ggml.h 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_MAX_DIMS 4
  189. #define GGML_MAX_NODES 4096
  190. #define GGML_MAX_PARAMS 256
  191. #define GGML_MAX_CONTEXTS 64
  192. #define GGML_MAX_OPT 4
  193. #define GGML_DEFAULT_N_THREADS 4
  194. #define GGML_ASSERT(x) \
  195. do { \
  196. if (!(x)) { \
  197. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  198. abort(); \
  199. } \
  200. } while (0)
  201. #ifdef __cplusplus
  202. extern "C" {
  203. #endif
  204. #ifdef __ARM_NEON
  205. // we use the built-in 16-bit float type
  206. typedef __fp16 ggml_fp16_t;
  207. #else
  208. typedef uint16_t ggml_fp16_t;
  209. #endif
  210. // convert FP16 <-> FP32
  211. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  212. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  213. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  214. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  215. struct ggml_object;
  216. struct ggml_context;
  217. enum ggml_type {
  218. GGML_TYPE_F32 = 0,
  219. GGML_TYPE_F16 = 1,
  220. GGML_TYPE_Q4_0 = 2,
  221. GGML_TYPE_Q4_1 = 3,
  222. // GGML_TYPE_Q4_2 = 4, support has been removed
  223. // GGML_TYPE_Q4_3 (5) support has been removed
  224. GGML_TYPE_Q5_0 = 6,
  225. GGML_TYPE_Q5_1 = 7,
  226. GGML_TYPE_Q8_0 = 8,
  227. GGML_TYPE_Q8_1 = 9,
  228. GGML_TYPE_I8,
  229. GGML_TYPE_I16,
  230. GGML_TYPE_I32,
  231. GGML_TYPE_COUNT,
  232. };
  233. enum ggml_backend {
  234. GGML_BACKEND_CPU = 0,
  235. GGML_BACKEND_CUDA = 1,
  236. };
  237. // model file types
  238. enum ggml_ftype {
  239. GGML_FTYPE_UNKNOWN = -1,
  240. GGML_FTYPE_ALL_F32 = 0,
  241. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  242. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  243. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  244. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  245. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  246. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  247. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  248. };
  249. // available tensor operations:
  250. enum ggml_op {
  251. GGML_OP_NONE = 0,
  252. GGML_OP_DUP,
  253. GGML_OP_ADD,
  254. GGML_OP_ADD1,
  255. GGML_OP_ACC,
  256. GGML_OP_SUB,
  257. GGML_OP_MUL,
  258. GGML_OP_DIV,
  259. GGML_OP_SQR,
  260. GGML_OP_SQRT,
  261. GGML_OP_LOG,
  262. GGML_OP_SUM,
  263. GGML_OP_SUM_ROWS,
  264. GGML_OP_MEAN,
  265. GGML_OP_REPEAT,
  266. GGML_OP_ABS,
  267. GGML_OP_SGN,
  268. GGML_OP_NEG,
  269. GGML_OP_STEP,
  270. GGML_OP_RELU,
  271. GGML_OP_GELU,
  272. GGML_OP_SILU,
  273. GGML_OP_SILU_BACK,
  274. GGML_OP_NORM, // normalize
  275. GGML_OP_RMS_NORM,
  276. GGML_OP_RMS_NORM_BACK,
  277. GGML_OP_MUL_MAT,
  278. GGML_OP_SCALE,
  279. GGML_OP_SET,
  280. GGML_OP_CPY,
  281. GGML_OP_CONT,
  282. GGML_OP_RESHAPE,
  283. GGML_OP_VIEW,
  284. GGML_OP_PERMUTE,
  285. GGML_OP_TRANSPOSE,
  286. GGML_OP_GET_ROWS,
  287. GGML_OP_GET_ROWS_BACK,
  288. GGML_OP_DIAG,
  289. GGML_OP_DIAG_MASK_INF,
  290. GGML_OP_DIAG_MASK_ZERO,
  291. GGML_OP_SOFT_MAX,
  292. GGML_OP_ROPE,
  293. GGML_OP_ROPE_BACK,
  294. GGML_OP_ALIBI,
  295. GGML_OP_CONV_1D_1S,
  296. GGML_OP_CONV_1D_2S,
  297. GGML_OP_FLASH_ATTN,
  298. GGML_OP_FLASH_FF,
  299. GGML_OP_MAP_UNARY,
  300. GGML_OP_MAP_BINARY,
  301. GGML_OP_COUNT,
  302. };
  303. // ggml object
  304. struct ggml_object {
  305. size_t offs;
  306. size_t size;
  307. struct ggml_object * next;
  308. char padding[8];
  309. };
  310. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  311. // n-dimensional tensor
  312. struct ggml_tensor {
  313. enum ggml_type type;
  314. enum ggml_backend backend;
  315. int n_dims;
  316. int64_t ne[GGML_MAX_DIMS]; // number of elements
