ggml.c 476 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. // multiply int8_t, add results pairwise twice and return as float vector
  462. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  463. // Get absolute values of x vectors
  464. const __m256i ax = _mm256_sign_epi8(x, x);
  465. // Sign the values of the y vectors
  466. const __m256i sy = _mm256_sign_epi8(y, x);
  467. #if __AVXVNNI__
  468. const __m256i zero = _mm256_setzero_si256();
  469. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  470. return _mm256_cvtepi32_ps(summed_pairs);
  471. #else
  472. // Perform multiplication and create 16-bit values
  473. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  474. return sum_i16_pairs_float(dot);
  475. #endif
  476. }
  477. static inline __m128i packNibbles( __m256i bytes )
  478. {
  479. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  480. #if __AVX512F__
  481. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  482. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  483. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  484. #else
  485. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  486. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  487. __m256i low = _mm256_and_si256( lowByte, bytes );
  488. high = _mm256_srli_epi16( high, 4 );
  489. bytes = _mm256_or_si256( low, high );
  490. // Compress uint16_t lanes into bytes
  491. __m128i r0 = _mm256_castsi256_si128( bytes );
  492. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  493. return _mm_packus_epi16( r0, r1 );
  494. #endif
  495. }
  496. #else
  497. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  498. {
  499. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  500. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  501. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  502. __m128i low = _mm_and_si128( lowByte, bytes1 );
  503. high = _mm_srli_epi16( high, 4 );
  504. bytes1 = _mm_or_si128( low, high );
  505. high = _mm_andnot_si128( lowByte, bytes2 );
  506. low = _mm_and_si128( lowByte, bytes2 );
  507. high = _mm_srli_epi16( high, 4 );
  508. bytes2 = _mm_or_si128( low, high );
  509. return _mm_packus_epi16( bytes1, bytes2);
  510. }
  511. #endif
  512. #elif defined(__SSSE3__)
  513. // horizontally add 4x4 floats
  514. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  515. __m128 res_0 =_mm_hadd_ps(a, b);
  516. __m128 res_1 =_mm_hadd_ps(c, d);
  517. __m128 res =_mm_hadd_ps(res_0, res_1);
  518. res =_mm_hadd_ps(res, res);
  519. res =_mm_hadd_ps(res, res);
  520. return _mm_cvtss_f32(res);
  521. }
  522. #endif // __AVX__ || __AVX2__ || __AVX512F__
  523. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  524. #if __ARM_NEON
  525. #if !defined(__aarch64__)
  526. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  527. return
  528. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  529. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  530. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  531. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  532. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  533. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  534. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  535. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  536. }
  537. inline static int16_t vaddvq_s8(int8x16_t v) {
  538. return
  539. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  540. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  541. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  542. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  543. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  544. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  545. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  546. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  547. }
  548. inline static int32_t vaddvq_s16(int16x8_t v) {
  549. return
  550. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  551. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  552. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  553. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  554. }
  555. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  556. return
  557. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  558. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  559. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  560. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  561. }
  562. inline static int32_t vaddvq_s32(int32x4_t v) {
  563. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  564. }
  565. inline static float vaddvq_f32(float32x4_t v) {
  566. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  567. }
  568. float vminvq_f32(float32x4_t v) {
  569. return
  570. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  571. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  572. }
  573. float vmaxvq_f32(float32x4_t v) {
  574. return
  575. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  576. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  577. }
  578. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  579. int32x4_t res;
  580. res[0] = roundf(vgetq_lane_f32(v, 0));
  581. res[1] = roundf(vgetq_lane_f32(v, 1));
  582. res[2] = roundf(vgetq_lane_f32(v, 2));
  583. res[3] = roundf(vgetq_lane_f32(v, 3));
  584. return res;
  585. }
  586. #endif
  587. #endif
  588. #define QK4_0 32
  589. typedef struct {
  590. float d; // delta
  591. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  592. } block_q4_0;
  593. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  594. #define QK4_1 32
  595. typedef struct {
  596. float d; // delta
  597. float m; // min
  598. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  599. } block_q4_1;
  600. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  601. #define QK5_0 32
  602. typedef struct {
  603. ggml_fp16_t d; // delta
  604. uint8_t qh[4]; // 5-th bit of quants
  605. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  606. } block_q5_0;
  607. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  608. #define QK5_1 32
  609. typedef struct {
  610. ggml_fp16_t d; // delta
  611. ggml_fp16_t m; // min
  612. uint8_t qh[4]; // 5-th bit of quants
  613. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  614. } block_q5_1;
  615. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  616. #define QK8_0 32
  617. typedef struct {
  618. float d; // delta
  619. int8_t qs[QK8_0]; // quants
  620. } block_q8_0;
  621. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  622. #define QK8_1 32
  623. typedef struct {
  624. float d; // delta
  625. float s; // d * sum(qs[i])
  626. int8_t qs[QK8_1]; // quants
  627. } block_q8_1;
  628. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  629. // reference implementation for deterministic creation of model files
  630. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  631. static const int qk = QK4_0;
  632. assert(k % qk == 0);
  633. const int nb = k / qk;
  634. for (int i = 0; i < nb; i++) {
  635. float amax = 0.0f; // absolute max
  636. float max = 0.0f;
  637. for (int j = 0; j < qk; j++) {
  638. const float v = x[i*qk + j];
  639. if (amax < fabsf(v)) {
  640. amax = fabsf(v);
  641. max = v;
  642. }
  643. }
  644. const float d = max / -8;
  645. const float id = d ? 1.0f/d : 0.0f;
  646. y[i].d = d;
  647. for (int j = 0; j < qk/2; ++j) {
  648. const float x0 = x[i*qk + 0 + j]*id;
  649. const float x1 = x[i*qk + qk/2 + j]*id;
  650. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  651. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  652. y[i].qs[j] = xi0;
  653. y[i].qs[j] |= xi1 << 4;
  654. }
  655. }
  656. }
  657. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  658. quantize_row_q4_0_reference(x, y, k);
  659. }
  660. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  661. const int qk = QK4_1;
  662. assert(k % qk == 0);
  663. const int nb = k / qk;
  664. for (int i = 0; i < nb; i++) {
  665. float min = FLT_MAX;
  666. float max = -FLT_MAX;
  667. for (int j = 0; j < qk; j++) {
  668. const float v = x[i*qk + j];
  669. if (v < min) min = v;
  670. if (v > max) max = v;
  671. }
  672. const float d = (max - min) / ((1 << 4) - 1);
  673. const float id = d ? 1.0f/d : 0.0f;
  674. y[i].d = d;
  675. y[i].m = min;
  676. for (int j = 0; j < qk/2; ++j) {
  677. const float x0 = (x[i*qk + 0 + j] - min)*id;
  678. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  679. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  680. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  681. y[i].qs[j] = xi0;
  682. y[i].qs[j] |= xi1 << 4;
  683. }
  684. }
  685. }
  686. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  687. quantize_row_q4_1_reference(x, y, k);
  688. }
  689. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  690. static const int qk = QK5_0;
  691. assert(k % qk == 0);
  692. const int nb = k / qk;
  693. for (int i = 0; i < nb; i++) {
  694. float amax = 0.0f; // absolute max
  695. float max = 0.0f;
  696. for (int j = 0; j < qk; j++) {
  697. const float v = x[i*qk + j];
  698. if (amax < fabsf(v)) {
  699. amax = fabsf(v);
  700. max = v;
  701. }
  702. }
  703. const float d = max / -16;
  704. const float id = d ? 1.0f/d : 0.0f;
  705. y[i].d = GGML_FP32_TO_FP16(d);
  706. uint32_t qh = 0;
  707. for (int j = 0; j < qk/2; ++j) {
  708. const float x0 = x[i*qk + 0 + j]*id;
  709. const float x1 = x[i*qk + qk/2 + j]*id;
  710. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  711. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  712. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  713. // get the 5-th bit and store it in qh at the right position
  714. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  715. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  716. }
  717. memcpy(&y[i].qh, &qh, sizeof(qh));
  718. }
  719. }
  720. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  721. quantize_row_q5_0_reference(x, y, k);
  722. }
  723. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  724. const int qk = QK5_1;
  725. assert(k % qk == 0);
  726. const int nb = k / qk;
  727. for (int i = 0; i < nb; i++) {
  728. float min = FLT_MAX;
  729. float max = -FLT_MAX;
  730. for (int j = 0; j < qk; j++) {
  731. const float v = x[i*qk + j];
  732. if (v < min) min = v;
  733. if (v > max) max = v;
  734. }
  735. const float d = (max - min) / ((1 << 5) - 1);
  736. const float id = d ? 1.0f/d : 0.0f;
  737. y[i].d = GGML_FP32_TO_FP16(d);
  738. y[i].m = GGML_FP32_TO_FP16(min);
  739. uint32_t qh = 0;
  740. for (int j = 0; j < qk/2; ++j) {
  741. const float x0 = (x[i*qk + 0 + j] - min)*id;
  742. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  743. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  744. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  745. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  746. // get the 5-th bit and store it in qh at the right position
  747. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  748. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  749. }
  750. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  751. }
  752. }
  753. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  754. quantize_row_q5_1_reference(x, y, k);
  755. }
  756. // reference implementation for deterministic creation of model files
  757. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  758. assert(k % QK8_0 == 0);
  759. const int nb = k / QK8_0;
  760. for (int i = 0; i < nb; i++) {
  761. float amax = 0.0f; // absolute max
  762. for (int j = 0; j < QK8_0; j++) {
  763. const float v = x[i*QK8_0 + j];
  764. amax = MAX(amax, fabsf(v));
  765. }
  766. const float d = amax / ((1 << 7) - 1);
  767. const float id = d ? 1.0f/d : 0.0f;
  768. y[i].d = d;
  769. for (int j = 0; j < QK8_0; ++j) {
  770. const float x0 = x[i*QK8_0 + j]*id;
  771. y[i].qs[j] = roundf(x0);
  772. }
  773. }
  774. }
  775. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  776. assert(QK8_0 == 32);
  777. assert(k % QK8_0 == 0);
  778. const int nb = k / QK8_0;
  779. block_q8_0 * restrict y = vy;
  780. #if defined(__ARM_NEON)
  781. for (int i = 0; i < nb; i++) {
  782. float32x4_t srcv [8];
  783. float32x4_t asrcv[8];
  784. float32x4_t amaxv[8];
  785. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  786. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  787. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  788. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  789. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  790. const float amax = vmaxvq_f32(amaxv[0]);
  791. const float d = amax / ((1 << 7) - 1);
  792. const float id = d ? 1.0f/d : 0.0f;
  793. y[i].d = d;
  794. for (int j = 0; j < 8; j++) {
  795. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  796. const int32x4_t vi = vcvtnq_s32_f32(v);
  797. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  798. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  799. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  800. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  801. }
  802. }
  803. #elif defined(__AVX2__) || defined(__AVX__)
  804. for (int i = 0; i < nb; i++) {
  805. // Load elements into 4 AVX vectors
  806. __m256 v0 = _mm256_loadu_ps( x );
  807. __m256 v1 = _mm256_loadu_ps( x + 8 );
  808. __m256 v2 = _mm256_loadu_ps( x + 16 );
  809. __m256 v3 = _mm256_loadu_ps( x + 24 );
  810. x += 32;
  811. // Compute max(abs(e)) for the block
  812. const __m256 signBit = _mm256_set1_ps( -0.0f );
  813. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  814. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  815. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  816. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  817. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  818. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  819. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  820. const float maxScalar = _mm_cvtss_f32( max4 );
  821. // Quantize these floats
  822. const float d = maxScalar / 127.f;
  823. y[i].d = d;
  824. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  825. const __m256 mul = _mm256_set1_ps( id );
  826. // Apply the multiplier
  827. v0 = _mm256_mul_ps( v0, mul );
  828. v1 = _mm256_mul_ps( v1, mul );
  829. v2 = _mm256_mul_ps( v2, mul );
  830. v3 = _mm256_mul_ps( v3, mul );
  831. // Round to nearest integer
  832. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  833. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  834. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  835. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  836. // Convert floats to integers
  837. __m256i i0 = _mm256_cvtps_epi32( v0 );
  838. __m256i i1 = _mm256_cvtps_epi32( v1 );
  839. __m256i i2 = _mm256_cvtps_epi32( v2 );
  840. __m256i i3 = _mm256_cvtps_epi32( v3 );
  841. #if defined(__AVX2__)
  842. // Convert int32 to int16
  843. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  844. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  845. // Convert int16 to int8
  846. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  847. // We got our precious signed bytes, but the order is now wrong
  848. // These AVX2 pack instructions process 16-byte pieces independently
  849. // The following instruction is fixing the order
  850. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  851. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  852. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  853. #else
  854. // Since we don't have in AVX some necessary functions,
  855. // we split the registers in half and call AVX2 analogs from SSE
  856. __m128i ni0 = _mm256_castsi256_si128( i0 );
  857. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  858. __m128i ni2 = _mm256_castsi256_si128( i1 );
  859. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  860. __m128i ni4 = _mm256_castsi256_si128( i2 );
  861. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  862. __m128i ni6 = _mm256_castsi256_si128( i3 );
  863. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  864. // Convert int32 to int16
  865. ni0 = _mm_packs_epi32( ni0, ni1 );
  866. ni2 = _mm_packs_epi32( ni2, ni3 );
  867. ni4 = _mm_packs_epi32( ni4, ni5 );
  868. ni6 = _mm_packs_epi32( ni6, ni7 );
  869. // Convert int16 to int8
  870. ni0 = _mm_packs_epi16( ni0, ni2 );
  871. ni4 = _mm_packs_epi16( ni4, ni6 );
  872. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  873. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  874. #endif
  875. }
  876. #else
  877. // scalar
  878. quantize_row_q8_0_reference(x, y, k);
  879. #endif
  880. }
  881. // reference implementation for deterministic creation of model files
  882. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  883. assert(QK8_1 == 32);
  884. assert(k % QK8_1 == 0);
  885. const int nb = k / QK8_1;
  886. for (int i = 0; i < nb; i++) {
  887. float amax = 0.0f; // absolute max
  888. for (int j = 0; j < QK8_1; j++) {
  889. const float v = x[i*QK8_1 + j];
  890. amax = MAX(amax, fabsf(v));
  891. }
  892. const float d = amax / ((1 << 7) - 1);
  893. const float id = d ? 1.0f/d : 0.0f;
  894. y[i].d = d;
  895. int sum = 0;
  896. for (int j = 0; j < QK8_1/2; ++j) {
  897. const float v0 = x[i*QK8_1 + j]*id;
  898. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  899. y[i].qs[ j] = roundf(v0);
  900. y[i].qs[QK8_1/2 + j] = roundf(v1);
  901. sum += y[i].qs[ j];
  902. sum += y[i].qs[QK8_1/2 + j];
  903. }
  904. y[i].s = d * sum;
  905. }
  906. }
  907. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  908. assert(k % QK8_1 == 0);
  909. const int nb = k / QK8_1;
  910. block_q8_1 * restrict y = vy;
  911. #if defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. float32x4_t srcv [8];
  914. float32x4_t asrcv[8];
  915. float32x4_t amaxv[8];
  916. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  917. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  918. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  919. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  920. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  921. const float amax = vmaxvq_f32(amaxv[0]);
  922. const float d = amax / ((1 << 7) - 1);
  923. const float id = d ? 1.0f/d : 0.0f;
  924. y[i].d = d;
  925. int32x4_t accv = vdupq_n_s32(0);
  926. for (int j = 0; j < 8; j++) {
  927. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  928. const int32x4_t vi = vcvtnq_s32_f32(v);
  929. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  930. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  931. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  932. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  933. accv = vaddq_s32(accv, vi);
  934. }
  935. y[i].s = d * vaddvq_s32(accv);
  936. }
  937. #elif defined(__AVX2__) || defined(__AVX__)
  938. for (int i = 0; i < nb; i++) {
  939. // Load elements into 4 AVX vectors
  940. __m256 v0 = _mm256_loadu_ps( x );
  941. __m256 v1 = _mm256_loadu_ps( x + 8 );
  942. __m256 v2 = _mm256_loadu_ps( x + 16 );
  943. __m256 v3 = _mm256_loadu_ps( x + 24 );
  944. x += 32;
  945. // Compute max(abs(e)) for the block
  946. const __m256 signBit = _mm256_set1_ps( -0.0f );
  947. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  948. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  949. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  950. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  951. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  952. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  953. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  954. const float maxScalar = _mm_cvtss_f32( max4 );
  955. // Quantize these floats
  956. const float d = maxScalar / 127.f;
  957. y[i].d = d;
  958. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  959. const __m256 mul = _mm256_set1_ps( id );
  960. // Apply the multiplier
  961. v0 = _mm256_mul_ps( v0, mul );
  962. v1 = _mm256_mul_ps( v1, mul );
  963. v2 = _mm256_mul_ps( v2, mul );
  964. v3 = _mm256_mul_ps( v3, mul );
  965. // Round to nearest integer
  966. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  967. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  968. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  969. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  970. // Convert floats to integers
  971. __m256i i0 = _mm256_cvtps_epi32( v0 );
  972. __m256i i1 = _mm256_cvtps_epi32( v1 );
  973. __m256i i2 = _mm256_cvtps_epi32( v2 );
  974. __m256i i3 = _mm256_cvtps_epi32( v3 );
  975. #if defined(__AVX2__)
  976. // Compute the sum of the quants and set y[i].s
  977. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  978. // Convert int32 to int16
  979. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  980. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  981. // Convert int16 to int8
  982. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  983. // We got our precious signed bytes, but the order is now wrong
  984. // These AVX2 pack instructions process 16-byte pieces independently
  985. // The following instruction is fixing the order
  986. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  987. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  988. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  989. #else
  990. // Since we don't have in AVX some necessary functions,
  991. // we split the registers in half and call AVX2 analogs from SSE
  992. __m128i ni0 = _mm256_castsi256_si128( i0 );
  993. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  994. __m128i ni2 = _mm256_castsi256_si128( i1 );
  995. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  996. __m128i ni4 = _mm256_castsi256_si128( i2 );
  997. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  998. __m128i ni6 = _mm256_castsi256_si128( i3 );
  999. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1000. // Compute the sum of the quants and set y[i].s
  1001. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1002. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1003. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1004. // Convert int32 to int16
  1005. ni0 = _mm_packs_epi32( ni0, ni1 );
  1006. ni2 = _mm_packs_epi32( ni2, ni3 );
  1007. ni4 = _mm_packs_epi32( ni4, ni5 );
  1008. ni6 = _mm_packs_epi32( ni6, ni7 );
  1009. // Convert int16 to int8
  1010. ni0 = _mm_packs_epi16( ni0, ni2 );
  1011. ni4 = _mm_packs_epi16( ni4, ni6 );
  1012. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1013. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1014. #endif
  1015. }
  1016. #else
  1017. // scalar
  1018. quantize_row_q8_1_reference(x, y, k);
  1019. #endif
  1020. }
  1021. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1022. static const int qk = QK4_0;
  1023. assert(k % qk == 0);
  1024. const int nb = k / qk;
  1025. for (int i = 0; i < nb; i++) {
  1026. const float d = x[i].d;
  1027. for (int j = 0; j < qk/2; ++j) {
  1028. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1029. const int x1 = (x[i].qs[j] >> 4) - 8;
  1030. y[i*qk + j + 0 ] = x0*d;
  1031. y[i*qk + j + qk/2] = x1*d;
  1032. }
  1033. }
  1034. }
  1035. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1036. static const int qk = QK4_1;
  1037. assert(k % qk == 0);
  1038. const int nb = k / qk;
  1039. for (int i = 0; i < nb; i++) {
  1040. const float d = x[i].d;
  1041. const float m = x[i].m;
  1042. for (int j = 0; j < qk/2; ++j) {
  1043. const int x0 = (x[i].qs[j] & 0x0F);
  1044. const int x1 = (x[i].qs[j] >> 4);
  1045. y[i*qk + j + 0 ] = x0*d + m;
  1046. y[i*qk + j + qk/2] = x1*d + m;
  1047. }
  1048. }
  1049. }
  1050. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1051. static const int qk = QK5_0;
  1052. assert(k % qk == 0);
  1053. const int nb = k / qk;
  1054. for (int i = 0; i < nb; i++) {
  1055. const float d = GGML_FP16_TO_FP32(x[i].d);
  1056. uint32_t qh;
  1057. memcpy(&qh, x[i].qh, sizeof(qh));
  1058. for (int j = 0; j < qk/2; ++j) {
  1059. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1060. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1061. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1062. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1063. y[i*qk + j + 0 ] = x0*d;
  1064. y[i*qk + j + qk/2] = x1*d;
  1065. }
  1066. }
  1067. }
  1068. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1069. static const int qk = QK5_1;
  1070. assert(k % qk == 0);
  1071. const int nb = k / qk;
  1072. for (int i = 0; i < nb; i++) {
  1073. const float d = GGML_FP16_TO_FP32(x[i].d);
  1074. const float m = GGML_FP16_TO_FP32(x[i].m);
  1075. uint32_t qh;
  1076. memcpy(&qh, x[i].qh, sizeof(qh));
  1077. for (int j = 0; j < qk/2; ++j) {
  1078. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1079. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1080. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1081. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1082. y[i*qk + j + 0 ] = x0*d + m;
  1083. y[i*qk + j + qk/2] = x1*d + m;
  1084. }
  1085. }
  1086. }
  1087. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1088. static const int qk = QK8_0;
  1089. assert(k % qk == 0);
  1090. const int nb = k / qk;
  1091. const block_q8_0 * restrict x = vx;
  1092. for (int i = 0; i < nb; i++) {
  1093. const float d = x[i].d;
  1094. for (int j = 0; j < qk; ++j) {
  1095. y[i*qk + j] = x[i].qs[j]*d;
  1096. }
  1097. }
  1098. }
  1099. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1100. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1101. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1102. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1103. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1104. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1105. [GGML_TYPE_Q4_0] = {
  1106. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1107. .quantize_row_q = quantize_row_q4_0,
  1108. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1109. .quantize_row_q_dot = quantize_row_q8_0,
  1110. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1111. .vec_dot_type = GGML_TYPE_Q8_0,
  1112. },
  1113. [GGML_TYPE_Q4_1] = {
  1114. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1115. .quantize_row_q = quantize_row_q4_1,
  1116. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1117. .quantize_row_q_dot = quantize_row_q8_1,
  1118. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1119. .vec_dot_type = GGML_TYPE_Q8_1,
  1120. },
  1121. [GGML_TYPE_Q5_0] = {
  1122. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1123. .quantize_row_q = quantize_row_q5_0,
  1124. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1125. .quantize_row_q_dot = quantize_row_q8_0,
  1126. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1127. .vec_dot_type = GGML_TYPE_Q8_0,
  1128. },
  1129. [GGML_TYPE_Q5_1] = {
  1130. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1131. .quantize_row_q = quantize_row_q5_1,
  1132. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1133. .quantize_row_q_dot = quantize_row_q8_1,
  1134. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1135. .vec_dot_type = GGML_TYPE_Q8_1,
  1136. },
  1137. [GGML_TYPE_Q8_0] = {
  1138. .dequantize_row_q = dequantize_row_q8_0,
  1139. .quantize_row_q = quantize_row_q8_0,
  1140. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1141. .quantize_row_q_dot = quantize_row_q8_0,
  1142. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1143. .vec_dot_type = GGML_TYPE_Q8_0,
  1144. },
  1145. [GGML_TYPE_Q8_1] = {
  1146. .dequantize_row_q = NULL, // TODO
  1147. .quantize_row_q = quantize_row_q8_1,
  1148. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1149. .quantize_row_q_dot = quantize_row_q8_1,
  1150. .vec_dot_q = NULL, // TODO
  1151. .vec_dot_type = GGML_TYPE_Q8_1,
  1152. },
  1153. };
  1154. // For internal test use
  1155. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1156. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1157. return quantize_fns[i];
  1158. }
  1159. //
  1160. // simd mappings
  1161. //
  1162. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1163. // we then implement the fundamental computation operations below using only these macros
  1164. // adding support for new architectures requires to define the corresponding SIMD macros
  1165. //
  1166. // GGML_F32_STEP / GGML_F16_STEP
  1167. // number of elements to process in a single step
  1168. //
  1169. // GGML_F32_EPR / GGML_F16_EPR
  1170. // number of elements to fit in a single register
  1171. //
  1172. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1173. #define GGML_SIMD
  1174. // F32 NEON
  1175. #define GGML_F32_STEP 16
  1176. #define GGML_F32_EPR 4
  1177. #define GGML_F32x4 float32x4_t
  1178. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1179. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1180. #define GGML_F32x4_LOAD vld1q_f32
  1181. #define GGML_F32x4_STORE vst1q_f32
  1182. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1183. #define GGML_F32x4_ADD vaddq_f32
  1184. #define GGML_F32x4_MUL vmulq_f32
  1185. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1186. #define GGML_F32x4_REDUCE(res, x) \
  1187. { \
  1188. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1189. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1190. } \
  1191. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1192. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1193. } \
  1194. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1195. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1196. } \
  1197. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1198. }
  1199. #define GGML_F32_VEC GGML_F32x4
  1200. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1201. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1202. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1203. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1204. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1205. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1206. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1207. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1208. // F16 NEON
  1209. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1210. #define GGML_F16_STEP 32
  1211. #define GGML_F16_EPR 8
  1212. #define GGML_F16x8 float16x8_t
  1213. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1214. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1215. #define GGML_F16x8_LOAD vld1q_f16
  1216. #define GGML_F16x8_STORE vst1q_f16
  1217. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1218. #define GGML_F16x8_ADD vaddq_f16
  1219. #define GGML_F16x8_MUL vmulq_f16
  1220. #define GGML_F16x8_REDUCE(res, x) \
  1221. { \
  1222. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1223. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1224. } \
  1225. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1226. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1227. } \
  1228. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1229. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1230. } \
  1231. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1232. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1233. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1234. }
  1235. #define GGML_F16_VEC GGML_F16x8
  1236. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1237. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1238. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1239. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1240. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1241. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1242. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1243. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1244. #else
  1245. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1246. // and take advantage of the vcvt_ functions to convert to/from FP16
  1247. #define GGML_F16_STEP 16
  1248. #define GGML_F16_EPR 4
  1249. #define GGML_F32Cx4 float32x4_t
  1250. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1251. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1252. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1253. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1254. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1255. #define GGML_F32Cx4_ADD vaddq_f32
  1256. #define GGML_F32Cx4_MUL vmulq_f32
  1257. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1258. #define GGML_F16_VEC GGML_F32Cx4
  1259. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1260. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1261. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1262. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1263. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1264. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1265. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1266. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1267. #endif
  1268. #elif defined(__AVX__)
  1269. #define GGML_SIMD
  1270. // F32 AVX
  1271. #define GGML_F32_STEP 32
  1272. #define GGML_F32_EPR 8
  1273. #define GGML_F32x8 __m256
  1274. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1275. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1276. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1277. #define GGML_F32x8_STORE _mm256_storeu_ps
  1278. #if defined(__FMA__)
  1279. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1280. #else
  1281. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1282. #endif
  1283. #define GGML_F32x8_ADD _mm256_add_ps
  1284. #define GGML_F32x8_MUL _mm256_mul_ps
  1285. #define GGML_F32x8_REDUCE(res, x) \
  1286. { \
  1287. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1288. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1289. } \
  1290. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1291. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1292. } \
  1293. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1294. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1295. } \
  1296. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1297. _mm256_extractf128_ps(x[0], 1)); \
  1298. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1299. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1300. }
  1301. // TODO: is this optimal ?
  1302. #define GGML_F32_VEC GGML_F32x8
  1303. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1304. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1305. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1306. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1307. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1308. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1309. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1310. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1311. // F16 AVX
  1312. #define GGML_F16_STEP 32
  1313. #define GGML_F16_EPR 8
  1314. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1315. #define GGML_F32Cx8 __m256
  1316. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1317. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1318. #if defined(__F16C__)
  1319. // the _mm256_cvt intrinsics require F16C
  1320. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1321. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1322. #else
  1323. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1324. float tmp[8];
  1325. for (int i = 0; i < 8; i++)
  1326. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1327. return _mm256_loadu_ps(tmp);
  1328. }
  1329. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1330. float arr[8];
  1331. _mm256_storeu_ps(arr, y);
  1332. for (int i = 0; i < 8; i++)
  1333. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1334. }
  1335. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1336. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1337. #endif
  1338. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1339. #define GGML_F32Cx8_ADD _mm256_add_ps
  1340. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1341. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1342. #define GGML_F16_VEC GGML_F32Cx8
  1343. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1344. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1345. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1346. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1347. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1348. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1349. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1350. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1351. #elif defined(__POWER9_VECTOR__)
  1352. #define GGML_SIMD
  1353. // F32 POWER9
  1354. #define GGML_F32_STEP 32
  1355. #define GGML_F32_EPR 4
  1356. #define GGML_F32x4 vector float
  1357. #define GGML_F32x4_ZERO 0.0f
  1358. #define GGML_F32x4_SET1 vec_splats
  1359. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1360. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1361. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1362. #define GGML_F32x4_ADD vec_add
  1363. #define GGML_F32x4_MUL vec_mul
  1364. #define GGML_F32x4_REDUCE(res, x) \
  1365. { \
  1366. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1367. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1368. } \
  1369. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1370. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1371. } \
  1372. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1373. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1374. } \
  1375. res = vec_extract(x[0], 0) + \
  1376. vec_extract(x[0], 1) + \
  1377. vec_extract(x[0], 2) + \
  1378. vec_extract(x[0], 3); \
  1379. }
  1380. #define GGML_F32_VEC GGML_F32x4
  1381. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1382. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1383. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1384. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1385. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1386. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1387. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1388. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1389. // F16 POWER9
  1390. #define GGML_F16_STEP GGML_F32_STEP
  1391. #define GGML_F16_EPR GGML_F32_EPR
  1392. #define GGML_F16_VEC GGML_F32x4
  1393. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1394. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1395. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1396. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1397. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1398. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1399. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1400. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1401. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1402. #define GGML_F16_VEC_STORE(p, r, i) \
  1403. if (i & 0x1) \
  1404. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1405. r[i - GGML_ENDIAN_BYTE(0)]), \
  1406. 0, p - GGML_F16_EPR)
  1407. #elif defined(__wasm_simd128__)
  1408. #define GGML_SIMD
  1409. // F32 WASM
  1410. #define GGML_F32_STEP 16
  1411. #define GGML_F32_EPR 4
  1412. #define GGML_F32x4 v128_t
  1413. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1414. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1415. #define GGML_F32x4_LOAD wasm_v128_load
  1416. #define GGML_F32x4_STORE wasm_v128_store
  1417. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1418. #define GGML_F32x4_ADD wasm_f32x4_add
  1419. #define GGML_F32x4_MUL wasm_f32x4_mul
  1420. #define GGML_F32x4_REDUCE(res, x) \
  1421. { \
  1422. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1423. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1424. } \
  1425. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1426. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1427. } \
  1428. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1429. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1430. } \
  1431. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1432. wasm_f32x4_extract_lane(x[0], 1) + \
  1433. wasm_f32x4_extract_lane(x[0], 2) + \
  1434. wasm_f32x4_extract_lane(x[0], 3); \
  1435. }
  1436. #define GGML_F32_VEC GGML_F32x4
  1437. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1438. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1439. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1440. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1441. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1442. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1443. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1444. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1445. // F16 WASM
  1446. #define GGML_F16_STEP 16
  1447. #define GGML_F16_EPR 4
  1448. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1449. float tmp[4];
  1450. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1451. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1452. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1453. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1454. return wasm_v128_load(tmp);
  1455. }
  1456. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1457. float tmp[4];
  1458. wasm_v128_store(tmp, x);
  1459. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1460. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1461. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1462. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1463. }
  1464. #define GGML_F16x4 v128_t
  1465. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1466. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1467. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1468. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1469. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1470. #define GGML_F16x4_ADD wasm_f32x4_add
  1471. #define GGML_F16x4_MUL wasm_f32x4_mul
  1472. #define GGML_F16x4_REDUCE(res, x) \
  1473. { \
  1474. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1475. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1478. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1479. } \
  1480. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1481. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1482. } \
  1483. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1484. wasm_f32x4_extract_lane(x[0], 1) + \
  1485. wasm_f32x4_extract_lane(x[0], 2) + \
  1486. wasm_f32x4_extract_lane(x[0], 3); \
  1487. }
  1488. #define GGML_F16_VEC GGML_F16x4
  1489. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1490. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1491. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1492. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1493. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1494. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1495. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1496. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1497. #elif defined(__SSE3__)
  1498. #define GGML_SIMD
  1499. // F32 SSE
  1500. #define GGML_F32_STEP 32
  1501. #define GGML_F32_EPR 4
  1502. #define GGML_F32x4 __m128
  1503. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1504. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1505. #define GGML_F32x4_LOAD _mm_loadu_ps
  1506. #define GGML_F32x4_STORE _mm_storeu_ps
  1507. #if defined(__FMA__)
  1508. // TODO: Does this work?
  1509. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1510. #else
  1511. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1512. #endif
  1513. #define GGML_F32x4_ADD _mm_add_ps
  1514. #define GGML_F32x4_MUL _mm_mul_ps
  1515. #define GGML_F32x4_REDUCE(res, x) \
  1516. { \
  1517. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1518. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1519. } \
  1520. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1521. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1522. } \
  1523. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1524. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1525. } \
  1526. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1527. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1528. }
  1529. // TODO: is this optimal ?
  1530. #define GGML_F32_VEC GGML_F32x4
  1531. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1532. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1533. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1534. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1535. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1536. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1537. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1538. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1539. // F16 SSE
  1540. #define GGML_F16_STEP 32
  1541. #define GGML_F16_EPR 4
  1542. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1543. float tmp[4];
  1544. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1545. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1546. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1547. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1548. return _mm_loadu_ps(tmp);
  1549. }
  1550. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1551. float arr[4];
  1552. _mm_storeu_ps(arr, y);
  1553. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1554. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1555. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1556. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1557. }
  1558. #define GGML_F32Cx4 __m128
  1559. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1560. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1561. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1562. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1563. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1564. #define GGML_F32Cx4_ADD _mm_add_ps
  1565. #define GGML_F32Cx4_MUL _mm_mul_ps
  1566. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1567. #define GGML_F16_VEC GGML_F32Cx4
  1568. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1569. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1570. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1571. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1572. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1573. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1574. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1575. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1576. #endif
  1577. // GGML_F32_ARR / GGML_F16_ARR
  1578. // number of registers to use per step
  1579. #ifdef GGML_SIMD
  1580. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1581. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1582. #endif
  1583. //
  1584. // fundamental operations
  1585. //
  1586. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1587. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1588. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1589. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1590. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1591. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1592. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1593. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1594. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1595. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1596. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1597. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1598. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1599. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1600. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1601. #ifdef GGML_SIMD
  1602. float sumf = 0.0f;
  1603. const int np = (n & ~(GGML_F32_STEP - 1));
  1604. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1605. GGML_F32_VEC ax[GGML_F32_ARR];
  1606. GGML_F32_VEC ay[GGML_F32_ARR];
  1607. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1608. for (int j = 0; j < GGML_F32_ARR; j++) {
  1609. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1610. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1611. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1612. }
  1613. }
  1614. // reduce sum0..sum3 to sum0
  1615. GGML_F32_VEC_REDUCE(sumf, sum);
  1616. // leftovers
  1617. for (int i = np; i < n; ++i) {
  1618. sumf += x[i]*y[i];
  1619. }
  1620. #else
  1621. // scalar
  1622. ggml_float sumf = 0.0;
  1623. for (int i = 0; i < n; ++i) {
  1624. sumf += (ggml_float)(x[i]*y[i]);
  1625. }
  1626. #endif
  1627. *s = sumf;
  1628. }
  1629. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1630. ggml_float sumf = 0.0;
  1631. #if defined(GGML_SIMD)
  1632. const int np = (n & ~(GGML_F16_STEP - 1));
  1633. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1634. GGML_F16_VEC ax[GGML_F16_ARR];
  1635. GGML_F16_VEC ay[GGML_F16_ARR];
  1636. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1637. for (int j = 0; j < GGML_F16_ARR; j++) {
  1638. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1639. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1640. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1641. }
  1642. }
  1643. // reduce sum0..sum3 to sum0
  1644. GGML_F16_VEC_REDUCE(sumf, sum);
  1645. // leftovers
  1646. for (int i = np; i < n; ++i) {
  1647. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1648. }
  1649. #else
  1650. for (int i = 0; i < n; ++i) {
  1651. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1652. }
  1653. #endif
  1654. *s = sumf;
  1655. }
  1656. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1657. const int qk = QK8_0;
  1658. const int nb = n / qk;
  1659. assert(n % qk == 0);
  1660. assert(nb % 2 == 0);
  1661. const block_q4_0 * restrict x = vx;
  1662. const block_q8_0 * restrict y = vy;
  1663. #if defined(__ARM_NEON)
  1664. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1665. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1666. for (int i = 0; i < nb; i += 2) {
  1667. const block_q4_0 * restrict x0 = &x[i + 0];
  1668. const block_q4_0 * restrict x1 = &x[i + 1];
  1669. const block_q8_0 * restrict y0 = &y[i + 0];
  1670. const block_q8_0 * restrict y1 = &y[i + 1];
  1671. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1672. const int8x16_t s8b = vdupq_n_s8(0x8);
  1673. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1674. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1675. // 4-bit -> 8-bit
  1676. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1677. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1678. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1679. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1680. // sub 8
  1681. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1682. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1683. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1684. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1685. // load y
  1686. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1687. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1688. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1689. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1690. #if defined(__ARM_FEATURE_DOTPROD)
  1691. // dot product into int32x4_t
  1692. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1693. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1694. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1695. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1696. #else
  1697. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1698. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1699. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1700. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1701. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1702. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1703. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1704. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1705. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1706. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1707. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1708. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1709. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1710. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1711. #endif
  1712. }
  1713. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1714. #elif defined(__AVX2__)
  1715. // Initialize accumulator with zeros
  1716. __m256 acc = _mm256_setzero_ps();
  1717. // Main loop
  1718. for (int i = 0; i < nb; ++i) {
  1719. /* Compute combined scale for the block */
  1720. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1721. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1722. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1723. const __m256i off = _mm256_set1_epi8( 8 );
  1724. bx = _mm256_sub_epi8( bx, off );
  1725. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1726. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1727. /* Multiply q with scale and accumulate */
  1728. acc = _mm256_fmadd_ps( d, q, acc );
  1729. }
  1730. *s = hsum_float_8(acc);
  1731. #elif defined(__AVX__)
  1732. // Initialize accumulator with zeros
  1733. __m256 acc = _mm256_setzero_ps();
  1734. // Main loop
  1735. for (int i = 0; i < nb; ++i) {
  1736. // Compute combined scale for the block
  1737. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1738. const __m128i lowMask = _mm_set1_epi8(0xF);
  1739. const __m128i off = _mm_set1_epi8(8);
  1740. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1741. __m128i bx = _mm_and_si128(lowMask, tmp);
  1742. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1743. bx = _mm_sub_epi8(bx, off);
  1744. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1745. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1746. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1747. bx = _mm_sub_epi8(bx, off);
  1748. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1749. // Convert int32_t to float
  1750. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1751. // Apply the scale, and accumulate
  1752. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1753. }
  1754. *s = hsum_float_8(acc);
  1755. #elif defined(__SSSE3__)
  1756. // set constants
  1757. const __m128i lowMask = _mm_set1_epi8(0xF);
  1758. const __m128i off = _mm_set1_epi8(8);
  1759. // Initialize accumulator with zeros
  1760. __m128 acc_0 = _mm_setzero_ps();
  1761. __m128 acc_1 = _mm_setzero_ps();
  1762. __m128 acc_2 = _mm_setzero_ps();
  1763. __m128 acc_3 = _mm_setzero_ps();
  1764. // First round without accumulation
  1765. {
  1766. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1767. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1768. // Compute combined scale for the block 0 and 1
  1769. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
  1770. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1771. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1772. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1773. bx_0 = _mm_sub_epi8(bx_0, off);
  1774. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1775. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1776. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1777. bx_1 = _mm_sub_epi8(bx_1, off);
  1778. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1779. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1780. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1781. // Compute combined scale for the block 2 and 3
  1782. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
  1783. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1784. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1785. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1786. bx_2 = _mm_sub_epi8(bx_2, off);
  1787. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1788. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1789. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1790. bx_3 = _mm_sub_epi8(bx_3, off);
  1791. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1792. // Convert int32_t to float
  1793. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1794. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1795. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1796. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1797. // Apply the scale
  1798. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1799. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1800. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1801. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1802. }
  1803. // Main loop
  1804. for (int i = 2; i < nb; i+=2) {
  1805. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1806. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1807. // Compute combined scale for the block 0 and 1
  1808. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
  1809. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1810. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1811. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1812. bx_0 = _mm_sub_epi8(bx_0, off);
  1813. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1814. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1815. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1816. bx_1 = _mm_sub_epi8(bx_1, off);
  1817. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1818. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1819. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1820. // Compute combined scale for the block 2 and 3
  1821. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
  1822. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1823. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1824. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1825. bx_2 = _mm_sub_epi8(bx_2, off);
  1826. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1827. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1828. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1829. bx_3 = _mm_sub_epi8(bx_3, off);
  1830. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1831. // Convert int32_t to float
  1832. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1833. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1834. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1835. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1836. // Apply the scale
  1837. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1838. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1839. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1840. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1841. // Acummulate
  1842. acc_0 = _mm_add_ps(p0_d, acc_0);
  1843. acc_1 = _mm_add_ps(p1_d, acc_1);
  1844. acc_2 = _mm_add_ps(p2_d, acc_2);
  1845. acc_3 = _mm_add_ps(p3_d, acc_3);
  1846. }
  1847. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1848. #else
  1849. // scalar
  1850. float sumf = 0.0;
  1851. for (int i = 0; i < nb; i++) {
  1852. int sumi = 0;
  1853. for (int j = 0; j < qk/2; ++j) {
  1854. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1855. const int v1 = (x[i].qs[j] >> 4) - 8;
  1856. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1857. }
  1858. sumf += (x[i].d*y[i].d)*sumi;
  1859. }
  1860. *s = sumf;
  1861. #endif
  1862. }
  1863. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1864. const int qk = QK8_1;
  1865. const int nb = n / qk;
  1866. assert(n % qk == 0);
  1867. assert(nb % 2 == 0);
  1868. const block_q4_1 * restrict x = vx;
  1869. const block_q8_1 * restrict y = vy;
  1870. // TODO: add WASM SIMD
  1871. #if defined(__ARM_NEON)
  1872. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1873. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1874. float summs = 0;
  1875. for (int i = 0; i < nb; i += 2) {
  1876. const block_q4_1 * restrict x0 = &x[i + 0];
  1877. const block_q4_1 * restrict x1 = &x[i + 1];
  1878. const block_q8_1 * restrict y0 = &y[i + 0];
  1879. const block_q8_1 * restrict y1 = &y[i + 1];
  1880. summs += x0->m * y0->s + x1->m * y1->s;
  1881. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1882. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1883. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1884. // 4-bit -> 8-bit
  1885. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1886. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1887. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1888. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1889. // load y
  1890. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1891. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1892. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1893. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1894. #if defined(__ARM_FEATURE_DOTPROD)
  1895. // dot product into int32x4_t
  1896. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1897. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1898. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1899. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1900. #else
  1901. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1902. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1903. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1904. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1905. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1906. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1907. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1908. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1909. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1910. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1911. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1912. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1913. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1914. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1915. #endif
  1916. }
  1917. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1918. #elif defined(__AVX2__)
  1919. // Initialize accumulator with zeros
  1920. __m256 acc = _mm256_setzero_ps();
  1921. float summs = 0;
  1922. // Main loop
  1923. for (int i = 0; i < nb; ++i) {
  1924. const float * d0 = &x[i].d;
  1925. const float * d1 = &y[i].d;
  1926. summs += x[i].m * y[i].s;
  1927. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1928. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1929. // Compute combined scales
  1930. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  1931. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1932. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1933. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  1934. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  1935. // Accumulate d0*d1*x*y
  1936. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  1937. }
  1938. *s = hsum_float_8(acc) + summs;
  1939. #else
  1940. // scalar
  1941. float sumf = 0.0;
  1942. for (int i = 0; i < nb; i++) {
  1943. int sumi = 0;
  1944. for (int j = 0; j < qk/2; ++j) {
  1945. const int v0 = (x[i].qs[j] & 0x0F);
  1946. const int v1 = (x[i].qs[j] >> 4);
  1947. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1948. }
  1949. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  1950. }
  1951. *s = sumf;
  1952. #endif
  1953. }
  1954. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1955. const int qk = QK8_0;
  1956. const int nb = n / qk;
  1957. assert(n % qk == 0);
  1958. assert(nb % 2 == 0);
  1959. assert(qk == QK5_0);
  1960. const block_q5_0 * restrict x = vx;
  1961. const block_q8_0 * restrict y = vy;
  1962. #if defined(__ARM_NEON)
  1963. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1964. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1965. uint32_t qh0;
  1966. uint32_t qh1;
  1967. uint64_t tmp0[4];
  1968. uint64_t tmp1[4];
  1969. for (int i = 0; i < nb; i += 2) {
  1970. const block_q5_0 * restrict x0 = &x[i];
  1971. const block_q5_0 * restrict x1 = &x[i + 1];
  1972. const block_q8_0 * restrict y0 = &y[i];
  1973. const block_q8_0 * restrict y1 = &y[i + 1];
  1974. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1975. // extract the 5th bit via lookup table ((!b) << 4)
  1976. memcpy(&qh0, x0->qh, sizeof(qh0));
  1977. memcpy(&qh1, x1->qh, sizeof(qh1));
  1978. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  1979. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  1980. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  1981. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  1982. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  1983. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  1984. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  1985. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  1986. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  1987. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  1988. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  1989. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  1990. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1991. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1992. // 4-bit -> 8-bit
  1993. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1994. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1995. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1996. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1997. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  1998. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  1999. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2000. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2001. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2002. // load y
  2003. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2004. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2005. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2006. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2007. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2008. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2009. #if defined(__ARM_FEATURE_DOTPROD)
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2011. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2012. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2013. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2014. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2015. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2016. #else
  2017. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2018. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2019. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2020. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2021. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2022. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2023. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2024. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2025. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2026. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2027. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2028. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2029. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2030. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2031. #endif
  2032. }
  2033. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2034. #elif defined(__wasm_simd128__)
  2035. v128_t sumv = wasm_f32x4_splat(0.0f);
  2036. uint32_t qh;
  2037. uint64_t tmp[4];
  2038. // TODO: check if unrolling this is better
  2039. for (int i = 0; i < nb; ++i) {
  2040. const block_q5_0 * restrict x0 = &x[i];
  2041. const block_q8_0 * restrict y0 = &y[i];
  2042. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2043. const v128_t s16b = wasm_i8x16_splat(0x10);
  2044. // extract the 5th bit
  2045. memcpy(&qh, x0->qh, sizeof(qh));
  2046. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2047. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2048. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2049. tmp[3] = table_b2b_1[(qh >> 24) ];
  2050. const v128_t qhl = wasm_v128_load(tmp + 0);
  2051. const v128_t qhh = wasm_v128_load(tmp + 2);
  2052. const v128_t v0 = wasm_v128_load(x0->qs);
  2053. // 4-bit -> 8-bit
  2054. const v128_t v0l = wasm_v128_and (v0, m4b);
  2055. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2056. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2057. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2058. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2059. // load y
  2060. const v128_t v1l = wasm_v128_load(y0->qs);
  2061. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2062. // int8x16 -> int16x8
  2063. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2064. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2065. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2066. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2067. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2068. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2069. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2070. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2071. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2072. // dot product
  2073. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2074. wasm_i32x4_add(
  2075. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2076. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2077. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2078. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2079. }
  2080. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2081. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2082. #elif defined(__AVX2__)
  2083. // Initialize accumulator with zeros
  2084. __m256 acc = _mm256_setzero_ps();
  2085. // Main loop
  2086. for (int i = 0; i < nb; i++) {
  2087. /* Compute combined scale for the block */
  2088. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2089. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2090. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2091. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2092. bx = _mm256_or_si256(bx, bxhi);
  2093. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2094. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2095. /* Multiply q with scale and accumulate */
  2096. acc = _mm256_fmadd_ps(d, q, acc);
  2097. }
  2098. *s = hsum_float_8(acc);
  2099. #else
  2100. // scalar
  2101. float sumf = 0.0;
  2102. for (int i = 0; i < nb; i++) {
  2103. uint32_t qh;
  2104. memcpy(&qh, x[i].qh, sizeof(qh));
  2105. int sumi = 0;
  2106. for (int j = 0; j < qk/2; ++j) {
  2107. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2108. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2109. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2110. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2111. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2112. }
  2113. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2114. }
  2115. *s = sumf;
  2116. #endif
  2117. }
  2118. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2119. const int qk = QK8_1;
  2120. const int nb = n / qk;
  2121. assert(n % qk == 0);
  2122. assert(nb % 2 == 0);
  2123. assert(qk == QK5_1);
  2124. const block_q5_1 * restrict x = vx;
  2125. const block_q8_1 * restrict y = vy;
  2126. #if defined(__ARM_NEON)
  2127. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2128. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2129. float summs0 = 0.0f;
  2130. float summs1 = 0.0f;
  2131. uint32_t qh0;
  2132. uint32_t qh1;
  2133. uint64_t tmp0[4];
  2134. uint64_t tmp1[4];
  2135. for (int i = 0; i < nb; i += 2) {
  2136. const block_q5_1 * restrict x0 = &x[i];
  2137. const block_q5_1 * restrict x1 = &x[i + 1];
  2138. const block_q8_1 * restrict y0 = &y[i];
  2139. const block_q8_1 * restrict y1 = &y[i + 1];
  2140. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2141. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2142. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2143. // extract the 5th bit via lookup table ((b) << 4)
  2144. memcpy(&qh0, x0->qh, sizeof(qh0));
  2145. memcpy(&qh1, x1->qh, sizeof(qh1));
  2146. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2147. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2148. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2149. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2150. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2151. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2152. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2153. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2154. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2155. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2156. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2157. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2158. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2159. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2160. // 4-bit -> 8-bit
  2161. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2162. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2163. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2164. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2165. // add high bit
  2166. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2167. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2168. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2169. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2170. // load y
  2171. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2172. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2173. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2174. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2175. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2176. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2177. #if defined(__ARM_FEATURE_DOTPROD)
  2178. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2179. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2180. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2181. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2182. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2183. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2184. #else
  2185. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2186. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2187. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2188. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2189. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2190. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2191. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2192. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2193. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2194. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2195. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2196. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2197. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2198. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2199. #endif
  2200. }
  2201. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2202. #elif defined(__wasm_simd128__)
  2203. v128_t sumv = wasm_f32x4_splat(0.0f);
  2204. float summs = 0.0f;
  2205. uint32_t qh;
  2206. uint64_t tmp[4];
  2207. // TODO: check if unrolling this is better
  2208. for (int i = 0; i < nb; ++i) {
  2209. const block_q5_1 * restrict x0 = &x[i];
  2210. const block_q8_1 * restrict y0 = &y[i];
  2211. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2212. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2213. // extract the 5th bit
  2214. memcpy(&qh, x0->qh, sizeof(qh));
  2215. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2216. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2217. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2218. tmp[3] = table_b2b_0[(qh >> 24) ];
  2219. const v128_t qhl = wasm_v128_load(tmp + 0);
  2220. const v128_t qhh = wasm_v128_load(tmp + 2);
  2221. const v128_t v0 = wasm_v128_load(x0->qs);
  2222. // 4-bit -> 8-bit
  2223. const v128_t v0l = wasm_v128_and (v0, m4b);
  2224. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2225. static bool x = true;
  2226. // add high bit
  2227. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2228. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2229. // load y
  2230. const v128_t v1l = wasm_v128_load(y0->qs);
  2231. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2232. // int8x16 -> int16x8
  2233. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2234. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2235. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2236. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2237. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2238. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2239. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2240. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2241. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2242. // dot product
  2243. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2244. wasm_i32x4_add(
  2245. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2246. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2247. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2248. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2249. }
  2250. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2251. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2252. #elif defined(__AVX2__)
  2253. // Initialize accumulator with zeros
  2254. __m256 acc = _mm256_setzero_ps();
  2255. float summs = 0.0f;
  2256. // Main loop
  2257. for (int i = 0; i < nb; i++) {
  2258. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2259. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2260. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2261. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2262. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2263. bx = _mm256_or_si256(bx, bxhi);
  2264. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2265. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2266. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2267. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2268. }
  2269. *s = hsum_float_8(acc) + summs;
  2270. #else
  2271. // scalar
  2272. float sumf = 0.0;
  2273. for (int i = 0; i < nb; i++) {
  2274. uint32_t qh;
  2275. memcpy(&qh, x[i].qh, sizeof(qh));
  2276. int sumi = 0;
  2277. for (int j = 0; j < qk/2; ++j) {
  2278. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2279. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2280. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2281. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2282. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2283. }
  2284. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2285. }
  2286. *s = sumf;
  2287. #endif
  2288. }
  2289. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2290. const int qk = QK8_0;
  2291. const int nb = n / qk;
  2292. assert(n % qk == 0);
  2293. assert(nb % 2 == 0);
  2294. const block_q8_0 * restrict x = vx;
  2295. const block_q8_0 * restrict y = vy;
  2296. #if defined(__ARM_NEON)
  2297. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2298. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2299. for (int i = 0; i < nb; i += 2) {
  2300. const block_q8_0 * restrict x0 = &x[i + 0];
  2301. const block_q8_0 * restrict x1 = &x[i + 1];
  2302. const block_q8_0 * restrict y0 = &y[i + 0];
  2303. const block_q8_0 * restrict y1 = &y[i + 1];
  2304. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2305. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2306. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2307. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2308. // load y
  2309. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2310. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2311. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2312. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2313. #if defined(__ARM_FEATURE_DOTPROD)
  2314. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2315. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2316. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2317. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2318. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2319. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2320. #else
  2321. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2322. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2323. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2324. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2325. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2326. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2327. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2328. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2329. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2330. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2331. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2332. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2333. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2334. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2335. #endif
  2336. }
  2337. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2338. #elif defined(__AVX2__)
  2339. // Initialize accumulator with zeros
  2340. __m256 acc = _mm256_setzero_ps();
  2341. // Main loop
  2342. for (int i = 0; i < nb; ++i) {
  2343. // Compute combined scale for the block
  2344. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2345. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2346. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2347. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2348. // Multiply q with scale and accumulate
  2349. acc = _mm256_fmadd_ps( d, q, acc );
  2350. }
  2351. *s = hsum_float_8(acc);
  2352. #else
  2353. // scalar
  2354. float sumf = 0.0;
  2355. for (int i = 0; i < nb; i++) {
  2356. int sumi = 0;
  2357. for (int j = 0; j < qk; j++) {
  2358. sumi += x[i].qs[j]*y[i].qs[j];
  2359. }
  2360. sumf += (x[i].d*y[i].d)*sumi;
  2361. }
  2362. *s = sumf;
  2363. #endif
  2364. }
  2365. // compute GGML_VEC_DOT_UNROLL dot products at once
  2366. // xs - x row stride in bytes
  2367. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2368. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2369. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2370. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2371. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2372. }
  2373. #if defined(GGML_SIMD)
  2374. const int np = (n & ~(GGML_F16_STEP - 1));
  2375. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2376. GGML_F16_VEC ax[GGML_F16_ARR];
  2377. GGML_F16_VEC ay[GGML_F16_ARR];
  2378. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2379. for (int j = 0; j < GGML_F16_ARR; j++) {
  2380. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2381. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2382. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2383. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2384. }
  2385. }
  2386. }
  2387. // reduce sum0..sum3 to sum0
  2388. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2389. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2390. }
  2391. // leftovers
  2392. for (int i = np; i < n; ++i) {
  2393. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2394. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2395. }
  2396. }
  2397. #else
  2398. for (int i = 0; i < n; ++i) {
  2399. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2400. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2401. }
  2402. }
  2403. #endif
  2404. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2405. s[i] = sumf[i];
  2406. }
  2407. }
  2408. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2409. #if defined(GGML_SIMD)
  2410. const int np = (n & ~(GGML_F32_STEP - 1));
  2411. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2412. GGML_F32_VEC ax[GGML_F32_ARR];
  2413. GGML_F32_VEC ay[GGML_F32_ARR];
  2414. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2415. for (int j = 0; j < GGML_F32_ARR; j++) {
  2416. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2417. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2418. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2419. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2420. }
  2421. }
  2422. // leftovers
  2423. for (int i = np; i < n; ++i) {
  2424. y[i] += x[i]*v;
  2425. }
  2426. #else
  2427. // scalar
  2428. for (int i = 0; i < n; ++i) {
  2429. y[i] += x[i]*v;
  2430. }
  2431. #endif
  2432. }
  2433. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2434. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2435. #if defined(GGML_SIMD)
  2436. const int np = (n & ~(GGML_F32_STEP - 1));
  2437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2438. GGML_F32_VEC ay[GGML_F32_ARR];
  2439. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2440. for (int j = 0; j < GGML_F32_ARR; j++) {
  2441. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2442. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2443. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2444. }
  2445. }
  2446. // leftovers
  2447. for (int i = np; i < n; ++i) {
  2448. y[i] *= v;
  2449. }
  2450. #else
  2451. // scalar
  2452. for (int i = 0; i < n; ++i) {
  2453. y[i] *= v;
  2454. }
  2455. #endif
  2456. }
  2457. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2458. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2459. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2460. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2461. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2462. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2463. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2464. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2465. static const float GELU_COEF_A = 0.044715f;
  2466. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2467. inline static float ggml_gelu_f32(float x) {
  2468. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2469. }
  2470. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2471. const uint16_t * i16 = (const uint16_t *) x;
  2472. for (int i = 0; i < n; ++i) {
  2473. y[i] = table_gelu_f16[i16[i]];
  2474. }
  2475. }
  2476. #ifdef GGML_GELU_FP16
  2477. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2478. uint16_t t;
  2479. for (int i = 0; i < n; ++i) {
  2480. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2481. memcpy(&t, &fp16, sizeof(uint16_t));
  2482. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2483. }
  2484. }
  2485. #else
  2486. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2487. for (int i = 0; i < n; ++i) {
  2488. y[i] = ggml_gelu_f32(x[i]);
  2489. }
  2490. }
  2491. #endif
  2492. // Sigmoid Linear Unit (SiLU) function
  2493. inline static float ggml_silu_f32(float x) {
  2494. return x/(1.0f + expf(-x));
  2495. }
  2496. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2497. // const uint16_t * i16 = (const uint16_t *) x;
  2498. // for (int i = 0; i < n; ++i) {
  2499. // y[i] = table_silu_f16[i16[i]];
  2500. // }
  2501. //}
  2502. #ifdef GGML_SILU_FP16
  2503. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2504. uint16_t t;
  2505. for (int i = 0; i < n; ++i) {
  2506. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2507. memcpy(&t, &fp16, sizeof(uint16_t));
  2508. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2509. }
  2510. }
  2511. #else
  2512. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2513. for (int i = 0; i < n; ++i) {
  2514. y[i] = ggml_silu_f32(x[i]);
  2515. }
  2516. }
  2517. #endif
  2518. inline static float ggml_silu_backward_f32(float x, float dy) {
  2519. const float s = 1.0f/(1.0f + expf(-x));
  2520. return dy*s*(1.0f + x*(1.0f - s));
  2521. }
  2522. #ifdef GGML_SILU_FP16
  2523. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2524. for (int i = 0; i < n; ++i) {
  2525. // we did not use x[i] to compute forward silu but its f16 equivalent
  2526. // take derivative at f16 of x[i]:
  2527. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2528. float usedx = GGML_FP16_TO_FP32(fp16);
  2529. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2530. }
  2531. }
  2532. #else
  2533. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2534. for (int i = 0; i < n; ++i) {
  2535. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2536. }
  2537. }
  2538. #endif
  2539. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2540. #ifndef GGML_USE_ACCELERATE
  2541. ggml_float sum = 0.0;
  2542. for (int i = 0; i < n; ++i) {
  2543. sum += (ggml_float)x[i];
  2544. }
  2545. *s = sum;
  2546. #else
  2547. vDSP_sve(x, 1, s, n);
  2548. #endif
  2549. }
  2550. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2551. ggml_float sum = 0.0;
  2552. for (int i = 0; i < n; ++i) {
  2553. sum += (ggml_float)x[i];
  2554. }
  2555. *s = sum;
  2556. }
  2557. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2558. #ifndef GGML_USE_ACCELERATE
  2559. float max = -INFINITY;
  2560. for (int i = 0; i < n; ++i) {
  2561. max = MAX(max, x[i]);
  2562. }
  2563. *s = max;
  2564. #else
  2565. vDSP_maxv(x, 1, s, n);
  2566. #endif
  2567. }
  2568. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2569. ggml_vec_norm_f32(n, s, x);
  2570. *s = 1.f/(*s);
  2571. }
  2572. //
  2573. // logging
  2574. //
  2575. #if (GGML_DEBUG >= 1)
  2576. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2577. #else
  2578. #define GGML_PRINT_DEBUG(...)
