tensor * dst,
  6414. const ggml_conv_2d_dw_params & p) {
  6415. const int64_t c = p.channels;
  6416. const float * knl_data = (const float *)kernel->data;
  6417. const int64_t rows_total = p.dst_h * p.batch;
  6418. const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
  6419. const int64_t row_start = params->ith * rows_per_thread;
  6420. const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
  6421. #ifdef GGML_SIMD
  6422. const int64_t pkg_size = GGML_F32_EPR;
  6423. const int64_t pkg_count = c / pkg_size;
  6424. const int64_t c_pkg_end = pkg_count * pkg_size;
  6425. #else
  6426. const int64_t c_pkg_end = 0;
  6427. #endif
  6428. for (int64_t row = row_start; row < row_end; ++row) {
  6429. const int64_t dst_y = row % p.dst_h;
  6430. const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
  6431. for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
  6432. float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
  6433. const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
  6434. const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
  6435. #ifdef GGML_SIMD
  6436. // Vectorized loop
  6437. for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
  6438. GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
  6439. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6440. const int64_t src_y = src_y_base + knl_y * p.dilation_y;
  6441. if (src_y < 0 || src_y >= p.src_h) {
  6442. continue;
  6443. }
  6444. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6445. const int64_t src_x = src_x_base + knl_x * p.dilation_x;
  6446. if (src_x < 0 || src_x >= p.src_w) {
  6447. continue;
  6448. }
  6449. GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
  6450. GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
  6451. sum = GGML_F32_VEC_FMA(sum, k, s);
  6452. }
  6453. }
  6454. GGML_F32_VEC_STORE(dst_data + c_i, sum);
  6455. }
  6456. #endif
  6457. // Scalar loop
  6458. for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
  6459. float sum = 0.0f;
  6460. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6461. const int64_t src_y = src_y_base + knl_y * p.dilation_y;
  6462. if (src_y < 0 || src_y >= p.src_h) {
  6463. continue;
  6464. }
  6465. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6466. const int64_t src_x = src_x_base + knl_x * p.dilation_x;
  6467. if (src_x < 0 || src_x >= p.src_w) {
  6468. continue;
  6469. }
  6470. sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
  6471. * src_data[(src_y * p.src_w + src_x) * c + c_i];
  6472. }
  6473. }
  6474. dst_data[c_i] = sum;
  6475. }
  6476. }
  6477. }
  6478. }
  6479. static void ggml_compute_forward_conv_2d_dw_whcn(
  6480. const ggml_compute_params * params,
  6481. const ggml_tensor * src,
  6482. const ggml_tensor * kernel,
  6483. ggml_tensor * dst,
  6484. const ggml_conv_2d_dw_params & p) {
  6485. const int64_t n = p.channels * p.batch;
  6486. const int64_t per_thread = (n + params->nth - 1) / params->nth;
  6487. const int64_t start = params->ith * per_thread;
  6488. const int64_t end = MIN(start + per_thread, n);
  6489. for (int64_t i = start; i < end; ++i) {
  6490. const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
  6491. const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
  6492. float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
  6493. for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
  6494. for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
  6495. float sum = 0.0f;
  6496. for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
  6497. const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
  6498. if (src_y < 0 || src_y >= p.src_h) {
  6499. continue;
  6500. }
  6501. for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
  6502. const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
  6503. if (src_x < 0 || src_x >= p.src_w) {
  6504. continue;
  6505. }
  6506. sum += knl_data[knl_y * p.knl_w + knl_x]
  6507. * src_data[src_y * p.src_w + src_x];
  6508. }
  6509. }
  6510. dst_data[dst_y * p.dst_w + dst_x] = sum;
  6511. }
  6512. }
  6513. }
  6514. }
  6515. void ggml_compute_forward_conv_2d_dw(
  6516. const ggml_compute_params * params,
  6517. ggml_tensor * dst) {
  6518. const ggml_tensor * kernel = dst->src[0];
  6519. const ggml_tensor * src = dst->src[1];
  6520. ggml_conv_2d_dw_params p;
  6521. p.channels = src->ne[2];
  6522. p.batch = src->ne[3];
  6523. p.src_w = src->ne[0];
  6524. p.src_h = src->ne[1];
  6525. p.dst_w = dst->ne[0];
  6526. p.dst_h = dst->ne[1];
  6527. p.knl_w = kernel->ne[0];
  6528. p.knl_h = kernel->ne[1];
  6529. p.stride_x = dst->op_params[0];
  6530. p.stride_y = dst->op_params[1];
  6531. p.pad_x = dst->op_params[2];
  6532. p.pad_y = dst->op_params[3];
  6533. p.dilation_x = dst->op_params[4];
  6534. p.dilation_y = dst->op_params[5];
  6535. GGML_ASSERT(kernel->ne[3] == p.channels);
  6536. GGML_ASSERT(dst->ne[3] == p.batch);
  6537. if (ggml_is_contiguous(src)) {
  6538. ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
  6539. } else if (ggml_is_contiguous_channels(src)) {
  6540. // kernel should also have channels most contiguous in memory
  6541. GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
  6542. ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
  6543. } else {
  6544. GGML_ABORT("non-contiguous memory layout not supported");
  6545. }
  6546. }
  6547. // ggml_compute_forward_pool_1d_sk_p0
  6548. static void ggml_compute_forward_pool_1d_sk_p0(
  6549. const ggml_compute_params * params,
  6550. const ggml_op_pool op,
  6551. const int k,
  6552. ggml_tensor * dst) {
  6553. const ggml_tensor * src = dst->src[0];
  6554. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  6555. if (params->ith != 0) {
  6556. return;
  6557. }
  6558. const char * cdata = (const char *)src->data;
  6559. const char * const data_end = cdata + ggml_nbytes(src);
  6560. float * drow = (float *)dst->data;
  6561. const int64_t rs = dst->ne[0];
  6562. while (cdata < data_end) {
  6563. const void * srow = (const void *)cdata;
  6564. int j = 0;
  6565. for (int64_t i = 0; i < rs; ++i) {
  6566. switch (op) {
  6567. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  6568. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  6569. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6570. }
  6571. for (int ki = 0; ki < k; ++ki) {
  6572. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  6573. switch (op) {
  6574. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  6575. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  6576. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6577. }
  6578. ++j;
  6579. }
  6580. switch (op) {
  6581. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  6582. case GGML_OP_POOL_MAX: break;
  6583. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6584. }
  6585. }
  6586. cdata += src->nb[1];
  6587. drow += rs;
  6588. }
  6589. }
  6590. // ggml_compute_forward_pool_1d
  6591. void ggml_compute_forward_pool_1d(
  6592. const ggml_compute_params * params,
  6593. ggml_tensor * dst) {
  6594. const int32_t * opts = (const int32_t *)dst->op_params;
  6595. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6596. const int k0 = opts[1];
  6597. const int s0 = opts[2];
  6598. const int p0 = opts[3];
  6599. GGML_ASSERT(p0 == 0); // padding not supported
  6600. GGML_ASSERT(k0 == s0); // only s = k supported
  6601. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  6602. }
  6603. // ggml_compute_forward_pool_2d
  6604. void ggml_compute_forward_pool_2d(
  6605. const ggml_compute_params * params,
  6606. ggml_tensor * dst) {
  6607. const ggml_tensor * src = dst->src[0];
  6608. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  6609. if (params->ith != 0) {
  6610. return;
  6611. }
  6612. const int32_t * opts = (const int32_t *)dst->op_params;
  6613. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6614. const int k0 = opts[1];
  6615. const int k1 = opts[2];
  6616. const int s0 = opts[3];
  6617. const int s1 = opts[4];
  6618. const int p0 = opts[5];
  6619. const int p1 = opts[6];
  6620. const char * cdata = (const char*)src->data;
  6621. const char * const data_end = cdata + ggml_nbytes(src);
  6622. const int64_t px = dst->ne[0];
  6623. const int64_t py = dst->ne[1];
  6624. const int64_t pa = px * py;
  6625. float * dplane = (float *)dst->data;
  6626. const int ka = k0 * k1;
  6627. const int offset0 = -p0;
  6628. const int offset1 = -p1;
  6629. while (cdata < data_end) {
  6630. for (int oy = 0; oy < py; ++oy) {
  6631. float * const drow = dplane + oy * px;
  6632. for (int ox = 0; ox < px; ++ox) {
  6633. float * const out = drow + ox;
  6634. switch (op) {
  6635. case GGML_OP_POOL_AVG: *out = 0; break;
  6636. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  6637. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6638. }
  6639. const int ix = offset0 + ox * s0;
  6640. const int iy = offset1 + oy * s1;
  6641. for (int ky = 0; ky < k1; ++ky) {
  6642. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  6643. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  6644. for (int kx = 0; kx < k0; ++kx) {
  6645. int j = ix + kx;
  6646. if (j < 0 || j >= src->ne[0]) continue;
  6647. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  6648. switch (op) {
  6649. case GGML_OP_POOL_AVG: *out += srow_j; break;
  6650. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  6651. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6652. }
  6653. }
  6654. }
  6655. switch (op) {
  6656. case GGML_OP_POOL_AVG: *out /= ka; break;
  6657. case GGML_OP_POOL_MAX: break;
  6658. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  6659. }
  6660. }
  6661. }
  6662. cdata += src->nb[2];
  6663. dplane += pa;
  6664. }
  6665. }
  6666. // ggml_compute_forward_pool_2d_back
  6667. void ggml_compute_forward_pool_2d_back(
  6668. const ggml_compute_params * params,
  6669. ggml_tensor * dst) {
  6670. const ggml_tensor * src = dst->src[0];
  6671. const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
  6672. assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
  6673. if (params->ith != 0) {
  6674. return;
  6675. }
  6676. const int32_t * opts = (const int32_t *)dst->op_params;
  6677. ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
  6678. const int k0 = opts[1];
  6679. const int k1 = opts[2];
  6680. const int s0 = opts[3];
  6681. const int s1 = opts[4];
  6682. const int p0 = opts[5];
  6683. const int p1 = opts[6];
  6684. char * cdata = (char *) dst->data;
  6685. const char * cdataf = (const char *) dstf->data;
  6686. const char * const data_end = cdata + ggml_nbytes(dst);
  6687. GGML_ASSERT(params->ith == 0);
  6688. memset(cdata, 0, ggml_nbytes(dst));
  6689. const int64_t px = src->ne[0];
  6690. const int64_t py = src->ne[1];
  6691. const int64_t pa = px * py;
  6692. const float * splane = (const float *) src->data;
  6693. const int ka = k0 * k1;
  6694. const int offset0 = -p0;
  6695. const int offset1 = -p1;
  6696. while (cdata < data_end) {
  6697. for (int oy = 0; oy < py; ++oy) {
  6698. const float * const srow = splane + oy * px;
  6699. for (int ox = 0; ox < px; ++ox) {
  6700. const float grad0 = srow[ox];
  6701. const int ix = offset0 + ox * s0;
  6702. const int iy = offset1 + oy * s1;
  6703. if (op == GGML_OP_POOL_MAX) {
  6704. float maxval = -FLT_MAX;
  6705. int kxmax = -1;
  6706. int kymax = -1;
  6707. for (int ky = 0; ky < k1; ++ky) {
  6708. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  6709. continue;
  6710. }
  6711. const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
  6712. for (int kx = 0; kx < k0; ++kx) {
  6713. int j = ix + kx;
  6714. if (j < 0 || j >= dst->ne[0]) {
  6715. continue;
  6716. }
  6717. const float val = dst->type == GGML_TYPE_F32 ?
