convert_hf_to_gguf.py 161 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. fname_out: Path | None
  38. is_big_endian: bool
  39. endianess: gguf.GGUFEndian
  40. use_temp_file: bool
  41. lazy: bool
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. gguf_writer: gguf.GGUFWriter
  49. model_name: str | None
  50. metadata_override: Path | None
  51. # subclasses should define this!
  52. model_arch: gguf.MODEL_ARCH
  53. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path | None, is_big_endian: bool = False,
  54. use_temp_file: bool = False, eager: bool = False,
  55. metadata_override: Path | None = None, model_name: str | None = None,
  56. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  57. if type(self) is Model:
  58. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  59. self.dir_model = dir_model
  60. self.ftype = ftype
  61. self.fname_out = fname_out
  62. self.is_big_endian = is_big_endian
  63. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  64. self.use_temp_file = use_temp_file
  65. self.lazy = not eager
  66. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  67. self.is_safetensors = len(self.part_names) > 0
  68. if not self.is_safetensors:
  69. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  70. self.hparams = Model.load_hparams(self.dir_model)
  71. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  72. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  73. self.tensor_names = None
  74. self.metadata_override = metadata_override
  75. self.model_name = model_name
  76. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  77. if self.ftype == gguf.LlamaFileType.GUESSED:
  78. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  79. _, first_tensor = next(self.get_tensors())
  80. if first_tensor.dtype == torch.float16:
  81. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  82. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  83. else:
  84. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  85. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  86. # Configure GGUF Writer
  87. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  88. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  89. @classmethod
  90. def __init_subclass__(cls):
  91. # can't use an abstract property, because overriding it without type errors
  92. # would require using decorated functions instead of simply defining the property
  93. if "model_arch" not in cls.__dict__:
  94. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  95. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  96. key = next((k for k in keys if k in self.hparams), None)
  97. if key is not None:
  98. return self.hparams[key]
  99. if optional:
  100. return None
  101. raise KeyError(f"could not find any of: {keys}")
  102. def set_vocab(self):
  103. self._set_vocab_gpt2()
  104. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  105. tensor_names_from_parts: set[str] = set()
  106. if len(self.part_names) > 1:
  107. self.tensor_names = set()
  108. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  109. index_name += ".index.json"
  110. logger.info(f"gguf: loading model weight map from '{index_name}'")
  111. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  112. index: dict[str, Any] = json.load(f)
  113. weight_map = index.get("weight_map")
  114. if weight_map is None or not isinstance(weight_map, dict):
  115. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  116. self.tensor_names.update(weight_map.keys())
  117. else:
  118. self.tensor_names = tensor_names_from_parts
  119. for part_name in self.part_names:
  120. logger.info(f"gguf: loading model part '{part_name}'")
  121. ctx: ContextManager[Any]
  122. if self.is_safetensors:
  123. from safetensors import safe_open
  124. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  125. else:
  126. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  127. with ctx as model_part:
  128. tensor_names_from_parts.update(model_part.keys())
  129. for name in model_part.keys():
  130. if self.is_safetensors:
  131. if self.lazy:
  132. data = model_part.get_slice(name)
  133. data = LazyTorchTensor.from_safetensors_slice(data)
  134. else:
  135. data = model_part.get_tensor(name)
  136. else:
  137. data = model_part[name]
  138. if self.lazy:
  139. data = LazyTorchTensor.from_eager(data)
  140. yield name, data
  141. # only verify tensor name presence; it doesn't matter if they are not in the right files
  142. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  143. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  144. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  145. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  146. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  147. name: str = gguf.TENSOR_NAMES[key]
  148. if "{bid}" in name:
  149. assert bid is not None
  150. name = name.format(bid=bid)
  151. return name + suffix
  152. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  153. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  154. return False
  155. key_name: str = gguf.TENSOR_NAMES[key]
  156. if "{bid}" in key_name:
  157. if bid is None:
  158. return False
  159. key_name = key_name.format(bid=bid)
  160. else:
  161. if bid is not None:
  162. return False
  163. return name == (key_name + suffix)
  164. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  165. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  166. if new_name is None:
  167. raise ValueError(f"Can not map tensor {name!r}")
  168. return new_name
  169. def set_gguf_parameters(self):
  170. self.gguf_writer.add_block_count(self.block_count)
  171. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  172. self.gguf_writer.add_context_length(n_ctx)
  173. logger.info(f"gguf: context length = {n_ctx}")
  174. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  175. self.gguf_writer.add_embedding_length(n_embd)
  176. logger.info(f"gguf: embedding length = {n_embd}")
  177. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  178. self.gguf_writer.add_feed_forward_length(n_ff)
  179. logger.info(f"gguf: feed forward length = {n_ff}")
  180. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  181. self.gguf_writer.add_head_count(n_head)
  182. logger.info(f"gguf: head count = {n_head}")
  183. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  184. self.gguf_writer.add_head_count_kv(n_head_kv)
  185. logger.info(f"gguf: key-value head count = {n_head_kv}")
  186. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  187. self.gguf_writer.add_rope_freq_base(rope_theta)
  188. logger.info(f"gguf: rope theta = {rope_theta}")
  189. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  190. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  191. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  192. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  193. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  194. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  195. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  196. self.gguf_writer.add_expert_count(n_experts)
  197. logger.info(f"gguf: expert count = {n_experts}")
  198. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  199. self.gguf_writer.add_expert_used_count(n_experts_used)
  200. logger.info(f"gguf: experts used count = {n_experts_used}")
  201. self.gguf_writer.add_file_type(self.ftype)
  202. logger.info(f"gguf: file type = {self.ftype}")
  203. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  204. del bid # unused
  205. return [(self.map_tensor_name(name), data_torch)]
  206. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  207. del name, new_name, bid, n_dims # unused
  208. return False
  209. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  210. del name, new_name, bid, n_dims # unused
  211. return False
  212. def prepare_tensors(self):
  213. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  214. for name, data_torch in self.get_tensors():
  215. # we don't need these
  216. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  217. continue
  218. old_dtype = data_torch.dtype
  219. # convert any unsupported data types to float32
  220. if data_torch.dtype not in (torch.float16, torch.float32):
  221. data_torch = data_torch.to(torch.float32)
  222. # use the first number-like part of the tensor name as the block id
  223. bid = None
  224. for part in name.split("."):
  225. if part.isdecimal():
  226. bid = int(part)
  227. break
  228. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  229. data: np.ndarray # type hint
  230. n_dims = len(data.shape)
  231. data_dtype = data.dtype
  232. data_qtype: gguf.GGMLQuantizationType | None = None
  233. # when both are True, f32 should win
  234. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  235. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  236. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  237. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  238. extra_f32 = any(cond for cond in (
  239. extra_f32,
  240. n_dims == 1,
  241. new_name.endswith("_norm.weight"),
  242. ))
  243. # Some tensor types are always in float32
  244. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  245. gguf.MODEL_TENSOR.FFN_GATE_INP,
  246. gguf.MODEL_TENSOR.POS_EMBD,
  247. gguf.MODEL_TENSOR.TOKEN_TYPES,
  248. ))
  249. # if f16 desired, convert any float32 2-dim weight tensors to float16
  250. extra_f16 = any(cond for cond in (
  251. extra_f16,
  252. (name.endswith(".weight") and n_dims >= 2),
  253. ))
  254. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  255. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  256. data = gguf.quantize_bf16(data)
  257. assert data.dtype == np.int16
  258. data_qtype = gguf.GGMLQuantizationType.BF16
  259. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  260. data = gguf.quantize_q8_0(data)
  261. assert data.dtype == np.uint8
  262. data_qtype = gguf.GGMLQuantizationType.Q8_0
  263. else: # default to float16 for quantized tensors
  264. if data_dtype != np.float16:
  265. data = data.astype(np.float16)
  266. data_qtype = gguf.GGMLQuantizationType.F16
  267. if data_qtype is None: # by default, convert to float32
  268. if data_dtype != np.float32:
  269. data = data.astype(np.float32)
  270. data_qtype = gguf.GGMLQuantizationType.F32
  271. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  272. # reverse shape to make it similar to the internal ggml dimension order
  273. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  274. # n_dims is implicit in the shape
  275. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  276. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  277. def set_type(self):
  278. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  279. def prepare_metadata(self, vocab_only: bool):
  280. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  281. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model, self.model_name, total_params)
  282. # Fallback to model directory name if metadata name is still missing
  283. if self.metadata.name is None:
  284. self.metadata.name = self.dir_model.name
  285. # Generate parameter weight class (useful for leader boards) if not yet determined
  286. if self.metadata.size_label is None and total_params > 0:
  287. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  288. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  289. output_type: str = self.ftype.name.partition("_")[2]
  290. # Filename Output
  291. # Note: `not is_dir()` is used because `.is_file()` will not detect
  292. # file template strings as it doesn't actually exist as a file
  293. if self.fname_out is not None and not self.fname_out.is_dir():
  294. # Output path is a custom defined templated filename
  295. # Process templated file name with the output ftype, useful with the "auto" ftype
  296. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  297. else:
  298. # Generate default filename based on model specification and available metadata
  299. if not vocab_only:
  300. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  301. else:
  302. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  303. # Check if preferred output directory path was provided
  304. if self.fname_out is not None and self.fname_out.is_dir():
  305. # output path is a directory
  306. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  307. else:
  308. # output in the same directory as the model by default
  309. self.fname_out = self.dir_model / f"{fname_default}.gguf"
  310. self.set_type()
  311. logger.info("Set meta model")
  312. self.metadata.set_gguf_meta_model(self.gguf_writer)
  313. logger.info("Set model parameters")
  314. self.set_gguf_parameters()
  315. logger.info("Set model tokenizer")
  316. self.set_vocab()
  317. logger.info("Set model quantization version")
  318. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  319. def write(self):
  320. self.prepare_tensors()
  321. self.prepare_metadata(vocab_only=False)
  322. self.gguf_writer.write_header_to_file(path=self.fname_out)
  323. self.gguf_writer.write_kv_data_to_file()
  324. self.gguf_writer.write_tensors_to_file(progress=True)
  325. self.gguf_writer.close()
  326. def write_vocab(self):
  327. if len(self.gguf_writer.tensors) != 1:
  328. raise ValueError('Splitting the vocabulary is not supported')
  329. self.prepare_metadata(vocab_only=True)
  330. self.gguf_writer.write_header_to_file(path=self.fname_out)
  331. self.gguf_writer.write_kv_data_to_file()
  332. self.gguf_writer.close()
  333. @staticmethod
  334. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  335. part_names: list[str] = []
  336. for filename in os.listdir(dir_model):
  337. if filename.startswith(prefix) and filename.endswith(suffix):
  338. part_names.append(filename)
  339. part_names.sort()
  340. return part_names
  341. @staticmethod
  342. def load_hparams(dir_model: Path):
  343. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  344. return json.load(f)
  345. @classmethod
  346. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  347. assert names
  348. def func(modelcls: AnyModel) -> AnyModel:
  349. for name in names:
  350. cls._model_classes[name] = modelcls
  351. return modelcls
  352. return func
  353. @classmethod
  354. def from_model_architecture(cls, arch: str) -> type[Model]:
  355. try:
  356. return cls._model_classes[arch]
  357. except KeyError:
  358. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  359. def does_token_look_special(self, token: str | bytes) -> bool:
  360. if isinstance(token, (bytes, bytearray)):
  361. token_text = token.decode(encoding="utf-8")
  362. elif isinstance(token, memoryview):
  363. token_text = token.tobytes().decode(encoding="utf-8")
  364. else:
  365. token_text = token
  366. # Some models mark some added tokens which ought to be control tokens as not special.
  367. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  368. seems_special = token_text in (
  369. "<pad>", # deepseek-coder
  370. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  371. )
  372. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  373. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  374. # TODO: should these be marked as UNUSED instead? (maybe not)
  375. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  376. return seems_special
  377. # used for GPT-2 BPE and WordPiece vocabs
  378. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  379. tokens: list[str] = []
  380. toktypes: list[int] = []
  381. from transformers import AutoTokenizer
  382. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  383. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  384. assert max(tokenizer.vocab.values()) < vocab_size
  385. tokpre = self.get_vocab_base_pre(tokenizer)
  386. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  387. added_vocab = tokenizer.get_added_vocab()
  388. for i in range(vocab_size):
  389. if i not in reverse_vocab:
  390. tokens.append(f"[PAD{i}]")
  391. toktypes.append(gguf.TokenType.UNUSED)
  392. else:
  393. token: str = reverse_vocab[i]
  394. if token in added_vocab:
  395. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  396. toktypes.append(gguf.TokenType.CONTROL)
  397. else:
  398. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  399. toktypes.append(gguf.TokenType.USER_DEFINED)
  400. else:
  401. toktypes.append(gguf.TokenType.NORMAL)
  402. tokens.append(token)
  403. return tokens, toktypes, tokpre
  404. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  405. # do not modify it manually!
  406. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  407. # Marker: Start get_vocab_base_pre
  408. def get_vocab_base_pre(self, tokenizer) -> str:
  409. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  410. # is specific for the BPE pre-tokenizer used by the model
  411. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  412. # use in llama.cpp to implement the same pre-tokenizer
  413. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  414. chktok = tokenizer.encode(chktxt)
  415. chkhsh = sha256(str(chktok).encode()).hexdigest()
  416. logger.debug(f"chktok: {chktok}")
  417. logger.debug(f"chkhsh: {chkhsh}")
  418. res = None
  419. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  420. # or pull the latest version of the model from Huggingface
  421. # don't edit the hashes manually!
