1
0

k_quants.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #else
  13. #ifdef __wasm_simd128__
  14. #include <wasm_simd128.h>
  15. #else
  16. #ifdef __POWER9_VECTOR__
  17. #include <altivec.h>
  18. #undef bool
  19. #define bool _Bool
  20. #else
  21. #if defined(_MSC_VER) || defined(__MINGW32__)
  22. #include <intrin.h>
  23. #else
  24. #if !defined(__riscv)
  25. #include <immintrin.h>
  26. #endif
  27. #endif
  28. #endif
  29. #endif
  30. #endif
  31. #undef MIN
  32. #undef MAX
  33. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  34. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  35. //
  36. // 2-6 bit quantization in super-blocks
  37. //
  38. //
  39. // ===================== Helper functions
  40. //
  41. static inline int nearest_int(float fval) {
  42. assert(fval <= 4194303.f);
  43. float val = fval + 12582912.f;
  44. int i; memcpy(&i, &val, sizeof(int));
  45. return (i & 0x007fffff) - 0x00400000;
  46. }
  47. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  48. float max = 0;
  49. float amax = 0;
  50. for (int i = 0; i < n; ++i) {
  51. float ax = fabsf(x[i]);
  52. if (ax > amax) { amax = ax; max = x[i]; }
  53. }
  54. if (!amax) { // all zero
  55. for (int i = 0; i < n; ++i) {
  56. L[i] = 0;
  57. }
  58. return 0.f;
  59. }
  60. float iscale = -nmax / max;
  61. if (rmse_type == 0) {
  62. for (int i = 0; i < n; ++i) {
  63. int l = nearest_int(iscale * x[i]);
  64. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  65. }
  66. return 1/iscale;
  67. }
  68. int weight_type = rmse_type%2;
  69. float sumlx = 0;
  70. float suml2 = 0;
  71. for (int i = 0; i < n; ++i) {
  72. int l = nearest_int(iscale * x[i]);
  73. l = MAX(-nmax, MIN(nmax-1, l));
  74. L[i] = l + nmax;
  75. float w = weight_type == 1 ? x[i] * x[i] : 1;
  76. sumlx += w*x[i]*l;
  77. suml2 += w*l*l;
  78. }
  79. float scale = sumlx/suml2;
  80. float best = scale * sumlx;
  81. for (int itry = 0; itry < 3; ++itry) {
  82. iscale = 1/scale;
  83. float slx = 0;
  84. float sl2 = 0;
  85. bool changed = false;
  86. for (int i = 0; i < n; ++i) {
  87. int l = nearest_int(iscale * x[i]);
  88. l = MAX(-nmax, MIN(nmax-1, l));
  89. if (l + nmax != L[i]) { changed = true; }
  90. float w = weight_type == 1 ? x[i] * x[i] : 1.f;
  91. slx += w*x[i]*l;
  92. sl2 += w*l*l;
  93. }
  94. if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
  95. for (int i = 0; i < n; ++i) {
  96. int l = nearest_int(iscale * x[i]);
  97. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  98. }
  99. sumlx = slx; suml2 = sl2;
  100. scale = sumlx/suml2;
  101. best = scale * sumlx;
  102. }
  103. for (int itry = 0; itry < 5; ++itry) {
  104. int n_changed = 0;
  105. for (int i = 0; i < n; ++i) {
  106. float w = weight_type == 1 ? x[i]*x[i] : 1;
  107. int l = L[i] - nmax;
  108. float slx = sumlx - w*x[i]*l;
  109. if (slx > 0) {
  110. float sl2 = suml2 - w*l*l;
  111. int new_l = nearest_int(x[i] * sl2 / slx);
  112. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  113. if (new_l != l) {
  114. slx += w*x[i]*new_l;
  115. sl2 += w*new_l*new_l;
  116. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  117. L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
  118. scale = sumlx / suml2; best = scale * sumlx;
  119. ++n_changed;
  120. }
  121. }
  122. }
  123. }
  124. if (!n_changed) { break; }
  125. }
  126. if (rmse_type < 3) {
  127. return scale;
  128. }
  129. for (int is = -4; is <= 4; ++is) {
  130. if (is == 0) {
  131. continue;
  132. }
  133. iscale = -(nmax + 0.1f*is) / max;
  134. sumlx = suml2 = 0;
  135. for (int i = 0; i < n; ++i) {
  136. int l = nearest_int(iscale * x[i]);
  137. l = MAX(-nmax, MIN(nmax-1, l));
  138. float w = weight_type == 1 ? x[i] * x[i] : 1;
  139. sumlx += w*x[i]*l;
  140. suml2 += w*l*l;
  141. }
  142. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  143. for (int i = 0; i < n; ++i) {