  6718. ((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
  6719. if (val <= maxval) {
  6720. continue;
  6721. }
  6722. maxval = val;
  6723. kxmax = kx;
  6724. kymax = ky;
  6725. }
  6726. }
  6727. if (kxmax == -1 || kymax == -1) {
  6728. continue;
  6729. }
  6730. void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
  6731. const int j = ix + kxmax;
  6732. if (dst->type == GGML_TYPE_F32) {
  6733. ((float *) drow)[j] += grad0;
  6734. } else {
  6735. ((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
  6736. }
  6737. } else if (op == GGML_OP_POOL_AVG) {
  6738. const float grad = grad0 / ka;
  6739. for (int ky = 0; ky < k1; ++ky) {
  6740. if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
  6741. continue;
  6742. }
  6743. void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
  6744. for (int kx = 0; kx < k0; ++kx) {
  6745. int j = ix + kx;
  6746. if (j < 0 || j >= dst->ne[0]) {
  6747. continue;
  6748. }
  6749. if (dst->type == GGML_TYPE_F32) {
  6750. ((float *) drow)[j] += grad;
  6751. } else {
  6752. ((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad);
  6753. }
  6754. }
  6755. }
  6756. } else {
  6757. GGML_ASSERT(false);
  6758. }
  6759. }
  6760. }
  6761. cdata += dst->nb[2];
  6762. cdataf += dst->nb[2];
  6763. splane += pa;
  6764. }
  6765. }
  6766. // ggml_compute_forward_upscale
  6767. static void ggml_compute_forward_upscale_f32(
  6768. const ggml_compute_params * params,
  6769. ggml_tensor * dst) {
  6770. const ggml_tensor * src0 = dst->src[0];
  6771. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6772. const int ith = params->ith;
  6773. const int nth = params->nth;
  6774. GGML_TENSOR_UNARY_OP_LOCALS
  6775. float sf0 = (float)ne0/src0->ne[0];
  6776. float sf1 = (float)ne1/src0->ne[1];
  6777. float sf2 = (float)ne2/src0->ne[2];
  6778. float sf3 = (float)ne3/src0->ne[3];
  6779. const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
  6780. const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
  6781. if (mode == GGML_SCALE_MODE_NEAREST) {
  6782. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6783. const int64_t i03 = i3 / sf3;
  6784. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  6785. const int64_t i02 = i2 / sf2;
  6786. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6787. const int64_t i01 = i1 / sf1;
  6788. for (int64_t i0 = 0; i0 < ne0; i0++) {
  6789. const int64_t i00 = i0 / sf0;
  6790. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6791. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  6792. *y = *x;
  6793. }
  6794. }
  6795. }
  6796. }
  6797. } else if (mode == GGML_SCALE_MODE_BILINEAR) {
  6798. float pixel_offset = 0.5f;
  6799. if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
  6800. pixel_offset = 0.0f;
  6801. sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
  6802. sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
  6803. }
  6804. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6805. const int64_t i03 = i3 / sf3;
  6806. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  6807. const int64_t i02 = i2 / sf2;
  6808. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6809. const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
  6810. int64_t y0 = (int64_t)floorf(y);
  6811. int64_t y1 = y0 + 1;
  6812. y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
  6813. y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
  6814. float dy = y - (float)y0;
  6815. dy = std::max(0.0f, std::min(dy, 1.0f));
  6816. for (int64_t i0 = 0; i0 < ne0; i0++) {
  6817. const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
  6818. int64_t x0 = (int64_t)floorf(x);
  6819. int64_t x1 = x0 + 1;
  6820. x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
  6821. x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
  6822. float dx = x - (float)x0;
  6823. dx = std::max(0.0f, std::min(dx, 1.0f));
  6824. // fetch the four surrounding pixel values and interpolate
  6825. const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
  6826. const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
  6827. const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
  6828. const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
  6829. const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
  6830. float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  6831. *y_dst = val;
  6832. }
  6833. }
  6834. }
  6835. }
  6836. } else {
  6837. GGML_ABORT("unsupported upscale mode");
  6838. }
  6839. }
  6840. void ggml_compute_forward_upscale(
  6841. const ggml_compute_params * params,
  6842. ggml_tensor * dst) {
  6843. const ggml_tensor * src0 = dst->src[0];
  6844. switch (src0->type) {
  6845. case GGML_TYPE_F32:
  6846. {
  6847. ggml_compute_forward_upscale_f32(params, dst);
  6848. } break;
  6849. default:
  6850. {
  6851. GGML_ABORT("fatal error");
  6852. }
  6853. }
  6854. }
  6855. // ggml_compute_forward_pad
  6856. static void ggml_compute_forward_pad_f32(
  6857. const ggml_compute_params * params,
  6858. ggml_tensor * dst) {
  6859. const ggml_tensor * src0 = dst->src[0];
  6860. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6861. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6862. const int ith = params->ith;
  6863. const int nth = params->nth;
  6864. GGML_TENSOR_UNARY_OP_LOCALS
  6865. float * dst_ptr = (float *) dst->data;
  6866. const int32_t lp0 = ggml_get_op_params_i32(dst, 0);
  6867. const int32_t rp0 = ggml_get_op_params_i32(dst, 1);
  6868. const int32_t lp1 = ggml_get_op_params_i32(dst, 2);
  6869. const int32_t rp1 = ggml_get_op_params_i32(dst, 3);
  6870. const int32_t lp2 = ggml_get_op_params_i32(dst, 4);
  6871. const int32_t rp2 = ggml_get_op_params_i32(dst, 5);
  6872. const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
  6873. const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
  6874. // TODO: optimize
  6875. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  6876. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  6877. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6878. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  6879. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  6880. if ((i0 >= lp0 && i0 < ne0 - rp0) \
  6881. && (i1 >= lp1 && i1 < ne1 - rp1) \
  6882. && (i2 >= lp2 && i2 < ne2 - rp2) \
  6883. && (i3 >= lp3 && i3 < ne3 - rp3)) {
  6884. const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
  6885. const float * src_ptr = (const float *)((char *) src0->data + src_idx);
  6886. dst_ptr[dst_idx] = *src_ptr;
  6887. } else {
  6888. dst_ptr[dst_idx] = 0;
  6889. }
  6890. }
  6891. }
  6892. }
  6893. }
  6894. }
  6895. void ggml_compute_forward_pad(
  6896. const ggml_compute_params * params,
  6897. ggml_tensor * dst) {
  6898. const ggml_tensor * src0 = dst->src[0];
  6899. switch (src0->type) {
  6900. case GGML_TYPE_F32:
  6901. {
  6902. ggml_compute_forward_pad_f32(params, dst);
  6903. } break;
  6904. default:
  6905. {
  6906. GGML_ABORT("fatal error");
  6907. }
  6908. }
  6909. }
  6910. // ggml_compute_forward_pad_reflect_1d
  6911. void ggml_compute_forward_pad_reflect_1d(
  6912. const ggml_compute_params * params,
  6913. ggml_tensor * dst) {
  6914. const ggml_tensor * src0 = dst->src[0];
  6915. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6916. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6917. const int ith = params->ith;
  6918. const int nth = params->nth;
  6919. const int32_t * opts = (const int32_t *) dst->op_params;
  6920. const int p0 = opts[0];
  6921. const int p1 = opts[1];
  6922. GGML_TENSOR_UNARY_OP_LOCALS
  6923. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6924. for (int64_t i2 = 0; i2 < ne2; i2++) {
  6925. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  6926. float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
  6927. float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
  6928. ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
  6929. for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
  6930. for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
  6931. }
  6932. }
  6933. }
  6934. }
  6935. // ggml_compute_forward_roll
  6936. static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
  6937. if (i < 0) {
  6938. return i + ne;
  6939. } else if (i >= ne) {
  6940. return i - ne;
  6941. }
  6942. return i;
  6943. }
  6944. static void ggml_compute_forward_roll_f32(
  6945. const ggml_compute_params * params,
  6946. ggml_tensor * dst) {
  6947. const ggml_tensor * src0 = dst->src[0];
  6948. const float * src_data = (const float *) src0->data;
  6949. float * dst_data = (float *) dst->data;
  6950. GGML_TENSOR_UNARY_OP_LOCALS
  6951. const int s0 = ggml_get_op_params_i32(dst, 0);
  6952. const int s1 = ggml_get_op_params_i32(dst, 1);
  6953. const int s2 = ggml_get_op_params_i32(dst, 2);
  6954. const int s3 = ggml_get_op_params_i32(dst, 3);
  6955. const int64_t total = ne1 * ne2 * ne3;
  6956. const int64_t per_thread = (total + params->nth) / params->nth;
  6957. const int64_t start = params->ith * per_thread;
  6958. const int64_t end = std::min(start + per_thread, total);
  6959. for (int64_t i = start; i < end; ++i) {
  6960. const int64_t i1 = i % ne1;
  6961. const int64_t i2 = (i / ne1) % ne2;
  6962. const int64_t i3 = i / (ne2 * ne1);
  6963. float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
  6964. const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
  6965. const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
  6966. const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
  6967. const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
  6968. const int64_t s = ggml_wrap_index(-s0, ne00);
  6969. const int64_t n = ne00 - s;
  6970. ggml_vec_cpy_f32(n, dst_row, src_row + s);
  6971. ggml_vec_cpy_f32(s, dst_row + n, src_row);
  6972. }
  6973. }
  6974. void ggml_compute_forward_roll(
  6975. const ggml_compute_params * params,
  6976. ggml_tensor * dst) {
  6977. const ggml_tensor * src0 = dst->src[0];
  6978. switch (src0->type) {
  6979. case GGML_TYPE_F32:
  6980. {
  6981. ggml_compute_forward_roll_f32(params, dst);
  6982. } break;
  6983. default:
  6984. {
  6985. GGML_ABORT("fatal error");
  6986. }
  6987. }
  6988. }
  6989. // ggml_compute_forward_arange
  6990. static void ggml_compute_forward_arange_f32(
  6991. const ggml_compute_params * params,
  6992. ggml_tensor * dst) {
  6993. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6994. const int ith = params->ith;
  6995. const int nth = params->nth;
  6996. const float start = ggml_get_op_params_f32(dst, 0);
  6997. const float stop = ggml_get_op_params_f32(dst, 1);
  6998. const float step = ggml_get_op_params_f32(dst, 2);
  6999. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  7000. GGML_ASSERT(ggml_nelements(dst) == steps);
  7001. for (int64_t i = ith; i < steps; i+= nth) {
  7002. float value = start + step * i;
  7003. ((float *)dst->data)[i] = value;
  7004. }
  7005. }
  7006. void ggml_compute_forward_arange(
  7007. const ggml_compute_params * params,
  7008. ggml_tensor * dst) {
  7009. switch (dst->type) {
  7010. case GGML_TYPE_F32:
  7011. {
  7012. ggml_compute_forward_arange_f32(params, dst);
  7013. } break;
  7014. default:
  7015. {
  7016. GGML_ABORT("fatal error");
  7017. }
  7018. }
  7019. }
  7020. static void ggml_compute_forward_timestep_embedding_f32(
  7021. const ggml_compute_params * params,
  7022. ggml_tensor * dst) {
  7023. const ggml_tensor * src0 = dst->src[0];
  7024. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7025. const int ith = params->ith;
  7026. const int nth = params->nth;
  7027. GGML_TENSOR_UNARY_OP_LOCALS
  7028. const int dim = ggml_get_op_params_i32(dst, 0);
  7029. const int max_period = ggml_get_op_params_i32(dst, 1);
  7030. int half = dim / 2;
  7031. for (int64_t i = 0; i < ne00; i++) {
  7032. float * embed_data = (float *)((char *) dst->data + i*nb1);
  7033. for (int64_t j = ith; j < half; j += nth) {
  7034. float timestep = ((float *)src0->data)[i];
  7035. float freq = (float)expf(-logf(max_period) * j / half);
  7036. float arg = timestep * freq;
  7037. embed_data[j] = cosf(arg);
  7038. embed_data[j + half] = sinf(arg);
  7039. }
  7040. if (dim % 2 != 0 && ith == 0) {
  7041. embed_data[2 * half] = 0.f;
  7042. }
  7043. }
  7044. }
  7045. void ggml_compute_forward_timestep_embedding(
  7046. const ggml_compute_params * params,
  7047. ggml_tensor * dst) {
  7048. const ggml_tensor * src0 = dst->src[0];
  7049. switch (src0->type) {
  7050. case GGML_TYPE_F32:
  7051. {
  7052. ggml_compute_forward_timestep_embedding_f32(params, dst);
  7053. } break;
  7054. default:
  7055. {
  7056. GGML_ABORT("fatal error");
  7057. }
  7058. }
  7059. }
  7060. // ggml_compute_forward_argsort
  7061. static void ggml_compute_forward_argsort_f32(
  7062. const ggml_compute_params * params,
  7063. ggml_tensor * dst) {
  7064. const ggml_tensor * src0 = dst->src[0];
  7065. GGML_TENSOR_UNARY_OP_LOCALS
  7066. GGML_ASSERT(nb0 == sizeof(float));
  7067. const int ith = params->ith;
  7068. const int nth = params->nth;
  7069. const int64_t nr = ggml_nrows(src0);
  7070. ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  7071. for (int64_t i = ith; i < nr; i += nth) {
  7072. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  7073. const float * src_data = (float *)((char *) src0->data + i*nb01);
  7074. for (int64_t j = 0; j < ne0; j++) {
  7075. dst_data[j] = j;
  7076. }
  7077. // C doesn't have a functional sort, so we do a bubble sort instead
  7078. for (int64_t j = 0; j < ne0; j++) {
  7079. for (int64_t k = j + 1; k < ne0; k++) {
  7080. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  7081. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  7082. int32_t tmp = dst_data[j];
  7083. dst_data[j] = dst_data[k];
  7084. dst_data[k] = tmp;
  7085. }
  7086. }
  7087. }
  7088. }
  7089. }
  7090. void ggml_compute_forward_argsort(
  7091. const ggml_compute_params * params,
  7092. ggml_tensor * dst) {
  7093. const ggml_tensor * src0 = dst->src[0];
  7094. switch (src0->type) {
  7095. case GGML_TYPE_F32:
  7096. {
  7097. ggml_compute_forward_argsort_f32(params, dst);
  7098. } break;
  7099. default:
  7100. {
  7101. GGML_ABORT("fatal error");
  7102. }
  7103. }
  7104. }
  7105. // ggml_compute_forward_flash_attn_ext
  7106. static void ggml_compute_forward_flash_attn_ext_f16(
  7107. const ggml_compute_params * params,
  7108. ggml_tensor * dst) {
  7109. const ggml_tensor * q = dst->src[0];
  7110. const ggml_tensor * k = dst->src[1];
  7111. const ggml_tensor * v = dst->src[2];
  7112. const ggml_tensor * mask = dst->src[3];
  7113. const ggml_tensor * sinks = dst->src[4];
  7114. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  7115. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  7116. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  7117. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  7118. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  7119. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  7120. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7121. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  7122. const int ith = params->ith;
  7123. const int nth = params->nth;
  7124. const int64_t DK = nek0;
  7125. const int64_t DV = nev0;
  7126. const int64_t N = neq1;
  7127. GGML_ASSERT(ne0 == DV);
  7128. GGML_ASSERT(ne2 == N);
  7129. // input tensor rows must be contiguous
  7130. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  7131. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  7132. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  7133. GGML_ASSERT(neq0 == DK);
  7134. GGML_ASSERT(nek0 == DK);
  7135. GGML_ASSERT(nev0 == DV);
  7136. GGML_ASSERT(neq1 == N);
  7137. // dst cannot be transposed or permuted
  7138. GGML_ASSERT(nb0 == sizeof(float));
  7139. GGML_ASSERT(nb0 <= nb1);
  7140. GGML_ASSERT(nb1 <= nb2);
  7141. GGML_ASSERT(nb2 <= nb3);
  7142. // broadcast factors
  7143. const int64_t rk2 = neq2/nek2;
  7144. const int64_t rk3 = neq3/nek3;
  7145. const int64_t rv2 = neq2/nev2;
  7146. const int64_t rv3 = neq3/nev3;
  7147. // parallelize by q rows using ggml_vec_dot_f32
  7148. // total rows in q
  7149. const int nr = neq1*neq2*neq3;
  7150. // rows per thread
  7151. const int dr = (nr + nth - 1)/nth;
  7152. // row range for this thread
  7153. const int ir0 = dr*ith;
  7154. const int ir1 = MIN(ir0 + dr, nr);
  7155. float scale = 1.0f;
  7156. float max_bias = 0.0f;
  7157. float logit_softcap = 0.0f;
  7158. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  7159. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  7160. memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
  7161. if (logit_softcap != 0) {
  7162. scale /= logit_softcap;
  7163. }
  7164. const uint32_t n_head = neq2;
  7165. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  7166. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  7167. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  7168. ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
  7169. ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
  7170. ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
  7171. ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