  2579. #endif
  2580. #if (GGML_DEBUG >= 5)
  2581. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2582. #else
  2583. #define GGML_PRINT_DEBUG_5(...)
  2584. #endif
  2585. #if (GGML_DEBUG >= 10)
  2586. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2587. #else
  2588. #define GGML_PRINT_DEBUG_10(...)
  2589. #endif
  2590. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2591. //
  2592. // data types
  2593. //
  2594. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2595. [GGML_TYPE_F32] = 1,
  2596. [GGML_TYPE_F16] = 1,
  2597. [GGML_TYPE_Q4_0] = QK4_0,
  2598. [GGML_TYPE_Q4_1] = QK4_1,
  2599. [GGML_TYPE_Q5_0] = QK5_0,
  2600. [GGML_TYPE_Q5_1] = QK5_1,
  2601. [GGML_TYPE_Q8_0] = QK8_0,
  2602. [GGML_TYPE_Q8_1] = QK8_1,
  2603. [GGML_TYPE_I8] = 1,
  2604. [GGML_TYPE_I16] = 1,
  2605. [GGML_TYPE_I32] = 1,
  2606. };
  2607. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2608. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2609. [GGML_TYPE_F32] = sizeof(float),
  2610. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2611. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2612. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2613. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2614. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2615. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2616. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2617. [GGML_TYPE_I8] = sizeof(int8_t),
  2618. [GGML_TYPE_I16] = sizeof(int16_t),
  2619. [GGML_TYPE_I32] = sizeof(int32_t),
  2620. };
  2621. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2622. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2623. [GGML_TYPE_F32] = "f32",
  2624. [GGML_TYPE_F16] = "f16",
  2625. [GGML_TYPE_Q4_0] = "q4_0",
  2626. [GGML_TYPE_Q4_1] = "q4_1",
  2627. [GGML_TYPE_Q5_0] = "q5_0",
  2628. [GGML_TYPE_Q5_1] = "q5_1",
  2629. [GGML_TYPE_Q8_0] = "q8_0",
  2630. [GGML_TYPE_Q8_1] = "q8_1",
  2631. [GGML_TYPE_I8] = "i8",
  2632. [GGML_TYPE_I16] = "i16",
  2633. [GGML_TYPE_I32] = "i32",
  2634. };
  2635. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2636. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2637. [GGML_TYPE_F32] = false,
  2638. [GGML_TYPE_F16] = false,
  2639. [GGML_TYPE_Q4_0] = true,
  2640. [GGML_TYPE_Q4_1] = true,
  2641. [GGML_TYPE_Q5_0] = true,
  2642. [GGML_TYPE_Q5_1] = true,
  2643. [GGML_TYPE_Q8_0] = true,
  2644. [GGML_TYPE_Q8_1] = true,
  2645. [GGML_TYPE_I8] = false,
  2646. [GGML_TYPE_I16] = false,
  2647. [GGML_TYPE_I32] = false,
  2648. };
  2649. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2650. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2651. "NONE",
  2652. "DUP",
  2653. "ADD",
  2654. "ADD1",
  2655. "ACC",
  2656. "SUB",
  2657. "MUL",
  2658. "DIV",
  2659. "SQR",
  2660. "SQRT",
  2661. "LOG",
  2662. "SUM",
  2663. "SUM_ROWS",
  2664. "MEAN",
  2665. "REPEAT",
  2666. "ABS",
  2667. "SGN",
  2668. "NEG",
  2669. "STEP",
  2670. "RELU",
  2671. "GELU",
  2672. "SILU",
  2673. "SILU_BACK",
  2674. "NORM",
  2675. "RMS_NORM",
  2676. "RMS_NORM_BACK",
  2677. "MUL_MAT",
  2678. "SCALE",
  2679. "SET",
  2680. "CPY",
  2681. "CONT",
  2682. "RESHAPE",
  2683. "VIEW",
  2684. "PERMUTE",
  2685. "TRANSPOSE",
  2686. "GET_ROWS",
  2687. "GET_ROWS_BACK",
  2688. "DIAG",
  2689. "DIAG_MASK_INF",
  2690. "DIAG_MASK_ZERO",
  2691. "SOFT_MAX",
  2692. "ROPE",
  2693. "ROPE_BACK",
  2694. "ALIBI",
  2695. "CONV_1D_1S",
  2696. "CONV_1D_2S",
  2697. "FLASH_ATTN",
  2698. "FLASH_FF",
  2699. "MAP_UNARY",
  2700. "MAP_BINARY",
  2701. };
  2702. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2703. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2704. "none",
  2705. "x",
  2706. "x+y",
  2707. "x+y",
  2708. "view(x,nb,offset)+=y->x",
  2709. "x-y",
  2710. "x*y",
  2711. "x/y",
  2712. "x^2",
  2713. "√x",
  2714. "log(x)",
  2715. "Σx",
  2716. "Σx_k",
  2717. "Σx/n",
  2718. "repeat(x)",
  2719. "abs(x)",
  2720. "sgn(x)",
  2721. "-x",
  2722. "step(x)",
  2723. "relu(x)",
  2724. "gelu(x)",
  2725. "silu(x)",
  2726. "silu_back(x)",
  2727. "norm(x)",
  2728. "rms_norm(x)",
  2729. "rms_norm_back(x)",
  2730. "X*Y",
  2731. "x*v",
  2732. "y-\\>view(x)",
  2733. "x-\\>y",
  2734. "cont(x)",
  2735. "reshape(x)",
  2736. "view(x)",
  2737. "permute(x)",
  2738. "transpose(x)",
  2739. "get_rows(x)",
  2740. "get_rows_back(x)",
  2741. "diag(x)",
  2742. "diag_mask_inf(x)",
  2743. "diag_mask_zero(x)",
  2744. "soft_max(x)",
  2745. "rope(x)",
  2746. "rope_back(x)",
  2747. "alibi(x)",
  2748. "conv_1d_1s(x)",
  2749. "conv_1d_2s(x)",
  2750. "flash_attn(x)",
  2751. "flash_ff(x)",
  2752. "f(x)",
  2753. "f(x,y)",
  2754. };
  2755. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2756. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2757. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2758. //
  2759. // ggml context
  2760. //
  2761. struct ggml_context {
  2762. size_t mem_size;
  2763. void * mem_buffer;
  2764. bool mem_buffer_owned;
  2765. bool no_alloc;
  2766. int n_objects;
  2767. struct ggml_object * objects_begin;
  2768. struct ggml_object * objects_end;
  2769. struct ggml_scratch scratch;
  2770. struct ggml_scratch scratch_save;
  2771. };
  2772. struct ggml_context_container {
  2773. bool used;
  2774. struct ggml_context context;
  2775. };
  2776. //
  2777. // compute types
  2778. //
  2779. enum ggml_task_type {
  2780. GGML_TASK_INIT = 0,
  2781. GGML_TASK_COMPUTE,
  2782. GGML_TASK_FINALIZE,
  2783. };
  2784. struct ggml_compute_params {
  2785. enum ggml_task_type type;
  2786. int ith, nth;
  2787. // work buffer for all threads
  2788. size_t wsize;
  2789. void * wdata;
  2790. };
  2791. //
  2792. // ggml state
  2793. //
  2794. struct ggml_state {
  2795. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2796. };
  2797. // global state
  2798. static struct ggml_state g_state;
  2799. static atomic_int g_state_barrier = 0;
  2800. // barrier via spin lock
  2801. inline static void ggml_critical_section_start(void) {
  2802. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2803. while (processing > 0) {
  2804. // wait for other threads to finish
  2805. atomic_fetch_sub(&g_state_barrier, 1);
  2806. sched_yield(); // TODO: reconsider this
  2807. processing = atomic_fetch_add(&g_state_barrier, 1);
  2808. }
  2809. }
  2810. // TODO: make this somehow automatically executed
  2811. // some sort of "sentry" mechanism
  2812. inline static void ggml_critical_section_end(void) {
  2813. atomic_fetch_sub(&g_state_barrier, 1);
  2814. }
  2815. ////////////////////////////////////////////////////////////////////////////////
  2816. void ggml_print_object(const struct ggml_object * obj) {
  2817. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2818. obj->offs, obj->size, (const void *) obj->next);
  2819. }
  2820. void ggml_print_objects(const struct ggml_context * ctx) {
  2821. struct ggml_object * obj = ctx->objects_begin;
  2822. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2823. while (obj != NULL) {
  2824. ggml_print_object(obj);
  2825. obj = obj->next;
  2826. }
  2827. GGML_PRINT("%s: --- end ---\n", __func__);
  2828. }
  2829. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2830. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2831. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2832. }
  2833. int ggml_nrows(const struct ggml_tensor * tensor) {
  2834. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2835. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2836. }
  2837. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2840. }
  2841. int ggml_blck_size(enum ggml_type type) {
  2842. return GGML_BLCK_SIZE[type];
  2843. }
  2844. size_t ggml_type_size(enum ggml_type type) {
  2845. return GGML_TYPE_SIZE[type];
  2846. }
  2847. float ggml_type_sizef(enum ggml_type type) {
  2848. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2849. }
  2850. const char * ggml_type_name(enum ggml_type type) {
  2851. return GGML_TYPE_NAME[type];
  2852. }
  2853. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2854. return GGML_TYPE_SIZE[tensor->type];
  2855. }
  2856. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2857. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2858. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2859. }
  2860. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2861. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2862. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2863. }
  2864. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2865. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2866. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2867. }
  2868. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2869. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2870. return
  2871. (t0->ne[0] == t1->ne[0]) &&
  2872. (t0->ne[2] == t1->ne[2]) &&
  2873. (t0->ne[3] == t1->ne[3]);
  2874. }
  2875. bool ggml_is_quantized(enum ggml_type type) {
  2876. return GGML_IS_QUANTIZED[type];
  2877. }
  2878. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2879. enum ggml_type wtype = GGML_TYPE_COUNT;
  2880. switch (ftype) {
  2881. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2882. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2883. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2884. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2885. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2886. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2887. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2888. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2889. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2890. }
  2891. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2892. return wtype;
  2893. }
  2894. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2895. return tensor->nb[0] > tensor->nb[1];
  2896. }
  2897. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2898. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2899. return
  2900. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2901. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2902. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2903. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2904. }
  2905. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2906. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2907. return
  2908. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2909. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2910. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2911. }
  2912. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2913. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2914. return
  2915. (t0->ne[0] == t1->ne[0] ) &&
  2916. (t0->ne[1] == t1->ne[1] ) &&
  2917. (t0->ne[2] == t1->ne[2] ) &&
  2918. (t0->ne[3] == t1->ne[3] );
  2919. }
  2920. // check if t1 can be represented as a repeatition of t0
  2921. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2922. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2923. return
  2924. (t1->ne[0]%t0->ne[0] == 0) &&
  2925. (t1->ne[1]%t0->ne[1] == 0) &&
  2926. (t1->ne[2]%t0->ne[2] == 0) &&
  2927. (t1->ne[3]%t0->ne[3] == 0);
  2928. }
  2929. static inline int ggml_up32(int n) {
  2930. return (n + 31) & ~31;
  2931. }
  2932. //static inline int ggml_up64(int n) {
  2933. // return (n + 63) & ~63;
  2934. //}
  2935. static inline int ggml_up(int n, int m) {
  2936. // assert m is a power of 2
  2937. GGML_ASSERT((m & (m - 1)) == 0);
  2938. return (n + m - 1) & ~(m - 1);
  2939. }
  2940. // assert that pointer is aligned to GGML_MEM_ALIGN
  2941. #define ggml_assert_aligned(ptr) \
  2942. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2943. ////////////////////////////////////////////////////////////////////////////////
  2944. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2945. // make this function thread safe
  2946. ggml_critical_section_start();
  2947. static bool is_first_call = true;
  2948. if (is_first_call) {
  2949. // initialize time system (required on Windows)
  2950. ggml_time_init();
  2951. // initialize GELU, SILU and EXP F32 tables
  2952. {
  2953. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2954. ggml_fp16_t ii;
  2955. for (int i = 0; i < (1 << 16); ++i) {
  2956. uint16_t ui = i;
  2957. memcpy(&ii, &ui, sizeof(ii));
  2958. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2959. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2960. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2961. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2962. }
  2963. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2964. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2965. }
  2966. // initialize g_state
  2967. {
  2968. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2969. g_state = (struct ggml_state) {
  2970. /*.contexts =*/ { { 0 } },
  2971. };
  2972. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2973. g_state.contexts[i].used = false;
  2974. }
  2975. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2976. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2977. }
  2978. #if defined(GGML_USE_CUBLAS)
  2979. ggml_init_cublas();
  2980. #elif defined(GGML_USE_CLBLAST)
  2981. ggml_cl_init();
  2982. #endif
  2983. is_first_call = false;
  2984. }
  2985. // find non-used context in g_state
  2986. struct ggml_context * ctx = NULL;
  2987. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2988. if (!g_state.contexts[i].used) {
  2989. g_state.contexts[i].used = true;
  2990. ctx = &g_state.contexts[i].context;
  2991. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2992. break;
  2993. }
  2994. }
  2995. if (ctx == NULL) {
  2996. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2997. ggml_critical_section_end();
  2998. return NULL;
  2999. }
  3000. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3001. *ctx = (struct ggml_context) {
  3002. /*.mem_size =*/ mem_size,
  3003. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3004. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3005. /*.no_alloc =*/ params.no_alloc,
  3006. /*.n_objects =*/ 0,
  3007. /*.objects_begin =*/ NULL,
  3008. /*.objects_end =*/ NULL,
  3009. /*.scratch =*/ { 0, 0, NULL, },
  3010. /*.scratch_save =*/ { 0, 0, NULL, },
  3011. };
  3012. GGML_ASSERT(ctx->mem_buffer != NULL);
  3013. ggml_assert_aligned(ctx->mem_buffer);
  3014. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3015. ggml_critical_section_end();
  3016. return ctx;
  3017. }
  3018. void ggml_free(struct ggml_context * ctx) {
  3019. // make this function thread safe
  3020. ggml_critical_section_start();
  3021. bool found = false;
  3022. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3023. if (&g_state.contexts[i].context == ctx) {
  3024. g_state.contexts[i].used = false;
  3025. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3026. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3027. if (ctx->mem_buffer_owned) {
  3028. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3029. }
  3030. found = true;
  3031. break;
  3032. }
  3033. }
  3034. if (!found) {
  3035. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3036. }
  3037. ggml_critical_section_end();
  3038. }
  3039. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3040. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3041. }
  3042. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3043. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3044. ctx->scratch = scratch;
  3045. return result;
  3046. }
  3047. ////////////////////////////////////////////////////////////////////////////////
  3048. struct ggml_tensor * ggml_new_tensor_impl(
  3049. struct ggml_context * ctx,
  3050. enum ggml_type type,
  3051. int n_dims,
  3052. const int64_t* ne,
  3053. void* data) {
  3054. // always insert objects at the end of the context's memory pool
  3055. struct ggml_object * obj_cur = ctx->objects_end;
  3056. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3057. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3058. const size_t cur_end = cur_offs + cur_size;
  3059. size_t size_needed = 0;
  3060. if (data == NULL && !ctx->no_alloc) {
  3061. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3062. for (int i = 1; i < n_dims; i++) {
  3063. size_needed *= ne[i];
  3064. }
  3065. // align to GGML_MEM_ALIGN
  3066. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3067. }
  3068. char * const mem_buffer = ctx->mem_buffer;
  3069. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3070. if (ctx->scratch.data == NULL || data != NULL) {
  3071. size_needed += sizeof(struct ggml_tensor);
  3072. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3073. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3074. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3075. assert(false);
  3076. return NULL;
  3077. }
  3078. *obj_new = (struct ggml_object) {
  3079. .offs = cur_end + GGML_OBJECT_SIZE,
  3080. .size = size_needed,
  3081. .next = NULL,
  3082. };
  3083. } else {
  3084. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3085. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3086. assert(false);
  3087. return NULL;
  3088. }
  3089. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3090. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3091. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3092. assert(false);
  3093. return NULL;
  3094. }
  3095. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3096. *obj_new = (struct ggml_object) {
  3097. .offs = cur_end + GGML_OBJECT_SIZE,
  3098. .size = sizeof(struct ggml_tensor),
  3099. .next = NULL,
  3100. };
  3101. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3102. ctx->scratch.offs += size_needed;
  3103. }
  3104. if (obj_cur != NULL) {
  3105. obj_cur->next = obj_new;
  3106. } else {
  3107. // this is the first object in this context
  3108. ctx->objects_begin = obj_new;
  3109. }
  3110. ctx->objects_end = obj_new;
  3111. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3112. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3113. ggml_assert_aligned(result);
  3114. *result = (struct ggml_tensor) {
  3115. /*.type =*/ type,
  3116. /*.backend =*/ GGML_BACKEND_CPU,
  3117. /*.n_dims =*/ n_dims,
  3118. /*.ne =*/ { 1, 1, 1, 1 },
  3119. /*.nb =*/ { 0, 0, 0, 0 },
  3120. /*.op =*/ GGML_OP_NONE,
  3121. /*.is_param =*/ false,
  3122. /*.grad =*/ NULL,
  3123. /*.src0 =*/ NULL,
  3124. /*.src1 =*/ NULL,
  3125. /*.opt =*/ { NULL },
  3126. /*.n_tasks =*/ 0,
  3127. /*.perf_runs =*/ 0,
  3128. /*.perf_cycles =*/ 0,
  3129. /*.perf_time_us =*/ 0,
  3130. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3131. /*.name =*/ { 0 },
  3132. /*.pad =*/ { 0 },
  3133. };
  3134. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3135. //ggml_assert_aligned(result->data);
  3136. for (int i = 0; i < n_dims; i++) {
  3137. result->ne[i] = ne[i];
  3138. }
  3139. result->nb[0] = GGML_TYPE_SIZE[type];
  3140. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3141. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3142. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3143. }
  3144. ctx->n_objects++;
  3145. return result;
  3146. }
  3147. struct ggml_tensor * ggml_new_tensor(
  3148. struct ggml_context * ctx,
  3149. enum ggml_type type,
  3150. int n_dims,
  3151. const int64_t * ne) {
  3152. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3153. }
  3154. struct ggml_tensor * ggml_new_tensor_1d(
  3155. struct ggml_context * ctx,
  3156. enum ggml_type type,
  3157. int64_t ne0) {
  3158. return ggml_new_tensor(ctx, type, 1, &ne0);
  3159. }
  3160. struct ggml_tensor * ggml_new_tensor_2d(
  3161. struct ggml_context * ctx,
  3162. enum ggml_type type,
  3163. int64_t ne0,
  3164. int64_t ne1) {
  3165. const int64_t ne[2] = { ne0, ne1 };
  3166. return ggml_new_tensor(ctx, type, 2, ne);
  3167. }
  3168. struct ggml_tensor * ggml_new_tensor_3d(
  3169. struct ggml_context * ctx,
  3170. enum ggml_type type,
  3171. int64_t ne0,
  3172. int64_t ne1,
  3173. int64_t ne2) {
  3174. const int64_t ne[3] = { ne0, ne1, ne2 };
  3175. return ggml_new_tensor(ctx, type, 3, ne);
  3176. }
  3177. struct ggml_tensor * ggml_new_tensor_4d(
  3178. struct ggml_context * ctx,
  3179. enum ggml_type type,
  3180. int64_t ne0,
  3181. int64_t ne1,
  3182. int64_t ne2,
  3183. int64_t ne3) {
  3184. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3185. return ggml_new_tensor(ctx, type, 4, ne);
  3186. }
  3187. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3188. ctx->scratch_save = ctx->scratch;
  3189. ctx->scratch.data = NULL;
  3190. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3191. ctx->scratch = ctx->scratch_save;
  3192. ggml_set_i32(result, value);
  3193. return result;
  3194. }
  3195. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3196. ctx->scratch_save = ctx->scratch;
  3197. ctx->scratch.data = NULL;
  3198. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3199. ctx->scratch = ctx->scratch_save;
  3200. ggml_set_f32(result, value);
  3201. return result;
  3202. }
  3203. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3204. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3205. }
  3206. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3207. memset(tensor->data, 0, ggml_nbytes(tensor));
  3208. return tensor;
  3209. }
  3210. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3211. const int n = ggml_nrows(tensor);
  3212. const int nc = tensor->ne[0];
  3213. const size_t n1 = tensor->nb[1];
  3214. char * const data = tensor->data;
  3215. switch (tensor->type) {
  3216. case GGML_TYPE_I8:
  3217. {
  3218. assert(tensor->nb[0] == sizeof(int8_t));
  3219. for (int i = 0; i < n; i++) {
  3220. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3221. }
  3222. } break;
  3223. case GGML_TYPE_I16:
  3224. {
  3225. assert(tensor->nb[0] == sizeof(int16_t));
  3226. for (int i = 0; i < n; i++) {
  3227. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3228. }
  3229. } break;
  3230. case GGML_TYPE_I32:
  3231. {
  3232. assert(tensor->nb[0] == sizeof(int32_t));
  3233. for (int i = 0; i < n; i++) {
  3234. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3235. }
  3236. } break;
  3237. case GGML_TYPE_F16:
  3238. {
  3239. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3240. for (int i = 0; i < n; i++) {
  3241. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3242. }
  3243. } break;
  3244. case GGML_TYPE_F32:
  3245. {
  3246. assert(tensor->nb[0] == sizeof(float));
  3247. for (int i = 0; i < n; i++) {
  3248. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3249. }
  3250. } break;
  3251. default:
  3252. {
  3253. GGML_ASSERT(false);
  3254. } break;
  3255. }
  3256. return tensor;
  3257. }
  3258. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3259. const int n = ggml_nrows(tensor);
  3260. const int nc = tensor->ne[0];
  3261. const size_t n1 = tensor->nb[1];
  3262. char * const data = tensor->data;
  3263. switch (tensor->type) {
  3264. case GGML_TYPE_I8:
  3265. {
  3266. assert(tensor->nb[0] == sizeof(int8_t));
  3267. for (int i = 0; i < n; i++) {
  3268. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3269. }
  3270. } break;
  3271. case GGML_TYPE_I16:
  3272. {
  3273. assert(tensor->nb[0] == sizeof(int16_t));
  3274. for (int i = 0; i < n; i++) {
  3275. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3276. }
  3277. } break;
  3278. case GGML_TYPE_I32:
  3279. {
  3280. assert(tensor->nb[0] == sizeof(int32_t));
  3281. for (int i = 0; i < n; i++) {
  3282. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3283. }
  3284. } break;
  3285. case GGML_TYPE_F16:
  3286. {
  3287. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3288. for (int i = 0; i < n; i++) {
  3289. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3290. }
  3291. } break;
  3292. case GGML_TYPE_F32:
  3293. {
  3294. assert(tensor->nb[0] == sizeof(float));
  3295. for (int i = 0; i < n; i++) {
  3296. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3297. }
  3298. } break;
  3299. default:
  3300. {
  3301. GGML_ASSERT(false);
  3302. } break;
  3303. }
  3304. return tensor;
  3305. }
  3306. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3307. switch (tensor->type) {
  3308. case GGML_TYPE_I8:
  3309. {
  3310. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3311. return ((int8_t *)(tensor->data))[i];
  3312. } break;
  3313. case GGML_TYPE_I16:
  3314. {
  3315. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3316. return ((int16_t *)(tensor->data))[i];
  3317. } break;
  3318. case GGML_TYPE_I32:
  3319. {
  3320. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3321. return ((int32_t *)(tensor->data))[i];
  3322. } break;
  3323. case GGML_TYPE_F16:
  3324. {
  3325. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3326. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3327. } break;
  3328. case GGML_TYPE_F32:
  3329. {
  3330. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3331. return ((float *)(tensor->data))[i];
  3332. } break;
  3333. default:
  3334. {
  3335. GGML_ASSERT(false);
  3336. } break;
  3337. }
  3338. return 0.0f;
  3339. }
  3340. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3341. switch (tensor->type) {
  3342. case GGML_TYPE_I8:
  3343. {
  3344. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3345. ((int8_t *)(tensor->data))[i] = value;
  3346. } break;
  3347. case GGML_TYPE_I16:
  3348. {
  3349. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3350. ((int16_t *)(tensor->data))[i] = value;
  3351. } break;
  3352. case GGML_TYPE_I32:
  3353. {
  3354. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3355. ((int32_t *)(tensor->data))[i] = value;
  3356. } break;
  3357. case GGML_TYPE_F16:
  3358. {
  3359. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3360. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3361. } break;
  3362. case GGML_TYPE_F32:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3365. ((float *)(tensor->data))[i] = value;
  3366. } break;
  3367. default:
  3368. {
  3369. GGML_ASSERT(false);
  3370. } break;
  3371. }
  3372. }
  3373. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3374. switch (tensor->type) {
  3375. case GGML_TYPE_I8:
  3376. {
  3377. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3378. return ((int8_t *)(tensor->data))[i];
  3379. } break;
  3380. case GGML_TYPE_I16:
  3381. {
  3382. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3383. return ((int16_t *)(tensor->data))[i];
  3384. } break;
  3385. case GGML_TYPE_I32:
  3386. {
  3387. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3388. return ((int32_t *)(tensor->data))[i];
  3389. } break;
  3390. case GGML_TYPE_F16:
  3391. {
  3392. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3393. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3394. } break;
  3395. case GGML_TYPE_F32:
  3396. {
  3397. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3398. return ((float *)(tensor->data))[i];
  3399. } break;
  3400. default:
  3401. {
  3402. GGML_ASSERT(false);
  3403. } break;
  3404. }
  3405. return 0.0f;
  3406. }
  3407. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3408. switch (tensor->type) {
  3409. case GGML_TYPE_I8:
  3410. {
  3411. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3412. ((int8_t *)(tensor->data))[i] = value;
  3413. } break;
  3414. case GGML_TYPE_I16:
  3415. {
  3416. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3417. ((int16_t *)(tensor->data))[i] = value;
  3418. } break;
  3419. case GGML_TYPE_I32:
  3420. {
  3421. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3422. ((int32_t *)(tensor->data))[i] = value;
  3423. } break;
  3424. case GGML_TYPE_F16:
  3425. {
  3426. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3427. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3428. } break;
  3429. case GGML_TYPE_F32:
  3430. {
  3431. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3432. ((float *)(tensor->data))[i] = value;
  3433. } break;
  3434. default:
  3435. {
  3436. GGML_ASSERT(false);
  3437. } break;
  3438. }
  3439. }
  3440. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3441. return tensor->data;
  3442. }
  3443. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3444. assert(tensor->type == GGML_TYPE_F32);
  3445. return (float *)(tensor->data);
  3446. }
  3447. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3448. return tensor->name;
  3449. }
  3450. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3451. strncpy(tensor->name, name, sizeof(tensor->name));
  3452. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3453. }
  3454. struct ggml_tensor * ggml_view_tensor(
  3455. struct ggml_context * ctx,
  3456. const struct ggml_tensor * src) {
  3457. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3458. result->nb[0] = src->nb[0];
  3459. result->nb[1] = src->nb[1];
  3460. result->nb[2] = src->nb[2];
  3461. result->nb[3] = src->nb[3];
  3462. return result;
  3463. }
  3464. ////////////////////////////////////////////////////////////////////////////////
  3465. // ggml_dup
  3466. struct ggml_tensor * ggml_dup_impl(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. bool inplace) {
  3470. bool is_node = false;
  3471. if (!inplace && (a->grad)) {
  3472. is_node = true;
  3473. }
  3474. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3475. result->op = GGML_OP_DUP;
  3476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3477. result->src0 = a;
  3478. result->src1 = NULL;
  3479. return result;
  3480. }
  3481. struct ggml_tensor * ggml_dup(
  3482. struct ggml_context * ctx,
  3483. struct ggml_tensor * a) {
  3484. return ggml_dup_impl(ctx, a, false);
  3485. }
  3486. struct ggml_tensor * ggml_dup_inplace(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a) {
  3489. return ggml_dup_impl(ctx, a, true);
  3490. }
  3491. // ggml_add
  3492. struct ggml_tensor * ggml_add_impl(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a,
  3495. struct ggml_tensor * b,
  3496. bool inplace) {
  3497. GGML_ASSERT(ggml_are_same_shape(a, b));
  3498. bool is_node = false;
  3499. if (!inplace && (a->grad || b->grad)) {
  3500. is_node = true;
  3501. }
  3502. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3503. result->op = GGML_OP_ADD;
  3504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3505. result->src0 = a;
  3506. result->src1 = b;
  3507. return result;
  3508. }
  3509. struct ggml_tensor * ggml_add(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a,
  3512. struct ggml_tensor * b) {
  3513. return ggml_add_impl(ctx, a, b, false);
  3514. }
  3515. struct ggml_tensor * ggml_add_inplace(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. struct ggml_tensor * b) {
  3519. return ggml_add_impl(ctx, a, b, true);
  3520. }
  3521. // ggml_add1
  3522. struct ggml_tensor * ggml_add1_impl(
  3523. struct ggml_context * ctx,
  3524. struct ggml_tensor * a,
  3525. struct ggml_tensor * b,
  3526. bool inplace) {
  3527. GGML_ASSERT(ggml_is_scalar(b));
  3528. GGML_ASSERT(ggml_is_padded_1d(a));
  3529. bool is_node = false;
  3530. if (!inplace && (a->grad || b->grad)) {
  3531. is_node = true;
  3532. }
  3533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3534. result->op = GGML_OP_ADD1;
  3535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3536. result->src0 = a;
  3537. result->src1 = b;
  3538. return result;
  3539. }
  3540. struct ggml_tensor * ggml_add1(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. struct ggml_tensor * b) {
  3544. return ggml_add1_impl(ctx, a, b, false);
  3545. }
  3546. struct ggml_tensor * ggml_add1_inplace(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. struct ggml_tensor * b) {
  3550. return ggml_add1_impl(ctx, a, b, true);
  3551. }
  3552. // ggml_acc
  3553. struct ggml_tensor * ggml_acc_impl(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. struct ggml_tensor * b,
  3557. size_t nb1,
  3558. size_t nb2,
  3559. size_t nb3,
  3560. size_t offset,
  3561. bool inplace) {
  3562. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3563. GGML_ASSERT(ggml_is_contiguous(a));
  3564. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3565. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3566. bool is_node = false;
  3567. if (!inplace && (a->grad || b->grad)) {
  3568. is_node = true;
  3569. }
  3570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3571. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3572. ((int32_t *) c->data)[0] = nb1;
  3573. ((int32_t *) c->data)[1] = nb2;
  3574. ((int32_t *) c->data)[2] = nb3;
  3575. ((int32_t *) c->data)[3] = offset;
  3576. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3577. result->op = GGML_OP_ACC;
  3578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3579. result->src0 = a;
  3580. result->src1 = b;
  3581. result->opt[0] = c;
  3582. return result;
  3583. }
  3584. struct ggml_tensor * ggml_acc(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a,
  3587. struct ggml_tensor * b,
  3588. size_t nb1,
  3589. size_t nb2,
  3590. size_t nb3,
  3591. size_t offset) {
  3592. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3593. }
  3594. struct ggml_tensor * ggml_acc_inplace(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a,
  3597. struct ggml_tensor * b,
  3598. size_t nb1,
  3599. size_t nb2,
  3600. size_t nb3,
  3601. size_t offset) {
  3602. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3603. }
  3604. // ggml_sub
  3605. struct ggml_tensor * ggml_sub_impl(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. struct ggml_tensor * b,
  3609. bool inplace) {
  3610. GGML_ASSERT(ggml_are_same_shape(a, b));
  3611. bool is_node = false;
  3612. if (!inplace && (a->grad || b->grad)) {
  3613. is_node = true;
  3614. }
  3615. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3616. result->op = GGML_OP_SUB;
  3617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3618. result->src0 = a;
  3619. result->src1 = b;
  3620. return result;
  3621. }
  3622. struct ggml_tensor * ggml_sub(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. struct ggml_tensor * b) {
  3626. return ggml_sub_impl(ctx, a, b, false);
  3627. }
  3628. struct ggml_tensor * ggml_sub_inplace(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b) {
  3632. return ggml_sub_impl(ctx, a, b, true);
  3633. }
  3634. // ggml_mul
  3635. struct ggml_tensor * ggml_mul_impl(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a,
  3638. struct ggml_tensor * b,
  3639. bool inplace) {
  3640. GGML_ASSERT(ggml_are_same_shape(a, b));
  3641. bool is_node = false;
  3642. if (!inplace && (a->grad || b->grad)) {
  3643. is_node = true;
  3644. }
  3645. if (inplace) {
  3646. GGML_ASSERT(is_node == false);
  3647. }
  3648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3649. result->op = GGML_OP_MUL;
  3650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3651. result->src0 = a;
  3652. result->src1 = b;
  3653. return result;
  3654. }
  3655. struct ggml_tensor * ggml_mul(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a,
  3658. struct ggml_tensor * b) {
  3659. return ggml_mul_impl(ctx, a, b, false);
  3660. }
  3661. struct ggml_tensor * ggml_mul_inplace(
  3662. struct ggml_context * ctx,
  3663. struct ggml_tensor * a,
  3664. struct ggml_tensor * b) {
  3665. return ggml_mul_impl(ctx, a, b, true);
  3666. }
  3667. // ggml_div
  3668. struct ggml_tensor * ggml_div_impl(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a,
  3671. struct ggml_tensor * b,
  3672. bool inplace) {
  3673. GGML_ASSERT(ggml_are_same_shape(a, b));
  3674. bool is_node = false;
  3675. if (!inplace && (a->grad || b->grad)) {
  3676. is_node = true;
  3677. }
  3678. if (inplace) {
  3679. GGML_ASSERT(is_node == false);
  3680. }
  3681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3682. result->op = GGML_OP_DIV;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src0 = a;
  3685. result->src1 = b;
  3686. return result;
  3687. }
  3688. struct ggml_tensor * ggml_div(
  3689. struct ggml_context * ctx,
  3690. struct ggml_tensor * a,
  3691. struct ggml_tensor * b) {
  3692. return ggml_div_impl(ctx, a, b, false);
  3693. }
  3694. struct ggml_tensor * ggml_div_inplace(
  3695. struct ggml_context * ctx,
  3696. struct ggml_tensor * a,
  3697. struct ggml_tensor * b) {
  3698. return ggml_div_impl(ctx, a, b, true);
  3699. }
  3700. // ggml_sqr
  3701. struct ggml_tensor * ggml_sqr_impl(
  3702. struct ggml_context * ctx,
  3703. struct ggml_tensor * a,
  3704. bool inplace) {
  3705. bool is_node = false;
  3706. if (!inplace && (a->grad)) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3710. result->op = GGML_OP_SQR;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src0 = a;
  3713. result->src1 = NULL;
  3714. return result;
  3715. }
  3716. struct ggml_tensor * ggml_sqr(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a) {
  3719. return ggml_sqr_impl(ctx, a, false);
  3720. }
  3721. struct ggml_tensor * ggml_sqr_inplace(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a) {
  3724. return ggml_sqr_impl(ctx, a, true);
  3725. }
  3726. // ggml_sqrt
  3727. struct ggml_tensor * ggml_sqrt_impl(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. bool inplace) {
  3731. bool is_node = false;
  3732. if (!inplace && (a->grad)) {
  3733. is_node = true;
  3734. }
  3735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3736. result->op = GGML_OP_SQRT;
  3737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3738. result->src0 = a;
  3739. result->src1 = NULL;
  3740. return result;
  3741. }
  3742. struct ggml_tensor * ggml_sqrt(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. return ggml_sqrt_impl(ctx, a, false);
  3746. }
  3747. struct ggml_tensor * ggml_sqrt_inplace(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a) {
  3750. return ggml_sqrt_impl(ctx, a, true);
  3751. }
  3752. // ggml_log
  3753. struct ggml_tensor * ggml_log_impl(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. bool inplace) {
  3757. bool is_node = false;
  3758. if (!inplace && (a->grad)) {
  3759. is_node = true;
  3760. }
  3761. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3762. result->op = GGML_OP_LOG;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src0 = a;
  3765. result->src1 = NULL;
  3766. return result;
  3767. }
  3768. struct ggml_tensor * ggml_log(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a) {
  3771. return ggml_log_impl(ctx, a, false);
  3772. }
  3773. struct ggml_tensor * ggml_log_inplace(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a) {
  3776. return ggml_log_impl(ctx, a, true);
  3777. }
  3778. // ggml_sum
  3779. struct ggml_tensor * ggml_sum(
  3780. struct ggml_context * ctx,
  3781. struct ggml_tensor * a) {
  3782. bool is_node = false;
  3783. if (a->grad) {
  3784. is_node = true;
  3785. }
  3786. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3787. result->op = GGML_OP_SUM;
  3788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3789. result->src0 = a;
  3790. result->src1 = NULL;
  3791. return result;
  3792. }
  3793. // ggml_sum_rows
  3794. struct ggml_tensor * ggml_sum_rows(
  3795. struct ggml_context * ctx,
  3796. struct ggml_tensor * a) {
  3797. bool is_node = false;
  3798. if (a->grad) {
  3799. is_node = true;
  3800. }
  3801. int64_t ne[4] = {1,1,1,1};
  3802. for (int i=1; i<a->n_dims; ++i) {
  3803. ne[i] = a->ne[i];
  3804. }
  3805. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3806. result->op = GGML_OP_SUM_ROWS;
  3807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3808. result->src0 = a;
  3809. result->src1 = NULL;
  3810. return result;
  3811. }
  3812. // ggml_mean
  3813. struct ggml_tensor * ggml_mean(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a) {
  3816. bool is_node = false;
  3817. if (a->grad) {
  3818. GGML_ASSERT(false); // TODO: implement
  3819. is_node = true;
  3820. }
  3821. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3822. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3823. result->op = GGML_OP_MEAN;
  3824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3825. result->src0 = a;
  3826. result->src1 = NULL;
  3827. return result;
  3828. }
  3829. // ggml_repeat
  3830. struct ggml_tensor * ggml_repeat(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. struct ggml_tensor * b) {
  3834. GGML_ASSERT(ggml_can_repeat(a, b));
  3835. bool is_node = false;
  3836. if (a->grad) {
  3837. is_node = true;
  3838. }
  3839. if (ggml_are_same_shape(a, b) && !is_node) {
  3840. return a;
  3841. }
  3842. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3843. result->op = GGML_OP_REPEAT;
  3844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3845. result->src0 = a;
  3846. result->src1 = b;
  3847. return result;
  3848. }
  3849. // ggml_abs
  3850. struct ggml_tensor * ggml_abs_impl(
  3851. struct ggml_context * ctx,
  3852. struct ggml_tensor * a,
  3853. bool inplace) {
  3854. bool is_node = false;
  3855. if (!inplace && (a->grad)) {
  3856. is_node = true;
  3857. }
  3858. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3859. result->op = GGML_OP_ABS;
  3860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3861. result->src0 = a;
  3862. result->src1 = NULL;
  3863. return result;
  3864. }
  3865. struct ggml_tensor * ggml_abs(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a) {
  3868. return ggml_abs_impl(ctx, a, false);
  3869. }
  3870. struct ggml_tensor * ggml_abs_inplace(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a) {
  3873. return ggml_abs_impl(ctx, a, true);
  3874. }
  3875. // ggml_sgn
  3876. struct ggml_tensor * ggml_sgn_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. bool inplace) {
  3880. bool is_node = false;
  3881. if (!inplace && (a->grad)) {
  3882. is_node = true;
  3883. }
  3884. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3885. result->op = GGML_OP_SGN;
  3886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3887. result->src0 = a;
  3888. result->src1 = NULL;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_sgn(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a) {
  3894. return ggml_sgn_impl(ctx, a, false);
  3895. }
  3896. struct ggml_tensor * ggml_sgn_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a) {
  3899. return ggml_sgn_impl(ctx, a, true);
  3900. }
  3901. // ggml_neg
  3902. struct ggml_tensor * ggml_neg_impl(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. bool inplace) {
  3906. bool is_node = false;
  3907. if (!inplace && (a->grad)) {
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3911. result->op = GGML_OP_NEG;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src0 = a;
  3914. result->src1 = NULL;
  3915. return result;
  3916. }
  3917. struct ggml_tensor * ggml_neg(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a) {
  3920. return ggml_neg_impl(ctx, a, false);
  3921. }
  3922. struct ggml_tensor * ggml_neg_inplace(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a) {
  3925. return ggml_neg_impl(ctx, a, true);
  3926. }
  3927. // ggml_step
  3928. struct ggml_tensor * ggml_step_impl(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. bool inplace) {
  3932. bool is_node = false;
  3933. if (!inplace && (a->grad)) {
  3934. is_node = true;
  3935. }
  3936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3937. result->op = GGML_OP_STEP;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src0 = a;
  3940. result->src1 = NULL;
  3941. return result;
  3942. }
  3943. struct ggml_tensor * ggml_step(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a) {
  3946. return ggml_step_impl(ctx, a, false);
  3947. }
  3948. struct ggml_tensor * ggml_step_inplace(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a) {
  3951. return ggml_step_impl(ctx, a, true);
  3952. }
  3953. // ggml_relu
  3954. struct ggml_tensor * ggml_relu_impl(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. bool inplace) {
  3958. bool is_node = false;
  3959. if (!inplace && (a->grad)) {
  3960. is_node = true;
  3961. }
  3962. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3963. result->op = GGML_OP_RELU;
  3964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3965. result->src0 = a;
  3966. result->src1 = NULL;
  3967. return result;
  3968. }
  3969. struct ggml_tensor * ggml_relu(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a) {
  3972. return ggml_relu_impl(ctx, a, false);
  3973. }
  3974. struct ggml_tensor * ggml_relu_inplace(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a) {
  3977. return ggml_relu_impl(ctx, a, true);
  3978. }
  3979. // ggml_gelu
  3980. struct ggml_tensor * ggml_gelu_impl(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a,
  3983. bool inplace) {
  3984. bool is_node = false;
  3985. if (!inplace && (a->grad)) {
  3986. is_node = true;
  3987. }
  3988. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3989. result->op = GGML_OP_GELU;
  3990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3991. result->src0 = a;
  3992. result->src1 = NULL;
  3993. return result;
  3994. }
  3995. struct ggml_tensor * ggml_gelu(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a) {
  3998. return ggml_gelu_impl(ctx, a, false);
  3999. }
  4000. struct ggml_tensor * ggml_gelu_inplace(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a) {
  4003. return ggml_gelu_impl(ctx, a, true);
  4004. }
  4005. // ggml_silu
  4006. struct ggml_tensor * ggml_silu_impl(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. bool inplace) {
  4010. bool is_node = false;
  4011. if (!inplace && (a->grad)) {
  4012. is_node = true;
  4013. }
  4014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4015. result->op = GGML_OP_SILU;
  4016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4017. result->src0 = a;
  4018. result->src1 = NULL;
  4019. return result;
  4020. }
  4021. struct ggml_tensor * ggml_silu(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. return ggml_silu_impl(ctx, a, false);
  4025. }
  4026. struct ggml_tensor * ggml_silu_inplace(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a) {
  4029. return ggml_silu_impl(ctx, a, true);
  4030. }
  4031. // ggml_silu_back
  4032. struct ggml_tensor * ggml_silu_back(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. struct ggml_tensor * b) {
  4036. bool is_node = false;
  4037. if (a->grad || b->grad) {
  4038. // TODO: implement backward
  4039. is_node = true;
  4040. }
  4041. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4042. result->op = GGML_OP_SILU_BACK;
  4043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4044. result->src0 = a;
  4045. result->src1 = b;
  4046. return result;
  4047. }
  4048. // ggml_norm
  4049. struct ggml_tensor * ggml_norm_impl(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. bool inplace) {
  4053. bool is_node = false;
  4054. if (!inplace && (a->grad)) {
  4055. GGML_ASSERT(false); // TODO: implement backward
  4056. is_node = true;
  4057. }
  4058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4059. result->op = GGML_OP_NORM;
  4060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4061. result->src0 = a;
  4062. result->src1 = NULL; // TODO: maybe store epsilon here?
