convert-hf-to-gguf.py 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool, model_name: str | None):
  53. if type(self) is Model:
  54. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  55. self.dir_model = dir_model
  56. self.ftype = ftype
  57. self.is_big_endian = is_big_endian
  58. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  59. self.use_temp_file = use_temp_file
  60. self.lazy = not eager
  61. self.model_name = model_name
  62. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  63. self.is_safetensors = len(self.part_names) > 0
  64. if not self.is_safetensors:
  65. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  66. self.hparams = Model.load_hparams(self.dir_model)
  67. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  68. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  69. self.tensor_names = None
  70. if self.ftype == gguf.LlamaFileType.GUESSED:
  71. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  72. _, first_tensor = next(self.get_tensors())
  73. if first_tensor.dtype == torch.float16:
  74. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  75. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  76. else:
  77. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  78. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  79. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  80. ftype_lw: str = ftype_up.lower()
  81. # allow templating the file name with the output ftype, useful with the "auto" ftype
  82. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  83. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  84. @classmethod
  85. def __init_subclass__(cls):
  86. # can't use an abstract property, because overriding it without type errors
  87. # would require using decorated functions instead of simply defining the property
  88. if "model_arch" not in cls.__dict__:
  89. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  90. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  91. key = next((k for k in keys if k in self.hparams), None)
  92. if key is not None:
  93. return self.hparams[key]
  94. if optional:
  95. return None
  96. raise KeyError(f"could not find any of: {keys}")
  97. def set_vocab(self):
  98. self._set_vocab_gpt2()
  99. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  100. tensor_names_from_parts: set[str] = set()
  101. if len(self.part_names) > 1:
  102. self.tensor_names = set()
  103. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  104. index_name += ".index.json"
  105. logger.info(f"gguf: loading model weight map from '{index_name}'")
  106. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  107. index: dict[str, Any] = json.load(f)
  108. weight_map = index.get("weight_map")
  109. if weight_map is None or not isinstance(weight_map, dict):
  110. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  111. self.tensor_names.update(weight_map.keys())
  112. else:
  113. self.tensor_names = tensor_names_from_parts
  114. for part_name in self.part_names:
  115. logger.info(f"gguf: loading model part '{part_name}'")
  116. ctx: ContextManager[Any]
  117. if self.is_safetensors:
  118. from safetensors import safe_open
  119. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  120. else:
  121. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  122. with ctx as model_part:
  123. tensor_names_from_parts.update(model_part.keys())
  124. for name in model_part.keys():
  125. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  126. if self.lazy:
  127. data = LazyTorchTensor.from_eager(data)
  128. yield name, data
  129. # only verify tensor name presence; it doesn't matter if they are not in the right files
  130. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  131. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  132. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  133. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  134. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  135. name: str = gguf.TENSOR_NAMES[key]
  136. if "{bid}" in name:
  137. assert bid is not None
  138. name = name.format(bid=bid)
  139. return name + suffix
  140. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  141. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  142. return False
  143. key_name: str = gguf.TENSOR_NAMES[key]
  144. if "{bid}" in key_name:
  145. if bid is None:
  146. return False
  147. key_name = key_name.format(bid=bid)
  148. else:
  149. if bid is not None:
  150. return False
  151. return name == (key_name + suffix)
  152. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  153. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  154. if new_name is None:
  155. raise ValueError(f"Can not map tensor {name!r}")
  156. return new_name
  157. def set_gguf_parameters(self):
  158. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  159. self.gguf_writer.add_block_count(self.block_count)
  160. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  161. self.gguf_writer.add_context_length(n_ctx)
  162. logger.info(f"gguf: context length = {n_ctx}")
  163. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  164. self.gguf_writer.add_embedding_length(n_embd)
  165. logger.info(f"gguf: embedding length = {n_embd}")
  166. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  167. self.gguf_writer.add_feed_forward_length(n_ff)
  168. logger.info(f"gguf: feed forward length = {n_ff}")
  169. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  170. self.gguf_writer.add_head_count(n_head)
  171. logger.info(f"gguf: head count = {n_head}")
  172. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  173. self.gguf_writer.add_head_count_kv(n_head_kv)
  174. logger.info(f"gguf: key-value head count = {n_head_kv}")
  175. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  176. self.gguf_writer.add_rope_freq_base(rope_theta)
  177. logger.info(f"gguf: rope theta = {rope_theta}")
  178. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  179. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  180. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  181. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  182. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  183. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  184. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  185. self.gguf_writer.add_expert_count(n_experts)
  186. logger.info(f"gguf: expert count = {n_experts}")
  187. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  188. self.gguf_writer.add_expert_used_count(n_experts_used)
  189. logger.info(f"gguf: experts used count = {n_experts_used}")
  190. self.gguf_writer.add_file_type(self.ftype)
  191. logger.info(f"gguf: file type = {self.ftype}")
  192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  193. del bid # unused
  194. return [(self.map_tensor_name(name), data_torch)]
  195. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  196. del name, new_name, bid, n_dims # unused
  197. return False
  198. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  199. del name, new_name, bid, n_dims # unused
  200. return False
  201. def write_tensors(self):
  202. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  203. for name, data_torch in self.get_tensors():
  204. # we don't need these
  205. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  206. continue
  207. old_dtype = data_torch.dtype
  208. # convert any unsupported data types to float32
  209. if data_torch.dtype not in (torch.float16, torch.float32):
  210. data_torch = data_torch.to(torch.float32)
  211. # use the first number-like part of the tensor name as the block id
  212. bid = None
  213. for part in name.split("."):
  214. if part.isdecimal():
  215. bid = int(part)
  216. break
  217. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  218. data: np.ndarray = data # type hint
  219. n_dims = len(data.shape)
  220. data_dtype = data.dtype
  221. data_qtype: gguf.GGMLQuantizationType | None = None
  222. # when both are True, f32 should win
  223. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  224. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  225. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  226. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  227. extra_f32 = any(cond for cond in (
  228. extra_f32,
  229. n_dims == 1,
  230. new_name.endswith("_norm.weight"),
  231. ))
  232. # Some tensor types are always in float32
  233. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  234. gguf.MODEL_TENSOR.FFN_GATE_INP,
  235. gguf.MODEL_TENSOR.POS_EMBD,
  236. gguf.MODEL_TENSOR.TOKEN_TYPES,
  237. ))
  238. # if f16 desired, convert any float32 2-dim weight tensors to float16
  239. extra_f16 = any(cond for cond in (
  240. extra_f16,
  241. (name.endswith(".weight") and n_dims >= 2),
  242. ))
  243. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  244. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  245. data = gguf.quantize_bf16(data)
  246. assert data.dtype == np.int16
  247. data_qtype = gguf.GGMLQuantizationType.BF16
  248. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  249. data = gguf.quantize_q8_0(data)
  250. assert data.dtype == np.uint8
  251. data_qtype = gguf.GGMLQuantizationType.Q8_0
  252. else: # default to float16 for quantized tensors
  253. if data_dtype != np.float16:
  254. data = data.astype(np.float16)
  255. data_qtype = gguf.GGMLQuantizationType.F16
  256. if data_qtype is None: # by default, convert to float32
  257. if data_dtype != np.float32:
  258. data = data.astype(np.float32)
  259. data_qtype = gguf.GGMLQuantizationType.F32
  260. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  261. # reverse shape to make it similar to the internal ggml dimension order
  262. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  263. # n_dims is implicit in the shape
  264. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  265. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  266. def write(self):
  267. self.write_tensors()
  268. self.gguf_writer.write_header_to_file(self.fname_out)
  269. self.gguf_writer.write_kv_data_to_file()
  270. self.gguf_writer.write_tensors_to_file(progress=True)
  271. self.gguf_writer.close()
  272. def write_vocab(self):
  273. self.gguf_writer.write_header_to_file(self.fname_out)
  274. self.gguf_writer.write_kv_data_to_file()
  275. self.gguf_writer.close()
  276. @staticmethod
  277. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  278. part_names: list[str] = []
  279. for filename in os.listdir(dir_model):
  280. if filename.startswith(prefix) and filename.endswith(suffix):
  281. part_names.append(filename)
  282. part_names.sort()
  283. return part_names
  284. @staticmethod
  285. def load_hparams(dir_model: Path):
  286. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  287. return json.load(f)
  288. @classmethod
  289. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  290. assert names
  291. def func(modelcls: AnyModel) -> AnyModel:
  292. for name in names:
  293. cls._model_classes[name] = modelcls
  294. return modelcls
  295. return func
  296. @classmethod
  297. def from_model_architecture(cls, arch: str) -> type[Model]:
  298. try:
  299. return cls._model_classes[arch]
  300. except KeyError:
  301. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  302. # used for GPT-2 BPE and WordPiece vocabs
  303. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  304. tokens: list[str] = []
  305. toktypes: list[int] = []
  306. from transformers import AutoTokenizer
  307. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  308. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  309. assert max(tokenizer.vocab.values()) < vocab_size
  310. tokpre = self.get_vocab_base_pre(tokenizer)
  311. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  312. added_vocab = tokenizer.get_added_vocab()
  313. for i in range(vocab_size):
  314. if i not in reverse_vocab:
  315. tokens.append(f"[PAD{i}]")
  316. toktypes.append(gguf.TokenType.USER_DEFINED)
  317. elif reverse_vocab[i] in added_vocab:
  318. tokens.append(reverse_vocab[i])
  319. if tokenizer.added_tokens_decoder[i].special:
  320. toktypes.append(gguf.TokenType.CONTROL)
  321. else:
  322. toktypes.append(gguf.TokenType.USER_DEFINED)
  323. else:
  324. tokens.append(reverse_vocab[i])
  325. toktypes.append(gguf.TokenType.NORMAL)
  326. return tokens, toktypes, tokpre
  327. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  328. # do not modify it manually!
  329. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  330. # Marker: Start get_vocab_base_pre
  331. def get_vocab_base_pre(self, tokenizer) -> str:
  332. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  333. # is specific for the BPE pre-tokenizer used by the model
  334. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  335. # use in llama.cpp to implement the same pre-tokenizer
  336. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  337. chktok = tokenizer.encode(chktxt)
  338. chkhsh = sha256(str(chktok).encode()).hexdigest()
  339. logger.debug(f"chktok: {chktok}")
  340. logger.debug(f"chkhsh: {chkhsh}")
  341. res = None
  342. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  343. # or pull the latest version of the model from Huggingface
  344. # don't edit the hashes manually!