  7172. GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
  7173. GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
  7174. // loop over n_batch and n_head
  7175. for (int ir = ir0; ir < ir1; ++ir) {
  7176. // q indices
  7177. const int iq3 = ir/(neq2*neq1);
  7178. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7179. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7180. const uint32_t h = iq2; // head index
  7181. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  7182. float S = 0.0f; // sum
  7183. float M = -INFINITY; // maximum KQ value
  7184. float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  7185. float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
  7186. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
  7187. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
  7188. if (v->type == GGML_TYPE_F16) {
  7189. memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
  7190. } else {
  7191. memset(VKQ32, 0, DV*sizeof(float));
  7192. }
  7193. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq2%mask->ne[2])*mask->nb[2] + (iq3%mask->ne[3])*mask->nb[3]) : NULL;
  7194. // k indices
  7195. const int ik3 = iq3 / rk3;
  7196. const int ik2 = iq2 / rk2;
  7197. // v indices
  7198. const int iv3 = iq3 / rv3;
  7199. const int iv2 = iq2 / rv2;
  7200. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  7201. q_to_vec_dot(pq, Q_q, DK);
  7202. // online softmax / attention
  7203. // loop over n_kv and n_head_kv
  7204. // ref: https://arxiv.org/pdf/2112.05682.pdf
  7205. for (int64_t ic = 0; ic < nek1; ++ic) {
  7206. const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
  7207. if (mv == -INFINITY) {
  7208. continue;
  7209. }
  7210. float s; // KQ value
  7211. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  7212. kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
  7213. s = s*scale; // scale KQ value
  7214. if (logit_softcap != 0.0f) {
  7215. s = logit_softcap*tanhf(s);
  7216. }
  7217. s += mv; // apply mask
  7218. const float Mold = M;
  7219. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  7220. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  7221. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  7222. if (v->type == GGML_TYPE_F16) {
  7223. if (s > M) {
  7224. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  7225. M = s;
  7226. ms = expf(Mold - M);
  7227. // V = V*expf(Mold - M)
  7228. ggml_vec_scale_f16(DV, VKQ16, ms);
  7229. } else {
  7230. // no new maximum, ms == 1.0f, vs != 1.0f
  7231. vs = expf(s - M);
  7232. }
  7233. // V += v*expf(s - M)
  7234. ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
  7235. } else {
  7236. if (s > M) {
  7237. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  7238. M = s;
  7239. ms = expf(Mold - M);
  7240. // V = V*expf(Mold - M)
  7241. ggml_vec_scale_f32(DV, VKQ32, ms);
  7242. } else {
  7243. // no new maximum, ms == 1.0f, vs != 1.0f
  7244. vs = expf(s - M);
  7245. }
  7246. // V += v*expf(s - M)
  7247. if (v_to_float) {
  7248. v_to_float(v_data, V32, DV);
  7249. ggml_vec_mad_f32(DV, VKQ32, V32, vs);
  7250. } else {
  7251. // V is F32
  7252. ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
  7253. }
  7254. }
  7255. S = S*ms + vs; // scale and increment sum with partial sum
  7256. }
  7257. if (v->type == GGML_TYPE_F16) {
  7258. for (int64_t d = 0; d < DV; ++d) {
  7259. VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]);
  7260. }
  7261. }
  7262. // sinks
  7263. if (sinks) {
  7264. const float s = ((float *)((char *) sinks->data))[h];
  7265. float ms = 1.0f;
  7266. float vs = 1.0f;
  7267. if (s > M) {
  7268. ms = expf(M - s);
  7269. ggml_vec_scale_f32(DV, VKQ32, ms);
  7270. } else {
  7271. vs = expf(s - M);
  7272. }
  7273. S = S*ms + vs;
  7274. }
  7275. // V /= S
  7276. const float S_inv = 1.0f/S;
  7277. ggml_vec_scale_f32(DV, VKQ32, S_inv);
  7278. // dst indices
  7279. const int i1 = iq1;
  7280. const int i2 = iq2;
  7281. const int i3 = iq3;
  7282. // original
  7283. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  7284. // permute(0, 2, 1, 3)
  7285. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  7286. }
  7287. }
  7288. void ggml_compute_forward_flash_attn_ext(
  7289. const ggml_compute_params * params,
  7290. ggml_tensor * dst) {
  7291. switch (dst->op_params[3]) {
  7292. case GGML_PREC_DEFAULT:
  7293. case GGML_PREC_F32:
  7294. {
  7295. // uses F32 accumulators
  7296. ggml_compute_forward_flash_attn_ext_f16(params, dst);
  7297. } break;
  7298. default:
  7299. {
  7300. GGML_ABORT("fatal error");
  7301. }
  7302. }
  7303. }
  7304. // ggml_compute_forward_flash_attn_back
  7305. static void ggml_compute_forward_flash_attn_back_f32(
  7306. const ggml_compute_params * params,
  7307. const bool masked,
  7308. ggml_tensor * dst) {
  7309. const ggml_tensor * q = dst->src[0];
  7310. const ggml_tensor * k = dst->src[1];
  7311. const ggml_tensor * v = dst->src[2];
  7312. const ggml_tensor * d = dst->src[3];
  7313. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  7314. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  7315. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  7316. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  7317. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  7318. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  7319. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  7320. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  7321. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7322. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  7323. const int ith = params->ith;
  7324. const int nth = params->nth;
  7325. const int64_t D = neq0;
  7326. const int64_t N = neq1;
  7327. const int64_t P = nek1 - N;
  7328. const int64_t M = P + N;
  7329. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7330. const int mxDM = MAX(D, Mup);
  7331. // GGML_ASSERT(ne0 == D);
  7332. // GGML_ASSERT(ne1 == N);
  7333. GGML_ASSERT(P >= 0);
  7334. GGML_ASSERT(nbq0 == sizeof(float));
  7335. GGML_ASSERT(nbk0 == sizeof(float));
  7336. GGML_ASSERT(nbv0 == sizeof(float));
  7337. GGML_ASSERT(neq0 == D);
  7338. GGML_ASSERT(nek0 == D);
  7339. GGML_ASSERT(nev1 == D);
  7340. GGML_ASSERT(ned0 == D);
  7341. GGML_ASSERT(neq1 == N);
  7342. GGML_ASSERT(nek1 == N + P);
  7343. GGML_ASSERT(nev1 == D);
  7344. GGML_ASSERT(ned1 == N);
  7345. // dst cannot be transposed or permuted
  7346. GGML_ASSERT(nb0 == sizeof(float));
  7347. GGML_ASSERT(nb0 <= nb1);
  7348. GGML_ASSERT(nb1 <= nb2);
  7349. GGML_ASSERT(nb2 <= nb3);
  7350. if (ith == 0) {
  7351. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  7352. }
  7353. ggml_barrier(params->threadpool);
  7354. const int64_t elem_q = ggml_nelements(q);
  7355. const int64_t elem_k = ggml_nelements(k);
  7356. ggml_type result_type = dst->type;
  7357. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  7358. const size_t tsize = ggml_type_size(result_type);
  7359. const size_t offs_q = 0;
  7360. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  7361. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  7362. void * grad_q = (char *) dst->data;
  7363. void * grad_k = (char *) dst->data + offs_k;
  7364. void * grad_v = (char *) dst->data + offs_v;
  7365. const size_t nbgq1 = nb0*neq0;
  7366. const size_t nbgq2 = nb0*neq0*neq1;
  7367. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  7368. const size_t nbgk1 = nb0*nek0;
  7369. const size_t nbgk2 = nb0*nek0*nek1;
  7370. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  7371. const size_t nbgv1 = nb0*nev0;
  7372. const size_t nbgv2 = nb0*nev0*nev1;
  7373. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  7374. // parallelize by k rows using ggml_vec_dot_f32
  7375. // total rows in k
  7376. const int nr = nek2*nek3;
  7377. // rows per thread
  7378. const int dr = (nr + nth - 1)/nth;
  7379. // row range for this thread
  7380. const int ir0 = dr*ith;
  7381. const int ir1 = MIN(ir0 + dr, nr);
  7382. const float scale = 1.0f/sqrtf(D);
  7383. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7384. // how often k2 (and v2) is repeated in q2
  7385. int nrep = neq2/nek2;
  7386. for (int ir = ir0; ir < ir1; ++ir) {
  7387. // q indices
  7388. const int ik3 = ir/(nek2);
  7389. const int ik2 = ir - ik3*nek2;
  7390. const int iq3 = ik3;
  7391. const int id3 = ik3;
  7392. const int iv3 = ik3;
  7393. const int iv2 = ik2;
  7394. for (int irep = 0; irep < nrep; ++irep) {
  7395. const int iq2 = ik2 + irep*nek2;
  7396. const int id2 = iq2;
  7397. // (ik2 + irep*nek2) % nek2 == ik2
  7398. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  7399. const int id1 = iq1;
  7400. // not sure about CACHE_LINE_SIZE_F32..
  7401. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  7402. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  7403. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  7404. for (int i = M; i < Mup; ++i) {
  7405. S[i] = -INFINITY;
  7406. }
  7407. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  7408. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7409. // k indices
  7410. const int ik1 = ic;
  7411. // S indices
  7412. const int i1 = ik1;
  7413. ggml_vec_dot_f32(neq0,
  7414. S + i1, 0,
  7415. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  7416. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  7417. }
  7418. // scale
  7419. ggml_vec_scale_f32(masked_begin, S, scale);
  7420. for (int64_t i = masked_begin; i < M; i++) {
  7421. S[i] = -INFINITY;
  7422. }
  7423. // softmax
  7424. // exclude known -INF S[..] values from max and loop
  7425. // dont forget to set their SM values to zero
  7426. {
  7427. float max = -INFINITY;
  7428. ggml_vec_max_f32(masked_begin, &max, S);
  7429. ggml_float sum = 0.0;
  7430. {
  7431. #ifdef GGML_SOFT_MAX_ACCELERATE
  7432. max = -max;
  7433. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  7434. vvexpf(SM, SM, &Mup);
  7435. ggml_vec_sum_f32(Mup, &sum, SM);
  7436. #else
  7437. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  7438. #endif
  7439. }
  7440. assert(sum > 0.0);
  7441. sum = 1.0/sum;
  7442. ggml_vec_scale_f32(masked_begin, SM, sum);
  7443. }
  7444. // step-by-step explanation
  7445. {
  7446. // forward-process shape grads from backward process
  7447. // parallel_for ik2,ik3:
  7448. // for irep:
  7449. // iq2 = ik2 + irep*nek2
  7450. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  7451. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  7452. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  7453. // for iq1:
  7454. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  7455. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  7456. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  7457. // S0 = -Inf [D,1,1,1]
  7458. // ~S1[i] = dot(kcur[:D,i], qcur)
  7459. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  7460. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  7461. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7462. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  7463. // ~S5[i] = dot(vcur[:,i], S4)
  7464. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  7465. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  7466. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  7467. // dst backward-/ grad[dst] = d
  7468. //
  7469. // output gradients with their dependencies:
  7470. //
  7471. // grad[kcur] = grad[S1].T @ qcur
  7472. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  7473. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7474. // grad[S4] = grad[S5] @ vcur
  7475. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  7476. // grad[qcur] = grad[S1] @ kcur
  7477. // grad[vcur] = grad[S5].T @ S4
  7478. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  7479. //
  7480. // in post-order:
  7481. //
  7482. // S1 = qcur @ kcur.T
  7483. // S2 = S1 * scale
  7484. // S3 = diag_mask_inf(S2, P)
  7485. // S4 = softmax(S3)
  7486. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  7487. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  7488. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  7489. // grad[qcur] = grad[S1] @ kcur
  7490. // grad[kcur] = grad[S1].T @ qcur
  7491. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  7492. //
  7493. // using less variables (SM=S4):
  7494. //
  7495. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  7496. // SM = softmax(S)
  7497. // S = d[:D,iq1,iq2,iq3] @ vcur
  7498. // dot_SM_gradSM = dot(SM, S)
  7499. // S = SM * (S - dot(SM, S))
  7500. // S = diag_mask_zero(S, P) * scale
  7501. //
  7502. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  7503. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  7504. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  7505. }
  7506. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  7507. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  7508. // for ic:
  7509. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  7510. // exclude known future zero S[..] values from operation
  7511. ggml_vec_set_f32(masked_begin, S, 0);
  7512. for (int64_t ic = 0; ic < D; ++ic) {
  7513. ggml_vec_mad_f32(masked_begin,
  7514. S,
  7515. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  7516. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  7517. }
  7518. // S = SM * (S - dot(SM, S))
  7519. float dot_SM_gradSM = 0;
  7520. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  7521. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  7522. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  7523. // S = diag_mask_zero(S, P) * scale
  7524. // already done by above ggml_vec_set_f32
  7525. // exclude known zero S[..] values from operation
  7526. ggml_vec_scale_f32(masked_begin, S, scale);
  7527. // S shape [M,1]
  7528. // SM shape [M,1]
  7529. // kcur shape [D,M]
  7530. // qcur shape [D,1]
  7531. // vcur shape [M,D]
  7532. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  7533. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  7534. // for ic:
  7535. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  7536. // exclude known zero S[..] values from loop
  7537. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7538. ggml_vec_mad_f32(D,
  7539. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  7540. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7541. S[ic]);
  7542. }
  7543. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  7544. // for ic:
  7545. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  7546. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  7547. // exclude known zero S[..] values from loop
  7548. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  7549. ggml_vec_mad_f32(D,
  7550. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  7551. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  7552. S[ic]);
  7553. }
  7554. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  7555. // for ic:
  7556. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  7557. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  7558. // exclude known zero SM[..] values from mad
  7559. for (int64_t ic = 0; ic < D; ++ic) {
  7560. ggml_vec_mad_f32(masked_begin,
  7561. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  7562. SM,
  7563. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  7564. }
  7565. }
  7566. }
  7567. }
  7568. }
  7569. void ggml_compute_forward_flash_attn_back(
  7570. const ggml_compute_params * params,
  7571. const bool masked,
  7572. ggml_tensor * dst) {
  7573. const ggml_tensor * q = dst->src[0];
  7574. switch (q->type) {
  7575. case GGML_TYPE_F32:
  7576. {
  7577. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  7578. } break;
  7579. default:
  7580. {
  7581. GGML_ABORT("fatal error");
  7582. }
  7583. }
  7584. }
  7585. // ggml_compute_forward_ssm_conv
  7586. static void ggml_compute_forward_ssm_conv_f32(
  7587. const ggml_compute_params * params,
  7588. ggml_tensor * dst) {
  7589. const ggml_tensor * src0 = dst->src[0]; // conv_x
  7590. const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
  7591. const int ith = params->ith;
  7592. const int nth = params->nth;
  7593. const int nc = src1->ne[0]; // d_conv
  7594. const int ncs = src0->ne[0]; // d_conv - 1 + n_t
  7595. const int nr = src0->ne[1]; // d_inner
  7596. const int n_t = dst->ne[1]; // tokens per sequence
  7597. const int n_s = dst->ne[2]; // number of sequences in the batch
  7598. GGML_ASSERT( dst->ne[0] == nr);
  7599. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7600. GGML_ASSERT(src1->nb[0] == sizeof(float));
  7601. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  7602. // rows per thread
  7603. const int dr = (nr + nth - 1)/nth;
  7604. // row range for this thread
  7605. const int ir0 = dr*ith;
  7606. const int ir1 = MIN(ir0 + dr, nr);
  7607. const int ir = ir1 - ir0;
  7608. for (int i3 = 0; i3 < n_s; ++i3) {
  7609. for (int i2 = 0; i2 < n_t; ++i2) {
  7610. // {d_conv - 1 + n_t, d_inner, n_seqs}
  7611. // sliding window
  7612. const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
  7613. const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
  7614. float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
  7615. // TODO: transpose the output for smaller strides for big batches?