  4063. return result;
  4064. }
  4065. struct ggml_tensor * ggml_norm(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a) {
  4068. return ggml_norm_impl(ctx, a, false);
  4069. }
  4070. struct ggml_tensor * ggml_norm_inplace(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a) {
  4073. return ggml_norm_impl(ctx, a, true);
  4074. }
  4075. struct ggml_tensor * ggml_rms_norm_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. bool inplace) {
  4079. bool is_node = false;
  4080. if (!inplace && (a->grad)) {
  4081. is_node = true;
  4082. }
  4083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4084. result->op = GGML_OP_RMS_NORM;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src0 = a;
  4087. result->src1 = NULL; // TODO: maybe store epsilon here?
  4088. return result;
  4089. }
  4090. struct ggml_tensor * ggml_rms_norm(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. return ggml_rms_norm_impl(ctx, a, false);
  4094. }
  4095. struct ggml_tensor * ggml_rms_norm_inplace(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a) {
  4098. return ggml_rms_norm_impl(ctx, a, true);
  4099. }
  4100. struct ggml_tensor * ggml_rms_norm_back(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. struct ggml_tensor * b) {
  4104. bool is_node = false;
  4105. if (a->grad) {
  4106. // TODO: implement backward
  4107. is_node = true;
  4108. }
  4109. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4110. result->op = GGML_OP_RMS_NORM_BACK;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src0 = a;
  4113. result->src1 = b;
  4114. return result;
  4115. }
  4116. // ggml_mul_mat
  4117. struct ggml_tensor * ggml_mul_mat(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b) {
  4121. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4122. GGML_ASSERT(!ggml_is_transposed(a));
  4123. bool is_node = false;
  4124. if (a->grad || b->grad) {
  4125. is_node = true;
  4126. }
  4127. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4128. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4129. result->op = GGML_OP_MUL_MAT;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src0 = a;
  4132. result->src1 = b;
  4133. return result;
  4134. }
  4135. // ggml_scale
  4136. struct ggml_tensor * ggml_scale_impl(
  4137. struct ggml_context * ctx,
  4138. struct ggml_tensor * a,
  4139. struct ggml_tensor * b,
  4140. bool inplace) {
  4141. GGML_ASSERT(ggml_is_scalar(b));
  4142. GGML_ASSERT(ggml_is_padded_1d(a));
  4143. bool is_node = false;
  4144. if (!inplace && (a->grad || b->grad)) {
  4145. is_node = true;
  4146. }
  4147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4148. result->op = GGML_OP_SCALE;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src0 = a;
  4151. result->src1 = b;
  4152. return result;
  4153. }
  4154. struct ggml_tensor * ggml_scale(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. struct ggml_tensor * b) {
  4158. return ggml_scale_impl(ctx, a, b, false);
  4159. }
  4160. struct ggml_tensor * ggml_scale_inplace(
  4161. struct ggml_context * ctx,
  4162. struct ggml_tensor * a,
  4163. struct ggml_tensor * b) {
  4164. return ggml_scale_impl(ctx, a, b, true);
  4165. }
  4166. // ggml_set
  4167. struct ggml_tensor * ggml_set_impl(
  4168. struct ggml_context * ctx,
  4169. struct ggml_tensor * a,
  4170. struct ggml_tensor * b,
  4171. size_t nb1,
  4172. size_t nb2,
  4173. size_t nb3,
  4174. size_t offset,
  4175. bool inplace) {
  4176. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4177. bool is_node = false;
  4178. if (!inplace && (a->grad || b->grad)) {
  4179. is_node = true;
  4180. }
  4181. // make a view of the destination
  4182. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4183. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4184. (( int32_t * ) c->data)[0] = nb1;
  4185. (( int32_t * ) c->data)[1] = nb2;
  4186. (( int32_t * ) c->data)[2] = nb3;
  4187. (( int32_t * ) c->data)[3] = offset;
  4188. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4189. result->op = GGML_OP_SET;
  4190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4191. result->src0 = a;
  4192. result->src1 = b;
  4193. result->opt[0] = c;
  4194. return result;
  4195. }
  4196. struct ggml_tensor * ggml_set(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a,
  4199. struct ggml_tensor * b,
  4200. size_t nb1,
  4201. size_t nb2,
  4202. size_t nb3,
  4203. size_t offset) {
  4204. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4205. }
  4206. struct ggml_tensor * ggml_set_inplace(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a,
  4209. struct ggml_tensor * b,
  4210. size_t nb1,
  4211. size_t nb2,
  4212. size_t nb3,
  4213. size_t offset) {
  4214. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4215. }
  4216. struct ggml_tensor * ggml_set_1d(
  4217. struct ggml_context * ctx,
  4218. struct ggml_tensor * a,
  4219. struct ggml_tensor * b,
  4220. size_t offset) {
  4221. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4222. }
  4223. struct ggml_tensor * ggml_set_1d_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. size_t offset) {
  4228. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4229. }
  4230. struct ggml_tensor * ggml_set_2d(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a,
  4233. struct ggml_tensor * b,
  4234. size_t nb1,
  4235. size_t offset) {
  4236. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4237. }
  4238. struct ggml_tensor * ggml_set_2d_inplace(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a,
  4241. struct ggml_tensor * b,
  4242. size_t nb1,
  4243. size_t offset) {
  4244. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4245. }
  4246. // ggml_cpy
  4247. struct ggml_tensor * ggml_cpy_impl(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. struct ggml_tensor * b,
  4251. bool inplace) {
  4252. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4253. bool is_node = false;
  4254. if (!inplace && (a->grad || b->grad)) {
  4255. is_node = true;
  4256. }
  4257. // make a view of the destination
  4258. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4259. result->op = GGML_OP_CPY;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src0 = a;
  4262. result->src1 = b;
  4263. return result;
  4264. }
  4265. struct ggml_tensor * ggml_cpy(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. struct ggml_tensor * b) {
  4269. return ggml_cpy_impl(ctx, a, b, false);
  4270. }
  4271. struct ggml_tensor * ggml_cpy_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b) {
  4275. return ggml_cpy_impl(ctx, a, b, true);
  4276. }
  4277. // ggml_cont
  4278. struct ggml_tensor * ggml_cont_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. bool inplace) {
  4282. bool is_node = false;
  4283. if (!inplace && a->grad) {
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_CONT;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src0 = a;
  4290. result->src1 = NULL;
  4291. return result;
  4292. }
  4293. struct ggml_tensor * ggml_cont(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a) {
  4296. return ggml_cont_impl(ctx, a, false);
  4297. }
  4298. struct ggml_tensor * ggml_cont_inplace(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_cont_impl(ctx, a, true);
  4302. }
  4303. // ggml_reshape
  4304. struct ggml_tensor * ggml_reshape(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. GGML_ASSERT(ggml_is_contiguous(a));
  4309. GGML_ASSERT(ggml_is_contiguous(b));
  4310. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4311. bool is_node = false;
  4312. if (a->grad) {
  4313. is_node = true;
  4314. }
  4315. if (b->grad) {
  4316. // gradient propagation is not supported
  4317. //GGML_ASSERT(false);
  4318. }
  4319. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4320. result->op = GGML_OP_RESHAPE;
  4321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4322. result->src0 = a;
  4323. result->src1 = NULL;
  4324. return result;
  4325. }
  4326. struct ggml_tensor * ggml_reshape_1d(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. int64_t ne0) {
  4330. GGML_ASSERT(ggml_is_contiguous(a));
  4331. GGML_ASSERT(ggml_nelements(a) == ne0);
  4332. bool is_node = false;
  4333. if (a->grad) {
  4334. is_node = true;
  4335. }
  4336. const int64_t ne[1] = { ne0 };
  4337. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4338. result->op = GGML_OP_RESHAPE;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src0 = a;
  4341. result->src1 = NULL;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_reshape_2d(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. int64_t ne0,
  4348. int64_t ne1) {
  4349. GGML_ASSERT(ggml_is_contiguous(a));
  4350. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4351. bool is_node = false;
  4352. if (a->grad) {
  4353. is_node = true;
  4354. }
  4355. const int64_t ne[2] = { ne0, ne1 };
  4356. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4357. result->op = GGML_OP_RESHAPE;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src0 = a;
  4360. result->src1 = NULL;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_reshape_3d(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. int64_t ne0,
  4367. int64_t ne1,
  4368. int64_t ne2) {
  4369. GGML_ASSERT(ggml_is_contiguous(a));
  4370. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4371. bool is_node = false;
  4372. if (a->grad) {
  4373. is_node = true;
  4374. }
  4375. const int64_t ne[3] = { ne0, ne1, ne2 };
  4376. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4377. result->op = GGML_OP_RESHAPE;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src0 = a;
  4380. result->src1 = NULL;
  4381. return result;
  4382. }
  4383. struct ggml_tensor * ggml_reshape_4d(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. int64_t ne0,
  4387. int64_t ne1,
  4388. int64_t ne2,
  4389. int64_t ne3) {
  4390. GGML_ASSERT(ggml_is_contiguous(a));
  4391. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4392. bool is_node = false;
  4393. if (a->grad) {
  4394. is_node = true;
  4395. }
  4396. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4397. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4398. result->op = GGML_OP_RESHAPE;
  4399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4400. result->src0 = a;
  4401. result->src1 = NULL;
  4402. return result;
  4403. }
  4404. // ggml_view_1d
  4405. struct ggml_tensor * ggml_view_1d(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a,
  4408. int64_t ne0,
  4409. size_t offset) {
  4410. bool is_node = false;
  4411. if (a->grad) {
  4412. is_node = true;
  4413. }
  4414. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4415. result->op = GGML_OP_VIEW;
  4416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4417. result->src0 = a;
  4418. result->src1 = NULL;
  4419. if (is_node) {
  4420. memcpy(result->padding, &offset, sizeof(offset));
  4421. }
  4422. return result;
  4423. }
  4424. // ggml_view_2d
  4425. struct ggml_tensor * ggml_view_2d(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. int64_t ne0,
  4429. int64_t ne1,
  4430. size_t nb1,
  4431. size_t offset) {
  4432. bool is_node = false;
  4433. if (a->grad) {
  4434. is_node = true;
  4435. }
  4436. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4437. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4438. result->nb[1] = nb1;
  4439. result->nb[2] = result->nb[1]*ne1;
  4440. result->nb[3] = result->nb[2];
  4441. result->op = GGML_OP_VIEW;
  4442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4443. result->src0 = a;
  4444. result->src1 = NULL;
  4445. if (is_node) {
  4446. memcpy(result->padding, &offset, sizeof(offset));
  4447. }
  4448. return result;
  4449. }
  4450. // ggml_view_3d
  4451. struct ggml_tensor * ggml_view_3d(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. int64_t ne0,
  4455. int64_t ne1,
  4456. int64_t ne2,
  4457. size_t nb1,
  4458. size_t nb2,
  4459. size_t offset) {
  4460. bool is_node = false;
  4461. if (a->grad) {
  4462. is_node = true;
  4463. }
  4464. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4465. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4466. result->nb[1] = nb1;
  4467. result->nb[2] = nb2;
  4468. result->nb[3] = result->nb[2]*ne2;
  4469. result->op = GGML_OP_VIEW;
  4470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4471. result->src0 = a;
  4472. result->src1 = NULL;
  4473. if (is_node) {
  4474. memcpy(result->padding, &offset, sizeof(offset));
  4475. }
  4476. return result;
  4477. }
  4478. // ggml_view_4d
  4479. struct ggml_tensor * ggml_view_4d(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. int64_t ne0,
  4483. int64_t ne1,
  4484. int64_t ne2,
  4485. int64_t ne3,
  4486. size_t nb1,
  4487. size_t nb2,
  4488. size_t nb3,
  4489. size_t offset) {
  4490. bool is_node = false;
  4491. if (a->grad) {
  4492. is_node = true;
  4493. }
  4494. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4495. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4496. result->nb[1] = nb1;
  4497. result->nb[2] = nb2;
  4498. result->nb[3] = nb3;
  4499. result->op = GGML_OP_VIEW;
  4500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4501. result->src0 = a;
  4502. result->src1 = NULL;
  4503. if (is_node) {
  4504. memcpy(result->padding, &offset, sizeof(offset));
  4505. }
  4506. return result;
  4507. }
  4508. // ggml_permute
  4509. struct ggml_tensor * ggml_permute(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a,
  4512. int axis0,
  4513. int axis1,
  4514. int axis2,
  4515. int axis3) {
  4516. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4517. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4518. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4519. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4520. GGML_ASSERT(axis0 != axis1);
  4521. GGML_ASSERT(axis0 != axis2);
  4522. GGML_ASSERT(axis0 != axis3);
  4523. GGML_ASSERT(axis1 != axis2);
  4524. GGML_ASSERT(axis1 != axis3);
  4525. GGML_ASSERT(axis2 != axis3);
  4526. bool is_node = false;
  4527. if (a->grad) {
  4528. is_node = true;
  4529. }
  4530. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4531. int ne[GGML_MAX_DIMS];
  4532. int nb[GGML_MAX_DIMS];
  4533. ne[axis0] = a->ne[0];
  4534. ne[axis1] = a->ne[1];
  4535. ne[axis2] = a->ne[2];
  4536. ne[axis3] = a->ne[3];
  4537. nb[axis0] = a->nb[0];
  4538. nb[axis1] = a->nb[1];
  4539. nb[axis2] = a->nb[2];
  4540. nb[axis3] = a->nb[3];
  4541. result->ne[0] = ne[0];
  4542. result->ne[1] = ne[1];
  4543. result->ne[2] = ne[2];
  4544. result->ne[3] = ne[3];
  4545. result->nb[0] = nb[0];
  4546. result->nb[1] = nb[1];
  4547. result->nb[2] = nb[2];
  4548. result->nb[3] = nb[3];
  4549. result->op = GGML_OP_PERMUTE;
  4550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4551. result->src0 = a;
  4552. result->src1 = NULL;
  4553. if (is_node) {
  4554. result->padding[0] = axis0;
  4555. result->padding[1] = axis1;
  4556. result->padding[2] = axis2;
  4557. result->padding[3] = axis3;
  4558. }
  4559. return result;
  4560. }
  4561. // ggml_transpose
  4562. struct ggml_tensor * ggml_transpose(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a) {
  4565. bool is_node = false;
  4566. if (a->grad) {
  4567. is_node = true;
  4568. }
  4569. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4570. result->ne[0] = a->ne[1];
  4571. result->ne[1] = a->ne[0];
  4572. result->nb[0] = a->nb[1];
  4573. result->nb[1] = a->nb[0];
  4574. result->op = GGML_OP_TRANSPOSE;
  4575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4576. result->src0 = a;
  4577. result->src1 = NULL;
  4578. return result;
  4579. }
  4580. // ggml_get_rows
  4581. struct ggml_tensor * ggml_get_rows(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a,
  4584. struct ggml_tensor * b) {
  4585. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4586. bool is_node = false;
  4587. if (a->grad || b->grad) {
  4588. is_node = true;
  4589. }
  4590. // TODO: implement non F32 return
  4591. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4592. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4593. result->op = GGML_OP_GET_ROWS;
  4594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4595. result->src0 = a;
  4596. result->src1 = b;
  4597. return result;
  4598. }
  4599. // ggml_get_rows_back
  4600. struct ggml_tensor * ggml_get_rows_back(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. struct ggml_tensor * b,
  4604. struct ggml_tensor * c) {
  4605. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4606. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4607. bool is_node = false;
  4608. if (a->grad || b->grad) {
  4609. is_node = true;
  4610. }
  4611. // TODO: implement non F32 return
  4612. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4613. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4614. result->op = GGML_OP_GET_ROWS_BACK;
  4615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4616. result->src0 = a;
  4617. result->src1 = b;
  4618. result->opt[0] = c;
  4619. return result;
  4620. }
  4621. // ggml_diag
  4622. struct ggml_tensor * ggml_diag(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. GGML_ASSERT(a->ne[1] == 1);
  4626. bool is_node = false;
  4627. if (a->grad) {
  4628. is_node = true;
  4629. }
  4630. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4631. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4632. result->op = GGML_OP_DIAG;
  4633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4634. result->src0 = a;
  4635. result->src1 = NULL;
  4636. return result;
  4637. }
  4638. // ggml_diag_mask_inf
  4639. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. int n_past,
  4643. bool inplace) {
  4644. bool is_node = false;
  4645. if (a->grad) {
  4646. is_node = true;
  4647. }
  4648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4649. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4650. ((int32_t *) b->data)[0] = n_past;
  4651. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4652. result->op = GGML_OP_DIAG_MASK_INF;
  4653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4654. result->src0 = a;
  4655. result->src1 = b;
  4656. return result;
  4657. }
  4658. struct ggml_tensor * ggml_diag_mask_inf(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. int n_past) {
  4662. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4663. }
  4664. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a,
  4667. int n_past) {
  4668. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4669. }
  4670. // ggml_diag_mask_zero
  4671. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a,
  4674. int n_past,
  4675. bool inplace) {
  4676. bool is_node = false;
  4677. if (a->grad) {
  4678. is_node = true;
  4679. }
  4680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4681. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4682. ggml_set_name(b, "n_past, inplace");
  4683. ((int32_t *) b->data)[0] = n_past;
  4684. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4685. result->op = GGML_OP_DIAG_MASK_ZERO;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src0 = a;
  4688. result->src1 = b;
  4689. return result;
  4690. }
  4691. struct ggml_tensor * ggml_diag_mask_zero(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. int n_past) {
  4695. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4696. }
  4697. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. int n_past) {
  4701. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4702. }
  4703. // ggml_soft_max
  4704. struct ggml_tensor * ggml_soft_max_impl(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. bool inplace) {
  4708. bool is_node = false;
  4709. if (a->grad) {
  4710. is_node = true;
  4711. }
  4712. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4713. result->op = GGML_OP_SOFT_MAX;
  4714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4715. result->src0 = a;
  4716. result->src1 = NULL;
  4717. return result;
  4718. }
  4719. struct ggml_tensor * ggml_soft_max(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a) {
  4722. return ggml_soft_max_impl(ctx, a, false);
  4723. }
  4724. struct ggml_tensor * ggml_soft_max_inplace(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a) {
  4727. return ggml_soft_max_impl(ctx, a, true);
  4728. }
  4729. // ggml_rope
  4730. struct ggml_tensor * ggml_rope_impl(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a,
  4733. int n_past,
  4734. int n_dims,
  4735. int mode,
  4736. bool inplace) {
  4737. GGML_ASSERT(n_past >= 0);
  4738. bool is_node = false;
  4739. if (!inplace && a->grad) {
  4740. is_node = true;
  4741. }
  4742. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4743. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4744. ((int32_t *) b->data)[0] = n_past;
  4745. ((int32_t *) b->data)[1] = n_dims;
  4746. ((int32_t *) b->data)[2] = mode;
  4747. result->op = GGML_OP_ROPE;
  4748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4749. result->src0 = a;
  4750. result->src1 = b;
  4751. return result;
  4752. }
  4753. struct ggml_tensor * ggml_rope(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a,
  4756. int n_past,
  4757. int n_dims,
  4758. int mode) {
  4759. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4760. }
  4761. struct ggml_tensor * ggml_rope_inplace(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. int n_past,
  4765. int n_dims,
  4766. int mode) {
  4767. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4768. }
  4769. // ggml_rope_back
  4770. struct ggml_tensor * ggml_rope_back(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. int n_past,
  4774. int n_dims,
  4775. int mode) {
  4776. GGML_ASSERT(n_past >= 0);
  4777. bool is_node = false;
  4778. if (a->grad) {
  4779. GGML_ASSERT(false); // TODO: implement backward
  4780. is_node = true;
  4781. }
  4782. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4783. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4784. ((int32_t *) b->data)[0] = n_past;
  4785. ((int32_t *) b->data)[1] = n_dims;
  4786. ((int32_t *) b->data)[2] = mode;
  4787. ggml_set_name(b, "n_past, n_dims, mode");
  4788. result->op = GGML_OP_ROPE_BACK;
  4789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4790. result->src0 = a;
  4791. result->src1 = b;
  4792. return result;
  4793. }
  4794. // ggml_alibi
  4795. struct ggml_tensor * ggml_alibi(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. int n_past,
  4799. int n_head) {
  4800. GGML_ASSERT(n_past >= 0);
  4801. bool is_node = false;
  4802. if (a->grad) {
  4803. GGML_ASSERT(false); // TODO: implement backward
  4804. is_node = true;
  4805. }
  4806. // TODO: when implement backward, fix this:
  4807. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4808. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4809. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4810. ((int32_t *) b->data)[0] = n_past;
  4811. ((int32_t *) b->data)[1] = n_head;
  4812. result->op = GGML_OP_ALIBI;
  4813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4814. result->src0 = a;
  4815. result->src1 = b;
  4816. return result;
  4817. }
  4818. // ggml_conv_1d_1s
  4819. struct ggml_tensor * ggml_conv_1d_1s(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b) {
  4823. GGML_ASSERT(ggml_is_matrix(b));
  4824. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4825. GGML_ASSERT(a->ne[3] == 1);
  4826. bool is_node = false;
  4827. if (a->grad || b->grad) {
  4828. GGML_ASSERT(false); // TODO: implement backward
  4829. is_node = true;
  4830. }
  4831. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4832. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4833. result->op = GGML_OP_CONV_1D_1S;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src0 = a;
  4836. result->src1 = b;
  4837. return result;
  4838. }
  4839. // ggml_conv_1d_2s
  4840. struct ggml_tensor * ggml_conv_1d_2s(
  4841. struct ggml_context * ctx,
  4842. struct ggml_tensor * a,
  4843. struct ggml_tensor * b) {
  4844. GGML_ASSERT(ggml_is_matrix(b));
  4845. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4846. GGML_ASSERT(a->ne[3] == 1);
  4847. bool is_node = false;
  4848. if (a->grad || b->grad) {
  4849. GGML_ASSERT(false); // TODO: implement backward
  4850. is_node = true;
  4851. }
  4852. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4853. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4854. result->op = GGML_OP_CONV_1D_2S;
  4855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4856. result->src0 = a;
  4857. result->src1 = b;
  4858. return result;
  4859. }
  4860. // ggml_flash_attn
  4861. struct ggml_tensor * ggml_flash_attn(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * q,
  4864. struct ggml_tensor * k,
  4865. struct ggml_tensor * v,
  4866. bool masked) {
  4867. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4868. // TODO: check if vT can be multiplied by (k*qT)
  4869. bool is_node = false;
  4870. if (q->grad || k->grad || v->grad) {
  4871. GGML_ASSERT(false); // TODO: implement backward
  4872. is_node = true;
  4873. }
  4874. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4875. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4876. result->op = GGML_OP_FLASH_ATTN;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src0 = q;
  4879. result->src1 = k;
  4880. result->opt[0] = v;
  4881. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4882. return result;
  4883. }
  4884. // ggml_flash_ff
  4885. struct ggml_tensor * ggml_flash_ff(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. struct ggml_tensor * b0,
  4889. struct ggml_tensor * b1,
  4890. struct ggml_tensor * c0,
  4891. struct ggml_tensor * c1) {
  4892. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4893. // TODO: more checks
  4894. bool is_node = false;
  4895. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4896. GGML_ASSERT(false); // TODO: implement backward
  4897. is_node = true;
  4898. }
  4899. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4900. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4901. result->op = GGML_OP_FLASH_FF;
  4902. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4903. result->src0 = a;
  4904. result->src1 = b0;
  4905. result->opt[0] = b1;
  4906. result->opt[1] = c0;
  4907. result->opt[2] = c1;
  4908. return result;
  4909. }
  4910. // ggml_map_unary
  4911. struct ggml_tensor * ggml_map_unary_impl_f32(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. const ggml_unary_op_f32_t fun,
  4915. bool inplace) {
  4916. bool is_node = false;
  4917. if (!inplace && a->grad) {
  4918. is_node = true;
  4919. }
  4920. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4921. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4922. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4923. result->op = GGML_OP_MAP_UNARY;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src0 = a;
  4926. result->opt[0] = addr_tensor;
  4927. return result;
  4928. }
  4929. struct ggml_tensor * ggml_map_unary_f32(
  4930. struct ggml_context * ctx,
  4931. struct ggml_tensor * a,
  4932. const ggml_unary_op_f32_t fun) {
  4933. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4934. }
  4935. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a,
  4938. const ggml_unary_op_f32_t fun) {
  4939. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4940. }
  4941. // ggml_map_binary
  4942. struct ggml_tensor * ggml_map_binary_impl_f32(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a,
  4945. struct ggml_tensor * b,
  4946. const ggml_binary_op_f32_t fun,
  4947. bool inplace) {
  4948. GGML_ASSERT(ggml_are_same_shape(a, b));
  4949. bool is_node = false;
  4950. if (!inplace && (a->grad || b->grad)) {
  4951. is_node = true;
  4952. }
  4953. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4954. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4955. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4956. result->op = GGML_OP_MAP_BINARY;
  4957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4958. result->src0 = a;
  4959. result->src1 = b;
  4960. result->opt[0] = addr_tensor;
  4961. return result;
  4962. }
  4963. struct ggml_tensor * ggml_map_binary_f32(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a,
  4966. struct ggml_tensor * b,
  4967. const ggml_binary_op_f32_t fun) {
  4968. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4969. }
  4970. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. struct ggml_tensor * b,
  4974. const ggml_binary_op_f32_t fun) {
  4975. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4976. }
  4977. ////////////////////////////////////////////////////////////////////////////////
  4978. void ggml_set_param(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * tensor) {
  4981. tensor->is_param = true;
  4982. GGML_ASSERT(tensor->grad == NULL);
  4983. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4984. }
  4985. // ggml_compute_forward_dup
  4986. static void ggml_compute_forward_dup_same_cont(
  4987. const struct ggml_compute_params * params,
  4988. const struct ggml_tensor * src0,
  4989. struct ggml_tensor * dst) {
  4990. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4991. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  4992. GGML_ASSERT(src0->type == dst->type);
  4993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4994. return;
  4995. }
  4996. const size_t nb00 = src0->nb[0];
  4997. const size_t nb0 = dst->nb[0];
  4998. const int ith = params->ith; // thread index
  4999. const int nth = params->nth; // number of threads
  5000. // parallelize by elements
  5001. const int ne = ggml_nelements(dst);
  5002. const int dr = (ne + nth - 1) / nth;
  5003. const int ie0 = dr * ith;
  5004. const int ie1 = MIN(ie0 + dr, ne);
  5005. if (ie0 < ie1) {
  5006. memcpy(
  5007. ((char *) dst->data + ie0*nb0),
  5008. ((char *) src0->data + ie0*nb00),
  5009. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5010. }
  5011. }
  5012. static void ggml_compute_forward_dup_f16(
  5013. const struct ggml_compute_params * params,
  5014. const struct ggml_tensor * src0,
  5015. struct ggml_tensor * dst) {
  5016. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5018. return;
  5019. }
  5020. const int64_t ne00 = src0->ne[0];
  5021. const int64_t ne01 = src0->ne[1];
  5022. const int64_t ne02 = src0->ne[2];
  5023. const int64_t ne03 = src0->ne[3];
  5024. const int64_t ne0 = dst->ne[0];
  5025. const int64_t ne1 = dst->ne[1];
  5026. const int64_t ne2 = dst->ne[2];
  5027. const int64_t ne3 = dst->ne[3];
  5028. const size_t nb00 = src0->nb[0];
  5029. const size_t nb01 = src0->nb[1];
  5030. const size_t nb02 = src0->nb[2];
  5031. const size_t nb03 = src0->nb[3];
  5032. const size_t nb0 = dst->nb[0];
  5033. const size_t nb1 = dst->nb[1];
  5034. const size_t nb2 = dst->nb[2];
  5035. const size_t nb3 = dst->nb[3];
  5036. const int ith = params->ith; // thread index
  5037. const int nth = params->nth; // number of threads
  5038. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5039. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5040. return;
  5041. }
  5042. // parallelize by rows
  5043. const int nr = ne01;
  5044. // number of rows per thread
  5045. const int dr = (nr + nth - 1) / nth;
  5046. // row range for this thread
  5047. const int ir0 = dr * ith;
  5048. const int ir1 = MIN(ir0 + dr, nr);
  5049. if (src0->type == dst->type &&
  5050. ne00 == ne0 &&
  5051. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5052. // copy by rows
  5053. const size_t rs = ne00*nb00;
  5054. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5055. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5056. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5057. memcpy(
  5058. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5059. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5060. rs);
  5061. }
  5062. }
  5063. }
  5064. return;
  5065. }
  5066. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5067. if (ggml_is_contiguous(dst)) {
  5068. if (nb00 == sizeof(ggml_fp16_t)) {
  5069. if (dst->type == GGML_TYPE_F16) {
  5070. size_t id = 0;
  5071. const size_t rs = ne00 * nb00;
  5072. char * dst_ptr = (char *) dst->data;
  5073. for (int i03 = 0; i03 < ne03; i03++) {
  5074. for (int i02 = 0; i02 < ne02; i02++) {
  5075. id += rs * ir0;
  5076. for (int i01 = ir0; i01 < ir1; i01++) {
  5077. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5078. memcpy(dst_ptr + id, src0_ptr, rs);
  5079. id += rs;
  5080. }
  5081. id += rs * (ne01 - ir1);
  5082. }
  5083. }
  5084. } else if (dst->type == GGML_TYPE_F32) {
  5085. size_t id = 0;
  5086. float * dst_ptr = (float *) dst->data;
  5087. for (int i03 = 0; i03 < ne03; i03++) {
  5088. for (int i02 = 0; i02 < ne02; i02++) {
  5089. id += ne00 * ir0;
  5090. for (int i01 = ir0; i01 < ir1; i01++) {
  5091. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5092. for (int i00 = 0; i00 < ne00; i00++) {
  5093. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5094. id++;
  5095. }
  5096. }
  5097. id += ne00 * (ne01 - ir1);
  5098. }
  5099. }
  5100. } else if (ggml_is_quantized(dst->type)) {
  5101. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5102. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5103. size_t id = 0;
  5104. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5105. char * dst_ptr = (char *) dst->data;
  5106. for (int i03 = 0; i03 < ne03; i03++) {
  5107. for (int i02 = 0; i02 < ne02; i02++) {
  5108. id += rs * ir0;
  5109. for (int i01 = ir0; i01 < ir1; i01++) {
  5110. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5111. for (int i00 = 0; i00 < ne00; i00++) {
  5112. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5113. }
  5114. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5115. id += rs;
  5116. }
  5117. id += rs * (ne01 - ir1);
  5118. }
  5119. }
  5120. } else {
  5121. GGML_ASSERT(false); // TODO: implement
  5122. }
  5123. } else {
  5124. //printf("%s: this is not optimal - fix me\n", __func__);
  5125. if (dst->type == GGML_TYPE_F32) {
  5126. size_t id = 0;
  5127. float * dst_ptr = (float *) dst->data;
  5128. for (int i03 = 0; i03 < ne03; i03++) {
  5129. for (int i02 = 0; i02 < ne02; i02++) {
  5130. id += ne00 * ir0;
  5131. for (int i01 = ir0; i01 < ir1; i01++) {
  5132. for (int i00 = 0; i00 < ne00; i00++) {
  5133. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5134. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5135. id++;
  5136. }
  5137. }
  5138. id += ne00 * (ne01 - ir1);
  5139. }
  5140. }
  5141. } else if (dst->type == GGML_TYPE_F16) {
  5142. size_t id = 0;
  5143. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5144. for (int i03 = 0; i03 < ne03; i03++) {
  5145. for (int i02 = 0; i02 < ne02; i02++) {
  5146. id += ne00 * ir0;
  5147. for (int i01 = ir0; i01 < ir1; i01++) {
  5148. for (int i00 = 0; i00 < ne00; i00++) {
  5149. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5150. dst_ptr[id] = *src0_ptr;
  5151. id++;
  5152. }
  5153. }
  5154. id += ne00 * (ne01 - ir1);
  5155. }
  5156. }
  5157. } else {
  5158. GGML_ASSERT(false); // TODO: implement
  5159. }
  5160. }
  5161. return;
  5162. }
  5163. // dst counters
  5164. int64_t i10 = 0;
  5165. int64_t i11 = 0;
  5166. int64_t i12 = 0;
  5167. int64_t i13 = 0;
  5168. if (dst->type == GGML_TYPE_F16) {
  5169. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5170. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5171. i10 += ne00 * ir0;
  5172. while (i10 >= ne0) {
  5173. i10 -= ne0;
  5174. if (++i11 == ne1) {
  5175. i11 = 0;
  5176. if (++i12 == ne2) {
  5177. i12 = 0;
  5178. if (++i13 == ne3) {
  5179. i13 = 0;
  5180. }
  5181. }
  5182. }
  5183. }
  5184. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5185. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5186. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5187. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5188. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5189. if (++i10 == ne00) {
  5190. i10 = 0;
  5191. if (++i11 == ne01) {
  5192. i11 = 0;
  5193. if (++i12 == ne02) {
  5194. i12 = 0;
  5195. if (++i13 == ne03) {
  5196. i13 = 0;
  5197. }
  5198. }
  5199. }
  5200. }
  5201. }
  5202. }
  5203. i10 += ne00 * (ne01 - ir1);
  5204. while (i10 >= ne0) {
  5205. i10 -= ne0;
  5206. if (++i11 == ne1) {
  5207. i11 = 0;
  5208. if (++i12 == ne2) {
  5209. i12 = 0;
  5210. if (++i13 == ne3) {
  5211. i13 = 0;
  5212. }
  5213. }
  5214. }
  5215. }
  5216. }
  5217. }
  5218. } else if (dst->type == GGML_TYPE_F32) {
  5219. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5220. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5221. i10 += ne00 * ir0;
  5222. while (i10 >= ne0) {
  5223. i10 -= ne0;
  5224. if (++i11 == ne1) {
  5225. i11 = 0;
  5226. if (++i12 == ne2) {
  5227. i12 = 0;
  5228. if (++i13 == ne3) {
  5229. i13 = 0;
  5230. }
  5231. }
  5232. }
  5233. }
  5234. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5235. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5236. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5237. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5238. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5239. if (++i10 == ne0) {
  5240. i10 = 0;
  5241. if (++i11 == ne1) {
  5242. i11 = 0;
  5243. if (++i12 == ne2) {
  5244. i12 = 0;
  5245. if (++i13 == ne3) {
  5246. i13 = 0;
  5247. }
  5248. }
  5249. }
  5250. }
  5251. }
  5252. }
  5253. i10 += ne00 * (ne01 - ir1);
  5254. while (i10 >= ne0) {
  5255. i10 -= ne0;
  5256. if (++i11 == ne1) {
  5257. i11 = 0;
  5258. if (++i12 == ne2) {
  5259. i12 = 0;
  5260. if (++i13 == ne3) {
  5261. i13 = 0;
  5262. }
  5263. }
  5264. }
  5265. }
  5266. }
  5267. }
  5268. } else {
  5269. GGML_ASSERT(false); // TODO: implement
  5270. }
  5271. }
  5272. static void ggml_compute_forward_dup_f32(
  5273. const struct ggml_compute_params * params,
  5274. const struct ggml_tensor * src0,
  5275. struct ggml_tensor * dst) {
  5276. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5278. return;
  5279. }
  5280. const int64_t ne00 = src0->ne[0];
  5281. const int64_t ne01 = src0->ne[1];
  5282. const int64_t ne02 = src0->ne[2];
  5283. const int64_t ne03 = src0->ne[3];
  5284. const int64_t ne0 = dst->ne[0];
  5285. const int64_t ne1 = dst->ne[1];
  5286. const int64_t ne2 = dst->ne[2];
  5287. const int64_t ne3 = dst->ne[3];
  5288. const size_t nb00 = src0->nb[0];
  5289. const size_t nb01 = src0->nb[1];
  5290. const size_t nb02 = src0->nb[2];
  5291. const size_t nb03 = src0->nb[3];
  5292. const size_t nb0 = dst->nb[0];
  5293. const size_t nb1 = dst->nb[1];
  5294. const size_t nb2 = dst->nb[2];
  5295. const size_t nb3 = dst->nb[3];
  5296. const int ith = params->ith; // thread index
  5297. const int nth = params->nth; // number of threads
  5298. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5299. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5300. return;
  5301. }
  5302. // parallelize by rows
  5303. const int nr = ne01;
  5304. // number of rows per thread
  5305. const int dr = (nr + nth - 1) / nth;
  5306. // row range for this thread
  5307. const int ir0 = dr * ith;
  5308. const int ir1 = MIN(ir0 + dr, nr);
  5309. if (src0->type == dst->type &&
  5310. ne00 == ne0 &&
  5311. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5312. // copy by rows
  5313. const size_t rs = ne00*nb00;
  5314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5316. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5317. memcpy(
  5318. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5319. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5320. rs);
  5321. }
  5322. }
  5323. }
  5324. return;
  5325. }
  5326. if (ggml_is_contiguous(dst)) {
  5327. // TODO: simplify
  5328. if (nb00 == sizeof(float)) {
  5329. if (dst->type == GGML_TYPE_F32) {
  5330. size_t id = 0;
  5331. const size_t rs = ne00 * nb00;
  5332. char * dst_ptr = (char *) dst->data;
  5333. for (int i03 = 0; i03 < ne03; i03++) {
  5334. for (int i02 = 0; i02 < ne02; i02++) {
  5335. id += rs * ir0;
  5336. for (int i01 = ir0; i01 < ir1; i01++) {
  5337. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5338. memcpy(dst_ptr + id, src0_ptr, rs);
  5339. id += rs;
  5340. }
  5341. id += rs * (ne01 - ir1);
  5342. }
  5343. }
  5344. } else if (dst->type == GGML_TYPE_F16) {
  5345. size_t id = 0;
  5346. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5347. for (int i03 = 0; i03 < ne03; i03++) {
  5348. for (int i02 = 0; i02 < ne02; i02++) {
  5349. id += ne00 * ir0;
  5350. for (int i01 = ir0; i01 < ir1; i01++) {
  5351. for (int i00 = 0; i00 < ne00; i00++) {
  5352. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5353. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5354. id++;
  5355. }
  5356. }
  5357. id += ne00 * (ne01 - ir1);
  5358. }
  5359. }
  5360. } else if (ggml_is_quantized(dst->type)) {
  5361. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5362. size_t id = 0;
  5363. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5364. char * dst_ptr = (char *) dst->data;
  5365. for (int i03 = 0; i03 < ne03; i03++) {
  5366. for (int i02 = 0; i02 < ne02; i02++) {
  5367. id += rs * ir0;
  5368. for (int i01 = ir0; i01 < ir1; i01++) {
  5369. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5370. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5371. id += rs;
  5372. }
  5373. id += rs * (ne01 - ir1);
  5374. }
  5375. }
  5376. } else {
  5377. GGML_ASSERT(false); // TODO: implement
  5378. }
  5379. } else {
  5380. //printf("%s: this is not optimal - fix me\n", __func__);
  5381. if (dst->type == GGML_TYPE_F32) {
  5382. size_t id = 0;
  5383. float * dst_ptr = (float *) dst->data;
  5384. for (int i03 = 0; i03 < ne03; i03++) {
  5385. for (int i02 = 0; i02 < ne02; i02++) {
  5386. id += ne00 * ir0;
  5387. for (int i01 = ir0; i01 < ir1; i01++) {
  5388. for (int i00 = 0; i00 < ne00; i00++) {
  5389. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5390. dst_ptr[id] = *src0_ptr;
  5391. id++;
  5392. }
  5393. }
  5394. id += ne00 * (ne01 - ir1);
  5395. }
  5396. }
  5397. } else if (dst->type == GGML_TYPE_F16) {
  5398. size_t id = 0;
  5399. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5400. for (int i03 = 0; i03 < ne03; i03++) {
  5401. for (int i02 = 0; i02 < ne02; i02++) {
  5402. id += ne00 * ir0;
  5403. for (int i01 = ir0; i01 < ir1; i01++) {
  5404. for (int i00 = 0; i00 < ne00; i00++) {
  5405. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5406. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5407. id++;
  5408. }
  5409. }
  5410. id += ne00 * (ne01 - ir1);
  5411. }
  5412. }
  5413. } else {
  5414. GGML_ASSERT(false); // TODO: implement
  5415. }
  5416. }
  5417. return;
  5418. }
  5419. // dst counters
  5420. int64_t i10 = 0;
  5421. int64_t i11 = 0;
  5422. int64_t i12 = 0;
  5423. int64_t i13 = 0;
  5424. if (dst->type == GGML_TYPE_F32) {
  5425. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5426. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5427. i10 += ne00 * ir0;
  5428. while (i10 >= ne0) {
  5429. i10 -= ne0;
  5430. if (++i11 == ne1) {
  5431. i11 = 0;
  5432. if (++i12 == ne2) {
  5433. i12 = 0;
  5434. if (++i13 == ne3) {
  5435. i13 = 0;
  5436. }
  5437. }
  5438. }
  5439. }
  5440. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5441. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5442. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5443. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5444. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5445. if (++i10 == ne0) {
  5446. i10 = 0;
  5447. if (++i11 == ne1) {
  5448. i11 = 0;
  5449. if (++i12 == ne2) {
  5450. i12 = 0;
  5451. if (++i13 == ne3) {
  5452. i13 = 0;
  5453. }
  5454. }
  5455. }
  5456. }
  5457. }
  5458. }
  5459. i10 += ne00 * (ne01 - ir1);
  5460. while (i10 >= ne0) {
  5461. i10 -= ne0;
  5462. if (++i11 == ne1) {
  5463. i11 = 0;
  5464. if (++i12 == ne2) {
  5465. i12 = 0;
  5466. if (++i13 == ne3) {
  5467. i13 = 0;
  5468. }
  5469. }
  5470. }
  5471. }
  5472. }
  5473. }
  5474. } else if (dst->type == GGML_TYPE_F16) {
  5475. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5476. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5477. i10 += ne00 * ir0;
  5478. while (i10 >= ne0) {
  5479. i10 -= ne0;
  5480. if (++i11 == ne1) {
  5481. i11 = 0;
  5482. if (++i12 == ne2) {
  5483. i12 = 0;
  5484. if (++i13 == ne3) {
  5485. i13 = 0;
  5486. }
  5487. }
  5488. }
  5489. }
  5490. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5491. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5492. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5493. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5494. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5495. if (++i10 == ne0) {
  5496. i10 = 0;
  5497. if (++i11 == ne1) {
  5498. i11 = 0;