  345. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  346. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  347. res = "llama-bpe"
  348. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  349. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  350. res = "deepseek-llm"
  351. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  352. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  353. res = "deepseek-coder"
  354. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  355. # ref: https://huggingface.co/tiiuae/falcon-7b
  356. res = "falcon"
  357. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  358. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  359. res = "bert-bge"
  360. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  361. # ref: https://huggingface.co/mosaicml/mpt-7b
  362. res = "mpt"
  363. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  364. # ref: https://huggingface.co/bigcode/starcoder2-3b
  365. res = "starcoder"
  366. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  367. # ref: https://huggingface.co/openai-community/gpt2
  368. res = "gpt-2"
  369. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  370. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  371. res = "stablelm2"
  372. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  373. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  374. res = "refact"
  375. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  376. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  377. res = "command-r"
  378. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  379. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  380. res = "qwen2"
  381. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  382. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  383. res = "olmo"
  384. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  385. # ref: https://huggingface.co/databricks/dbrx-base
  386. res = "dbrx"
  387. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  388. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  389. res = "jina-v2-en"
  390. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  391. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  392. res = "jina-v2-es"
  393. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  394. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  395. res = "jina-v2-de"
  396. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  397. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  398. res = "smaug-bpe"
  399. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  400. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  401. res = "poro-chat"
  402. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  403. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  404. res = "jina-v2-code"
  405. if res is None:
  406. logger.warning("\n")
  407. logger.warning("**************************************************************************************")
  408. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  409. logger.warning("** There are 2 possible reasons for this:")
  410. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  411. logger.warning("** - the pre-tokenization config has changed upstream")
  412. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  413. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  414. logger.warning("**")
  415. logger.warning(f"** chkhsh: {chkhsh}")
  416. logger.warning("**************************************************************************************")
  417. logger.warning("\n")
  418. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  419. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  420. logger.debug(f"chkhsh: {chkhsh}")
  421. return res
  422. # Marker: End get_vocab_base_pre
  423. def _set_vocab_gpt2(self) -> None:
  424. tokens, toktypes, tokpre = self.get_vocab_base()
  425. self.gguf_writer.add_tokenizer_model("gpt2")
  426. self.gguf_writer.add_tokenizer_pre(tokpre)
  427. self.gguf_writer.add_token_list(tokens)
  428. self.gguf_writer.add_token_types(toktypes)
  429. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  430. special_vocab.add_to_gguf(self.gguf_writer)
  431. def _set_vocab_qwen(self):
  432. dir_model = self.dir_model
  433. hparams = self.hparams
  434. tokens: list[str] = []
  435. toktypes: list[int] = []
  436. from transformers import AutoTokenizer
  437. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  438. vocab_size = hparams["vocab_size"]
  439. assert max(tokenizer.get_vocab().values()) < vocab_size
  440. tokpre = self.get_vocab_base_pre(tokenizer)
  441. merges = []
  442. vocab = {}
  443. mergeable_ranks = tokenizer.mergeable_ranks
  444. for token, rank in mergeable_ranks.items():
  445. vocab[QwenModel.token_bytes_to_string(token)] = rank
  446. if len(token) == 1:
  447. continue
  448. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  449. assert len(merged) == 2
  450. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  451. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  452. added_vocab = tokenizer.special_tokens
  453. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  454. for i in range(vocab_size):
  455. if i not in reverse_vocab:
  456. tokens.append(f"[PAD{i}]")
  457. toktypes.append(gguf.TokenType.USER_DEFINED)
  458. elif reverse_vocab[i] in added_vocab:
  459. tokens.append(reverse_vocab[i])
  460. toktypes.append(gguf.TokenType.CONTROL)
  461. else:
  462. tokens.append(reverse_vocab[i])
  463. toktypes.append(gguf.TokenType.NORMAL)
  464. self.gguf_writer.add_tokenizer_model("gpt2")
  465. self.gguf_writer.add_tokenizer_pre(tokpre)
  466. self.gguf_writer.add_token_list(tokens)
  467. self.gguf_writer.add_token_types(toktypes)
  468. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  469. special_vocab.merges = merges
  470. # only add special tokens when they were not already loaded from config.json
  471. if len(special_vocab.special_token_ids) == 0:
  472. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  473. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  474. # this one is usually not in config.json anyway
  475. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  476. special_vocab.add_to_gguf(self.gguf_writer)
  477. def _set_vocab_sentencepiece(self):
  478. from sentencepiece import SentencePieceProcessor
  479. tokenizer_path = self.dir_model / 'tokenizer.model'
  480. tokens: list[bytes] = []
  481. scores: list[float] = []
  482. toktypes: list[int] = []
  483. if not tokenizer_path.is_file():
  484. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  485. tokenizer = SentencePieceProcessor()
  486. tokenizer.LoadFromFile(str(tokenizer_path))
  487. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  488. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  489. scores: list[float] = [-10000.0] * vocab_size
  490. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  491. for token_id in range(tokenizer.vocab_size()):
  492. piece = tokenizer.IdToPiece(token_id)
  493. text = piece.encode("utf-8")
  494. score = tokenizer.GetScore(token_id)
  495. toktype = SentencePieceTokenTypes.NORMAL
  496. if tokenizer.IsUnknown(token_id):
  497. toktype = SentencePieceTokenTypes.UNKNOWN
  498. elif tokenizer.IsControl(token_id):
  499. toktype = SentencePieceTokenTypes.CONTROL
  500. elif tokenizer.IsUnused(token_id):
  501. toktype = SentencePieceTokenTypes.UNUSED
  502. elif tokenizer.IsByte(token_id):
  503. toktype = SentencePieceTokenTypes.BYTE
  504. tokens[token_id] = text
  505. scores[token_id] = score
  506. toktypes[token_id] = toktype
  507. added_tokens_file = self.dir_model / 'added_tokens.json'
  508. if added_tokens_file.is_file():
  509. with open(added_tokens_file, "r", encoding="utf-8") as f:
  510. added_tokens_json = json.load(f)
  511. for key in added_tokens_json:
  512. token_id = added_tokens_json[key]
  513. if (token_id >= vocab_size):
  514. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  515. continue
  516. tokens[token_id] = key.encode("utf-8")
  517. scores[token_id] = -1000.0
  518. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  519. if vocab_size > len(tokens):
  520. pad_count = vocab_size - len(tokens)
  521. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  522. for i in range(1, pad_count + 1):
  523. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  524. scores.append(-1000.0)
  525. toktypes.append(SentencePieceTokenTypes.UNUSED)
  526. self.gguf_writer.add_tokenizer_model("llama")
  527. self.gguf_writer.add_tokenizer_pre("default")
  528. self.gguf_writer.add_token_list(tokens)
  529. self.gguf_writer.add_token_scores(scores)
  530. self.gguf_writer.add_token_types(toktypes)
  531. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  532. special_vocab.add_to_gguf(self.gguf_writer)
  533. def _set_vocab_llama_hf(self):
  534. vocab = gguf.LlamaHfVocab(self.dir_model)
  535. tokens = []
  536. scores = []
  537. toktypes = []
  538. for text, score, toktype in vocab.all_tokens():
  539. tokens.append(text)
  540. scores.append(score)
  541. toktypes.append(toktype)
  542. assert len(tokens) == vocab.vocab_size
  543. self.gguf_writer.add_tokenizer_model("llama")
  544. self.gguf_writer.add_tokenizer_pre("default")
  545. self.gguf_writer.add_token_list(tokens)
  546. self.gguf_writer.add_token_scores(scores)
  547. self.gguf_writer.add_token_types(toktypes)
  548. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  549. special_vocab.add_to_gguf(self.gguf_writer)
  550. @Model.register("GPTNeoXForCausalLM")
  551. class GPTNeoXModel(Model):
  552. model_arch = gguf.MODEL_ARCH.GPTNEOX
  553. def set_gguf_parameters(self):
  554. block_count = self.hparams["num_hidden_layers"]
  555. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  556. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  557. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  558. self.gguf_writer.add_block_count(block_count)
  559. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  560. self.gguf_writer.add_rope_dimension_count(
  561. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  562. )
  563. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  564. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  565. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  566. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  567. del bid # unused
  568. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  569. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  570. tensors: list[tuple[str, Tensor]] = []
  571. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  572. # Map bloom-style qkv_linear to gpt-style qkv_linear
  573. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  574. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  575. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  576. data_torch = torch.cat(
  577. (
  578. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  579. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  580. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  581. ),
  582. dim=0,
  583. )
  584. logger.info("re-format attention.linear_qkv.weight")
  585. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  586. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  587. data_torch = torch.cat(
  588. (
  589. qkv_bias[:, 0, :].reshape((n_embed,)),
  590. qkv_bias[:, 1, :].reshape((n_embed,)),
  591. qkv_bias[:, 2, :].reshape((n_embed,)),
  592. ),
  593. dim=0,
  594. )
  595. logger.info("re-format attention.linear_qkv.bias")
  596. tensors.append((self.map_tensor_name(name), data_torch))
  597. return tensors
  598. @Model.register("BloomForCausalLM")
  599. class BloomModel(Model):
  600. model_arch = gguf.MODEL_ARCH.BLOOM
  601. def set_gguf_parameters(self):
  602. self.gguf_writer.add_name("Bloom")
  603. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  604. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  605. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  606. self.gguf_writer.add_embedding_length(n_embed)
  607. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  608. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  609. self.gguf_writer.add_head_count(n_head)
  610. self.gguf_writer.add_head_count_kv(n_head)
  611. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  612. self.gguf_writer.add_file_type(self.ftype)
  613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  614. del bid # unused
  615. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  616. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  617. name = re.sub(r'transformer\.', '', name)
  618. tensors: list[tuple[str, Tensor]] = []
  619. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  620. # Map bloom-style qkv_linear to gpt-style qkv_linear
  621. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  622. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  623. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  624. data_torch = torch.cat(
  625. (
  626. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  627. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  628. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  629. ),
  630. dim=0,
  631. )
  632. logger.info("re-format attention.linear_qkv.weight")
  633. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  634. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  635. data_torch = torch.cat(
  636. (
  637. qkv_bias[:, 0, :].reshape((n_embed,)),
  638. qkv_bias[:, 1, :].reshape((n_embed,)),
  639. qkv_bias[:, 2, :].reshape((n_embed,)),
  640. ),
  641. dim=0,
  642. )
  643. logger.info("re-format attention.linear_qkv.bias")
  644. tensors.append((self.map_tensor_name(name), data_torch))
  645. if name == "word_embeddings.weight":
  646. assert self.tensor_names is not None
  647. # TODO: tie them at runtime, don't duplicate in the model file
  648. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  649. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  650. return tensors
  651. @Model.register("MPTForCausalLM")
  652. class MPTModel(Model):
  653. model_arch = gguf.MODEL_ARCH.MPT
  654. def set_vocab(self):
  655. try:
  656. self._set_vocab_gpt2()
  657. except Exception:
  658. # Fallback for SEA-LION model
  659. self._set_vocab_sentencepiece()
  660. self.gguf_writer.add_add_bos_token(False)
  661. self.gguf_writer.add_pad_token_id(3)
  662. self.gguf_writer.add_eos_token_id(1)
  663. self.gguf_writer.add_unk_token_id(0)
  664. def set_gguf_parameters(self):
  665. block_count = self.hparams["n_layers"]
  666. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  667. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  668. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  669. self.gguf_writer.add_block_count(block_count)
  670. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  671. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  672. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  673. self.gguf_writer.add_head_count_kv(kv_n_heads)
  674. self.gguf_writer.add_layer_norm_eps(1e-5)
  675. if self.hparams["attn_config"]["clip_qkv"] is not None:
  676. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  677. if self.hparams["attn_config"]["alibi"]:
  678. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  679. else:
  680. self.gguf_writer.add_max_alibi_bias(0.0)
  681. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  682. del bid # unused
  683. if "scales" in name:
  684. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  685. new_name = new_name.replace("scales", "act.scales")
  686. else:
  687. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  688. return [(new_name, data_torch)]
  689. @Model.register("OrionForCausalLM")
  690. class OrionModel(Model):
  691. model_arch = gguf.MODEL_ARCH.ORION
  692. def set_vocab(self):
  693. self._set_vocab_sentencepiece()
  694. def set_gguf_parameters(self):
  695. block_count = self.hparams["num_hidden_layers"]
  696. head_count = self.hparams["num_attention_heads"]
  697. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  698. hf_repo = self.hparams.get("_name_or_path", "")
  699. ctx_length = 0
  700. if "max_sequence_length" in self.hparams:
  701. ctx_length = self.hparams["max_sequence_length"]
  702. elif "max_position_embeddings" in self.hparams:
  703. ctx_length = self.hparams["max_position_embeddings"]
  704. elif "model_max_length" in self.hparams:
  705. ctx_length = self.hparams["model_max_length"]
  706. else:
  707. raise ValueError("gguf: can not find ctx length parameter.")