  317. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  318. // nb[0] = sizeof(type)
  319. // nb[1] = nb[0] * ne[0] + padding
  320. // nb[i] = nb[i-1] * ne[i-1]
  321. // compute data
  322. enum ggml_op op;
  323. bool is_param;
  324. struct ggml_tensor * grad;
  325. struct ggml_tensor * src0;
  326. struct ggml_tensor * src1;
  327. struct ggml_tensor * opt[GGML_MAX_OPT];
  328. // thread scheduling
  329. int n_tasks;
  330. // performance
  331. int perf_runs;
  332. int64_t perf_cycles;
  333. int64_t perf_time_us;
  334. void * data;
  335. char name[32];
  336. char padding[9]; // TODO: remove and add padding to name?
  337. };
  338. // computation graph
  339. struct ggml_cgraph {
  340. int n_nodes;
  341. int n_leafs;
  342. int n_threads;
  343. size_t work_size;
  344. struct ggml_tensor * work;
  345. struct ggml_tensor * nodes[GGML_MAX_NODES];
  346. struct ggml_tensor * grads[GGML_MAX_NODES];
  347. struct ggml_tensor * leafs[GGML_MAX_NODES];
  348. // performance
  349. int perf_runs;
  350. int64_t perf_cycles;
  351. int64_t perf_time_us;
  352. };
  353. // scratch buffer
  354. struct ggml_scratch {
  355. size_t offs;
  356. size_t size;
  357. void * data;
  358. };
  359. struct ggml_init_params {
  360. // memory pool
  361. size_t mem_size; // bytes
  362. void * mem_buffer; // if NULL, memory will be allocated internally
  363. bool no_alloc; // don't allocate memory for the tensor data
  364. };
  365. // misc
  366. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  367. GGML_API int64_t ggml_time_ms(void);
  368. GGML_API int64_t ggml_time_us(void);
  369. GGML_API int64_t ggml_cycles(void);
  370. GGML_API int64_t ggml_cycles_per_ms(void);
  371. GGML_API void ggml_print_object (const struct ggml_object * obj);
  372. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  373. GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
  374. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  375. GGML_API int ggml_blck_size (enum ggml_type type);
  376. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  377. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  378. GGML_API const char * ggml_type_name(enum ggml_type type);
  379. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  380. GGML_API bool ggml_is_quantized(enum ggml_type type);
  381. // TODO: temporary until model loading of ggml examples is refactored
  382. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  383. // main
  384. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  385. GGML_API void ggml_free(struct ggml_context * ctx);
  386. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  387. GGML_API size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
  388. GGML_API struct ggml_tensor * ggml_new_tensor(
  389. struct ggml_context * ctx,
  390. enum ggml_type type,
  391. int n_dims,
  392. const int64_t *ne);
  393. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  394. struct ggml_context * ctx,
  395. enum ggml_type type,
  396. int64_t ne0);
  397. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  398. struct ggml_context * ctx,
  399. enum ggml_type type,
  400. int64_t ne0,
  401. int64_t ne1);
  402. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  403. struct ggml_context * ctx,
  404. enum ggml_type type,
  405. int64_t ne0,
  406. int64_t ne1,
  407. int64_t ne2);
  408. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  409. struct ggml_context * ctx,
  410. enum ggml_type type,
  411. int64_t ne0,
  412. int64_t ne1,
  413. int64_t ne2,
  414. int64_t ne3);
