Fără Descriere

Olivier Chafik 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
.devops 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
.github fa31c438e0 ci : fix xcframework artifact tag (#12191) 10 luni în urmă
ci 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
cmake c0d4843225 build : fix llama.pc (#11658) 11 luni în urmă
common 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
docs d7cfe1ffe0 docs: add docs/function-calling.md to lighten server/README.md's plight (#12069) 10 luni în urmă
examples 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
ggml 5bbe6a9fe9 ggml : portability fixes for VS 2017 (#12150) 10 luni în urmă
gguf-py 06c2b1561d convert : fix Norway problem when parsing YAML (#12114) 10 luni în urmă
grammars 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
include 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
media be0e950c91 media : remove old img [no ci] 1 an în urmă
models 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
pocs 7cc2d2c889 ggml : move AMX to the CPU backend (#10570) 1 an în urmă
prompts 37c746d687 llama : add Qwen support (#4281) 2 ani în urmă
requirements 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
scripts 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
src 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
tests 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
.clang-format fab5d30ff6 llama : add .clang-format file (#10415) 1 an în urmă
.clang-tidy 7cc2d2c889 ggml : move AMX to the CPU backend (#10570) 1 an în urmă
.dockerignore ea9c32be71 ci : fix docker build number and tag name (#9638) 1 an în urmă
.ecrc ad76569f8e common : Update stb_image.h to latest version (#9161) 1 an în urmă
.editorconfig 8b576b6c55 Tool call support (generic + native for Llama, Functionary, Hermes, Mistral, Firefunction, DeepSeek) w/ lazy grammars (#9639) 11 luni în urmă
.flake8 6fbd432211 py : logging and flake8 suppression refactoring (#7081) 1 an în urmă
.gitignore 70680c48e5 ggml : upgrade init_tensor API to return a ggml_status (#11854) 10 luni în urmă
.gitmodules ae8de6d50a ggml : build backends as libraries (#10256) 1 an în urmă
.pre-commit-config.yaml a2ac89d6ef convert.py : add python logging instead of print() (#6511) 1 an în urmă
AUTHORS 387a1598ca authors : update 11 luni în urmă
CMakeLists.txt c0d4843225 build : fix llama.pc (#11658) 11 luni în urmă
CMakePresets.json c37fb4cf62 Changes to CMakePresets.json to add ninja clang target on windows (#10668) 1 an în urmă
CODEOWNERS 53ff6b9b9f GGUF: C++ refactor, backend support, misc fixes (#11030) 1 an în urmă
CONTRIBUTING.md 70680c48e5 ggml : upgrade init_tensor API to return a ggml_status (#11854) 10 luni în urmă
LICENSE e11a8999b5 license : update copyright notice + add AUTHORS (#6405) 1 an în urmă
Makefile a28e0d5eb1 CUDA: app option to compile without FlashAttention (#12025) 10 luni în urmă
README.md 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă
SECURITY.md 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
build-xcframework.sh a057897ad4 llama : add xcframework build script (#11996) 10 luni în urmă
convert_hf_to_gguf.py c43a3e7996 llama : add Phi-4-mini support (supersede #12099) (#12108) 10 luni în urmă
convert_hf_to_gguf_update.py c43a3e7996 llama : add Phi-4-mini support (supersede #12099) (#12108) 10 luni în urmă
convert_llama_ggml_to_gguf.py ee2984bdaf py : fix wrong input type for raw_dtype in ggml to gguf scripts (#8928) 1 an în urmă
convert_lora_to_gguf.py 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
flake.lock cce5a90075 flake.lock: Update (#10470) 1 an în urmă
flake.nix 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
mypy.ini b43ebde3b0 convert : partially revert PR #4818 (#5041) 2 ani în urmă
poetry.lock b0a46993df build(python): Package scripts with pip-0517 compliance 1 an în urmă
pyproject.toml 68ff663a04 repo : update links to new url (#11886) 11 luni în urmă
pyrightconfig.json 511636df0c ci : reduce severity of unused Pyright ignore comments (#9697) 1 an în urmă
requirements.txt 669912d9a5 `tool-call`: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034) 10 luni în urmă

README.md

llama.cpp

llama

Server

Roadmap / Project status / Manifesto / ggml

Inference of Meta's LLaMA model (and others) in pure C/C++

[!IMPORTANT] New llama.cpp package location: ggml-org/llama.cpp

Update your container URLs to: ghcr.io/ggml-org/llama.cpp

More info: https://github.com/ggml-org/llama.cpp/discussions/11801

Recent API changes

Hot topics


Description

The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide range of hardware - locally and in the cloud.