  5499. if (++i12 == ne2) {
  5500. i12 = 0;
  5501. if (++i13 == ne3) {
  5502. i13 = 0;
  5503. }
  5504. }
  5505. }
  5506. }
  5507. }
  5508. }
  5509. i10 += ne00 * (ne01 - ir1);
  5510. while (i10 >= ne0) {
  5511. i10 -= ne0;
  5512. if (++i11 == ne1) {
  5513. i11 = 0;
  5514. if (++i12 == ne2) {
  5515. i12 = 0;
  5516. if (++i13 == ne3) {
  5517. i13 = 0;
  5518. }
  5519. }
  5520. }
  5521. }
  5522. }
  5523. }
  5524. } else {
  5525. GGML_ASSERT(false); // TODO: implement
  5526. }
  5527. }
  5528. static void ggml_compute_forward_dup(
  5529. const struct ggml_compute_params * params,
  5530. const struct ggml_tensor * src0,
  5531. struct ggml_tensor * dst) {
  5532. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5533. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5534. return;
  5535. }
  5536. switch (src0->type) {
  5537. case GGML_TYPE_F16:
  5538. {
  5539. ggml_compute_forward_dup_f16(params, src0, dst);
  5540. } break;
  5541. case GGML_TYPE_F32:
  5542. {
  5543. ggml_compute_forward_dup_f32(params, src0, dst);
  5544. } break;
  5545. default:
  5546. {
  5547. GGML_ASSERT(false);
  5548. } break;
  5549. }
  5550. }
  5551. // ggml_compute_forward_add
  5552. static void ggml_compute_forward_add_f32(
  5553. const struct ggml_compute_params * params,
  5554. const struct ggml_tensor * src0,
  5555. const struct ggml_tensor * src1,
  5556. struct ggml_tensor * dst) {
  5557. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5559. return;
  5560. }
  5561. const int ith = params->ith;
  5562. const int nth = params->nth;
  5563. const int nr = ggml_nrows(src0);
  5564. const int64_t ne0 = src0->ne[0];
  5565. const int64_t ne1 = src0->ne[1];
  5566. const int64_t ne2 = src0->ne[2];
  5567. const size_t nb00 = src0->nb[0];
  5568. const size_t nb01 = src0->nb[1];
  5569. const size_t nb02 = src0->nb[2];
  5570. const size_t nb03 = src0->nb[3];
  5571. const size_t nb10 = src1->nb[0];
  5572. const size_t nb11 = src1->nb[1];
  5573. const size_t nb12 = src1->nb[2];
  5574. const size_t nb13 = src1->nb[3];
  5575. const size_t nb0 = dst->nb[0];
  5576. const size_t nb1 = dst->nb[1];
  5577. const size_t nb2 = dst->nb[2];
  5578. const size_t nb3 = dst->nb[3];
  5579. GGML_ASSERT( nb0 == sizeof(float));
  5580. GGML_ASSERT(nb00 == sizeof(float));
  5581. // rows per thread
  5582. const int dr = (nr + nth - 1)/nth;
  5583. // row range for this thread
  5584. const int ir0 = dr*ith;
  5585. const int ir1 = MIN(ir0 + dr, nr);
  5586. if (nb10 == sizeof(float)) {
  5587. for (int ir = ir0; ir < ir1; ++ir) {
  5588. // src0, src1 and dst are same shape => same indices
  5589. const int i3 = ir/(ne2*ne1);
  5590. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5591. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5592. #ifdef GGML_USE_ACCELERATE
  5593. vDSP_vadd(
  5594. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5595. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5596. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5597. ne0);
  5598. #else
  5599. ggml_vec_add_f32(ne0,
  5600. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5601. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5602. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5603. #endif
  5604. // }
  5605. // }
  5606. }
  5607. } else {
  5608. // src1 is not contiguous
  5609. for (int ir = ir0; ir < ir1; ++ir) {
  5610. // src0, src1 and dst are same shape => same indices
  5611. const int i3 = ir/(ne2*ne1);
  5612. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5613. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5614. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5615. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5616. for (int i0 = 0; i0 < ne0; i0++) {
  5617. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5618. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5619. }
  5620. }
  5621. }
  5622. }
  5623. static void ggml_compute_forward_add_f16_f32(
  5624. const struct ggml_compute_params * params,
  5625. const struct ggml_tensor * src0,
  5626. const struct ggml_tensor * src1,
  5627. struct ggml_tensor * dst) {
  5628. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5630. return;
  5631. }
  5632. const int ith = params->ith;
  5633. const int nth = params->nth;
  5634. const int nr = ggml_nrows(src0);
  5635. const int64_t ne0 = src0->ne[0];
  5636. const int64_t ne1 = src0->ne[1];
  5637. const int64_t ne2 = src0->ne[2];
  5638. const size_t nb00 = src0->nb[0];
  5639. const size_t nb01 = src0->nb[1];
  5640. const size_t nb02 = src0->nb[2];
  5641. const size_t nb03 = src0->nb[3];
  5642. const size_t nb10 = src1->nb[0];
  5643. const size_t nb11 = src1->nb[1];
  5644. const size_t nb12 = src1->nb[2];
  5645. const size_t nb13 = src1->nb[3];
  5646. const size_t nb0 = dst->nb[0];
  5647. const size_t nb1 = dst->nb[1];
  5648. const size_t nb2 = dst->nb[2];
  5649. const size_t nb3 = dst->nb[3];
  5650. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5651. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5652. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5653. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5654. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5655. // rows per thread
  5656. const int dr = (nr + nth - 1)/nth;
  5657. // row range for this thread
  5658. const int ir0 = dr*ith;
  5659. const int ir1 = MIN(ir0 + dr, nr);
  5660. if (nb10 == sizeof(float)) {
  5661. for (int ir = ir0; ir < ir1; ++ir) {
  5662. // src0, src1 and dst are same shape => same indices
  5663. const int i3 = ir/(ne2*ne1);
  5664. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5665. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5666. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5667. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5668. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5669. for (int i = 0; i < ne0; i++) {
  5670. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5671. }
  5672. }
  5673. }
  5674. else {
  5675. // src1 is not contiguous
  5676. GGML_ASSERT(false);
  5677. }
  5678. }
  5679. static void ggml_compute_forward_add_f16_f16(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. const struct ggml_tensor * src1,
  5683. struct ggml_tensor * dst) {
  5684. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5686. return;
  5687. }
  5688. const int ith = params->ith;
  5689. const int nth = params->nth;
  5690. const int nr = ggml_nrows(src0);
  5691. const int64_t ne0 = src0->ne[0];
  5692. const int64_t ne1 = src0->ne[1];
  5693. const int64_t ne2 = src0->ne[2];
  5694. const size_t nb00 = src0->nb[0];
  5695. const size_t nb01 = src0->nb[1];
  5696. const size_t nb02 = src0->nb[2];
  5697. const size_t nb03 = src0->nb[3];
  5698. const size_t nb10 = src1->nb[0];
  5699. const size_t nb11 = src1->nb[1];
  5700. const size_t nb12 = src1->nb[2];
  5701. const size_t nb13 = src1->nb[3];
  5702. const size_t nb0 = dst->nb[0];
  5703. const size_t nb1 = dst->nb[1];
  5704. const size_t nb2 = dst->nb[2];
  5705. const size_t nb3 = dst->nb[3];
  5706. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5707. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5708. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5709. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5710. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5711. // rows per thread
  5712. const int dr = (nr + nth - 1)/nth;
  5713. // row range for this thread
  5714. const int ir0 = dr*ith;
  5715. const int ir1 = MIN(ir0 + dr, nr);
  5716. if (nb10 == sizeof(ggml_fp16_t)) {
  5717. for (int ir = ir0; ir < ir1; ++ir) {
  5718. // src0, src1 and dst are same shape => same indices
  5719. const int i3 = ir/(ne2*ne1);
  5720. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5721. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5722. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5723. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5724. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5725. for (int i = 0; i < ne0; i++) {
  5726. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5727. }
  5728. }
  5729. }
  5730. else {
  5731. // src1 is not contiguous
  5732. GGML_ASSERT(false);
  5733. }
  5734. }
  5735. static void ggml_compute_forward_add_q_f32(
  5736. const struct ggml_compute_params * params,
  5737. const struct ggml_tensor * src0,
  5738. const struct ggml_tensor * src1,
  5739. struct ggml_tensor * dst) {
  5740. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5742. return;
  5743. }
  5744. const int nr = ggml_nrows(src0);
  5745. const int64_t ne00 = src0->ne[0];
  5746. const int64_t ne01 = src0->ne[1];
  5747. const int64_t ne02 = src0->ne[2];
  5748. //const int64_t ne03 = src0->ne[3];
  5749. const size_t nb00 = src0->nb[0];
  5750. const size_t nb01 = src0->nb[1];
  5751. const size_t nb02 = src0->nb[2];
  5752. const size_t nb03 = src0->nb[3];
  5753. const size_t nb10 = src1->nb[0];
  5754. const size_t nb11 = src1->nb[1];
  5755. const size_t nb12 = src1->nb[2];
  5756. const size_t nb13 = src1->nb[3];
  5757. const size_t nb0 = dst->nb[0];
  5758. const size_t nb1 = dst->nb[1];
  5759. const size_t nb2 = dst->nb[2];
  5760. const size_t nb3 = dst->nb[3];
  5761. const int ith = params->ith;
  5762. const int nth = params->nth;
  5763. const enum ggml_type type = src0->type;
  5764. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5765. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5766. // we don't support permuted src0 or src1
  5767. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5768. GGML_ASSERT(nb10 == sizeof(float));
  5769. // dst cannot be transposed or permuted
  5770. GGML_ASSERT(nb0 <= nb1);
  5771. GGML_ASSERT(nb1 <= nb2);
  5772. GGML_ASSERT(nb2 <= nb3);
  5773. GGML_ASSERT(ggml_is_quantized(src0->type));
  5774. GGML_ASSERT(dst->type == src0->type);
  5775. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5776. // rows per thread
  5777. const int dr = (nr + nth - 1)/nth;
  5778. // row range for this thread
  5779. const int ir0 = dr*ith;
  5780. const int ir1 = MIN(ir0 + dr, nr);
  5781. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5782. for (int ir = ir0; ir < ir1; ++ir) {
  5783. // src0 indices
  5784. const int i03 = ir/(ne02*ne01);
  5785. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5786. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5787. // src1 and dst are same shape as src0 => same indices
  5788. const int i13 = i03;
  5789. const int i12 = i02;
  5790. const int i11 = i01;
  5791. const int i3 = i03;
  5792. const int i2 = i02;
  5793. const int i1 = i01;
  5794. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5795. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5796. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5797. assert(ne00 % 32 == 0);
  5798. // unquantize row from src0 to temp buffer
  5799. dequantize_row_q(src0_row, wdata, ne00);
  5800. // add src1
  5801. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5802. // quantize row to dst
  5803. quantize_row_q(wdata, dst_row, ne00);
  5804. }
  5805. }
  5806. static void ggml_compute_forward_add(
  5807. const struct ggml_compute_params * params,
  5808. const struct ggml_tensor * src0,
  5809. const struct ggml_tensor * src1,
  5810. struct ggml_tensor * dst) {
  5811. switch (src0->type) {
  5812. case GGML_TYPE_F32:
  5813. {
  5814. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5815. } break;
  5816. case GGML_TYPE_F16:
  5817. {
  5818. if (src1->type == GGML_TYPE_F16) {
  5819. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5820. }
  5821. else if (src1->type == GGML_TYPE_F32) {
  5822. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5823. }
  5824. else {
  5825. GGML_ASSERT(false);
  5826. }
  5827. } break;
  5828. case GGML_TYPE_Q4_0:
  5829. case GGML_TYPE_Q4_1:
  5830. case GGML_TYPE_Q5_0:
  5831. case GGML_TYPE_Q5_1:
  5832. case GGML_TYPE_Q8_0:
  5833. {
  5834. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5835. } break;
  5836. default:
  5837. {
  5838. GGML_ASSERT(false);
  5839. } break;
  5840. }
  5841. }
  5842. // ggml_compute_forward_add1
  5843. static void ggml_compute_forward_add1_f32(
  5844. const struct ggml_compute_params * params,
  5845. const struct ggml_tensor * src0,
  5846. const struct ggml_tensor * src1,
  5847. struct ggml_tensor * dst) {
  5848. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5849. GGML_ASSERT(ggml_is_scalar(src1));
  5850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5851. return;
  5852. }
  5853. const int ith = params->ith;
  5854. const int nth = params->nth;
  5855. const int nr = ggml_nrows(src0);
  5856. const int64_t ne0 = src0->ne[0];
  5857. const int64_t ne1 = src0->ne[1];
  5858. const int64_t ne2 = src0->ne[2];
  5859. const size_t nb00 = src0->nb[0];
  5860. const size_t nb01 = src0->nb[1];
  5861. const size_t nb02 = src0->nb[2];
  5862. const size_t nb03 = src0->nb[3];
  5863. const size_t nb0 = dst->nb[0];
  5864. const size_t nb1 = dst->nb[1];
  5865. const size_t nb2 = dst->nb[2];
  5866. const size_t nb3 = dst->nb[3];
  5867. GGML_ASSERT( nb0 == sizeof(float));
  5868. GGML_ASSERT(nb00 == sizeof(float));
  5869. // rows per thread
  5870. const int dr = (nr + nth - 1)/nth;
  5871. // row range for this thread
  5872. const int ir0 = dr*ith;
  5873. const int ir1 = MIN(ir0 + dr, nr);
  5874. for (int ir = ir0; ir < ir1; ++ir) {
  5875. // src0 and dst are same shape => same indices
  5876. const int i3 = ir/(ne2*ne1);
  5877. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5878. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5879. #ifdef GGML_USE_ACCELERATE
  5880. UNUSED(ggml_vec_add1_f32);
  5881. vDSP_vadd(
  5882. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5883. (float *) ((char *) src1->data), 0,
  5884. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5885. ne0);
  5886. #else
  5887. ggml_vec_add1_f32(ne0,
  5888. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5889. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5890. *(float *) src1->data);
  5891. #endif
  5892. }
  5893. }
  5894. static void ggml_compute_forward_add1_f16_f32(
  5895. const struct ggml_compute_params * params,
  5896. const struct ggml_tensor * src0,
  5897. const struct ggml_tensor * src1,
  5898. struct ggml_tensor * dst) {
  5899. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5900. GGML_ASSERT(ggml_is_scalar(src1));
  5901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5902. return;
  5903. }
  5904. // scalar to add
  5905. const float v = *(float *) src1->data;
  5906. const int ith = params->ith;
  5907. const int nth = params->nth;
  5908. const int nr = ggml_nrows(src0);
  5909. const int64_t ne0 = src0->ne[0];
  5910. const int64_t ne1 = src0->ne[1];
  5911. const int64_t ne2 = src0->ne[2];
  5912. const size_t nb00 = src0->nb[0];
  5913. const size_t nb01 = src0->nb[1];
  5914. const size_t nb02 = src0->nb[2];
  5915. const size_t nb03 = src0->nb[3];
  5916. const size_t nb0 = dst->nb[0];
  5917. const size_t nb1 = dst->nb[1];
  5918. const size_t nb2 = dst->nb[2];
  5919. const size_t nb3 = dst->nb[3];
  5920. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5921. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5922. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5923. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5924. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5925. // rows per thread
  5926. const int dr = (nr + nth - 1)/nth;
  5927. // row range for this thread
  5928. const int ir0 = dr*ith;
  5929. const int ir1 = MIN(ir0 + dr, nr);
  5930. for (int ir = ir0; ir < ir1; ++ir) {
  5931. // src0 and dst are same shape => same indices
  5932. const int i3 = ir/(ne2*ne1);
  5933. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5934. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5935. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5936. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5937. for (int i = 0; i < ne0; i++) {
  5938. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5939. }
  5940. }
  5941. }
  5942. static void ggml_compute_forward_add1_f16_f16(
  5943. const struct ggml_compute_params * params,
  5944. const struct ggml_tensor * src0,
  5945. const struct ggml_tensor * src1,
  5946. struct ggml_tensor * dst) {
  5947. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5948. GGML_ASSERT(ggml_is_scalar(src1));
  5949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5950. return;
  5951. }
  5952. // scalar to add
  5953. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  5954. const int ith = params->ith;
  5955. const int nth = params->nth;
  5956. const int nr = ggml_nrows(src0);
  5957. const int64_t ne0 = src0->ne[0];
  5958. const int64_t ne1 = src0->ne[1];
  5959. const int64_t ne2 = src0->ne[2];
  5960. const size_t nb00 = src0->nb[0];
  5961. const size_t nb01 = src0->nb[1];
  5962. const size_t nb02 = src0->nb[2];
  5963. const size_t nb03 = src0->nb[3];
  5964. const size_t nb0 = dst->nb[0];
  5965. const size_t nb1 = dst->nb[1];
  5966. const size_t nb2 = dst->nb[2];
  5967. const size_t nb3 = dst->nb[3];
  5968. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5969. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5970. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5971. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5972. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5973. // rows per thread
  5974. const int dr = (nr + nth - 1)/nth;
  5975. // row range for this thread
  5976. const int ir0 = dr*ith;
  5977. const int ir1 = MIN(ir0 + dr, nr);
  5978. for (int ir = ir0; ir < ir1; ++ir) {
  5979. // src0 and dst are same shape => same indices
  5980. const int i3 = ir/(ne2*ne1);
  5981. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5982. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5983. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5984. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5985. for (int i = 0; i < ne0; i++) {
  5986. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  5987. }
  5988. }
  5989. }
  5990. static void ggml_compute_forward_add1_q_f32(
  5991. const struct ggml_compute_params * params,
  5992. const struct ggml_tensor * src0,
  5993. const struct ggml_tensor * src1,
  5994. struct ggml_tensor * dst) {
  5995. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5996. GGML_ASSERT(ggml_is_scalar(src1));
  5997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5998. return;
  5999. }
  6000. // scalar to add
  6001. const float v = *(float *) src1->data;
  6002. const int ith = params->ith;
  6003. const int nth = params->nth;
  6004. const int nr = ggml_nrows(src0);
  6005. const int64_t ne0 = src0->ne[0];
  6006. const int64_t ne1 = src0->ne[1];
  6007. const int64_t ne2 = src0->ne[2];
  6008. const size_t nb00 = src0->nb[0];
  6009. const size_t nb01 = src0->nb[1];
  6010. const size_t nb02 = src0->nb[2];
  6011. const size_t nb03 = src0->nb[3];
  6012. const size_t nb0 = dst->nb[0];
  6013. const size_t nb1 = dst->nb[1];
  6014. const size_t nb2 = dst->nb[2];
  6015. const size_t nb3 = dst->nb[3];
  6016. const enum ggml_type type = src0->type;
  6017. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6018. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6019. // we don't support permuted src0
  6020. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6021. // dst cannot be transposed or permuted
  6022. GGML_ASSERT(nb0 <= nb1);
  6023. GGML_ASSERT(nb1 <= nb2);
  6024. GGML_ASSERT(nb2 <= nb3);
  6025. GGML_ASSERT(ggml_is_quantized(src0->type));
  6026. GGML_ASSERT(dst->type == src0->type);
  6027. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6028. // rows per thread
  6029. const int dr = (nr + nth - 1)/nth;
  6030. // row range for this thread
  6031. const int ir0 = dr*ith;
  6032. const int ir1 = MIN(ir0 + dr, nr);
  6033. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6034. for (int ir = ir0; ir < ir1; ++ir) {
  6035. // src0 and dst are same shape => same indices
  6036. const int i3 = ir/(ne2*ne1);
  6037. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6038. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6039. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6040. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6041. assert(ne0 % 32 == 0);
  6042. // unquantize row from src0 to temp buffer
  6043. dequantize_row_q(src0_row, wdata, ne0);
  6044. // add src1
  6045. ggml_vec_acc1_f32(ne0, wdata, v);
  6046. // quantize row to dst
  6047. quantize_row_q(wdata, dst_row, ne0);
  6048. }
  6049. }
  6050. static void ggml_compute_forward_add1(
  6051. const struct ggml_compute_params * params,
  6052. const struct ggml_tensor * src0,
  6053. const struct ggml_tensor * src1,
  6054. struct ggml_tensor * dst) {
  6055. switch (src0->type) {
  6056. case GGML_TYPE_F32:
  6057. {
  6058. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6059. } break;
  6060. case GGML_TYPE_F16:
  6061. {
  6062. if (src1->type == GGML_TYPE_F16) {
  6063. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6064. }
  6065. else if (src1->type == GGML_TYPE_F32) {
  6066. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6067. }
  6068. else {
  6069. GGML_ASSERT(false);
  6070. }
  6071. } break;
  6072. case GGML_TYPE_Q4_0:
  6073. case GGML_TYPE_Q4_1:
  6074. case GGML_TYPE_Q5_0:
  6075. case GGML_TYPE_Q5_1:
  6076. case GGML_TYPE_Q8_0:
  6077. case GGML_TYPE_Q8_1:
  6078. {
  6079. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6080. } break;
  6081. default:
  6082. {
  6083. GGML_ASSERT(false);
  6084. } break;
  6085. }
  6086. }
  6087. // ggml_compute_forward_acc
  6088. static void ggml_compute_forward_acc_f32(
  6089. const struct ggml_compute_params * params,
  6090. const struct ggml_tensor * src0,
  6091. const struct ggml_tensor * src1,
  6092. const struct ggml_tensor * opt0,
  6093. struct ggml_tensor * dst) {
  6094. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6095. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6096. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6097. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6098. // view src0 and dst with these strides and data offset inbytes during acc
  6099. // nb0 is implicitely element_size because src0 and dst are contiguous
  6100. size_t nb1 = ((int32_t *) opt0->data)[0];
  6101. size_t nb2 = ((int32_t *) opt0->data)[1];
  6102. size_t nb3 = ((int32_t *) opt0->data)[2];
  6103. size_t offset = ((int32_t *) opt0->data)[3];
  6104. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6105. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6106. // memcpy needs to be synchronized across threads to avoid race conditions.
  6107. // => do it in INIT phase
  6108. memcpy(
  6109. ((char *) dst->data),
  6110. ((char *) src0->data),
  6111. ggml_nbytes(dst));
  6112. }
  6113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6114. return;
  6115. }
  6116. const int ith = params->ith;
  6117. const int nth = params->nth;
  6118. const int nr = ggml_nrows(src1);
  6119. const int nc = src1->ne[0];
  6120. const int64_t ne10 = src1->ne[0];
  6121. const int64_t ne11 = src1->ne[1];
  6122. const int64_t ne12 = src1->ne[2];
  6123. const int64_t ne13 = src1->ne[3];
  6124. const size_t nb10 = src1->nb[0];
  6125. const size_t nb11 = src1->nb[1];
  6126. const size_t nb12 = src1->nb[2];
  6127. const size_t nb13 = src1->nb[3];
  6128. // src0 and dst as viewed during acc
  6129. const size_t nb0 = ggml_element_size(src0);
  6130. const size_t nb00 = nb0;
  6131. const size_t nb01 = nb1;
  6132. const size_t nb02 = nb2;
  6133. const size_t nb03 = nb3;
  6134. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6135. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6136. GGML_ASSERT(nb10 == sizeof(float));
  6137. // rows per thread
  6138. const int dr = (nr + nth - 1)/nth;
  6139. // row range for this thread
  6140. const int ir0 = dr*ith;
  6141. const int ir1 = MIN(ir0 + dr, nr);
  6142. for (int ir = ir0; ir < ir1; ++ir) {
  6143. // src0 and dst are viewed with shape of src1 and offset
  6144. // => same indices
  6145. const int i3 = ir/(ne12*ne11);
  6146. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6147. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6148. #ifdef GGML_USE_ACCELERATE
  6149. vDSP_vadd(
  6150. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6151. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6152. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6153. #else
  6154. ggml_vec_add_f32(nc,
  6155. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6156. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6157. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6158. #endif
  6159. }
  6160. }
  6161. static void ggml_compute_forward_acc(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. const struct ggml_tensor * src1,
  6165. const struct ggml_tensor * opt0,
  6166. struct ggml_tensor * dst) {
  6167. switch (src0->type) {
  6168. case GGML_TYPE_F32:
  6169. {
  6170. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6171. } break;
  6172. case GGML_TYPE_F16:
  6173. case GGML_TYPE_Q4_0:
  6174. case GGML_TYPE_Q4_1:
  6175. case GGML_TYPE_Q5_0:
  6176. case GGML_TYPE_Q5_1:
  6177. case GGML_TYPE_Q8_0:
  6178. case GGML_TYPE_Q8_1:
  6179. default:
  6180. {
  6181. GGML_ASSERT(false);
  6182. } break;
  6183. }
  6184. }
  6185. // ggml_compute_forward_sub
  6186. static void ggml_compute_forward_sub_f32(
  6187. const struct ggml_compute_params * params,
  6188. const struct ggml_tensor * src0,
  6189. const struct ggml_tensor * src1,
  6190. struct ggml_tensor * dst) {
  6191. assert(params->ith == 0);
  6192. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6193. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6194. return;
  6195. }
  6196. const int nr = ggml_nrows(src0);
  6197. const int64_t ne0 = src0->ne[0];
  6198. const int64_t ne1 = src0->ne[1];
  6199. const int64_t ne2 = src0->ne[2];
  6200. const size_t nb00 = src0->nb[0];
  6201. const size_t nb01 = src0->nb[1];
  6202. const size_t nb02 = src0->nb[2];
  6203. const size_t nb03 = src0->nb[3];
  6204. const size_t nb10 = src1->nb[0];
  6205. const size_t nb11 = src1->nb[1];
  6206. const size_t nb12 = src1->nb[2];
  6207. const size_t nb13 = src1->nb[3];
  6208. const size_t nb0 = dst->nb[0];
  6209. const size_t nb1 = dst->nb[1];
  6210. const size_t nb2 = dst->nb[2];
  6211. const size_t nb3 = dst->nb[3];
  6212. GGML_ASSERT( nb0 == sizeof(float));
  6213. GGML_ASSERT(nb00 == sizeof(float));
  6214. if (nb10 == sizeof(float)) {
  6215. for (int ir = 0; ir < nr; ++ir) {
  6216. // src0, src1 and dst are same shape => same indices
  6217. const int i3 = ir/(ne2*ne1);
  6218. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6219. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6220. #ifdef GGML_USE_ACCELERATE
  6221. vDSP_vsub(
  6222. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6223. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6224. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6225. ne0);
  6226. #else
  6227. ggml_vec_sub_f32(ne0,
  6228. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6229. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6230. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6231. #endif
  6232. // }
  6233. // }
  6234. }
  6235. } else {
  6236. // src1 is not contiguous
  6237. for (int ir = 0; ir < nr; ++ir) {
  6238. // src0, src1 and dst are same shape => same indices
  6239. const int i3 = ir/(ne2*ne1);
  6240. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6241. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6242. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6243. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6244. for (int i0 = 0; i0 < ne0; i0++) {
  6245. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6246. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6247. }
  6248. }
  6249. }
  6250. }
  6251. static void ggml_compute_forward_sub(
  6252. const struct ggml_compute_params * params,
  6253. const struct ggml_tensor * src0,
  6254. const struct ggml_tensor * src1,
  6255. struct ggml_tensor * dst) {
  6256. switch (src0->type) {
  6257. case GGML_TYPE_F32:
  6258. {
  6259. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6260. } break;
  6261. default:
  6262. {
  6263. GGML_ASSERT(false);
  6264. } break;
  6265. }
  6266. }
  6267. // ggml_compute_forward_mul
  6268. static void ggml_compute_forward_mul_f32(
  6269. const struct ggml_compute_params * params,
  6270. const struct ggml_tensor * src0,
  6271. const struct ggml_tensor * src1,
  6272. struct ggml_tensor * dst) {
  6273. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6275. return;
  6276. }
  6277. const int ith = params->ith;
  6278. const int nth = params->nth;
  6279. const int nr = ggml_nrows(src0);
  6280. const int64_t ne0 = src0->ne[0];
  6281. const int64_t ne1 = src0->ne[1];
  6282. const int64_t ne2 = src0->ne[2];
  6283. const size_t nb00 = src0->nb[0];
  6284. const size_t nb01 = src0->nb[1];
  6285. const size_t nb02 = src0->nb[2];
  6286. const size_t nb03 = src0->nb[3];
  6287. const size_t nb10 = src1->nb[0];
  6288. const size_t nb11 = src1->nb[1];
  6289. const size_t nb12 = src1->nb[2];
  6290. const size_t nb13 = src1->nb[3];
  6291. const size_t nb0 = dst->nb[0];
  6292. const size_t nb1 = dst->nb[1];
  6293. const size_t nb2 = dst->nb[2];
  6294. const size_t nb3 = dst->nb[3];
  6295. GGML_ASSERT( nb0 == sizeof(float));
  6296. GGML_ASSERT(nb00 == sizeof(float));
  6297. if (nb10 == sizeof(float)) {
  6298. for (int ir = ith; ir < nr; ir += nth) {
  6299. // src0, src1 and dst are same shape => same indices
  6300. const int i3 = ir/(ne2*ne1);
  6301. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6302. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6303. #ifdef GGML_USE_ACCELERATE
  6304. UNUSED(ggml_vec_mul_f32);
  6305. vDSP_vmul(
  6306. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6307. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6308. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6309. ne0);
  6310. #else
  6311. ggml_vec_mul_f32(ne0,
  6312. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6313. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6314. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6315. #endif
  6316. // }
  6317. // }
  6318. }
  6319. } else {
  6320. // src1 is not contiguous
  6321. for (int ir = ith; ir < nr; ir += nth) {
  6322. // src0, src1 and dst are same shape => same indices
  6323. const int i3 = ir/(ne2*ne1);
  6324. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6325. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6326. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6327. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6328. for (int i0 = 0; i0 < ne0; i0++) {
  6329. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6330. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6331. }
  6332. }
  6333. }
  6334. }
  6335. static void ggml_compute_forward_mul(
  6336. const struct ggml_compute_params * params,
  6337. const struct ggml_tensor * src0,
  6338. const struct ggml_tensor * src1,
  6339. struct ggml_tensor * dst) {
  6340. switch (src0->type) {
  6341. case GGML_TYPE_F32:
  6342. {
  6343. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6344. } break;
  6345. default:
  6346. {
  6347. GGML_ASSERT(false);
  6348. } break;
  6349. }
  6350. }
  6351. // ggml_compute_forward_div
  6352. static void ggml_compute_forward_div_f32(
  6353. const struct ggml_compute_params * params,
  6354. const struct ggml_tensor * src0,
  6355. const struct ggml_tensor * src1,
  6356. struct ggml_tensor * dst) {
  6357. assert(params->ith == 0);
  6358. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6359. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6360. return;
  6361. }
  6362. const int nr = ggml_nrows(src0);
  6363. const int64_t ne0 = src0->ne[0];
  6364. const int64_t ne1 = src0->ne[1];
  6365. const int64_t ne2 = src0->ne[2];
  6366. const size_t nb00 = src0->nb[0];
  6367. const size_t nb01 = src0->nb[1];
  6368. const size_t nb02 = src0->nb[2];
  6369. const size_t nb03 = src0->nb[3];
  6370. const size_t nb10 = src1->nb[0];
  6371. const size_t nb11 = src1->nb[1];
  6372. const size_t nb12 = src1->nb[2];
  6373. const size_t nb13 = src1->nb[3];
  6374. const size_t nb0 = dst->nb[0];
  6375. const size_t nb1 = dst->nb[1];
  6376. const size_t nb2 = dst->nb[2];
  6377. const size_t nb3 = dst->nb[3];
  6378. GGML_ASSERT( nb0 == sizeof(float));
  6379. GGML_ASSERT(nb00 == sizeof(float));
  6380. if (nb10 == sizeof(float)) {
  6381. for (int ir = 0; ir < nr; ++ir) {
  6382. // src0, src1 and dst are same shape => same indices
  6383. const int i3 = ir/(ne2*ne1);
  6384. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6385. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6386. #ifdef GGML_USE_ACCELERATE
  6387. vDSP_vdiv(
  6388. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6389. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6390. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6391. ne0);
  6392. #else
  6393. ggml_vec_div_f32(ne0,
  6394. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6395. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6396. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6397. #endif
  6398. // }
  6399. // }
  6400. }
  6401. } else {
  6402. // src1 is not contiguous
  6403. for (int ir = 0; ir < nr; ++ir) {
  6404. // src0, src1 and dst are same shape => same indices
  6405. const int i3 = ir/(ne2*ne1);
  6406. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6407. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6408. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6409. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6410. for (int i0 = 0; i0 < ne0; i0++) {
  6411. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6412. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6413. }
  6414. }
  6415. }
  6416. }
  6417. static void ggml_compute_forward_div(
  6418. const struct ggml_compute_params * params,
  6419. const struct ggml_tensor * src0,
  6420. const struct ggml_tensor * src1,
  6421. struct ggml_tensor * dst) {
  6422. switch (src0->type) {
  6423. case GGML_TYPE_F32:
  6424. {
  6425. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6426. } break;
  6427. default:
  6428. {
  6429. GGML_ASSERT(false);
  6430. } break;
  6431. }
  6432. }
  6433. // ggml_compute_forward_sqr
  6434. static void ggml_compute_forward_sqr_f32(
  6435. const struct ggml_compute_params * params,
  6436. const struct ggml_tensor * src0,
  6437. struct ggml_tensor * dst) {
  6438. assert(params->ith == 0);
  6439. assert(ggml_are_same_shape(src0, dst));
  6440. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6441. return;
  6442. }
  6443. const int n = ggml_nrows(src0);
  6444. const int nc = src0->ne[0];
  6445. assert( dst->nb[0] == sizeof(float));
  6446. assert(src0->nb[0] == sizeof(float));
  6447. for (int i = 0; i < n; i++) {
  6448. ggml_vec_sqr_f32(nc,
  6449. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6450. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6451. }
  6452. }
  6453. static void ggml_compute_forward_sqr(
  6454. const struct ggml_compute_params * params,
  6455. const struct ggml_tensor * src0,
  6456. struct ggml_tensor * dst) {
  6457. switch (src0->type) {
  6458. case GGML_TYPE_F32:
  6459. {
  6460. ggml_compute_forward_sqr_f32(params, src0, dst);
  6461. } break;
  6462. default:
  6463. {
  6464. GGML_ASSERT(false);
  6465. } break;
  6466. }
  6467. }
  6468. // ggml_compute_forward_sqrt
  6469. static void ggml_compute_forward_sqrt_f32(
  6470. const struct ggml_compute_params * params,
  6471. const struct ggml_tensor * src0,
  6472. struct ggml_tensor * dst) {
  6473. assert(params->ith == 0);
  6474. assert(ggml_are_same_shape(src0, dst));
  6475. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6476. return;
  6477. }
  6478. const int n = ggml_nrows(src0);
  6479. const int nc = src0->ne[0];
  6480. assert( dst->nb[0] == sizeof(float));
  6481. assert(src0->nb[0] == sizeof(float));
  6482. for (int i = 0; i < n; i++) {
  6483. ggml_vec_sqrt_f32(nc,
  6484. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6485. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6486. }
  6487. }
  6488. static void ggml_compute_forward_sqrt(
  6489. const struct ggml_compute_params * params,
  6490. const struct ggml_tensor * src0,
  6491. struct ggml_tensor * dst) {
  6492. switch (src0->type) {
  6493. case GGML_TYPE_F32:
  6494. {
  6495. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6496. } break;
  6497. default:
  6498. {
  6499. GGML_ASSERT(false);
  6500. } break;
  6501. }
  6502. }
  6503. // ggml_compute_forward_log
  6504. static void ggml_compute_forward_log_f32(
  6505. const struct ggml_compute_params * params,
  6506. const struct ggml_tensor * src0,
  6507. struct ggml_tensor * dst) {
  6508. GGML_ASSERT(params->ith == 0);
  6509. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6511. return;
  6512. }
  6513. const int n = ggml_nrows(src0);
  6514. const int nc = src0->ne[0];
  6515. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6516. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6517. for (int i = 0; i < n; i++) {
  6518. ggml_vec_log_f32(nc,
  6519. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6520. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6521. }
  6522. }
  6523. static void ggml_compute_forward_log(
  6524. const struct ggml_compute_params * params,
  6525. const struct ggml_tensor * src0,
  6526. struct ggml_tensor * dst) {
  6527. switch (src0->type) {
  6528. case GGML_TYPE_F32:
  6529. {
  6530. ggml_compute_forward_log_f32(params, src0, dst);
  6531. } break;
  6532. default:
  6533. {
  6534. GGML_ASSERT(false);
  6535. } break;
  6536. }
  6537. }
  6538. // ggml_compute_forward_sum
  6539. static void ggml_compute_forward_sum_f32(
  6540. const struct ggml_compute_params * params,
  6541. const struct ggml_tensor * src0,
  6542. struct ggml_tensor * dst) {
  6543. assert(params->ith == 0);
  6544. assert(ggml_is_scalar(dst));
  6545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6546. return;
  6547. }
  6548. assert(ggml_is_scalar(dst));
  6549. assert(src0->nb[0] == sizeof(float));
  6550. const int64_t ne00 = src0->ne[0];
  6551. const int64_t ne01 = src0->ne[1];
  6552. const int64_t ne02 = src0->ne[2];
  6553. const int64_t ne03 = src0->ne[3];
  6554. const size_t nb01 = src0->nb[1];
  6555. const size_t nb02 = src0->nb[2];
  6556. const size_t nb03 = src0->nb[3];
  6557. ggml_float sum = 0;
  6558. ggml_float row_sum = 0;
  6559. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6560. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6561. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6562. ggml_vec_sum_ggf(ne00,
  6563. &row_sum,
  6564. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6565. sum += row_sum;
  6566. }
  6567. }
  6568. }
  6569. ((float *) dst->data)[0] = sum;
  6570. }
  6571. static void ggml_compute_forward_sum(
  6572. const struct ggml_compute_params * params,
  6573. const struct ggml_tensor * src0,
  6574. struct ggml_tensor * dst) {
  6575. switch (src0->type) {
  6576. case GGML_TYPE_F32:
  6577. {
  6578. ggml_compute_forward_sum_f32(params, src0, dst);
  6579. } break;
  6580. default:
  6581. {
  6582. GGML_ASSERT(false);
  6583. } break;
  6584. }
  6585. }
  6586. // ggml_compute_forward_sum_rows
  6587. static void ggml_compute_forward_sum_rows_f32(
  6588. const struct ggml_compute_params * params,
  6589. const struct ggml_tensor * src0,
  6590. struct ggml_tensor * dst) {
  6591. GGML_ASSERT(params->ith == 0);
  6592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6593. return;
  6594. }
  6595. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6596. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6597. const int64_t ne00 = src0->ne[0];
  6598. const int64_t ne01 = src0->ne[1];
  6599. const int64_t ne02 = src0->ne[2];
  6600. const int64_t ne03 = src0->ne[3];
  6601. const int64_t ne0 = dst->ne[0];
  6602. const int64_t ne1 = dst->ne[1];
  6603. const int64_t ne2 = dst->ne[2];
  6604. const int64_t ne3 = dst->ne[3];
  6605. GGML_ASSERT(ne0 == 1);
  6606. GGML_ASSERT(ne1 == ne01);
  6607. GGML_ASSERT(ne2 == ne02);
  6608. GGML_ASSERT(ne3 == ne03);
  6609. const size_t nb01 = src0->nb[1];
  6610. const size_t nb02 = src0->nb[2];
  6611. const size_t nb03 = src0->nb[3];
  6612. const size_t nb1 = dst->nb[1];
  6613. const size_t nb2 = dst->nb[2];
  6614. const size_t nb3 = dst->nb[3];
  6615. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6616. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6617. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6618. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6619. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6620. float row_sum = 0;
  6621. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6622. dst_row[0] = row_sum;
  6623. }
  6624. }
  6625. }
  6626. }
  6627. static void ggml_compute_forward_sum_rows(
  6628. const struct ggml_compute_params * params,
  6629. const struct ggml_tensor * src0,
  6630. struct ggml_tensor * dst) {
  6631. switch (src0->type) {
  6632. case GGML_TYPE_F32:
  6633. {
  6634. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6635. } break;
  6636. default:
  6637. {
  6638. GGML_ASSERT(false);
  6639. } break;
  6640. }
  6641. }
  6642. // ggml_compute_forward_mean
  6643. static void ggml_compute_forward_mean_f32(
  6644. const struct ggml_compute_params * params,
  6645. const struct ggml_tensor * src0,
  6646. struct ggml_tensor * dst) {
  6647. assert(params->ith == 0);
  6648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. assert(src0->nb[0] == sizeof(float));
  6652. const int64_t ne00 = src0->ne[0];
  6653. const int64_t ne01 = src0->ne[1];
  6654. const int64_t ne02 = src0->ne[2];
  6655. const int64_t ne03 = src0->ne[3];
  6656. const size_t nb01 = src0->nb[1];
  6657. const size_t nb02 = src0->nb[2];
  6658. const size_t nb03 = src0->nb[3];
  6659. const int64_t ne0 = dst->ne[0];
  6660. const int64_t ne1 = dst->ne[1];
  6661. const int64_t ne2 = dst->ne[2];
  6662. const int64_t ne3 = dst->ne[3];
  6663. assert(ne0 == 1);
  6664. assert(ne1 == ne01);
  6665. assert(ne2 == ne02);
  6666. assert(ne3 == ne03);
  6667. UNUSED(ne0);
  6668. UNUSED(ne1);
  6669. UNUSED(ne2);
  6670. UNUSED(ne3);
  6671. const size_t nb1 = dst->nb[1];
  6672. const size_t nb2 = dst->nb[2];
  6673. const size_t nb3 = dst->nb[3];
  6674. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6675. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6676. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6677. ggml_vec_sum_f32(ne00,
  6678. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6679. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6680. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6681. }
  6682. }
  6683. }
  6684. }
  6685. static void ggml_compute_forward_mean(
  6686. const struct ggml_compute_params * params,
  6687. const struct ggml_tensor * src0,
  6688. struct ggml_tensor * dst) {
  6689. switch (src0->type) {
  6690. case GGML_TYPE_F32:
  6691. {
  6692. ggml_compute_forward_mean_f32(params, src0, dst);
  6693. } break;
  6694. default:
  6695. {
  6696. GGML_ASSERT(false);
  6697. } break;
  6698. }
  6699. }
  6700. // ggml_compute_forward_repeat
  6701. static void ggml_compute_forward_repeat_f32(
  6702. const struct ggml_compute_params * params,
  6703. const struct ggml_tensor * src0,
  6704. struct ggml_tensor * dst) {
  6705. GGML_ASSERT(params->ith == 0);
  6706. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6708. return;
  6709. }
  6710. const int64_t ne0 = dst->ne[0];
  6711. const int64_t ne1 = dst->ne[1];
  6712. const int64_t ne2 = dst->ne[2];
  6713. const int64_t ne3 = dst->ne[3];
  6714. const int64_t ne00 = src0->ne[0];
  6715. const int64_t ne01 = src0->ne[1];
  6716. const int64_t ne02 = src0->ne[2];
  6717. const int64_t ne03 = src0->ne[3];
  6718. const size_t nb0 = dst->nb[0];
  6719. const size_t nb1 = dst->nb[1];
  6720. const size_t nb2 = dst->nb[2];
  6721. const size_t nb3 = dst->nb[3];
  6722. const size_t nb00 = src0->nb[0];
  6723. const size_t nb01 = src0->nb[1];
  6724. const size_t nb02 = src0->nb[2];
  6725. const size_t nb03 = src0->nb[3];
  6726. // guaranteed to be an integer due to the check in ggml_can_repeat
  6727. const int nr0 = (int)(ne0/ne00);
  6728. const int nr1 = (int)(ne1/ne01);
  6729. const int nr2 = (int)(ne2/ne02);
  6730. const int nr3 = (int)(ne3/ne03);
  6731. // TODO: support for transposed / permuted tensors
  6732. GGML_ASSERT(nb0 == sizeof(float));
  6733. GGML_ASSERT(nb00 == sizeof(float));
  6734. // TODO: maybe this is not optimal?