  415. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  416. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  417. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  418. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  419. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  420. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  421. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  422. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  423. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  424. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  425. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  426. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  427. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  428. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  429. GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
  430. //
  431. // operations on tensors with backpropagation
  432. //
  433. GGML_API struct ggml_tensor * ggml_dup(
  434. struct ggml_context * ctx,
  435. struct ggml_tensor * a);
  436. GGML_API struct ggml_tensor * ggml_add(
  437. struct ggml_context * ctx,
  438. struct ggml_tensor * a,
  439. struct ggml_tensor * b);
  440. GGML_API struct ggml_tensor * ggml_add_inplace(
  441. struct ggml_context * ctx,
  442. struct ggml_tensor * a,
  443. struct ggml_tensor * b);
  444. GGML_API struct ggml_tensor * ggml_add1(
  445. struct ggml_context * ctx,
  446. struct ggml_tensor * a,
  447. struct ggml_tensor * b);
  448. GGML_API struct ggml_tensor * ggml_acc(
  449. struct ggml_context * ctx,
  450. struct ggml_tensor * a,
  451. struct ggml_tensor * b,
  452. size_t nb1,
  453. size_t nb2,
  454. size_t nb3,
  455. size_t offset);
  456. GGML_API struct ggml_tensor * ggml_acc_inplace(
  457. struct ggml_context * ctx,
  458. struct ggml_tensor * a,
  459. struct ggml_tensor * b,
  460. size_t nb1,
  461. size_t nb2,
  462. size_t nb3,
  463. size_t offset);
  464. GGML_API struct ggml_tensor * ggml_sub(
  465. struct ggml_context * ctx,
  466. struct ggml_tensor * a,
  467. struct ggml_tensor * b);
  468. GGML_API struct ggml_tensor * ggml_mul(
  469. struct ggml_context * ctx,
  470. struct ggml_tensor * a,
  471. struct ggml_tensor * b);
  472. GGML_API struct ggml_tensor * ggml_div(
  473. struct ggml_context * ctx,
  474. struct ggml_tensor * a,
  475. struct ggml_tensor * b);
  476. GGML_API struct ggml_tensor * ggml_sqr(
  477. struct ggml_context * ctx,
  478. struct ggml_tensor * a);
  479. GGML_API struct ggml_tensor * ggml_sqrt(
  480. struct ggml_context * ctx,
  481. struct ggml_tensor * a);
  482. GGML_API struct ggml_tensor * ggml_log(
  483. struct ggml_context * ctx,
  484. struct ggml_tensor * a);
  485. GGML_API struct ggml_tensor * ggml_log_inplace(
  486. struct ggml_context * ctx,
  487. struct ggml_tensor * a);
  488. // return scalar
  489. GGML_API struct ggml_tensor * ggml_sum(
  490. struct ggml_context * ctx,
  491. struct ggml_tensor * a);
  492. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  493. GGML_API struct ggml_tensor * ggml_sum_rows(
  494. struct ggml_context * ctx,
  495. struct ggml_tensor * a);
  496. // mean along rows
  497. GGML_API struct ggml_tensor * ggml_mean(
  498. struct ggml_context * ctx,
  499. struct ggml_tensor * a);
  500. // if a is the same shape as b, and a is not parameter, return a
  501. // otherwise, return a new tensor: repeat(a) to fit in b
  502. GGML_API struct ggml_tensor * ggml_repeat(
  503. struct ggml_context * ctx,
  504. struct ggml_tensor * a,
  505. struct ggml_tensor * b);
  506. GGML_API struct ggml_tensor * ggml_abs(
  507. struct ggml_context * ctx,
  508. struct ggml_tensor * a);
  509. GGML_API struct ggml_tensor * ggml_sgn(
  510. struct ggml_context * ctx,
  511. struct ggml_tensor * a);
  512. GGML_API struct ggml_tensor * ggml_neg(
  513. struct ggml_context * ctx,
  514. struct ggml_tensor * a);
  515. GGML_API struct ggml_tensor * ggml_step(