  708. self.gguf_writer.add_file_type(self.ftype)
  709. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  710. self.gguf_writer.add_source_hf_repo(hf_repo)
  711. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  712. self.gguf_writer.add_context_length(ctx_length)
  713. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  714. self.gguf_writer.add_block_count(block_count)
  715. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  716. self.gguf_writer.add_head_count(head_count)
  717. self.gguf_writer.add_head_count_kv(head_count_kv)
  718. # note: config provides rms norm but it is actually layer norm
  719. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  720. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  721. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  722. class BaichuanModel(Model):
  723. model_arch = gguf.MODEL_ARCH.BAICHUAN
  724. def set_vocab(self):
  725. self._set_vocab_sentencepiece()
  726. def set_gguf_parameters(self):
  727. block_count = self.hparams["num_hidden_layers"]
  728. head_count = self.hparams["num_attention_heads"]
  729. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  730. hf_repo = self.hparams.get("_name_or_path", "")
  731. ctx_length = 0
  732. if "max_sequence_length" in self.hparams:
  733. ctx_length = self.hparams["max_sequence_length"]
  734. elif "max_position_embeddings" in self.hparams:
  735. ctx_length = self.hparams["max_position_embeddings"]
  736. elif "model_max_length" in self.hparams:
  737. ctx_length = self.hparams["model_max_length"]
  738. else:
  739. raise ValueError("gguf: can not find ctx length parameter.")
  740. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  741. self.gguf_writer.add_source_hf_repo(hf_repo)
  742. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  743. self.gguf_writer.add_context_length(ctx_length)
  744. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  745. self.gguf_writer.add_block_count(block_count)
  746. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  747. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  748. self.gguf_writer.add_head_count(head_count)
  749. self.gguf_writer.add_head_count_kv(head_count_kv)
  750. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  751. self.gguf_writer.add_file_type(self.ftype)
  752. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  753. if self.hparams["rope_scaling"].get("type") == "linear":
  754. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  755. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  756. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  757. head_count = self.hparams["num_attention_heads"]
  758. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  759. tensors: list[tuple[str, Tensor]] = []
  760. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  761. logger.info(f"Unpacking and permuting layer {bid}")
  762. tensors = [
  763. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  764. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  765. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  766. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  767. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  768. self._reverse_hf_part(data_torch, 2)),
  769. ]
  770. else:
  771. tensors = [(self.map_tensor_name(name), data_torch)]
  772. return tensors
  773. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  774. if n_kv_head is not None and n_head != n_kv_head:
  775. n_head //= n_kv_head
  776. return (
  777. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  778. .swapaxes(1, 2)
  779. .reshape(weights.shape)
  780. )
  781. def _reverse_hf_permute_part(
  782. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  783. ) -> Tensor:
  784. r = weights.shape[0] // 3
  785. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  786. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  787. r = weights.shape[0] // 3
  788. return weights[r * n_part:r * n_part + r, ...]
  789. @Model.register("XverseForCausalLM")
  790. class XverseModel(Model):
  791. model_arch = gguf.MODEL_ARCH.XVERSE
  792. def set_vocab(self):
  793. assert (self.dir_model / "tokenizer.json").is_file()
  794. dir_model = self.dir_model
  795. hparams = self.hparams
  796. tokens: list[bytes] = []
  797. toktypes: list[int] = []
  798. from transformers import AutoTokenizer
  799. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  800. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  801. assert max(tokenizer.vocab.values()) < vocab_size
  802. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  803. added_vocab = tokenizer.get_added_vocab()
  804. for token_id in range(vocab_size):
  805. token_text = reverse_vocab[token_id].encode('utf-8')
  806. # replace "\x00" to string with length > 0
  807. if token_text == b"\x00":
  808. toktype = gguf.TokenType.BYTE # special
  809. token_text = f"<{token_text}>".encode('utf-8')
  810. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  811. toktype = gguf.TokenType.BYTE # special
  812. elif reverse_vocab[token_id] in added_vocab:
  813. if tokenizer.added_tokens_decoder[token_id].special:
  814. toktype = gguf.TokenType.CONTROL
  815. else:
  816. toktype = gguf.TokenType.USER_DEFINED
  817. else:
  818. toktype = gguf.TokenType.NORMAL
  819. tokens.append(token_text)
  820. toktypes.append(toktype)
  821. self.gguf_writer.add_tokenizer_model("llama")
  822. self.gguf_writer.add_tokenizer_pre("default")
  823. self.gguf_writer.add_token_list(tokens)
  824. self.gguf_writer.add_token_types(toktypes)
  825. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  826. special_vocab.add_to_gguf(self.gguf_writer)
  827. def set_gguf_parameters(self):
  828. block_count = self.hparams["num_hidden_layers"]
  829. head_count = self.hparams["num_attention_heads"]
  830. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  831. hf_repo = self.hparams.get("_name_or_path", "")
  832. ctx_length = 0
  833. if "max_sequence_length" in self.hparams:
  834. ctx_length = self.hparams["max_sequence_length"]
  835. elif "max_position_embeddings" in self.hparams:
  836. ctx_length = self.hparams["max_position_embeddings"]
  837. elif "model_max_length" in self.hparams:
  838. ctx_length = self.hparams["model_max_length"]
  839. else:
  840. raise ValueError("gguf: can not find ctx length parameter.")
  841. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  842. self.gguf_writer.add_source_hf_repo(hf_repo)
  843. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  844. self.gguf_writer.add_context_length(ctx_length)
  845. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  846. self.gguf_writer.add_block_count(block_count)
  847. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  848. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  849. self.gguf_writer.add_head_count(head_count)
  850. self.gguf_writer.add_head_count_kv(head_count_kv)
  851. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  852. self.gguf_writer.add_file_type(self.ftype)
  853. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  854. if self.hparams["rope_scaling"].get("type") == "linear":
  855. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  856. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  858. del bid # unused
  859. head_count = self.hparams["num_attention_heads"]
  860. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  861. # HF models permute some of the tensors, so we need to undo that
  862. if name.endswith("q_proj.weight"):
  863. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  864. if name.endswith("k_proj.weight"):
  865. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  866. return [(self.map_tensor_name(name), data_torch)]
  867. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  868. if n_kv_head is not None and n_head != n_kv_head:
  869. n_head //= n_kv_head
  870. return (
  871. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  872. .swapaxes(1, 2)
  873. .reshape(weights.shape)
  874. )
  875. @Model.register("FalconForCausalLM", "RWForCausalLM")
  876. class FalconModel(Model):
  877. model_arch = gguf.MODEL_ARCH.FALCON
  878. def set_gguf_parameters(self):
  879. block_count = self.hparams.get("num_hidden_layers")
  880. if block_count is None:
  881. block_count = self.hparams["n_layer"] # old name
  882. n_head = self.hparams.get("num_attention_heads")
  883. if n_head is None:
  884. n_head = self.hparams["n_head"] # old name
  885. n_head_kv = self.hparams.get("num_kv_heads")
  886. if n_head_kv is None:
  887. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  888. self.gguf_writer.add_name("Falcon")
  889. self.gguf_writer.add_context_length(2048) # not in config.json
  890. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  891. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  892. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  893. self.gguf_writer.add_block_count(block_count)
  894. self.gguf_writer.add_head_count(n_head)
  895. self.gguf_writer.add_head_count_kv(n_head_kv)
  896. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  897. self.gguf_writer.add_file_type(self.ftype)
  898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  899. del bid # unused
  900. # QKV tensor transform
  901. # The original query_key_value tensor contains n_head_kv "kv groups",
  902. # each consisting of n_head/n_head_kv query weights followed by one key
  903. # and one value weight (shared by all query heads in the kv group).
  904. # This layout makes it a big pain to work with in GGML.
  905. # So we rearrange them here,, so that we have n_head query weights
  906. # followed by n_head_kv key weights followed by n_head_kv value weights,
  907. # in contiguous fashion.