  7616. // d_inner
  7617. for (int i1 = 0; i1 < ir; ++i1) {
  7618. // rowwise dot product
  7619. // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
  7620. float sumf = 0.0f;
  7621. // d_conv
  7622. for (int i0 = 0; i0 < nc; ++i0) {
  7623. sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
  7624. }
  7625. x[i1] = sumf;
  7626. }
  7627. }
  7628. }
  7629. }
  7630. void ggml_compute_forward_ssm_conv(
  7631. const ggml_compute_params * params,
  7632. ggml_tensor * dst) {
  7633. switch (dst->src[0]->type) {
  7634. case GGML_TYPE_F32:
  7635. {
  7636. ggml_compute_forward_ssm_conv_f32(params, dst);
  7637. } break;
  7638. default:
  7639. {
  7640. GGML_ABORT("fatal error");
  7641. }
  7642. }
  7643. }
  7644. // ggml_compute_forward_ssm_scan
  7645. static void ggml_compute_forward_ssm_scan_f32(
  7646. const ggml_compute_params * params,
  7647. ggml_tensor * dst) {
  7648. const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
  7649. const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
  7650. const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
  7651. const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
  7652. const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
  7653. const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
  7654. const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
  7655. const int ith = params->ith;
  7656. const int nth = params->nth;
  7657. const int64_t nc = src0->ne[0]; // d_state
  7658. const int64_t nr = src0->ne[1]; // dim
  7659. const int64_t nh = src1->ne[1]; // n_head
  7660. const int64_t ng = src4->ne[1];
  7661. const int64_t nt = src1->ne[2]; // number of tokens per sequence
  7662. const int64_t ns = src1->ne[3]; // number of sequences in the batch
  7663. // can't use ggml_nbytes because src1 is not necessarily contiguous
  7664. const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
  7665. GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
  7666. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7667. GGML_ASSERT(src1->nb[0] == sizeof(float));
  7668. GGML_ASSERT(src2->nb[0] == sizeof(float));
  7669. GGML_ASSERT(src3->nb[0] == sizeof(float));
  7670. GGML_ASSERT(src4->nb[0] == sizeof(float));
  7671. GGML_ASSERT(src5->nb[0] == sizeof(float));
  7672. GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
  7673. GGML_ASSERT(nh % ng == 0);
  7674. // heads per thread
  7675. const int dh = (nh + nth - 1)/nth;
  7676. // head range for this thread
  7677. const int ih0 = dh*ith;
  7678. const int ih1 = MIN(ih0 + dh, nh);
  7679. const int32_t * ids = (const int32_t *) src6->data;
  7680. for (int i3 = 0; i3 < ns; ++i3) {
  7681. const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
  7682. float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
  7683. for (int i2 = 0; i2 < nt; ++i2) {
  7684. const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
  7685. const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
  7686. const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
  7687. const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
  7688. const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
  7689. float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
  7690. if (src3->ne[0] == 1) {
  7691. // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
  7692. // n_head
  7693. for (int h = ih0; h < ih1; ++h) {
  7694. // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
  7695. const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
  7696. const float dA = expf(dt_soft_plus * A[h]);
  7697. const int g = h / (nh / ng); // repeat_interleave
  7698. // dim
  7699. for (int i1 = 0; i1 < nr; ++i1) {
  7700. const int ii = i1 + h*nr;
  7701. const float x_dt = x[ii] * dt_soft_plus;
  7702. float sumf = 0.0f;
  7703. #if defined(GGML_SIMD)
  7704. #if defined(__ARM_FEATURE_SVE)
  7705. const int ggml_f32_epr = svcntw();
  7706. const int ggml_f32_step = 1 * ggml_f32_epr;
  7707. const int np = (nc & ~(ggml_f32_step - 1));
  7708. GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
  7709. GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
  7710. GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
  7711. for (int i = 0; i < np; i += ggml_f32_step) {
  7712. // TODO: maybe unroll more?
  7713. for (int j = 0; j < 1; j++) {
  7714. GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
  7715. GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + g*nc);
  7716. GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + g*nc);
  7717. t0 = GGML_F32_VEC_MUL(t0, adA);
  7718. t1 = GGML_F32_VEC_MUL(t1, axdt);
  7719. t0 = GGML_F32_VEC_ADD(t0, t1);
  7720. sum = GGML_F32_VEC_FMA(sum, t0, t2);
  7721. GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
  7722. }
  7723. }
  7724. sumf = GGML_F32xt_REDUCE_ONE(sum);
  7725. #elif defined(__riscv_v_intrinsic)
  7726. // todo: RVV implementation
  7727. const int np = 0;
  7728. #else
  7729. const int np = (nc & ~(GGML_F32_STEP - 1));
  7730. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  7731. GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
  7732. GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
  7733. GGML_F32_VEC ax[GGML_F32_ARR];
  7734. GGML_F32_VEC ay[GGML_F32_ARR];
  7735. GGML_F32_VEC az[GGML_F32_ARR];
  7736. for (int i = 0; i < np; i += GGML_F32_STEP) {
  7737. for (int j = 0; j < GGML_F32_ARR; j++) {
  7738. ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
  7739. ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + g*nc);
  7740. az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + g*nc);
  7741. ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
  7742. ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
  7743. ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
  7744. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
  7745. GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
  7746. }
  7747. }
  7748. // reduce sum0..sum3 to sum0
  7749. GGML_F32_VEC_REDUCE(sumf, sum);
  7750. #endif
  7751. #else
  7752. const int np = 0;
  7753. #endif
  7754. // d_state
  7755. for (int i0 = np; i0 < nc; ++i0) {
  7756. const int i = i0 + ii*nc;
  7757. const int ig = i0 + g*nc;
  7758. // state = prev_state * dA + dB * x
  7759. const float state = (s0[i] * dA) + (B[ig] * x_dt);
  7760. // y = rowwise_dotprod(state, C)
  7761. sumf += state * C[ig];
  7762. s[i] = state;
  7763. }
  7764. y[ii] = sumf;
  7765. }
  7766. }
  7767. } else {
  7768. // Mamba-1 has an element-wise decay factor for the states
  7769. // n_head
  7770. for (int h = ih0; h < ih1; ++h) {
  7771. // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
  7772. const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
  7773. const int g = h / (nh / ng); // repeat_interleave
  7774. // dim
  7775. for (int i1 = 0; i1 < nr; ++i1) {
  7776. const int ii = i1 + h*nr;
  7777. const float x_dt = x[ii] * dt_soft_plus;
  7778. #if defined(__ARM_FEATURE_SVE)
  7779. svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
  7780. svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
  7781. svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
  7782. // d_state
  7783. // TODO: what happens when (d_state % svcntw()) != 0?
  7784. for (int64_t k = 0; k < nc; k += svcntw()) {
  7785. svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
  7786. svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + g*nc]);
  7787. svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + g*nc]);
  7788. svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
  7789. svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
  7790. t1 = exp_ps_sve(svptrue_b32(), t1);
  7791. svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
  7792. vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
  7793. r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
  7794. GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
  7795. }
  7796. y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
  7797. #else
  7798. float sumf = 0.0f;
  7799. // NOTE: can't really use GGML_SIMD here because d_state is usually 16
  7800. // and also because expf is used within the loop.
  7801. // d_state
  7802. for (int i0 = 0; i0 < nc; ++i0) {
  7803. const int i = i0 + ii*nc;
  7804. const int ig = i0 + g*nc;
  7805. // state = prev_state * dA + dB * x
  7806. const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
  7807. // y = rowwise_dotprod(state, C)
  7808. sumf += state * C[ig];
  7809. s[i] = state;
  7810. }
  7811. y[ii] = sumf;
  7812. #endif
  7813. }
  7814. }
  7815. }
  7816. // use the output as the source when it's not the first token-wise iteration
  7817. s0 = s;
  7818. }
  7819. }
  7820. }
  7821. void ggml_compute_forward_ssm_scan(
  7822. const ggml_compute_params * params,
  7823. ggml_tensor * dst) {
  7824. switch (dst->src[0]->type) {
  7825. case GGML_TYPE_F32:
  7826. {
  7827. ggml_compute_forward_ssm_scan_f32(params, dst);
  7828. } break;
  7829. default:
  7830. {
  7831. GGML_ABORT("fatal error");
  7832. }
  7833. }
  7834. }
  7835. // ggml_compute_forward_win_part
  7836. static void ggml_compute_forward_win_part_f32(
  7837. const ggml_compute_params * params,
  7838. ggml_tensor * dst) {
  7839. GGML_UNUSED(params);
  7840. const ggml_tensor * src0 = dst->src[0];
  7841. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7842. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7843. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  7844. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  7845. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  7846. assert(ne00 == ne0);
  7847. assert(ne3 == nep0*nep1);
  7848. // TODO: optimize / multi-thread
  7849. for (int py = 0; py < nep1; ++py) {
  7850. for (int px = 0; px < nep0; ++px) {
  7851. const int64_t i3 = py*nep0 + px;
  7852. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7853. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7854. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7855. const int64_t i02 = py*w + i2;
  7856. const int64_t i01 = px*w + i1;
  7857. const int64_t i00 = i0;
  7858. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  7859. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  7860. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  7861. ((float *) dst->data)[i] = 0.0f;
  7862. } else {
  7863. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  7864. }
  7865. }
  7866. }
  7867. }
  7868. }
  7869. }
  7870. }
  7871. void ggml_compute_forward_win_part(
  7872. const ggml_compute_params * params,
  7873. ggml_tensor * dst) {
  7874. const ggml_tensor * src0 = dst->src[0];
  7875. switch (src0->type) {
  7876. case GGML_TYPE_F32:
  7877. {
  7878. ggml_compute_forward_win_part_f32(params, dst);
  7879. } break;
  7880. default:
  7881. {
  7882. GGML_ABORT("fatal error");
  7883. }
  7884. }
  7885. }
  7886. // ggml_compute_forward_win_unpart
  7887. static void ggml_compute_forward_win_unpart_f32(
  7888. const ggml_compute_params * params,
  7889. ggml_tensor * dst) {
  7890. GGML_UNUSED(params);
  7891. const ggml_tensor * src0 = dst->src[0];
  7892. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7893. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  7894. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  7895. // padding
  7896. const int px = (w - ne1%w)%w;
  7897. //const int py = (w - ne2%w)%w;
  7898. const int npx = (px + ne1)/w;
  7899. //const int npy = (py + ne2)/w;
  7900. assert(ne0 == ne00);
  7901. // TODO: optimize / multi-thread
  7902. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  7903. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  7904. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7905. const int ip2 = i2/w;
  7906. const int ip1 = i1/w;
  7907. const int64_t i02 = i2%w;
  7908. const int64_t i01 = i1%w;
  7909. const int64_t i00 = i0;
  7910. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  7911. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  7912. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  7913. }
  7914. }
  7915. }
  7916. }
  7917. void ggml_compute_forward_win_unpart(
  7918. const ggml_compute_params * params,
  7919. ggml_tensor * dst) {
  7920. const ggml_tensor * src0 = dst->src[0];
  7921. switch (src0->type) {
  7922. case GGML_TYPE_F32:
  7923. {
  7924. ggml_compute_forward_win_unpart_f32(params, dst);
  7925. } break;
  7926. default:
  7927. {
  7928. GGML_ABORT("fatal error");
  7929. }
  7930. }
  7931. }
  7932. //gmml_compute_forward_unary
  7933. void ggml_compute_forward_unary(
  7934. const ggml_compute_params * params,
  7935. ggml_tensor * dst) {
  7936. const ggml_unary_op op = ggml_get_unary_op(dst);
  7937. switch (op) {
  7938. case GGML_UNARY_OP_ABS:
  7939. {
  7940. ggml_compute_forward_abs(params, dst);
  7941. } break;
  7942. case GGML_UNARY_OP_SGN:
  7943. {
  7944. ggml_compute_forward_sgn(params, dst);
  7945. } break;
  7946. case GGML_UNARY_OP_NEG:
  7947. {
  7948. ggml_compute_forward_neg(params, dst);
  7949. } break;
  7950. case GGML_UNARY_OP_STEP:
  7951. {
  7952. ggml_compute_forward_step(params, dst);
  7953. } break;
  7954. case GGML_UNARY_OP_TANH:
  7955. {
  7956. ggml_compute_forward_tanh(params, dst);
  7957. } break;
  7958. case GGML_UNARY_OP_ELU:
  7959. {
  7960. ggml_compute_forward_elu(params, dst);
  7961. } break;
  7962. case GGML_UNARY_OP_RELU:
  7963. {
  7964. ggml_compute_forward_relu(params, dst);
  7965. } break;
  7966. case GGML_UNARY_OP_SIGMOID:
  7967. {
  7968. ggml_compute_forward_sigmoid(params, dst);
  7969. } break;
  7970. case GGML_UNARY_OP_GELU:
  7971. {
  7972. ggml_compute_forward_gelu(params, dst);
  7973. } break;
  7974. case GGML_UNARY_OP_GELU_ERF:
  7975. {
  7976. ggml_compute_forward_gelu_erf(params, dst);
  7977. } break;
  7978. case GGML_UNARY_OP_GELU_QUICK:
  7979. {
  7980. ggml_compute_forward_gelu_quick(params, dst);
  7981. } break;
  7982. case GGML_UNARY_OP_SILU:
  7983. {
  7984. ggml_compute_forward_silu(params, dst);
  7985. } break;
  7986. case GGML_UNARY_OP_HARDSWISH:
  7987. {
  7988. ggml_compute_forward_hardswish(params, dst);
  7989. } break;
  7990. case GGML_UNARY_OP_HARDSIGMOID:
  7991. {
  7992. ggml_compute_forward_hardsigmoid(params, dst);
  7993. } break;
  7994. case GGML_UNARY_OP_EXP:
  7995. {
  7996. ggml_compute_forward_exp(params, dst);
  7997. } break;
  7998. default:
  7999. {
  8000. GGML_ABORT("fatal error");
  8001. }
  8002. }
  8003. }
  8004. //ggml_compute_forward_glu
  8005. void ggml_compute_forward_glu(
  8006. const ggml_compute_params * params,
  8007. ggml_tensor * dst) {
  8008. const ggml_glu_op op = ggml_get_glu_op(dst);
  8009. switch (op) {
  8010. case GGML_GLU_OP_REGLU:
  8011. {
  8012. ggml_compute_forward_reglu(params, dst);
  8013. } break;
  8014. case GGML_GLU_OP_GEGLU:
  8015. {
  8016. ggml_compute_forward_geglu(params, dst);
  8017. } break;
  8018. case GGML_GLU_OP_SWIGLU:
  8019. {
  8020. ggml_compute_forward_swiglu(params, dst);
  8021. } break;
  8022. case GGML_GLU_OP_SWIGLU_OAI:
  8023. {
  8024. ggml_compute_forward_swiglu_oai(params, dst);
  8025. } break;
  8026. case GGML_GLU_OP_GEGLU_ERF:
  8027. {
  8028. ggml_compute_forward_geglu_erf(params, dst);
  8029. } break;
  8030. case GGML_GLU_OP_GEGLU_QUICK:
  8031. {
  8032. ggml_compute_forward_geglu_quick(params, dst);
  8033. } break;
  8034. default:
  8035. {
  8036. GGML_ABORT("fatal error");
  8037. }
  8038. }
  8039. }
  8040. // ggml_compute_forward_get_rel_pos
  8041. static void ggml_compute_forward_get_rel_pos_f16(
  8042. const ggml_compute_params * params,
  8043. ggml_tensor * dst) {
  8044. GGML_UNUSED(params);
  8045. const ggml_tensor * src0 = dst->src[0];
  8046. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  8047. GGML_TENSOR_UNARY_OP_LOCALS
  8048. const int64_t w = ne1;