  • Plain C/C++ implementation without any dependencies
  • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2, AVX512 and AMX support for x86 architectures
  • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
  • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
  • Vulkan and SYCL backend support
  • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity

The llama.cpp project is the main playground for developing new features for the ggml library.

Models Typically finetunes of the base models below are supported as well. Instructions for adding support for new models: [HOWTO-add-model.md](docs/development/HOWTO-add-model.md) #### Text-only - [X] LLaMA 🦙 - [x] LLaMA 2 🦙🦙 - [x] LLaMA 3 🦙🦙🦙 - [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) - [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral) - [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct) - [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon) - [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2) - [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne) - [X] [BERT](https://github.com/ggml-org/llama.cpp/pull/5423) - [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/) - [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft) - [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila) - [X] [Starcoder models](https://github.com/ggml-org/llama.cpp/pull/3187) - [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim) - [X] [MPT](https://github.com/ggml-org/llama.cpp/pull/3417) - [X] [Bloom](https://github.com/ggml-org/llama.cpp/pull/3553) - [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi) - [X] [StableLM models](https://huggingface.co/stabilityai) - [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek) - [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen) - [x] [PLaMo-13B](https://github.com/ggml-org/llama.cpp/pull/3557) - [x] [Phi models](https://huggingface.co/models?search=microsoft/phi) - [x] [PhiMoE](https://github.com/ggml-org/llama.cpp/pull/11003) - [x] [GPT-2](https://huggingface.co/gpt2) - [x] [Orion 14B](https://github.com/ggml-org/llama.cpp/pull/5118) - [x] [InternLM2](https://huggingface.co/models?search=internlm2) - [x] [CodeShell](https://github.com/WisdomShell/codeshell) - [x] [Gemma](https://ai.google.dev/gemma) - [x] [Mamba](https://github.com/state-spaces/mamba) - [x] [Grok-1](https://huggingface.co/keyfan/grok-1-hf) - [x] [Xverse](https://huggingface.co/models?search=xverse) - [x] [Command-R models](https://huggingface.co/models?search=CohereForAI/c4ai-command-r) - [x] [SEA-LION](https://huggingface.co/models?search=sea-lion) - [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B) - [x] [OLMo](https://allenai.org/olmo) - [x] [OLMo 2](https://allenai.org/olmo) - [x] [OLMoE](https://huggingface.co/allenai/OLMoE-1B-7B-0924) - [x] [Granite models](https://huggingface.co/collections/ibm-granite/granite-code-models-6624c5cec3) - [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia) - [x] [Snowflake-Arctic MoE](https://huggingface.co/collections/Snowflake/arctic-66290090ab) - [x] [Smaug](https://huggingface.co/models?search=Smaug) - [x] [Poro 34B](https://huggingface.co/LumiOpen/Poro-34B) - [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM) - [x] [Flan T5](https://huggingface.co/models?search=flan-t5) - [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d) - [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat) - [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad) - [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct) - [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a58032) - [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat) - [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238) - [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM) - [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1) - [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct) #### Multimodal - [x] [LLaVA 1.5 models](https://huggingface.co/collections/liuhaotian/llava-15-653aac15d9), [LLaVA 1.6 models](https://huggingface.co/collections/liuhaotian/llava-16-65b9e40155) - [x] [BakLLaVA](https://huggingface.co/models?search=SkunkworksAI/Bakllava) - [x] [Obsidian](https://huggingface.co/NousResearch/Obsidian-3B-V0.5) - [x] [ShareGPT4V](https://huggingface.co/models?search=Lin-Chen/ShareGPT4V) - [x] [MobileVLM 1.7B/3B models](https://huggingface.co/models?search=mobileVLM) - [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL) - [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM) - [x] [Moondream](https://huggingface.co/vikhyatk/moondream2) - [x] [Bunny](https://github.com/BAAI-DCAI/Bunny) - [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge) - [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee74555)