  908. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  909. if "query_key_value" in name:
  910. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  911. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  912. head_dim = self.hparams["hidden_size"] // n_head
  913. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  914. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  915. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  916. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  917. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  918. return [(self.map_tensor_name(name), data_torch)]
  919. @Model.register("GPTBigCodeForCausalLM")
  920. class StarCoderModel(Model):
  921. model_arch = gguf.MODEL_ARCH.STARCODER
  922. def set_gguf_parameters(self):
  923. block_count = self.hparams["n_layer"]
  924. self.gguf_writer.add_name("StarCoder")
  925. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  926. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  927. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  928. self.gguf_writer.add_block_count(block_count)
  929. self.gguf_writer.add_head_count(self.hparams["n_head"])
  930. self.gguf_writer.add_head_count_kv(1)
  931. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  932. self.gguf_writer.add_file_type(self.ftype)
  933. @Model.register("GPTRefactForCausalLM")
  934. class RefactModel(Model):
  935. model_arch = gguf.MODEL_ARCH.REFACT
  936. def set_vocab(self):
  937. super().set_vocab()
  938. # TODO: how to determine special FIM tokens automatically?
  939. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  940. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  941. special_vocab._set_special_token("prefix", 1)
  942. special_vocab._set_special_token("suffix", 3)
  943. special_vocab._set_special_token("middle", 2)
  944. special_vocab._set_special_token("fsep", 4) # is this correct?
  945. special_vocab.add_to_gguf(self.gguf_writer)
  946. def set_gguf_parameters(self):
  947. hidden_dim = self.hparams["n_embd"]
  948. inner_dim = 4 * hidden_dim
  949. hidden_dim = int(2 * inner_dim / 3)
  950. multiple_of = 256
  951. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  952. block_count = self.hparams["n_layer"]
  953. self.gguf_writer.add_name("Refact")
  954. # refact uses Alibi. So this is from config.json which might be used by training.
  955. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  956. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  957. self.gguf_writer.add_feed_forward_length(ff_dim)
  958. self.gguf_writer.add_block_count(block_count)
  959. self.gguf_writer.add_head_count(self.hparams["n_head"])
  960. self.gguf_writer.add_head_count_kv(1)
  961. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  962. self.gguf_writer.add_file_type(self.ftype)
  963. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  964. hidden_dim = self.hparams["n_embd"]
  965. inner_dim = 4 * hidden_dim
  966. hidden_dim = int(2 * inner_dim / 3)
  967. multiple_of = 256
  968. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  969. n_head = self.hparams["n_head"]
  970. n_head_kv = 1
  971. head_dim = self.hparams["n_embd"] // n_head
  972. tensors: list[tuple[str, Tensor]] = []
  973. if bid is not None:
  974. if name == f"transformer.h.{bid}.attn.kv.weight":
  975. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  976. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  977. elif name == f"transformer.h.{bid}.attn.q.weight":
  978. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  979. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  980. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  981. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  982. if len(tensors) == 0:
  983. tensors.append((self.map_tensor_name(name), data_torch))
  984. return tensors
  985. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  986. class StableLMModel(Model):
  987. model_arch = gguf.MODEL_ARCH.STABLELM
  988. def set_vocab(self):
  989. if (self.dir_model / "tokenizer.json").is_file():
  990. self._set_vocab_gpt2()
  991. else:
  992. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  993. self._set_vocab_qwen()
  994. def set_gguf_parameters(self):
  995. hparams = self.hparams
  996. block_count = hparams["num_hidden_layers"]
  997. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  998. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  999. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1000. self.gguf_writer.add_block_count(block_count)
  1001. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1002. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1003. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1004. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1005. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1006. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1007. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1008. self.gguf_writer.add_file_type(self.ftype)
  1009. _q_norms: list[dict[str, Tensor]] | None = None
  1010. _k_norms: list[dict[str, Tensor]] | None = None
  1011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1012. n_head = self.hparams["num_attention_heads"]
  1013. n_kv_head = self.hparams["num_key_value_heads"]
  1014. if name.find("q_layernorm.norms") != -1:
  1015. assert bid is not None
  1016. if self._q_norms is None:
  1017. self._q_norms = [{} for _ in range(self.block_count)]
  1018. self._q_norms[bid][name] = data_torch
  1019. if len(self._q_norms[bid]) >= n_head:
  1020. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1021. else:
  1022. return []
  1023. if name.find("k_layernorm.norms") != -1:
  1024. assert bid is not None
  1025. if self._k_norms is None:
  1026. self._k_norms = [{} for _ in range(self.block_count)]
  1027. self._k_norms[bid][name] = data_torch
  1028. if len(self._k_norms[bid]) >= n_kv_head:
  1029. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1030. else:
  1031. return []
  1032. return [(self.map_tensor_name(name), data_torch)]
  1033. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1034. datas: list[Tensor] = []
  1035. # extract the norms in order
  1036. for xid in range(n_head):
  1037. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1038. datas.append(norms[ename])
  1039. del norms[ename]
  1040. data_torch = torch.stack(datas, dim=0)
  1041. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1042. new_name = self.map_tensor_name(merged_name)
  1043. return [(new_name, data_torch)]
  1044. def write_tensors(self):
  1045. super().write_tensors()
  1046. if self._q_norms is not None or self._k_norms is not None:
  1047. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1048. norms = (
  1049. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1050. ) + (
  1051. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1052. )
  1053. if len(norms) > 0:
  1054. raise ValueError(f"Unprocessed norms: {norms}")
  1055. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1056. class LlamaModel(Model):
  1057. model_arch = gguf.MODEL_ARCH.LLAMA
  1058. def set_vocab(self):
  1059. try:
  1060. self. _set_vocab_sentencepiece()
  1061. except FileNotFoundError:
  1062. try:
  1063. self._set_vocab_llama_hf()
  1064. except (FileNotFoundError, TypeError):
  1065. # Llama 3
  1066. self._set_vocab_gpt2()
  1067. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1068. if self.hparams.get("vocab_size", 32000) == 32016:
  1069. special_vocab = gguf.SpecialVocab(
  1070. self.dir_model, load_merges=False,
  1071. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1072. )
  1073. special_vocab._set_special_token("prefix", 32007)
  1074. special_vocab._set_special_token("suffix", 32008)
  1075. special_vocab._set_special_token("middle", 32009)
  1076. special_vocab._set_special_token("eot", 32010)
  1077. special_vocab.add_to_gguf(self.gguf_writer)
  1078. def set_gguf_parameters(self):
  1079. super().set_gguf_parameters()
  1080. hparams = self.hparams
  1081. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1082. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1083. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1084. if self.hparams["rope_scaling"].get("type") == "linear":
  1085. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1086. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1087. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1088. if tokenizer_config_file.is_file():
  1089. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1090. tokenizer_config_json = json.load(f)
  1091. if "add_prefix_space" in tokenizer_config_json:
  1092. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1093. # Apply to granite small models only
  1094. if self.hparams.get("vocab_size", 32000) == 49152:
  1095. self.gguf_writer.add_add_bos_token(False)
  1096. @staticmethod
  1097. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1098. if n_head_kv is not None and n_head != n_head_kv:
  1099. n_head = n_head_kv
  1100. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1101. .swapaxes(1, 2)
  1102. .reshape(weights.shape))
  1103. _experts: list[dict[str, Tensor]] | None = None
  1104. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1105. n_head = self.hparams["num_attention_heads"]
  1106. n_kv_head = self.hparams.get("num_key_value_heads")
  1107. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1108. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1109. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1110. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1111. # process the experts separately
  1112. if name.find("block_sparse_moe.experts") != -1:
  1113. n_experts = self.hparams["num_local_experts"]
  1114. assert bid is not None
  1115. if self._experts is None:
  1116. self._experts = [{} for _ in range(self.block_count)]
  1117. self._experts[bid][name] = data_torch
  1118. if len(self._experts[bid]) >= n_experts * 3:
  1119. tensors: list[tuple[str, Tensor]] = []
  1120. # merge the experts into a single 3d tensor
  1121. for wid in ["w1", "w2", "w3"]:
  1122. datas: list[Tensor] = []
  1123. for xid in range(n_experts):
  1124. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1125. datas.append(self._experts[bid][ename])
  1126. del self._experts[bid][ename]
  1127. data_torch = torch.stack(datas, dim=0)
  1128. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1129. new_name = self.map_tensor_name(merged_name)
  1130. tensors.append((new_name, data_torch))
  1131. return tensors
  1132. else:
  1133. return []
  1134. return [(self.map_tensor_name(name), data_torch)]
  1135. def write_tensors(self):
  1136. super().write_tensors()
  1137. if self._experts is not None:
  1138. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1139. experts = [k for d in self._experts for k in d.keys()]
  1140. if len(experts) > 0:
  1141. raise ValueError(f"Unprocessed experts: {experts}")
  1142. @Model.register("GrokForCausalLM")
  1143. class GrokModel(Model):
  1144. model_arch = gguf.MODEL_ARCH.GROK
  1145. def set_vocab(self):
  1146. self._set_vocab_sentencepiece()
  1147. def __init__(self, *args, **kwargs):
  1148. super().__init__(*args, **kwargs)
  1149. def set_gguf_parameters(self):
  1150. super().set_gguf_parameters()
  1151. self.gguf_writer.add_name("Grok")
  1152. _experts: list[dict[str, Tensor]] | None = None
  1153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1154. # process the experts separately
  1155. if name.find(".moe.") != -1:
  1156. n_experts = self.hparams["num_local_experts"]
  1157. assert bid is not None
  1158. if self._experts is None:
  1159. self._experts = [{} for _ in range(self.block_count)]
  1160. self._experts[bid][name] = data_torch
  1161. if len(self._experts[bid]) >= n_experts * 3:
  1162. tensors: list[tuple[str, Tensor]] = []
  1163. # merge the experts into a single 3d tensor
  1164. for wid in ["linear", "linear_1", "linear_v"]:
  1165. datas: list[Tensor] = []
  1166. for xid in range(n_experts):
  1167. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1168. datas.append(self._experts[bid][ename])
  1169. del self._experts[bid][ename]
  1170. data_torch = torch.stack(datas, dim=0)
  1171. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1172. new_name = self.map_tensor_name(merged_name)
  1173. tensors.append((new_name, data_torch))
  1174. return tensors
  1175. else:
  1176. return []