  422. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  423. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  424. res = "llama-bpe"
  425. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  426. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  427. res = "deepseek-llm"
  428. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  429. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  430. res = "deepseek-coder"
  431. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  432. # ref: https://huggingface.co/tiiuae/falcon-7b
  433. res = "falcon"
  434. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  435. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  436. res = "bert-bge"
  437. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  438. # ref: https://huggingface.co/mosaicml/mpt-7b
  439. res = "mpt"
  440. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  441. # ref: https://huggingface.co/bigcode/starcoder2-3b
  442. res = "starcoder"
  443. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  444. # ref: https://huggingface.co/openai-community/gpt2
  445. res = "gpt-2"
  446. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  447. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  448. res = "stablelm2"
  449. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  450. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  451. res = "refact"
  452. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  453. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  454. res = "command-r"
  455. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  456. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  457. res = "qwen2"
  458. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  459. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  460. res = "olmo"
  461. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  462. # ref: https://huggingface.co/databricks/dbrx-base
  463. res = "dbrx"
  464. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  465. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  466. res = "jina-v2-en"
  467. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  468. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  469. res = "jina-v2-es"
  470. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  471. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  472. res = "jina-v2-de"
  473. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  474. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  475. res = "smaug-bpe"
  476. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  477. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  478. res = "poro-chat"
  479. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  480. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  481. res = "jina-v2-code"
  482. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  483. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  484. res = "chatglm-bpe"
  485. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  486. # ref: https://huggingface.co/LumiOpen/Viking-7B
  487. res = "viking"
  488. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  489. # ref: https://huggingface.co/core42/jais-13b
  490. res = "jais"
  491. if res is None:
  492. logger.warning("\n")
  493. logger.warning("**************************************************************************************")
  494. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  495. logger.warning("** There are 2 possible reasons for this:")
  496. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  497. logger.warning("** - the pre-tokenization config has changed upstream")
  498. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  499. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  500. logger.warning("**")
  501. logger.warning(f"** chkhsh: {chkhsh}")
  502. logger.warning("**************************************************************************************")
  503. logger.warning("\n")
  504. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  505. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  506. logger.debug(f"chkhsh: {chkhsh}")
  507. return res
  508. # Marker: End get_vocab_base_pre
  509. def _set_vocab_gpt2(self) -> None:
  510. tokens, toktypes, tokpre = self.get_vocab_base()
  511. self.gguf_writer.add_tokenizer_model("gpt2")
  512. self.gguf_writer.add_tokenizer_pre(tokpre)
  513. self.gguf_writer.add_token_list(tokens)
  514. self.gguf_writer.add_token_types(toktypes)
  515. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  516. special_vocab.add_to_gguf(self.gguf_writer)
  517. def _set_vocab_qwen(self):
  518. dir_model = self.dir_model
  519. hparams = self.hparams
  520. tokens: list[str] = []
  521. toktypes: list[int] = []
  522. from transformers import AutoTokenizer
  523. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  524. vocab_size = hparams["vocab_size"]
  525. assert max(tokenizer.get_vocab().values()) < vocab_size
  526. tokpre = self.get_vocab_base_pre(tokenizer)
  527. merges = []
  528. vocab = {}
  529. mergeable_ranks = tokenizer.mergeable_ranks
  530. for token, rank in mergeable_ranks.items():
  531. vocab[QwenModel.token_bytes_to_string(token)] = rank
  532. if len(token) == 1:
  533. continue
  534. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  535. assert len(merged) == 2
  536. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  537. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  538. added_vocab = tokenizer.special_tokens
  539. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  540. for i in range(vocab_size):
  541. if i not in reverse_vocab:
  542. tokens.append(f"[PAD{i}]")
  543. toktypes.append(gguf.TokenType.UNUSED)
  544. elif reverse_vocab[i] in added_vocab:
  545. tokens.append(reverse_vocab[i])
  546. toktypes.append(gguf.TokenType.CONTROL)
  547. else:
  548. tokens.append(reverse_vocab[i])
  549. toktypes.append(gguf.TokenType.NORMAL)
  550. self.gguf_writer.add_tokenizer_model("gpt2")
  551. self.gguf_writer.add_tokenizer_pre(tokpre)
  552. self.gguf_writer.add_token_list(tokens)
  553. self.gguf_writer.add_token_types(toktypes)
  554. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  555. special_vocab.merges = merges
  556. # only add special tokens when they were not already loaded from config.json
  557. if len(special_vocab.special_token_ids) == 0:
  558. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  559. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  560. # this one is usually not in config.json anyway
  561. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  562. special_vocab.add_to_gguf(self.gguf_writer)
  563. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  564. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  565. self.gguf_writer.add_tokenizer_model("llama")
  566. self.gguf_writer.add_tokenizer_pre("default")
  567. self.gguf_writer.add_token_list(tokens)
  568. self.gguf_writer.add_token_scores(scores)
  569. self.gguf_writer.add_token_types(toktypes)
  570. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  571. special_vocab.add_to_gguf(self.gguf_writer)
  572. def _create_vocab_sentencepiece(self):
  573. from sentencepiece import SentencePieceProcessor
  574. tokenizer_path = self.dir_model / 'tokenizer.model'
  575. if not tokenizer_path.is_file():
  576. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  577. tokenizer = SentencePieceProcessor()
  578. tokenizer.LoadFromFile(str(tokenizer_path))
  579. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  580. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  581. scores: list[float] = [-10000.0] * vocab_size
  582. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  583. for token_id in range(tokenizer.vocab_size()):
  584. piece = tokenizer.IdToPiece(token_id)
  585. text = piece.encode("utf-8")
  586. score = tokenizer.GetScore(token_id)
  587. toktype = SentencePieceTokenTypes.NORMAL
  588. if tokenizer.IsUnknown(token_id):
  589. toktype = SentencePieceTokenTypes.UNKNOWN
  590. elif tokenizer.IsControl(token_id):
  591. toktype = SentencePieceTokenTypes.CONTROL
  592. elif tokenizer.IsUnused(token_id):
  593. toktype = SentencePieceTokenTypes.UNUSED
  594. elif tokenizer.IsByte(token_id):
  595. toktype = SentencePieceTokenTypes.BYTE
  596. tokens[token_id] = text
  597. scores[token_id] = score
  598. toktypes[token_id] = toktype
  599. added_tokens_file = self.dir_model / 'added_tokens.json'
  600. if added_tokens_file.is_file():
  601. with open(added_tokens_file, "r", encoding="utf-8") as f:
  602. added_tokens_json = json.load(f)
  603. for key in added_tokens_json:
  604. token_id = added_tokens_json[key]
  605. if (token_id >= vocab_size):
  606. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  607. continue
  608. tokens[token_id] = key.encode("utf-8")
  609. scores[token_id] = -1000.0
  610. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  611. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  612. if tokenizer_config_file.is_file():
  613. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  614. tokenizer_config_json = json.load(f)
  615. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  616. for token_id, token_data in added_tokens_decoder.items():
  617. token_id = int(token_id)
  618. token: str = token_data["content"]
  619. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  620. assert tokens[token_id] == token.encode("utf-8")
  621. if token_data.get("special") or self.does_token_look_special(token):
  622. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  623. else:
  624. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  625. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  626. scores[token_id] = -1000.0
  627. tokens[token_id] = token.encode("utf-8")
  628. if vocab_size > len(tokens):
  629. pad_count = vocab_size - len(tokens)
  630. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  631. for i in range(1, pad_count + 1):
  632. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  633. scores.append(-1000.0)
  634. toktypes.append(SentencePieceTokenTypes.UNUSED)
  635. return tokens, scores, toktypes
  636. def _set_vocab_llama_hf(self):
  637. vocab = gguf.LlamaHfVocab(self.dir_model)
  638. tokens = []
  639. scores = []
  640. toktypes = []
  641. for text, score, toktype in vocab.all_tokens():
  642. tokens.append(text)
  643. scores.append(score)
  644. toktypes.append(toktype)
  645. assert len(tokens) == vocab.vocab_size
  646. self.gguf_writer.add_tokenizer_model("llama")
  647. self.gguf_writer.add_tokenizer_pre("default")
  648. self.gguf_writer.add_token_list(tokens)
  649. self.gguf_writer.add_token_scores(scores)
  650. self.gguf_writer.add_token_types(toktypes)
  651. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  652. special_vocab.add_to_gguf(self.gguf_writer)
  653. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  654. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  655. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  656. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  657. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  658. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  659. assert field # tokenizer model
  660. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  661. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  662. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  663. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  664. assert field # token list
  665. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  666. if model_name == "llama-spm":
  667. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  668. assert field # token scores
  669. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  670. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  671. assert field # token types
  672. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  673. if model_name != "llama-spm":
  674. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  675. assert field # token merges
  676. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  677. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  678. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  679. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  680. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  681. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  682. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  683. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  684. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  685. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  686. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  687. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  688. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  689. @Model.register("GPTNeoXForCausalLM")
  690. class GPTNeoXModel(Model):
  691. model_arch = gguf.MODEL_ARCH.GPTNEOX
  692. def set_gguf_parameters(self):
  693. block_count = self.hparams["num_hidden_layers"]
  694. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  695. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  696. self.gguf_writer.add_block_count(block_count)
  697. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  698. self.gguf_writer.add_rope_dimension_count(
  699. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  700. )
  701. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  702. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  703. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  704. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  705. del bid # unused
  706. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  707. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  708. tensors: list[tuple[str, Tensor]] = []
  709. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  710. # Map bloom-style qkv_linear to gpt-style qkv_linear
  711. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  712. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  713. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  714. data_torch = torch.cat(
  715. (
  716. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  717. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  718. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  719. ),
  720. dim=0,
  721. )
  722. logger.info("re-format attention.linear_qkv.weight")
  723. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  724. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  725. data_torch = torch.cat(
  726. (
  727. qkv_bias[:, 0, :].reshape((n_embed,)),
  728. qkv_bias[:, 1, :].reshape((n_embed,)),
  729. qkv_bias[:, 2, :].reshape((n_embed,)),
  730. ),
  731. dim=0,
  732. )
  733. logger.info("re-format attention.linear_qkv.bias")
  734. tensors.append((self.map_tensor_name(name), data_torch))
  735. return tensors
  736. @Model.register("BloomForCausalLM")
  737. class BloomModel(Model):
  738. model_arch = gguf.MODEL_ARCH.BLOOM
  739. def set_gguf_parameters(self):
  740. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  741. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  742. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  743. self.gguf_writer.add_embedding_length(n_embed)
  744. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  745. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  746. self.gguf_writer.add_head_count(n_head)
  747. self.gguf_writer.add_head_count_kv(n_head)
  748. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  749. self.gguf_writer.add_file_type(self.ftype)
  750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  751. del bid # unused
  752. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  753. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  754. name = re.sub(r'transformer\.', '', name)
  755. tensors: list[tuple[str, Tensor]] = []
  756. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  757. # Map bloom-style qkv_linear to gpt-style qkv_linear
  758. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  759. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  760. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  761. data_torch = torch.cat(
  762. (
  763. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  764. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  765. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  766. ),
  767. dim=0,
  768. )
  769. logger.info("re-format attention.linear_qkv.weight")
  770. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  771. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  772. data_torch = torch.cat(
  773. (
  774. qkv_bias[:, 0, :].reshape((n_embed,)),
  775. qkv_bias[:, 1, :].reshape((n_embed,)),
  776. qkv_bias[:, 2, :].reshape((n_embed,)),
  777. ),
  778. dim=0,
  779. )
  780. logger.info("re-format attention.linear_qkv.bias")
  781. tensors.append((self.map_tensor_name(name), data_torch))
  782. if name == "word_embeddings.weight":
  783. assert self.tensor_names is not None
  784. # TODO: tie them at runtime, don't duplicate in the model file
  785. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  786. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  787. return tensors
  788. @Model.register("MPTForCausalLM")
  789. class MPTModel(Model):
  790. model_arch = gguf.MODEL_ARCH.MPT
  791. def set_vocab(self):
  792. try:
  793. self._set_vocab_gpt2()
  794. except Exception:
  795. # Fallback for SEA-LION model
  796. self._set_vocab_sentencepiece()
  797. self.gguf_writer.add_add_bos_token(False)
  798. self.gguf_writer.add_pad_token_id(3)
  799. self.gguf_writer.add_eos_token_id(1)
  800. self.gguf_writer.add_unk_token_id(0)
  801. def set_gguf_parameters(self):
  802. block_count = self.hparams["n_layers"]
  803. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  804. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  805. self.gguf_writer.add_block_count(block_count)
  806. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  807. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  808. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  809. self.gguf_writer.add_head_count_kv(kv_n_heads)
  810. self.gguf_writer.add_layer_norm_eps(1e-5)
  811. if self.hparams["attn_config"]["clip_qkv"] is not None:
  812. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  813. if self.hparams["attn_config"]["alibi"]:
  814. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  815. else:
  816. self.gguf_writer.add_max_alibi_bias(0.0)
  817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  818. del bid # unused
  819. if "scales" in name:
  820. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  821. new_name = new_name.replace("scales", "act.scales")
  822. else:
  823. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  824. return [(new_name, data_torch)]
  825. @Model.register("OrionForCausalLM")
  826. class OrionModel(Model):
  827. model_arch = gguf.MODEL_ARCH.ORION
  828. def set_vocab(self):
  829. self._set_vocab_sentencepiece()
  830. def set_gguf_parameters(self):
  831. block_count = self.hparams["num_hidden_layers"]
  832. head_count = self.hparams["num_attention_heads"]
  833. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  834. ctx_length = 0
  835. if "max_sequence_length" in self.hparams:
  836. ctx_length = self.hparams["max_sequence_length"]
  837. elif "max_position_embeddings" in self.hparams:
  838. ctx_length = self.hparams["max_position_embeddings"]
  839. elif "model_max_length" in self.hparams:
  840. ctx_length = self.hparams["model_max_length"]
  841. else:
  842. raise ValueError("gguf: can not find ctx length parameter.")