  8049. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  8050. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  8051. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  8052. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  8053. const int64_t pos = (w - i1 - 1) + i2;
  8054. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8055. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  8056. }
  8057. }
  8058. }
  8059. }
  8060. void ggml_compute_forward_get_rel_pos(
  8061. const ggml_compute_params * params,
  8062. ggml_tensor * dst) {
  8063. const ggml_tensor * src0 = dst->src[0];
  8064. switch (src0->type) {
  8065. case GGML_TYPE_F16:
  8066. case GGML_TYPE_BF16:
  8067. {
  8068. ggml_compute_forward_get_rel_pos_f16(params, dst);
  8069. } break;
  8070. default:
  8071. {
  8072. GGML_ABORT("fatal error");
  8073. }
  8074. }
  8075. }
  8076. // ggml_compute_forward_add_rel_pos
  8077. static void ggml_compute_forward_add_rel_pos_f32(
  8078. const ggml_compute_params * params,
  8079. ggml_tensor * dst) {
  8080. const ggml_tensor * src0 = dst->src[0];
  8081. const ggml_tensor * src1 = dst->src[1];
  8082. const ggml_tensor * src2 = dst->src[2];
  8083. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  8084. if (!inplace) {
  8085. if (params->ith == 0) {
  8086. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  8087. }
  8088. ggml_barrier(params->threadpool);
  8089. }
  8090. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  8091. float * src1_data = (float *) src1->data;
  8092. float * src2_data = (float *) src2->data;
  8093. float * dst_data = (float *) dst->data;
  8094. const int64_t ne10 = src1->ne[0];
  8095. const int64_t ne11 = src1->ne[1];
  8096. const int64_t ne12 = src1->ne[2];
  8097. const int64_t ne13 = src1->ne[3];
  8098. const int ith = params->ith;
  8099. const int nth = params->nth;
  8100. // total patches in dst
  8101. const int np = ne13;
  8102. // patches per thread
  8103. const int dp = (np + nth - 1)/nth;
  8104. // patch range for this thread
  8105. const int ip0 = dp*ith;
  8106. const int ip1 = MIN(ip0 + dp, np);
  8107. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  8108. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8109. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8110. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  8111. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8112. const int64_t jp0 = jp1 + i10;
  8113. const float src1_e = src1_data[jp0];
  8114. const float src2_e = src2_data[jp0];
  8115. const int64_t jdh = jp0 * ne10;
  8116. const int64_t jdw = jdh - (ne10 - 1) * i10;
  8117. for (int64_t j = 0; j < ne10; ++j) {
  8118. dst_data[jdh + j ] += src2_e;
  8119. dst_data[jdw + j*ne10] += src1_e;
  8120. }
  8121. }
  8122. }
  8123. }
  8124. }
  8125. }
  8126. void ggml_compute_forward_add_rel_pos(
  8127. const ggml_compute_params * params,
  8128. ggml_tensor * dst) {
  8129. const ggml_tensor * src0 = dst->src[0];
  8130. switch (src0->type) {
  8131. case GGML_TYPE_F32:
  8132. {
  8133. ggml_compute_forward_add_rel_pos_f32(params, dst);
  8134. } break;
  8135. default:
  8136. {
  8137. GGML_ABORT("fatal error");
  8138. }
  8139. }
  8140. }
  8141. // ggml_compute_forward_rwkv_wkv6
  8142. static void ggml_compute_forward_rwkv_wkv6_f32(
  8143. const ggml_compute_params * params,
  8144. ggml_tensor * dst) {
  8145. const int64_t T = dst->src[1]->ne[2];
  8146. const int64_t C = dst->ne[0];
  8147. const int64_t HEADS = dst->src[1]->ne[1];
  8148. const int64_t n_seqs = dst->src[5]->ne[1];
  8149. const int64_t head_size = C / HEADS;
  8150. float * dst_data = (float *) dst->data;
  8151. float * state = ((float *) dst->data) + C * T;
  8152. const int ith = params->ith;
  8153. const int nth = params->nth;
  8154. if (ith >= HEADS) {
  8155. return;
  8156. }
  8157. const int h_start = (HEADS * ith) / nth;
  8158. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8159. (HEADS * (ith + 1)) / nth : HEADS;
  8160. float * k = (float *) dst->src[0]->data;
  8161. float * v = (float *) dst->src[1]->data;
  8162. float * r = (float *) dst->src[2]->data;
  8163. float * time_faaaa = (float *) dst->src[3]->data;
  8164. float * time_decay = (float *) dst->src[4]->data;
  8165. size_t t_stride = HEADS * head_size; // Same to C
  8166. size_t h_stride = C / HEADS;
  8167. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8168. size_t h_stride_2d = head_size * head_size;
  8169. if (ith == 0) {
  8170. memset(dst_data, 0, T * C * sizeof(float));
  8171. }
  8172. ggml_barrier(params->threadpool);
  8173. #if defined(__AVX__) && !defined(__AVX512F__)
  8174. #define GGML_F32X GGML_F32x8
  8175. #define GGML_F32X_SET1 GGML_F32x8_SET1
  8176. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  8177. #define GGML_F32X_STORE GGML_F32x8_STORE
  8178. #define GGML_F32X_MUL GGML_F32x8_MUL
  8179. #define GGML_F32X_FMA GGML_F32x8_FMA
  8180. #define WKV_VECTOR_SIZE 8
  8181. #elif defined(__AVX512F__)
  8182. #define GGML_F32X GGML_F32x16
  8183. #define GGML_F32X_SET1 GGML_F32x16_SET1
  8184. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  8185. #define GGML_F32X_STORE GGML_F32x16_STORE
  8186. #define GGML_F32X_MUL GGML_F32x16_MUL
  8187. #define GGML_F32X_FMA GGML_F32x16_FMA
  8188. #define WKV_VECTOR_SIZE 16
  8189. #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
  8190. #define GGML_F32X GGML_F32xt
  8191. #define GGML_F32X_SET1 GGML_F32xt_SET1
  8192. #define GGML_F32X_LOAD GGML_F32xt_LOAD
  8193. #define GGML_F32X_STORE GGML_F32xt_STORE
  8194. #define GGML_F32X_MUL GGML_F32xt_MUL
  8195. #define GGML_F32X_FMA GGML_F32xt_FMA
  8196. #define WKV_VECTOR_SIZE 8
  8197. #elif defined(__ARM_NEON) && defined(__aarch64__)
  8198. #define GGML_F32X GGML_F32x4
  8199. #define GGML_F32X_SET1 GGML_F32x4_SET1
  8200. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  8201. #define GGML_F32X_STORE GGML_F32x4_STORE
  8202. #define GGML_F32X_MUL GGML_F32x4_MUL
  8203. #define GGML_F32X_FMA GGML_F32x4_FMA
  8204. #define WKV_VECTOR_SIZE 4
  8205. #endif
  8206. #ifdef WKV_VECTOR_SIZE
  8207. int wkv_vector_size;
  8208. #if defined(__ARM_FEATURE_SVE)
  8209. wkv_vector_size = svcntw();
  8210. #else
  8211. wkv_vector_size = WKV_VECTOR_SIZE;
  8212. #endif
  8213. const int64_t vec_count = head_size / wkv_vector_size;
  8214. for (int64_t t = 0; t < T; t++) {
  8215. size_t t_offset = t * t_stride;
  8216. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8217. float * state_cur = state + state_offset;
  8218. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  8219. for (int64_t h = h_start; h < h_end; h++) {
  8220. size_t h_offset = h * h_stride;
  8221. size_t t_h_offset = t_offset + h_offset;
  8222. size_t h_2d_offset = h * h_stride_2d;
  8223. for (int64_t i = 0; i < head_size; i++) {
  8224. size_t t_h_i_offset = t_h_offset + i;
  8225. size_t h_i_offset = h_offset + i;
  8226. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8227. float k_val = k[t_h_i_offset];
  8228. float r_val = r[t_h_i_offset];
  8229. float time_faaaa_val = time_faaaa[h_i_offset];
  8230. float time_decay_val = time_decay[t_h_i_offset];
  8231. // Broadcast scalar values to vectors
  8232. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  8233. GGML_F32X r_vec = GGML_F32X_SET1(r_val);
  8234. GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
  8235. GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
  8236. for (int64_t j = 0; j < vec_count; j++) {
  8237. size_t base_j = j * wkv_vector_size;
  8238. size_t t_h_j_offset = t_h_offset + base_j;
  8239. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  8240. // Load x elements at once
  8241. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  8242. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  8243. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  8244. // Compute kv = v * k
  8245. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  8246. // Compute temp = kv * time_faaaa + prev_state
  8247. GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
  8248. // Update dst: dst += temp * r
  8249. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
  8250. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  8251. // Update state: state = prev_state * time_decay + kv
  8252. GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
  8253. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
  8254. }
  8255. // Handle remaining elements, this will not be used.
  8256. for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
  8257. size_t t_h_j_offset = t_h_offset + j;
  8258. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8259. float v_val = v[t_h_j_offset];
  8260. float kv_val = v_val * k_val;
  8261. float prev_state_val = state_prev[h_2d_i_j_offset];
  8262. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  8263. dst_data[t_h_j_offset] += temp_val * r_val;
  8264. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  8265. }
  8266. }
  8267. }
  8268. }
  8269. #else
  8270. // basically fused operations:
  8271. // dst = r @ (time_faaaa * (k @ v) + state),
  8272. // state = time_decay * state + (k @ v),
  8273. // recursive through each token
  8274. for (int64_t t = 0; t < T; t++) {
  8275. size_t t_offset = t * t_stride;
  8276. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8277. float * state_cur = state + state_offset;
  8278. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
  8279. for (int64_t h = h_start; h < h_end; h++) {
  8280. size_t h_offset = h * h_stride;
  8281. size_t t_h_offset = t_offset + h_offset;
  8282. size_t h_2d_offset = h * h_stride_2d;
  8283. for (int64_t i = 0; i < head_size; i++) {
  8284. size_t t_h_i_offset = t_h_offset + i;
  8285. size_t h_i_offset = h_offset + i;
  8286. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8287. float k_val = k[t_h_i_offset];
  8288. float r_val = r[t_h_i_offset];
  8289. float time_faaaa_val = time_faaaa[h_i_offset];
  8290. // RWKV v6: different time_decay for each token.
  8291. float time_decay_val = time_decay[t_h_i_offset];
  8292. for (int64_t j = 0; j < head_size; j++) {
  8293. size_t t_h_j_offset = t_h_offset + j;
  8294. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8295. float v_val = v[t_h_j_offset];
  8296. float kv_val = v_val * k_val;
  8297. float prev_state_val = state_prev[h_2d_i_j_offset];
  8298. float temp_val = kv_val * time_faaaa_val + prev_state_val;
  8299. dst_data[t_h_j_offset] += temp_val * r_val;
  8300. state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
  8301. }
  8302. }
  8303. }
  8304. }
  8305. #endif
  8306. }
  8307. void ggml_compute_forward_rwkv_wkv6(
  8308. const ggml_compute_params * params,
  8309. ggml_tensor * dst) {
  8310. const ggml_tensor * src0 = dst->src[0];
  8311. switch (src0->type) {
  8312. case GGML_TYPE_F32:
  8313. {
  8314. ggml_compute_forward_rwkv_wkv6_f32(params, dst);
  8315. } break;
  8316. default:
  8317. {
  8318. GGML_ABORT("fatal error");
  8319. }
  8320. }
  8321. }
  8322. // ggml_compute_forward_gla
  8323. static void ggml_compute_forward_gla_f32(
  8324. const ggml_compute_params * params,
  8325. ggml_tensor * dst) {
  8326. const int64_t T = dst->src[1]->ne[2];
  8327. const int64_t C = dst->ne[0];
  8328. const int64_t HEADS = dst->src[1]->ne[1];
  8329. const int64_t n_seqs = dst->src[4]->ne[1];
  8330. const int64_t head_size = C / HEADS;
  8331. const float scale = ggml_get_op_params_f32(dst, 0);
  8332. float * dst_data = (float *) dst->data;
  8333. float * state = ((float *) dst->data) + C * T;
  8334. const int ith = params->ith;
  8335. const int nth = params->nth;
  8336. if (ith >= HEADS) {
  8337. return;
  8338. }
  8339. const int h_start = (HEADS * ith) / nth;
  8340. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8341. (HEADS * (ith + 1)) / nth : HEADS;
  8342. float * k = (float *) dst->src[0]->data;
  8343. float * v = (float *) dst->src[1]->data;
  8344. float * q = (float *) dst->src[2]->data;
  8345. float * g = (float *) dst->src[3]->data;
  8346. size_t t_stride = HEADS * head_size; // Same to C
  8347. size_t h_stride = C / HEADS;
  8348. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8349. size_t h_stride_2d = head_size * head_size;
  8350. if (ith == 0) {
  8351. memset(dst_data, 0, T * C * sizeof(float));
  8352. }
  8353. ggml_barrier(params->threadpool);
  8354. #if defined(__AVX__) && !defined(__AVX512F__)
  8355. #define GGML_F32X GGML_F32x8
  8356. #define GGML_F32X_SET1 GGML_F32x8_SET1
  8357. #define GGML_F32X_LOAD GGML_F32x8_LOAD
  8358. #define GGML_F32X_STORE GGML_F32x8_STORE
  8359. #define GGML_F32X_MUL GGML_F32x8_MUL
  8360. #define GGML_F32X_FMA GGML_F32x8_FMA
  8361. #define GLA_VECTOR_SIZE 8
  8362. #elif defined(__AVX512F__)
  8363. #define GGML_F32X GGML_F32x16
  8364. #define GGML_F32X_SET1 GGML_F32x16_SET1
  8365. #define GGML_F32X_LOAD GGML_F32x16_LOAD
  8366. #define GGML_F32X_STORE GGML_F32x16_STORE
  8367. #define GGML_F32X_MUL GGML_F32x16_MUL
  8368. #define GGML_F32X_FMA GGML_F32x16_FMA
  8369. #define GLA_VECTOR_SIZE 16
  8370. #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
  8371. #define GGML_F32X GGML_F32xt
  8372. #define GGML_F32X_SET1 GGML_F32xt_SET1
  8373. #define GGML_F32X_LOAD GGML_F32xt_LOAD
  8374. #define GGML_F32X_STORE GGML_F32xt_STORE
  8375. #define GGML_F32X_MUL GGML_F32xt_MUL
  8376. #define GGML_F32X_FMA GGML_F32xt_FMA
  8377. #define GLA_VECTOR_SIZE 8
  8378. #elif defined(__ARM_NEON) && defined(__aarch64__)
  8379. #define GGML_F32X GGML_F32x4
  8380. #define GGML_F32X_SET1 GGML_F32x4_SET1
  8381. #define GGML_F32X_LOAD GGML_F32x4_LOAD
  8382. #define GGML_F32X_STORE GGML_F32x4_STORE
  8383. #define GGML_F32X_MUL GGML_F32x4_MUL
  8384. #define GGML_F32X_FMA GGML_F32x4_FMA
  8385. #define GLA_VECTOR_SIZE 4
  8386. #endif
  8387. #ifdef GLA_VECTOR_SIZE
  8388. int gla_vector_size;
  8389. #if defined(__ARM_FEATURE_SVE)
  8390. gla_vector_size = svcntw();
  8391. #else
  8392. gla_vector_size = GLA_VECTOR_SIZE;
  8393. #endif
  8394. const int64_t vec_count = head_size / gla_vector_size;
  8395. for (int64_t t = 0; t < T; t++) {
  8396. size_t t_offset = t * t_stride;
  8397. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8398. float * state_cur = state + state_offset;
  8399. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
  8400. for (int64_t h = h_start; h < h_end; h++) {
  8401. size_t h_offset = h * h_stride;
  8402. size_t t_h_offset = t_offset + h_offset;
  8403. size_t h_2d_offset = h * h_stride_2d;
  8404. for (int64_t i = 0; i < head_size; i++) {
  8405. size_t t_h_i_offset = t_h_offset + i;
  8406. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8407. float k_val = k[t_h_i_offset];
  8408. float q_val = q[t_h_i_offset] * scale;
  8409. float g_val = g[t_h_i_offset];
  8410. // Broadcast scalar values to vectors
  8411. GGML_F32X k_vec = GGML_F32X_SET1(k_val);
  8412. GGML_F32X q_vec = GGML_F32X_SET1(q_val);
  8413. GGML_F32X g_vec = GGML_F32X_SET1(g_val);
  8414. for (int64_t j = 0; j < vec_count; j++) {
  8415. size_t base_j = j * gla_vector_size;
  8416. size_t t_h_j_offset = t_h_offset + base_j;
  8417. size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
  8418. // Load x elements at once
  8419. GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
  8420. GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
  8421. GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
  8422. // Compute kv = v * k
  8423. GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
  8424. // Compute temp = prev_state * g + kv
  8425. GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
  8426. // Update dst: dst += temp * q
  8427. dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
  8428. GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
  8429. // Update state
  8430. GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
  8431. }
  8432. // Handle remaining elements, this will not be used.