  1177. return [(self.map_tensor_name(name), data_torch)]
  1178. @Model.register("DbrxForCausalLM")
  1179. class DbrxModel(Model):
  1180. model_arch = gguf.MODEL_ARCH.DBRX
  1181. def set_gguf_parameters(self):
  1182. ffn_config = self.hparams["ffn_config"]
  1183. attn_config = self.hparams["attn_config"]
  1184. self.gguf_writer.add_name(self.hparams["model_type"])
  1185. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1186. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1187. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1188. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1189. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1190. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1191. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1192. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1193. self.gguf_writer.add_file_type(self.ftype)
  1194. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1195. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1196. self.gguf_writer.add_layer_norm_eps(1e-5)
  1197. self.gguf_writer.add_file_type(self.ftype)
  1198. logger.info(f"gguf: file type = {self.ftype}")
  1199. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1200. del bid # unused
  1201. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1202. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1203. n_embd = self.hparams["d_model"]
  1204. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1205. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1206. # But llama.cpp moe graph works differently
  1207. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1208. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1209. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1210. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1211. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1212. experts = False
  1213. for exp_tensor_name in exp_tensor_names.keys():
  1214. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1215. experts = True
  1216. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1217. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1218. data_torch = data_torch.permute(*permute_tensor)
  1219. break
  1220. # map tensor names
  1221. # In MoE models the ffn tensors are typically most of the model weights,
  1222. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1223. # Every other model has the weight names ending in .weight,
  1224. # let's assume that is the convention which is not the case for dbrx:
  1225. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1226. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1227. return [(new_name, data_torch)]
  1228. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1229. del name, new_name, bid # unused
  1230. return n_dims > 1
  1231. @Model.register("MiniCPMForCausalLM")
  1232. class MiniCPMModel(Model):
  1233. model_arch = gguf.MODEL_ARCH.MINICPM
  1234. def set_gguf_parameters(self):
  1235. block_count = self.hparams["num_hidden_layers"]
  1236. self.gguf_writer.add_name("MiniCPM")
  1237. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1238. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1239. self.gguf_writer.add_block_count(block_count)
  1240. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1241. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1242. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1243. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1244. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1245. self.gguf_writer.add_file_type(self.ftype)
  1246. def set_vocab(self):
  1247. self._set_vocab_llama_hf()
  1248. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1249. if n_kv_head is not None and n_head != n_kv_head:
  1250. n_head //= n_kv_head
  1251. return (
  1252. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1253. .swapaxes(1, 2)
  1254. .reshape(weights.shape)
  1255. )
  1256. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1257. del bid # unused
  1258. n_head = self.hparams["num_attention_heads"]
  1259. n_kv_head = self.hparams.get("num_key_value_heads")
  1260. # HF models permute some of the tensors, so we need to undo that
  1261. if name.endswith(("q_proj.weight")):
  1262. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1263. if name.endswith(("k_proj.weight")):
  1264. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1265. return [(self.map_tensor_name(name), data_torch)]
  1266. @Model.register("QWenLMHeadModel")
  1267. class QwenModel(Model):
  1268. model_arch = gguf.MODEL_ARCH.QWEN
  1269. @staticmethod
  1270. def token_bytes_to_string(b):
  1271. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1272. byte_encoder = bytes_to_unicode()
  1273. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1274. @staticmethod
  1275. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1276. parts = [bytes([b]) for b in token]
  1277. while True:
  1278. min_idx = None
  1279. min_rank = None
  1280. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1281. rank = mergeable_ranks.get(pair[0] + pair[1])
  1282. if rank is not None and (min_rank is None or rank < min_rank):
  1283. min_idx = i
  1284. min_rank = rank
  1285. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1286. break
  1287. assert min_idx is not None
  1288. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1289. return parts
  1290. def set_vocab(self):
  1291. self._set_vocab_qwen()
  1292. def set_gguf_parameters(self):
  1293. self.gguf_writer.add_name("Qwen")
  1294. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1295. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1296. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1297. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1298. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1299. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1300. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1301. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1302. self.gguf_writer.add_file_type(self.ftype)
  1303. @Model.register("Qwen2ForCausalLM")
  1304. class Qwen2Model(Model):
  1305. model_arch = gguf.MODEL_ARCH.QWEN2
  1306. def set_vocab(self):
  1307. try:
  1308. self._set_vocab_sentencepiece()
  1309. except FileNotFoundError:
  1310. self._set_vocab_gpt2()
  1311. @Model.register("Qwen2MoeForCausalLM")
  1312. class Qwen2MoeModel(Model):
  1313. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1314. def set_gguf_parameters(self):
  1315. super().set_gguf_parameters()
  1316. if (n_experts := self.hparams.get("num_experts")) is not None:
  1317. self.gguf_writer.add_expert_count(n_experts)
  1318. _experts: list[dict[str, Tensor]] | None = None
  1319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1320. # process the experts separately
  1321. if name.find("experts") != -1:
  1322. n_experts = self.hparams["num_experts"]
  1323. assert bid is not None
  1324. if self._experts is None:
  1325. self._experts = [{} for _ in range(self.block_count)]
  1326. self._experts[bid][name] = data_torch
  1327. if len(self._experts[bid]) >= n_experts * 3:
  1328. tensors: list[tuple[str, Tensor]] = []
  1329. # merge the experts into a single 3d tensor
  1330. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1331. datas: list[Tensor] = []
  1332. for xid in range(n_experts):
  1333. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1334. datas.append(self._experts[bid][ename])
  1335. del self._experts[bid][ename]
  1336. data_torch = torch.stack(datas, dim=0)
  1337. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1338. new_name = self.map_tensor_name(merged_name)
  1339. tensors.append((new_name, data_torch))
  1340. return tensors
  1341. else:
  1342. return []
  1343. return [(self.map_tensor_name(name), data_torch)]
  1344. def write_tensors(self):
  1345. super().write_tensors()
  1346. if self._experts is not None:
  1347. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1348. experts = [k for d in self._experts for k in d.keys()]
  1349. if len(experts) > 0:
  1350. raise ValueError(f"Unprocessed experts: {experts}")
  1351. @Model.register("GPT2LMHeadModel")
  1352. class GPT2Model(Model):
  1353. model_arch = gguf.MODEL_ARCH.GPT2
  1354. def set_gguf_parameters(self):
  1355. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1356. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1357. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1358. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1359. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1360. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1361. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1362. self.gguf_writer.add_file_type(self.ftype)
  1363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1364. del bid # unused
  1365. tensors: list[tuple[str, Tensor]] = []
  1366. # we don't need these
  1367. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1368. return tensors
  1369. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1370. data_torch = data_torch.transpose(1, 0)
  1371. new_name = self.map_tensor_name(name)
  1372. tensors.append((new_name, data_torch))
  1373. # note: GPT2 output is tied to (same as) wte in original model
  1374. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1375. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1376. return tensors
  1377. @Model.register("PhiForCausalLM")
  1378. class Phi2Model(Model):
  1379. model_arch = gguf.MODEL_ARCH.PHI2
  1380. def set_gguf_parameters(self):
  1381. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1382. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1383. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1384. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1385. self.gguf_writer.add_name("Phi2")
  1386. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1387. self.gguf_writer.add_embedding_length(n_embd)
  1388. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1389. self.gguf_writer.add_block_count(block_count)
  1390. self.gguf_writer.add_head_count(n_head)
  1391. self.gguf_writer.add_head_count_kv(n_head)
  1392. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1393. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1394. self.gguf_writer.add_file_type(self.ftype)
  1395. self.gguf_writer.add_add_bos_token(False)
  1396. @Model.register("Phi3ForCausalLM")
  1397. class Phi3MiniModel(Model):
  1398. model_arch = gguf.MODEL_ARCH.PHI3
  1399. def set_vocab(self):
  1400. from sentencepiece import SentencePieceProcessor
  1401. tokenizer_path = self.dir_model / 'tokenizer.model'
  1402. if not tokenizer_path.is_file():
  1403. raise ValueError(f'Error: Missing {tokenizer_path}')
  1404. tokenizer = SentencePieceProcessor()
  1405. tokenizer.LoadFromFile(str(tokenizer_path))
  1406. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1407. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1408. scores: list[float] = [-10000.0] * vocab_size
  1409. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1410. for token_id in range(tokenizer.vocab_size()):
  1411. piece = tokenizer.IdToPiece(token_id)
  1412. text = piece.encode("utf-8")
  1413. score = tokenizer.GetScore(token_id)
  1414. toktype = SentencePieceTokenTypes.NORMAL
  1415. if tokenizer.IsUnknown(token_id):
  1416. toktype = SentencePieceTokenTypes.UNKNOWN
  1417. elif tokenizer.IsControl(token_id):
  1418. toktype = SentencePieceTokenTypes.CONTROL
  1419. elif tokenizer.IsUnused(token_id):
  1420. toktype = SentencePieceTokenTypes.UNUSED
  1421. elif tokenizer.IsByte(token_id):
  1422. toktype = SentencePieceTokenTypes.BYTE
  1423. tokens[token_id] = text
  1424. scores[token_id] = score
  1425. toktypes[token_id] = toktype
  1426. added_tokens_file = self.dir_model / 'added_tokens.json'
  1427. if added_tokens_file.is_file():
  1428. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1429. added_tokens_json = json.load(f)
  1430. for key in added_tokens_json:
  1431. token_id = added_tokens_json[key]
  1432. if (token_id >= vocab_size):
  1433. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1434. continue
  1435. tokens[token_id] = key.encode("utf-8")
  1436. scores[token_id] = -1000.0
  1437. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1438. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1439. if tokenizer_config_file.is_file():
  1440. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1441. tokenizer_config_json = json.load(f)