  843. self.gguf_writer.add_file_type(self.ftype)
  844. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  845. self.gguf_writer.add_context_length(ctx_length)
  846. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  847. self.gguf_writer.add_block_count(block_count)
  848. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  849. self.gguf_writer.add_head_count(head_count)
  850. self.gguf_writer.add_head_count_kv(head_count_kv)
  851. # note: config provides rms norm but it is actually layer norm
  852. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  853. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  854. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  855. class BaichuanModel(Model):
  856. model_arch = gguf.MODEL_ARCH.BAICHUAN
  857. def set_vocab(self):
  858. self._set_vocab_sentencepiece()
  859. def set_gguf_parameters(self):
  860. block_count = self.hparams["num_hidden_layers"]
  861. head_count = self.hparams["num_attention_heads"]
  862. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  863. ctx_length = 0
  864. if "max_sequence_length" in self.hparams:
  865. ctx_length = self.hparams["max_sequence_length"]
  866. elif "max_position_embeddings" in self.hparams:
  867. ctx_length = self.hparams["max_position_embeddings"]
  868. elif "model_max_length" in self.hparams:
  869. ctx_length = self.hparams["model_max_length"]
  870. else:
  871. raise ValueError("gguf: can not find ctx length parameter.")
  872. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  873. self.gguf_writer.add_context_length(ctx_length)
  874. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  875. self.gguf_writer.add_block_count(block_count)
  876. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  877. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  878. self.gguf_writer.add_head_count(head_count)
  879. self.gguf_writer.add_head_count_kv(head_count_kv)
  880. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  881. self.gguf_writer.add_file_type(self.ftype)
  882. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  883. if self.hparams["rope_scaling"].get("type") == "linear":
  884. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  885. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  886. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  887. head_count = self.hparams["num_attention_heads"]
  888. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  889. tensors: list[tuple[str, Tensor]] = []
  890. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  891. logger.info(f"Unpacking and permuting layer {bid}")
  892. tensors = [
  893. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  894. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  895. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  896. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  897. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  898. self._reverse_hf_part(data_torch, 2)),
  899. ]
  900. else:
  901. tensors = [(self.map_tensor_name(name), data_torch)]
  902. return tensors
  903. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  904. if n_kv_head is not None and n_head != n_kv_head:
  905. n_head //= n_kv_head
  906. return (
  907. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  908. .swapaxes(1, 2)
  909. .reshape(weights.shape)
  910. )
  911. def _reverse_hf_permute_part(
  912. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  913. ) -> Tensor:
  914. r = weights.shape[0] // 3
  915. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  916. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  917. r = weights.shape[0] // 3
  918. return weights[r * n_part:r * n_part + r, ...]
  919. @Model.register("XverseForCausalLM")
  920. class XverseModel(Model):
  921. model_arch = gguf.MODEL_ARCH.XVERSE
  922. def set_vocab(self):
  923. assert (self.dir_model / "tokenizer.json").is_file()
  924. dir_model = self.dir_model
  925. hparams = self.hparams
  926. tokens: list[bytes] = []
  927. toktypes: list[int] = []
  928. from transformers import AutoTokenizer
  929. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  930. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  931. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  932. # because vocab_size is the count of items, and indexes start at 0.
  933. max_vocab_index = max(tokenizer.get_vocab().values())
  934. if max_vocab_index >= vocab_size:
  935. raise ValueError("Vocabulary size exceeds expected maximum size.")
  936. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  937. added_vocab = tokenizer.get_added_vocab()
  938. for token_id in range(vocab_size):
  939. token_text = reverse_vocab[token_id].encode('utf-8')
  940. # replace "\x00" to string with length > 0
  941. if token_text == b"\x00":
  942. toktype = gguf.TokenType.BYTE # special
  943. token_text = f"<{token_text}>".encode('utf-8')
  944. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  945. toktype = gguf.TokenType.BYTE # special
  946. elif reverse_vocab[token_id] in added_vocab:
  947. if tokenizer.added_tokens_decoder[token_id].special:
  948. toktype = gguf.TokenType.CONTROL
  949. else:
  950. toktype = gguf.TokenType.USER_DEFINED
  951. else:
  952. toktype = gguf.TokenType.NORMAL
  953. tokens.append(token_text)
  954. toktypes.append(toktype)
  955. self.gguf_writer.add_tokenizer_model("llama")
  956. self.gguf_writer.add_tokenizer_pre("default")
  957. self.gguf_writer.add_token_list(tokens)
  958. self.gguf_writer.add_token_types(toktypes)
  959. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  960. special_vocab.add_to_gguf(self.gguf_writer)
  961. def set_gguf_parameters(self):
  962. block_count = self.hparams["num_hidden_layers"]
  963. head_count = self.hparams["num_attention_heads"]
  964. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  965. ctx_length = 0
  966. if "max_sequence_length" in self.hparams:
  967. ctx_length = self.hparams["max_sequence_length"]
  968. elif "max_position_embeddings" in self.hparams:
  969. ctx_length = self.hparams["max_position_embeddings"]
  970. elif "model_max_length" in self.hparams:
  971. ctx_length = self.hparams["model_max_length"]
  972. else:
  973. raise ValueError("gguf: can not find ctx length parameter.")
  974. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  975. self.gguf_writer.add_context_length(ctx_length)
  976. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  977. self.gguf_writer.add_block_count(block_count)
  978. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  979. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  980. self.gguf_writer.add_head_count(head_count)
  981. self.gguf_writer.add_head_count_kv(head_count_kv)
  982. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  983. self.gguf_writer.add_file_type(self.ftype)
  984. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  985. if self.hparams["rope_scaling"].get("type") == "linear":
  986. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  987. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  988. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  989. del bid # unused
  990. head_count = self.hparams["num_attention_heads"]
  991. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  992. # HF models permute some of the tensors, so we need to undo that
  993. if name.endswith("q_proj.weight"):
  994. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  995. if name.endswith("k_proj.weight"):
  996. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  997. return [(self.map_tensor_name(name), data_torch)]
  998. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  999. if n_kv_head is not None and n_head != n_kv_head:
  1000. n_head //= n_kv_head
  1001. return (
  1002. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1003. .swapaxes(1, 2)
  1004. .reshape(weights.shape)
  1005. )
  1006. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1007. class FalconModel(Model):
  1008. model_arch = gguf.MODEL_ARCH.FALCON
  1009. def set_gguf_parameters(self):
  1010. block_count = self.hparams.get("num_hidden_layers")
  1011. if block_count is None:
  1012. block_count = self.hparams["n_layer"] # old name
  1013. n_head = self.hparams.get("num_attention_heads")
  1014. if n_head is None:
  1015. n_head = self.hparams["n_head"] # old name
  1016. n_head_kv = self.hparams.get("num_kv_heads")
  1017. if n_head_kv is None:
  1018. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1019. self.gguf_writer.add_context_length(2048) # not in config.json
  1020. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1021. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1022. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1023. self.gguf_writer.add_block_count(block_count)
  1024. self.gguf_writer.add_head_count(n_head)
  1025. self.gguf_writer.add_head_count_kv(n_head_kv)
  1026. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1027. self.gguf_writer.add_file_type(self.ftype)
  1028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1029. del bid # unused
  1030. # QKV tensor transform
  1031. # The original query_key_value tensor contains n_head_kv "kv groups",
  1032. # each consisting of n_head/n_head_kv query weights followed by one key
  1033. # and one value weight (shared by all query heads in the kv group).
  1034. # This layout makes it a big pain to work with in GGML.
  1035. # So we rearrange them here,, so that we have n_head query weights
  1036. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1037. # in contiguous fashion.
  1038. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1039. if "query_key_value" in name:
  1040. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1041. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1042. head_dim = self.hparams["hidden_size"] // n_head
  1043. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1044. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1045. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1046. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1047. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1048. return [(self.map_tensor_name(name), data_torch)]
  1049. @Model.register("GPTBigCodeForCausalLM")
  1050. class StarCoderModel(Model):
  1051. model_arch = gguf.MODEL_ARCH.STARCODER
  1052. def set_gguf_parameters(self):
  1053. block_count = self.hparams["n_layer"]
  1054. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1055. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1056. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1057. self.gguf_writer.add_block_count(block_count)
  1058. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1059. self.gguf_writer.add_head_count_kv(1)
  1060. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1061. self.gguf_writer.add_file_type(self.ftype)
  1062. @Model.register("GPTRefactForCausalLM")
  1063. class RefactModel(Model):
  1064. model_arch = gguf.MODEL_ARCH.REFACT
  1065. def set_vocab(self):
  1066. super().set_vocab()
  1067. # TODO: how to determine special FIM tokens automatically?
  1068. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1069. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1070. special_vocab._set_special_token("prefix", 1)
  1071. special_vocab._set_special_token("suffix", 3)
  1072. special_vocab._set_special_token("middle", 2)
  1073. special_vocab.add_to_gguf(self.gguf_writer)
  1074. def set_gguf_parameters(self):
  1075. hidden_dim = self.hparams["n_embd"]
  1076. inner_dim = 4 * hidden_dim
  1077. hidden_dim = int(2 * inner_dim / 3)
  1078. multiple_of = 256
  1079. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1080. block_count = self.hparams["n_layer"]
  1081. # refact uses Alibi. So this is from config.json which might be used by training.