  8433. for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
  8434. size_t t_h_j_offset = t_h_offset + j;
  8435. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8436. float v_val = v[t_h_j_offset];
  8437. float kv_val = v_val * k_val;
  8438. float prev_state_val = state_prev[h_2d_i_j_offset];
  8439. float temp_val = kv_val + prev_state_val * g_val;
  8440. dst_data[t_h_j_offset] += temp_val * q_val;
  8441. state_cur[h_2d_i_j_offset] = temp_val;
  8442. }
  8443. }
  8444. }
  8445. }
  8446. #else
  8447. for (int64_t t = 0; t < T; t++) {
  8448. size_t t_offset = t * t_stride;
  8449. size_t state_offset = head_size * C * (t / (T / n_seqs));
  8450. float * state_cur = state + state_offset;
  8451. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
  8452. for (int64_t h = h_start; h < h_end; h++) {
  8453. size_t h_offset = h * h_stride;
  8454. size_t t_h_offset = t_offset + h_offset;
  8455. size_t h_2d_offset = h * h_stride_2d;
  8456. for (int64_t i = 0; i < head_size; i++) {
  8457. size_t t_h_i_offset = t_h_offset + i;
  8458. size_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8459. float k_val = k[t_h_i_offset];
  8460. float q_val = q[t_h_i_offset] * scale;
  8461. float g_val = g[t_h_i_offset];
  8462. for (int64_t j = 0; j < head_size; j++) {
  8463. size_t t_h_j_offset = t_h_offset + j;
  8464. size_t h_2d_i_j_offset = h_2d_i_offset + j;
  8465. float v_val = v[t_h_j_offset];
  8466. float kv_val = v_val * k_val;
  8467. float prev_state_val = state_prev[h_2d_i_j_offset];
  8468. float temp_val = prev_state_val * g_val + kv_val;
  8469. dst_data[t_h_j_offset] += temp_val * q_val;
  8470. state_cur[h_2d_i_j_offset] = temp_val;
  8471. }
  8472. }
  8473. }
  8474. }
  8475. #endif
  8476. }
  8477. void ggml_compute_forward_gla(
  8478. const ggml_compute_params * params,
  8479. ggml_tensor * dst) {
  8480. const ggml_tensor * src0 = dst->src[0];
  8481. switch (src0->type) {
  8482. case GGML_TYPE_F32:
  8483. {
  8484. ggml_compute_forward_gla_f32(params, dst);
  8485. } break;
  8486. default:
  8487. {
  8488. GGML_ABORT("fatal error");
  8489. }
  8490. }
  8491. }
  8492. // Helper function to compute cumulative sum
  8493. static void delta_cumsum_f32(const float * x, float * dst, const int64_t n) {
  8494. float cumsum = 0.0f;
  8495. for (int64_t i = 0; i < n; i++) {
  8496. cumsum += x[i];
  8497. dst[i] = cumsum;
  8498. }
  8499. }
  8500. // Helper function for matrix multiplication
  8501. static void delta_matmul_f32(const float * a, const float * b, float * dst,
  8502. const int64_t m, const int64_t n, const int64_t k) {
  8503. for (int64_t i = 0; i < m; i++) {
  8504. for (int64_t j = 0; j < n; j++) {
  8505. float sum = 0.0f;
  8506. for (int64_t l = 0; l < k; l++) {
  8507. sum += a[i * k + l] * b[l * n + j];
  8508. }
  8509. dst[i * n + j] = sum;
  8510. }
  8511. }
  8512. }
  8513. // Helper function to create upper triangular mask
  8514. static void delta_create_upper_triangular_mask(bool * mask, const int64_t size) {
  8515. for (int64_t i = 0; i < size; i++) {
  8516. for (int64_t j = 0; j < size; j++) {
  8517. mask[i * size + j] = (j >= i); // upper triangular with diagonal
  8518. }
  8519. }
  8520. }
  8521. // Helper function to compute chunk decay mask
  8522. static void ggml_compute_chunk_decay_mask_f32(const float * g_cumsum, float * decay_mask,
  8523. const int64_t chunk_size) {
  8524. for (int64_t i = 0; i < chunk_size; i++) {
  8525. for (int64_t j = 0; j < chunk_size; j++) {
  8526. if (i >= j) { // Only compute for lower triangular (including diagonal)
  8527. float g_diff = g_cumsum[i] - g_cumsum[j];
  8528. decay_mask[i * chunk_size + j] = expf(-g_diff);
  8529. } else {
  8530. decay_mask[i * chunk_size + j] = 0.0f; // Causal mask
  8531. }
  8532. }
  8533. }
  8534. }
  8535. // Helper function to compute k_beta @ key.T
  8536. static void delta_compute_k_beta_key_t_f32(const float * k_beta, const float * key,
  8537. float * k_beta_key_t,
  8538. const int64_t chunk_size, const int64_t k_head_dim) {
  8539. for (int64_t i = 0; i < chunk_size; i++) {
  8540. for (int64_t j = 0; j < chunk_size; j++) {
  8541. float sum = 0.0f;
  8542. for (int64_t d = 0; d < k_head_dim; d++) {
  8543. int64_t k_beta_idx = i * k_head_dim + d;
  8544. int64_t key_idx = j * k_head_dim + d;
  8545. sum += k_beta[k_beta_idx] * key[key_idx];
  8546. }
  8547. k_beta_key_t[i * chunk_size + j] = sum;
  8548. }
  8549. }
  8550. }
  8551. // Helper function to apply triangular updates
  8552. static void delta_apply_triangular_updates_f32(float * attn, const int64_t chunk_size) {
  8553. for (int64_t i = 1; i < chunk_size; i++) {
  8554. for (int64_t j = 0; j < i; j++) {
  8555. float sum = 0.0f;
  8556. for (int64_t k = 0; k < i; k++) {
  8557. sum += attn[i * chunk_size + k] * attn[k * chunk_size + j];
  8558. }
  8559. attn[i * chunk_size + j] += sum;
  8560. }
  8561. }
  8562. }
  8563. // Helper function to add identity matrix
  8564. static void delta_add_identity_matrix_f32(float * matrix, const int64_t size) {
  8565. for (int64_t i = 0; i < size; i++) {
  8566. matrix[i * size + i] += 1.0f;
  8567. }
  8568. }
  8569. // Helper function to compute value = attn @ v_beta
  8570. static void delta_compute_value_f32(const float * attn, const float * v_beta,
  8571. float * value,
  8572. const int64_t chunk_size, const int64_t v_head_dim) {
  8573. for (int64_t i = 0; i < chunk_size; i++) {
  8574. for (int64_t d = 0; d < v_head_dim; d++) {
  8575. float sum = 0.0f;
  8576. for (int64_t j = 0; j < chunk_size; j++) {
  8577. int64_t v_beta_idx = j * v_head_dim + d;
  8578. sum += attn[i * chunk_size + j] * v_beta[v_beta_idx];
  8579. }
  8580. value[i * v_head_dim + d] = sum;
  8581. }
  8582. }
  8583. }
  8584. // Helper function to compute k_cumdecay = attn @ (k_beta * g.exp().unsqueeze(-1))
  8585. static void delta_compute_k_cumdecay_f32(const float * attn, const float * k_beta, const float * g,
  8586. float * k_cumdecay, const int64_t chunk_size, const int64_t k_head_dim) {
  8587. for (int64_t i = 0; i < chunk_size; i++) {
  8588. for (int64_t d = 0; d < k_head_dim; d++) {
  8589. float sum = 0.0f;
  8590. for (int64_t j = 0; j < chunk_size; j++) {
  8591. int64_t k_beta_idx = j * k_head_dim + d;
  8592. sum += attn[i * chunk_size + j] * k_beta[k_beta_idx] * expf(g[j]);
  8593. }
  8594. k_cumdecay[i * k_head_dim + d] = sum;
  8595. }
  8596. }
  8597. }
  8598. // Matrix multiplication helper for delta net
  8599. static void ggml_delta_net_matmul_f32(const float * a, const int64_t rows_a, const int64_t cols_a, const int64_t cols_b,
  8600. const float * b, float * result) {
  8601. for (int64_t i = 0; i < rows_a; i++) {
  8602. for (int64_t j = 0; j < cols_b; j++) {
  8603. float sum = 0.0f;
  8604. for (int64_t k = 0; k < cols_a; k++) {
  8605. int64_t a_idx = i * cols_a + k;
  8606. int64_t b_idx = k * cols_b + j;
  8607. sum += a[a_idx] * b[b_idx];
  8608. }
  8609. result[i * cols_b + j] = sum;
  8610. }
  8611. }
  8612. }
  8613. // Helper function to compute q_i @ k_i.transpose(-1, -2) * decay_mask and apply mask
  8614. static void delta_compute_q_k_attn_f32(const float * q, const float * k, const float * decay_mask,
  8615. float * attn, const bool * mask,
  8616. const int64_t chunk_size, const int64_t head_dim) {
  8617. // Compute q @ k.transpose(-1, -2)
  8618. for (int64_t i = 0; i < chunk_size; i++) {
  8619. for (int64_t j = 0; j < chunk_size; j++) {
  8620. float sum = 0.0f;
  8621. for (int64_t d = 0; d < head_dim; d++) {
  8622. int64_t q_idx = i * head_dim + d;
  8623. int64_t k_idx = j * head_dim + d;
  8624. sum += q[q_idx] * k[k_idx];
  8625. }
  8626. // Apply decay mask and causal mask
  8627. int64_t attn_idx = i * chunk_size + j;
  8628. attn[attn_idx] = (mask[attn_idx] ? 0.0f : sum * decay_mask[attn_idx]);
  8629. }
  8630. }
  8631. }
  8632. // Helper function for matrix multiplication with state tensors
  8633. static void delta_matmul_state_f32(const float * a, const float * state, float * dst,
  8634. const int64_t rows_a, const int64_t cols_a, const int64_t cols_state) {
  8635. for (int64_t i = 0; i < rows_a; i++) {
  8636. for (int64_t j = 0; j < cols_state; j++) {
  8637. float sum = 0.0f;
  8638. for (int64_t k = 0; k < cols_a; k++) {
  8639. int64_t a_idx = i * cols_a + k;
  8640. int64_t state_idx = k * cols_state + j;
  8641. sum += a[a_idx] * state[state_idx];
  8642. }
  8643. dst[i * cols_state + j] = sum;
  8644. }
  8645. }
  8646. }
  8647. // Helper function for element-wise tensor subtraction
  8648. static void delta_tensor_subtract_f32(const float * a, const float * b, float * dst, const int64_t size) {
  8649. for (int64_t i = 0; i < size; i++) {
  8650. dst[i] = a[i] - b[i];
  8651. }
  8652. }
  8653. // Helper function for element-wise tensor addition
  8654. static void delta_tensor_add_f32(const float * a, const float * b, float * dst, const int64_t size) {
  8655. for (int64_t i = 0; i < size; i++) {
  8656. dst[i] = a[i] + b[i];
  8657. }
  8658. }
  8659. // Helper function to update recurrent state
  8660. static void delta_update_recurrent_state_f32(const float * last_state, const float * g_last,
  8661. const float * k_i, const float * g_diff_exp, const float * v_new, float * new_state,
  8662. const int64_t chunk_size, const int64_t k_head_dim, const int64_t v_head_dim) {
  8663. for (int64_t i = 0; i < k_head_dim; i++) {
  8664. for (int64_t j = 0; j < v_head_dim; j++) {
  8665. int64_t state_idx = i * v_head_dim + j;
  8666. // last_recurrent_state * g_last
  8667. float term1 = last_state[state_idx] * (*g_last);
  8668. // (k_i * g_diff_exp).transpose(-1, -2) @ v_new
  8669. float term2 = 0.0f;
  8670. for (int64_t k = 0; k < chunk_size; k++) {
  8671. int64_t k_idx = k * k_head_dim + i;
  8672. int64_t v_idx = k * v_head_dim + j;
  8673. term2 += k_i[k_idx] * g_diff_exp[k] * v_new[v_idx];
  8674. }
  8675. new_state[state_idx] = term1 + term2;
  8676. }
  8677. }
  8678. }
  8679. void ggml_compute_forward_delta_net_f32(const ggml_compute_params * params, ggml_tensor * dst) {
  8680. const struct ggml_tensor * src0 = dst->src[0]; // q (already normalized and scaled)
  8681. const struct ggml_tensor * src1 = dst->src[1]; // k (already normalized)
  8682. const struct ggml_tensor * src2 = dst->src[2]; // v
  8683. const struct ggml_tensor * src3 = dst->src[3]; // g (cumsum)
  8684. const struct ggml_tensor * src4 = dst->src[4]; // state
  8685. const struct ggml_tensor * src5 = dst->src[5]; // decay_mask
  8686. const struct ggml_tensor * src6 = dst->src[6]; // v_beta
  8687. const struct ggml_tensor * src7 = dst->src[7]; // k_beta
  8688. const struct ggml_tensor * src8 = dst->src[8]; // attn
  8689. const int64_t H_v = (int64_t) dst->op_params[0];
  8690. const int64_t S_k = (int64_t) dst->op_params[1];
  8691. const int64_t S_v = (int64_t) dst->op_params[2];
  8692. const int64_t original_n_tokens = (int64_t) dst->op_params[3]; // Get original sequence length
  8693. const int64_t n_tokens = original_n_tokens; // Use the original sequence length
  8694. const int64_t n_seqs = src0->ne[3]; // q tensor has n_seqs in dim 3
  8695. // Add assertions to verify tensor dimensions
  8696. GGML_ASSERT(src0->ne[3] == n_seqs); // q tensor
  8697. GGML_ASSERT(src1->ne[3] == n_seqs); // k tensor
  8698. GGML_ASSERT(src2->ne[3] == n_seqs); // v tensor
  8699. GGML_ASSERT(src3->ne[3] == n_seqs); // g tensor
  8700. GGML_ASSERT(src4->ne[3] == n_seqs); // state tensor
  8701. float * dst_data = (float *) dst->data;
  8702. // Following GLA pattern: output is first part, state is second part
  8703. float * output = dst_data; // [S_v * H_v, n_tokens, 1, 1] - only real sequence length, not padded
  8704. float * new_state = dst_data + (S_v * H_v * n_tokens); // [S_v * H_v, S_v * n_seqs, 1, 1]
  8705. const int ith = params->ith;
  8706. // const int nth = params->nth; // nth is unused
  8707. // TODO: parallelize across heads and sequences
  8708. if (ith != 0) {
  8709. return;
  8710. }
  8711. // Clear output and new state section
  8712. memset(output, 0, ((S_v * H_v * n_tokens * n_seqs) + (S_v * S_v * H_v * n_seqs)) * sizeof(float));
  8713. // Calculate chunk size
  8714. const int64_t chunk_size = GGML_DELTA_NET_CHUNK;
  8715. const int64_t pad_size = (chunk_size - n_tokens % chunk_size) % chunk_size;
  8716. const int64_t num_chunks = (n_tokens + pad_size) / chunk_size;
  8717. // Apply triangular updates to the precomputed attention matrix
  8718. float * attn_data = (float *) src8->data;
  8719. float * v_beta_data = (float *) src6->data;
  8720. float * k_beta_data = (float *) src7->data;
  8721. float * g_data = (float *) src3->data;
  8722. float * q_data = (float *) src0->data;
  8723. float * k_data = (float *) src1->data;
  8724. //float * v_data = (float *) src2->data;
  8725. float * state_data = (float *) src4->data;
  8726. float * decay_mask_data = (float *) src5->data;