  516. struct ggml_context * ctx,
  517. struct ggml_tensor * a);
  518. GGML_API struct ggml_tensor * ggml_relu(
  519. struct ggml_context * ctx,
  520. struct ggml_tensor * a);
  521. // TODO: double-check this computation is correct
  522. GGML_API struct ggml_tensor * ggml_gelu(
  523. struct ggml_context * ctx,
  524. struct ggml_tensor * a);
  525. GGML_API struct ggml_tensor * ggml_silu(
  526. struct ggml_context * ctx,
  527. struct ggml_tensor * a);
  528. // a - x
  529. // b - dy
  530. GGML_API struct ggml_tensor * ggml_silu_back(
  531. struct ggml_context * ctx,
  532. struct ggml_tensor * a,
  533. struct ggml_tensor * b);
  534. // normalize along rows
  535. // TODO: eps is hardcoded to 1e-5 for now
  536. GGML_API struct ggml_tensor * ggml_norm(
  537. struct ggml_context * ctx,
  538. struct ggml_tensor * a);
  539. GGML_API struct ggml_tensor * ggml_rms_norm(
  540. struct ggml_context * ctx,
  541. struct ggml_tensor * a);
  542. // a - x
  543. // b - dy
  544. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  545. struct ggml_context * ctx,
  546. struct ggml_tensor * a,
  547. struct ggml_tensor * b);
  548. // A: m rows, n columns
  549. // B: p rows, n columns (i.e. we transpose it internally)
  550. // result is m columns, p rows
  551. GGML_API struct ggml_tensor * ggml_mul_mat(
  552. struct ggml_context * ctx,
  553. struct ggml_tensor * a,
  554. struct ggml_tensor * b);
  555. //
  556. // operations on tensors without backpropagation
  557. //
  558. GGML_API struct ggml_tensor * ggml_scale(
  559. struct ggml_context * ctx,
  560. struct ggml_tensor * a,
  561. struct ggml_tensor * b);
  562. // in-place, returns view(a)
  563. GGML_API struct ggml_tensor * ggml_scale_inplace(
  564. struct ggml_context * ctx,
  565. struct ggml_tensor * a,
  566. struct ggml_tensor * b);
  567. // b -> view(a,offset,nb1,nb2,3), return modified a
  568. GGML_API struct ggml_tensor * ggml_set(
  569. struct ggml_context * ctx,
  570. struct ggml_tensor * a,
  571. struct ggml_tensor * b,
  572. size_t nb1,
  573. size_t nb2,
  574. size_t nb3,
  575. size_t offset);
  576. // b -> view(a,offset,nb1,nb2,3), return view(a)
  577. GGML_API struct ggml_tensor * ggml_set_inplace(
  578. struct ggml_context * ctx,
  579. struct ggml_tensor * a,
  580. struct ggml_tensor * b,
  581. size_t nb1,
  582. size_t nb2,
  583. size_t nb3,
  584. size_t offset);
  585. GGML_API struct ggml_tensor * ggml_set_1d(
  586. struct ggml_context * ctx,
  587. struct ggml_tensor * a,
  588. struct ggml_tensor * b,
  589. size_t offset);
  590. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  591. struct ggml_context * ctx,
  592. struct ggml_tensor * a,
  593. struct ggml_tensor * b,
  594. size_t offset);
  595. // b -> view(a,offset,nb1,nb2,3), return modified a
  596. GGML_API struct ggml_tensor * ggml_set_2d(
  597. struct ggml_context * ctx,
  598. struct ggml_tensor * a,
  599. struct ggml_tensor * b,
  600. size_t nb1,
  601. size_t offset);
  602. // b -> view(a,offset,nb1,nb2,3), return view(a)
  603. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  604. struct ggml_context * ctx,
  605. struct ggml_tensor * a,
  606. struct ggml_tensor * b,
  607. size_t nb1,
  608. size_t offset);
  609. // a -> b, return view(b)
  610. GGML_API struct ggml_tensor * ggml_cpy(
  611. struct ggml_context * ctx,
  612. struct ggml_tensor * a,
  613. struct ggml_tensor * b);
  614. // make contiguous
  615. GGML_API struct ggml_tensor * ggml_cont(
  616. struct ggml_context * ctx,
  617. struct ggml_tensor * a);
  618. // return view(a), b specifies the new shape
  619. // TODO: when we start computing gradient, make a copy instead of view
  620. GGML_API struct ggml_tensor * ggml_reshape(