Bindings - Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python) - Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp) - Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp) - JS/TS (llama.cpp server client): [lgrammel/modelfusion](https://modelfusion.dev/integration/model-provider/llamacpp) - JS/TS (Programmable Prompt Engine CLI): [offline-ai/cli](https://github.com/offline-ai/cli) - JavaScript/Wasm (works in browser): [tangledgroup/llama-cpp-wasm](https://github.com/tangledgroup/llama-cpp-wasm) - Typescript/Wasm (nicer API, available on npm): [ngxson/wllama](https://github.com/ngxson/wllama) - Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb) - Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs) - Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp) - Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs) - Rust (automated build from crates.io): [ShelbyJenkins/llm_client](https://github.com/ShelbyJenkins/llm_client) - C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp) - C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html) - Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s) - Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj) - React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn) - Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp) - Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig) - Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart) - Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama) - PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggml-org/llama.cpp/pull/6326) - Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp) - Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift) - Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
UIs *(to have a project listed here, it should clearly state that it depends on `llama.cpp`)* - [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT) - [cztomsik/ava](https://github.com/cztomsik/ava) (MIT) - [Dot](https://github.com/alexpinel/Dot) (GPL) - [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT) - [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0) - [janhq/jan](https://github.com/janhq/jan) (AGPL) - [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0) - [KodiBot](https://github.com/firatkiral/kodibot) (GPL) - [llama.vim](https://github.com/ggml-org/llama.vim) (MIT) - [LARS](https://github.com/abgulati/LARS) (AGPL) - [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL) - [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT) - [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT) - [LMStudio](https://lmstudio.ai/) (proprietary) - [LocalAI](https://github.com/mudler/LocalAI) (MIT) - [LostRuins/koboldcpp](https://github.com/LostRuins/koboldcpp) (AGPL) - [MindMac](https://mindmac.app) (proprietary) - [MindWorkAI/AI-Studio](https://github.com/MindWorkAI/AI-Studio) (FSL-1.1-MIT) - [Mobile-Artificial-Intelligence/maid](https://github.com/Mobile-Artificial-Intelligence/maid) (MIT) - [Mozilla-Ocho/llamafile](https://github.com/Mozilla-Ocho/llamafile) (Apache-2.0) - [nat/openplayground](https://github.com/nat/openplayground) (MIT) - [nomic-ai/gpt4all](https://github.com/nomic-ai/gpt4all) (MIT) - [ollama/ollama](https://github.com/ollama/ollama) (MIT) - [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL) - [PocketPal AI](https://github.com/a-ghorbani/pocketpal-ai) (MIT) - [psugihara/FreeChat](https://github.com/psugihara/FreeChat) (MIT) - [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal) (MIT) - [pythops/tenere](https://github.com/pythops/tenere) (AGPL) - [ramalama](https://github.com/containers/ramalama) (MIT) - [semperai/amica](https://github.com/semperai/amica) (MIT) - [withcatai/catai](https://github.com/withcatai/catai) (MIT) - [Autopen](https://github.com/blackhole89/autopen) (GPL)
Tools - [akx/ggify](https://github.com/akx/ggify) – download PyTorch models from HuggingFace Hub and convert them to GGML - [akx/ollama-dl](https://github.com/akx/ollama-dl) – download models from the Ollama library to be used directly with llama.cpp - [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption - [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage - [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
Infrastructure - [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp - [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs - [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly - [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server - [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale - [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
Games - [Lucy's Labyrinth](https://github.com/MorganRO8/Lucys_Labyrinth) - A simple maze game where agents controlled by an AI model will try to trick you.