  6735. for (int i3 = 0; i3 < nr3; i3++) {
  6736. for (int k3 = 0; k3 < ne03; k3++) {
  6737. for (int i2 = 0; i2 < nr2; i2++) {
  6738. for (int k2 = 0; k2 < ne02; k2++) {
  6739. for (int i1 = 0; i1 < nr1; i1++) {
  6740. for (int k1 = 0; k1 < ne01; k1++) {
  6741. for (int i0 = 0; i0 < nr0; i0++) {
  6742. ggml_vec_cpy_f32(ne00,
  6743. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6744. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6745. }
  6746. }
  6747. }
  6748. }
  6749. }
  6750. }
  6751. }
  6752. }
  6753. static void ggml_compute_forward_repeat(
  6754. const struct ggml_compute_params * params,
  6755. const struct ggml_tensor * src0,
  6756. struct ggml_tensor * dst) {
  6757. switch (src0->type) {
  6758. case GGML_TYPE_F32:
  6759. {
  6760. ggml_compute_forward_repeat_f32(params, src0, dst);
  6761. } break;
  6762. default:
  6763. {
  6764. GGML_ASSERT(false);
  6765. } break;
  6766. }
  6767. }
  6768. // ggml_compute_forward_abs
  6769. static void ggml_compute_forward_abs_f32(
  6770. const struct ggml_compute_params * params,
  6771. const struct ggml_tensor * src0,
  6772. struct ggml_tensor * dst) {
  6773. assert(params->ith == 0);
  6774. assert(ggml_are_same_shape(src0, dst));
  6775. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6776. return;
  6777. }
  6778. const int n = ggml_nrows(src0);
  6779. const int nc = src0->ne[0];
  6780. assert(dst->nb[0] == sizeof(float));
  6781. assert(src0->nb[0] == sizeof(float));
  6782. for (int i = 0; i < n; i++) {
  6783. ggml_vec_abs_f32(nc,
  6784. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6785. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6786. }
  6787. }
  6788. static void ggml_compute_forward_abs(
  6789. const struct ggml_compute_params * params,
  6790. const struct ggml_tensor * src0,
  6791. struct ggml_tensor * dst) {
  6792. switch (src0->type) {
  6793. case GGML_TYPE_F32:
  6794. {
  6795. ggml_compute_forward_abs_f32(params, src0, dst);
  6796. } break;
  6797. default:
  6798. {
  6799. GGML_ASSERT(false);
  6800. } break;
  6801. }
  6802. }
  6803. // ggml_compute_forward_sgn
  6804. static void ggml_compute_forward_sgn_f32(
  6805. const struct ggml_compute_params * params,
  6806. const struct ggml_tensor * src0,
  6807. struct ggml_tensor * dst) {
  6808. assert(params->ith == 0);
  6809. assert(ggml_are_same_shape(src0, dst));
  6810. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6811. return;
  6812. }
  6813. const int n = ggml_nrows(src0);
  6814. const int nc = src0->ne[0];
  6815. assert(dst->nb[0] == sizeof(float));
  6816. assert(src0->nb[0] == sizeof(float));
  6817. for (int i = 0; i < n; i++) {
  6818. ggml_vec_sgn_f32(nc,
  6819. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6820. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6821. }
  6822. }
  6823. static void ggml_compute_forward_sgn(
  6824. const struct ggml_compute_params * params,
  6825. const struct ggml_tensor * src0,
  6826. struct ggml_tensor * dst) {
  6827. switch (src0->type) {
  6828. case GGML_TYPE_F32:
  6829. {
  6830. ggml_compute_forward_sgn_f32(params, src0, dst);
  6831. } break;
  6832. default:
  6833. {
  6834. GGML_ASSERT(false);
  6835. } break;
  6836. }
  6837. }
  6838. // ggml_compute_forward_neg
  6839. static void ggml_compute_forward_neg_f32(
  6840. const struct ggml_compute_params * params,
  6841. const struct ggml_tensor * src0,
  6842. struct ggml_tensor * dst) {
  6843. assert(params->ith == 0);
  6844. assert(ggml_are_same_shape(src0, dst));
  6845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6846. return;
  6847. }
  6848. const int n = ggml_nrows(src0);
  6849. const int nc = src0->ne[0];
  6850. assert(dst->nb[0] == sizeof(float));
  6851. assert(src0->nb[0] == sizeof(float));
  6852. for (int i = 0; i < n; i++) {
  6853. ggml_vec_neg_f32(nc,
  6854. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6855. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6856. }
  6857. }
  6858. static void ggml_compute_forward_neg(
  6859. const struct ggml_compute_params * params,
  6860. const struct ggml_tensor * src0,
  6861. struct ggml_tensor * dst) {
  6862. switch (src0->type) {
  6863. case GGML_TYPE_F32:
  6864. {
  6865. ggml_compute_forward_neg_f32(params, src0, dst);
  6866. } break;
  6867. default:
  6868. {
  6869. GGML_ASSERT(false);
  6870. } break;
  6871. }
  6872. }
  6873. // ggml_compute_forward_step
  6874. static void ggml_compute_forward_step_f32(
  6875. const struct ggml_compute_params * params,
  6876. const struct ggml_tensor * src0,
  6877. struct ggml_tensor * dst) {
  6878. assert(params->ith == 0);
  6879. assert(ggml_are_same_shape(src0, dst));
  6880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6881. return;
  6882. }
  6883. const int n = ggml_nrows(src0);
  6884. const int nc = src0->ne[0];
  6885. assert(dst->nb[0] == sizeof(float));
  6886. assert(src0->nb[0] == sizeof(float));
  6887. for (int i = 0; i < n; i++) {
  6888. ggml_vec_step_f32(nc,
  6889. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6890. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6891. }
  6892. }
  6893. static void ggml_compute_forward_step(
  6894. const struct ggml_compute_params * params,
  6895. const struct ggml_tensor * src0,
  6896. struct ggml_tensor * dst) {
  6897. switch (src0->type) {
  6898. case GGML_TYPE_F32:
  6899. {
  6900. ggml_compute_forward_step_f32(params, src0, dst);
  6901. } break;
  6902. default:
  6903. {
  6904. GGML_ASSERT(false);
  6905. } break;
  6906. }
  6907. }
  6908. // ggml_compute_forward_relu
  6909. static void ggml_compute_forward_relu_f32(
  6910. const struct ggml_compute_params * params,
  6911. const struct ggml_tensor * src0,
  6912. struct ggml_tensor * dst) {
  6913. assert(params->ith == 0);
  6914. assert(ggml_are_same_shape(src0, dst));
  6915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6916. return;
  6917. }
  6918. const int n = ggml_nrows(src0);
  6919. const int nc = src0->ne[0];
  6920. assert(dst->nb[0] == sizeof(float));
  6921. assert(src0->nb[0] == sizeof(float));
  6922. for (int i = 0; i < n; i++) {
  6923. ggml_vec_relu_f32(nc,
  6924. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6925. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6926. }
  6927. }
  6928. static void ggml_compute_forward_relu(
  6929. const struct ggml_compute_params * params,
  6930. const struct ggml_tensor * src0,
  6931. struct ggml_tensor * dst) {
  6932. switch (src0->type) {
  6933. case GGML_TYPE_F32:
  6934. {
  6935. ggml_compute_forward_relu_f32(params, src0, dst);
  6936. } break;
  6937. default:
  6938. {
  6939. GGML_ASSERT(false);
  6940. } break;
  6941. }
  6942. }
  6943. // ggml_compute_forward_gelu
  6944. static void ggml_compute_forward_gelu_f32(
  6945. const struct ggml_compute_params * params,
  6946. const struct ggml_tensor * src0,
  6947. struct ggml_tensor * dst) {
  6948. GGML_ASSERT(ggml_is_contiguous(src0));
  6949. GGML_ASSERT(ggml_is_contiguous(dst));
  6950. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6952. return;
  6953. }
  6954. const int ith = params->ith;
  6955. const int nth = params->nth;
  6956. const int nc = src0->ne[0];
  6957. const int nr = ggml_nrows(src0);
  6958. // rows per thread
  6959. const int dr = (nr + nth - 1)/nth;
  6960. // row range for this thread
  6961. const int ir0 = dr*ith;
  6962. const int ir1 = MIN(ir0 + dr, nr);
  6963. for (int i1 = ir0; i1 < ir1; i1++) {
  6964. ggml_vec_gelu_f32(nc,
  6965. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6966. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6967. #ifndef NDEBUG
  6968. for (int k = 0; k < nc; k++) {
  6969. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6970. UNUSED(x);
  6971. assert(!isnan(x));
  6972. assert(!isinf(x));
  6973. }
  6974. #endif
  6975. }
  6976. }
  6977. static void ggml_compute_forward_gelu(
  6978. const struct ggml_compute_params * params,
  6979. const struct ggml_tensor * src0,
  6980. struct ggml_tensor * dst) {
  6981. switch (src0->type) {
  6982. case GGML_TYPE_F32:
  6983. {
  6984. ggml_compute_forward_gelu_f32(params, src0, dst);
  6985. } break;
  6986. default:
  6987. {
  6988. GGML_ASSERT(false);
  6989. } break;
  6990. }
  6991. //printf("XXXXXXXX gelu\n");
  6992. }
  6993. // ggml_compute_forward_silu
  6994. static void ggml_compute_forward_silu_f32(
  6995. const struct ggml_compute_params * params,
  6996. const struct ggml_tensor * src0,
  6997. struct ggml_tensor * dst) {
  6998. GGML_ASSERT(ggml_is_contiguous(src0));
  6999. GGML_ASSERT(ggml_is_contiguous(dst));
  7000. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7002. return;
  7003. }
  7004. const int ith = params->ith;
  7005. const int nth = params->nth;
  7006. const int nc = src0->ne[0];
  7007. const int nr = ggml_nrows(src0);
  7008. // rows per thread
  7009. const int dr = (nr + nth - 1)/nth;
  7010. // row range for this thread
  7011. const int ir0 = dr*ith;
  7012. const int ir1 = MIN(ir0 + dr, nr);
  7013. for (int i1 = ir0; i1 < ir1; i1++) {
  7014. ggml_vec_silu_f32(nc,
  7015. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7016. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7017. #ifndef NDEBUG
  7018. for (int k = 0; k < nc; k++) {
  7019. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7020. UNUSED(x);
  7021. assert(!isnan(x));
  7022. assert(!isinf(x));
  7023. }
  7024. #endif
  7025. }
  7026. }
  7027. static void ggml_compute_forward_silu(
  7028. const struct ggml_compute_params * params,
  7029. const struct ggml_tensor * src0,
  7030. struct ggml_tensor * dst) {
  7031. switch (src0->type) {
  7032. case GGML_TYPE_F32:
  7033. {
  7034. ggml_compute_forward_silu_f32(params, src0, dst);
  7035. } break;
  7036. default:
  7037. {
  7038. GGML_ASSERT(false);
  7039. } break;
  7040. }
  7041. }
  7042. // ggml_compute_forward_silu_back
  7043. static void ggml_compute_forward_silu_back_f32(
  7044. const struct ggml_compute_params * params,
  7045. const struct ggml_tensor * src0,
  7046. const struct ggml_tensor * grad,
  7047. struct ggml_tensor * dst) {
  7048. GGML_ASSERT(ggml_is_contiguous(grad));
  7049. GGML_ASSERT(ggml_is_contiguous(src0));
  7050. GGML_ASSERT(ggml_is_contiguous(dst));
  7051. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7052. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7054. return;
  7055. }
  7056. const int ith = params->ith;
  7057. const int nth = params->nth;
  7058. const int nc = src0->ne[0];
  7059. const int nr = ggml_nrows(src0);
  7060. // rows per thread
  7061. const int dr = (nr + nth - 1)/nth;
  7062. // row range for this thread
  7063. const int ir0 = dr*ith;
  7064. const int ir1 = MIN(ir0 + dr, nr);
  7065. for (int i1 = ir0; i1 < ir1; i1++) {
  7066. ggml_vec_silu_backward_f32(nc,
  7067. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7068. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7069. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7070. #ifndef NDEBUG
  7071. for (int k = 0; k < nc; k++) {
  7072. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7073. UNUSED(x);
  7074. assert(!isnan(x));
  7075. assert(!isinf(x));
  7076. }
  7077. #endif
  7078. }
  7079. }
  7080. static void ggml_compute_forward_silu_back(
  7081. const struct ggml_compute_params * params,
  7082. const struct ggml_tensor * src0,
  7083. const struct ggml_tensor * grad,
  7084. struct ggml_tensor * dst) {
  7085. switch (src0->type) {
  7086. case GGML_TYPE_F32:
  7087. {
  7088. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7089. } break;
  7090. default:
  7091. {
  7092. GGML_ASSERT(false);
  7093. } break;
  7094. }
  7095. }
  7096. // ggml_compute_forward_norm
  7097. static void ggml_compute_forward_norm_f32(
  7098. const struct ggml_compute_params * params,
  7099. const struct ggml_tensor * src0,
  7100. struct ggml_tensor * dst) {
  7101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7103. return;
  7104. }
  7105. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7106. const int ith = params->ith;
  7107. const int nth = params->nth;
  7108. const int64_t ne00 = src0->ne[0];
  7109. const int64_t ne01 = src0->ne[1];
  7110. const int64_t ne02 = src0->ne[2];
  7111. const int64_t ne03 = src0->ne[3];
  7112. const size_t nb01 = src0->nb[1];
  7113. const size_t nb02 = src0->nb[2];
  7114. const size_t nb03 = src0->nb[3];
  7115. const size_t nb1 = dst->nb[1];
  7116. const size_t nb2 = dst->nb[2];
  7117. const size_t nb3 = dst->nb[3];
  7118. const float eps = 1e-5f; // TODO: make this a parameter
  7119. // TODO: optimize
  7120. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7121. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7122. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7123. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7124. ggml_float sum = 0.0;
  7125. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7126. sum += (ggml_float)x[i00];
  7127. }
  7128. float mean = sum/ne00;
  7129. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7130. ggml_float sum2 = 0.0;
  7131. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7132. float v = x[i00] - mean;
  7133. y[i00] = v;
  7134. sum2 += (ggml_float)(v*v);
  7135. }
  7136. float variance = sum2/ne00;
  7137. const float scale = 1.0f/sqrtf(variance + eps);
  7138. ggml_vec_scale_f32(ne00, y, scale);
  7139. }
  7140. }
  7141. }
  7142. }
  7143. static void ggml_compute_forward_norm(
  7144. const struct ggml_compute_params * params,
  7145. const struct ggml_tensor * src0,
  7146. struct ggml_tensor * dst) {
  7147. switch (src0->type) {
  7148. case GGML_TYPE_F32:
  7149. {
  7150. ggml_compute_forward_norm_f32(params, src0, dst);
  7151. } break;
  7152. default:
  7153. {
  7154. GGML_ASSERT(false);
  7155. } break;
  7156. }
  7157. }
  7158. static void ggml_compute_forward_rms_norm_f32(
  7159. const struct ggml_compute_params * params,
  7160. const struct ggml_tensor * src0,
  7161. struct ggml_tensor * dst) {
  7162. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7163. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7164. return;
  7165. }
  7166. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7167. const int ith = params->ith;
  7168. const int nth = params->nth;
  7169. const int64_t ne00 = src0->ne[0];
  7170. const int64_t ne01 = src0->ne[1];
  7171. const int64_t ne02 = src0->ne[2];
  7172. const int64_t ne03 = src0->ne[3];
  7173. const size_t nb01 = src0->nb[1];
  7174. const size_t nb02 = src0->nb[2];
  7175. const size_t nb03 = src0->nb[3];
  7176. const size_t nb1 = dst->nb[1];
  7177. const size_t nb2 = dst->nb[2];
  7178. const size_t nb3 = dst->nb[3];
  7179. const float eps = 1e-6f; // TODO: make this a parameter
  7180. // TODO: optimize
  7181. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7182. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7183. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7184. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7185. ggml_float sum = 0.0;
  7186. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7187. sum += (ggml_float)(x[i00] * x[i00]);
  7188. }
  7189. float mean = sum/ne00;
  7190. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7191. memcpy(y, x, ne00 * sizeof(float));
  7192. // for (int i00 = 0; i00 < ne00; i00++) {
  7193. // y[i00] = x[i00];
  7194. // }
  7195. const float scale = 1.0f/sqrtf(mean + eps);
  7196. ggml_vec_scale_f32(ne00, y, scale);
  7197. }
  7198. }
  7199. }
  7200. }
  7201. static void ggml_compute_forward_rms_norm(
  7202. const struct ggml_compute_params * params,
  7203. const struct ggml_tensor * src0,
  7204. struct ggml_tensor * dst) {
  7205. switch (src0->type) {
  7206. case GGML_TYPE_F32:
  7207. {
  7208. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7209. } break;
  7210. default:
  7211. {
  7212. GGML_ASSERT(false);
  7213. } break;
  7214. }
  7215. }
  7216. static void ggml_compute_forward_rms_norm_back_f32(
  7217. const struct ggml_compute_params * params,
  7218. const struct ggml_tensor * src0,
  7219. const struct ggml_tensor * src1,
  7220. struct ggml_tensor * dst) {
  7221. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7222. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7223. return;
  7224. }
  7225. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7226. const int ith = params->ith;
  7227. const int nth = params->nth;
  7228. const int64_t ne00 = src0->ne[0];
  7229. const int64_t ne01 = src0->ne[1];
  7230. const int64_t ne02 = src0->ne[2];
  7231. const int64_t ne03 = src0->ne[3];
  7232. const size_t nb01 = src0->nb[1];
  7233. const size_t nb02 = src0->nb[2];
  7234. const size_t nb03 = src0->nb[3];
  7235. const size_t nb11 = src1->nb[1];
  7236. const size_t nb12 = src1->nb[2];
  7237. const size_t nb13 = src1->nb[3];
  7238. const size_t nb1 = dst->nb[1];
  7239. const size_t nb2 = dst->nb[2];
  7240. const size_t nb3 = dst->nb[3];
  7241. const float eps = 1e-6f; // TODO: make this a parameter
  7242. // TODO: optimize
  7243. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7244. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7245. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7246. // src1 is same shape as src0 => same indices
  7247. const int64_t i11 = i01;
  7248. const int64_t i12 = i02;
  7249. const int64_t i13 = i03;
  7250. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7251. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7252. ggml_float sum_xx = 0.0;
  7253. ggml_float sum_xdz = 0.0;
  7254. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7255. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7256. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7257. }
  7258. //const float mean = (float)(sum_xx)/ne00;
  7259. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7260. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7261. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7262. // we could cache rms from forward pass to improve performance.
  7263. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7264. //const float rms = sqrtf(mean_eps);
  7265. const float rrms = 1.0f / sqrtf(mean_eps);
  7266. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7267. {
  7268. // z = rms_norm(x)
  7269. //
  7270. // rms_norm(src0) =
  7271. // scale(
  7272. // src0,
  7273. // div(
  7274. // 1,
  7275. // sqrt(
  7276. // add(
  7277. // scale(
  7278. // sum(
  7279. // sqr(
  7280. // src0)),
  7281. // (1.0/N)),
  7282. // eps))));
  7283. // postorder:
  7284. // ## op args grad
  7285. // 00 param src0 grad[#00]
  7286. // 01 const 1
  7287. // 02 sqr (#00) grad[#02]
  7288. // 03 sum (#02) grad[#03]
  7289. // 04 const 1/N
  7290. // 05 scale (#03, #04) grad[#05]
  7291. // 06 const eps
  7292. // 07 add (#05, #06) grad[#07]
  7293. // 08 sqrt (#07) grad[#08]
  7294. // 09 div (#01,#08) grad[#09]
  7295. // 10 scale (#00,#09) grad[#10]
  7296. //
  7297. // backward pass, given grad[#10]
  7298. // #10: scale
  7299. // grad[#00] += scale(grad[#10],#09)
  7300. // grad[#09] += sum(mul(grad[#10],#00))
  7301. // #09: div
  7302. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7303. // #08: sqrt
  7304. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7305. // #07: add
  7306. // grad[#05] += grad[#07]
  7307. // #05: scale
  7308. // grad[#03] += scale(grad[#05],#04)
  7309. // #03: sum
  7310. // grad[#02] += repeat(grad[#03], #02)
  7311. // #02:
  7312. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7313. //
  7314. // substitute and simplify:
  7315. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7316. // grad[#02] = repeat(grad[#03], #02)
  7317. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7318. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7319. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7320. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7321. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7322. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7323. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7324. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7325. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7326. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7327. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7328. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7329. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7330. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7331. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7332. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7333. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7334. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7335. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7336. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7337. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7338. // a = b*c + d*e
  7339. // a = b*c*f/f + d*e*f/f
  7340. // a = (b*c*f + d*e*f)*(1/f)
  7341. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7342. // a = (b + d*e/c)*c
  7343. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7344. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7345. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7346. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7347. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7348. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7349. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7350. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7351. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7352. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7353. }
  7354. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7355. // post-order:
  7356. // dx := x
  7357. // dx := scale(dx,-mean_xdz/mean_eps)
  7358. // dx := add(dx, dz)
  7359. // dx := scale(dx, rrms)
  7360. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7361. ggml_vec_cpy_f32 (ne00, dx, x);
  7362. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7363. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7364. ggml_vec_acc_f32 (ne00, dx, dz);
  7365. ggml_vec_scale_f32(ne00, dx, rrms);
  7366. }
  7367. }
  7368. }
  7369. }
  7370. static void ggml_compute_forward_rms_norm_back(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. const struct ggml_tensor * src1,
  7374. struct ggml_tensor * dst) {
  7375. switch (src0->type) {
  7376. case GGML_TYPE_F32:
  7377. {
  7378. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7379. } break;
  7380. default:
  7381. {
  7382. GGML_ASSERT(false);
  7383. } break;
  7384. }
  7385. }
  7386. // ggml_compute_forward_mul_mat
  7387. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7388. // helper function to determine if it is better to use BLAS or not
  7389. // for large matrices, BLAS is faster
  7390. static bool ggml_compute_forward_mul_mat_use_blas(
  7391. const struct ggml_tensor * src0,
  7392. const struct ggml_tensor * src1,
  7393. struct ggml_tensor * dst) {
  7394. //const int64_t ne00 = src0->ne[0];
  7395. //const int64_t ne01 = src0->ne[1];
  7396. const int64_t ne10 = src1->ne[0];
  7397. const int64_t ne0 = dst->ne[0];
  7398. const int64_t ne1 = dst->ne[1];
  7399. // TODO: find the optimal values for these
  7400. if (ggml_is_contiguous(src0) &&
  7401. ggml_is_contiguous(src1) &&
  7402. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7403. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7404. return true;
  7405. }
  7406. return false;
  7407. }
  7408. #endif
  7409. static void ggml_compute_forward_mul_mat_f32(
  7410. const struct ggml_compute_params * params,
  7411. const struct ggml_tensor * src0,
  7412. const struct ggml_tensor * src1,
  7413. struct ggml_tensor * dst) {
  7414. int64_t t0 = ggml_perf_time_us();
  7415. UNUSED(t0);
  7416. const int64_t ne00 = src0->ne[0];
  7417. const int64_t ne01 = src0->ne[1];
  7418. const int64_t ne02 = src0->ne[2];
  7419. const int64_t ne03 = src0->ne[3];
  7420. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7421. const int64_t ne10 = src1->ne[0];
  7422. #endif
  7423. const int64_t ne11 = src1->ne[1];
  7424. #ifndef NDEBUG
  7425. const int64_t ne12 = src1->ne[2];
  7426. const int64_t ne13 = src1->ne[3];
  7427. const int64_t ne0 = dst->ne[0];
  7428. const int64_t ne1 = dst->ne[1];
  7429. const int64_t ne2 = dst->ne[2];
  7430. const int64_t ne3 = dst->ne[3];
  7431. const int nb00 = src0->nb[0];
  7432. #endif
  7433. const int nb01 = src0->nb[1];
  7434. const int nb02 = src0->nb[2];
  7435. const int nb03 = src0->nb[3];
  7436. #ifndef NDEBUG
  7437. const int nb10 = src1->nb[0];
  7438. #endif
  7439. const int nb11 = src1->nb[1];
  7440. const int nb12 = src1->nb[2];
  7441. const int nb13 = src1->nb[3];
  7442. const int nb0 = dst->nb[0];
  7443. const int nb1 = dst->nb[1];
  7444. const int nb2 = dst->nb[2];
  7445. const int nb3 = dst->nb[3];
  7446. const int ith = params->ith;
  7447. const int nth = params->nth;
  7448. assert(ne02 == ne12);
  7449. assert(ne03 == ne13);
  7450. assert(ne2 == ne12);
  7451. assert(ne3 == ne13);
  7452. // we don't support permuted src0 or src1
  7453. assert(nb00 == sizeof(float));
  7454. assert(nb10 == sizeof(float));
  7455. // dst cannot be transposed or permuted
  7456. assert(nb0 == sizeof(float));
  7457. assert(nb0 <= nb1);
  7458. assert(nb1 <= nb2);
  7459. assert(nb2 <= nb3);
  7460. assert(ne0 == ne01);
  7461. assert(ne1 == ne11);
  7462. assert(ne2 == ne02);
  7463. assert(ne3 == ne03);
  7464. // nb01 >= nb00 - src0 is not transposed
  7465. // compute by src0 rows
  7466. #if defined(GGML_USE_CUBLAS)
  7467. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7468. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7469. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7470. }
  7471. return;
  7472. }
  7473. #endif
  7474. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7475. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7476. if (params->ith != 0) {
  7477. return;
  7478. }
  7479. if (params->type == GGML_TASK_INIT) {
  7480. return;
  7481. }
  7482. if (params->type == GGML_TASK_FINALIZE) {
  7483. return;
  7484. }
  7485. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7486. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7487. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7488. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7489. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7490. #if defined(GGML_USE_CLBLAST)
  7491. // zT = y * xT
  7492. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7493. ne11, ne01, ne10,
  7494. 1.0f, y, ne10,
  7495. x, ne10,
  7496. 0.0f, d, ne01,
  7497. GGML_TYPE_F32);
  7498. #else
  7499. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7500. ne11, ne01, ne10,
  7501. 1.0f, y, ne10,
  7502. x, ne00,
  7503. 0.0f, d, ne01);
  7504. #endif
  7505. }
  7506. }
  7507. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7508. return;
  7509. }
  7510. #endif
  7511. if (params->type == GGML_TASK_INIT) {
  7512. return;
  7513. }
  7514. if (params->type == GGML_TASK_FINALIZE) {
  7515. return;
  7516. }
  7517. // parallelize by src0 rows using ggml_vec_dot_f32
  7518. // total rows in src0
  7519. const int nr = ne01*ne02*ne03;
  7520. // rows per thread
  7521. const int dr = (nr + nth - 1)/nth;
  7522. // row range for this thread
  7523. const int ir0 = dr*ith;
  7524. const int ir1 = MIN(ir0 + dr, nr);
  7525. for (int ir = ir0; ir < ir1; ++ir) {
  7526. // src0 indices
  7527. const int i03 = ir/(ne02*ne01);
  7528. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7529. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7530. for (int64_t ic = 0; ic < ne11; ++ic) {
  7531. // src1 indices
  7532. const int i13 = i03;
  7533. const int i12 = i02;
  7534. const int i11 = ic;
  7535. // dst indices
  7536. const int i0 = i01;
  7537. const int i1 = i11;
  7538. const int i2 = i02;
  7539. const int i3 = i03;
  7540. ggml_vec_dot_f32(ne00,
  7541. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7542. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7543. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7544. }
  7545. }
  7546. //int64_t t1 = ggml_perf_time_us();
  7547. //static int64_t acc = 0;
  7548. //acc += t1 - t0;
  7549. //if (t1 - t0 > 10) {
  7550. // printf("\n");
  7551. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7552. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7553. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7554. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7555. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7556. //}
  7557. }
  7558. static void ggml_compute_forward_mul_mat_f16_f32(
  7559. const struct ggml_compute_params * params,
  7560. const struct ggml_tensor * src0,
  7561. const struct ggml_tensor * src1,
  7562. struct ggml_tensor * dst) {
  7563. int64_t t0 = ggml_perf_time_us();
  7564. UNUSED(t0);
  7565. const int64_t ne00 = src0->ne[0];
  7566. const int64_t ne01 = src0->ne[1];
  7567. const int64_t ne02 = src0->ne[2];
  7568. const int64_t ne03 = src0->ne[3];
  7569. const int64_t ne10 = src1->ne[0];
  7570. const int64_t ne11 = src1->ne[1];
  7571. const int64_t ne12 = src1->ne[2];
  7572. const int64_t ne13 = src1->ne[3];
  7573. const int64_t ne0 = dst->ne[0];
  7574. const int64_t ne1 = dst->ne[1];
  7575. const int64_t ne2 = dst->ne[2];
  7576. const int64_t ne3 = dst->ne[3];
  7577. //const int64_t ne = ne0*ne1*ne2*ne3;
  7578. const int nb00 = src0->nb[0];
  7579. const int nb01 = src0->nb[1];
  7580. const int nb02 = src0->nb[2];
  7581. const int nb03 = src0->nb[3];
  7582. const int nb10 = src1->nb[0];
  7583. const int nb11 = src1->nb[1];
  7584. const int nb12 = src1->nb[2];
  7585. const int nb13 = src1->nb[3];
  7586. const int nb0 = dst->nb[0];
  7587. const int nb1 = dst->nb[1];
  7588. const int nb2 = dst->nb[2];
  7589. const int nb3 = dst->nb[3];
  7590. const int ith = params->ith;
  7591. const int nth = params->nth;
  7592. GGML_ASSERT(ne02 == ne12);
  7593. GGML_ASSERT(ne03 == ne13);
  7594. GGML_ASSERT(ne2 == ne12);
  7595. GGML_ASSERT(ne3 == ne13);
  7596. // TODO: we don't support permuted src0
  7597. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7598. // dst cannot be transposed or permuted
  7599. GGML_ASSERT(nb0 == sizeof(float));
  7600. GGML_ASSERT(nb0 <= nb1);
  7601. GGML_ASSERT(nb1 <= nb2);
  7602. GGML_ASSERT(nb2 <= nb3);
  7603. GGML_ASSERT(ne0 == ne01);
  7604. GGML_ASSERT(ne1 == ne11);
  7605. GGML_ASSERT(ne2 == ne02);
  7606. GGML_ASSERT(ne3 == ne03);
  7607. // nb01 >= nb00 - src0 is not transposed
  7608. // compute by src0 rows
  7609. #if defined(GGML_USE_CUBLAS)
  7610. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7611. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7612. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7613. }
  7614. return;
  7615. }
  7616. #endif
  7617. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7618. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7619. GGML_ASSERT(nb10 == sizeof(float));
  7620. if (params->ith != 0) {
  7621. return;
  7622. }
  7623. if (params->type == GGML_TASK_INIT) {
  7624. return;
  7625. }
  7626. if (params->type == GGML_TASK_FINALIZE) {
  7627. return;
  7628. }
  7629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7631. float * const wdata = params->wdata;
  7632. {
  7633. size_t id = 0;
  7634. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7635. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7636. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7637. }
  7638. }
  7639. assert(id*sizeof(float) <= params->wsize);
  7640. }
  7641. #if defined(GGML_USE_CLBLAST)
  7642. const float * x = wdata;
  7643. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7644. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7645. // zT = y * xT
  7646. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7647. ne11, ne01, ne10,
  7648. 1.0f, y, ne10,
  7649. x, ne10,
  7650. 0.0f, d, ne01,
  7651. GGML_TYPE_F32);
  7652. #else
  7653. const float * x = wdata;
  7654. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7655. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7656. // zT = y * xT
  7657. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7658. ne11, ne01, ne10,
  7659. 1.0f, y, ne10,
  7660. x, ne00,
  7661. 0.0f, d, ne01);
  7662. #endif
  7663. }
  7664. }
  7665. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7666. return;
  7667. }
  7668. #endif
  7669. if (params->type == GGML_TASK_INIT) {
  7670. ggml_fp16_t * const wdata = params->wdata;
  7671. size_t id = 0;
  7672. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7673. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7674. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7675. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7676. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7677. }
  7678. }
  7679. }
  7680. }
  7681. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7682. return;
  7683. }
  7684. if (params->type == GGML_TASK_FINALIZE) {
  7685. return;
  7686. }
  7687. // fp16 -> half the size, so divide by 2
  7688. // TODO: do not support transposed src1
  7689. assert(nb10/2 == sizeof(ggml_fp16_t));
  7690. // parallelize by src0 rows using ggml_vec_dot_f16
  7691. // total rows in src0
  7692. const int nr = ne01*ne02*ne03;
  7693. // rows per thread
  7694. const int dr = (nr + nth - 1)/nth;
  7695. // row range for this thread
  7696. const int ir0 = dr*ith;
  7697. const int ir1 = MIN(ir0 + dr, nr);
  7698. ggml_fp16_t * wdata = params->wdata;
  7699. for (int ir = ir0; ir < ir1; ++ir) {
  7700. // src0 indices
  7701. const int i03 = ir/(ne02*ne01);
  7702. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7703. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7704. const int i13 = i03;
  7705. const int i12 = i02;
  7706. const int i0 = i01;
  7707. const int i2 = i02;
  7708. const int i3 = i03;
  7709. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7710. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7711. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7712. for (int64_t ic = 0; ic < ne11; ++ic) {
  7713. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7714. }
  7715. }
  7716. //int64_t t1 = ggml_time_us();
  7717. //static int64_t acc = 0;
  7718. //acc += t1 - t0;
  7719. //if (t1 - t0 > 10) {
  7720. // printf("\n");
  7721. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7722. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7723. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7724. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7725. //}
  7726. }
  7727. static void ggml_compute_forward_mul_mat_q_f32(
  7728. const struct ggml_compute_params * params,
  7729. const struct ggml_tensor * src0,
  7730. const struct ggml_tensor * src1,
  7731. struct ggml_tensor * dst) {
  7732. int64_t t0 = ggml_perf_time_us();
  7733. UNUSED(t0);
  7734. const int64_t ne00 = src0->ne[0];
  7735. const int64_t ne01 = src0->ne[1];
  7736. const int64_t ne02 = src0->ne[2];
  7737. const int64_t ne03 = src0->ne[3];
  7738. const int64_t ne10 = src1->ne[0];
  7739. const int64_t ne11 = src1->ne[1];
  7740. const int64_t ne12 = src1->ne[2];
  7741. const int64_t ne13 = src1->ne[3];
  7742. const int64_t ne0 = dst->ne[0];
  7743. const int64_t ne1 = dst->ne[1];
  7744. const int64_t ne2 = dst->ne[2];
  7745. const int64_t ne3 = dst->ne[3];
  7746. const int nb00 = src0->nb[0];
  7747. const int nb01 = src0->nb[1];
  7748. const int nb02 = src0->nb[2];
  7749. const int nb03 = src0->nb[3];
  7750. const int nb10 = src1->nb[0];
  7751. const int nb11 = src1->nb[1];
  7752. const int nb12 = src1->nb[2];
  7753. const int nb13 = src1->nb[3];
  7754. const int nb0 = dst->nb[0];
  7755. const int nb1 = dst->nb[1];
  7756. const int nb2 = dst->nb[2];
  7757. const int nb3 = dst->nb[3];
  7758. const int ith = params->ith;
  7759. const int nth = params->nth;
  7760. GGML_ASSERT(ne02 == ne12);
  7761. GGML_ASSERT(ne03 == ne13);
  7762. GGML_ASSERT(ne2 == ne12);
  7763. GGML_ASSERT(ne3 == ne13);
  7764. const enum ggml_type type = src0->type;
  7765. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7766. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7767. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7768. // we don't support permuted src0 or src1
  7769. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7770. GGML_ASSERT(nb10 == sizeof(float));
  7771. // dst cannot be transposed or permuted
  7772. GGML_ASSERT(nb0 == sizeof(float));
  7773. GGML_ASSERT(nb0 <= nb1);
  7774. GGML_ASSERT(nb1 <= nb2);
  7775. GGML_ASSERT(nb2 <= nb3);
  7776. GGML_ASSERT(ne0 == ne01);
  7777. GGML_ASSERT(ne1 == ne11);
  7778. GGML_ASSERT(ne2 == ne02);
  7779. GGML_ASSERT(ne3 == ne03);
  7780. // nb01 >= nb00 - src0 is not transposed
  7781. // compute by src0 rows
  7782. #if defined(GGML_USE_CUBLAS)
  7783. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7784. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7785. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7786. }
  7787. return;
  7788. }
  7789. #endif
  7790. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7791. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7792. if (params->ith != 0) {
  7793. return;
  7794. }
  7795. if (params->type == GGML_TASK_INIT) {
  7796. return;
  7797. }
  7798. if (params->type == GGML_TASK_FINALIZE) {
  7799. return;
  7800. }
  7801. float * const wdata = params->wdata;
  7802. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7803. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7804. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7805. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7806. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7807. #if defined(GGML_USE_CLBLAST)
  7808. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7809. #else
  7810. {
  7811. size_t id = 0;
  7812. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7813. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7814. id += ne00;
  7815. }
  7816. assert(id*sizeof(float) <= params->wsize);
  7817. }
  7818. const float * x = wdata;
  7819. #endif
  7820. #if defined(GGML_USE_CLBLAST)
  7821. // zT = y * xT
  7822. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7823. ne11, ne01, ne10,
  7824. 1.0f, y, ne10,
  7825. x, ne10,
  7826. 0.0f, d, ne01,
  7827. type);
  7828. #else
  7829. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7830. ne11, ne01, ne10,
  7831. 1.0f, y, ne10,
  7832. x, ne00,
  7833. 0.0f, d, ne01);
  7834. #endif
  7835. }
  7836. }
  7837. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7838. return;
  7839. }
  7840. #endif
  7841. if (params->type == GGML_TASK_INIT) {
  7842. char * wdata = params->wdata;
  7843. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7844. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7845. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7846. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7847. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7848. wdata += row_size;
  7849. }
  7850. }
  7851. }
  7852. return;
  7853. }
  7854. if (params->type == GGML_TASK_FINALIZE) {
  7855. return;
  7856. }
  7857. // parallelize by src0 rows using ggml_vec_dot_q
  7858. // total rows in src0
  7859. const int nr = ne01*ne02*ne03;
  7860. // rows per thread
  7861. const int dr = (nr + nth - 1)/nth;
  7862. // row range for this thread
  7863. const int ir0 = dr*ith;
  7864. const int ir1 = MIN(ir0 + dr, nr);
  7865. void * wdata = params->wdata;
  7866. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7867. for (int ir = ir0; ir < ir1; ++ir) {
  7868. // src0 indices
  7869. const int i03 = ir/(ne02*ne01);
  7870. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7871. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7872. const int i13 = i03;
  7873. const int i12 = i02;
  7874. const int i0 = i01;
  7875. const int i2 = i02;
  7876. const int i3 = i03;
  7877. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7878. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7879. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7880. assert(ne00 % 32 == 0);
  7881. for (int64_t ic = 0; ic < ne11; ++ic) {
  7882. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7883. }
  7884. }
  7885. //int64_t t1 = ggml_time_us();
  7886. //static int64_t acc = 0;
  7887. //acc += t1 - t0;
  7888. //if (t1 - t0 > 10) {
  7889. // printf("\n");
  7890. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7891. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7892. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7893. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7894. //}
  7895. }
  7896. static void ggml_compute_forward_mul_mat(
  7897. const struct ggml_compute_params * params,
  7898. const struct ggml_tensor * src0,
  7899. const struct ggml_tensor * src1,
  7900. struct ggml_tensor * dst) {
  7901. switch (src0->type) {
  7902. case GGML_TYPE_Q4_0:
  7903. case GGML_TYPE_Q4_1:
  7904. case GGML_TYPE_Q5_0:
  7905. case GGML_TYPE_Q5_1:
  7906. case GGML_TYPE_Q8_0:
  7907. case GGML_TYPE_Q8_1:
  7908. {
  7909. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7910. } break;
  7911. case GGML_TYPE_F16:
  7912. {
  7913. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7914. } break;
  7915. case GGML_TYPE_F32:
  7916. {
  7917. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7918. } break;
  7919. default:
  7920. {
  7921. GGML_ASSERT(false);
  7922. } break;
  7923. }
  7924. }
  7925. // ggml_compute_forward_scale
  7926. static void ggml_compute_forward_scale_f32(
  7927. const struct ggml_compute_params * params,
  7928. const struct ggml_tensor * src0,
  7929. const struct ggml_tensor * src1,
  7930. struct ggml_tensor * dst) {
  7931. GGML_ASSERT(ggml_is_contiguous(src0));
  7932. GGML_ASSERT(ggml_is_contiguous(dst));
  7933. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7934. GGML_ASSERT(ggml_is_scalar(src1));
  7935. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7936. return;
  7937. }
  7938. // scale factor
  7939. const float v = *(float *) src1->data;
  7940. const int ith = params->ith;
  7941. const int nth = params->nth;
  7942. const int nc = src0->ne[0];
  7943. const int nr = ggml_nrows(src0);
  7944. // rows per thread
  7945. const int dr = (nr + nth - 1)/nth;
  7946. // row range for this thread
  7947. const int ir0 = dr*ith;
  7948. const int ir1 = MIN(ir0 + dr, nr);
  7949. const size_t nb01 = src0->nb[1];
  7950. const size_t nb1 = dst->nb[1];
  7951. for (int i1 = ir0; i1 < ir1; i1++) {
  7952. if (dst->data != src0->data) {
  7953. // src0 is same shape as dst => same indices
  7954. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  7955. }
  7956. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  7957. }
  7958. }
  7959. static void ggml_compute_forward_scale(
  7960. const struct ggml_compute_params * params,
  7961. const struct ggml_tensor * src0,
  7962. const struct ggml_tensor * src1,
  7963. struct ggml_tensor * dst) {
  7964. switch (src0->type) {
  7965. case GGML_TYPE_F32:
  7966. {
  7967. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7968. } break;
  7969. default:
  7970. {
  7971. GGML_ASSERT(false);
  7972. } break;
  7973. }
  7974. }
  7975. // ggml_compute_forward_set
  7976. static void ggml_compute_forward_set_f32(
  7977. const struct ggml_compute_params * params,
  7978. const struct ggml_tensor * src0,
  7979. const struct ggml_tensor * src1,
  7980. const struct ggml_tensor * opt0,
  7981. struct ggml_tensor * dst) {
  7982. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7983. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7984. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7985. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7986. // view src0 and dst with these strides and data offset inbytes during set
  7987. // nb0 is implicitely element_size because src0 and dst are contiguous
  7988. size_t nb1 = ((int32_t *) opt0->data)[0];
  7989. size_t nb2 = ((int32_t *) opt0->data)[1];
  7990. size_t nb3 = ((int32_t *) opt0->data)[2];
  7991. size_t offset = ((int32_t *) opt0->data)[3];
  7992. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7993. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7994. // memcpy needs to be synchronized across threads to avoid race conditions.