  621. struct ggml_context * ctx,
  622. struct ggml_tensor * a,
  623. struct ggml_tensor * b);
  624. // return view(a)
  625. // TODO: when we start computing gradient, make a copy instead of view
  626. GGML_API struct ggml_tensor * ggml_reshape_1d(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a,
  629. int64_t ne0);
  630. GGML_API struct ggml_tensor * ggml_reshape_2d(
  631. struct ggml_context * ctx,
  632. struct ggml_tensor * a,
  633. int64_t ne0,
  634. int64_t ne1);
  635. // return view(a)
  636. // TODO: when we start computing gradient, make a copy instead of view
  637. GGML_API struct ggml_tensor * ggml_reshape_3d(
  638. struct ggml_context * ctx,
  639. struct ggml_tensor * a,
  640. int64_t ne0,
  641. int64_t ne1,
  642. int64_t ne2);
  643. GGML_API struct ggml_tensor * ggml_reshape_4d(
  644. struct ggml_context * ctx,
  645. struct ggml_tensor * a,
  646. int64_t ne0,
  647. int64_t ne1,
  648. int64_t ne2,
  649. int64_t ne3);
  650. // offset in bytes
  651. GGML_API struct ggml_tensor * ggml_view_1d(
  652. struct ggml_context * ctx,
  653. struct ggml_tensor * a,
  654. int64_t ne0,
  655. size_t offset);
  656. GGML_API struct ggml_tensor * ggml_view_2d(
  657. struct ggml_context * ctx,
  658. struct ggml_tensor * a,
  659. int64_t ne0,
  660. int64_t ne1,
  661. size_t nb1, // row stride in bytes
  662. size_t offset);
  663. GGML_API struct ggml_tensor * ggml_view_3d(
  664. struct ggml_context * ctx,
  665. struct ggml_tensor * a,
  666. int64_t ne0,
  667. int64_t ne1,
  668. int64_t ne2,
  669. size_t nb1, // row stride in bytes
  670. size_t nb2, // slice stride in bytes
  671. size_t offset);
  672. GGML_API struct ggml_tensor * ggml_view_4d(
  673. struct ggml_context * ctx,
  674. struct ggml_tensor * a,
  675. int64_t ne0,
  676. int64_t ne1,
  677. int64_t ne2,
  678. int64_t ne3,
  679. size_t nb1, // row stride in bytes
  680. size_t nb2, // slice stride in bytes
  681. size_t nb3,
  682. size_t offset);
  683. GGML_API struct ggml_tensor * ggml_permute(
  684. struct ggml_context * ctx,
  685. struct ggml_tensor * a,
  686. int axis0,
  687. int axis1,
  688. int axis2,
  689. int axis3);
  690. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  691. GGML_API struct ggml_tensor * ggml_transpose(
  692. struct ggml_context * ctx,
  693. struct ggml_tensor * a);
  694. GGML_API struct ggml_tensor * ggml_get_rows(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a,
  697. struct ggml_tensor * b);
  698. GGML_API struct ggml_tensor * ggml_get_rows_back(
  699. struct ggml_context * ctx,
  700. struct ggml_tensor * a,
  701. struct ggml_tensor * b,
  702. struct ggml_tensor * c);
  703. GGML_API struct ggml_tensor * ggml_diag(
  704. struct ggml_context * ctx,
  705. struct ggml_tensor * a);
  706. // set elements above the diagonal to -INF
  707. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a,
  710. int n_past);
  711. // in-place, returns view(a)
  712. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  713. struct ggml_context * ctx,
  714. struct ggml_tensor * a,
  715. int n_past);
  716. // set elements above the diagonal to 0
  717. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  718. struct ggml_context * ctx,
  719. struct ggml_tensor * a,
  720. int n_past);
  721. // in-place, returns view(a)
  722. GGML_API struct ggml_tensor * gml_diag_mask_zero_inplace(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a,
  725. int n_past);
  726. GGML_API struct ggml_tensor * ggml_soft_max(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a);
  729. // in-place, returns view(a)
  730. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a);
  733. // rotary position embedding
  734. // if mode & 1 == 1, skip n_past elements