  1442. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1443. for token_id, foken_data in added_tokens_decoder.items():
  1444. token_id = int(token_id)
  1445. token = foken_data["content"].encode("utf-8")
  1446. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1447. assert tokens[token_id] == token
  1448. tokens[token_id] = token
  1449. scores[token_id] = -1000.0
  1450. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1451. if foken_data.get("special"):
  1452. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1453. tokenizer_file = self.dir_model / 'tokenizer.json'
  1454. if tokenizer_file.is_file():
  1455. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1456. tokenizer_json = json.load(f)
  1457. added_tokens = tokenizer_json.get("added_tokens", [])
  1458. for foken_data in added_tokens:
  1459. token_id = int(foken_data["id"])
  1460. token = foken_data["content"].encode("utf-8")
  1461. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1462. assert tokens[token_id] == token
  1463. tokens[token_id] = token
  1464. scores[token_id] = -1000.0
  1465. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1466. if foken_data.get("special"):
  1467. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1468. self.gguf_writer.add_tokenizer_model("llama")
  1469. self.gguf_writer.add_tokenizer_pre("default")
  1470. self.gguf_writer.add_token_list(tokens)
  1471. self.gguf_writer.add_token_scores(scores)
  1472. self.gguf_writer.add_token_types(toktypes)
  1473. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1474. special_vocab.add_to_gguf(self.gguf_writer)
  1475. def set_gguf_parameters(self):
  1476. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1477. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1478. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1479. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1480. rms_eps = self.find_hparam(["rms_norm_eps"])
  1481. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1482. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1483. rope_dims = n_embd // n_head
  1484. self.gguf_writer.add_name("Phi3")
  1485. self.gguf_writer.add_context_length(max_pos_embds)
  1486. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1487. self.gguf_writer.add_embedding_length(n_embd)
  1488. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1489. self.gguf_writer.add_block_count(block_count)
  1490. self.gguf_writer.add_head_count(n_head)
  1491. self.gguf_writer.add_head_count_kv(n_head_kv)
  1492. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1493. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1494. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1495. self.gguf_writer.add_file_type(self.ftype)
  1496. # write rope scaling for long context (128k) model
  1497. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1498. if (rope_scaling is None):
  1499. return
  1500. scale = max_pos_embds / orig_max_pos_embds
  1501. rope_scaling_type = rope_scaling.get('type', '').lower()
  1502. if len(rope_scaling_type) == 0:
  1503. raise KeyError('Missing the required key rope_scaling.type')
  1504. if rope_scaling_type == 'su':
  1505. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1506. elif rope_scaling_type == 'yarn':
  1507. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1508. else:
  1509. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1510. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1511. long_factors = rope_scaling.get('long_factor', None)
  1512. short_factors = rope_scaling.get('short_factor', None)
  1513. if long_factors is None or short_factors is None:
  1514. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1515. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1516. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1517. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1518. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1519. @Model.register("PlamoForCausalLM")
  1520. class PlamoModel(Model):
  1521. model_arch = gguf.MODEL_ARCH.PLAMO
  1522. def set_vocab(self):
  1523. self._set_vocab_sentencepiece()
  1524. def set_gguf_parameters(self):
  1525. hparams = self.hparams
  1526. block_count = hparams["num_hidden_layers"]
  1527. self.gguf_writer.add_name("PLaMo")
  1528. self.gguf_writer.add_context_length(4096) # not in config.json
  1529. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1530. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1531. self.gguf_writer.add_block_count(block_count)
  1532. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1533. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1534. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1535. self.gguf_writer.add_file_type(self.ftype)
  1536. def shuffle_attn_q_weight(self, data_torch):
  1537. assert data_torch.size() == (5120, 5120)
  1538. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1539. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1540. data_torch = torch.reshape(data_torch, (5120, 5120))
  1541. return data_torch
  1542. def shuffle_attn_output_weight(self, data_torch):
  1543. assert data_torch.size() == (5120, 5120)
  1544. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1545. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1546. data_torch = torch.reshape(data_torch, (5120, 5120))
  1547. return data_torch
  1548. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1549. del bid # unused
  1550. new_name = self.map_tensor_name(name)
  1551. # shuffle for broadcasting of gqa in ggml_mul_mat
  1552. if new_name.endswith("attn_q.weight"):
  1553. data_torch = self.shuffle_attn_q_weight(data_torch)
  1554. elif new_name.endswith("attn_output.weight"):
  1555. data_torch = self.shuffle_attn_output_weight(data_torch)
  1556. return [(new_name, data_torch)]
  1557. @Model.register("CodeShellForCausalLM")
  1558. class CodeShellModel(Model):
  1559. model_arch = gguf.MODEL_ARCH.CODESHELL
  1560. def set_gguf_parameters(self):
  1561. block_count = self.hparams["n_layer"]
  1562. self.gguf_writer.add_name("CodeShell")
  1563. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1564. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1565. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1566. self.gguf_writer.add_block_count(block_count)
  1567. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1568. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1569. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1570. self.gguf_writer.add_file_type(self.ftype)
  1571. self.gguf_writer.add_rope_freq_base(10000.0)
  1572. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1573. self.gguf_writer.add_rope_scaling_factor(1.0)
  1574. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1575. del bid # unused
  1576. new_name = self.map_tensor_name(name)
  1577. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1578. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1579. assert self.tensor_names is not None
  1580. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1581. # copy tok_embd.weight to output.weight
  1582. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1583. return tensors
  1584. @Model.register("InternLM2ForCausalLM")
  1585. class InternLM2Model(Model):
  1586. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1587. def set_vocab(self):
  1588. # (TODO): Is there a better way?
  1589. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1590. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1591. # recognized as an empty string in C++.
  1592. from sentencepiece import SentencePieceProcessor
  1593. from sentencepiece import sentencepiece_model_pb2 as model
  1594. tokenizer_path = self.dir_model / 'tokenizer.model'
  1595. tokens: list[bytes] = []
  1596. scores: list[float] = []
  1597. toktypes: list[int] = []
  1598. if not tokenizer_path.is_file():
  1599. logger.error(f'Error: Missing {tokenizer_path}')
  1600. sys.exit(1)
  1601. sentencepiece_model = model.ModelProto()
  1602. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1603. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1604. tokenizer = SentencePieceProcessor()
  1605. tokenizer.LoadFromFile(str(tokenizer_path))
  1606. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1607. for token_id in range(vocab_size):
  1608. piece = tokenizer.IdToPiece(token_id)
  1609. text = piece.encode("utf-8")
  1610. score = tokenizer.GetScore(token_id)
  1611. if text == b"\x00":
  1612. # (TODO): fixme
  1613. # Hack here and replace the \x00 characters.
  1614. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1615. text = "🐉".encode("utf-8")
  1616. toktype = SentencePieceTokenTypes.NORMAL
  1617. if tokenizer.IsUnknown(token_id):
  1618. toktype = SentencePieceTokenTypes.UNKNOWN
  1619. elif tokenizer.IsControl(token_id):
  1620. toktype = SentencePieceTokenTypes.CONTROL
  1621. elif tokenizer.IsUnused(token_id):
  1622. toktype = SentencePieceTokenTypes.UNUSED
  1623. elif tokenizer.IsByte(token_id):
  1624. toktype = SentencePieceTokenTypes.BYTE
  1625. tokens.append(text)
  1626. scores.append(score)
  1627. toktypes.append(toktype)
  1628. added_tokens_file = self.dir_model / 'added_tokens.json'
  1629. if added_tokens_file.is_file():
  1630. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1631. added_tokens_json = json.load(f)
  1632. for key in added_tokens_json:
  1633. tokens.append(key.encode("utf-8"))
  1634. scores.append(-1000.0)
  1635. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1636. self.gguf_writer.add_tokenizer_model("llama")
  1637. self.gguf_writer.add_tokenizer_pre("default")
  1638. self.gguf_writer.add_token_list(tokens)
  1639. self.gguf_writer.add_token_scores(scores)
  1640. self.gguf_writer.add_token_types(toktypes)
  1641. self.gguf_writer.add_add_space_prefix(add_prefix)
  1642. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1643. old_eos = special_vocab.special_token_ids["eos"]
  1644. if "chat" in os.path.basename(self.dir_model.absolute()):
  1645. # For the chat model, we replace the eos with '<|im_end|>'.
  1646. # TODO: this is a hack, should be fixed
  1647. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1648. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1649. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1650. in chat mode so that the conversation can end normally.")
  1651. special_vocab.add_to_gguf(self.gguf_writer)
  1652. def _try_get_sft_eos(self, tokenizer):
  1653. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1654. im_end_list = tokenizer.Encode('<|im_end|>')
  1655. eos_token = None
  1656. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1657. if len(unused_145_list) == 1:
  1658. eos_token = unused_145_list[0]
  1659. if len(im_end_list) == 1:
  1660. eos_token = im_end_list[0]
  1661. assert eos_token
  1662. return eos_token
  1663. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1664. if n_head_kv is not None and n_head != n_head_kv:
  1665. n_head = n_head_kv
  1666. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1667. .swapaxes(1, 2)
  1668. .reshape(weights.shape))
  1669. def set_gguf_parameters(self):
  1670. self.gguf_writer.add_name("InternLM2")
  1671. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1672. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1673. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1674. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1675. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1676. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1677. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1678. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1679. self.gguf_writer.add_file_type(self.ftype)
  1680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1681. num_heads = self.hparams["num_attention_heads"]
  1682. num_kv_heads = self.hparams["num_key_value_heads"]
  1683. hidden_size = self.hparams["hidden_size"]
  1684. q_per_kv = num_heads // num_kv_heads
  1685. head_dim = hidden_size // num_heads
  1686. num_groups = num_heads // q_per_kv
  1687. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1688. if re.match(qkv_pattern, name):
  1689. bid = re.findall(qkv_pattern, name)[0]
  1690. qkv = data_torch
  1691. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1692. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1693. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1694. # The model weights of q and k equire additional reshape.