  7995. // => do it in INIT phase
  7996. memcpy(
  7997. ((char *) dst->data),
  7998. ((char *) src0->data),
  7999. ggml_nbytes(dst));
  8000. }
  8001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8002. return;
  8003. }
  8004. const int ith = params->ith;
  8005. const int nth = params->nth;
  8006. const int nr = ggml_nrows(src1);
  8007. const int nc = src1->ne[0];
  8008. const int64_t ne10 = src1->ne[0];
  8009. const int64_t ne11 = src1->ne[1];
  8010. const int64_t ne12 = src1->ne[2];
  8011. const int64_t ne13 = src1->ne[3];
  8012. const size_t nb10 = src1->nb[0];
  8013. const size_t nb11 = src1->nb[1];
  8014. const size_t nb12 = src1->nb[2];
  8015. const size_t nb13 = src1->nb[3];
  8016. // src0 and dst as viewed during set
  8017. const size_t nb0 = ggml_element_size(src0);
  8018. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8019. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8020. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8021. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8022. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8023. GGML_ASSERT(nb10 == sizeof(float));
  8024. // rows per thread
  8025. const int dr = (nr + nth - 1)/nth;
  8026. // row range for this thread
  8027. const int ir0 = dr*ith;
  8028. const int ir1 = MIN(ir0 + dr, nr);
  8029. for (int ir = ir0; ir < ir1; ++ir) {
  8030. // src0 and dst are viewed with shape of src1 and offset
  8031. // => same indices
  8032. const int i3 = ir/(ne12*ne11);
  8033. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8034. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8035. ggml_vec_cpy_f32(nc,
  8036. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8037. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8038. }
  8039. }
  8040. static void ggml_compute_forward_set(
  8041. const struct ggml_compute_params * params,
  8042. const struct ggml_tensor * src0,
  8043. const struct ggml_tensor * src1,
  8044. const struct ggml_tensor * opt0,
  8045. struct ggml_tensor * dst) {
  8046. switch (src0->type) {
  8047. case GGML_TYPE_F32:
  8048. {
  8049. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8050. } break;
  8051. case GGML_TYPE_F16:
  8052. case GGML_TYPE_Q4_0:
  8053. case GGML_TYPE_Q4_1:
  8054. case GGML_TYPE_Q5_0:
  8055. case GGML_TYPE_Q5_1:
  8056. case GGML_TYPE_Q8_0:
  8057. case GGML_TYPE_Q8_1:
  8058. default:
  8059. {
  8060. GGML_ASSERT(false);
  8061. } break;
  8062. }
  8063. }
  8064. // ggml_compute_forward_cpy
  8065. static void ggml_compute_forward_cpy(
  8066. const struct ggml_compute_params * params,
  8067. const struct ggml_tensor * src0,
  8068. struct ggml_tensor * dst) {
  8069. ggml_compute_forward_dup(params, src0, dst);
  8070. }
  8071. // ggml_compute_forward_cont
  8072. static void ggml_compute_forward_cont(
  8073. const struct ggml_compute_params * params,
  8074. const struct ggml_tensor * src0,
  8075. struct ggml_tensor * dst) {
  8076. ggml_compute_forward_dup(params, src0, dst);
  8077. }
  8078. // ggml_compute_forward_reshape
  8079. static void ggml_compute_forward_reshape(
  8080. const struct ggml_compute_params * params,
  8081. const struct ggml_tensor * src0,
  8082. struct ggml_tensor * dst) {
  8083. // NOP
  8084. UNUSED(params);
  8085. UNUSED(src0);
  8086. UNUSED(dst);
  8087. }
  8088. // ggml_compute_forward_view
  8089. static void ggml_compute_forward_view(
  8090. const struct ggml_compute_params * params,
  8091. const struct ggml_tensor * src0) {
  8092. // NOP
  8093. UNUSED(params);
  8094. UNUSED(src0);
  8095. }
  8096. // ggml_compute_forward_permute
  8097. static void ggml_compute_forward_permute(
  8098. const struct ggml_compute_params * params,
  8099. const struct ggml_tensor * src0) {
  8100. // NOP
  8101. UNUSED(params);
  8102. UNUSED(src0);
  8103. }
  8104. // ggml_compute_forward_transpose
  8105. static void ggml_compute_forward_transpose(
  8106. const struct ggml_compute_params * params,
  8107. const struct ggml_tensor * src0) {
  8108. // NOP
  8109. UNUSED(params);
  8110. UNUSED(src0);
  8111. }
  8112. // ggml_compute_forward_get_rows
  8113. static void ggml_compute_forward_get_rows_q(
  8114. const struct ggml_compute_params * params,
  8115. const struct ggml_tensor * src0,
  8116. const struct ggml_tensor * src1,
  8117. struct ggml_tensor * dst) {
  8118. assert(params->ith == 0);
  8119. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8120. return;
  8121. }
  8122. const int nc = src0->ne[0];
  8123. const int nr = ggml_nelements(src1);
  8124. const enum ggml_type type = src0->type;
  8125. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8126. assert( dst->ne[0] == nc);
  8127. assert( dst->ne[1] == nr);
  8128. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8129. for (int i = 0; i < nr; ++i) {
  8130. const int r = ((int32_t *) src1->data)[i];
  8131. dequantize_row_q(
  8132. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8133. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8134. }
  8135. }
  8136. static void ggml_compute_forward_get_rows_f16(
  8137. const struct ggml_compute_params * params,
  8138. const struct ggml_tensor * src0,
  8139. const struct ggml_tensor * src1,
  8140. struct ggml_tensor * dst) {
  8141. assert(params->ith == 0);
  8142. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8143. return;
  8144. }
  8145. const int nc = src0->ne[0];
  8146. const int nr = ggml_nelements(src1);
  8147. assert( dst->ne[0] == nc);
  8148. assert( dst->ne[1] == nr);
  8149. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8150. for (int i = 0; i < nr; ++i) {
  8151. const int r = ((int32_t *) src1->data)[i];
  8152. for (int j = 0; j < nc; ++j) {
  8153. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8154. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8155. }
  8156. }
  8157. }
  8158. static void ggml_compute_forward_get_rows_f32(
  8159. const struct ggml_compute_params * params,
  8160. const struct ggml_tensor * src0,
  8161. const struct ggml_tensor * src1,
  8162. struct ggml_tensor * dst) {
  8163. assert(params->ith == 0);
  8164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8165. return;
  8166. }
  8167. const int nc = src0->ne[0];
  8168. const int nr = ggml_nelements(src1);
  8169. assert( dst->ne[0] == nc);
  8170. assert( dst->ne[1] == nr);
  8171. assert(src0->nb[0] == sizeof(float));
  8172. for (int i = 0; i < nr; ++i) {
  8173. const int r = ((int32_t *) src1->data)[i];
  8174. ggml_vec_cpy_f32(nc,
  8175. (float *) ((char *) dst->data + i*dst->nb[1]),
  8176. (float *) ((char *) src0->data + r*src0->nb[1]));
  8177. }
  8178. }
  8179. static void ggml_compute_forward_get_rows(
  8180. const struct ggml_compute_params * params,
  8181. const struct ggml_tensor * src0,
  8182. const struct ggml_tensor * src1,
  8183. struct ggml_tensor * dst) {
  8184. switch (src0->type) {
  8185. case GGML_TYPE_Q4_0:
  8186. case GGML_TYPE_Q4_1:
  8187. case GGML_TYPE_Q5_0:
  8188. case GGML_TYPE_Q5_1:
  8189. case GGML_TYPE_Q8_0:
  8190. case GGML_TYPE_Q8_1:
  8191. {
  8192. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8193. } break;
  8194. case GGML_TYPE_F16:
  8195. {
  8196. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8197. } break;
  8198. case GGML_TYPE_F32:
  8199. {
  8200. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8201. } break;
  8202. default:
  8203. {
  8204. GGML_ASSERT(false);
  8205. } break;
  8206. }
  8207. //static bool first = true;
  8208. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8209. //if (first) {
  8210. // first = false;
  8211. //} else {
  8212. // for (int k = 0; k < dst->ne[1]; ++k) {
  8213. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8214. // for (int i = 0; i < 16; ++i) {
  8215. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8216. // }
  8217. // printf("\n");
  8218. // }
  8219. // printf("\n");
  8220. // }
  8221. // printf("\n");
  8222. // exit(0);
  8223. //}
  8224. }
  8225. // ggml_compute_forward_get_rows_back
  8226. static void ggml_compute_forward_get_rows_back_f32_f16(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * src0,
  8229. const struct ggml_tensor * src1,
  8230. const struct ggml_tensor * opt0,
  8231. struct ggml_tensor * dst) {
  8232. GGML_ASSERT(params->ith == 0);
  8233. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8234. GGML_ASSERT(ggml_is_contiguous(opt0));
  8235. GGML_ASSERT(ggml_is_contiguous(dst));
  8236. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8238. return;
  8239. }
  8240. const int nc = src0->ne[0];
  8241. const int nr = ggml_nelements(src1);
  8242. GGML_ASSERT( dst->ne[0] == nc);
  8243. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8244. for (int i = 0; i < nr; ++i) {
  8245. const int r = ((int32_t *) src1->data)[i];
  8246. for (int j = 0; j < nc; ++j) {
  8247. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8248. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8249. }
  8250. }
  8251. }
  8252. static void ggml_compute_forward_get_rows_back_f32(
  8253. const struct ggml_compute_params * params,
  8254. const struct ggml_tensor * src0,
  8255. const struct ggml_tensor * src1,
  8256. const struct ggml_tensor * opt0,
  8257. struct ggml_tensor * dst) {
  8258. GGML_ASSERT(params->ith == 0);
  8259. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8260. GGML_ASSERT(ggml_is_contiguous(opt0));
  8261. GGML_ASSERT(ggml_is_contiguous(dst));
  8262. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8263. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8264. return;
  8265. }
  8266. const int nc = src0->ne[0];
  8267. const int nr = ggml_nelements(src1);
  8268. GGML_ASSERT( dst->ne[0] == nc);
  8269. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8270. for (int i = 0; i < nr; ++i) {
  8271. const int r = ((int32_t *) src1->data)[i];
  8272. ggml_vec_add_f32(nc,
  8273. (float *) ((char *) dst->data + r*dst->nb[1]),
  8274. (float *) ((char *) dst->data + r*dst->nb[1]),
  8275. (float *) ((char *) src0->data + i*src0->nb[1]));
  8276. }
  8277. }
  8278. static void ggml_compute_forward_get_rows_back(
  8279. const struct ggml_compute_params * params,
  8280. const struct ggml_tensor * src0,
  8281. const struct ggml_tensor * src1,
  8282. const struct ggml_tensor * opt0,
  8283. struct ggml_tensor * dst) {
  8284. switch (src0->type) {
  8285. case GGML_TYPE_F16:
  8286. {
  8287. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8288. } break;
  8289. case GGML_TYPE_F32:
  8290. {
  8291. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8292. } break;
  8293. default:
  8294. {
  8295. GGML_ASSERT(false);
  8296. } break;
  8297. }
  8298. //static bool first = true;
  8299. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8300. //if (first) {
  8301. // first = false;
  8302. //} else {
  8303. // for (int k = 0; k < dst->ne[1]; ++k) {
  8304. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8305. // for (int i = 0; i < 16; ++i) {
  8306. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8307. // }
  8308. // printf("\n");
  8309. // }
  8310. // printf("\n");
  8311. // }
  8312. // printf("\n");
  8313. // exit(0);
  8314. //}
  8315. }
  8316. // ggml_compute_forward_diag
  8317. static void ggml_compute_forward_diag_f32(
  8318. const struct ggml_compute_params * params,
  8319. const struct ggml_tensor * src0,
  8320. struct ggml_tensor * dst) {
  8321. GGML_ASSERT(params->ith == 0);
  8322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8323. return;
  8324. }
  8325. // TODO: handle transposed/permuted matrices
  8326. const int ne00 = src0->ne[0];
  8327. const int ne01 = src0->ne[1];
  8328. const int ne02 = src0->ne[2];
  8329. const int ne03 = src0->ne[3];
  8330. const int ne0 = dst->ne[0];
  8331. const int ne1 = dst->ne[1];
  8332. const int ne2 = dst->ne[2];
  8333. const int ne3 = dst->ne[3];
  8334. GGML_ASSERT(ne00 == ne0);
  8335. GGML_ASSERT(ne00 == ne1);
  8336. GGML_ASSERT(ne01 == 1);
  8337. GGML_ASSERT(ne02 == ne2);
  8338. GGML_ASSERT(ne03 == ne3);
  8339. const int nb00 = src0->nb[0];
  8340. //const int nb01 = src0->nb[1];
  8341. const int nb02 = src0->nb[2];
  8342. const int nb03 = src0->nb[3];
  8343. const int nb0 = dst->nb[0];
  8344. const int nb1 = dst->nb[1];
  8345. const int nb2 = dst->nb[2];
  8346. const int nb3 = dst->nb[3];
  8347. GGML_ASSERT(nb00 == sizeof(float));
  8348. GGML_ASSERT(nb0 == sizeof(float));
  8349. for (int i3 = 0; i3 < ne3; i3++) {
  8350. for (int i2 = 0; i2 < ne2; i2++) {
  8351. for (int i1 = 0; i1 < ne1; i1++) {
  8352. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8353. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8354. for (int i0 = 0; i0 < i1; i0++) {
  8355. d[i0] = 0;
  8356. }
  8357. d[i1] = s[i1];
  8358. for (int i0 = i1+1; i0 < ne0; i0++) {
  8359. d[i0] = 0;
  8360. }
  8361. }
  8362. }
  8363. }
  8364. }
  8365. static void ggml_compute_forward_diag(
  8366. const struct ggml_compute_params * params,
  8367. const struct ggml_tensor * src0,
  8368. struct ggml_tensor * dst) {
  8369. switch (src0->type) {
  8370. case GGML_TYPE_F32:
  8371. {
  8372. ggml_compute_forward_diag_f32(params, src0, dst);
  8373. } break;
  8374. default:
  8375. {
  8376. GGML_ASSERT(false);
  8377. } break;
  8378. }
  8379. }
  8380. // ggml_compute_forward_diag_mask_inf
  8381. static void ggml_compute_forward_diag_mask_f32(
  8382. const struct ggml_compute_params * params,
  8383. const struct ggml_tensor * src0,
  8384. const struct ggml_tensor * src1,
  8385. struct ggml_tensor * dst,
  8386. const float value) {
  8387. assert(src1->type == GGML_TYPE_I32);
  8388. assert(ggml_nelements(src1) == 2);
  8389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8390. return;
  8391. }
  8392. const int ith = params->ith;
  8393. const int nth = params->nth;
  8394. const int n_past = ((int32_t *) src1->data)[0];
  8395. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8396. if (!inplace) {
  8397. ggml_compute_forward_dup_same_cont(params, src0, dst);
  8398. }
  8399. // TODO: handle transposed/permuted matrices
  8400. const int n = ggml_nrows(src0);
  8401. const int nc = src0->ne[0];
  8402. const int nr = src0->ne[1];
  8403. const int nz = n/nr;
  8404. assert( dst->nb[0] == sizeof(float));
  8405. assert(src0->nb[0] == sizeof(float));
  8406. for (int k = 0; k < nz; k++) {
  8407. for (int j = ith; j < nr; j += nth) {
  8408. for (int i = n_past; i < nc; i++) {
  8409. if (i > n_past + j) {
  8410. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8411. }
  8412. }
  8413. }
  8414. }
  8415. }
  8416. static void ggml_compute_forward_diag_mask_inf(
  8417. const struct ggml_compute_params * params,
  8418. const struct ggml_tensor * src0,
  8419. const struct ggml_tensor * src1,
  8420. struct ggml_tensor * dst) {
  8421. switch (src0->type) {
  8422. case GGML_TYPE_F32:
  8423. {
  8424. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8425. } break;
  8426. default:
  8427. {
  8428. GGML_ASSERT(false);
  8429. } break;
  8430. }
  8431. }
  8432. static void ggml_compute_forward_diag_mask_zero(
  8433. const struct ggml_compute_params * params,
  8434. const struct ggml_tensor * src0,
  8435. const struct ggml_tensor * src1,
  8436. struct ggml_tensor * dst) {
  8437. switch (src0->type) {
  8438. case GGML_TYPE_F32:
  8439. {
  8440. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8441. } break;
  8442. default:
  8443. {
  8444. GGML_ASSERT(false);
  8445. } break;
  8446. }
  8447. }
  8448. // ggml_compute_forward_soft_max
  8449. static void ggml_compute_forward_soft_max_f32(
  8450. const struct ggml_compute_params * params,
  8451. const struct ggml_tensor * src0,
  8452. struct ggml_tensor * dst) {
  8453. GGML_ASSERT(ggml_is_contiguous(src0));
  8454. GGML_ASSERT(ggml_is_contiguous(dst));
  8455. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8457. return;
  8458. }
  8459. // TODO: handle transposed/permuted matrices
  8460. const int ith = params->ith;
  8461. const int nth = params->nth;
  8462. const int nc = src0->ne[0];
  8463. const int nr = ggml_nrows(src0);
  8464. // rows per thread
  8465. const int dr = (nr + nth - 1)/nth;
  8466. // row range for this thread
  8467. const int ir0 = dr*ith;
  8468. const int ir1 = MIN(ir0 + dr, nr);
  8469. for (int i1 = ir0; i1 < ir1; i1++) {
  8470. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8471. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8472. #ifndef NDEBUG
  8473. for (int i = 0; i < nc; ++i) {
  8474. //printf("p[%d] = %f\n", i, p[i]);
  8475. assert(!isnan(sp[i]));
  8476. }
  8477. #endif
  8478. float max = -INFINITY;
  8479. ggml_vec_max_f32(nc, &max, sp);
  8480. ggml_float sum = 0.0;
  8481. uint16_t scvt;
  8482. for (int i = 0; i < nc; i++) {
  8483. if (sp[i] == -INFINITY) {
  8484. dp[i] = 0.0f;
  8485. } else {
  8486. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8487. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8488. memcpy(&scvt, &s, sizeof(scvt));
  8489. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8490. sum += (ggml_float)val;
  8491. dp[i] = val;
  8492. }
  8493. }
  8494. assert(sum > 0.0);
  8495. sum = 1.0/sum;
  8496. ggml_vec_scale_f32(nc, dp, sum);
  8497. #ifndef NDEBUG
  8498. for (int i = 0; i < nc; ++i) {
  8499. assert(!isnan(dp[i]));
  8500. assert(!isinf(dp[i]));
  8501. }
  8502. #endif
  8503. }
  8504. }
  8505. static void ggml_compute_forward_soft_max(
  8506. const struct ggml_compute_params * params,
  8507. const struct ggml_tensor * src0,
  8508. struct ggml_tensor * dst) {
  8509. switch (src0->type) {
  8510. case GGML_TYPE_F32:
  8511. {
  8512. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8513. } break;
  8514. default:
  8515. {
  8516. GGML_ASSERT(false);
  8517. } break;
  8518. }
  8519. }
  8520. // ggml_compute_forward_alibi
  8521. static void ggml_compute_forward_alibi_f32(
  8522. const struct ggml_compute_params * params,
  8523. const struct ggml_tensor * src0,
  8524. const struct ggml_tensor * src1,
  8525. struct ggml_tensor * dst) {
  8526. assert(params->ith == 0);
  8527. assert(src1->type == GGML_TYPE_I32);
  8528. assert(ggml_nelements(src1) == 2);
  8529. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8530. return;
  8531. }
  8532. const int n_past = ((int32_t *) src1->data)[0];
  8533. const int n_head = ((int32_t *) src1->data)[1];
  8534. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8535. const int ne1 = src0->ne[1]; // seq_len_without_past
  8536. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8537. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8538. const int n = ggml_nrows(src0);
  8539. const int ne2_ne3 = n/ne1; // ne2*ne3
  8540. const int nb0 = src0->nb[0];
  8541. const int nb1 = src0->nb[1];
  8542. const int nb2 = src0->nb[2];
  8543. //const int nb3 = src0->nb[3];
  8544. assert(nb0 == sizeof(float));
  8545. assert(ne1 + n_past == ne0); (void) n_past;
  8546. // add alibi to src0 (KQ_scaled)
  8547. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8548. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8549. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8550. for (int i = 0; i < ne0; i++) {
  8551. for (int j = 0; j < ne1; j++) {
  8552. for (int k = 0; k < ne2_ne3; k++) {
  8553. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8554. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8555. // TODO: k*nb2 or k*nb3
  8556. float m_k;
  8557. if (k < n_heads_log2_floor) {
  8558. m_k = powf(m0, k + 1);
  8559. } else {
  8560. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8561. }
  8562. pdst[0] = i * m_k + src[0];
  8563. }
  8564. }
  8565. }
  8566. }
  8567. static void ggml_compute_forward_alibi_f16(
  8568. const struct ggml_compute_params * params,
  8569. const struct ggml_tensor * src0,
  8570. const struct ggml_tensor * src1,
  8571. struct ggml_tensor * dst) {
  8572. assert(params->ith == 0);
  8573. assert(src1->type == GGML_TYPE_I32);
  8574. assert(ggml_nelements(src1) == 2);
  8575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8576. return;
  8577. }
  8578. const int n_past = ((int32_t *) src1->data)[0];
  8579. const int n_head = ((int32_t *) src1->data)[1];
  8580. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8581. const int ne1 = src0->ne[1]; // seq_len_without_past
  8582. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8583. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8584. const int n = ggml_nrows(src0);
  8585. const int ne2_ne3 = n/ne1; // ne2*ne3
  8586. const int nb0 = src0->nb[0];
  8587. const int nb1 = src0->nb[1];
  8588. const int nb2 = src0->nb[2];
  8589. //const int nb3 = src0->nb[3];
  8590. assert(nb0 == sizeof(ggml_fp16_t));
  8591. assert(ne1 + n_past == ne0); (void) n_past;
  8592. // add alibi to src0 (KQ_scaled)
  8593. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8594. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8595. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8596. for (int i = 0; i < ne0; i++) {
  8597. for (int j = 0; j < ne1; j++) {
  8598. for (int k = 0; k < ne2_ne3; k++) {
  8599. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8600. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8601. // TODO: k*nb2 or k*nb3
  8602. float m_k;
  8603. if (k < n_heads_log2_floor) {
  8604. m_k = powf(m0, k + 1);
  8605. } else {
  8606. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8607. }
  8608. // we return F32
  8609. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8610. }
  8611. }
  8612. }
  8613. }
  8614. static void ggml_compute_forward_alibi(
  8615. const struct ggml_compute_params * params,
  8616. const struct ggml_tensor * src0,
  8617. const struct ggml_tensor * src1,
  8618. struct ggml_tensor * dst) {
  8619. switch (src0->type) {
  8620. case GGML_TYPE_F16:
  8621. {
  8622. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8623. } break;
  8624. case GGML_TYPE_F32:
  8625. {
  8626. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8627. } break;
  8628. case GGML_TYPE_Q4_0:
  8629. case GGML_TYPE_Q4_1:
  8630. case GGML_TYPE_Q5_0:
  8631. case GGML_TYPE_Q5_1:
  8632. case GGML_TYPE_Q8_0:
  8633. case GGML_TYPE_Q8_1:
  8634. case GGML_TYPE_I8:
  8635. case GGML_TYPE_I16:
  8636. case GGML_TYPE_I32:
  8637. case GGML_TYPE_COUNT:
  8638. {
  8639. GGML_ASSERT(false);
  8640. } break;
  8641. }
  8642. }
  8643. // ggml_compute_forward_rope
  8644. static void ggml_compute_forward_rope_f32(
  8645. const struct ggml_compute_params * params,
  8646. const struct ggml_tensor * src0,
  8647. const struct ggml_tensor * src1,
  8648. struct ggml_tensor * dst) {
  8649. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8650. GGML_ASSERT(ggml_nelements(src1) == 3);
  8651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8652. return;
  8653. }
  8654. const int n_past = ((int32_t *) src1->data)[0];
  8655. const int n_dims = ((int32_t *) src1->data)[1];
  8656. const int mode = ((int32_t *) src1->data)[2];
  8657. //const int64_t ne0 = src0->ne[0];
  8658. const int64_t ne1 = src0->ne[1];
  8659. const int64_t ne2 = src0->ne[2];
  8660. const int64_t ne3 = src0->ne[3];
  8661. const int nb0 = src0->nb[0];
  8662. const int nb1 = src0->nb[1];
  8663. const int nb2 = src0->nb[2];
  8664. const int nb3 = src0->nb[3];
  8665. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8666. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8667. GGML_ASSERT(nb0 == sizeof(float));
  8668. const int ith = params->ith;
  8669. const int nth = params->nth;
  8670. const int nr = ggml_nrows(src0);
  8671. const int nc = src0->ne[0];
  8672. GGML_ASSERT(n_dims <= nc);
  8673. GGML_ASSERT(n_dims % 2 == 0);
  8674. // rows per thread
  8675. const int dr = (nr + nth - 1)/nth;
  8676. // row range for this thread
  8677. const int ir0 = dr*ith;
  8678. const int ir1 = MIN(ir0 + dr, nr);
  8679. // row index used to determine which thread to use
  8680. int ir = 0;
  8681. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8682. const bool is_neox = mode & 2;
  8683. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8684. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8685. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8686. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8687. if (ir++ < ir0) continue;
  8688. if (ir > ir1) break;
  8689. float theta = (float)p;
  8690. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8691. const float cos_theta = cosf(theta);
  8692. const float sin_theta = sinf(theta);
  8693. theta *= theta_scale;
  8694. if (!is_neox) {
  8695. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8696. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8697. const float x0 = src[0];
  8698. const float x1 = src[1];
  8699. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8700. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8701. } else {
  8702. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8703. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8704. const float x0 = src[0];
  8705. const float x1 = src[n_dims/2];
  8706. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8707. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8708. }
  8709. }
  8710. }
  8711. }
  8712. }
  8713. }
  8714. static void ggml_compute_forward_rope_f16(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. const struct ggml_tensor * src1,
  8718. struct ggml_tensor * dst) {
  8719. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8720. GGML_ASSERT(ggml_nelements(src1) == 3);
  8721. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8722. return;
  8723. }
  8724. const int n_past = ((int32_t *) src1->data)[0];
  8725. const int n_dims = ((int32_t *) src1->data)[1];
  8726. const int mode = ((int32_t *) src1->data)[2];
  8727. //const int64_t ne0 = src0->ne[0];
  8728. const int64_t ne1 = src0->ne[1];
  8729. const int64_t ne2 = src0->ne[2];
  8730. const int64_t ne3 = src0->ne[3];
  8731. const int nb0 = src0->nb[0];
  8732. const int nb1 = src0->nb[1];
  8733. const int nb2 = src0->nb[2];
  8734. const int nb3 = src0->nb[3];
  8735. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8736. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8737. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8738. const int ith = params->ith;
  8739. const int nth = params->nth;
  8740. const int nr = ggml_nrows(src0);
  8741. const int nc = src0->ne[0];
  8742. GGML_ASSERT(n_dims <= nc);
  8743. GGML_ASSERT(n_dims % 2 == 0);
  8744. // rows per thread
  8745. const int dr = (nr + nth - 1)/nth;
  8746. // row range for this thread
  8747. const int ir0 = dr*ith;
  8748. const int ir1 = MIN(ir0 + dr, nr);
  8749. // row index used to determine which thread to use
  8750. int ir = 0;
  8751. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8752. const bool is_neox = mode & 2;
  8753. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8754. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8755. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8756. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8757. if (ir++ < ir0) continue;
  8758. if (ir > ir1) break;
  8759. float theta = (float)p;
  8760. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8761. const float cos_theta = cosf(theta);
  8762. const float sin_theta = sinf(theta);
  8763. theta *= theta_scale;
  8764. if (!is_neox) {
  8765. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8766. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8767. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8768. const float x1 = GGML_FP16_TO_FP32(src[1]);
  8769. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8770. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8771. } else {
  8772. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8773. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8774. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8775. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  8776. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8777. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8778. }
  8779. }
  8780. }
  8781. }
  8782. }
  8783. }
  8784. static void ggml_compute_forward_rope(
  8785. const struct ggml_compute_params * params,
  8786. const struct ggml_tensor * src0,
  8787. const struct ggml_tensor * src1,
  8788. struct ggml_tensor * dst) {
  8789. switch (src0->type) {
  8790. case GGML_TYPE_F16:
  8791. {
  8792. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  8793. } break;
  8794. case GGML_TYPE_F32:
  8795. {
  8796. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  8797. } break;
  8798. default:
  8799. {
  8800. GGML_ASSERT(false);
  8801. } break;
  8802. }
  8803. }
  8804. // ggml_compute_forward_rope_back
  8805. static void ggml_compute_forward_rope_back_f32(
  8806. const struct ggml_compute_params * params,
  8807. const struct ggml_tensor * src0,
  8808. const struct ggml_tensor * src1,
  8809. struct ggml_tensor * dst) {
  8810. assert(src1->type == GGML_TYPE_I32);
  8811. assert(ggml_nelements(src1) == 3);
  8812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8813. return;
  8814. }
  8815. // y = rope(x, src1)
  8816. // dx = rope_back(dy, src1)
  8817. // src0 is dy, src1 contains options
  8818. const int n_past = ((int32_t *) src1->data)[0];
  8819. const int n_dims = ((int32_t *) src1->data)[1];
  8820. const int mode = ((int32_t *) src1->data)[2];
  8821. //const int64_t ne0 = src0->ne[0];
  8822. const int64_t ne1 = src0->ne[1];
  8823. const int64_t ne2 = src0->ne[2];
  8824. const int64_t ne3 = src0->ne[3];
  8825. const int nb0 = src0->nb[0];
  8826. const int nb1 = src0->nb[1];
  8827. const int nb2 = src0->nb[2];
  8828. const int nb3 = src0->nb[3];
  8829. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8830. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8831. assert(nb0 == sizeof(float));
  8832. const int ith = params->ith;
  8833. const int nth = params->nth;
  8834. const int nr = ggml_nrows(src0);
  8835. // rows per thread
  8836. const int dr = (nr + nth - 1)/nth;
  8837. // row range for this thread
  8838. const int ir0 = dr*ith;
  8839. const int ir1 = MIN(ir0 + dr, nr);
  8840. // row index used to determine which thread to use
  8841. int ir = 0;
  8842. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8843. const bool is_neox = mode & 2;
  8844. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8845. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8846. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8847. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8848. if (ir++ < ir0) continue;
  8849. if (ir > ir1) break;
  8850. float theta = (float)p;
  8851. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8852. const float cos_theta = cosf(theta);
  8853. const float sin_theta = sinf(theta);
  8854. theta *= theta_scale;
  8855. if (!is_neox) {
  8856. const float * const dy = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8857. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8858. const float dy0 = dy[0];
  8859. const float dy1 = dy[1];
  8860. dx[0] = dy0*cos_theta + dy1*sin_theta;
  8861. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  8862. } else {
  8863. const float * const dy = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8864. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8865. const float dy0 = dy[0];
  8866. const float dy1 = dy[n_dims/2];
  8867. dx[0] = dy0*cos_theta + dy1*sin_theta;
  8868. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  8869. }
  8870. }
  8871. }
  8872. }
  8873. }
  8874. }
  8875. static void ggml_compute_forward_rope_back_f16(
  8876. const struct ggml_compute_params * params,
  8877. const struct ggml_tensor * src0,
  8878. const struct ggml_tensor * src1,
  8879. struct ggml_tensor * dst) {
  8880. assert(src1->type == GGML_TYPE_I32);
  8881. assert(ggml_nelements(src1) == 3);
  8882. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8883. return;
  8884. }
  8885. // y = rope(x, src1)
  8886. // dx = rope_back(dy, src1)
  8887. // src0 is dy, src1 contains options
  8888. const int n_past = ((int32_t *) src1->data)[0];
  8889. const int n_dims = ((int32_t *) src1->data)[1];
  8890. const int mode = ((int32_t *) src1->data)[2];
  8891. //const int64_t ne0 = src0->ne[0];
  8892. const int64_t ne1 = src0->ne[1];
  8893. const int64_t ne2 = src0->ne[2];
  8894. const int64_t ne3 = src0->ne[3];
  8895. const int nb0 = src0->nb[0];
  8896. const int nb1 = src0->nb[1];
  8897. const int nb2 = src0->nb[2];
  8898. const int nb3 = src0->nb[3];
  8899. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8900. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8901. assert(nb0 == sizeof(ggml_fp16_t));
  8902. const int ith = params->ith;
  8903. const int nth = params->nth;
  8904. const int nr = ggml_nrows(src0);
  8905. // rows per thread
  8906. const int dr = (nr + nth - 1)/nth;
  8907. // row range for this thread
  8908. const int ir0 = dr*ith;
  8909. const int ir1 = MIN(ir0 + dr, nr);
  8910. // row index used to determine which thread to use
  8911. int ir = 0;
  8912. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8913. const bool is_neox = mode & 2;
  8914. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8915. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8916. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8917. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8918. if (ir++ < ir0) continue;
  8919. if (ir > ir1) break;
  8920. float theta = (float)p;
  8921. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  8922. const float cos_theta = cosf(theta);
  8923. const float sin_theta = sinf(theta);
  8924. theta *= theta_scale;
  8925. if (!is_neox) {
  8926. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8927. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8928. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  8929. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  8930. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  8931. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  8932. } else {
  8933. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8934. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  8935. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  8936. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  8937. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  8938. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  8939. }
  8940. }
  8941. }
  8942. }
  8943. }
  8944. }
  8945. static void ggml_compute_forward_rope_back(
  8946. const struct ggml_compute_params * params,
  8947. const struct ggml_tensor * src0,
  8948. const struct ggml_tensor * src1,
  8949. struct ggml_tensor * dst) {
  8950. switch (src0->type) {
  8951. case GGML_TYPE_F16:
  8952. {
  8953. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  8954. } break;
  8955. case GGML_TYPE_F32:
  8956. {
  8957. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  8958. } break;
  8959. default:
  8960. {
  8961. GGML_ASSERT(false);
  8962. } break;
  8963. }
  8964. }
  8965. // ggml_compute_forward_conv_1d_1s
  8966. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  8967. const struct ggml_compute_params * params,
  8968. const struct ggml_tensor * src0,
  8969. const struct ggml_tensor * src1,
  8970. struct ggml_tensor * dst) {
  8971. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8972. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8973. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8974. int64_t t0 = ggml_perf_time_us();
  8975. UNUSED(t0);
  8976. const int64_t ne00 = src0->ne[0];
  8977. const int64_t ne01 = src0->ne[1];
  8978. const int64_t ne02 = src0->ne[2];
  8979. //const int64_t ne03 = src0->ne[3];
  8980. const int64_t ne10 = src1->ne[0];
  8981. const int64_t ne11 = src1->ne[1];
  8982. //const int64_t ne12 = src1->ne[2];
  8983. //const int64_t ne13 = src1->ne[3];
  8984. //const int64_t ne0 = dst->ne[0];
  8985. //const int64_t ne1 = dst->ne[1];
  8986. //const int64_t ne2 = dst->ne[2];
  8987. //const int64_t ne3 = dst->ne[3];
  8988. //const int64_t ne = ne0*ne1*ne2*ne3;
  8989. const int nb00 = src0->nb[0];
  8990. const int nb01 = src0->nb[1];
  8991. const int nb02 = src0->nb[2];
  8992. //const int nb03 = src0->nb[3];
  8993. const int nb10 = src1->nb[0];
  8994. const int nb11 = src1->nb[1];
  8995. //const int nb12 = src1->nb[2];
  8996. //const int nb13 = src1->nb[3];
  8997. //const int nb0 = dst->nb[0];
  8998. const int nb1 = dst->nb[1];
  8999. //const int nb2 = dst->nb[2];
  9000. //const int nb3 = dst->nb[3];
  9001. const int ith = params->ith;
  9002. const int nth = params->nth;
  9003. const int nk = ne00;
  9004. const int nh = nk/2;
  9005. const int ew0 = ggml_up32(ne01);
  9006. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9007. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9008. GGML_ASSERT(nb10 == sizeof(float));
  9009. if (params->type == GGML_TASK_INIT) {
  9010. // TODO: fix this memset (wsize is overestimated)
  9011. memset(params->wdata, 0, params->wsize);
  9012. // prepare kernel data (src0)
  9013. {
  9014. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9015. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9016. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9017. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9018. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9019. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9020. dst_data[i00*ew0 + i01] = src[i00];
  9021. }
  9022. }
  9023. }
  9024. }
  9025. // prepare source data (src1)
  9026. {
  9027. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9028. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9029. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9030. ggml_fp16_t * dst_data = wdata;
  9031. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9032. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9033. }
  9034. }
  9035. }
  9036. return;
  9037. }
  9038. if (params->type == GGML_TASK_FINALIZE) {
  9039. return;
  9040. }
  9041. // total rows in dst
  9042. const int nr = ne02;
  9043. // rows per thread
  9044. const int dr = (nr + nth - 1)/nth;
  9045. // row range for this thread
  9046. const int ir0 = dr*ith;
  9047. const int ir1 = MIN(ir0 + dr, nr);
  9048. for (int i1 = ir0; i1 < ir1; i1++) {
  9049. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9050. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9051. dst_data[i0] = 0;
  9052. for (int k = -nh; k <= nh; k++) {
  9053. float v = 0.0f;
  9054. ggml_vec_dot_f16(ew0, &v,
  9055. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9056. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9057. dst_data[i0] += v;
  9058. }
  9059. }
  9060. }
  9061. }
  9062. static void ggml_compute_forward_conv_1d_1s_f32(
  9063. const struct ggml_compute_params * params,
  9064. const struct ggml_tensor * src0,
  9065. const struct ggml_tensor * src1,
  9066. struct ggml_tensor * dst) {
  9067. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9068. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9069. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9070. int64_t t0 = ggml_perf_time_us();
  9071. UNUSED(t0);
  9072. const int64_t ne00 = src0->ne[0];
  9073. const int64_t ne01 = src0->ne[1];
  9074. const int64_t ne02 = src0->ne[2];
  9075. //const int64_t ne03 = src0->ne[3];
  9076. const int64_t ne10 = src1->ne[0];
  9077. const int64_t ne11 = src1->ne[1];
  9078. //const int64_t ne12 = src1->ne[2];
  9079. //const int64_t ne13 = src1->ne[3];
  9080. //const int64_t ne0 = dst->ne[0];
  9081. //const int64_t ne1 = dst->ne[1];
  9082. //const int64_t ne2 = dst->ne[2];
  9083. //const int64_t ne3 = dst->ne[3];
  9084. //const int64_t ne = ne0*ne1*ne2*ne3;
  9085. const int nb00 = src0->nb[0];
  9086. const int nb01 = src0->nb[1];
  9087. const int nb02 = src0->nb[2];
  9088. //const int nb03 = src0->nb[3];
  9089. const int nb10 = src1->nb[0];
  9090. const int nb11 = src1->nb[1];
  9091. //const int nb12 = src1->nb[2];
  9092. //const int nb13 = src1->nb[3];
  9093. //const int nb0 = dst->nb[0];
  9094. const int nb1 = dst->nb[1];
  9095. //const int nb2 = dst->nb[2];
  9096. //const int nb3 = dst->nb[3];
  9097. const int ith = params->ith;
  9098. const int nth = params->nth;
  9099. const int nk = ne00;
  9100. const int nh = nk/2;
  9101. const int ew0 = ggml_up32(ne01);
  9102. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9103. GGML_ASSERT(nb00 == sizeof(float));
  9104. GGML_ASSERT(nb10 == sizeof(float));
  9105. if (params->type == GGML_TASK_INIT) {
  9106. // TODO: fix this memset (wsize is overestimated)
  9107. memset(params->wdata, 0, params->wsize);
  9108. // prepare kernel data (src0)
  9109. {
  9110. float * const wdata = (float *) params->wdata + 0;
  9111. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9112. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9113. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9114. float * dst_data = wdata + i02*ew0*ne00;
  9115. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9116. dst_data[i00*ew0 + i01] = src[i00];
  9117. }
  9118. }
  9119. }
  9120. }
  9121. // prepare source data (src1)
  9122. {
  9123. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9124. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9125. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9126. float * dst_data = wdata;
  9127. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9128. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9129. }
  9130. }
  9131. }
  9132. return;
  9133. }
  9134. if (params->type == GGML_TASK_FINALIZE) {
  9135. return;
  9136. }
  9137. // total rows in dst
  9138. const int nr = ne02;
  9139. // rows per thread
  9140. const int dr = (nr + nth - 1)/nth;
  9141. // row range for this thread
  9142. const int ir0 = dr*ith;
  9143. const int ir1 = MIN(ir0 + dr, nr);
  9144. for (int i1 = ir0; i1 < ir1; i1++) {
  9145. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9146. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9147. dst_data[i0] = 0;
  9148. for (int k = -nh; k <= nh; k++) {
  9149. float v = 0.0f;
  9150. ggml_vec_dot_f32(ew0, &v,
  9151. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9152. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9153. dst_data[i0] += v;
  9154. }
  9155. }
  9156. }
  9157. }
  9158. static void ggml_compute_forward_conv_1d_1s(
  9159. const struct ggml_compute_params * params,
  9160. const struct ggml_tensor * src0,
  9161. const struct ggml_tensor * src1,
  9162. struct ggml_tensor * dst) {
  9163. switch (src0->type) {
  9164. case GGML_TYPE_F16:
  9165. {
  9166. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9167. } break;
  9168. case GGML_TYPE_F32:
  9169. {
  9170. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9171. } break;
  9172. default:
  9173. {
  9174. GGML_ASSERT(false);
  9175. } break;
  9176. }
  9177. }
  9178. // ggml_compute_forward_conv_1d_2s
  9179. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9180. const struct ggml_compute_params * params,
  9181. const struct ggml_tensor * src0,
  9182. const struct ggml_tensor * src1,
  9183. struct ggml_tensor * dst) {
  9184. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9185. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9186. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9187. int64_t t0 = ggml_perf_time_us();
  9188. UNUSED(t0);
  9189. const int64_t ne00 = src0->ne[0];
  9190. const int64_t ne01 = src0->ne[1];
  9191. const int64_t ne02 = src0->ne[2];
  9192. //const int64_t ne03 = src0->ne[3];
  9193. const int64_t ne10 = src1->ne[0];
  9194. const int64_t ne11 = src1->ne[1];
  9195. //const int64_t ne12 = src1->ne[2];
  9196. //const int64_t ne13 = src1->ne[3];
  9197. //const int64_t ne0 = dst->ne[0];
  9198. //const int64_t ne1 = dst->ne[1];
  9199. //const int64_t ne2 = dst->ne[2];
  9200. //const int64_t ne3 = dst->ne[3];
  9201. //const int64_t ne = ne0*ne1*ne2*ne3;
  9202. const int nb00 = src0->nb[0];
  9203. const int nb01 = src0->nb[1];
  9204. const int nb02 = src0->nb[2];
  9205. //const int nb03 = src0->nb[3];
  9206. const int nb10 = src1->nb[0];
  9207. const int nb11 = src1->nb[1];
  9208. //const int nb12 = src1->nb[2];
  9209. //const int nb13 = src1->nb[3];
  9210. //const int nb0 = dst->nb[0];
  9211. const int nb1 = dst->nb[1];
  9212. //const int nb2 = dst->nb[2];
  9213. //const int nb3 = dst->nb[3];
  9214. const int ith = params->ith;
  9215. const int nth = params->nth;
  9216. const int nk = ne00;
  9217. const int nh = nk/2;
  9218. const int ew0 = ggml_up32(ne01);
  9219. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9220. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9221. GGML_ASSERT(nb10 == sizeof(float));
  9222. if (params->type == GGML_TASK_INIT) {
  9223. // TODO: fix this memset (wsize is overestimated)
  9224. memset(params->wdata, 0, params->wsize);
  9225. // prepare kernel data (src0)
  9226. {
  9227. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9228. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9229. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9230. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9231. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9232. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9233. dst_data[i00*ew0 + i01] = src[i00];
  9234. }
  9235. }
  9236. }
  9237. }
  9238. // prepare source data (src1)
  9239. {
  9240. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9241. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9242. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9243. ggml_fp16_t * dst_data = wdata;
  9244. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9245. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9246. }
  9247. }
  9248. }
  9249. return;
  9250. }
  9251. if (params->type == GGML_TASK_FINALIZE) {
  9252. return;
  9253. }
  9254. // total rows in dst
  9255. const int nr = ne02;
  9256. // rows per thread
  9257. const int dr = (nr + nth - 1)/nth;
  9258. // row range for this thread
  9259. const int ir0 = dr*ith;
  9260. const int ir1 = MIN(ir0 + dr, nr);
  9261. for (int i1 = ir0; i1 < ir1; i1++) {
  9262. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9263. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9264. dst_data[i0/2] = 0;
  9265. for (int k = -nh; k <= nh; k++) {
  9266. float v = 0.0f;
  9267. ggml_vec_dot_f16(ew0, &v,
  9268. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9269. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9270. dst_data[i0/2] += v;
  9271. }
  9272. }
  9273. }
  9274. }
  9275. static void ggml_compute_forward_conv_1d_2s_f32(
  9276. const struct ggml_compute_params * params,
  9277. const struct ggml_tensor * src0,
  9278. const struct ggml_tensor * src1,
  9279. struct ggml_tensor * dst) {
  9280. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9281. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9282. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9283. int64_t t0 = ggml_perf_time_us();
  9284. UNUSED(t0);
  9285. const int64_t ne00 = src0->ne[0];
  9286. const int64_t ne01 = src0->ne[1];
  9287. const int64_t ne02 = src0->ne[2];
  9288. //const int64_t ne03 = src0->ne[3];
  9289. const int64_t ne10 = src1->ne[0];
  9290. const int64_t ne11 = src1->ne[1];
  9291. //const int64_t ne12 = src1->ne[2];
  9292. //const int64_t ne13 = src1->ne[3];
  9293. //const int64_t ne0 = dst->ne[0];
  9294. //const int64_t ne1 = dst->ne[1];
  9295. //const int64_t ne2 = dst->ne[2];
  9296. //const int64_t ne3 = dst->ne[3];
  9297. //const int64_t ne = ne0*ne1*ne2*ne3;
  9298. const int nb00 = src0->nb[0];
  9299. const int nb01 = src0->nb[1];
  9300. const int nb02 = src0->nb[2];
  9301. //const int nb03 = src0->nb[3];
  9302. const int nb10 = src1->nb[0];
  9303. const int nb11 = src1->nb[1];
  9304. //const int nb12 = src1->nb[2];
  9305. //const int nb13 = src1->nb[3];
  9306. //const int nb0 = dst->nb[0];
  9307. const int nb1 = dst->nb[1];
  9308. //const int nb2 = dst->nb[2];
  9309. //const int nb3 = dst->nb[3];
  9310. const int ith = params->ith;
  9311. const int nth = params->nth;
  9312. const int nk = ne00;
  9313. const int nh = nk/2;
  9314. const int ew0 = ggml_up32(ne01);
  9315. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9316. GGML_ASSERT(nb00 == sizeof(float));
  9317. GGML_ASSERT(nb10 == sizeof(float));
  9318. if (params->type == GGML_TASK_INIT) {
  9319. // TODO: fix this memset (wsize is overestimated)
  9320. memset(params->wdata, 0, params->wsize);
  9321. // prepare kernel data (src0)
  9322. {
  9323. float * const wdata = (float *) params->wdata + 0;
  9324. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9325. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9326. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9327. float * dst_data = wdata + i02*ew0*ne00;
  9328. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9329. dst_data[i00*ew0 + i01] = src[i00];
  9330. }
  9331. }
  9332. }
  9333. }
  9334. // prepare source data (src1)
  9335. {
  9336. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9337. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9338. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9339. float * dst_data = wdata;
  9340. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9341. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9342. }
  9343. }
  9344. }
  9345. return;
  9346. }
  9347. if (params->type == GGML_TASK_FINALIZE) {
  9348. return;
  9349. }
  9350. // total rows in dst
  9351. const int nr = ne02;
  9352. // rows per thread
  9353. const int dr = (nr + nth - 1)/nth;
  9354. // row range for this thread
  9355. const int ir0 = dr*ith;
  9356. const int ir1 = MIN(ir0 + dr, nr);
  9357. for (int i1 = ir0; i1 < ir1; i1++) {
  9358. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9359. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9360. dst_data[i0/2] = 0;
  9361. for (int k = -nh; k <= nh; k++) {
  9362. float v = 0.0f;
  9363. ggml_vec_dot_f32(ew0, &v,
  9364. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9365. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9366. dst_data[i0/2] += v;
  9367. }
  9368. }
  9369. }
  9370. }
  9371. static void ggml_compute_forward_conv_1d_2s(
  9372. const struct ggml_compute_params * params,
  9373. const struct ggml_tensor * src0,
  9374. const struct ggml_tensor * src1,
  9375. struct ggml_tensor * dst) {
  9376. switch (src0->type) {
  9377. case GGML_TYPE_F16:
  9378. {
  9379. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9380. } break;
  9381. case GGML_TYPE_F32:
  9382. {