  1082. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1083. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1084. self.gguf_writer.add_feed_forward_length(ff_dim)
  1085. self.gguf_writer.add_block_count(block_count)
  1086. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1087. self.gguf_writer.add_head_count_kv(1)
  1088. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1089. self.gguf_writer.add_file_type(self.ftype)
  1090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1091. hidden_dim = self.hparams["n_embd"]
  1092. inner_dim = 4 * hidden_dim
  1093. hidden_dim = int(2 * inner_dim / 3)
  1094. multiple_of = 256
  1095. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1096. n_head = self.hparams["n_head"]
  1097. n_head_kv = 1
  1098. head_dim = self.hparams["n_embd"] // n_head
  1099. tensors: list[tuple[str, Tensor]] = []
  1100. if bid is not None:
  1101. if name == f"transformer.h.{bid}.attn.kv.weight":
  1102. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1103. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1104. elif name == f"transformer.h.{bid}.attn.q.weight":
  1105. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1106. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1107. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1108. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1109. if len(tensors) == 0:
  1110. tensors.append((self.map_tensor_name(name), data_torch))
  1111. return tensors
  1112. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1113. class StableLMModel(Model):
  1114. model_arch = gguf.MODEL_ARCH.STABLELM
  1115. def set_vocab(self):
  1116. if (self.dir_model / "tokenizer.json").is_file():
  1117. self._set_vocab_gpt2()
  1118. else:
  1119. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1120. self._set_vocab_qwen()
  1121. def set_gguf_parameters(self):
  1122. hparams = self.hparams
  1123. block_count = hparams["num_hidden_layers"]
  1124. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1125. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1126. self.gguf_writer.add_block_count(block_count)
  1127. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1128. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1129. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1130. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1131. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1132. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1133. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1134. self.gguf_writer.add_file_type(self.ftype)
  1135. _q_norms: list[dict[str, Tensor]] | None = None
  1136. _k_norms: list[dict[str, Tensor]] | None = None
  1137. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1138. n_head = self.hparams["num_attention_heads"]
  1139. n_kv_head = self.hparams["num_key_value_heads"]
  1140. if name.find("q_layernorm.norms") != -1:
  1141. assert bid is not None
  1142. if self._q_norms is None:
  1143. self._q_norms = [{} for _ in range(self.block_count)]
  1144. self._q_norms[bid][name] = data_torch
  1145. if len(self._q_norms[bid]) >= n_head:
  1146. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1147. else:
  1148. return []
  1149. if name.find("k_layernorm.norms") != -1:
  1150. assert bid is not None
  1151. if self._k_norms is None:
  1152. self._k_norms = [{} for _ in range(self.block_count)]
  1153. self._k_norms[bid][name] = data_torch
  1154. if len(self._k_norms[bid]) >= n_kv_head:
  1155. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1156. else:
  1157. return []
  1158. return [(self.map_tensor_name(name), data_torch)]
  1159. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1160. datas: list[Tensor] = []
  1161. # extract the norms in order
  1162. for xid in range(n_head):
  1163. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1164. datas.append(norms[ename])
  1165. del norms[ename]
  1166. data_torch = torch.stack(datas, dim=0)
  1167. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1168. new_name = self.map_tensor_name(merged_name)
  1169. return [(new_name, data_torch)]
  1170. def prepare_tensors(self):
  1171. super().prepare_tensors()
  1172. if self._q_norms is not None or self._k_norms is not None:
  1173. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1174. norms = (
  1175. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1176. ) + (
  1177. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1178. )
  1179. if len(norms) > 0:
  1180. raise ValueError(f"Unprocessed norms: {norms}")
  1181. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1182. class LlamaModel(Model):
  1183. model_arch = gguf.MODEL_ARCH.LLAMA
  1184. def set_vocab(self):
  1185. try:
  1186. self._set_vocab_sentencepiece()
  1187. except FileNotFoundError:
  1188. try:
  1189. self._set_vocab_llama_hf()
  1190. except (FileNotFoundError, TypeError):
  1191. # Llama 3
  1192. self._set_vocab_gpt2()
  1193. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1194. if self.hparams.get("vocab_size", 32000) == 32016:
  1195. special_vocab = gguf.SpecialVocab(
  1196. self.dir_model, load_merges=False,
  1197. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1198. )
  1199. special_vocab._set_special_token("prefix", 32007)
  1200. special_vocab._set_special_token("suffix", 32008)
  1201. special_vocab._set_special_token("middle", 32009)
  1202. special_vocab._set_special_token("eot", 32010)
  1203. special_vocab.add_to_gguf(self.gguf_writer)
  1204. def set_gguf_parameters(self):
  1205. super().set_gguf_parameters()
  1206. hparams = self.hparams
  1207. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1208. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1209. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1210. if self.hparams["rope_scaling"].get("type") == "linear":
  1211. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1212. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1213. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1214. if tokenizer_config_file.is_file():
  1215. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1216. tokenizer_config_json = json.load(f)
  1217. if "add_prefix_space" in tokenizer_config_json:
  1218. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1219. # Apply to granite small models only
  1220. if self.hparams.get("vocab_size", 32000) == 49152:
  1221. self.gguf_writer.add_add_bos_token(False)
  1222. @staticmethod
  1223. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1224. if n_head_kv is not None and n_head != n_head_kv:
  1225. n_head = n_head_kv
  1226. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1227. .swapaxes(1, 2)
  1228. .reshape(weights.shape))
  1229. _experts: list[dict[str, Tensor]] | None = None
  1230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1231. n_head = self.hparams["num_attention_heads"]
  1232. n_kv_head = self.hparams.get("num_key_value_heads")
  1233. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1234. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1235. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1236. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1237. # process the experts separately
  1238. if name.find("block_sparse_moe.experts") != -1:
  1239. n_experts = self.hparams["num_local_experts"]
  1240. assert bid is not None
  1241. if self._experts is None:
  1242. self._experts = [{} for _ in range(self.block_count)]
  1243. self._experts[bid][name] = data_torch
  1244. if len(self._experts[bid]) >= n_experts * 3:
  1245. tensors: list[tuple[str, Tensor]] = []
  1246. # merge the experts into a single 3d tensor
  1247. for wid in ["w1", "w2", "w3"]:
  1248. datas: list[Tensor] = []
  1249. for xid in range(n_experts):
  1250. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1251. datas.append(self._experts[bid][ename])
  1252. del self._experts[bid][ename]
  1253. data_torch = torch.stack(datas, dim=0)
  1254. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1255. new_name = self.map_tensor_name(merged_name)
  1256. tensors.append((new_name, data_torch))
  1257. return tensors
  1258. else:
  1259. return []
  1260. return [(self.map_tensor_name(name), data_torch)]
  1261. def prepare_tensors(self):
  1262. super().prepare_tensors()
  1263. if self._experts is not None:
  1264. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1265. experts = [k for d in self._experts for k in d.keys()]
  1266. if len(experts) > 0:
  1267. raise ValueError(f"Unprocessed experts: {experts}")
  1268. @Model.register("BitnetForCausalLM")
  1269. class BitnetModel(Model):
  1270. model_arch = gguf.MODEL_ARCH.BITNET
  1271. def set_vocab(self):
  1272. self._set_vocab_sentencepiece()
  1273. def set_gguf_parameters(self):
  1274. super().set_gguf_parameters()
  1275. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1276. self.gguf_writer.add_rope_scaling_factor(1.0)
  1277. def weight_quant(self, weight):
  1278. dtype = weight.dtype
  1279. weight = weight.float()
  1280. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1281. weight = (weight * s).round().clamp(-1, 1) / s
  1282. scale = weight.abs().max().unsqueeze(0)
  1283. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1284. weight = torch.sign(weight).type(dtype)
  1285. return weight.type(dtype), scale.type(torch.float32)
  1286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1287. new_name = self.map_tensor_name(name)
  1288. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1289. gguf.MODEL_TENSOR.ATTN_Q,
  1290. gguf.MODEL_TENSOR.ATTN_K,
  1291. gguf.MODEL_TENSOR.ATTN_V,
  1292. gguf.MODEL_TENSOR.ATTN_OUT,
  1293. gguf.MODEL_TENSOR.FFN_UP,
  1294. gguf.MODEL_TENSOR.FFN_DOWN,
  1295. gguf.MODEL_TENSOR.FFN_GATE,
  1296. ]):
  1297. # transform weight into 1/0/-1 (in fp32)
  1298. weight_torch, scale_torch = self.weight_quant(data_torch)
  1299. yield (new_name, weight_torch)
  1300. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1301. else:
  1302. yield (new_name, data_torch)
  1303. @Model.register("GrokForCausalLM")
  1304. class GrokModel(Model):
  1305. model_arch = gguf.MODEL_ARCH.GROK
  1306. def set_vocab(self):
  1307. self._set_vocab_sentencepiece()
  1308. def __init__(self, *args, **kwargs):
  1309. super().__init__(*args, **kwargs)
  1310. def set_gguf_parameters(self):
  1311. super().set_gguf_parameters()
  1312. _experts: list[dict[str, Tensor]] | None = None
  1313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1314. # process the experts separately
  1315. if name.find(".moe.") != -1:
  1316. n_experts = self.hparams["num_local_experts"]
  1317. assert bid is not None
  1318. if self._experts is None:
  1319. self._experts = [{} for _ in range(self.block_count)]
  1320. self._experts[bid][name] = data_torch
  1321. if len(self._experts[bid]) >= n_experts * 3:
  1322. tensors: list[tuple[str, Tensor]] = []
  1323. # merge the experts into a single 3d tensor
  1324. for wid in ["linear", "linear_1", "linear_v"]:
  1325. datas: list[Tensor] = []
  1326. for xid in range(n_experts):
  1327. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1328. datas.append(self._experts[bid][ename])
  1329. del self._experts[bid][ename]
  1330. data_torch = torch.stack(datas, dim=0)
  1331. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1332. new_name = self.map_tensor_name(merged_name)
  1333. tensors.append((new_name, data_torch))
  1334. return tensors
  1335. else:
  1336. return []
  1337. return [(self.map_tensor_name(name), data_torch)]
  1338. @Model.register("DbrxForCausalLM")
  1339. class DbrxModel(Model):
  1340. model_arch = gguf.MODEL_ARCH.DBRX
  1341. def set_gguf_parameters(self):
  1342. ffn_config = self.hparams["ffn_config"]
  1343. attn_config = self.hparams["attn_config"]
  1344. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1345. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1346. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1347. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1348. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1349. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1350. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1351. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1352. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1353. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1354. self.gguf_writer.add_layer_norm_eps(1e-5)
  1355. self.gguf_writer.add_file_type(self.ftype)
  1356. logger.info(f"gguf: file type = {self.ftype}")
  1357. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1358. del bid # unused
  1359. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1360. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1361. n_embd = self.hparams["d_model"]
  1362. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1363. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1364. # But llama.cpp moe graph works differently
  1365. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1366. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1367. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1368. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1369. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1370. experts = False
  1371. for exp_tensor_name in exp_tensor_names.keys():
  1372. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1373. experts = True
  1374. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1375. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1376. data_torch = data_torch.permute(*permute_tensor)
  1377. break
  1378. # map tensor names
  1379. # In MoE models the ffn tensors are typically most of the model weights,
  1380. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1381. # Every other model has the weight names ending in .weight,
  1382. # let's assume that is the convention which is not the case for dbrx:
  1383. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1384. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1385. return [(new_name, data_torch)]
  1386. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1387. del name, new_name, bid # unused
  1388. return n_dims > 1
  1389. @Model.register("MiniCPMForCausalLM")
  1390. class MiniCPMModel(Model):
  1391. model_arch = gguf.MODEL_ARCH.MINICPM
  1392. def set_gguf_parameters(self):
  1393. block_count = self.hparams["num_hidden_layers"]
  1394. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1395. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1396. self.gguf_writer.add_block_count(block_count)
  1397. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1398. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1399. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1400. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1401. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1402. self.gguf_writer.add_file_type(self.ftype)
  1403. def set_vocab(self):
  1404. self._set_vocab_llama_hf()
  1405. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1406. if n_kv_head is not None and n_head != n_kv_head:
  1407. n_head //= n_kv_head
  1408. return (
  1409. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1410. .swapaxes(1, 2)
  1411. .reshape(weights.shape)
  1412. )
  1413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1414. del bid # unused
  1415. n_head = self.hparams["num_attention_heads"]
  1416. n_kv_head = self.hparams.get("num_key_value_heads")
  1417. # HF models permute some of the tensors, so we need to undo that
  1418. if name.endswith(("q_proj.weight")):
  1419. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1420. if name.endswith(("k_proj.weight")):
  1421. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1422. return [(self.map_tensor_name(name), data_torch)]
  1423. @Model.register("QWenLMHeadModel")
  1424. class QwenModel(Model):
  1425. model_arch = gguf.MODEL_ARCH.QWEN
  1426. @staticmethod
  1427. def token_bytes_to_string(b):
  1428. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1429. byte_encoder = bytes_to_unicode()
  1430. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1431. @staticmethod
  1432. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1433. parts = [bytes([b]) for b in token]
  1434. while True:
  1435. min_idx = None
  1436. min_rank = None
  1437. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1438. rank = mergeable_ranks.get(pair[0] + pair[1])
  1439. if rank is not None and (min_rank is None or rank < min_rank):
  1440. min_idx = i
  1441. min_rank = rank
  1442. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1443. break
  1444. assert min_idx is not None
  1445. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1446. return parts
  1447. def set_vocab(self):
  1448. self._set_vocab_qwen()
  1449. def set_gguf_parameters(self):
  1450. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1451. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1452. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1453. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1454. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1455. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1456. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1457. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1458. self.gguf_writer.add_file_type(self.ftype)
  1459. @Model.register("Qwen2ForCausalLM")
  1460. class Qwen2Model(Model):
  1461. model_arch = gguf.MODEL_ARCH.QWEN2
  1462. def set_vocab(self):
  1463. try:
  1464. self._set_vocab_sentencepiece()
  1465. except FileNotFoundError:
  1466. self._set_vocab_gpt2()
  1467. @Model.register("Qwen2MoeForCausalLM")
  1468. class Qwen2MoeModel(Model):
  1469. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1470. def set_gguf_parameters(self):
  1471. super().set_gguf_parameters()
  1472. if (n_experts := self.hparams.get("num_experts")) is not None:
  1473. self.gguf_writer.add_expert_count(n_experts)
  1474. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1475. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1476. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1477. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1478. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1479. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1480. _experts: list[dict[str, Tensor]] | None = None
  1481. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1482. # process the experts separately
  1483. if name.find("experts") != -1:
  1484. n_experts = self.hparams["num_experts"]
  1485. assert bid is not None
  1486. if self._experts is None:
  1487. self._experts = [{} for _ in range(self.block_count)]
  1488. self._experts[bid][name] = data_torch
  1489. if len(self._experts[bid]) >= n_experts * 3:
  1490. tensors: list[tuple[str, Tensor]] = []