  735. // if mode & 2 == 1, GPT-NeoX style
  736. // TODO: avoid creating a new tensor every time
  737. GGML_API struct ggml_tensor * ggml_rope(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a,
  740. int n_past,
  741. int n_dims,
  742. int mode);
  743. // in-place, returns view(a)
  744. GGML_API struct ggml_tensor * ggml_rope_inplace(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a,
  747. int n_past,
  748. int n_dims,
  749. int mode);
  750. // rotary position embedding backward, i.e compute dx from dy
  751. // a - dy
  752. GGML_API struct ggml_tensor * ggml_rope_back(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a,
  755. int n_past,
  756. int n_dims,
  757. int mode);
  758. // alibi position embedding
  759. // in-place, returns view(a)
  760. struct ggml_tensor * ggml_alibi(
  761. struct ggml_context * ctx,
  762. struct ggml_tensor * a,
  763. int n_past,
  764. int n_head);
  765. // padding = 1
  766. // TODO: we don't support extra parameters for now
  767. // that's why we are hard-coding the stride, padding, and dilation
  768. // not great ..
  769. GGML_API struct ggml_tensor * ggml_conv_1d_1s(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a,
  772. struct ggml_tensor * b);
  773. GGML_API struct ggml_tensor * ggml_conv_1d_2s(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a,
  776. struct ggml_tensor * b);
  777. GGML_API struct ggml_tensor * ggml_flash_attn(
  778. struct ggml_context * ctx,
  779. struct ggml_tensor * q,
  780. struct ggml_tensor * k,
  781. struct ggml_tensor * v,
  782. bool masked);
  783. GGML_API struct ggml_tensor * ggml_flash_ff(
  784. struct ggml_context * ctx,
  785. struct ggml_tensor * a,
  786. struct ggml_tensor * b0,
  787. struct ggml_tensor * b1,
  788. struct ggml_tensor * c0,
  789. struct ggml_tensor * c1);
  790. // Mapping operations
  791. typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
  792. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  793. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a,
  796. ggml_unary_op_f32_t fun);
  797. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a,
  800. struct ggml_tensor * b,
  801. ggml_binary_op_f32_t fun);
  802. //
  803. // automatic differentiation
  804. //
  805. GGML_API void ggml_set_param(
  806. struct ggml_context * ctx,
  807. struct ggml_tensor * tensor);
  808. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  809. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  810. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  811. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  812. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  813. // print info and performance information for the graph
  814. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  815. // dump the graph into a file using the dot format
  816. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  817. //
  818. // optimization
  819. //
  820. // optimization methods
  821. enum ggml_opt_type {
  822. GGML_OPT_ADAM,
  823. GGML_OPT_LBFGS,
  824. };
  825. // linesearch methods
  826. enum ggml_linesearch {
  827. GGML_LINESEARCH_DEFAULT = 1,
  828. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  829. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  830. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  831. };
  832. // optimization return values
  833. enum ggml_opt_result {
  834. GGML_OPT_OK = 0,
  835. GGML_OPT_DID_NOT_CONVERGE,
  836. GGML_OPT_NO_CONTEXT,
  837. GGML_OPT_INVALID_WOLFE,
  838. GGML_OPT_FAIL,
  839. GGML_LINESEARCH_FAIL = -128,
  840. GGML_LINESEARCH_MINIMUM_STEP,
  841. GGML_LINESEARCH_MAXIMUM_STEP,
  842. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  843. GGML_LINESEARCH_INVALID_PARAMETERS,
  844. };