Supported backends

Backend Target devices
Metal Apple Silicon
BLAS All
BLIS All
SYCL Intel and Nvidia GPU
MUSA Moore Threads MTT GPU
CUDA Nvidia GPU
HIP AMD GPU
Vulkan GPU
CANN Ascend NPU
OpenCL Adreno GPU

Building the project

The main product of this project is the llama library. Its C-style interface can be found in include/llama.h. The project also includes many example programs and tools using the llama library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:

Obtaining and quantizing models

The Hugging Face platform hosts a number of LLMs compatible with llama.cpp:

You can either manually download the GGUF file or directly use any llama.cpp-compatible models from Hugging Face by using this CLI argument: -hf <user>/<model>[:quant]

After downloading a model, use the CLI tools to run it locally - see below.

llama.cpp requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py Python scripts in this repo.

The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp:

To learn more about model quantization, read this documentation

llama-cli

A CLI tool for accessing and experimenting with most of llama.cpp's functionality.

  • Run in conversation mode Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding `-cnv` and specifying a suitable chat template with `--chat-template NAME` ```bash llama-cli -m model.gguf # > hi, who are you? # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today? # # > what is 1+1? # Easy peasy! The answer to 1+1 is... 2! ```
  • Run in conversation mode with custom chat template ```bash # use the "chatml" template (use -h to see the list of supported templates) llama-cli -m model.gguf -cnv --chat-template chatml # use a custom template llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:' ```
  • Run simple text completion To disable conversation mode explicitly, use `-no-cnv` ```bash llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey. ```
  • Constrain the output with a custom grammar ```bash llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"} ``` The [grammars/](grammars/) folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](grammars/README.md). For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/

llama-server

A lightweight, OpenAI API compatible, HTTP server for serving LLMs.

  • Start a local HTTP server with default configuration on port 8080 ```bash llama-server -m model.gguf --port 8080 # Basic web UI can be accessed via browser: http://localhost:8080 # Chat completion endpoint: http://localhost:8080/v1/chat/completions ```
  • Support multiple-users and parallel decoding ```bash # up to 4 concurrent requests, each with 4096 max context llama-server -m model.gguf -c 16384 -np 4 ```
  • Enable speculative decoding ```bash # the draft.gguf model should be a small variant of the target model.gguf llama-server -m model.gguf -md draft.gguf ```
  • Serve an embedding model ```bash # use the /embedding endpoint llama-server -m model.gguf --embedding --pooling cls -ub 8192 ```
  • Serve a reranking model ```bash # use the /reranking endpoint llama-server -m model.gguf --reranking ```
  • Constrain all outputs with a grammar ```bash # custom grammar llama-server -m model.gguf --grammar-file grammar.gbnf # JSON llama-server -m model.gguf --grammar-file grammars/json.gbnf ```

llama-perplexity

A tool for measuring the perplexity ^1^2 of a model over a given text.

  • Measure the perplexity over a text file ```bash llama-perplexity -m model.gguf -f file.txt # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ... # Final estimate: PPL = 5.4007 +/- 0.67339 ```
  • Measure KL divergence ```bash # TODO ```

llama-bench

Benchmark the performance of the inference for various parameters.

  • Run default benchmark ```bash llama-bench -m model.gguf # Output: # | model | size | params | backend | threads | test | t/s | # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 | # # build: 3e0ba0e60 (4229) ```

llama-run

A comprehensive example for running llama.cpp models. Useful for inferencing. Used with RamaLama ^3.

  • Run a model with a specific prompt (by default it's pulled from Ollama registry) ```bash llama-run granite-code ```

llama-simple

A minimal example for implementing apps with llama.cpp. Useful for developers.

  • Basic text completion ```bash llama-simple -m model.gguf # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of ```

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues, PRs and projects is very appreciated!
  • See good first issues for tasks suitable for first contributions
  • Read the CONTRIBUTING.md for more information
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Other documentation

Development documentation

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

Completions

Command-line completion is available for some environments.

Bash Completion

$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

Optionally this can be added to your .bashrc or .bash_profile to load it automatically. For example:

$ echo "source ~/.llama-completion.bash" >> ~/.bashrc

References