  1491. # merge the experts into a single 3d tensor
  1492. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1493. datas: list[Tensor] = []
  1494. for xid in range(n_experts):
  1495. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1496. datas.append(self._experts[bid][ename])
  1497. del self._experts[bid][ename]
  1498. data_torch = torch.stack(datas, dim=0)
  1499. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1500. new_name = self.map_tensor_name(merged_name)
  1501. tensors.append((new_name, data_torch))
  1502. return tensors
  1503. else:
  1504. return []
  1505. return [(self.map_tensor_name(name), data_torch)]
  1506. def prepare_tensors(self):
  1507. super().prepare_tensors()
  1508. if self._experts is not None:
  1509. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1510. experts = [k for d in self._experts for k in d.keys()]
  1511. if len(experts) > 0:
  1512. raise ValueError(f"Unprocessed experts: {experts}")
  1513. @Model.register("GPT2LMHeadModel")
  1514. class GPT2Model(Model):
  1515. model_arch = gguf.MODEL_ARCH.GPT2
  1516. def set_gguf_parameters(self):
  1517. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1518. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1519. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1520. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1521. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1522. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1523. self.gguf_writer.add_file_type(self.ftype)
  1524. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1525. del bid # unused
  1526. tensors: list[tuple[str, Tensor]] = []
  1527. # we don't need these
  1528. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1529. return tensors
  1530. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1531. data_torch = data_torch.transpose(1, 0)
  1532. new_name = self.map_tensor_name(name)
  1533. tensors.append((new_name, data_torch))
  1534. # note: GPT2 output is tied to (same as) wte in original model
  1535. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1536. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1537. return tensors
  1538. @Model.register("PhiForCausalLM")
  1539. class Phi2Model(Model):
  1540. model_arch = gguf.MODEL_ARCH.PHI2
  1541. def set_gguf_parameters(self):
  1542. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1543. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1544. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1545. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1546. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1547. self.gguf_writer.add_embedding_length(n_embd)
  1548. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1549. self.gguf_writer.add_block_count(block_count)
  1550. self.gguf_writer.add_head_count(n_head)
  1551. self.gguf_writer.add_head_count_kv(n_head)
  1552. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1553. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1554. self.gguf_writer.add_file_type(self.ftype)
  1555. self.gguf_writer.add_add_bos_token(False)
  1556. @Model.register("Phi3ForCausalLM")
  1557. class Phi3MiniModel(Model):
  1558. model_arch = gguf.MODEL_ARCH.PHI3
  1559. def set_vocab(self):
  1560. from sentencepiece import SentencePieceProcessor
  1561. tokenizer_path = self.dir_model / 'tokenizer.model'
  1562. if not tokenizer_path.is_file():
  1563. raise ValueError(f'Error: Missing {tokenizer_path}')
  1564. tokenizer = SentencePieceProcessor()
  1565. tokenizer.LoadFromFile(str(tokenizer_path))
  1566. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1567. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1568. scores: list[float] = [-10000.0] * vocab_size
  1569. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1570. for token_id in range(tokenizer.vocab_size()):
  1571. piece = tokenizer.IdToPiece(token_id)
  1572. text = piece.encode("utf-8")
  1573. score = tokenizer.GetScore(token_id)
  1574. toktype = SentencePieceTokenTypes.NORMAL
  1575. if tokenizer.IsUnknown(token_id):
  1576. toktype = SentencePieceTokenTypes.UNKNOWN
  1577. elif tokenizer.IsControl(token_id):
  1578. toktype = SentencePieceTokenTypes.CONTROL
  1579. elif tokenizer.IsUnused(token_id):
  1580. toktype = SentencePieceTokenTypes.UNUSED
  1581. elif tokenizer.IsByte(token_id):
  1582. toktype = SentencePieceTokenTypes.BYTE
  1583. tokens[token_id] = text
  1584. scores[token_id] = score
  1585. toktypes[token_id] = toktype
  1586. added_tokens_file = self.dir_model / 'added_tokens.json'
  1587. if added_tokens_file.is_file():
  1588. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1589. added_tokens_json = json.load(f)
  1590. for key in added_tokens_json:
  1591. token_id = added_tokens_json[key]
  1592. if (token_id >= vocab_size):
  1593. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1594. continue
  1595. tokens[token_id] = key.encode("utf-8")
  1596. scores[token_id] = -1000.0
  1597. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1598. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1599. if tokenizer_config_file.is_file():
  1600. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1601. tokenizer_config_json = json.load(f)
  1602. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1603. for token_id, foken_data in added_tokens_decoder.items():
  1604. token_id = int(token_id)
  1605. token = foken_data["content"].encode("utf-8")
  1606. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1607. assert tokens[token_id] == token
  1608. tokens[token_id] = token
  1609. scores[token_id] = -1000.0
  1610. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1611. if foken_data.get("special"):
  1612. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1613. tokenizer_file = self.dir_model / 'tokenizer.json'
  1614. if tokenizer_file.is_file():
  1615. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1616. tokenizer_json = json.load(f)
  1617. added_tokens = tokenizer_json.get("added_tokens", [])
  1618. for foken_data in added_tokens:
  1619. token_id = int(foken_data["id"])
  1620. token = foken_data["content"].encode("utf-8")
  1621. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1622. assert tokens[token_id] == token
  1623. tokens[token_id] = token
  1624. scores[token_id] = -1000.0
  1625. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1626. if foken_data.get("special"):
  1627. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1628. self.gguf_writer.add_tokenizer_model("llama")
  1629. self.gguf_writer.add_tokenizer_pre("default")
  1630. self.gguf_writer.add_token_list(tokens)
  1631. self.gguf_writer.add_token_scores(scores)
  1632. self.gguf_writer.add_token_types(toktypes)
  1633. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1634. special_vocab.add_to_gguf(self.gguf_writer)
  1635. def set_gguf_parameters(self):
  1636. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1637. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1638. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1639. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1640. rms_eps = self.find_hparam(["rms_norm_eps"])
  1641. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1642. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1643. rope_dims = n_embd // n_head
  1644. self.gguf_writer.add_context_length(max_pos_embds)
  1645. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1646. self.gguf_writer.add_embedding_length(n_embd)
  1647. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1648. self.gguf_writer.add_block_count(block_count)
  1649. self.gguf_writer.add_head_count(n_head)
  1650. self.gguf_writer.add_head_count_kv(n_head_kv)
  1651. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1652. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1653. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1654. self.gguf_writer.add_file_type(self.ftype)
  1655. # write rope scaling for long context (128k) model
  1656. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1657. if (rope_scaling is None):
  1658. return
  1659. scale = max_pos_embds / orig_max_pos_embds
  1660. rope_scaling_type = rope_scaling.get('type', '').lower()
  1661. if len(rope_scaling_type) == 0:
  1662. raise KeyError('Missing the required key rope_scaling.type')
  1663. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1664. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1665. elif rope_scaling_type == 'yarn':
  1666. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1667. else:
  1668. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1669. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1670. long_factors = rope_scaling.get('long_factor', None)
  1671. short_factors = rope_scaling.get('short_factor', None)
  1672. if long_factors is None or short_factors is None:
  1673. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1674. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1675. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1676. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1677. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1678. @Model.register("PlamoForCausalLM")
  1679. class PlamoModel(Model):
  1680. model_arch = gguf.MODEL_ARCH.PLAMO
  1681. def set_vocab(self):
  1682. self._set_vocab_sentencepiece()
  1683. def set_gguf_parameters(self):
  1684. hparams = self.hparams
  1685. block_count = hparams["num_hidden_layers"]
  1686. self.gguf_writer.add_context_length(4096) # not in config.json
  1687. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1688. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1689. self.gguf_writer.add_block_count(block_count)
  1690. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1691. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1692. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1693. self.gguf_writer.add_file_type(self.ftype)
  1694. def shuffle_attn_q_weight(self, data_torch):
  1695. assert data_torch.size() == (5120, 5120)
  1696. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1697. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1698. data_torch = torch.reshape(data_torch, (5120, 5120))
  1699. return data_torch
  1700. def shuffle_attn_output_weight(self, data_torch):
  1701. assert data_torch.size() == (5120, 5120)
  1702. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1703. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1704. data_torch = torch.reshape(data_torch, (5120, 5120))
  1705. return data_torch
  1706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1707. del bid # unused
  1708. new_name = self.map_tensor_name(name)
  1709. # shuffle for broadcasting of gqa in ggml_mul_mat
  1710. if new_name.endswith("attn_q.weight"):
  1711. data_torch = self.shuffle_attn_q_weight(data_torch)
  1712. elif new_name.endswith("attn_output.weight"):
  1713. data_torch = self.shuffle_attn_output_weight(data_torch)
  1714. return [(new_name, data_torch)]
  1715. @Model.register("CodeShellForCausalLM")
  1716. class CodeShellModel(Model):
  1717. model_arch = gguf.MODEL_ARCH.CODESHELL
  1718. def set_gguf_parameters(self):
  1719. block_count = self.hparams["n_layer"]
  1720. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1721. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1722. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1723. self.gguf_writer.add_block_count(block_count)
  1724. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1725. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1726. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1727. self.gguf_writer.add_file_type(self.ftype)
  1728. self.gguf_writer.add_rope_freq_base(10000.0)
  1729. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1730. self.gguf_writer.add_rope_scaling_factor(1.0)
  1731. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1732. del bid # unused
  1733. new_name = self.map_tensor_name(name)
  1734. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1735. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1736. assert self.tensor_names is not None
  1737. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1738. # copy tok_embd.weight to output.weight
  1739. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1740. return tensors
  1741. @Model.register("InternLM2ForCausalLM")
  1742. class InternLM2Model(Model):
  1743. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1744. def set_vocab(self):
  1745. # (TODO): Is there a better way?
  1746. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1747. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1748. # recognized as an empty string in C++.
  1749. from sentencepiece import SentencePieceProcessor
  1750. from sentencepiece import sentencepiece_model_pb2 as model
  1751. tokenizer_path = self.dir_model / 'tokenizer.model'
  1752. tokens: list[bytes] = []
  1753. scores: list[float] = []
  1754. toktypes: list[int] = []
  1755. if not tokenizer_path.is_file():
  1756. logger.error(f'Error: Missing {tokenizer_path}')
  1757. sys.exit(1)
  1758. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1759. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1760. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1761. tokenizer = SentencePieceProcessor()
  1762. tokenizer.LoadFromFile(str(tokenizer_path))
  1763. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1764. for token_id in range(vocab_size):
  1765. piece = tokenizer.IdToPiece(token_id)
  1766. text = piece.encode("utf-8")
  1767. score = tokenizer.GetScore(token_id)
  1768. if text == b"\x00":
  1769. # (TODO): fixme
  1770. # Hack here and replace the \x00 characters.
  1771. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1772. text = "🐉".encode("utf-8")
  1773. toktype = SentencePieceTokenTypes.NORMAL
  1774. if tokenizer.IsUnknown(token_id):
  1775. toktype = SentencePieceTokenTypes.UNKNOWN
  1776. elif tokenizer.IsControl(token_id):
  1777. toktype = SentencePieceTokenTypes.CONTROL
  1778. elif tokenizer.IsUnused(token_id):
  1779. toktype = SentencePieceTokenTypes.UNUSED
  1780. elif tokenizer.IsByte(token_id):
  1781. toktype = SentencePieceTokenTypes.BYTE
  1782. # take care of ununsed raw token
  1783. if piece.startswith('[UNUSED'):
  1784. toktype = SentencePieceTokenTypes.UNUSED
  1785. tokens.append(text)
  1786. scores.append(score)
  1787. toktypes.append(toktype)
  1788. added_tokens_file = self.dir_model / 'added_tokens.json'
  1789. if added_tokens_file.is_file():
  1790. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1791. added_tokens_json = json.load(f)
  1792. for key in added_tokens_json:
  1793. tokens.append(key.encode("utf-8"))
  1794. scores.append(-1000.0)
  1795. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1796. chat_eos_token = '<|im_end|>'
  1797. chat_eos_token_id = None
  1798. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1799. if tokenizer_config_file.is_file():
  1800. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1801. tokenizer_config_json = json.load(f)
  1802. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1803. for token_id, foken_data in added_tokens_decoder.items():
  1804. token_id = int(token_id)
  1805. token = foken_data["content"]
  1806. if token == chat_eos_token:
  1807. chat_eos_token_id = token_id
  1808. token = token.encode("utf-8")
  1809. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1810. assert(tokens[token_id] == token)
  1811. tokens[token_id] = token
  1812. scores[token_id] = -1000.0
  1813. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1814. if foken_data.get("special"):
  1815. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1816. tokenizer_file = self.dir_model / 'tokenizer.json'
  1817. if tokenizer_file.is_file():
  1818. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1819. tokenizer_json = json.load(f)
  1820. added_tokens = tokenizer_json.get("added_tokens", [])
  1821. for foken_data in added_tokens:
  1822. token_id = int(foken_data["id"])
  1823. token = foken_data["content"]
  1824. if token == chat_eos_token:
  1825. chat_eos_token_id = token_id
  1826. token = token.encode("utf-8")
  1827. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1828. assert(tokens[token_id] == token)
  1829. tokens[token_id] = token
  1830. scores[token_id] = -1000.0
  1831. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1832. if foken_data.get("special"):
  1833. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1834. self.gguf_writer.add_tokenizer_model("llama")
  1835. self.gguf_writer.add_tokenizer_pre("default")
  1836. self.gguf_writer.add_token_list(tokens)
  1837. self.gguf_writer.add_token_scores(scores)
  1838. self.gguf_writer.add_token_types(toktypes)
  1839. self.gguf_writer.add_add_space_prefix(add_prefix)
  1840. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1841. old_eos = special_vocab.special_token_ids["eos"]
  1842. if chat_eos_token_id is not None:
  1843. # For the chat model, we replace the eos with '<|im_end|>'.
  1844. # TODO: this is a hack, should be fixed
  1845. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1846. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1847. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1848. " in chat mode so that the conversation can end normally.")
  1849. special_vocab.add_to_gguf(self.gguf_writer)
  1850. def set_gguf_parameters(self):
  1851. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1852. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1853. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1854. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1855. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1856. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1857. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1858. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1859. self.gguf_writer.add_file_type(self.ftype)
  1860. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1861. if self.hparams["rope_scaling"].get("type") == "linear":
  1862. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1863. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1864. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1865. num_heads = self.hparams["num_attention_heads"]
  1866. num_kv_heads = self.hparams["num_key_value_heads"]
  1867. n_embd = self.hparams["hidden_size"]
  1868. q_per_kv = num_heads // num_kv_heads
  1869. head_dim = n_embd // num_heads
  1870. num_groups = num_heads // q_per_kv
  1871. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1872. qkv = data_torch
  1873. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1874. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1875. # The model weights of q and k equire additional reshape.