  845. // optimization parameters
  846. //
  847. // see ggml.c (ggml_opt_default_params) for default values
  848. //
  849. struct ggml_opt_params {
  850. enum ggml_opt_type type;
  851. int n_threads;
  852. // delta-based convergence test
  853. //
  854. // if past == 0 - disabled
  855. // if past > 0:
  856. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  857. //
  858. int past;
  859. float delta;
  860. // maximum number of iterations without improvement
  861. //
  862. // if 0 - disabled
  863. // if > 0:
  864. // assume convergence if no cost improvement in this number of iterations
  865. //
  866. int max_no_improvement;
  867. bool print_forward_graph;
  868. bool print_backward_graph;
  869. // ADAM parameters
  870. struct {
  871. int n_iter;
  872. float alpha; // learning rate
  873. float beta1;
  874. float beta2;
  875. float eps; // epsilon for numerical stability
  876. float eps_f; // epsilon for convergence test
  877. float eps_g; // epsilon for convergence test
  878. } adam;
  879. // LBFGS parameters
  880. struct {
  881. int m; // number of corrections to approximate the inv. Hessian
  882. int n_iter;
  883. int max_linesearch;
  884. float eps; // convergence tolerance
  885. float ftol; // line search tolerance
  886. float wolfe;
  887. float min_step;
  888. float max_step;
  889. enum ggml_linesearch linesearch;
  890. } lbfgs;
  891. };
  892. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  893. // optimize the function defined by the tensor f
  894. GGML_API enum ggml_opt_result ggml_opt(
  895. struct ggml_context * ctx,
  896. struct ggml_opt_params params,
  897. struct ggml_tensor * f);
  898. //
  899. // quantization
  900. //
  901. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  902. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  903. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  904. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  905. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  906. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  907. //
  908. // system info
  909. //
  910. GGML_API int ggml_cpu_has_avx (void);
  911. GGML_API int ggml_cpu_has_avx2 (void);
  912. GGML_API int ggml_cpu_has_avx512 (void);
  913. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  914. GGML_API int ggml_cpu_has_avx512_vnni(void);
  915. GGML_API int ggml_cpu_has_fma (void);
  916. GGML_API int ggml_cpu_has_neon (void);
  917. GGML_API int ggml_cpu_has_arm_fma (void);
  918. GGML_API int ggml_cpu_has_f16c (void);
  919. GGML_API int ggml_cpu_has_fp16_va (void);
  920. GGML_API int ggml_cpu_has_wasm_simd (void);
  921. GGML_API int ggml_cpu_has_blas (void);
  922. GGML_API int ggml_cpu_has_cublas (void);
  923. GGML_API int ggml_cpu_has_clblast (void);
  924. GGML_API int ggml_cpu_has_gpublas (void);
  925. GGML_API int ggml_cpu_has_sse3 (void);
  926. GGML_API int ggml_cpu_has_vsx (void);
  927. //
  928. // Internal types and functions exposed for tests and benchmarks
  929. //
  930. #ifdef __cplusplus
  931. // restrict not standard in C++
  932. #define GGML_RESTRICT
  933. #else
  934. #define GGML_RESTRICT restrict
  935. #endif
  936. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  937. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  938. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  939. typedef struct {
  940. dequantize_row_q_t dequantize_row_q;
  941. quantize_row_q_t quantize_row_q;
  942. quantize_row_q_t quantize_row_q_reference;
  943. quantize_row_q_t quantize_row_q_dot;
  944. vec_dot_q_t vec_dot_q;
  945. enum ggml_type vec_dot_type;
  946. } quantize_fns_t;
  947. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  948. #ifdef __cplusplus
  949. }
  950. #endif