  9383. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9384. } break;
  9385. default:
  9386. {
  9387. GGML_ASSERT(false);
  9388. } break;
  9389. }
  9390. }
  9391. // ggml_compute_forward_flash_attn
  9392. static void ggml_compute_forward_flash_attn_f32(
  9393. const struct ggml_compute_params * params,
  9394. const struct ggml_tensor * q,
  9395. const struct ggml_tensor * k,
  9396. const struct ggml_tensor * v,
  9397. const bool masked,
  9398. struct ggml_tensor * dst) {
  9399. int64_t t0 = ggml_perf_time_us();
  9400. UNUSED(t0);
  9401. const int64_t neq0 = q->ne[0];
  9402. const int64_t neq1 = q->ne[1];
  9403. const int64_t neq2 = q->ne[2];
  9404. const int64_t neq3 = q->ne[3];
  9405. const int64_t nek0 = k->ne[0];
  9406. const int64_t nek1 = k->ne[1];
  9407. //const int64_t nek2 = k->ne[2];
  9408. //const int64_t nek3 = k->ne[3];
  9409. //const int64_t nev0 = v->ne[0];
  9410. const int64_t nev1 = v->ne[1];
  9411. //const int64_t nev2 = v->ne[2];
  9412. //const int64_t nev3 = v->ne[3];
  9413. const int64_t ne0 = dst->ne[0];
  9414. const int64_t ne1 = dst->ne[1];
  9415. //const int64_t ne2 = dst->ne[2];
  9416. //const int64_t ne3 = dst->ne[3];
  9417. const int nbk0 = k->nb[0];
  9418. const int nbk1 = k->nb[1];
  9419. const int nbk2 = k->nb[2];
  9420. const int nbk3 = k->nb[3];
  9421. const int nbq0 = q->nb[0];
  9422. const int nbq1 = q->nb[1];
  9423. const int nbq2 = q->nb[2];
  9424. const int nbq3 = q->nb[3];
  9425. const int nbv0 = v->nb[0];
  9426. const int nbv1 = v->nb[1];
  9427. const int nbv2 = v->nb[2];
  9428. const int nbv3 = v->nb[3];
  9429. const int nb0 = dst->nb[0];
  9430. const int nb1 = dst->nb[1];
  9431. const int nb2 = dst->nb[2];
  9432. const int nb3 = dst->nb[3];
  9433. const int ith = params->ith;
  9434. const int nth = params->nth;
  9435. const int64_t D = neq0;
  9436. const int64_t N = neq1;
  9437. const int64_t P = nek1 - N;
  9438. const int64_t M = P + N;
  9439. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9440. GGML_ASSERT(ne0 == D);
  9441. GGML_ASSERT(ne1 == N);
  9442. GGML_ASSERT(P >= 0);
  9443. GGML_ASSERT(nbq0 == sizeof(float));
  9444. GGML_ASSERT(nbk0 == sizeof(float));
  9445. GGML_ASSERT(nbv0 == sizeof(float));
  9446. GGML_ASSERT(neq0 == D);
  9447. GGML_ASSERT(nek0 == D);
  9448. GGML_ASSERT(nev1 == D);
  9449. GGML_ASSERT(neq1 == N);
  9450. GGML_ASSERT(nek1 == N + P);
  9451. GGML_ASSERT(nev1 == D);
  9452. // dst cannot be transposed or permuted
  9453. GGML_ASSERT(nb0 == sizeof(float));
  9454. GGML_ASSERT(nb0 <= nb1);
  9455. GGML_ASSERT(nb1 <= nb2);
  9456. GGML_ASSERT(nb2 <= nb3);
  9457. if (params->type == GGML_TASK_INIT) {
  9458. return;
  9459. }
  9460. if (params->type == GGML_TASK_FINALIZE) {
  9461. return;
  9462. }
  9463. // parallelize by q rows using ggml_vec_dot_f32
  9464. // total rows in q
  9465. const int nr = neq1*neq2*neq3;
  9466. // rows per thread
  9467. const int dr = (nr + nth - 1)/nth;
  9468. // row range for this thread
  9469. const int ir0 = dr*ith;
  9470. const int ir1 = MIN(ir0 + dr, nr);
  9471. const float scale = 1.0f/sqrtf(D);
  9472. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9473. for (int ir = ir0; ir < ir1; ++ir) {
  9474. // q indices
  9475. const int iq3 = ir/(neq2*neq1);
  9476. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9477. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9478. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9479. for (int i = M; i < Mup; ++i) {
  9480. S[i] = -INFINITY;
  9481. }
  9482. for (int64_t ic = 0; ic < nek1; ++ic) {
  9483. // k indices
  9484. const int ik3 = iq3;
  9485. const int ik2 = iq2;
  9486. const int ik1 = ic;
  9487. // S indices
  9488. const int i1 = ik1;
  9489. ggml_vec_dot_f32(neq0,
  9490. S + i1,
  9491. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9492. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9493. }
  9494. // scale
  9495. ggml_vec_scale_f32(nek1, S, scale);
  9496. if (masked) {
  9497. for (int64_t i = P; i < M; i++) {
  9498. if (i > P + iq1) {
  9499. S[i] = -INFINITY;
  9500. }
  9501. }
  9502. }
  9503. // softmax
  9504. {
  9505. float max = -INFINITY;
  9506. ggml_vec_max_f32(M, &max, S);
  9507. ggml_float sum = 0.0;
  9508. {
  9509. #ifdef GGML_SOFT_MAX_ACCELERATE
  9510. max = -max;
  9511. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9512. vvexpf(S, S, &Mup);
  9513. ggml_vec_sum_f32(Mup, &sum, S);
  9514. #else
  9515. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9516. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9517. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9518. float * SS = S + i;
  9519. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9520. if (SS[j] == -INFINITY) {
  9521. SS[j] = 0.0f;
  9522. } else {
  9523. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9524. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9525. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9526. sump[j] += (ggml_float)val;
  9527. SS[j] = val;
  9528. }
  9529. }
  9530. }
  9531. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9532. sum += sump[i];
  9533. }
  9534. #endif
  9535. }
  9536. assert(sum > 0.0);
  9537. sum = 1.0/sum;
  9538. ggml_vec_scale_f32(M, S, sum);
  9539. #ifndef NDEBUG
  9540. for (int i = 0; i < M; ++i) {
  9541. assert(!isnan(S[i]));
  9542. assert(!isinf(S[i]));
  9543. }
  9544. #endif
  9545. }
  9546. for (int64_t ic = 0; ic < nev1; ++ic) {
  9547. // dst indices
  9548. const int i1 = iq1;
  9549. const int i2 = iq2;
  9550. const int i3 = iq3;
  9551. ggml_vec_dot_f32(nek1,
  9552. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9553. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9554. S);
  9555. }
  9556. }
  9557. }
  9558. static void ggml_compute_forward_flash_attn_f16(
  9559. const struct ggml_compute_params * params,
  9560. const struct ggml_tensor * q,
  9561. const struct ggml_tensor * k,
  9562. const struct ggml_tensor * v,
  9563. const bool masked,
  9564. struct ggml_tensor * dst) {
  9565. int64_t t0 = ggml_perf_time_us();
  9566. UNUSED(t0);
  9567. const int64_t neq0 = q->ne[0];
  9568. const int64_t neq1 = q->ne[1];
  9569. const int64_t neq2 = q->ne[2];
  9570. const int64_t neq3 = q->ne[3];
  9571. const int64_t nek0 = k->ne[0];
  9572. const int64_t nek1 = k->ne[1];
  9573. //const int64_t nek2 = k->ne[2];
  9574. //const int64_t nek3 = k->ne[3];
  9575. //const int64_t nev0 = v->ne[0];
  9576. const int64_t nev1 = v->ne[1];
  9577. //const int64_t nev2 = v->ne[2];
  9578. //const int64_t nev3 = v->ne[3];
  9579. const int64_t ne0 = dst->ne[0];
  9580. const int64_t ne1 = dst->ne[1];
  9581. //const int64_t ne2 = dst->ne[2];
  9582. //const int64_t ne3 = dst->ne[3];
  9583. const int nbk0 = k->nb[0];
  9584. const int nbk1 = k->nb[1];
  9585. const int nbk2 = k->nb[2];
  9586. const int nbk3 = k->nb[3];
  9587. const int nbq0 = q->nb[0];
  9588. const int nbq1 = q->nb[1];
  9589. const int nbq2 = q->nb[2];
  9590. const int nbq3 = q->nb[3];
  9591. const int nbv0 = v->nb[0];
  9592. const int nbv1 = v->nb[1];
  9593. const int nbv2 = v->nb[2];
  9594. const int nbv3 = v->nb[3];
  9595. const int nb0 = dst->nb[0];
  9596. const int nb1 = dst->nb[1];
  9597. const int nb2 = dst->nb[2];
  9598. const int nb3 = dst->nb[3];
  9599. const int ith = params->ith;
  9600. const int nth = params->nth;
  9601. const int64_t D = neq0;
  9602. const int64_t N = neq1;
  9603. const int64_t P = nek1 - N;
  9604. const int64_t M = P + N;
  9605. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9606. GGML_ASSERT(ne0 == D);
  9607. GGML_ASSERT(ne1 == N);
  9608. GGML_ASSERT(P >= 0);
  9609. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9610. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9611. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9612. GGML_ASSERT(neq0 == D);
  9613. GGML_ASSERT(nek0 == D);
  9614. GGML_ASSERT(nev1 == D);
  9615. GGML_ASSERT(neq1 == N);
  9616. GGML_ASSERT(nek1 == N + P);
  9617. GGML_ASSERT(nev1 == D);
  9618. // dst cannot be transposed or permuted
  9619. GGML_ASSERT(nb0 == sizeof(float));
  9620. GGML_ASSERT(nb0 <= nb1);
  9621. GGML_ASSERT(nb1 <= nb2);
  9622. GGML_ASSERT(nb2 <= nb3);
  9623. if (params->type == GGML_TASK_INIT) {
  9624. return;
  9625. }
  9626. if (params->type == GGML_TASK_FINALIZE) {
  9627. return;
  9628. }
  9629. // parallelize by q rows using ggml_vec_dot_f32
  9630. // total rows in q
  9631. const int nr = neq1*neq2*neq3;
  9632. // rows per thread
  9633. const int dr = (nr + nth - 1)/nth;
  9634. // row range for this thread
  9635. const int ir0 = dr*ith;
  9636. const int ir1 = MIN(ir0 + dr, nr);
  9637. const float scale = 1.0f/sqrtf(D);
  9638. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9639. for (int ir = ir0; ir < ir1; ++ir) {
  9640. // q indices
  9641. const int iq3 = ir/(neq2*neq1);
  9642. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9643. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9644. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9645. for (int i = M; i < Mup; ++i) {
  9646. S[i] = -INFINITY;
  9647. }
  9648. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9649. for (int64_t ic = 0; ic < nek1; ++ic) {
  9650. // k indices
  9651. const int ik3 = iq3;
  9652. const int ik2 = iq2;
  9653. const int ik1 = ic;
  9654. // S indices
  9655. const int i1 = ik1;
  9656. ggml_vec_dot_f16(neq0,
  9657. S + i1,
  9658. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9659. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9660. }
  9661. } else {
  9662. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9663. // k indices
  9664. const int ik3 = iq3;
  9665. const int ik2 = iq2;
  9666. const int ik1 = ic;
  9667. // S indices
  9668. const int i1 = ik1;
  9669. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9670. S + i1,
  9671. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9672. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9673. }
  9674. }
  9675. // scale
  9676. ggml_vec_scale_f32(nek1, S, scale);
  9677. if (masked) {
  9678. for (int64_t i = P; i < M; i++) {
  9679. if (i > P + iq1) {
  9680. S[i] = -INFINITY;
  9681. }
  9682. }
  9683. }
  9684. // softmax
  9685. {
  9686. float max = -INFINITY;
  9687. ggml_vec_max_f32(M, &max, S);
  9688. ggml_float sum = 0.0;
  9689. {
  9690. #ifdef GGML_SOFT_MAX_ACCELERATE
  9691. max = -max;
  9692. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9693. vvexpf(S, S, &Mup);
  9694. ggml_vec_sum_f32(Mup, &sum, S);
  9695. #else
  9696. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9697. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9698. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9699. float * SS = S + i;
  9700. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9701. if (SS[j] == -INFINITY) {
  9702. SS[j] = 0.0f;
  9703. } else {
  9704. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9705. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9706. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9707. sump[j] += (ggml_float)val;
  9708. SS[j] = val;
  9709. }
  9710. }
  9711. }
  9712. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9713. sum += sump[i];
  9714. }
  9715. #endif
  9716. }
  9717. assert(sum > 0.0);
  9718. sum = 1.0/sum;
  9719. ggml_vec_scale_f32(M, S, sum);
  9720. #ifndef NDEBUG
  9721. for (int i = 0; i < M; ++i) {
  9722. assert(!isnan(S[i]));
  9723. assert(!isinf(S[i]));
  9724. }
  9725. #endif
  9726. }
  9727. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  9728. for (int64_t i = 0; i < M; i++) {
  9729. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9730. }
  9731. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  9732. for (int64_t ic = 0; ic < nev1; ++ic) {
  9733. // dst indices
  9734. const int i1 = iq1;
  9735. const int i2 = iq2;
  9736. const int i3 = iq3;
  9737. ggml_vec_dot_f16(nek1,
  9738. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9739. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9740. S16);
  9741. }
  9742. } else {
  9743. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  9744. // dst indices
  9745. const int i1 = iq1;
  9746. const int i2 = iq2;
  9747. const int i3 = iq3;
  9748. ggml_vec_dot_f16_unroll(nek1, nbv1,
  9749. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9750. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9751. S16);
  9752. }
  9753. }
  9754. }
  9755. }
  9756. static void ggml_compute_forward_flash_attn(
  9757. const struct ggml_compute_params * params,
  9758. const struct ggml_tensor * q,
  9759. const struct ggml_tensor * k,
  9760. const struct ggml_tensor * v,
  9761. const bool masked,
  9762. struct ggml_tensor * dst) {
  9763. switch (q->type) {
  9764. case GGML_TYPE_F16:
  9765. {
  9766. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  9767. } break;
  9768. case GGML_TYPE_F32:
  9769. {
  9770. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  9771. } break;
  9772. default:
  9773. {
  9774. GGML_ASSERT(false);
  9775. } break;
  9776. }
  9777. }
  9778. // ggml_compute_forward_flash_ff
  9779. static void ggml_compute_forward_flash_ff_f16(
  9780. const struct ggml_compute_params * params,
  9781. const struct ggml_tensor * a, // F16
  9782. const struct ggml_tensor * b0, // F16 fc_w
  9783. const struct ggml_tensor * b1, // F32 fc_b
  9784. const struct ggml_tensor * c0, // F16 proj_w
  9785. const struct ggml_tensor * c1, // F32 proj_b
  9786. struct ggml_tensor * dst) {
  9787. int64_t t0 = ggml_perf_time_us();
  9788. UNUSED(t0);
  9789. const int64_t nea0 = a->ne[0];
  9790. const int64_t nea1 = a->ne[1];
  9791. const int64_t nea2 = a->ne[2];
  9792. const int64_t nea3 = a->ne[3];
  9793. const int64_t neb00 = b0->ne[0];
  9794. const int64_t neb01 = b0->ne[1];
  9795. //const int64_t neb02 = b0->ne[2];
  9796. //const int64_t neb03 = b0->ne[3];
  9797. const int64_t neb10 = b1->ne[0];
  9798. const int64_t neb11 = b1->ne[1];
  9799. //const int64_t neb12 = b1->ne[2];
  9800. //const int64_t neb13 = b1->ne[3];
  9801. const int64_t nec00 = c0->ne[0];
  9802. const int64_t nec01 = c0->ne[1];
  9803. //const int64_t nec02 = c0->ne[2];
  9804. //const int64_t nec03 = c0->ne[3];
  9805. const int64_t nec10 = c1->ne[0];
  9806. const int64_t nec11 = c1->ne[1];
  9807. //const int64_t nec12 = c1->ne[2];
  9808. //const int64_t nec13 = c1->ne[3];
  9809. const int64_t ne0 = dst->ne[0];
  9810. const int64_t ne1 = dst->ne[1];
  9811. const int64_t ne2 = dst->ne[2];
  9812. //const int64_t ne3 = dst->ne[3];
  9813. const int nba0 = a->nb[0];
  9814. const int nba1 = a->nb[1];
  9815. const int nba2 = a->nb[2];
  9816. const int nba3 = a->nb[3];
  9817. const int nbb00 = b0->nb[0];
  9818. const int nbb01 = b0->nb[1];
  9819. const int nbb02 = b0->nb[2];
  9820. const int nbb03 = b0->nb[3];
  9821. const int nbb10 = b1->nb[0];
  9822. //const int nbb11 = b1->nb[1];
  9823. //const int nbb12 = b1->nb[2];
  9824. //const int nbb13 = b1->nb[3];
  9825. const int nbc00 = c0->nb[0];
  9826. const int nbc01 = c0->nb[1];
  9827. const int nbc02 = c0->nb[2];
  9828. const int nbc03 = c0->nb[3];
  9829. const int nbc10 = c1->nb[0];
  9830. //const int nbc11 = c1->nb[1];
  9831. //const int nbc12 = c1->nb[2];
  9832. //const int nbc13 = c1->nb[3];
  9833. const int nb0 = dst->nb[0];
  9834. const int nb1 = dst->nb[1];
  9835. const int nb2 = dst->nb[2];
  9836. const int nb3 = dst->nb[3];
  9837. const int ith = params->ith;
  9838. const int nth = params->nth;
  9839. const int64_t D = nea0;
  9840. //const int64_t N = nea1;
  9841. const int64_t M = neb01;
  9842. GGML_ASSERT(ne0 == nea0);
  9843. GGML_ASSERT(ne1 == nea1);
  9844. GGML_ASSERT(ne2 == nea2);
  9845. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  9846. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  9847. GGML_ASSERT(nbb10 == sizeof(float));
  9848. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  9849. GGML_ASSERT(nbc10 == sizeof(float));
  9850. GGML_ASSERT(neb00 == D);
  9851. GGML_ASSERT(neb01 == M);
  9852. GGML_ASSERT(neb10 == M);
  9853. GGML_ASSERT(neb11 == 1);
  9854. GGML_ASSERT(nec00 == M);
  9855. GGML_ASSERT(nec01 == D);
  9856. GGML_ASSERT(nec10 == D);
  9857. GGML_ASSERT(nec11 == 1);
  9858. // dst cannot be transposed or permuted
  9859. GGML_ASSERT(nb0 == sizeof(float));
  9860. GGML_ASSERT(nb0 <= nb1);
  9861. GGML_ASSERT(nb1 <= nb2);
  9862. GGML_ASSERT(nb2 <= nb3);
  9863. if (params->type == GGML_TASK_INIT) {
  9864. return;
  9865. }
  9866. if (params->type == GGML_TASK_FINALIZE) {
  9867. return;
  9868. }
  9869. // parallelize by a rows using ggml_vec_dot_f32
  9870. // total rows in a
  9871. const int nr = nea1*nea2*nea3;
  9872. // rows per thread
  9873. const int dr = (nr + nth - 1)/nth;
  9874. // row range for this thread
  9875. const int ir0 = dr*ith;
  9876. const int ir1 = MIN(ir0 + dr, nr);
  9877. for (int ir = ir0; ir < ir1; ++ir) {
  9878. // a indices
  9879. const int ia3 = ir/(nea2*nea1);
  9880. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  9881. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  9882. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  9883. for (int64_t ic = 0; ic < neb01; ++ic) {
  9884. // b0 indices
  9885. const int ib03 = ia3;
  9886. const int ib02 = ia2;
  9887. const int ib01 = ic;
  9888. // S indices
  9889. const int i1 = ib01;
  9890. ggml_vec_dot_f16(nea0,
  9891. S + i1,
  9892. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  9893. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  9894. }
  9895. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  9896. //ggml_vec_gelu_f32(neb01, S, S);
  9897. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  9898. for (int64_t i = 0; i < M; i++) {
  9899. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9900. }
  9901. ggml_vec_gelu_f16(neb01, S16, S16);
  9902. {
  9903. // dst indices
  9904. const int i1 = ia1;
  9905. const int i2 = ia2;
  9906. const int i3 = ia3;
  9907. for (int64_t ic = 0; ic < nec01; ++ic) {
  9908. ggml_vec_dot_f16(neb01,
  9909. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9910. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  9911. S16);
  9912. }
  9913. ggml_vec_add_f32(nec01,
  9914. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  9915. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  9916. (float *) c1->data);
  9917. }
  9918. }
  9919. }
  9920. static void ggml_compute_forward_flash_ff(
  9921. const struct ggml_compute_params * params,
  9922. const struct ggml_tensor * a,
  9923. const struct ggml_tensor * b0,
  9924. const struct ggml_tensor * b1,
  9925. const struct ggml_tensor * c0,
  9926. const struct ggml_tensor * c1,
  9927. struct ggml_tensor * dst) {
  9928. switch (b0->type) {
  9929. case GGML_TYPE_F16:
  9930. {
  9931. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  9932. } break;
  9933. case GGML_TYPE_F32:
  9934. {
  9935. GGML_ASSERT(false); // TODO
  9936. } break;
  9937. default:
  9938. {
  9939. GGML_ASSERT(false);
  9940. } break;
  9941. }
  9942. }
  9943. // ggml_compute_forward_map_unary
  9944. static void ggml_compute_forward_map_unary_f32(
  9945. const struct ggml_compute_params * params,
  9946. const struct ggml_tensor * src0,
  9947. struct ggml_tensor * dst,
  9948. const ggml_unary_op_f32_t fun) {
  9949. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9951. return;
  9952. }
  9953. const int n = ggml_nrows(src0);
  9954. const int nc = src0->ne[0];
  9955. assert( dst->nb[0] == sizeof(float));
  9956. assert(src0->nb[0] == sizeof(float));
  9957. for (int i = 0; i < n; i++) {
  9958. fun(nc,
  9959. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9960. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9961. }
  9962. }
  9963. static void ggml_compute_forward_map_unary(
  9964. const struct ggml_compute_params * params,
  9965. const struct ggml_tensor * src0,
  9966. struct ggml_tensor * dst,
  9967. const ggml_unary_op_f32_t fun) {
  9968. switch (src0->type) {
  9969. case GGML_TYPE_F32:
  9970. {
  9971. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  9972. } break;
  9973. default:
  9974. {
  9975. GGML_ASSERT(false);
  9976. } break;
  9977. }
  9978. }
  9979. // ggml_compute_forward_map_binary
  9980. static void ggml_compute_forward_map_binary_f32(
  9981. const struct ggml_compute_params * params,
  9982. const struct ggml_tensor * src0,
  9983. const struct ggml_tensor * src1,
  9984. struct ggml_tensor * dst,
  9985. const ggml_binary_op_f32_t fun) {
  9986. assert(params->ith == 0);
  9987. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  9988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9989. return;
  9990. }
  9991. const int n = ggml_nrows(src0);
  9992. const int nc = src0->ne[0];
  9993. assert( dst->nb[0] == sizeof(float));
  9994. assert(src0->nb[0] == sizeof(float));
  9995. assert(src1->nb[0] == sizeof(float));
  9996. for (int i = 0; i < n; i++) {
  9997. fun(nc,
  9998. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9999. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10000. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10001. }
  10002. }
  10003. static void ggml_compute_forward_map_binary(
  10004. const struct ggml_compute_params * params,
  10005. const struct ggml_tensor * src0,
  10006. const struct ggml_tensor * src1,
  10007. struct ggml_tensor * dst,
  10008. const ggml_binary_op_f32_t fun) {
  10009. switch (src0->type) {
  10010. case GGML_TYPE_F32:
  10011. {
  10012. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10013. } break;
  10014. default:
  10015. {
  10016. GGML_ASSERT(false);
  10017. } break;
  10018. }
  10019. }
  10020. /////////////////////////////////
  10021. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10022. GGML_ASSERT(params);
  10023. switch (tensor->op) {
  10024. case GGML_OP_DUP:
  10025. {
  10026. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10027. } break;
  10028. case GGML_OP_ADD:
  10029. {
  10030. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10031. } break;
  10032. case GGML_OP_ADD1:
  10033. {
  10034. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10035. } break;
  10036. case GGML_OP_ACC:
  10037. {
  10038. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10039. } break;
  10040. case GGML_OP_SUB:
  10041. {
  10042. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10043. } break;
  10044. case GGML_OP_MUL:
  10045. {
  10046. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10047. } break;
  10048. case GGML_OP_DIV:
  10049. {
  10050. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10051. } break;
  10052. case GGML_OP_SQR:
  10053. {
  10054. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10055. } break;
  10056. case GGML_OP_SQRT:
  10057. {
  10058. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10059. } break;
  10060. case GGML_OP_LOG:
  10061. {
  10062. ggml_compute_forward_log(params, tensor->src0, tensor);
  10063. } break;
  10064. case GGML_OP_SUM:
  10065. {
  10066. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10067. } break;
  10068. case GGML_OP_SUM_ROWS:
  10069. {
  10070. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10071. } break;
  10072. case GGML_OP_MEAN:
  10073. {
  10074. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10075. } break;
  10076. case GGML_OP_REPEAT:
  10077. {
  10078. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10079. } break;
  10080. case GGML_OP_ABS:
  10081. {
  10082. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10083. } break;
  10084. case GGML_OP_SGN:
  10085. {
  10086. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10087. } break;
  10088. case GGML_OP_NEG:
  10089. {
  10090. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10091. } break;
  10092. case GGML_OP_STEP:
  10093. {
  10094. ggml_compute_forward_step(params, tensor->src0, tensor);
  10095. } break;
  10096. case GGML_OP_RELU:
  10097. {
  10098. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10099. } break;
  10100. case GGML_OP_GELU:
  10101. {
  10102. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10103. } break;
  10104. case GGML_OP_SILU:
  10105. {
  10106. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10107. } break;
  10108. case GGML_OP_SILU_BACK:
  10109. {
  10110. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10111. } break;
  10112. case GGML_OP_NORM:
  10113. {
  10114. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10115. } break;
  10116. case GGML_OP_RMS_NORM:
  10117. {
  10118. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10119. } break;
  10120. case GGML_OP_RMS_NORM_BACK:
  10121. {
  10122. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10123. } break;
  10124. case GGML_OP_MUL_MAT:
  10125. {
  10126. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10127. } break;
  10128. case GGML_OP_SCALE:
  10129. {
  10130. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10131. } break;
  10132. case GGML_OP_SET:
  10133. {
  10134. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10135. } break;
  10136. case GGML_OP_CPY:
  10137. {
  10138. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10139. } break;
  10140. case GGML_OP_CONT:
  10141. {
  10142. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10143. } break;
  10144. case GGML_OP_RESHAPE:
  10145. {
  10146. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10147. } break;
  10148. case GGML_OP_VIEW:
  10149. {
  10150. ggml_compute_forward_view(params, tensor->src0);
  10151. } break;
  10152. case GGML_OP_PERMUTE:
  10153. {
  10154. ggml_compute_forward_permute(params, tensor->src0);
  10155. } break;
  10156. case GGML_OP_TRANSPOSE:
  10157. {
  10158. ggml_compute_forward_transpose(params, tensor->src0);
  10159. } break;
  10160. case GGML_OP_GET_ROWS:
  10161. {
  10162. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10163. } break;
  10164. case GGML_OP_GET_ROWS_BACK:
  10165. {
  10166. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10167. } break;
  10168. case GGML_OP_DIAG:
  10169. {
  10170. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10171. } break;
  10172. case GGML_OP_DIAG_MASK_INF:
  10173. {
  10174. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10175. } break;
  10176. case GGML_OP_DIAG_MASK_ZERO:
  10177. {
  10178. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10179. } break;
  10180. case GGML_OP_SOFT_MAX:
  10181. {
  10182. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10183. } break;
  10184. case GGML_OP_ROPE:
  10185. {
  10186. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10187. } break;
  10188. case GGML_OP_ROPE_BACK:
  10189. {
  10190. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10191. } break;
  10192. case GGML_OP_ALIBI:
  10193. {
  10194. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10195. } break;
  10196. case GGML_OP_CONV_1D_1S:
  10197. {
  10198. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10199. } break;
  10200. case GGML_OP_CONV_1D_2S:
  10201. {
  10202. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10203. } break;
  10204. case GGML_OP_FLASH_ATTN:
  10205. {
  10206. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10207. GGML_ASSERT(t == 0 || t == 1);
  10208. bool masked = t != 0;
  10209. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10210. } break;
  10211. case GGML_OP_FLASH_FF:
  10212. {
  10213. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10214. } break;
  10215. case GGML_OP_MAP_UNARY:
  10216. {
  10217. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10218. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10219. }
  10220. break;
  10221. case GGML_OP_MAP_BINARY:
  10222. {
  10223. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10224. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10225. }
  10226. break;
  10227. case GGML_OP_NONE:
  10228. {
  10229. // nop
  10230. } break;
  10231. case GGML_OP_COUNT:
  10232. {
  10233. GGML_ASSERT(false);
  10234. } break;
  10235. }
  10236. }
  10237. ////////////////////////////////////////////////////////////////////////////////
  10238. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10239. struct ggml_tensor * src0 = tensor->src0;
  10240. struct ggml_tensor * src1 = tensor->src1;
  10241. switch (tensor->op) {
  10242. case GGML_OP_DUP:
  10243. {
  10244. if (src0->grad) {
  10245. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10246. }
  10247. } break;
  10248. case GGML_OP_ADD:
  10249. {
  10250. if (src0->grad) {
  10251. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10252. }
  10253. if (src1->grad) {
  10254. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10255. }
  10256. } break;
  10257. case GGML_OP_ADD1:
  10258. {
  10259. if (src0->grad) {
  10260. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10261. }
  10262. if (src1->grad) {
  10263. src1->grad = ggml_add_impl(ctx,
  10264. src1->grad,
  10265. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10266. inplace);
  10267. }
  10268. } break;
  10269. case GGML_OP_ACC:
  10270. {
  10271. if (src0->grad) {
  10272. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10273. }
  10274. if (src1->grad) {
  10275. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10276. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10277. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10278. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10279. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10280. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10281. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10282. tensor->grad,
  10283. src1->grad->ne[0],
  10284. src1->grad->ne[1],
  10285. src1->grad->ne[2],
  10286. src1->grad->ne[3],
  10287. nb1, nb2, nb3, offset);
  10288. src1->grad =
  10289. ggml_add_impl(ctx,
  10290. src1->grad,
  10291. ggml_reshape(ctx,
  10292. ggml_cont(ctx, tensor_grad_view),
  10293. src1->grad),
  10294. inplace);
  10295. }
  10296. } break;
  10297. case GGML_OP_SUB:
  10298. {
  10299. if (src0->grad) {
  10300. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10301. }
  10302. if (src1->grad) {
  10303. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10304. }
  10305. } break;
  10306. case GGML_OP_MUL:
  10307. {
  10308. if (src0->grad) {
  10309. src0->grad =
  10310. ggml_add_impl(ctx,
  10311. src0->grad,
  10312. ggml_mul(ctx, src1, tensor->grad),
  10313. inplace);
  10314. }
  10315. if (src1->grad) {
  10316. src1->grad =
  10317. ggml_add_impl(ctx,
  10318. src1->grad,
  10319. ggml_mul(ctx, src0, tensor->grad),
  10320. inplace);
  10321. }
  10322. } break;
  10323. case GGML_OP_DIV:
  10324. {
  10325. if (src0->grad) {
  10326. src0->grad =
  10327. ggml_add_impl(ctx,
  10328. src0->grad,
  10329. ggml_div(ctx, tensor->grad, src1),
  10330. inplace);
  10331. }
  10332. if (src1->grad) {
  10333. src1->grad =
  10334. ggml_sub_impl(ctx,
  10335. src1->grad,
  10336. ggml_mul(ctx,
  10337. tensor->grad,
  10338. ggml_div(ctx, tensor, src1)),
  10339. inplace);
  10340. }
  10341. } break;
  10342. case GGML_OP_SQR:
  10343. {
  10344. if (src0->grad) {
  10345. src0->grad =
  10346. ggml_add_impl(ctx,
  10347. src0->grad,
  10348. ggml_scale(ctx,
  10349. ggml_mul(ctx, src0, tensor->grad),
  10350. ggml_new_f32(ctx, 2.0f)),
  10351. inplace);
  10352. }
  10353. } break;
  10354. case GGML_OP_SQRT:
  10355. {
  10356. if (src0->grad) {
  10357. src0->grad =
  10358. ggml_add_impl(ctx,
  10359. src0->grad,
  10360. ggml_mul(ctx,
  10361. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10362. ggml_div(ctx,
  10363. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10364. tensor)),
  10365. inplace);
  10366. }
  10367. } break;
  10368. case GGML_OP_LOG:
  10369. {
  10370. if (src0->grad) {
  10371. src0->grad =
  10372. ggml_add_impl(ctx,
  10373. src0->grad,
  10374. ggml_div(ctx,
  10375. tensor->grad,
  10376. src0),
  10377. inplace);
  10378. }
  10379. } break;
  10380. case GGML_OP_SUM:
  10381. {
  10382. if (src0->grad) {
  10383. src0->grad =
  10384. ggml_add1_impl(ctx,
  10385. src0->grad,
  10386. tensor->grad,
  10387. inplace);
  10388. }
  10389. } break;
  10390. case GGML_OP_SUM_ROWS:
  10391. {
  10392. if (src0->grad) {
  10393. src0->grad =
  10394. ggml_add_impl(ctx,
  10395. src0->grad,
  10396. ggml_repeat(ctx,
  10397. tensor->grad,
  10398. src0->grad),
  10399. inplace);
  10400. }
  10401. } break;
  10402. case GGML_OP_MEAN:
  10403. {
  10404. GGML_ASSERT(false); // TODO: implement
  10405. } break;
  10406. case GGML_OP_REPEAT:
  10407. {
  10408. // necessary for llama
  10409. if (src0->grad) {
  10410. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10411. const int nc = tensor->ne[0];
  10412. const int nr = tensor->ne[1];
  10413. const int nc0 = src0->ne[0];
  10414. const int nr0 = src0->ne[1];
  10415. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10416. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10417. // tensor->grad [nc,nr,1,1]
  10418. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10419. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10420. // substitute [nc0,nr0,ncr,nrr]
  10421. // reshape [nc0*nr0,ncr*nrr,1,1]
  10422. // transpose [ncr*nrr,nc0*nr0,1,1]
  10423. // sum rows [1,nc0*nr0,1,1]
  10424. // transpose [nc0*nr0,1,1]
  10425. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10426. // add to src0->grad
  10427. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10428. struct ggml_tensor* F00 = tensor->grad;
  10429. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10430. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10431. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10432. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10433. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10434. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10435. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10436. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10437. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10438. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10439. src0->grad =
  10440. ggml_add_impl(ctx,
  10441. src0->grad,
  10442. F10,
  10443. inplace);
  10444. }
  10445. } break;
  10446. case GGML_OP_ABS:
  10447. {
  10448. if (src0->grad) {
  10449. src0->grad =
  10450. ggml_add_impl(ctx,
  10451. src0->grad,
  10452. ggml_mul(ctx,
  10453. ggml_sgn(ctx, src0),
  10454. tensor->grad),
  10455. inplace);
  10456. }
  10457. } break;
  10458. case GGML_OP_SGN:
  10459. {
  10460. if (src0->grad) {
  10461. // noop
  10462. }
  10463. } break;
  10464. case GGML_OP_NEG:
  10465. {
  10466. if (src0->grad) {
  10467. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10468. }
  10469. } break;
  10470. case GGML_OP_STEP:
  10471. {
  10472. if (src0->grad) {
  10473. // noop
  10474. }
  10475. } break;
  10476. case GGML_OP_RELU:
  10477. {
  10478. if (src0->grad) {
  10479. src0->grad = ggml_sub_impl(ctx,
  10480. src0->grad,
  10481. ggml_mul(ctx,
  10482. ggml_step(ctx, src0),
  10483. tensor->grad),
  10484. inplace);
  10485. }
  10486. } break;
  10487. case GGML_OP_GELU:
  10488. {
  10489. GGML_ASSERT(false); // TODO: not implemented
  10490. } break;
  10491. case GGML_OP_ALIBI:
  10492. {
  10493. GGML_ASSERT(false); // TODO: not implemented
  10494. } break;
  10495. case GGML_OP_SILU:
  10496. {
  10497. // necessary for llama
  10498. if (src0->grad) {
  10499. src0->grad = ggml_add_impl(ctx,
  10500. src0->grad,
  10501. ggml_silu_back(ctx, src0, tensor->grad),
  10502. inplace);
  10503. }
  10504. } break;
  10505. case GGML_OP_SILU_BACK:
  10506. {
  10507. GGML_ASSERT(false); // TODO: not implemented
  10508. } break;
  10509. case GGML_OP_NORM:
  10510. {
  10511. GGML_ASSERT(false); // TODO: not implemented
  10512. } break;
  10513. case GGML_OP_RMS_NORM:
  10514. {
  10515. // necessary for llama
  10516. if (src0->grad) {
  10517. src0->grad = ggml_add_impl(ctx,
  10518. src0->grad,
  10519. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10520. inplace);
  10521. }
  10522. } break;
  10523. case GGML_OP_RMS_NORM_BACK:
  10524. {
  10525. GGML_ASSERT(false); // TODO: not implemented
  10526. } break;
  10527. case GGML_OP_MUL_MAT:
  10528. {
  10529. // https://cs231n.github.io/optimization-2/#staged
  10530. // # forward pass
  10531. // s0 = np.random.randn(5, 10)
  10532. // s1 = np.random.randn(10, 3)
  10533. // t = s0.dot(s1)
  10534. // # now suppose we had the gradient on t from above in the circuit
  10535. // dt = np.random.randn(*t.shape) # same shape as t
  10536. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10537. // ds1 = t.T.dot(dt)
  10538. // tensor.shape [m,p]
  10539. // src0.shape [n,m]
  10540. // src1.shape [n,p]
  10541. // necessary for llama
  10542. if (src0->grad) {
  10543. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10544. src0->grad =
  10545. ggml_add_impl(ctx,
  10546. src0->grad,
  10547. // ds0 = dt.dot(s1.T)
  10548. // ggml_out_prod(ctx, // [n,m]
  10549. // src1, // [n,p]
  10550. // tensor->grad), // [m,p]
  10551. // for now just using A*B==(B.T*A.T).T
  10552. ggml_cont(ctx, // [n,m]
  10553. ggml_transpose(ctx, // [n,m]
  10554. ggml_mul_mat(ctx, // [m,n]
  10555. ggml_cont(ctx, // [p,m]
  10556. ggml_transpose(ctx, // [p,m]
  10557. tensor->grad)), // [m,p]
  10558. ggml_cont(ctx, // [p,n]
  10559. ggml_transpose(ctx, // [p,n]
  10560. src1))))), // [n,p]
  10561. inplace);
  10562. }
  10563. if (src1->grad) {
  10564. src1->grad =
  10565. ggml_add_impl(ctx,
  10566. src1->grad,
  10567. // ds1 = s0.T.dot(dt):
  10568. ggml_mul_mat(ctx, // [n,p]
  10569. ggml_cont(ctx, // [m,n]
  10570. ggml_transpose(ctx, src0)), // [m,n]
  10571. tensor->grad), // [m,p]
  10572. inplace);
  10573. }
  10574. } break;
  10575. case GGML_OP_SCALE:
  10576. {
  10577. // necessary for llama
  10578. if (src0->grad) {
  10579. src0->grad =
  10580. ggml_add_impl(ctx,
  10581. src0->grad,
  10582. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10583. inplace);
  10584. }
  10585. if (src1->grad) {
  10586. src1->grad =
  10587. ggml_add_impl(ctx,
  10588. src1->grad,
  10589. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10590. inplace);
  10591. }
  10592. } break;
  10593. case GGML_OP_SET:
  10594. {
  10595. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10596. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10597. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10598. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10599. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10600. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10601. struct ggml_tensor * tensor_grad_view = NULL;
  10602. if (src0->grad || src1->grad) {
  10603. GGML_ASSERT(src0->type == tensor->type);
  10604. GGML_ASSERT(tensor->grad->type == tensor->type);
  10605. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10606. tensor_grad_view = ggml_view_4d(ctx,
  10607. tensor->grad,
  10608. src1->grad->ne[0],
  10609. src1->grad->ne[1],
  10610. src1->grad->ne[2],
  10611. src1->grad->ne[3],
  10612. nb1, nb2, nb3, offset);
  10613. }
  10614. if (src0->grad) {
  10615. src0->grad = ggml_add_impl(ctx,
  10616. src0->grad,
  10617. ggml_acc_impl(ctx,
  10618. tensor->grad,
  10619. ggml_neg(ctx, tensor_grad_view),
  10620. nb1, nb2, nb3, offset, false),
  10621. inplace);
  10622. }
  10623. if (src1->grad) {
  10624. src1->grad =
  10625. ggml_add_impl(ctx,
  10626. src1->grad,
  10627. ggml_reshape(ctx,
  10628. ggml_cont(ctx, tensor_grad_view),
  10629. src1->grad),
  10630. inplace);
  10631. }
  10632. } break;
  10633. case GGML_OP_CPY:
  10634. {
  10635. // necessary for llama
  10636. // cpy overwrites value of src1 by src0 and returns view(src1)
  10637. // the overwriting is mathematically equivalent to:
  10638. // tensor = src0 * 1 + src1 * 0
  10639. if (src0->grad) {
  10640. // dsrc0 = dtensor * 1
  10641. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10642. }
  10643. if (src1->grad) {
  10644. // dsrc1 = dtensor * 0 -> noop
  10645. }
  10646. } break;
  10647. case GGML_OP_CONT:
  10648. {
  10649. // same as cpy
  10650. if (src0->grad) {
  10651. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10652. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10653. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10654. }
  10655. } break;
  10656. case GGML_OP_RESHAPE:
  10657. {
  10658. // necessary for llama
  10659. if (src0->grad) {
  10660. src0->grad =
  10661. ggml_add_impl(ctx, src0->grad,
  10662. ggml_reshape(ctx, tensor->grad, src0->grad),
  10663. inplace);
  10664. }
  10665. } break;
  10666. case GGML_OP_VIEW:
  10667. {
  10668. // necessary for llama
  10669. if (src0->grad) {
  10670. size_t offset;
  10671. memcpy(&offset, tensor->padding, sizeof(offset));
  10672. size_t nb1 = tensor->nb[1];
  10673. size_t nb2 = tensor->nb[2];
  10674. size_t nb3 = tensor->nb[3];
  10675. if (src0->type != src0->grad->type) {
  10676. // gradient is typically F32, but src0 could be other type
  10677. size_t ng = ggml_element_size(src0->grad);
  10678. size_t n0 = ggml_element_size(src0);
  10679. GGML_ASSERT(offset % n0 == 0);
  10680. GGML_ASSERT(nb1 % n0 == 0);
  10681. GGML_ASSERT(nb2 % n0 == 0);
  10682. GGML_ASSERT(nb3 % n0 == 0);
  10683. offset = (offset / n0) * ng;
  10684. nb1 = (nb1 / n0) * ng;
  10685. nb2 = (nb2 / n0) * ng;
  10686. nb3 = (nb3 / n0) * ng;
  10687. }
  10688. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  10689. }
  10690. } break;
  10691. case GGML_OP_PERMUTE:
  10692. {
  10693. // necessary for llama
  10694. if (src0->grad) {
  10695. int axis0 = tensor->padding[0] & 0x3;
  10696. int axis1 = tensor->padding[1] & 0x3;
  10697. int axis2 = tensor->padding[2] & 0x3;
  10698. int axis3 = tensor->padding[3] & 0x3;
  10699. int axes_backward[4] = {0,0,0,0};
  10700. axes_backward[axis0] = 0;
  10701. axes_backward[axis1] = 1;
  10702. axes_backward[axis2] = 2;
  10703. axes_backward[axis3] = 3;
  10704. src0->grad =
  10705. ggml_add_impl(ctx, src0->grad,
  10706. ggml_permute(ctx,
  10707. tensor->grad,
  10708. axes_backward[0],
  10709. axes_backward[1],
  10710. axes_backward[2],
  10711. axes_backward[3]),
  10712. inplace);
  10713. }
  10714. } break;
  10715. case GGML_OP_TRANSPOSE:
  10716. {
  10717. // necessary for llama
  10718. if (src0->grad) {
  10719. src0->grad =
  10720. ggml_add_impl(ctx, src0->grad,
  10721. ggml_transpose(ctx, tensor->grad),
  10722. inplace);
  10723. }
  10724. } break;
  10725. case GGML_OP_GET_ROWS:
  10726. {
  10727. // necessary for llama (only for tokenizer)
  10728. if (src0->grad) {
  10729. src0->grad =
  10730. ggml_add_impl(ctx, src0->grad,
  10731. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  10732. inplace);
  10733. }
  10734. if (src1->grad) {
  10735. // noop
  10736. }
  10737. } break;
  10738. case GGML_OP_GET_ROWS_BACK:
  10739. {
  10740. GGML_ASSERT(false); // TODO: not implemented
  10741. } break;
  10742. case GGML_OP_DIAG:
  10743. {
  10744. GGML_ASSERT(false); // TODO: not implemented
  10745. } break;
  10746. case GGML_OP_DIAG_MASK_INF:
  10747. {
  10748. // necessary for llama
  10749. if (src0->grad) {
  10750. assert(src1->type == GGML_TYPE_I32);
  10751. assert(ggml_nelements(src1) == 2);
  10752. const int n_past = ((int32_t *) src1->data)[0];
  10753. src0->grad =
  10754. ggml_add_impl(ctx, src0->grad,
  10755. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10756. inplace);
  10757. }
  10758. if (src1->grad) {
  10759. // noop
  10760. }
  10761. } break;
  10762. case GGML_OP_DIAG_MASK_ZERO:
  10763. {
  10764. // necessary for llama
  10765. if (src0->grad) {
  10766. assert(src1->type == GGML_TYPE_I32);
  10767. assert(ggml_nelements(src1) == 2);
  10768. const int n_past = ((int32_t *) src1->data)[0];
  10769. src0->grad =
  10770. ggml_add_impl(ctx, src0->grad,
  10771. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10772. inplace);
  10773. }
  10774. if (src1->grad) {
  10775. // noop
  10776. }
  10777. } break;
  10778. case GGML_OP_SOFT_MAX:
  10779. {
  10780. // necessary for llama
  10781. if (src0->grad) {
  10782. // y = softmax(x)
  10783. //
  10784. // Jii = yi - yi*yi
  10785. // Jij = -yi*yj
  10786. // J = diag(y)-y.*y
  10787. // dx = J * dy
  10788. // dxk = sum(Jkj * dyk)
  10789. int64_t ne2[4] = {
  10790. tensor->ne[0],
  10791. 1,
  10792. tensor->ne[1]*tensor->ne[2],
  10793. tensor->ne[3]
  10794. };
  10795. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  10796. ggml_reshape_4d(ctx,
  10797. ggml_cont(ctx, tensor),
  10798. ne2[0], ne2[1], ne2[2], ne2[3]));
  10799. struct ggml_tensor * grad2 = ggml_cont(ctx,
  10800. ggml_reshape_4d(ctx,
  10801. ggml_cont(ctx, tensor->grad),
  10802. ne2[0], ne2[1], ne2[2], ne2[3]));
  10803. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  10804. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  10805. tensor2, // [ne0,1,ne1*ne2,ne3]
  10806. 1, 0, 2, 3));
  10807. src0->grad =
  10808. ggml_add_impl(ctx,
  10809. src0->grad, // [ne0,ne1,ne2,ne3]
  10810. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  10811. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  10812. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10813. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10814. tensor2), // [ne0,1,ne1*ne2,ne3]
  10815. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  10816. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  10817. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  10818. grad2), // [ne0,1,ne1*ne2,ne3]
  10819. src0->grad),
  10820. inplace);
  10821. }
  10822. } break;
  10823. case GGML_OP_ROPE:
  10824. {
  10825. // necessary for llama
  10826. if (src0->grad) {
  10827. assert(src1->type == GGML_TYPE_I32);
  10828. assert(ggml_nelements(src1) == 3);
  10829. const int n_past = ((int32_t *) src1->data)[0];
  10830. const int n_dims = ((int32_t *) src1->data)[1];
  10831. const int mode = ((int32_t *) src1->data)[2];
  10832. src0->grad = ggml_add_impl(ctx,
  10833. src0->grad,
  10834. ggml_rope_back(ctx,
  10835. tensor->grad,
  10836. n_past,
  10837. n_dims,
  10838. mode),
  10839. inplace);
  10840. }
  10841. if (src1->grad) {
  10842. // noop
  10843. }
  10844. } break;
  10845. case GGML_OP_ROPE_BACK:
  10846. {
  10847. if (src0->grad) {
  10848. assert(src1->type == GGML_TYPE_I32);
  10849. assert(ggml_nelements(src1) == 3);
  10850. const int n_past = ((int32_t *) src1->data)[0];
  10851. const int n_dims = ((int32_t *) src1->data)[1];
  10852. const int mode = ((int32_t *) src1->data)[2];
  10853. src0->grad = ggml_add_impl(ctx,
  10854. src0->grad,
  10855. ggml_rope(ctx,
  10856. tensor->grad,
  10857. n_past,
  10858. n_dims,
  10859. mode),
  10860. inplace);
  10861. }
  10862. if (src1->grad) {
  10863. // noop
  10864. }
  10865. } break;
  10866. case GGML_OP_CONV_1D_1S:
  10867. {
  10868. GGML_ASSERT(false); // TODO: not implemented
  10869. } break;
  10870. case GGML_OP_CONV_1D_2S:
  10871. {
  10872. GGML_ASSERT(false); // TODO: not implemented
  10873. } break;
  10874. case GGML_OP_FLASH_ATTN:
  10875. {
  10876. GGML_ASSERT(false); // not supported
  10877. } break;
  10878. case GGML_OP_FLASH_FF:
  10879. {
  10880. GGML_ASSERT(false); // not supported
  10881. } break;
  10882. case GGML_OP_MAP_UNARY:
  10883. case GGML_OP_MAP_BINARY:
  10884. {
  10885. GGML_ASSERT(false); // not supported
  10886. } break;
  10887. case GGML_OP_NONE:
  10888. {
  10889. // nop
  10890. } break;
  10891. case GGML_OP_COUNT:
  10892. {
  10893. GGML_ASSERT(false);
  10894. } break;
  10895. }
  10896. }
  10897. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  10898. if (node->grad == NULL) {
  10899. // this usually happens when we generate intermediate nodes from constants in the backward pass
  10900. // it can also happen during forward pass, if the user performs computations with constants
  10901. if (node->op != GGML_OP_NONE) {
  10902. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  10903. }
  10904. }
  10905. // check if already visited
  10906. for (int i = 0; i < cgraph->n_nodes; i++) {
  10907. if (cgraph->nodes[i] == node) {
  10908. return;
  10909. }
  10910. }
  10911. for (int i = 0; i < cgraph->n_leafs; i++) {
  10912. if (cgraph->leafs[i] == node) {
  10913. return;
  10914. }
  10915. }
  10916. if (node->src0) {
  10917. ggml_visit_parents(cgraph, node->src0);
  10918. }
  10919. if (node->src1) {
  10920. ggml_visit_parents(cgraph, node->src1);
  10921. }
  10922. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  10923. if (node->opt[i]) {
  10924. ggml_visit_parents(cgraph, node->opt[i]);
  10925. }
  10926. }
  10927. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  10928. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  10929. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  10930. cgraph->leafs[cgraph->n_leafs] = node;
  10931. cgraph->n_leafs++;
  10932. } else {
  10933. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  10934. cgraph->nodes[cgraph->n_nodes] = node;
  10935. cgraph->grads[cgraph->n_nodes] = node->grad;
  10936. cgraph->n_nodes++;
  10937. }
  10938. }
  10939. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  10940. if (!expand) {
  10941. cgraph->n_nodes = 0;
  10942. cgraph->n_leafs = 0;
  10943. }
  10944. const int n0 = cgraph->n_nodes;
  10945. UNUSED(n0);
  10946. ggml_visit_parents(cgraph, tensor);
  10947. const int n_new = cgraph->n_nodes - n0;
  10948. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  10949. if (n_new > 0) {
  10950. // the last added node should always be starting point
  10951. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  10952. }
  10953. }
  10954. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  10955. ggml_build_forward_impl(cgraph, tensor, true);
  10956. }
  10957. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  10958. struct ggml_cgraph result = {
  10959. /*.n_nodes =*/ 0,
  10960. /*.n_leafs =*/ 0,
  10961. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  10962. /*.work_size =*/ 0,
  10963. /*.work =*/ NULL,
  10964. /*.nodes =*/ { NULL },
  10965. /*.grads =*/ { NULL },
  10966. /*.leafs =*/ { NULL },
  10967. /*.perf_runs =*/ 0,
  10968. /*.perf_cycles =*/ 0,
  10969. /*.perf_time_us =*/ 0,
  10970. };
  10971. ggml_build_forward_impl(&result, tensor, false);
  10972. return result;
  10973. }
  10974. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  10975. struct ggml_cgraph result = *gf;
  10976. GGML_ASSERT(gf->n_nodes > 0);
  10977. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  10978. if (keep) {
  10979. for (int i = 0; i < gf->n_nodes; i++) {