  1876. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1877. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1878. v = v.reshape((-1, v.shape[-1]))
  1879. return [
  1880. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1881. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1882. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1883. ]
  1884. else:
  1885. return [(self.map_tensor_name(name), data_torch)]
  1886. @Model.register("BertModel", "CamembertModel")
  1887. class BertModel(Model):
  1888. model_arch = gguf.MODEL_ARCH.BERT
  1889. def __init__(self, *args, **kwargs):
  1890. super().__init__(*args, **kwargs)
  1891. self.vocab_size = None
  1892. def set_gguf_parameters(self):
  1893. super().set_gguf_parameters()
  1894. self.gguf_writer.add_causal_attention(False)
  1895. # get pooling path
  1896. pooling_path = None
  1897. module_path = self.dir_model / "modules.json"
  1898. if module_path.is_file():
  1899. with open(module_path, encoding="utf-8") as f:
  1900. modules = json.load(f)
  1901. for mod in modules:
  1902. if mod["type"] == "sentence_transformers.models.Pooling":
  1903. pooling_path = mod["path"]
  1904. break
  1905. # get pooling type
  1906. if pooling_path is not None:
  1907. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1908. pooling = json.load(f)
  1909. if pooling["pooling_mode_mean_tokens"]:
  1910. pooling_type = gguf.PoolingType.MEAN
  1911. elif pooling["pooling_mode_cls_token"]:
  1912. pooling_type = gguf.PoolingType.CLS
  1913. else:
  1914. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1915. self.gguf_writer.add_pooling_type(pooling_type)
  1916. def set_vocab(self):
  1917. tokens, toktypes, tokpre = self.get_vocab_base()
  1918. self.vocab_size = len(tokens)
  1919. # we need this to validate the size of the token_type embeddings
  1920. # though currently we are passing all zeros to the token_type embeddings
  1921. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1922. # convert to phantom space vocab
  1923. def phantom(tok):
  1924. if tok.startswith("[") and tok.endswith("]"):
  1925. return tok
  1926. if tok.startswith("##"):
  1927. return tok[2:]
  1928. return "\u2581" + tok
  1929. tokens = list(map(phantom, tokens))
  1930. # add vocab to gguf
  1931. self.gguf_writer.add_tokenizer_model("bert")
  1932. self.gguf_writer.add_tokenizer_pre(tokpre)
  1933. self.gguf_writer.add_token_list(tokens)
  1934. self.gguf_writer.add_token_types(toktypes)
  1935. # handle special tokens
  1936. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1937. special_vocab.add_to_gguf(self.gguf_writer)
  1938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1939. del bid # unused
  1940. # we are only using BERT for embeddings so we don't need the pooling layer
  1941. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1942. return [] # we don't need these
  1943. return [(self.map_tensor_name(name), data_torch)]
  1944. @Model.register("NomicBertModel")
  1945. class NomicBertModel(BertModel):
  1946. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1947. def __init__(self, *args, **kwargs):
  1948. super().__init__(*args, **kwargs)
  1949. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1950. self.hparams["n_ctx"] = 2048
  1951. # SwigLU activation
  1952. assert self.hparams["activation_function"] == "swiglu"
  1953. # this doesn't do anything in the HF version
  1954. assert self.hparams["causal"] is False
  1955. # no bias tensors
  1956. assert self.hparams["qkv_proj_bias"] is False
  1957. assert self.hparams["mlp_fc1_bias"] is False
  1958. assert self.hparams["mlp_fc2_bias"] is False
  1959. # norm at end of layer
  1960. assert self.hparams["prenorm"] is False
  1961. # standard RoPE
  1962. assert self.hparams["rotary_emb_fraction"] == 1.0
  1963. assert self.hparams["rotary_emb_interleaved"] is False
  1964. assert self.hparams["rotary_emb_scale_base"] is None
  1965. def set_gguf_parameters(self):
  1966. super().set_gguf_parameters()
  1967. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1968. @Model.register("GemmaForCausalLM")
  1969. class GemmaModel(Model):
  1970. model_arch = gguf.MODEL_ARCH.GEMMA
  1971. def set_vocab(self):
  1972. self._set_vocab_sentencepiece()
  1973. # TODO: these special tokens should be exported only for the CodeGemma family
  1974. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1975. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1976. special_vocab._set_special_token("prefix", 67)
  1977. special_vocab._set_special_token("suffix", 69)
  1978. special_vocab._set_special_token("middle", 68)
  1979. special_vocab._set_special_token("fsep", 70)
  1980. special_vocab._set_special_token("eot", 107)
  1981. special_vocab.add_to_gguf(self.gguf_writer)
  1982. self.gguf_writer.add_add_space_prefix(False)
  1983. def set_gguf_parameters(self):
  1984. hparams = self.hparams
  1985. block_count = hparams["num_hidden_layers"]
  1986. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1987. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1988. self.gguf_writer.add_block_count(block_count)
  1989. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1990. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1991. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1992. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1993. self.gguf_writer.add_key_length(hparams["head_dim"])
  1994. self.gguf_writer.add_value_length(hparams["head_dim"])
  1995. self.gguf_writer.add_file_type(self.ftype)
  1996. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1997. del bid # unused
  1998. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1999. # To prevent errors, skip loading lm_head.weight.
  2000. if name == "lm_head.weight":
  2001. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2002. return []
  2003. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2004. if name.endswith("norm.weight"):
  2005. data_torch = data_torch + 1
  2006. return [(self.map_tensor_name(name), data_torch)]
  2007. @Model.register("Gemma2ForCausalLM")
  2008. class Gemma2Model(Model):
  2009. model_arch = gguf.MODEL_ARCH.GEMMA2
  2010. def set_vocab(self):
  2011. self._set_vocab_sentencepiece()
  2012. self.gguf_writer.add_add_space_prefix(False)
  2013. def set_gguf_parameters(self):
  2014. hparams = self.hparams
  2015. block_count = hparams["num_hidden_layers"]
  2016. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2017. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2018. self.gguf_writer.add_block_count(block_count)
  2019. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2020. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2021. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2022. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2023. self.gguf_writer.add_key_length(hparams["head_dim"])
  2024. self.gguf_writer.add_value_length(hparams["head_dim"])
  2025. self.gguf_writer.add_file_type(self.ftype)
  2026. self.gguf_writer.add_attn_logit_softcapping(
  2027. self.hparams["attn_logit_softcapping"]
  2028. )
  2029. self.gguf_writer.add_final_logit_softcapping(
  2030. self.hparams["final_logit_softcapping"]
  2031. )
  2032. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2034. del bid # unused
  2035. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2036. # To prevent errors, skip loading lm_head.weight.
  2037. if name == "lm_head.weight":
  2038. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2039. return []
  2040. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2041. if name.endswith("norm.weight"):
  2042. data_torch = data_torch + 1
  2043. return [(self.map_tensor_name(name), data_torch)]
  2044. @Model.register("Starcoder2ForCausalLM")
  2045. class StarCoder2Model(Model):
  2046. model_arch = gguf.MODEL_ARCH.STARCODER2
  2047. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2048. class MambaModel(Model):
  2049. model_arch = gguf.MODEL_ARCH.MAMBA
  2050. def set_vocab(self):
  2051. vocab_size = self.hparams["vocab_size"]
  2052. # Round vocab size to next multiple of 8
  2053. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2054. # pad using ceiling division
  2055. # ref: https://stackoverflow.com/a/17511341/22827863
  2056. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2057. self.hparams["vocab_size"] = vocab_size
  2058. if (self.dir_model / "tokenizer.json").is_file():
  2059. self._set_vocab_gpt2()
  2060. elif (self.dir_model / "tokenizer.model").is_file():
  2061. self._set_vocab_sentencepiece()
  2062. else:
  2063. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2064. self._set_vocab_builtin("gpt-neox", vocab_size)
  2065. def set_gguf_parameters(self):
  2066. d_model = self.find_hparam(["hidden_size", "d_model"])
  2067. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2068. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2069. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2070. # ceiling division
  2071. # ref: https://stackoverflow.com/a/17511341/22827863
  2072. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2073. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2074. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2075. # Fail early for models which don't have a block expansion factor of 2
  2076. assert d_inner == 2 * d_model
  2077. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2078. self.gguf_writer.add_embedding_length(d_model)
  2079. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2080. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2081. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2082. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2083. self.gguf_writer.add_ssm_inner_size(d_inner)
  2084. self.gguf_writer.add_ssm_state_size(d_state)
  2085. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2086. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2087. self.gguf_writer.add_file_type(self.ftype)
  2088. _tok_embd = None
  2089. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2090. del bid # unused
  2091. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2092. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2093. new_name = self.map_tensor_name(name)
  2094. if name.endswith(".A_log"):
  2095. logger.debug("A_log --> A ==> " + new_name)
  2096. data_torch = -torch.exp(data_torch)
  2097. # assuming token_embd.weight is seen before output.weight
  2098. if self._tok_embd is not None and new_name == output_name:
  2099. if torch.equal(self._tok_embd, data_torch):
  2100. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2101. return []
  2102. elif new_name == tok_embd_name:
  2103. self._tok_embd = data_torch
  2104. return [(new_name, data_torch)]
  2105. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2106. del n_dims # unused
  2107. return bid is not None and new_name in (
  2108. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2109. gguf.MODEL_TENSOR.SSM_CONV1D,
  2110. gguf.MODEL_TENSOR.SSM_X,
  2111. gguf.MODEL_TENSOR.SSM_DT,
  2112. gguf.MODEL_TENSOR.SSM_A,
  2113. gguf.MODEL_TENSOR.SSM_D,
  2114. ]
  2115. )
  2116. @Model.register("CohereForCausalLM")
  2117. class CommandR2Model(Model):
  2118. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2119. def __init__(self, *args, **kwargs):
  2120. super().__init__(*args, **kwargs)
  2121. # max_position_embeddings = 8192 in config.json but model was actually
  2122. # trained on 128k context length
  2123. # aya-23 models don't have model_max_length specified
  2124. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2125. def set_gguf_parameters(self):
  2126. super().set_gguf_parameters()
  2127. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2128. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2129. @Model.register("OlmoForCausalLM")
  2130. @Model.register("OLMoForCausalLM")
  2131. class OlmoModel(Model):
  2132. model_arch = gguf.MODEL_ARCH.OLMO
  2133. def set_gguf_parameters(self):
  2134. super().set_gguf_parameters()
  2135. self.gguf_writer.add_layer_norm_eps(1e-5)
  2136. clip_qkv = self.hparams.get("clip_qkv")
  2137. if clip_qkv is not None:
  2138. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2139. # Same as super class, but permuting q_proj, k_proj
  2140. # Copied from: LlamaModel
  2141. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2142. del bid # unused
  2143. n_head = self.hparams["num_attention_heads"]
  2144. n_kv_head = self.hparams.get("num_key_value_heads")
  2145. if name.endswith("q_proj.weight"):
  2146. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2147. if name.endswith("k_proj.weight"):
  2148. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2149. return [(self.map_tensor_name(name), data_torch)]
  2150. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2151. class JinaBertV2Model(BertModel):
  2152. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2153. def __init__(self, *args, **kwargs):
  2154. super().__init__(*args, **kwargs)
  2155. self.intermediate_size = self.hparams["intermediate_size"]
  2156. def get_tensors(self):
  2157. for name, data in super().get_tensors():
  2158. if 'gated_layer' in name:
  2159. d1 = data[:self.intermediate_size, :]
  2160. name1 = name.replace('gated_layers', 'gated_layers_w')
  2161. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2162. d2 = data[self.intermediate_size:, :]
  2163. name2 = name.replace('gated_layers', 'gated_layers_v')
  2164. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2165. yield name1, d1
  2166. yield name2, d2
  2167. continue
  2168. yield name, data
  2169. def set_vocab(self, *args, **kwargs):
  2170. tokenizer_class = 'BertTokenizer'
  2171. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2172. tokenizer_class = json.load(f)['tokenizer_class']
  2173. if tokenizer_class == 'BertTokenizer':
  2174. super().set_vocab()
  2175. elif tokenizer_class == 'RobertaTokenizer':
  2176. self._set_vocab_gpt2()
  2177. self.gguf_writer.add_token_type_count(2)
  2178. else:
  2179. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2180. self.gguf_writer.add_add_bos_token(True)
  2181. self.gguf_writer.add_add_eos_token(True)
  2182. @Model.register("OpenELMForCausalLM")
  2183. class OpenELMModel(Model):
  2184. model_arch = gguf.MODEL_ARCH.OPENELM
  2185. @staticmethod
  2186. def _make_divisible(v: float | int, divisor: int) -> int:
  2187. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2188. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2189. # Make sure that round down does not go down by more than 10%.