  1695. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1696. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1697. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1698. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1699. # v = rearrange(v, " o g n i -> o (g n i)").T
  1700. v = v.reshape((v.shape[0], -1)).T
  1701. return [
  1702. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1703. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1704. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1705. ]
  1706. else:
  1707. return [(self.map_tensor_name(name), data_torch)]
  1708. @Model.register("BertModel", "CamembertModel")
  1709. class BertModel(Model):
  1710. model_arch = gguf.MODEL_ARCH.BERT
  1711. def __init__(self, *args, **kwargs):
  1712. super().__init__(*args, **kwargs)
  1713. self.vocab_size = None
  1714. def set_gguf_parameters(self):
  1715. super().set_gguf_parameters()
  1716. self.gguf_writer.add_causal_attention(False)
  1717. # get pooling path
  1718. pooling_path = None
  1719. module_path = self.dir_model / "modules.json"
  1720. if module_path.is_file():
  1721. with open(module_path, encoding="utf-8") as f:
  1722. modules = json.load(f)
  1723. for mod in modules:
  1724. if mod["type"] == "sentence_transformers.models.Pooling":
  1725. pooling_path = mod["path"]
  1726. break
  1727. # get pooling type
  1728. if pooling_path is not None:
  1729. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1730. pooling = json.load(f)
  1731. if pooling["pooling_mode_mean_tokens"]:
  1732. pooling_type = gguf.PoolingType.MEAN
  1733. elif pooling["pooling_mode_cls_token"]:
  1734. pooling_type = gguf.PoolingType.CLS
  1735. else:
  1736. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1737. self.gguf_writer.add_pooling_type(pooling_type)
  1738. def set_vocab(self):
  1739. tokens, toktypes, tokpre = self.get_vocab_base()
  1740. self.vocab_size = len(tokens)
  1741. # we need this to validate the size of the token_type embeddings
  1742. # though currently we are passing all zeros to the token_type embeddings
  1743. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1744. # convert to phantom space vocab
  1745. def phantom(tok):
  1746. if tok.startswith("[") and tok.endswith("]"):
  1747. return tok
  1748. if tok.startswith("##"):
  1749. return tok[2:]
  1750. return "\u2581" + tok
  1751. tokens = list(map(phantom, tokens))
  1752. # add vocab to gguf
  1753. self.gguf_writer.add_tokenizer_model("bert")
  1754. self.gguf_writer.add_tokenizer_pre(tokpre)
  1755. self.gguf_writer.add_token_list(tokens)
  1756. self.gguf_writer.add_token_types(toktypes)
  1757. # handle special tokens
  1758. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1759. special_vocab.add_to_gguf(self.gguf_writer)
  1760. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1761. del bid # unused
  1762. # we are only using BERT for embeddings so we don't need the pooling layer
  1763. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1764. return [] # we don't need these
  1765. return [(self.map_tensor_name(name), data_torch)]
  1766. @Model.register("NomicBertModel")
  1767. class NomicBertModel(BertModel):
  1768. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1769. def __init__(self, *args, **kwargs):
  1770. super().__init__(*args, **kwargs)
  1771. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1772. self.hparams["n_ctx"] = 2048
  1773. # SwigLU activation
  1774. assert self.hparams["activation_function"] == "swiglu"
  1775. # this doesn't do anything in the HF version
  1776. assert self.hparams["causal"] is False
  1777. # no bias tensors
  1778. assert self.hparams["qkv_proj_bias"] is False
  1779. assert self.hparams["mlp_fc1_bias"] is False
  1780. assert self.hparams["mlp_fc2_bias"] is False
  1781. # norm at end of layer
  1782. assert self.hparams["prenorm"] is False
  1783. # standard RoPE
  1784. assert self.hparams["rotary_emb_fraction"] == 1.0
  1785. assert self.hparams["rotary_emb_interleaved"] is False
  1786. assert self.hparams["rotary_emb_scale_base"] is None
  1787. def set_gguf_parameters(self):
  1788. super().set_gguf_parameters()
  1789. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1790. @Model.register("GemmaForCausalLM")
  1791. class GemmaModel(Model):
  1792. model_arch = gguf.MODEL_ARCH.GEMMA
  1793. def set_vocab(self):
  1794. self._set_vocab_sentencepiece()
  1795. # TODO: these special tokens should be exported only for the CodeGemma family
  1796. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1797. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1798. special_vocab._set_special_token("prefix", 67)
  1799. special_vocab._set_special_token("suffix", 69)
  1800. special_vocab._set_special_token("middle", 68)
  1801. special_vocab._set_special_token("fsep", 70)
  1802. special_vocab._set_special_token("eot", 107)
  1803. special_vocab.add_to_gguf(self.gguf_writer)
  1804. def set_gguf_parameters(self):
  1805. hparams = self.hparams
  1806. block_count = hparams["num_hidden_layers"]
  1807. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1808. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1809. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1810. self.gguf_writer.add_block_count(block_count)
  1811. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1812. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1813. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1814. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1815. self.gguf_writer.add_key_length(hparams["head_dim"])
  1816. self.gguf_writer.add_value_length(hparams["head_dim"])
  1817. self.gguf_writer.add_file_type(self.ftype)
  1818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1819. del bid # unused
  1820. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1821. # To prevent errors, skip loading lm_head.weight.
  1822. if name == "lm_head.weight":
  1823. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1824. return []
  1825. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1826. if name.endswith("norm.weight"):
  1827. data_torch = data_torch + 1
  1828. return [(self.map_tensor_name(name), data_torch)]
  1829. @Model.register("Starcoder2ForCausalLM")
  1830. class StarCoder2Model(Model):
  1831. model_arch = gguf.MODEL_ARCH.STARCODER2
  1832. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1833. class MambaModel(Model):
  1834. model_arch = gguf.MODEL_ARCH.MAMBA
  1835. def set_vocab(self):
  1836. vocab_size = self.hparams["vocab_size"]
  1837. # Round vocab size to next multiple of 8
  1838. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1839. # pad using ceiling division
  1840. # ref: https://stackoverflow.com/a/17511341/22827863
  1841. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1842. self.hparams["vocab_size"] = vocab_size
  1843. if (self.dir_model / "tokenizer.json").is_file():
  1844. self._set_vocab_gpt2()
  1845. elif (self.dir_model / "tokenizer.model").is_file():
  1846. self._set_vocab_sentencepiece()
  1847. else:
  1848. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1849. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1850. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1851. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1852. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1853. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1854. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1855. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1856. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1857. assert field
  1858. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1859. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1860. assert field
  1861. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1862. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1863. assert field
  1864. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1865. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1866. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1867. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1868. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1869. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1870. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1871. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1872. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1873. def set_gguf_parameters(self):
  1874. d_model = self.find_hparam(["hidden_size", "d_model"])
  1875. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1876. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1877. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1878. # ceiling division
  1879. # ref: https://stackoverflow.com/a/17511341/22827863
  1880. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1881. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1882. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1883. # Fail early for models which don't have a block expansion factor of 2
  1884. assert d_inner == 2 * d_model
  1885. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1886. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1887. self.gguf_writer.add_embedding_length(d_model)
  1888. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1889. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1890. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1891. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1892. self.gguf_writer.add_ssm_inner_size(d_inner)
  1893. self.gguf_writer.add_ssm_state_size(d_state)
  1894. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1895. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1896. self.gguf_writer.add_file_type(self.ftype)
  1897. _tok_embd = None
  1898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1899. del bid # unused
  1900. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1901. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1902. new_name = self.map_tensor_name(name)
  1903. if name.endswith(".A_log"):
  1904. logger.debug("A_log --> A ==> " + new_name)
  1905. data_torch = -torch.exp(data_torch)
  1906. # assuming token_embd.weight is seen before output.weight
  1907. if self._tok_embd is not None and new_name == output_name:
  1908. if torch.equal(self._tok_embd, data_torch):
  1909. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1910. return []
  1911. elif new_name == tok_embd_name:
  1912. self._tok_embd = data_torch
  1913. return [(new_name, data_torch)]
  1914. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1915. del n_dims # unused
  1916. return bid is not None and new_name in (
  1917. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1918. gguf.MODEL_TENSOR.SSM_CONV1D,
  1919. gguf.MODEL_TENSOR.SSM_X,
  1920. gguf.MODEL_TENSOR.SSM_DT,
  1921. gguf.MODEL_TENSOR.SSM_A,
  1922. gguf.MODEL_TENSOR.SSM_D,
  1923. ]
  1924. )
  1925. @Model.register("CohereForCausalLM")
  1926. class CommandR2Model(Model):
  1927. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1928. def __init__(self, *args, **kwargs):
  1929. super().__init__(*args, **kwargs)
  1930. # max_position_embeddings = 8192 in config.json but model was actually
  1931. # trained on 128k context length
  1932. # aya-23 models don't have model_max_length specified
  1933. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  1934. def set_gguf_parameters(self):
  1935. super().set_gguf_parameters()
  1936. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1937. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1938. @Model.register("OlmoForCausalLM")
  1939. @Model.register("OLMoForCausalLM")
  1940. class OlmoModel(Model):
  1941. model_arch = gguf.MODEL_ARCH.OLMO
  1942. def set_gguf_parameters(self):
  1943. super().set_gguf_parameters()
  1944. self.gguf_writer.add_layer_norm_eps(1e-5)
  1945. clip_qkv = self.hparams.get("clip_qkv")
  1946. if clip_qkv is not None:
  1947. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1948. # Same as super class, but permuting q_proj, k_proj
  1949. # Copied from: LlamaModel
  1950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1951. del bid # unused
  1952. n_head = self.hparams["num_attention_heads"]
  1953. n_kv_head = self.hparams.get("num_key_value_heads")
  1954. if name.endswith("q_proj.weight"):
  1955. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1956. if name.endswith("k_proj.weight"):
  1957. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1958. return [(self.map_tensor_name(name), data_torch)]
  1959. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1960. class JinaBertV2Model(BertModel):
  1961. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1962. def __init__(self, *args, **kwargs):
  1963. super().__init__(*args, **kwargs)
  1964. self.intermediate_size = self.hparams["intermediate_size"]
  1965. def get_tensors(self):
  1966. for name, data in super().get_tensors():
  1967. if 'gated_layer' in name:
  1968. d1 = data[:self.intermediate_size, :]
  1969. name1 = name.replace('gated_layers', 'gated_layers_w')
  1970. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  1971. d2 = data[self.intermediate_size:, :]
  1972. name2 = name.replace('gated_layers', 'gated_layers_v')
  1973. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  1974. yield name1, d1
  1975. yield name2, d2
  1976. continue
  1977. yield name, data
  1978. def set_vocab(self, *args, **kwargs):
  1979. tokenizer_class = 'BertTokenizer'
  1980. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1981. tokenizer_class = json.load(f)['tokenizer_class']
  1982. if tokenizer_class == 'BertTokenizer':
  1983. super().set_vocab()
  1984. elif tokenizer_class == 'RobertaTokenizer':
  1985. self._set_vocab_gpt2()
  1986. self.gguf_writer.add_token_type_count(2)
  1987. else:
  1988. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1989. self.gguf_writer.add_add_bos_token(True)
  1990. self.gguf_writer.add_add_eos_token(True)
  1991. @Model.register("ArcticForCausalLM")
  1992. class ArcticModel(Model):
  1993. model_arch = gguf.MODEL_ARCH.ARCTIC
  1994. def set_vocab(self):
  1995. # The reason for using a custom implementation here is that the
  1996. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  1997. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  1998. from sentencepiece import SentencePieceProcessor
  1999. tokenizer_path = self.dir_model / 'tokenizer.model'
  2000. if not tokenizer_path.is_file():
  2001. logger.error(f'Error: Missing {tokenizer_path}')
  2002. sys.exit(1)
  2003. # Read the whole vocabulary from the tokenizer.model file
  2004. tokenizer = SentencePieceProcessor()
  2005. tokenizer.LoadFromFile(str(tokenizer_path))
  2006. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2007. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2008. scores: list[float] = [-10000.0] * vocab_size
  2009. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2010. for token_id in range(tokenizer.vocab_size()):
  2011. piece = tokenizer.IdToPiece(token_id)
  2012. text = piece.encode("utf-8")
  2013. score = tokenizer.GetScore(token_id)
  2014. toktype = SentencePieceTokenTypes.NORMAL
  2015. if tokenizer.IsUnknown(token_id):
  2016. toktype = SentencePieceTokenTypes.UNKNOWN
  2017. elif tokenizer.IsControl(token_id):
  2018. toktype = SentencePieceTokenTypes.CONTROL
  2019. elif tokenizer.IsUnused(token_id):
  2020. toktype = SentencePieceTokenTypes.UNUSED
  2021. elif tokenizer.IsByte(token_id):
  2022. toktype = SentencePieceTokenTypes.BYTE
  2023. tokens[token_id] = text
  2024. scores[token_id] = score
  2025. toktypes[token_id] = toktype
  2026. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2027. # of information about added/redefined tokens and modify them accordingly.