  10980. struct ggml_tensor * node = gf->nodes[i];
  10981. if (node->grad) {
  10982. node->grad = ggml_dup_tensor(ctx, node);
  10983. gf->grads[i] = node->grad;
  10984. }
  10985. }
  10986. }
  10987. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  10988. struct ggml_tensor * node = gf->nodes[i];
  10989. // because we detached the grad nodes from the original graph, we can afford inplace operations
  10990. if (node->grad) {
  10991. ggml_compute_backward(ctx, node, keep);
  10992. }
  10993. }
  10994. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  10995. struct ggml_tensor * node = gf->nodes[i];
  10996. if (node->is_param) {
  10997. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  10998. ggml_build_forward_impl(&result, node->grad, true);
  10999. }
  11000. }
  11001. return result;
  11002. }
  11003. //
  11004. // thread data
  11005. //
  11006. // synchronization is done via busy loops
  11007. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11008. //
  11009. #ifdef __APPLE__
  11010. //#include <os/lock.h>
  11011. //
  11012. //typedef os_unfair_lock ggml_lock_t;
  11013. //
  11014. //#define ggml_lock_init(x) UNUSED(x)
  11015. //#define ggml_lock_destroy(x) UNUSED(x)
  11016. //#define ggml_lock_lock os_unfair_lock_lock
  11017. //#define ggml_lock_unlock os_unfair_lock_unlock
  11018. //
  11019. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11020. typedef int ggml_lock_t;
  11021. #define ggml_lock_init(x) UNUSED(x)
  11022. #define ggml_lock_destroy(x) UNUSED(x)
  11023. #define ggml_lock_lock(x) UNUSED(x)
  11024. #define ggml_lock_unlock(x) UNUSED(x)
  11025. #define GGML_LOCK_INITIALIZER 0
  11026. typedef pthread_t ggml_thread_t;
  11027. #define ggml_thread_create pthread_create
  11028. #define ggml_thread_join pthread_join
  11029. #else
  11030. //typedef pthread_spinlock_t ggml_lock_t;
  11031. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11032. //#define ggml_lock_destroy pthread_spin_destroy
  11033. //#define ggml_lock_lock pthread_spin_lock
  11034. //#define ggml_lock_unlock pthread_spin_unlock
  11035. typedef int ggml_lock_t;
  11036. #define ggml_lock_init(x) UNUSED(x)
  11037. #define ggml_lock_destroy(x) UNUSED(x)
  11038. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11039. #define ggml_lock_lock(x) _mm_pause()
  11040. #else
  11041. #define ggml_lock_lock(x) UNUSED(x)
  11042. #endif
  11043. #define ggml_lock_unlock(x) UNUSED(x)
  11044. #define GGML_LOCK_INITIALIZER 0
  11045. typedef pthread_t ggml_thread_t;
  11046. #define ggml_thread_create pthread_create
  11047. #define ggml_thread_join pthread_join
  11048. #endif
  11049. struct ggml_compute_state_shared {
  11050. ggml_lock_t spin;
  11051. int n_threads;
  11052. // synchronization primitives
  11053. atomic_int n_ready;
  11054. atomic_bool has_work;
  11055. atomic_bool stop; // stop all threads
  11056. };
  11057. struct ggml_compute_state {
  11058. ggml_thread_t thrd;
  11059. struct ggml_compute_params params;
  11060. struct ggml_tensor * node;
  11061. struct ggml_compute_state_shared * shared;
  11062. };
  11063. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11064. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11065. const int n_threads = state->shared->n_threads;
  11066. while (true) {
  11067. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11068. atomic_store(&state->shared->has_work, false);
  11069. } else {
  11070. while (atomic_load(&state->shared->has_work)) {
  11071. if (atomic_load(&state->shared->stop)) {
  11072. return 0;
  11073. }
  11074. ggml_lock_lock (&state->shared->spin);
  11075. ggml_lock_unlock(&state->shared->spin);
  11076. }
  11077. }
  11078. atomic_fetch_sub(&state->shared->n_ready, 1);
  11079. // wait for work
  11080. while (!atomic_load(&state->shared->has_work)) {
  11081. if (atomic_load(&state->shared->stop)) {
  11082. return 0;
  11083. }
  11084. ggml_lock_lock (&state->shared->spin);
  11085. ggml_lock_unlock(&state->shared->spin);
  11086. }
  11087. // check if we should stop
  11088. if (atomic_load(&state->shared->stop)) {
  11089. break;
  11090. }
  11091. if (state->node) {
  11092. if (state->params.ith < state->params.nth) {
  11093. ggml_compute_forward(&state->params, state->node);
  11094. }
  11095. state->node = NULL;
  11096. } else {
  11097. break;
  11098. }
  11099. }
  11100. return 0;
  11101. }
  11102. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11103. const int n_threads = cgraph->n_threads;
  11104. struct ggml_compute_state_shared state_shared = {
  11105. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11106. /*.n_threads =*/ n_threads,
  11107. /*.n_ready =*/ 0,
  11108. /*.has_work =*/ false,
  11109. /*.stop =*/ false,
  11110. };
  11111. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11112. // create thread pool
  11113. if (n_threads > 1) {
  11114. ggml_lock_init(&state_shared.spin);
  11115. atomic_store(&state_shared.has_work, true);
  11116. for (int j = 0; j < n_threads - 1; j++) {
  11117. workers[j] = (struct ggml_compute_state) {
  11118. .thrd = 0,
  11119. .params = {
  11120. .type = GGML_TASK_COMPUTE,
  11121. .ith = j + 1,
  11122. .nth = n_threads,
  11123. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11124. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11125. },
  11126. .node = NULL,
  11127. .shared = &state_shared,
  11128. };
  11129. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11130. GGML_ASSERT(rc == 0);
  11131. UNUSED(rc);
  11132. }
  11133. }
  11134. // initialize tasks + work buffer
  11135. {
  11136. size_t work_size = 0;
  11137. // thread scheduling for the different operations
  11138. for (int i = 0; i < cgraph->n_nodes; i++) {
  11139. struct ggml_tensor * node = cgraph->nodes[i];
  11140. switch (node->op) {
  11141. case GGML_OP_CPY:
  11142. case GGML_OP_DUP:
  11143. {
  11144. node->n_tasks = n_threads;
  11145. size_t cur = 0;
  11146. if (ggml_is_quantized(node->type)) {
  11147. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11148. }
  11149. work_size = MAX(work_size, cur);
  11150. } break;
  11151. case GGML_OP_ADD:
  11152. case GGML_OP_ADD1:
  11153. {
  11154. node->n_tasks = n_threads;
  11155. size_t cur = 0;
  11156. if (ggml_is_quantized(node->src0->type)) {
  11157. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11158. }
  11159. work_size = MAX(work_size, cur);
  11160. } break;
  11161. case GGML_OP_ACC:
  11162. {
  11163. node->n_tasks = n_threads;
  11164. size_t cur = 0;
  11165. if (ggml_is_quantized(node->src0->type)) {
  11166. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11167. }
  11168. work_size = MAX(work_size, cur);
  11169. } break;
  11170. case GGML_OP_SUB:
  11171. case GGML_OP_DIV:
  11172. case GGML_OP_SQR:
  11173. case GGML_OP_SQRT:
  11174. case GGML_OP_LOG:
  11175. case GGML_OP_SUM:
  11176. case GGML_OP_SUM_ROWS:
  11177. case GGML_OP_MEAN:
  11178. case GGML_OP_REPEAT:
  11179. case GGML_OP_ABS:
  11180. case GGML_OP_SGN:
  11181. case GGML_OP_NEG:
  11182. case GGML_OP_STEP:
  11183. case GGML_OP_RELU:
  11184. {
  11185. node->n_tasks = 1;
  11186. } break;
  11187. case GGML_OP_MUL:
  11188. case GGML_OP_GELU:
  11189. case GGML_OP_SILU:
  11190. case GGML_OP_SILU_BACK:
  11191. case GGML_OP_NORM:
  11192. case GGML_OP_RMS_NORM:
  11193. case GGML_OP_RMS_NORM_BACK:
  11194. {
  11195. node->n_tasks = n_threads;
  11196. } break;
  11197. case GGML_OP_MUL_MAT:
  11198. {
  11199. node->n_tasks = n_threads;
  11200. // TODO: use different scheduling for different matrix sizes
  11201. //const int nr0 = ggml_nrows(node->src0);
  11202. //const int nr1 = ggml_nrows(node->src1);
  11203. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11204. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11205. size_t cur = 0;
  11206. #if defined(GGML_USE_CUBLAS)
  11207. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11208. node->n_tasks = 1; // TODO: this actually is doing nothing
  11209. // the threads are still spinning
  11210. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11211. }
  11212. else
  11213. #endif
  11214. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11215. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11216. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11217. node->n_tasks = 1; // TODO: this actually is doing nothing
  11218. // the threads are still spinning
  11219. // here we need memory just for single 2D matrix from src0
  11220. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11221. } else {
  11222. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11223. }
  11224. #else
  11225. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11226. #endif
  11227. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11228. cur = 0;
  11229. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11230. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11231. node->n_tasks = 1;
  11232. }
  11233. #endif
  11234. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11235. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11236. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11237. node->n_tasks = 1;
  11238. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11239. } else
  11240. #endif
  11241. {
  11242. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11243. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11244. }
  11245. } else {
  11246. GGML_ASSERT(false);
  11247. }
  11248. work_size = MAX(work_size, cur);
  11249. } break;
  11250. case GGML_OP_SCALE:
  11251. {
  11252. node->n_tasks = n_threads;
  11253. } break;
  11254. case GGML_OP_SET:
  11255. case GGML_OP_CONT:
  11256. case GGML_OP_RESHAPE:
  11257. case GGML_OP_VIEW:
  11258. case GGML_OP_PERMUTE:
  11259. case GGML_OP_TRANSPOSE:
  11260. case GGML_OP_GET_ROWS:
  11261. case GGML_OP_GET_ROWS_BACK:
  11262. case GGML_OP_DIAG:
  11263. case GGML_OP_DIAG_MASK_ZERO:
  11264. {
  11265. node->n_tasks = 1;
  11266. } break;
  11267. case GGML_OP_DIAG_MASK_INF:
  11268. case GGML_OP_SOFT_MAX:
  11269. case GGML_OP_ROPE:
  11270. case GGML_OP_ROPE_BACK:
  11271. {
  11272. node->n_tasks = n_threads;
  11273. } break;
  11274. case GGML_OP_ALIBI:
  11275. {
  11276. node->n_tasks = 1; //TODO
  11277. } break;
  11278. case GGML_OP_CONV_1D_1S:
  11279. case GGML_OP_CONV_1D_2S:
  11280. {
  11281. node->n_tasks = n_threads;
  11282. GGML_ASSERT(node->src0->ne[3] == 1);
  11283. GGML_ASSERT(node->src1->ne[2] == 1);
  11284. GGML_ASSERT(node->src1->ne[3] == 1);
  11285. size_t cur = 0;
  11286. const int nk = node->src0->ne[0];
  11287. if (node->src0->type == GGML_TYPE_F16 &&
  11288. node->src1->type == GGML_TYPE_F32) {
  11289. cur = sizeof(ggml_fp16_t)*(
  11290. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11291. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11292. );
  11293. } else if (node->src0->type == GGML_TYPE_F32 &&
  11294. node->src1->type == GGML_TYPE_F32) {
  11295. cur = sizeof(float)*(
  11296. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11297. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11298. );
  11299. } else {
  11300. GGML_ASSERT(false);
  11301. }
  11302. work_size = MAX(work_size, cur);
  11303. } break;
  11304. case GGML_OP_FLASH_ATTN:
  11305. {
  11306. node->n_tasks = n_threads;
  11307. size_t cur = 0;
  11308. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11309. if (node->src1->type == GGML_TYPE_F32) {
  11310. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11311. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11312. }
  11313. if (node->src1->type == GGML_TYPE_F16) {
  11314. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11315. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11316. }
  11317. work_size = MAX(work_size, cur);
  11318. } break;
  11319. case GGML_OP_FLASH_FF:
  11320. {
  11321. node->n_tasks = n_threads;
  11322. size_t cur = 0;
  11323. if (node->src1->type == GGML_TYPE_F32) {
  11324. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11325. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11326. }
  11327. if (node->src1->type == GGML_TYPE_F16) {
  11328. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11329. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11330. }
  11331. work_size = MAX(work_size, cur);
  11332. } break;
  11333. case GGML_OP_MAP_UNARY:
  11334. case GGML_OP_MAP_BINARY:
  11335. {
  11336. node->n_tasks = 1;
  11337. } break;
  11338. case GGML_OP_NONE:
  11339. {
  11340. node->n_tasks = 1;
  11341. } break;
  11342. case GGML_OP_COUNT:
  11343. {
  11344. GGML_ASSERT(false);
  11345. } break;
  11346. }
  11347. }
  11348. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11349. GGML_ASSERT(false); // TODO: better handling
  11350. }
  11351. if (work_size > 0 && cgraph->work == NULL) {
  11352. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11353. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11354. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11355. }
  11356. }
  11357. const int64_t perf_start_cycles = ggml_perf_cycles();
  11358. const int64_t perf_start_time_us = ggml_perf_time_us();
  11359. for (int i = 0; i < cgraph->n_nodes; i++) {
  11360. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11361. struct ggml_tensor * node = cgraph->nodes[i];
  11362. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11363. //if (node->grad == NULL && node->perf_runs > 0) {
  11364. // continue;
  11365. //}
  11366. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11367. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11368. // INIT
  11369. struct ggml_compute_params params = {
  11370. /*.type =*/ GGML_TASK_INIT,
  11371. /*.ith =*/ 0,
  11372. /*.nth =*/ node->n_tasks,
  11373. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11374. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11375. };
  11376. ggml_compute_forward(&params, node);
  11377. // COMPUTE
  11378. if (node->n_tasks > 1) {
  11379. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11380. atomic_store(&state_shared.has_work, false);
  11381. }
  11382. while (atomic_load(&state_shared.has_work)) {
  11383. ggml_lock_lock (&state_shared.spin);
  11384. ggml_lock_unlock(&state_shared.spin);
  11385. }
  11386. // launch thread pool
  11387. for (int j = 0; j < n_threads - 1; j++) {
  11388. workers[j].params = (struct ggml_compute_params) {
  11389. .type = GGML_TASK_COMPUTE,
  11390. .ith = j + 1,
  11391. .nth = node->n_tasks,
  11392. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11393. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11394. };
  11395. workers[j].node = node;
  11396. }
  11397. atomic_fetch_sub(&state_shared.n_ready, 1);
  11398. while (atomic_load(&state_shared.n_ready) > 0) {
  11399. ggml_lock_lock (&state_shared.spin);
  11400. ggml_lock_unlock(&state_shared.spin);
  11401. }
  11402. atomic_store(&state_shared.has_work, true);
  11403. }
  11404. params.type = GGML_TASK_COMPUTE;
  11405. ggml_compute_forward(&params, node);
  11406. // wait for thread pool
  11407. if (node->n_tasks > 1) {
  11408. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11409. atomic_store(&state_shared.has_work, false);
  11410. }
  11411. while (atomic_load(&state_shared.has_work)) {
  11412. ggml_lock_lock (&state_shared.spin);
  11413. ggml_lock_unlock(&state_shared.spin);
  11414. }
  11415. atomic_fetch_sub(&state_shared.n_ready, 1);
  11416. while (atomic_load(&state_shared.n_ready) != 0) {
  11417. ggml_lock_lock (&state_shared.spin);
  11418. ggml_lock_unlock(&state_shared.spin);
  11419. }
  11420. }
  11421. // FINALIZE
  11422. if (node->n_tasks > 1) {
  11423. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11424. atomic_store(&state_shared.has_work, false);
  11425. }
  11426. while (atomic_load(&state_shared.has_work)) {
  11427. ggml_lock_lock (&state_shared.spin);
  11428. ggml_lock_unlock(&state_shared.spin);
  11429. }
  11430. // launch thread pool
  11431. for (int j = 0; j < n_threads - 1; j++) {
  11432. workers[j].params = (struct ggml_compute_params) {
  11433. .type = GGML_TASK_FINALIZE,
  11434. .ith = j + 1,
  11435. .nth = node->n_tasks,
  11436. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11437. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11438. };
  11439. workers[j].node = node;
  11440. }
  11441. atomic_fetch_sub(&state_shared.n_ready, 1);
  11442. while (atomic_load(&state_shared.n_ready) > 0) {
  11443. ggml_lock_lock (&state_shared.spin);
  11444. ggml_lock_unlock(&state_shared.spin);
  11445. }
  11446. atomic_store(&state_shared.has_work, true);
  11447. }
  11448. params.type = GGML_TASK_FINALIZE;
  11449. ggml_compute_forward(&params, node);
  11450. // wait for thread pool
  11451. if (node->n_tasks > 1) {
  11452. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11453. atomic_store(&state_shared.has_work, false);
  11454. }
  11455. while (atomic_load(&state_shared.has_work)) {
  11456. ggml_lock_lock (&state_shared.spin);
  11457. ggml_lock_unlock(&state_shared.spin);
  11458. }
  11459. atomic_fetch_sub(&state_shared.n_ready, 1);
  11460. while (atomic_load(&state_shared.n_ready) != 0) {
  11461. ggml_lock_lock (&state_shared.spin);
  11462. ggml_lock_unlock(&state_shared.spin);
  11463. }
  11464. }
  11465. // performance stats (node)
  11466. {
  11467. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11468. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11469. node->perf_runs++;
  11470. node->perf_cycles += perf_cycles_cur;
  11471. node->perf_time_us += perf_time_us_cur;
  11472. }
  11473. }
  11474. // join thread pool
  11475. if (n_threads > 1) {
  11476. atomic_store(&state_shared.stop, true);
  11477. atomic_store(&state_shared.has_work, true);
  11478. for (int j = 0; j < n_threads - 1; j++) {
  11479. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11480. GGML_ASSERT(rc == 0);
  11481. UNUSED(rc);
  11482. }
  11483. ggml_lock_destroy(&state_shared.spin);
  11484. }
  11485. // performance stats (graph)
  11486. {
  11487. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11488. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11489. cgraph->perf_runs++;
  11490. cgraph->perf_cycles += perf_cycles_cur;
  11491. cgraph->perf_time_us += perf_time_us_cur;
  11492. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11493. __func__, cgraph->perf_runs,
  11494. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11495. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11496. (double) perf_time_us_cur / 1000.0,
  11497. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11498. }
  11499. }
  11500. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11501. for (int i = 0; i < cgraph->n_nodes; i++) {
  11502. struct ggml_tensor * grad = cgraph->grads[i];
  11503. if (grad) {
  11504. ggml_set_zero(grad);
  11505. }
  11506. }
  11507. }
  11508. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11509. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11510. GGML_PRINT("=== GRAPH ===\n");
  11511. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11512. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11513. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11514. for (int i = 0; i < cgraph->n_nodes; i++) {
  11515. struct ggml_tensor * node = cgraph->nodes[i];
  11516. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11517. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11518. i,
  11519. node->ne[0], node->ne[1], node->ne[2],
  11520. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11521. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11522. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11523. (double) node->perf_time_us / 1000.0,
  11524. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11525. }
  11526. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11527. for (int i = 0; i < cgraph->n_leafs; i++) {
  11528. struct ggml_tensor * node = cgraph->leafs[i];
  11529. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11530. i,
  11531. node->ne[0], node->ne[1],
  11532. GGML_OP_LABEL[node->op]);
  11533. }
  11534. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11535. if (perf_total_per_op_us[i] == 0) {
  11536. continue;
  11537. }
  11538. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11539. }
  11540. GGML_PRINT("========================================\n");
  11541. }
  11542. // check if node is part of the graph
  11543. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11544. if (cgraph == NULL) {
  11545. return true;
  11546. }
  11547. for (int i = 0; i < cgraph->n_nodes; i++) {
  11548. if (cgraph->nodes[i] == node) {
  11549. return true;
  11550. }
  11551. }
  11552. return false;
  11553. }
  11554. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11555. for (int i = 0; i < cgraph->n_nodes; i++) {
  11556. struct ggml_tensor * parent = cgraph->nodes[i];
  11557. if (parent->grad == node) {
  11558. return parent;
  11559. }
  11560. }
  11561. return NULL;
  11562. }
  11563. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11564. char color[16];
  11565. FILE * fp = fopen(filename, "w");
  11566. GGML_ASSERT(fp);
  11567. fprintf(fp, "digraph G {\n");
  11568. fprintf(fp, " newrank = true;\n");
  11569. fprintf(fp, " rankdir = LR;\n");
  11570. for (int i = 0; i < gb->n_nodes; i++) {
  11571. struct ggml_tensor * node = gb->nodes[i];
  11572. if (ggml_graph_get_parent(gb, node) != NULL) {
  11573. continue;
  11574. }
  11575. if (node->is_param) {
  11576. snprintf(color, sizeof(color), "yellow");
  11577. } else if (node->grad) {
  11578. if (ggml_graph_find(gf, node)) {
  11579. snprintf(color, sizeof(color), "green");
  11580. } else {
  11581. snprintf(color, sizeof(color), "lightblue");
  11582. }
  11583. } else {
  11584. snprintf(color, sizeof(color), "white");
  11585. }
  11586. fprintf(fp, " \"%p\" [ "
  11587. "style = filled; fillcolor = %s; shape = record; "
  11588. "label=\"",
  11589. (void *) node, color);
  11590. if (strlen(node->name) > 0) {
  11591. fprintf(fp, "%s |", node->name);
  11592. }
  11593. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11594. i, node->ne[0], node->ne[1],
  11595. GGML_OP_SYMBOL[node->op]);
  11596. if (node->grad) {
  11597. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11598. } else {
  11599. fprintf(fp, "\"; ]\n");
  11600. }
  11601. }
  11602. for (int i = 0; i < gb->n_leafs; i++) {
  11603. struct ggml_tensor * node = gb->leafs[i];
  11604. snprintf(color, sizeof(color), "pink");
  11605. fprintf(fp, " \"%p\" [ "
  11606. "style = filled; fillcolor = %s; shape = record; "
  11607. "label=\"<x>",
  11608. (void *) node, color);
  11609. if (strlen(node->name) > 0) {
  11610. fprintf(fp, "%s | ", node->name);
  11611. }
  11612. if (ggml_nelements(node) == 1) {
  11613. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11614. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11615. }
  11616. else {
  11617. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11618. }
  11619. }
  11620. else {
  11621. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11622. }
  11623. fprintf(fp, "\"; ]\n");
  11624. }
  11625. for (int i = 0; i < gb->n_nodes; i++) {
  11626. struct ggml_tensor * node = gb->nodes[i];
  11627. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11628. if (node->src0) {
  11629. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11630. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11631. parent0 ? (void *) parent0 : (void *) node->src0,
  11632. parent0 ? "g" : "x",
  11633. parent ? (void *) parent : (void *) node,
  11634. parent ? "g" : "x",
  11635. parent ? "empty" : "vee",
  11636. parent ? "dashed" : "solid");
  11637. }
  11638. if (node->src1) {
  11639. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11640. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11641. parent1 ? (void *) parent1 : (void *) node->src1,
  11642. parent1 ? "g" : "x",
  11643. parent ? (void *) parent : (void *) node,
  11644. parent ? "g" : "x",
  11645. parent ? "empty" : "vee",
  11646. parent ? "dashed" : "solid");
  11647. }
  11648. }
  11649. for (int i = 0; i < gb->n_leafs; i++) {
  11650. struct ggml_tensor * node = gb->leafs[i];
  11651. if (node->src0) {
  11652. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11653. (void *) node->src0, "x",
  11654. (void *) node, "x");
  11655. }
  11656. if (node->src1) {
  11657. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11658. (void *) node->src1, "x",
  11659. (void *) node, "x");
  11660. }
  11661. }
  11662. fprintf(fp, "}\n");
  11663. fclose(fp);
  11664. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  11665. }
  11666. ////////////////////////////////////////////////////////////////////////////////
  11667. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  11668. int i = 0;
  11669. for (int p = 0; p < np; ++p) {
  11670. const int64_t ne = ggml_nelements(ps[p]) ;
  11671. // TODO: add function to set tensor from array
  11672. for (int64_t j = 0; j < ne; ++j) {
  11673. ggml_set_f32_1d(ps[p], j, x[i++]);
  11674. }
  11675. }
  11676. }
  11677. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  11678. int i = 0;
  11679. for (int p = 0; p < np; ++p) {
  11680. const int64_t ne = ggml_nelements(ps[p]) ;
  11681. // TODO: add function to get all elements at once
  11682. for (int64_t j = 0; j < ne; ++j) {
  11683. x[i++] = ggml_get_f32_1d(ps[p], j);
  11684. }
  11685. }
  11686. }
  11687. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  11688. int i = 0;
  11689. for (int p = 0; p < np; ++p) {
  11690. const int64_t ne = ggml_nelements(ps[p]) ;
  11691. // TODO: add function to get all elements at once
  11692. for (int64_t j = 0; j < ne; ++j) {
  11693. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  11694. }
  11695. }
  11696. }
  11697. //
  11698. // ADAM
  11699. //
  11700. // ref: https://arxiv.org/pdf/1412.6980.pdf
  11701. //
  11702. static enum ggml_opt_result ggml_opt_adam(
  11703. struct ggml_context * ctx,
  11704. struct ggml_opt_params params,
  11705. struct ggml_tensor * f,
  11706. struct ggml_cgraph * gf,
  11707. struct ggml_cgraph * gb) {
  11708. GGML_ASSERT(ggml_is_scalar(f));
  11709. gf->n_threads = params.n_threads;
  11710. gb->n_threads = params.n_threads;
  11711. // these will store the parameters we want to optimize
  11712. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11713. int np = 0;
  11714. int nx = 0;
  11715. for (int i = 0; i < gf->n_nodes; ++i) {
  11716. if (gf->nodes[i]->is_param) {
  11717. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11718. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11719. ps[np++] = gf->nodes[i];
  11720. nx += ggml_nelements(gf->nodes[i]);
  11721. }
  11722. }
  11723. // constants
  11724. const float alpha = params.adam.alpha;
  11725. const float beta1 = params.adam.beta1;
  11726. const float beta2 = params.adam.beta2;
  11727. const float eps = params.adam.eps;
  11728. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  11729. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  11730. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  11731. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  11732. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  11733. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  11734. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  11735. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11736. // initialize
  11737. ggml_vec_set_f32(nx, m, 0.0f);
  11738. ggml_vec_set_f32(nx, v, 0.0f);
  11739. // update view
  11740. ggml_opt_get_params(np, ps, x);
  11741. // compute the function value
  11742. ggml_graph_reset (gf);
  11743. ggml_set_f32 (f->grad, 1.0f);
  11744. ggml_graph_compute(ctx, gb);
  11745. float fx_prev = ggml_get_f32_1d(f, 0);
  11746. if (pf) {
  11747. pf[0] = fx_prev;
  11748. }
  11749. int n_no_improvement = 0;
  11750. float fx_best = fx_prev;
  11751. // run the optimizer
  11752. for (int t = 0; t < params.adam.n_iter; ++t) {
  11753. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  11754. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  11755. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  11756. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  11757. for (int i = 0; i < np; ++i) {
  11758. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  11759. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  11760. }
  11761. const int64_t t_start_wall = ggml_time_us();
  11762. const int64_t t_start_cpu = ggml_cycles();
  11763. UNUSED(t_start_wall);
  11764. UNUSED(t_start_cpu);
  11765. {
  11766. // update the gradient
  11767. ggml_opt_get_grad(np, ps, g1);
  11768. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  11769. ggml_vec_scale_f32(nx, m, beta1);
  11770. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  11771. // g2 = g1^2
  11772. ggml_vec_sqr_f32 (nx, g2, g1);
  11773. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  11774. ggml_vec_scale_f32(nx, v, beta2);
  11775. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  11776. // m^hat = m_t / (1 - beta1^t)
  11777. // v^hat = v_t / (1 - beta2^t)
  11778. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  11779. ggml_vec_cpy_f32 (nx, mh, m);
  11780. ggml_vec_cpy_f32 (nx, vh, v);
  11781. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  11782. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  11783. ggml_vec_sqrt_f32 (nx, vh, vh);
  11784. ggml_vec_acc1_f32 (nx, vh, eps);
  11785. ggml_vec_div_f32 (nx, mh, mh, vh);
  11786. ggml_vec_sub_f32 (nx, x, x, mh);
  11787. // update the parameters
  11788. ggml_opt_set_params(np, ps, x);
  11789. }
  11790. ggml_graph_reset (gf);
  11791. ggml_set_f32 (f->grad, 1.0f);
  11792. ggml_graph_compute(ctx, gb);
  11793. const float fx = ggml_get_f32_1d(f, 0);
  11794. // check convergence
  11795. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  11796. GGML_PRINT_DEBUG("converged\n");
  11797. return GGML_OPT_OK;
  11798. }
  11799. // delta-based convergence test
  11800. if (pf != NULL) {
  11801. // need at least params.past iterations to start checking for convergence
  11802. if (params.past <= t) {
  11803. const float rate = (pf[t%params.past] - fx)/fx;
  11804. if (fabsf(rate) < params.delta) {
  11805. return GGML_OPT_OK;
  11806. }
  11807. }
  11808. pf[t%params.past] = fx;
  11809. }
  11810. // check for improvement
  11811. if (params.max_no_improvement > 0) {
  11812. if (fx_best > fx) {
  11813. fx_best = fx;
  11814. n_no_improvement = 0;
  11815. } else {
  11816. ++n_no_improvement;
  11817. if (n_no_improvement >= params.max_no_improvement) {
  11818. return GGML_OPT_OK;
  11819. }
  11820. }
  11821. }
  11822. fx_prev = fx;
  11823. {
  11824. const int64_t t_end_cpu = ggml_cycles();
  11825. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  11826. UNUSED(t_end_cpu);
  11827. const int64_t t_end_wall = ggml_time_us();
  11828. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  11829. UNUSED(t_end_wall);
  11830. }
  11831. }
  11832. return GGML_OPT_DID_NOT_CONVERGE;
  11833. }
  11834. //
  11835. // L-BFGS
  11836. //
  11837. // the L-BFGS implementation below is based on the following implementation:
  11838. //
  11839. // https://github.com/chokkan/liblbfgs
  11840. //
  11841. struct ggml_lbfgs_iteration_data {
  11842. float alpha;
  11843. float ys;
  11844. float * s;
  11845. float * y;
  11846. };
  11847. static enum ggml_opt_result linesearch_backtracking(
  11848. struct ggml_context * ctx,
  11849. const struct ggml_opt_params * params,
  11850. int nx,
  11851. float * x,
  11852. float * fx,
  11853. float * g,
  11854. float * d,
  11855. float * step,
  11856. const float * xp,
  11857. struct ggml_tensor * f,
  11858. struct ggml_cgraph * gf,
  11859. struct ggml_cgraph * gb,
  11860. const int np,
  11861. struct ggml_tensor * ps[]) {
  11862. int count = 0;
  11863. float width = 0.0f;
  11864. float dg = 0.0f;
  11865. float finit = 0.0f;
  11866. float dginit = 0.0f;
  11867. float dgtest = 0.0f;
  11868. const float dec = 0.5f;
  11869. const float inc = 2.1f;
  11870. if (*step <= 0.f) {
  11871. return GGML_LINESEARCH_INVALID_PARAMETERS;
  11872. }
  11873. // compute the initial gradient in the search direction
  11874. ggml_vec_dot_f32(nx, &dginit, g, d);
  11875. // make sure that d points to a descent direction
  11876. if (0 < dginit) {
  11877. return GGML_LINESEARCH_FAIL;
  11878. }
  11879. // initialize local variables
  11880. finit = *fx;
  11881. dgtest = params->lbfgs.ftol*dginit;
  11882. while (true) {
  11883. ggml_vec_cpy_f32(nx, x, xp);
  11884. ggml_vec_mad_f32(nx, x, d, *step);
  11885. // evaluate the function and gradient values
  11886. {
  11887. ggml_opt_set_params(np, ps, x);
  11888. ggml_graph_reset (gf);
  11889. ggml_set_f32 (f->grad, 1.0f);
  11890. ggml_graph_compute(ctx, gb);
  11891. ggml_opt_get_grad(np, ps, g);
  11892. *fx = ggml_get_f32_1d(f, 0);
  11893. }
  11894. ++count;
  11895. if (*fx > finit + (*step)*dgtest) {
  11896. width = dec;
  11897. } else {
  11898. // Armijo condition is satisfied
  11899. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  11900. return count;
  11901. }
  11902. ggml_vec_dot_f32(nx, &dg, g, d);
  11903. // check the Wolfe condition
  11904. if (dg < params->lbfgs.wolfe * dginit) {
  11905. width = inc;
  11906. } else {
  11907. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  11908. // regular Wolfe conditions
  11909. return count;
  11910. }
  11911. if(dg > -params->lbfgs.wolfe*dginit) {
  11912. width = dec;
  11913. } else {
  11914. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  11915. return count;
  11916. }
  11917. return count;
  11918. }
  11919. }
  11920. if (*step < params->lbfgs.min_step) {
  11921. return GGML_LINESEARCH_MINIMUM_STEP;
  11922. }
  11923. if (*step > params->lbfgs.max_step) {
  11924. return GGML_LINESEARCH_MAXIMUM_STEP;
  11925. }
  11926. if (params->lbfgs.max_linesearch <= count) {
  11927. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  11928. }
  11929. (*step) *= width;
  11930. }
  11931. return GGML_LINESEARCH_FAIL;
  11932. }
  11933. static enum ggml_opt_result ggml_opt_lbfgs(
  11934. struct ggml_context * ctx,
  11935. struct ggml_opt_params params,
  11936. struct ggml_tensor * f,
  11937. struct ggml_cgraph * gf,
  11938. struct ggml_cgraph * gb) {
  11939. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  11940. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  11941. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  11942. return GGML_OPT_INVALID_WOLFE;
  11943. }
  11944. }
  11945. gf->n_threads = params.n_threads;
  11946. gb->n_threads = params.n_threads;
  11947. const int m = params.lbfgs.m;
  11948. // these will store the parameters we want to optimize
  11949. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11950. int np = 0;
  11951. int nx = 0;
  11952. for (int i = 0; i < gf->n_nodes; ++i) {
  11953. if (gf->nodes[i]->is_param) {
  11954. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11955. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11956. ps[np++] = gf->nodes[i];
  11957. nx += ggml_nelements(gf->nodes[i]);
  11958. }
  11959. }
  11960. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  11961. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  11962. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  11963. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  11964. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  11965. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11966. float fx = 0.0f; // cost function value
  11967. float xnorm = 0.0f; // ||x||
  11968. float gnorm = 0.0f; // ||g||
  11969. float step = 0.0f;
  11970. // initialize x from the graph nodes
  11971. ggml_opt_get_params(np, ps, x);
  11972. // the L-BFGS memory
  11973. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  11974. for (int i = 0; i < m; ++i) {
  11975. lm[i].alpha = 0.0f;
  11976. lm[i].ys = 0.0f;
  11977. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  11978. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  11979. }
  11980. // evaluate the function value and its gradient
  11981. {
  11982. ggml_opt_set_params(np, ps, x);
  11983. ggml_graph_reset (gf);
  11984. ggml_set_f32 (f->grad, 1.0f);
  11985. ggml_graph_compute(ctx, gb);
  11986. ggml_opt_get_grad(np, ps, g);
  11987. fx = ggml_get_f32_1d(f, 0);
  11988. }
  11989. if (pf) {
  11990. pf[0] = fx;
  11991. }
  11992. float fx_best = fx;
  11993. // search direction = -gradient
  11994. ggml_vec_neg_f32(nx, d, g);
  11995. // ||x||, ||g||
  11996. ggml_vec_norm_f32(nx, &xnorm, x);
  11997. ggml_vec_norm_f32(nx, &gnorm, g);
  11998. if (xnorm < 1.0f) {
  11999. xnorm = 1.0f;
  12000. }
  12001. // already optimized
  12002. if (gnorm/xnorm <= params.lbfgs.eps) {
  12003. return GGML_OPT_OK;
  12004. }
  12005. // initial step
  12006. ggml_vec_norm_inv_f32(nx, &step, d);
  12007. int j = 0;
  12008. int k = 1;
  12009. int ls = 0;
  12010. int end = 0;
  12011. int bound = 0;
  12012. int n_no_improvement = 0;
  12013. float ys = 0.0f;
  12014. float yy = 0.0f;
  12015. float beta = 0.0f;
  12016. while (true) {
  12017. // store the current position and gradient vectors
  12018. ggml_vec_cpy_f32(nx, xp, x);
  12019. ggml_vec_cpy_f32(nx, gp, g);
  12020. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12021. if (ls < 0) {
  12022. // linesearch failed - go back to the previous point and return
  12023. ggml_vec_cpy_f32(nx, x, xp);
  12024. ggml_vec_cpy_f32(nx, g, gp);
  12025. return ls;
  12026. }
  12027. ggml_vec_norm_f32(nx, &xnorm, x);
  12028. ggml_vec_norm_f32(nx, &gnorm, g);
  12029. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12030. if (xnorm < 1.0f) {
  12031. xnorm = 1.0f;
  12032. }
  12033. if (gnorm/xnorm <= params.lbfgs.eps) {
  12034. // converged
  12035. return GGML_OPT_OK;
  12036. }
  12037. // delta-based convergence test
  12038. if (pf != NULL) {
  12039. // need at least params.past iterations to start checking for convergence
  12040. if (params.past <= k) {
  12041. const float rate = (pf[k%params.past] - fx)/fx;
  12042. if (fabsf(rate) < params.delta) {
  12043. return GGML_OPT_OK;
  12044. }
  12045. }
  12046. pf[k%params.past] = fx;
  12047. }
  12048. // check for improvement
  12049. if (params.max_no_improvement > 0) {
  12050. if (fx < fx_best) {
  12051. fx_best = fx;
  12052. n_no_improvement = 0;
  12053. } else {
  12054. n_no_improvement++;
  12055. if (n_no_improvement >= params.max_no_improvement) {
  12056. return GGML_OPT_OK;
  12057. }
  12058. }
  12059. }
  12060. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12061. // reached the maximum number of iterations
  12062. return GGML_OPT_DID_NOT_CONVERGE;
  12063. }
  12064. // update vectors s and y:
  12065. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12066. // y_{k+1} = g_{k+1} - g_{k}.
  12067. //
  12068. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12069. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12070. // compute scalars ys and yy:
  12071. // ys = y^t \cdot s -> 1 / \rho.
  12072. // yy = y^t \cdot y.
  12073. //
  12074. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12075. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12076. lm[end].ys = ys;
  12077. // find new search direction
  12078. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12079. bound = (m <= k) ? m : k;
  12080. k++;
  12081. end = (end + 1)%m;
  12082. // initialize search direction with -g
  12083. ggml_vec_neg_f32(nx, d, g);
  12084. j = end;
  12085. for (int i = 0; i < bound; ++i) {
  12086. j = (j + m - 1) % m;
  12087. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12088. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12089. lm[j].alpha /= lm[j].ys;
  12090. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12091. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12092. }
  12093. ggml_vec_scale_f32(nx, d, ys/yy);
  12094. for (int i = 0; i < bound; ++i) {
  12095. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12096. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12097. beta /= lm[j].ys;
  12098. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12099. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12100. j = (j + 1)%m;
  12101. }
  12102. step = 1.0;
  12103. }
  12104. return GGML_OPT_DID_NOT_CONVERGE;
  12105. }
  12106. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12107. struct ggml_opt_params result;
  12108. switch (type) {
  12109. case GGML_OPT_ADAM:
  12110. {
  12111. result = (struct ggml_opt_params) {
  12112. .type = GGML_OPT_ADAM,
  12113. .n_threads = 1,
  12114. .past = 0,
  12115. .delta = 1e-5f,
  12116. .max_no_improvement = 100,
  12117. .print_forward_graph = true,
  12118. .print_backward_graph = true,
  12119. .adam = {
  12120. .n_iter = 10000,
  12121. .alpha = 0.001f,
  12122. .beta1 = 0.9f,
  12123. .beta2 = 0.999f,
  12124. .eps = 1e-8f,
  12125. .eps_f = 1e-5f,
  12126. .eps_g = 1e-3f,
  12127. },
  12128. };
  12129. } break;
  12130. case GGML_OPT_LBFGS:
  12131. {
  12132. result = (struct ggml_opt_params) {
  12133. .type = GGML_OPT_LBFGS,
  12134. .n_threads = 1,
  12135. .past = 0,
  12136. .delta = 1e-5f,
  12137. .max_no_improvement = 0,
  12138. .print_forward_graph = true,
  12139. .print_backward_graph = true,
  12140. .lbfgs = {
  12141. .m = 6,
  12142. .n_iter = 100,
  12143. .max_linesearch = 20,
  12144. .eps = 1e-5f,
  12145. .ftol = 1e-4f,
  12146. .wolfe = 0.9f,
  12147. .min_step = 1e-20f,
  12148. .max_step = 1e+20f,
  12149. .linesearch = GGML_LINESEARCH_DEFAULT,
  12150. },
  12151. };
  12152. } break;
  12153. }
  12154. return result;
  12155. }
  12156. enum ggml_opt_result ggml_opt(
  12157. struct ggml_context * ctx,
  12158. struct ggml_opt_params params,
  12159. struct ggml_tensor * f) {
  12160. bool free_ctx = false;
  12161. if (ctx == NULL) {
  12162. struct ggml_init_params params_ctx = {
  12163. .mem_size = 16*1024*1024,
  12164. .mem_buffer = NULL,
  12165. .no_alloc = false,
  12166. };
  12167. ctx = ggml_init(params_ctx);
  12168. if (ctx == NULL) {
  12169. return GGML_OPT_NO_CONTEXT;
  12170. }
  12171. free_ctx = true;
  12172. }
  12173. enum ggml_opt_result result = GGML_OPT_OK;
  12174. // build forward + backward compute graphs
  12175. struct ggml_cgraph gf = ggml_build_forward (f);
  12176. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12177. switch (params.type) {
  12178. case GGML_OPT_ADAM:
  12179. {
  12180. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12181. } break;
  12182. case GGML_OPT_LBFGS:
  12183. {
  12184. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12185. } break;
  12186. }
  12187. if (params.print_forward_graph) {
  12188. ggml_graph_print (&gf);
  12189. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12190. }
  12191. if (params.print_backward_graph) {
  12192. ggml_graph_print (&gb);
  12193. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12194. }
  12195. if (free_ctx) {
  12196. ggml_free(ctx);
  12197. }
  12198. return result;
  12199. }
  12200. ////////////////////////////////////////////////////////////////////////////////
  12201. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12202. assert(k % QK4_0 == 0);
  12203. const int nb = k / QK4_0;
  12204. for (int b = 0; b < n; b += k) {
  12205. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12206. quantize_row_q4_0_reference(src + b, y, k);
  12207. for (int i = 0; i < nb; i++) {
  12208. for (int j = 0; j < QK4_0; j += 2) {
  12209. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12210. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12211. hist[vi0]++;
  12212. hist[vi1]++;
  12213. }
  12214. }
  12215. }
  12216. return (n/QK4_0*sizeof(block_q4_0));
  12217. }
  12218. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12219. assert(k % QK4_1 == 0);
  12220. const int nb = k / QK4_1;
  12221. for (int b = 0; b < n; b += k) {
  12222. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12223. quantize_row_q4_1_reference(src + b, y, k);
  12224. for (int i = 0; i < nb; i++) {
  12225. for (int j = 0; j < QK4_1; j += 2) {
  12226. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12227. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12228. hist[vi0]++;
  12229. hist[vi1]++;
  12230. }
  12231. }
  12232. }
  12233. return (n/QK4_1*sizeof(block_q4_1));
  12234. }
  12235. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12236. assert(k % QK5_0 == 0);
  12237. const int nb = k / QK5_0;
  12238. for (int b = 0; b < n; b += k) {
  12239. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12240. quantize_row_q5_0_reference(src + b, y, k);
  12241. for (int i = 0; i < nb; i++) {
  12242. uint32_t qh;
  12243. memcpy(&qh, &y[i].qh, sizeof(qh));
  12244. for (int j = 0; j < QK5_0; j += 2) {
  12245. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12246. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12247. // cast to 16 bins
  12248. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12249. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12250. hist[vi0]++;
  12251. hist[vi1]++;
  12252. }
  12253. }
  12254. }
  12255. return (n/QK5_0*sizeof(block_q5_0));
  12256. }
  12257. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12258. assert(k % QK5_1 == 0);
  12259. const int nb = k / QK5_1;
  12260. for (int b = 0; b < n; b += k) {
  12261. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12262. quantize_row_q5_1_reference(src + b, y, k);
  12263. for (int i = 0; i < nb; i++) {
  12264. uint32_t qh;
  12265. memcpy(&qh, &y[i].qh, sizeof(qh));
  12266. for (int j = 0; j < QK5_1; j += 2) {
  12267. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12268. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12269. // cast to 16 bins
  12270. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12271. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12272. hist[vi0]++;
  12273. hist[vi1]++;
  12274. }
  12275. }
  12276. }
  12277. return (n/QK5_1*sizeof(block_q5_1));
  12278. }
  12279. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12280. assert(k % QK8_0 == 0);
  12281. const int nb = k / QK8_0;
  12282. for (int b = 0; b < n; b += k) {
  12283. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12284. quantize_row_q8_0_reference(src + b, y, k);
  12285. for (int i = 0; i < nb; i++) {
  12286. for (int j = 0; j < QK8_0; ++j) {
  12287. const int8_t vi = y[i].qs[j];
  12288. hist[vi/16 + 8]++;
  12289. }
  12290. }
  12291. }
  12292. return (n/QK8_0*sizeof(block_q8_0));
  12293. }
  12294. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12295. size_t result = 0;
  12296. switch (type) {
  12297. case GGML_TYPE_Q4_0:
  12298. {
  12299. GGML_ASSERT(start % QK4_0 == 0);
  12300. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12301. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12302. } break;
  12303. case GGML_TYPE_Q4_1:
  12304. {
  12305. GGML_ASSERT(start % QK4_1 == 0);
  12306. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12307. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12308. } break;
  12309. case GGML_TYPE_Q5_0:
  12310. {
  12311. GGML_ASSERT(start % QK5_0 == 0);
  12312. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12313. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12314. } break;
  12315. case GGML_TYPE_Q5_1:
  12316. {
  12317. GGML_ASSERT(start % QK5_1 == 0);
  12318. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12319. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12320. } break;
  12321. case GGML_TYPE_Q8_0:
  12322. {
  12323. GGML_ASSERT(start % QK8_0 == 0);
  12324. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12325. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12326. } break;
  12327. default:
  12328. assert(false);
  12329. }
  12330. return result;
  12331. }
  12332. ////////////////////////////////////////////////////////////////////////////////
  12333. int ggml_cpu_has_avx(void) {
  12334. #if defined(__AVX__)
  12335. return 1;
  12336. #else
  12337. return 0;
  12338. #endif
  12339. }
  12340. int ggml_cpu_has_avx2(void) {
  12341. #if defined(__AVX2__)
  12342. return 1;
  12343. #else
  12344. return 0;
  12345. #endif
  12346. }
  12347. int ggml_cpu_has_avx512(void) {
  12348. #if defined(__AVX512F__)
  12349. return 1;
  12350. #else
  12351. return 0;
  12352. #endif
  12353. }
  12354. int ggml_cpu_has_avx512_vbmi(void) {
  12355. #if defined(__AVX512VBMI__)
  12356. return 1;
  12357. #else
  12358. return 0;
  12359. #endif
  12360. }
  12361. int ggml_cpu_has_avx512_vnni(void) {
  12362. #if defined(__AVX512VNNI__)
  12363. return 1;
  12364. #else
  12365. return 0;
  12366. #endif
  12367. }
  12368. int ggml_cpu_has_fma(void) {
  12369. #if defined(__FMA__)
  12370. return 1;
  12371. #else
  12372. return 0;
  12373. #endif
  12374. }
  12375. int ggml_cpu_has_neon(void) {
  12376. #if defined(__ARM_NEON)
  12377. return 1;
  12378. #else
  12379. return 0;
  12380. #endif
  12381. }
  12382. int ggml_cpu_has_arm_fma(void) {
  12383. #if defined(__ARM_FEATURE_FMA)
  12384. return 1;
  12385. #else
  12386. return 0;
  12387. #endif
  12388. }
  12389. int ggml_cpu_has_f16c(void) {
  12390. #if defined(__F16C__)
  12391. return 1;
  12392. #else
  12393. return 0;
  12394. #endif
  12395. }
  12396. int ggml_cpu_has_fp16_va(void) {
  12397. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12398. return 1;
  12399. #else
  12400. return 0;
  12401. #endif
  12402. }
  12403. int ggml_cpu_has_wasm_simd(void) {
  12404. #if defined(__wasm_simd128__)
  12405. return 1;
  12406. #else
  12407. return 0;
  12408. #endif
  12409. }
  12410. int ggml_cpu_has_blas(void) {
  12411. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12412. return 1;
  12413. #else
  12414. return 0;
  12415. #endif
  12416. }
  12417. int ggml_cpu_has_cublas(void) {
  12418. #if defined(GGML_USE_CUBLAS)
  12419. return 1;
  12420. #else
  12421. return 0;
  12422. #endif
  12423. }
  12424. int ggml_cpu_has_clblast(void) {
  12425. #if defined(GGML_USE_CLBLAST)
  12426. return 1;
  12427. #else
  12428. return 0;
  12429. #endif
  12430. }
  12431. int ggml_cpu_has_gpublas(void) {
  12432. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12433. }
  12434. int ggml_cpu_has_sse3(void) {
  12435. #if defined(__SSE3__)
  12436. return 1;
  12437. #else
  12438. return 0;
  12439. #endif
  12440. }
  12441. int ggml_cpu_has_vsx(void) {
  12442. #if defined(__POWER9_VECTOR__)
  12443. return 1;
  12444. #else
  12445. return 0;
  12446. #endif
  12447. }
  12448. ////////////////////////////////////////////////////////////////////////////////