  2190. if new_v < 0.9 * v:
  2191. new_v += divisor
  2192. return new_v
  2193. def __init__(self, *args, **kwargs):
  2194. super().__init__(*args, **kwargs)
  2195. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2196. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2197. self._n_embd: int = self.hparams["model_dim"]
  2198. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2199. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2200. self._ffn_dims: list[int] = [
  2201. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2202. for multiplier in ffn_multipliers
  2203. ]
  2204. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2205. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2206. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2207. def set_vocab(self):
  2208. try:
  2209. self._set_vocab_sentencepiece()
  2210. except FileNotFoundError:
  2211. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2212. def set_gguf_parameters(self):
  2213. n_embd = self._n_embd
  2214. head_dim = self.hparams["head_dim"]
  2215. rot_pct = 1.0
  2216. assert self.block_count == len(self._num_kv_heads)
  2217. assert self.block_count == len(self._num_query_heads)
  2218. assert self.block_count == len(self._ffn_dims)
  2219. self.gguf_writer.add_block_count(self.block_count)
  2220. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2221. self.gguf_writer.add_embedding_length(n_embd)
  2222. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2223. self.gguf_writer.add_head_count(self._num_query_heads)
  2224. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2225. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2226. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2227. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2228. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2229. self.gguf_writer.add_key_length(head_dim)
  2230. self.gguf_writer.add_value_length(head_dim)
  2231. self.gguf_writer.add_file_type(self.ftype)
  2232. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2233. if "n_layers" in keys:
  2234. return self.hparams["num_transformer_layers"]
  2235. return super().find_hparam(keys, optional)
  2236. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2237. # split ff
  2238. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2239. ff_dim = self._ffn_dims[bid]
  2240. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2241. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2242. return
  2243. yield (self.map_tensor_name(name), data_torch)
  2244. @Model.register("ArcticForCausalLM")
  2245. class ArcticModel(Model):
  2246. model_arch = gguf.MODEL_ARCH.ARCTIC
  2247. def set_vocab(self):
  2248. # The reason for using a custom implementation here is that the
  2249. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2250. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2251. from sentencepiece import SentencePieceProcessor
  2252. tokenizer_path = self.dir_model / 'tokenizer.model'
  2253. if not tokenizer_path.is_file():
  2254. logger.error(f'Error: Missing {tokenizer_path}')
  2255. sys.exit(1)
  2256. # Read the whole vocabulary from the tokenizer.model file
  2257. tokenizer = SentencePieceProcessor()
  2258. tokenizer.LoadFromFile(str(tokenizer_path))
  2259. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2260. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2261. scores: list[float] = [-10000.0] * vocab_size
  2262. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2263. for token_id in range(tokenizer.vocab_size()):
  2264. piece = tokenizer.IdToPiece(token_id)
  2265. text = piece.encode("utf-8")
  2266. score = tokenizer.GetScore(token_id)
  2267. toktype = SentencePieceTokenTypes.NORMAL
  2268. if tokenizer.IsUnknown(token_id):
  2269. toktype = SentencePieceTokenTypes.UNKNOWN
  2270. elif tokenizer.IsControl(token_id):
  2271. toktype = SentencePieceTokenTypes.CONTROL
  2272. elif tokenizer.IsUnused(token_id):
  2273. toktype = SentencePieceTokenTypes.UNUSED
  2274. elif tokenizer.IsByte(token_id):
  2275. toktype = SentencePieceTokenTypes.BYTE
  2276. tokens[token_id] = text
  2277. scores[token_id] = score
  2278. toktypes[token_id] = toktype
  2279. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2280. # of information about added/redefined tokens and modify them accordingly.
  2281. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2282. if tokenizer_config_file.is_file():
  2283. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2284. tokenizer_config_json = json.load(f)
  2285. if "added_tokens_decoder" in tokenizer_config_json:
  2286. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2287. for token_id, token_json in added_tokens_decoder.items():
  2288. token_id = int(token_id)
  2289. if (token_id >= vocab_size):
  2290. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2291. continue
  2292. token_content = token_json["content"]
  2293. token_type = SentencePieceTokenTypes.USER_DEFINED
  2294. token_score = -10000.0
  2295. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2296. # Set the score to 0.0 as in the original tokenizer.model
  2297. if ("special" in token_json) and token_json["special"]:
  2298. if token_content == tokenizer_config_json["unk_token"]:
  2299. token_type = SentencePieceTokenTypes.UNKNOWN
  2300. else:
  2301. token_type = SentencePieceTokenTypes.CONTROL
  2302. token_score = 0.0
  2303. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2304. tokens[token_id] = token_content.encode("utf-8")
  2305. toktypes[token_id] = token_type
  2306. scores[token_id] = token_score
  2307. self.gguf_writer.add_tokenizer_model("llama")
  2308. self.gguf_writer.add_tokenizer_pre("default")
  2309. self.gguf_writer.add_token_list(tokens)
  2310. self.gguf_writer.add_token_scores(scores)
  2311. self.gguf_writer.add_token_types(toktypes)
  2312. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2313. special_vocab.add_to_gguf(self.gguf_writer)
  2314. def set_gguf_parameters(self):
  2315. super().set_gguf_parameters()
  2316. hparams = self.hparams
  2317. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2318. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2319. _experts: list[dict[str, Tensor]] | None = None
  2320. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2321. n_head = self.hparams["num_attention_heads"]
  2322. n_kv_head = self.hparams.get("num_key_value_heads")
  2323. if name.endswith("q_proj.weight"):
  2324. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2325. if name.endswith("k_proj.weight"):
  2326. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2327. # process the experts separately
  2328. if name.find("block_sparse_moe.experts") != -1:
  2329. n_experts = self.hparams["num_local_experts"]
  2330. assert bid is not None
  2331. if self._experts is None:
  2332. self._experts = [{} for _ in range(self.block_count)]
  2333. self._experts[bid][name] = data_torch
  2334. if len(self._experts[bid]) >= n_experts * 3:
  2335. tensors: list[tuple[str, Tensor]] = []
  2336. # merge the experts into a single 3d tensor
  2337. for wid in ["w1", "w2", "w3"]:
  2338. datas: list[Tensor] = []
  2339. for xid in range(n_experts):
  2340. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2341. datas.append(self._experts[bid][ename])
  2342. del self._experts[bid][ename]
  2343. data_torch = torch.stack(datas, dim=0)
  2344. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2345. new_name = self.map_tensor_name(merged_name)
  2346. tensors.append((new_name, data_torch))
  2347. return tensors
  2348. else:
  2349. return []
  2350. return [(self.map_tensor_name(name), data_torch)]
  2351. def prepare_tensors(self):
  2352. super().prepare_tensors()
  2353. if self._experts is not None:
  2354. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2355. experts = [k for d in self._experts for k in d.keys()]
  2356. if len(experts) > 0:
  2357. raise ValueError(f"Unprocessed experts: {experts}")
  2358. @Model.register("DeepseekV2ForCausalLM")
  2359. class DeepseekV2Model(Model):
  2360. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2361. def set_vocab(self):
  2362. self._set_vocab_gpt2()
  2363. def set_gguf_parameters(self):
  2364. super().set_gguf_parameters()
  2365. hparams = self.hparams
  2366. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2367. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2368. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2369. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2370. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2371. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2372. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2373. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2374. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2375. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2376. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2377. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2378. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2379. if self.hparams["rope_scaling"].get("type") == "yarn":
  2380. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2381. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2382. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2383. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2384. _experts: list[dict[str, Tensor]] | None = None
  2385. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2386. # process the experts separately
  2387. if name.find("mlp.experts") != -1:
  2388. n_experts = self.hparams["n_routed_experts"]
  2389. assert bid is not None
  2390. if self._experts is None:
  2391. self._experts = [{} for _ in range(self.block_count)]
  2392. self._experts[bid][name] = data_torch
  2393. if len(self._experts[bid]) >= n_experts * 3:
  2394. tensors: list[tuple[str, Tensor]] = []
  2395. # merge the experts into a single 3d tensor
  2396. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2397. datas: list[Tensor] = []
  2398. for xid in range(n_experts):
  2399. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2400. datas.append(self._experts[bid][ename])
  2401. del self._experts[bid][ename]
  2402. data_torch = torch.stack(datas, dim=0)
  2403. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2404. new_name = self.map_tensor_name(merged_name)
  2405. tensors.append((new_name, data_torch))
  2406. return tensors
  2407. else:
  2408. return []
  2409. return [(self.map_tensor_name(name), data_torch)]
  2410. def prepare_tensors(self):
  2411. super().prepare_tensors()
  2412. if self._experts is not None:
  2413. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2414. experts = [k for d in self._experts for k in d.keys()]
  2415. if len(experts) > 0:
  2416. raise ValueError(f"Unprocessed experts: {experts}")
  2417. @Model.register("T5WithLMHeadModel")
  2418. @Model.register("T5ForConditionalGeneration")
  2419. @Model.register("MT5ForConditionalGeneration")
  2420. @Model.register("UMT5ForConditionalGeneration")
  2421. class T5Model(Model):
  2422. model_arch = gguf.MODEL_ARCH.T5
  2423. def __init__(self, *args, **kwargs):
  2424. super().__init__(*args, **kwargs)
  2425. self.shared_token_embeddings_found = False
  2426. def set_vocab(self):
  2427. # to avoid TypeError: Descriptors cannot be created directly
  2428. # exception when importing sentencepiece_model_pb2
  2429. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2430. from sentencepiece import SentencePieceProcessor
  2431. from sentencepiece import sentencepiece_model_pb2 as model
  2432. tokenizer_path = self.dir_model / 'tokenizer.model'
  2433. # many older models use spiece.model tokenizer model filename
  2434. if not tokenizer_path.is_file():
  2435. tokenizer_path = self.dir_model / 'spiece.model'
  2436. if not tokenizer_path.is_file():
  2437. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2438. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2439. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2440. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2441. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2442. # assure the tokenizer model file name is correct
  2443. assert tokenizer_path.name == 'tokenizer.model'
  2444. return self._set_vocab_sentencepiece()
  2445. else:
  2446. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2447. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2448. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2449. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2450. tokenizer = SentencePieceProcessor()
  2451. tokenizer.LoadFromFile(str(tokenizer_path))
  2452. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2453. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2454. scores: list[float] = [-10000.0] * vocab_size
  2455. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2456. for token_id in range(tokenizer.vocab_size()):
  2457. piece = tokenizer.IdToPiece(token_id)
  2458. text = piece.encode("utf-8")
  2459. score = tokenizer.GetScore(token_id)
  2460. toktype = SentencePieceTokenTypes.NORMAL
  2461. if tokenizer.IsUnknown(token_id):
  2462. toktype = SentencePieceTokenTypes.UNKNOWN
  2463. elif tokenizer.IsControl(token_id):
  2464. toktype = SentencePieceTokenTypes.CONTROL
  2465. elif tokenizer.IsUnused(token_id):
  2466. toktype = SentencePieceTokenTypes.UNUSED
  2467. elif tokenizer.IsByte(token_id):
  2468. toktype = SentencePieceTokenTypes.BYTE
  2469. tokens[token_id] = text
  2470. scores[token_id] = score
  2471. toktypes[token_id] = toktype
  2472. added_tokens_file = self.dir_model / 'added_tokens.json'
  2473. if added_tokens_file.is_file():
  2474. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2475. added_tokens_json = json.load(f)
  2476. for key in added_tokens_json:
  2477. token_id = added_tokens_json[key]
  2478. if (token_id >= vocab_size):
  2479. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2480. continue
  2481. tokens[token_id] = key.encode("utf-8")
  2482. scores[token_id] = -1000.0
  2483. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2484. if vocab_size > len(tokens):
  2485. pad_count = vocab_size - len(tokens)
  2486. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2487. for i in range(1, pad_count + 1):
  2488. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2489. scores.append(-1000.0)
  2490. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2491. self.gguf_writer.add_tokenizer_model("t5")
  2492. self.gguf_writer.add_tokenizer_pre("default")
  2493. self.gguf_writer.add_token_list(tokens)
  2494. self.gguf_writer.add_token_scores(scores)
  2495. self.gguf_writer.add_token_types(toktypes)
  2496. self.gguf_writer.add_add_space_prefix(add_prefix)
  2497. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2498. if precompiled_charsmap:
  2499. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2500. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2501. special_vocab.add_to_gguf(self.gguf_writer)
  2502. self.gguf_writer.add_add_bos_token(False)
  2503. self.gguf_writer.add_add_eos_token(True)
  2504. def set_gguf_parameters(self):
  2505. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2506. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2507. n_ctx = 512
  2508. self.gguf_writer.add_context_length(n_ctx)
  2509. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2510. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2511. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2512. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2513. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2514. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2515. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2516. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2517. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2518. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2519. self.gguf_writer.add_file_type(self.ftype)
  2520. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2521. del bid # unused
  2522. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2523. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2524. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2525. # and decoder and ignore the remaining ones.
  2526. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2527. if not self.shared_token_embeddings_found:
  2528. name = "shared.weight"
  2529. self.shared_token_embeddings_found = True
  2530. else:
  2531. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2532. return []
  2533. return [(self.map_tensor_name(name), data_torch)]
  2534. @Model.register("JAISLMHeadModel")
  2535. class JaisModel(Model):
  2536. model_arch = gguf.MODEL_ARCH.JAIS
  2537. def __init__(self, *args, **kwargs):
  2538. super().__init__(*args, **kwargs)
  2539. # SwigLU activation
  2540. assert self.hparams["activation_function"] == "swiglu"
  2541. # ALiBi position embedding
  2542. assert self.hparams["position_embedding_type"] == "alibi"
  2543. # Embeddings scale
  2544. self.embeddings_scale = 1.0
  2545. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2546. self.output_is_wte = False
  2547. if 'mup_embeddings_scale' in self.hparams:
  2548. self.output_is_wte = True # Hack (?)