  2028. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2029. if tokenizer_config_file.is_file():
  2030. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2031. tokenizer_config_json = json.load(f)
  2032. if "added_tokens_decoder" in tokenizer_config_json:
  2033. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2034. for token_id, token_json in added_tokens_decoder.items():
  2035. token_id = int(token_id)
  2036. if (token_id >= vocab_size):
  2037. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2038. continue
  2039. token_content = token_json["content"]
  2040. token_type = SentencePieceTokenTypes.USER_DEFINED
  2041. token_score = -10000.0
  2042. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2043. # Set the score to 0.0 as in the original tokenizer.model
  2044. if ("special" in token_json) and token_json["special"]:
  2045. if token_content == tokenizer_config_json["unk_token"]:
  2046. token_type = SentencePieceTokenTypes.UNKNOWN
  2047. else:
  2048. token_type = SentencePieceTokenTypes.CONTROL
  2049. token_score = 0.0
  2050. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2051. tokens[token_id] = token_content.encode("utf-8")
  2052. toktypes[token_id] = token_type
  2053. scores[token_id] = token_score
  2054. self.gguf_writer.add_tokenizer_model("llama")
  2055. self.gguf_writer.add_tokenizer_pre("default")
  2056. self.gguf_writer.add_token_list(tokens)
  2057. self.gguf_writer.add_token_scores(scores)
  2058. self.gguf_writer.add_token_types(toktypes)
  2059. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2060. special_vocab.add_to_gguf(self.gguf_writer)
  2061. def set_gguf_parameters(self):
  2062. super().set_gguf_parameters()
  2063. hparams = self.hparams
  2064. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2065. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2066. _experts: list[dict[str, Tensor]] | None = None
  2067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2068. n_head = self.hparams["num_attention_heads"]
  2069. n_kv_head = self.hparams.get("num_key_value_heads")
  2070. if name.endswith("q_proj.weight"):
  2071. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2072. if name.endswith("k_proj.weight"):
  2073. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2074. # process the experts separately
  2075. if name.find("block_sparse_moe.experts") != -1:
  2076. n_experts = self.hparams["num_local_experts"]
  2077. assert bid is not None
  2078. if self._experts is None:
  2079. self._experts = [{} for _ in range(self.block_count)]
  2080. self._experts[bid][name] = data_torch
  2081. if len(self._experts[bid]) >= n_experts * 3:
  2082. tensors: list[tuple[str, Tensor]] = []
  2083. # merge the experts into a single 3d tensor
  2084. for wid in ["w1", "w2", "w3"]:
  2085. datas: list[Tensor] = []
  2086. for xid in range(n_experts):
  2087. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2088. datas.append(self._experts[bid][ename])
  2089. del self._experts[bid][ename]
  2090. data_torch = torch.stack(datas, dim=0)
  2091. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2092. new_name = self.map_tensor_name(merged_name)
  2093. tensors.append((new_name, data_torch))
  2094. return tensors
  2095. else:
  2096. return []
  2097. return [(self.map_tensor_name(name), data_torch)]
  2098. def write_tensors(self):
  2099. super().write_tensors()
  2100. if self._experts is not None:
  2101. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2102. experts = [k for d in self._experts for k in d.keys()]
  2103. if len(experts) > 0:
  2104. raise ValueError(f"Unprocessed experts: {experts}")
  2105. @Model.register("DeepseekV2ForCausalLM")
  2106. class DeepseekV2Model(Model):
  2107. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2108. def set_vocab(self):
  2109. self._set_vocab_gpt2()
  2110. def set_gguf_parameters(self):
  2111. super().set_gguf_parameters()
  2112. hparams = self.hparams
  2113. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2114. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2115. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2116. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2117. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2118. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2119. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2120. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2121. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2122. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2123. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2124. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2125. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2126. if self.hparams["rope_scaling"].get("type") == "yarn":
  2127. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2128. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2129. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2130. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2131. _experts: list[dict[str, Tensor]] | None = None
  2132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2133. # process the experts separately
  2134. if name.find("mlp.experts") != -1:
  2135. n_experts = self.hparams["n_routed_experts"]
  2136. assert bid is not None
  2137. if self._experts is None:
  2138. self._experts = [{} for _ in range(self.block_count)]
  2139. self._experts[bid][name] = data_torch
  2140. if len(self._experts[bid]) >= n_experts * 3:
  2141. tensors: list[tuple[str, Tensor]] = []
  2142. # merge the experts into a single 3d tensor
  2143. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2144. datas: list[Tensor] = []
  2145. for xid in range(n_experts):
  2146. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2147. datas.append(self._experts[bid][ename])
  2148. del self._experts[bid][ename]
  2149. data_torch = torch.stack(datas, dim=0)
  2150. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2151. new_name = self.map_tensor_name(merged_name)
  2152. tensors.append((new_name, data_torch))
  2153. return tensors
  2154. else:
  2155. return []
  2156. return [(self.map_tensor_name(name), data_torch)]
  2157. def write_tensors(self):
  2158. super().write_tensors()
  2159. if self._experts is not None:
  2160. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2161. experts = [k for d in self._experts for k in d.keys()]
  2162. if len(experts) > 0:
  2163. raise ValueError(f"Unprocessed experts: {experts}")
  2164. ###### CONVERSION LOGIC ######
  2165. # tree of lazy tensors
  2166. class LazyTorchTensor(gguf.LazyBase):
  2167. _tensor_type = torch.Tensor
  2168. # to keep the type-checker happy
  2169. dtype: torch.dtype
  2170. shape: torch.Size
  2171. # only used when converting a torch.Tensor to a np.ndarray
  2172. _dtype_map: dict[torch.dtype, type] = {
  2173. torch.float16: np.float16,
  2174. torch.float32: np.float32,
  2175. }
  2176. def numpy(self) -> gguf.LazyNumpyTensor:
  2177. dtype = self._dtype_map[self.dtype]
  2178. return gguf.LazyNumpyTensor(
  2179. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2180. lazy=self._lazy,
  2181. args=(self,),
  2182. func=(lambda s: s[0].numpy())
  2183. )
  2184. @classmethod
  2185. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2186. return torch.empty(size=shape, dtype=dtype, device="meta")
  2187. @classmethod
  2188. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2189. del types # unused
  2190. if kwargs is None:
  2191. kwargs = {}
  2192. if func is torch.Tensor.numpy:
  2193. return args[0].numpy()
  2194. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2195. def parse_args() -> argparse.Namespace:
  2196. parser = argparse.ArgumentParser(
  2197. description="Convert a huggingface model to a GGML compatible file")
  2198. parser.add_argument(
  2199. "--vocab-only", action="store_true",
  2200. help="extract only the vocab",
  2201. )
  2202. parser.add_argument(
  2203. "--awq-path", type=Path, default=None,
  2204. help="Path to scale awq cache file",
  2205. )
  2206. parser.add_argument(
  2207. "--outfile", type=Path,
  2208. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2209. )
  2210. parser.add_argument(
  2211. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2212. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2213. )
  2214. parser.add_argument(
  2215. "--bigendian", action="store_true",
  2216. help="model is executed on big endian machine",
  2217. )
  2218. parser.add_argument(
  2219. "model", type=Path,
  2220. help="directory containing model file",
  2221. )
  2222. parser.add_argument(
  2223. "--use-temp-file", action="store_true",
  2224. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2225. )
  2226. parser.add_argument(
  2227. "--no-lazy", action="store_true",
  2228. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2229. )
  2230. parser.add_argument(
  2231. "--model-name", type=str, default=None,
  2232. help="name of the model",
  2233. )
  2234. parser.add_argument(
  2235. "--verbose", action="store_true",
  2236. help="increase output verbosity",
  2237. )
  2238. return parser.parse_args()
  2239. def main() -> None:
  2240. args = parse_args()
  2241. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2242. dir_model = args.model
  2243. if args.awq_path:
  2244. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2245. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2246. tmp_model_path = args.model / "weighted_model"
  2247. dir_model = tmp_model_path
  2248. if tmp_model_path.is_dir():
  2249. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2250. else:
  2251. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2252. logger.info("Saving new weighted model ...")
  2253. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2254. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2255. if not dir_model.is_dir():
  2256. logger.error(f'Error: {args.model} is not a directory')
  2257. sys.exit(1)
  2258. ftype_map: dict[str, gguf.LlamaFileType] = {
  2259. "f32": gguf.LlamaFileType.ALL_F32,
  2260. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2261. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2262. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2263. "auto": gguf.LlamaFileType.GUESSED,
  2264. }
  2265. if args.outfile is not None:
  2266. fname_out = args.outfile
  2267. else:
  2268. # output in the same directory as the model by default
  2269. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2270. logger.info(f"Loading model: {dir_model.name}")
  2271. hparams = Model.load_hparams(dir_model)
  2272. with torch.inference_mode():
  2273. try:
  2274. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2275. except NotImplementedError:
  2276. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2277. sys.exit(1)
  2278. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy, args.model_name)
  2279. logger.info("Set model parameters")
  2280. model_instance.set_gguf_parameters()
  2281. logger.info("Set model tokenizer")
  2282. model_instance.set_vocab()
  2283. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2284. if args.vocab_only:
  2285. logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
  2286. model_instance.write_vocab()
  2287. else:
  2288. logger.info(f"Exporting model to '{model_instance.fname_out}'")
  2289. model_instance.write()
  2290. logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
  2291. if __name__ == '__main__':
  2292. main()