  8727. GGML_ASSERT(ggml_is_contiguous(src0));
  8728. GGML_ASSERT(ggml_is_contiguous(src1));
  8729. GGML_ASSERT(ggml_is_contiguous(src2));
  8730. GGML_ASSERT(ggml_is_contiguous(src3));
  8731. GGML_ASSERT(ggml_is_contiguous(src4));
  8732. GGML_ASSERT(ggml_is_contiguous(src5));
  8733. GGML_ASSERT(ggml_is_contiguous(src6));
  8734. GGML_ASSERT(ggml_is_contiguous(src7));
  8735. GGML_ASSERT(ggml_is_contiguous(src8));
  8736. for (int64_t seq = 0; seq < n_seqs; seq++) {
  8737. for (int64_t head = 0; head < H_v; head++) {
  8738. for (int64_t chunk = 0; chunk < num_chunks; chunk++) {
  8739. float * attn_data_for_chs = attn_data + (src8->nb[3] / sizeof(float)) * seq + (src8->nb[2] / sizeof(float)) * (chunk + head * num_chunks);
  8740. float * value_chunk = (float *) malloc(S_v * chunk_size * H_v * n_seqs * sizeof(float));
  8741. float * k_cumdecay = (float *) malloc(S_v * chunk_size * H_v * n_seqs * sizeof(float));
  8742. delta_apply_triangular_updates_f32(attn_data_for_chs, chunk_size);
  8743. delta_add_identity_matrix_f32(attn_data_for_chs, chunk_size);
  8744. // Calculate the correct v_beta and k_beta pointers for this head and sequence
  8745. float * v_beta_chunk = v_beta_data + (src6->nb[3] / sizeof(float)) * seq + (src6->nb[2] / sizeof(float)) * (chunk + head * num_chunks);
  8746. float * k_beta_chunk = k_beta_data + (src7->nb[3] / sizeof(float)) * seq + (src7->nb[2] / sizeof(float)) * (chunk + head * num_chunks);
  8747. // The g tensor has dimensions [8, 64, 2, 1] = [features, tokens, heads, sequences]
  8748. // We need to access the correct head data
  8749. // For each head, we need to access the correct feature for all tokens in the chunk
  8750. // Let's try accessing feature index chunk (since we have 8 features and chunk=0)
  8751. float * g_chunk = g_data + (src3->nb[3] / sizeof(float)) * seq + (src3->nb[2] / sizeof(float)) * head + (src3->nb[1] / sizeof(float)) * (chunk * chunk_size);
  8752. delta_compute_value_f32(attn_data_for_chs, v_beta_chunk, value_chunk, chunk_size, S_v);
  8753. delta_compute_k_cumdecay_f32(attn_data_for_chs, k_beta_chunk, g_chunk, k_cumdecay, chunk_size, S_k);
  8754. // Now compute the per-chunk-specific part (corresponding to the inner loop in Python)
  8755. float * q_chunk = q_data + (src0->nb[3] / sizeof(float)) * seq + (src0->nb[2] / sizeof(float)) * (chunk + head * num_chunks);
  8756. float * k_chunk = k_data + (src1->nb[3] / sizeof(float)) * seq + (src1->nb[2] / sizeof(float)) * (chunk + head * num_chunks);
  8757. float * decay_mask_chunk = decay_mask_data + (src5->nb[3] / sizeof(float)) * seq + (src5->nb[2] / sizeof(float)) * (chunk + head * num_chunks);
  8758. float * k_cumdecay_chunk = k_cumdecay + (S_v * chunk_size * H_v) * seq + (S_v * chunk_size) * head;
  8759. // Allocate temporary variables for the loop
  8760. float * attn = (float *) malloc(chunk_size * chunk_size * sizeof(float));
  8761. float * v_prime = (float *) malloc(chunk_size * S_v * sizeof(float));
  8762. float * v_new = (float *) malloc(chunk_size * S_v * sizeof(float));
  8763. float * attn_inter = (float *) malloc(chunk_size * S_v * sizeof(float));
  8764. float * core_attn_out_chunk = (float *) malloc(chunk_size * S_v * sizeof(float));
  8765. float * g_last = (float *) malloc(sizeof(float));
  8766. float * g_diff_exp = (float *) malloc(chunk_size * sizeof(float));
  8767. bool * mask = (bool *) malloc(chunk_size * chunk_size * sizeof(bool));
  8768. // Create upper triangular mask for causal attention (exclude diagonal)
  8769. for (int64_t i = 0; i < chunk_size; i++) {
  8770. for (int64_t j = 0; j < chunk_size; j++) {
  8771. mask[i * chunk_size + j] = (j > i); // True for upper triangular (excluding diagonal)
  8772. }
  8773. }
  8774. // Python loop implementation:
  8775. // q_i, k_i, v_i = query[:, :, i], key[:, :, i], value[:, :, i]
  8776. // attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
  8777. delta_compute_q_k_attn_f32(q_chunk, k_chunk, decay_mask_chunk, attn, mask, chunk_size, S_k);
  8778. // v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
  8779. // Calculate the correct state pointer for this head and sequence
  8780. float * head_state_data = state_data + (seq * S_v * S_v * H_v) + (head * S_v * S_v);
  8781. delta_matmul_state_f32(k_cumdecay_chunk, head_state_data, v_prime, chunk_size, S_k, S_v);
  8782. // v_new = v_i - v_prime
  8783. delta_tensor_subtract_f32(value_chunk, v_prime, v_new, chunk_size * S_v);
  8784. // attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
  8785. float * q_g_exp = (float *) malloc(chunk_size * S_k * sizeof(float));
  8786. for (int64_t i = 0; i < chunk_size; i++) {
  8787. for (int64_t d = 0; d < S_k; d++) {
  8788. int64_t q_idx = i * S_k + d;
  8789. q_g_exp[q_idx] = q_chunk[q_idx] * expf(g_chunk[i]);
  8790. }
  8791. }
  8792. delta_matmul_state_f32(q_g_exp, head_state_data, attn_inter, chunk_size, S_k, S_v);
  8793. // core_attn_out[:, :, i] = attn_inter + attn @ v_new
  8794. float * attn_v_new = (float *) malloc(chunk_size * S_v * sizeof(float));
  8795. delta_matmul_state_f32(attn, v_new, attn_v_new, chunk_size, chunk_size, S_v);
  8796. delta_tensor_add_f32(attn_inter, attn_v_new, core_attn_out_chunk, chunk_size * S_v);
  8797. // Store the result in the output tensor
  8798. for (int64_t i = 0; i < chunk_size; i++) {
  8799. for (int64_t d = 0; d < S_v; d++) {
  8800. if ((chunk * chunk_size + i) >= n_tokens) continue;
  8801. int64_t output_idx = seq * (n_tokens * S_v * H_v) + head * (n_tokens * S_v) + (chunk * chunk_size + i) * S_v + d;
  8802. output[output_idx] = core_attn_out_chunk[i * S_v + d];
  8803. }
  8804. }
  8805. // g_last = g[:, :, i, -1, None, None].exp()
  8806. *g_last = expf(g_chunk[chunk_size - 1]);
  8807. // Prepare g_diff_exp = (g[:, :, i, -1, None] - g[:, :, i]).exp()
  8808. float g_last_val = g_chunk[chunk_size - 1];
  8809. for (int64_t i = 0; i < chunk_size; i++) {
  8810. g_diff_exp[i] = expf(g_last_val - g_chunk[i]);
  8811. }
  8812. // last_recurrent_state = (
  8813. // last_recurrent_state * g_last
  8814. // + (k_i * (g[:, :, i, -1, None] - g[:, :, i]).exp()[..., None]).transpose(-1, -2) @ v_new
  8815. // )
  8816. float * new_recurrent_state = (float *) malloc(S_v * S_v * sizeof(float));
  8817. delta_update_recurrent_state_f32(head_state_data, g_last, k_chunk, g_diff_exp, v_new,
  8818. new_recurrent_state, chunk_size, S_v, S_v);
  8819. // Store the new state
  8820. for (int64_t i = 0; i < S_v; i++) {
  8821. for (int64_t j = 0; j < S_v; j++) {
  8822. int64_t state_idx = seq * S_v * S_v * H_v + head * S_v * S_v + i * S_v + j;
  8823. new_state[state_idx] = new_recurrent_state[i * S_v + j];
  8824. }
  8825. }
  8826. // Update the original state tensor with the new state for the next chunk
  8827. for (int64_t i = 0; i < S_v; i++) {
  8828. for (int64_t j = 0; j < S_v; j++) {
  8829. int64_t state_idx = i * S_v + j;
  8830. head_state_data[state_idx] = new_recurrent_state[state_idx];
  8831. }
  8832. }
  8833. // Recalculate head_state_data to point to the updated state for the next iteration
  8834. head_state_data = state_data + (seq * S_v * S_v * H_v) + (head * S_v * S_v);
  8835. // Free temporary memory
  8836. free(attn);
  8837. free(v_prime);
  8838. free(v_new);
  8839. free(attn_inter);
  8840. free(core_attn_out_chunk);
  8841. free(g_last);
  8842. free(g_diff_exp);
  8843. free(mask);
  8844. free(q_g_exp);
  8845. free(attn_v_new);
  8846. free(new_recurrent_state);
  8847. // Free the value and k_cumdecay allocated at the beginning of the loop
  8848. free(value_chunk);
  8849. free(k_cumdecay);
  8850. }
  8851. }
  8852. }
  8853. }
  8854. // ggml_compute_forward_rwkv_wkv7
  8855. static void ggml_compute_forward_rwkv_wkv7_f32(
  8856. const ggml_compute_params * params,
  8857. ggml_tensor * dst) {
  8858. const int64_t T = dst->src[1]->ne[2];
  8859. const int64_t C = dst->ne[0];
  8860. const int64_t HEADS = dst->src[1]->ne[1];
  8861. const int64_t n_seqs = dst->src[6]->ne[1];
  8862. const int64_t head_size = C / HEADS;
  8863. float * dst_data = (float *) dst->data;
  8864. float * state = ((float *) dst->data) + C * T;
  8865. const int ith = params->ith;
  8866. const int nth = params->nth;
  8867. if (ith >= HEADS) {
  8868. return;
  8869. }
  8870. const int h_start = (HEADS * ith) / nth;
  8871. const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
  8872. (HEADS * (ith + 1)) / nth : HEADS;
  8873. float * r = (float *) dst->src[0]->data;
  8874. float * w = (float *) dst->src[1]->data;
  8875. float * k = (float *) dst->src[2]->data;
  8876. float * v = (float *) dst->src[3]->data;
  8877. float * a = (float *) dst->src[4]->data;
  8878. float * b = (float *) dst->src[5]->data;
  8879. int64_t t_stride = HEADS * head_size; // Same to C
  8880. int64_t h_stride = C / HEADS;
  8881. GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
  8882. int64_t h_stride_2d = head_size * head_size;
  8883. #if defined(GGML_SIMD)
  8884. #if defined(__ARM_FEATURE_SVE) || defined(__riscv_v_intrinsic)
  8885. // scalar Route to scalar implementation //TODO: Write SVE code and RVV code
  8886. for (int64_t t = 0; t < T; t++) {
  8887. int64_t t_offset = t * t_stride;
  8888. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8889. float * state_cur = state + state_offset;
  8890. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8891. for (int64_t h = h_start; h < h_end; h++) {
  8892. int64_t h_offset = h * h_stride;
  8893. int64_t t_h_offset = t_offset + h_offset;
  8894. int64_t h_2d_offset = h * h_stride_2d;
  8895. for (int64_t i = 0; i < head_size; i++) {
  8896. int64_t t_h_i_offset = t_h_offset + i;
  8897. int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8898. float v_val = v[t_h_i_offset];
  8899. float sa = 0, result = 0;
  8900. for (int64_t j = 0; j < head_size; j++) {
  8901. sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
  8902. }
  8903. for (int64_t j = 0; j < head_size; j++) {
  8904. int64_t t_h_j_offset = t_h_offset + j;
  8905. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8906. float r_val = r[t_h_j_offset];
  8907. float w_val = w[t_h_j_offset];
  8908. float k_val = k[t_h_j_offset];
  8909. float b_val = b[t_h_j_offset];
  8910. float kv_val = v_val * k_val;
  8911. float prev_state_val = state_prev[h_2d_i_j_offset];
  8912. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8913. result += state_cur[h_2d_i_j_offset] * r_val;
  8914. }
  8915. dst_data[t_h_i_offset] = result;
  8916. }
  8917. }
  8918. }
  8919. #else
  8920. for (int64_t t = 0; t < T; t++) {
  8921. int64_t t_offset = t * t_stride;
  8922. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8923. float * state_cur = state + state_offset;
  8924. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8925. for (int64_t h = h_start; h < h_end; h++) {
  8926. int64_t h_offset = h * h_stride;
  8927. int64_t t_h_offset = t_offset + h_offset;
  8928. int64_t h_2d_offset = h * h_stride_2d;
  8929. for (int64_t ii = 0; ii < head_size; ii++) {
  8930. int64_t t_h_i_offset = t_h_offset + ii;
  8931. int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
  8932. GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
  8933. float sa = 0;
  8934. {
  8935. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  8936. GGML_F32_VEC ax[GGML_F32_ARR];
  8937. GGML_F32_VEC ay[GGML_F32_ARR];
  8938. for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
  8939. for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
  8940. ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
  8941. ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
  8942. sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
  8943. }
  8944. }
  8945. GGML_F32_VEC_REDUCE(sa, sum);
  8946. }
  8947. GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
  8948. int64_t j = 0;
  8949. GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  8950. for (; j < head_size; j += GGML_F32_STEP) {
  8951. for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
  8952. int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
  8953. int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
  8954. GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
  8955. GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
  8956. GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
  8957. GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
  8958. k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
  8959. GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
  8960. // kv + s * decay + sa * b
  8961. state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
  8962. state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
  8963. GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
  8964. result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
  8965. }
  8966. }
  8967. GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
  8968. // There shouldn't be left-overs though.