  2549. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2550. elif 'embeddings_scale' in self.hparams:
  2551. self.embeddings_scale = self.hparams['embeddings_scale']
  2552. else:
  2553. assert False
  2554. self.width_scale = 1.0
  2555. if 'mup_output_alpha' in self.hparams:
  2556. assert 'mup_width_scale' in self.hparams
  2557. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2558. elif 'width_scale' in self.hparams:
  2559. self.width_scale = self.hparams['width_scale']
  2560. else:
  2561. assert False
  2562. self.max_alibi_bias = 8.0
  2563. def set_vocab(self):
  2564. self._set_vocab_gpt2()
  2565. def set_gguf_parameters(self):
  2566. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2567. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2568. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2569. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2570. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2571. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2572. self.gguf_writer.add_file_type(self.ftype)
  2573. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2574. del bid # unused
  2575. tensors: list[tuple[str, Tensor]] = []
  2576. # we don't need these
  2577. if name.endswith((".attn.bias")):
  2578. return tensors
  2579. if name.endswith(("relative_pe.slopes")):
  2580. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2581. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2582. # but Jais's PyTorch model simply precalculates the slope values and places them
  2583. # in relative_pes.slopes
  2584. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2585. first_val = float(data_torch[0].item())
  2586. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2587. return tensors
  2588. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2589. data_torch = data_torch.transpose(1, 0)
  2590. new_name = self.map_tensor_name(name)
  2591. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2592. tensors.append((new_name, data_torch * self.embeddings_scale))
  2593. if self.output_is_wte:
  2594. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2595. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2596. assert not self.output_is_wte
  2597. tensors.append((new_name, data_torch * self.width_scale))
  2598. else:
  2599. tensors.append((new_name, data_torch))
  2600. return tensors
  2601. def prepare_tensors(self):
  2602. super().prepare_tensors()
  2603. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2604. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2605. class ChatGLMModel(Model):
  2606. model_arch = gguf.MODEL_ARCH.CHATGLM
  2607. def set_vocab_chatglm3(self):
  2608. dir_model = self.dir_model
  2609. hparams = self.hparams
  2610. tokens: list[bytes] = []
  2611. toktypes: list[int] = []
  2612. scores: list[float] = []
  2613. from transformers import AutoTokenizer
  2614. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2615. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2616. assert max(tokenizer.get_vocab().values()) < vocab_size
  2617. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2618. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2619. for token_id in range(vocab_size):
  2620. piece = tokenizer._convert_id_to_token(token_id)
  2621. if token_id == 0:
  2622. piece = "<unk>"
  2623. elif token_id == 1:
  2624. piece = "<bos>"
  2625. elif token_id == 2:
  2626. piece = "<eos>"
  2627. text = piece.encode("utf-8")
  2628. score = 0.0
  2629. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2630. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2631. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2632. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2633. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2634. if piece in special_tokens:
  2635. toktype = SentencePieceTokenTypes.CONTROL
  2636. elif len(piece) == 0:
  2637. text = f"[PAD{token_id}]".encode("utf-8")
  2638. toktype = SentencePieceTokenTypes.UNUSED
  2639. else:
  2640. toktype = SentencePieceTokenTypes.USER_DEFINED
  2641. tokens.append(text)
  2642. scores.append(score)
  2643. toktypes.append(toktype)
  2644. continue
  2645. toktype = SentencePieceTokenTypes.NORMAL
  2646. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2647. toktype = SentencePieceTokenTypes.UNKNOWN
  2648. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2649. toktype = SentencePieceTokenTypes.CONTROL
  2650. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2651. toktype = SentencePieceTokenTypes.UNUSED
  2652. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2653. toktype = SentencePieceTokenTypes.BYTE
  2654. tokens.append(text)
  2655. scores.append(score)
  2656. toktypes.append(toktype)
  2657. self.gguf_writer.add_tokenizer_model("llama")
  2658. # glm3 needs prefix and suffix formatted as:
  2659. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2660. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2661. self.gguf_writer.add_token_list(tokens)
  2662. self.gguf_writer.add_token_scores(scores)
  2663. self.gguf_writer.add_token_types(toktypes)
  2664. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2665. special_vocab.add_to_gguf(self.gguf_writer)
  2666. @staticmethod
  2667. def token_bytes_to_string(b):
  2668. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2669. byte_encoder = bytes_to_unicode()
  2670. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2671. @staticmethod
  2672. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2673. parts = [bytes([b]) for b in token]
  2674. while True:
  2675. min_idx = None
  2676. min_rank = None
  2677. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2678. rank = mergeable_ranks.get(pair[0] + pair[1])
  2679. if rank is not None and (min_rank is None or rank < min_rank):
  2680. min_idx = i
  2681. min_rank = rank
  2682. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2683. break
  2684. assert min_idx is not None
  2685. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2686. return parts
  2687. def set_vocab(self):
  2688. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2689. self.set_vocab_chatglm3()
  2690. return
  2691. dir_model = self.dir_model
  2692. hparams = self.hparams
  2693. tokens: list[str] = []
  2694. toktypes: list[int] = []
  2695. from transformers import AutoTokenizer
  2696. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2697. vocab_size = hparams["padded_vocab_size"]
  2698. assert max(tokenizer.get_vocab().values()) < vocab_size
  2699. tokpre = self.get_vocab_base_pre(tokenizer)
  2700. merges = []
  2701. vocab = {}
  2702. mergeable_ranks = tokenizer.mergeable_ranks
  2703. for token, rank in mergeable_ranks.items():
  2704. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2705. if len(token) == 1:
  2706. continue
  2707. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2708. assert len(merged) >= 2 and len(merged) <= 7
  2709. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2710. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2711. added_vocab = tokenizer.get_added_vocab()
  2712. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2713. for i in range(vocab_size):
  2714. if i not in reverse_vocab:
  2715. tokens.append(f"[PAD{i}]")
  2716. toktypes.append(gguf.TokenType.UNUSED)
  2717. elif reverse_vocab[i] in added_vocab:
  2718. tokens.append(reverse_vocab[i])
  2719. if tokenizer.added_tokens_decoder[i].special:
  2720. toktypes.append(gguf.TokenType.CONTROL)
  2721. else:
  2722. toktypes.append(gguf.TokenType.USER_DEFINED)
  2723. else:
  2724. tokens.append(reverse_vocab[i])
  2725. toktypes.append(gguf.TokenType.NORMAL)
  2726. self.gguf_writer.add_tokenizer_model("gpt2")
  2727. self.gguf_writer.add_tokenizer_pre(tokpre)
  2728. self.gguf_writer.add_token_list(tokens)
  2729. self.gguf_writer.add_token_types(toktypes)
  2730. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2731. special_vocab.merges = merges
  2732. # only add special tokens when they were not already loaded from config.json
  2733. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2734. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2735. # this one is usually not in config.json anyway
  2736. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2737. special_vocab.add_to_gguf(self.gguf_writer)
  2738. def set_gguf_parameters(self):
  2739. self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
  2740. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2741. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2742. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2743. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2744. self.gguf_writer.add_embedding_length(n_embed)
  2745. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2746. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2747. self.gguf_writer.add_head_count(n_head)
  2748. self.gguf_writer.add_head_count_kv(n_head_kv)
  2749. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2750. self.gguf_writer.add_file_type(self.ftype)
  2751. self.gguf_writer.add_rope_dimension_count(64)
  2752. self.gguf_writer.add_add_bos_token(False)
  2753. rope_freq = 10000
  2754. if "rope_ratio" in self.hparams:
  2755. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2756. self.gguf_writer.add_rope_freq_base(rope_freq)
  2757. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2758. del bid # unused
  2759. if name.endswith(".rotary_pos_emb.inv_freq"):
  2760. return []
  2761. name = name.removeprefix("transformer.")
  2762. return [(self.map_tensor_name(name), data_torch)]
  2763. ###### CONVERSION LOGIC ######
  2764. # tree of lazy tensors
  2765. class LazyTorchTensor(gguf.LazyBase):
  2766. _tensor_type = torch.Tensor
  2767. # to keep the type-checker happy
  2768. dtype: torch.dtype
  2769. shape: torch.Size
  2770. # only used when converting a torch.Tensor to a np.ndarray
  2771. _dtype_map: dict[torch.dtype, type] = {
  2772. torch.float16: np.float16,
  2773. torch.float32: np.float32,
  2774. }
  2775. # used for safetensors slices
  2776. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  2777. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  2778. _dtype_str_map: dict[str, torch.dtype] = {
  2779. "F64": torch.float64,
  2780. "F32": torch.float32,
  2781. "BF16": torch.bfloat16,
  2782. "F16": torch.float16,
  2783. # "U64": torch.uint64,
  2784. "I64": torch.int64,
  2785. # "U32": torch.uint32,
  2786. "I32": torch.int32,
  2787. # "U16": torch.uint16,
  2788. "I16": torch.int16,
  2789. "U8": torch.uint8,
  2790. "I8": torch.int8,
  2791. "BOOL": torch.bool,
  2792. "F8_E4M3": torch.float8_e4m3fn,
  2793. "F8_E5M2": torch.float8_e5m2,
  2794. }
  2795. def numpy(self) -> gguf.LazyNumpyTensor:
  2796. dtype = self._dtype_map[self.dtype]
  2797. return gguf.LazyNumpyTensor(
  2798. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2799. args=(self,),
  2800. func=(lambda s: s.numpy())
  2801. )
  2802. @classmethod
  2803. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  2804. return torch.empty(size=shape, dtype=dtype, device="meta")
  2805. @classmethod
  2806. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  2807. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  2808. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  2809. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  2810. return cast(torch.Tensor, lazy)
  2811. @classmethod
  2812. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2813. del types # unused
  2814. if kwargs is None:
  2815. kwargs = {}
  2816. if func is torch.Tensor.numpy:
  2817. return args[0].numpy()
  2818. return cls._wrap_fn(func)(*args, **kwargs)
  2819. def parse_args() -> argparse.Namespace:
  2820. parser = argparse.ArgumentParser(
  2821. description="Convert a huggingface model to a GGML compatible file")
  2822. parser.add_argument(
  2823. "--vocab-only", action="store_true",
  2824. help="extract only the vocab",
  2825. )
  2826. parser.add_argument(
  2827. "--outfile", type=Path,
  2828. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2829. )
  2830. parser.add_argument(
  2831. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2832. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2833. )
  2834. parser.add_argument(
  2835. "--bigendian", action="store_true",
  2836. help="model is executed on big endian machine",
  2837. )
  2838. parser.add_argument(
  2839. "model", type=Path,
  2840. help="directory containing model file",
  2841. )
  2842. parser.add_argument(
  2843. "--use-temp-file", action="store_true",
  2844. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2845. )
  2846. parser.add_argument(
  2847. "--no-lazy", action="store_true",
  2848. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2849. )
  2850. parser.add_argument(
  2851. "--model-name", type=str, default=None,
  2852. help="name of the model",
  2853. )
  2854. parser.add_argument(
  2855. "--verbose", action="store_true",
  2856. help="increase output verbosity",
  2857. )
  2858. parser.add_argument(
  2859. "--split-max-tensors", type=int, default=0,
  2860. help="max tensors in each split",
  2861. )
  2862. parser.add_argument(
  2863. "--split-max-size", type=str, default="0",
  2864. help="max size per split N(M|G)",
  2865. )
  2866. parser.add_argument(
  2867. "--dry-run", action="store_true",
  2868. help="only print out a split plan and exit, without writing any new files",
  2869. )
  2870. parser.add_argument(
  2871. "--no-tensor-first-split", action="store_true",
  2872. help="do not add tensors to the first split (disabled by default)"
  2873. )
  2874. parser.add_argument(
  2875. "--metadata", type=Path,
  2876. help="Specify the path for an authorship metadata override file"
  2877. )
  2878. return parser.parse_args()
  2879. def split_str_to_n_bytes(split_str: str) -> int:
  2880. if split_str.endswith("K"):
  2881. n = int(split_str[:-1]) * 1000
  2882. elif split_str.endswith("M"):
  2883. n = int(split_str[:-1]) * 1000 * 1000
  2884. elif split_str.endswith("G"):
  2885. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2886. elif split_str.isnumeric():
  2887. n = int(split_str)
  2888. else:
  2889. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2890. if n < 0:
  2891. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2892. return n
  2893. def main() -> None:
  2894. args = parse_args()
  2895. if args.verbose:
  2896. logging.basicConfig(level=logging.DEBUG)
  2897. else:
  2898. logging.basicConfig(level=logging.INFO)
  2899. dir_model = args.model
  2900. if not dir_model.is_dir():
  2901. logger.error(f'Error: {args.model} is not a directory')
  2902. sys.exit(1)
  2903. ftype_map: dict[str, gguf.LlamaFileType] = {
  2904. "f32": gguf.LlamaFileType.ALL_F32,
  2905. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2906. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2907. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2908. "auto": gguf.LlamaFileType.GUESSED,
  2909. }
  2910. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2911. if args.use_temp_file and is_split:
  2912. logger.error("Error: Cannot use temp file when splitting")
  2913. sys.exit(1)
  2914. fname_out = None
  2915. if args.outfile is not None:
  2916. fname_out = args.outfile
  2917. logger.info(f"Loading model: {dir_model.name}")
  2918. hparams = Model.load_hparams(dir_model)
  2919. with torch.inference_mode():
  2920. output_type = ftype_map[args.outtype]
  2921. model_architecture = hparams["architectures"][0]
  2922. try:
  2923. model_class = Model.from_model_architecture(model_architecture)
  2924. except NotImplementedError:
  2925. logger.error(f"Model {model_architecture} is not supported")
  2926. sys.exit(1)
  2927. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  2928. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  2929. eager=args.no_lazy,
  2930. metadata_override=args.metadata, model_name=args.model_name,
  2931. split_max_tensors=args.split_max_tensors,
  2932. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2933. small_first_shard=args.no_tensor_first_split)
  2934. if args.vocab_only:
  2935. logger.info("Exporting model vocab...")
  2936. model_instance.write_vocab()
  2937. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2938. else:
  2939. logger.info("Exporting model...")
  2940. model_instance.write()
  2941. assert model_instance.fname_out is not None
  2942. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2943. logger.info(f"Model successfully exported to {out_path}")
  2944. if __name__ == '__main__':
  2945. main()