  8969. for (; j < head_size; j++) {
  8970. int64_t t_h_j_offset = t_h_offset + j;
  8971. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  8972. float r_val = r[t_h_j_offset];
  8973. float w_val = w[t_h_j_offset];
  8974. float k_val = k[t_h_j_offset];
  8975. float b_val = b[t_h_j_offset];
  8976. float kv_val = v[t_h_i_offset] * k_val;
  8977. float prev_state_val = state_prev[h_2d_i_j_offset];
  8978. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  8979. dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
  8980. }
  8981. }
  8982. }
  8983. }
  8984. #endif
  8985. #else
  8986. for (int64_t t = 0; t < T; t++) {
  8987. int64_t t_offset = t * t_stride;
  8988. int64_t state_offset = head_size * C * (t / (T / n_seqs));
  8989. float * state_cur = state + state_offset;
  8990. float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
  8991. for (int64_t h = h_start; h < h_end; h++) {
  8992. int64_t h_offset = h * h_stride;
  8993. int64_t t_h_offset = t_offset + h_offset;
  8994. int64_t h_2d_offset = h * h_stride_2d;
  8995. for (int64_t i = 0; i < head_size; i++) {
  8996. int64_t t_h_i_offset = t_h_offset + i;
  8997. int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
  8998. float v_val = v[t_h_i_offset];
  8999. float sa = 0, result = 0;
  9000. for (int64_t j = 0; j < head_size; j++) {
  9001. sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
  9002. }
  9003. for (int64_t j = 0; j < head_size; j++) {
  9004. int64_t t_h_j_offset = t_h_offset + j;
  9005. int64_t h_2d_i_j_offset = h_2d_i_offset + j;
  9006. float r_val = r[t_h_j_offset];
  9007. float w_val = w[t_h_j_offset];
  9008. float k_val = k[t_h_j_offset];
  9009. float b_val = b[t_h_j_offset];
  9010. float kv_val = v_val * k_val;
  9011. float prev_state_val = state_prev[h_2d_i_j_offset];
  9012. state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
  9013. result += state_cur[h_2d_i_j_offset] * r_val;
  9014. }
  9015. dst_data[t_h_i_offset] = result;
  9016. }
  9017. }
  9018. }
  9019. #endif
  9020. }
  9021. void ggml_compute_forward_rwkv_wkv7(
  9022. const ggml_compute_params * params,
  9023. ggml_tensor * dst) {
  9024. const ggml_tensor * src0 = dst->src[0];
  9025. switch (src0->type) {
  9026. case GGML_TYPE_F32:
  9027. {
  9028. ggml_compute_forward_rwkv_wkv7_f32(params, dst);
  9029. } break;
  9030. default:
  9031. {
  9032. GGML_ABORT("fatal error");
  9033. }
  9034. }
  9035. }
  9036. // ggml_compute_forward_map_custom1
  9037. void ggml_compute_forward_map_custom1(
  9038. const ggml_compute_params * params,
  9039. ggml_tensor * dst) {
  9040. const ggml_tensor * a = dst->src[0];
  9041. struct ggml_map_custom1_op_params p;
  9042. memcpy(&p, dst->op_params, sizeof(p));
  9043. p.fun(dst, a, params->ith, params->nth, p.userdata);
  9044. }
  9045. // ggml_compute_forward_map_custom2
  9046. void ggml_compute_forward_map_custom2(
  9047. const ggml_compute_params * params,
  9048. ggml_tensor * dst) {
  9049. const ggml_tensor * a = dst->src[0];
  9050. const ggml_tensor * b = dst->src[1];
  9051. struct ggml_map_custom2_op_params p;
  9052. memcpy(&p, dst->op_params, sizeof(p));
  9053. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  9054. }
  9055. // ggml_compute_forward_map_custom3
  9056. void ggml_compute_forward_map_custom3(
  9057. const ggml_compute_params * params,
  9058. ggml_tensor * dst) {
  9059. const ggml_tensor * a = dst->src[0];
  9060. const ggml_tensor * b = dst->src[1];
  9061. const ggml_tensor * c = dst->src[2];
  9062. struct ggml_map_custom3_op_params p;
  9063. memcpy(&p, dst->op_params, sizeof(p));
  9064. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  9065. }
  9066. // ggml_compute_forward_custom
  9067. void ggml_compute_forward_custom(
  9068. const struct ggml_compute_params * params,
  9069. struct ggml_tensor * dst) {
  9070. struct ggml_custom_op_params p;
  9071. memcpy(&p, dst->op_params, sizeof(p));
  9072. p.fun(dst, params->ith, params->nth, p.userdata);
  9073. }
  9074. // ggml_compute_forward_cross_entropy_loss
  9075. static void ggml_compute_forward_cross_entropy_loss_f32(
  9076. const ggml_compute_params * params,
  9077. ggml_tensor * dst) {
  9078. const ggml_tensor * src0 = dst->src[0];
  9079. const ggml_tensor * src1 = dst->src[1];
  9080. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9081. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9082. GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
  9083. GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
  9084. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  9085. GGML_ASSERT(ggml_is_scalar(dst));
  9086. GGML_ASSERT(dst->type == GGML_TYPE_F32);
  9087. // TODO: handle transposed/permuted matrices
  9088. const int64_t nc = src0->ne[0];
  9089. const int64_t nr = ggml_nrows(src0);
  9090. const int ith = params->ith;
  9091. const int nth = params->nth;
  9092. float * sums = (float *) params->wdata;
  9093. float * st = ((float *) params->wdata) + nth + ith*nc;
  9094. float sum_thread = 0.0f;
  9095. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  9096. // rows per thread
  9097. const int64_t dr = (nr + nth - 1)/nth;
  9098. // row range for this thread
  9099. const int64_t ir0 = dr*ith;
  9100. const int64_t ir1 = MIN(ir0 + dr, nr);
  9101. for (int64_t i1 = ir0; i1 < ir1; ++i1) {
  9102. const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
  9103. const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
  9104. #ifndef NDEBUG
  9105. for (int64_t i = 0; i < nc; ++i) {
  9106. //printf("p[%d] = %f\n", i, p[i]);
  9107. assert(!isnan(s0[i]));
  9108. assert(!isnan(s1[i]));
  9109. }
  9110. #endif
  9111. float max = -INFINITY;
  9112. ggml_vec_max_f32(nc, &max, s0);
  9113. const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
  9114. assert(sum_softmax >= 0.0);
  9115. ggml_vec_add1_f32(nc, st, st, -sum_softmax);
  9116. ggml_vec_mul_f32(nc, st, st, s1);
  9117. float sum_st = 0.0f;
  9118. ggml_vec_sum_f32(nc, &sum_st, st);
  9119. sum_thread += sum_st;
  9120. #ifndef NDEBUG
  9121. for (int64_t i = 0; i < nc; ++i) {
  9122. assert(!isnan(st[i]));
  9123. assert(!isinf(st[i]));
  9124. }
  9125. #endif
  9126. }
  9127. sums[ith] = sum_thread;
  9128. ggml_barrier(params->threadpool);
  9129. if (ith == 0) {
  9130. float * dp = (float *) dst->data;
  9131. ggml_vec_sum_f32(nth, dp, sums);
  9132. dp[0] *= -1.0f / (float) nr;
  9133. }
  9134. }
  9135. void ggml_compute_forward_cross_entropy_loss(
  9136. const ggml_compute_params * params,
  9137. ggml_tensor * dst) {
  9138. const ggml_tensor * src0 = dst->src[0];
  9139. switch (src0->type) {
  9140. case GGML_TYPE_F32:
  9141. {
  9142. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  9143. } break;
  9144. default:
  9145. {
  9146. GGML_ABORT("fatal error");
  9147. }
  9148. }
  9149. }
  9150. // ggml_compute_forward_cross_entropy_loss_back
  9151. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  9152. const ggml_compute_params * params,
  9153. ggml_tensor * dst) {
  9154. const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
  9155. const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
  9156. const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
  9157. GGML_ASSERT(ggml_is_contiguous(dst));
  9158. GGML_ASSERT(ggml_is_contiguous(src0f));
  9159. GGML_ASSERT(ggml_is_contiguous(src1f));
  9160. GGML_ASSERT(ggml_is_contiguous(grad));
  9161. GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
  9162. const int64_t ith = params->ith;
  9163. const int64_t nth = params->nth;
  9164. // TODO: handle transposed/permuted matrices
  9165. const int64_t nc = src0f->ne[0];
  9166. const int64_t nr = ggml_nrows(src0f);
  9167. // rows per thread
  9168. const int64_t dr = (nr + nth - 1)/nth;
  9169. // row range for this thread
  9170. const int64_t ir0 = dr*ith;
  9171. const int64_t ir1 = MIN(ir0 + dr, nr);
  9172. const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
  9173. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  9174. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  9175. const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
  9176. const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
  9177. #ifndef NDEBUG
  9178. for (int64_t i = 0; i < nc; ++i) {
  9179. //printf("p[%d] = %f\n", i, p[i]);
  9180. assert(!isnan(s0[i]));
  9181. assert(!isnan(s1[i]));
  9182. }
  9183. #endif
  9184. // soft_max
  9185. float max = -INFINITY;
  9186. ggml_vec_max_f32(nc, &max, s0);
  9187. const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  9188. assert(sum > 0.0);
  9189. ggml_vec_scale_f32(nc, ds0, 1.0/sum);
  9190. // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
  9191. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  9192. ggml_vec_scale_f32(nc, ds0, d_by_nr);
  9193. #ifndef NDEBUG
  9194. for (int64_t i = 0; i < nc; ++i) {
  9195. assert(!isnan(ds0[i]));
  9196. assert(!isinf(ds0[i]));
  9197. }
  9198. #endif
  9199. }
  9200. }
  9201. void ggml_compute_forward_cross_entropy_loss_back(
  9202. const ggml_compute_params * params,
  9203. ggml_tensor * dst) {
  9204. const ggml_tensor * src0 = dst->src[0];
  9205. switch (src0->type) {
  9206. case GGML_TYPE_F32:
  9207. {
  9208. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  9209. } break;
  9210. default:
  9211. {
  9212. GGML_ABORT("fatal error");
  9213. }
  9214. }
  9215. }
  9216. static void ggml_compute_forward_opt_step_adamw_f32(
  9217. const ggml_compute_params * params,
  9218. ggml_tensor * dst) {
  9219. const ggml_tensor * src0 = dst->src[0];
  9220. const ggml_tensor * src0_grad = dst->src[1];
  9221. const ggml_tensor * src0_grad_m = dst->src[2];
  9222. const ggml_tensor * src0_grad_v = dst->src[3];
  9223. const ggml_tensor * adamw_params = dst->src[4];
  9224. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  9225. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
  9226. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
  9227. GGML_ASSERT(ggml_nelements(adamw_params) == 7);
  9228. const int ith = params->ith;
  9229. const int nth = params->nth;
  9230. const int nr = ggml_nrows(src0);
  9231. GGML_TENSOR_UNARY_OP_LOCALS
  9232. GGML_ASSERT(nb00 == sizeof(float));
  9233. // rows per thread
  9234. const int dr = (nr + nth - 1)/nth;
  9235. // row range for this thread
  9236. const int ir0 = dr*ith;
  9237. const int ir1 = MIN(ir0 + dr, nr);
  9238. const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
  9239. const float alpha = adamw_params_ptr[0];
  9240. const float beta1 = adamw_params_ptr[1];
  9241. const float beta2 = adamw_params_ptr[2];
  9242. const float eps = adamw_params_ptr[3];
  9243. const float wd = adamw_params_ptr[4];
  9244. const float beta1h = adamw_params_ptr[5];
  9245. const float beta2h = adamw_params_ptr[6];
  9246. const float keep = 1.f - alpha * wd;
  9247. for (int ir = ir0; ir < ir1; ++ir) {
  9248. const int64_t i03 = ir/(ne02*ne01);
  9249. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  9250. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  9251. const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
  9252. float * w = (float *) ((char *) src0->data + offset); // weight
  9253. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  9254. float * m = (float *) ((char *) src0_grad_m->data + offset);
  9255. float * v = (float *) ((char *) src0_grad_v->data + offset);
  9256. for (int i00 = 0; i00 < ne00; ++i00) {
  9257. m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
  9258. v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
  9259. const float mh = m[i00]*beta1h;
  9260. const float vh = sqrtf(v[i00]*beta2h) + eps;
  9261. // The weight decay is applied independently of the Adam momenta m and v.
  9262. // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
  9263. // See: https://arxiv.org/pdf/1711.05101v3.pdf
  9264. w[i00] = w[i00] * keep - alpha * mh / vh;
  9265. }
  9266. }
  9267. }
  9268. void ggml_compute_forward_opt_step_adamw(
  9269. const ggml_compute_params * params,
  9270. ggml_tensor * dst) {
  9271. const ggml_tensor * src0 = dst->src[0];
  9272. switch (src0->type) {
  9273. case GGML_TYPE_F32:
  9274. {
  9275. ggml_compute_forward_opt_step_adamw_f32(params, dst);
  9276. } break;
  9277. default:
  9278. {
  9279. GGML_ABORT("fatal error");
  9280. }
  9281. }
  9282. }
  9283. static void ggml_compute_forward_opt_step_sgd_f32(const ggml_compute_params * params, ggml_tensor * dst) {
  9284. const ggml_tensor * src0 = dst->src[0];
  9285. const ggml_tensor * src0_grad = dst->src[1];
  9286. const ggml_tensor * sgd_params = dst->src[2];
  9287. GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
  9288. GGML_ASSERT(ggml_nelements(sgd_params) == 2);
  9289. const int ith = params->ith;
  9290. const int nth = params->nth;
  9291. const int nr = ggml_nrows(src0);
  9292. GGML_TENSOR_UNARY_OP_LOCALS
  9293. GGML_ASSERT(nb00 == sizeof(float));
  9294. // rows per thread
  9295. const int dr = (nr + nth - 1) / nth;
  9296. // row range for this thread
  9297. const int ir0 = dr * ith;
  9298. const int ir1 = MIN(ir0 + dr, nr);
  9299. // using adamw param subset we care about - alpha, wd - could have a separate struct
  9300. const float * sgd_params_ptr = ggml_get_data_f32(sgd_params);
  9301. const float alpha = sgd_params_ptr[0];
  9302. const float keep = 1.f - alpha * sgd_params_ptr[1];
  9303. for (int ir = ir0; ir < ir1; ++ir) {
  9304. const int64_t i03 = ir / (ne02 * ne01);
  9305. const int64_t i02 = (ir - i03 * ne02 * ne01) / ne01;
  9306. const int64_t i01 = (ir - i03 * ne02 * ne01 - i02 * ne01);
  9307. const size_t offset = i03 * nb03 + i02 * nb02 + i01 * nb01;
  9308. float * w = (float *) ((char *) src0->data + offset); // weight
  9309. const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
  9310. for (int i00 = 0; i00 < ne00; ++i00) {
  9311. w[i00] = w[i00] * keep - alpha * g[i00];
  9312. }
  9313. }
  9314. }
  9315. void ggml_compute_forward_opt_step_sgd(const ggml_compute_params * params, ggml_tensor * dst) {
  9316. const ggml_tensor * src0 = dst->src[0];
  9317. switch (src0->type) {
  9318. case GGML_TYPE_F32:
  9319. {
  9320. ggml_compute_forward_opt_step_sgd_f32(params, dst);
  9321. }
  9322. break;
  9323. default:
  9324. {
  9325. GGML_ABORT("fatal error - sgd is F32 only");
  9326. }
  9327. }
  9328. }