  144. int l = nearest_int(iscale * x[i]);
  145. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  146. }
  147. scale = sumlx/suml2; best = scale*sumlx;
  148. }
  149. }
  150. return scale;
  151. }
  152. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  153. float max = 0;
  154. float amax = 0;
  155. for (int i = 0; i < n; ++i) {
  156. float ax = fabsf(x[i]);
  157. if (ax > amax) { amax = ax; max = x[i]; }
  158. }
  159. if (!amax) { // all zero
  160. for (int i = 0; i < n; ++i) { L[i] = 0; }
  161. return 0.f;
  162. }
  163. float iscale = -nmax / max;
  164. if (do_rmse) {
  165. float sumlx = 0;
  166. float suml2 = 0;
  167. for (int i = 0; i < n; ++i) {
  168. int l = nearest_int(iscale * x[i]);
  169. l = MAX(-nmax, MIN(nmax-1, l));
  170. L[i] = l;
  171. float w = x[i]*x[i];
  172. sumlx += w*x[i]*l;
  173. suml2 += w*l*l;
  174. }
  175. for (int itry = 0; itry < 5; ++itry) {
  176. int n_changed = 0;
  177. for (int i = 0; i < n; ++i) {
  178. float w = x[i]*x[i];
  179. float slx = sumlx - w*x[i]*L[i];
  180. if (slx > 0) {
  181. float sl2 = suml2 - w*L[i]*L[i];
  182. int new_l = nearest_int(x[i] * sl2 / slx);
  183. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  184. if (new_l != L[i]) {
  185. slx += w*x[i]*new_l;
  186. sl2 += w*new_l*new_l;
  187. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  188. L[i] = new_l; sumlx = slx; suml2 = sl2;
  189. ++n_changed;
  190. }
  191. }
  192. }
  193. }
  194. if (!n_changed) {
  195. break;
  196. }
  197. }
  198. for (int i = 0; i < n; ++i) {
  199. L[i] += nmax;
  200. }
  201. return sumlx / suml2;
  202. }
  203. for (int i = 0; i < n; ++i) {
  204. int l = nearest_int(iscale * x[i]);
  205. l = MAX(-nmax, MIN(nmax-1, l));
  206. L[i] = l + nmax;
  207. }
  208. return 1/iscale;
  209. }
  210. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
  211. float min = x[0];
  212. float max = x[0];
  213. for (int i = 1; i < n; ++i) {
  214. if (x[i] < min) min = x[i];
  215. if (x[i] > max) max = x[i];
  216. }
  217. if (max == min) {
  218. for (int i = 0; i < n; ++i) L[i] = 0;
  219. *the_min = 0;
  220. return 0.f;
  221. }
  222. if (min > 0) min = 0;
  223. float iscale = nmax/(max - min);
  224. float scale = 1/iscale;
  225. for (int itry = 0; itry < ntry; ++itry) {
  226. float sumlx = 0; int suml2 = 0;
  227. bool did_change = false;
  228. for (int i = 0; i < n; ++i) {
  229. int l = nearest_int(iscale*(x[i] - min));
  230. l = MAX(0, MIN(nmax, l));
  231. if (l != L[i]) {
  232. L[i] = l;
  233. did_change = true;
  234. }
  235. sumlx += (x[i] - min)*l;
  236. suml2 += l*l;
  237. }
  238. scale = sumlx/suml2;
  239. float sum = 0;
  240. for (int i = 0; i < n; ++i) {
  241. sum += x[i] - scale*L[i];
  242. }
  243. min = sum/n;
  244. if (min > 0) min = 0;
  245. iscale = 1/scale;
  246. if (!did_change) break;
  247. }
  248. *the_min = -min;
  249. return scale;
  250. }
  251. #if QK_K == 256
  252. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  253. if (j < 4) {
  254. *d = q[j] & 63; *m = q[j + 4] & 63;
  255. } else {
  256. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  257. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  258. }
  259. }
  260. #endif
  261. //========================- 2-bit (de)-quantization
  262. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  263. assert(k % QK_K == 0);
  264. const int nb = k / QK_K;
  265. uint8_t L[QK_K];
  266. float mins[QK_K/16];
  267. float scales[QK_K/16];
  268. const float q4scale = 15.f;
  269. for (int i = 0; i < nb; i++) {
  270. float max_scale = 0; // as we are deducting the min, scales are always positive
  271. float max_min = 0;
  272. for (int j = 0; j < QK_K/16; ++j) {
  273. scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
  274. float scale = scales[j];
  275. if (scale > max_scale) {
  276. max_scale = scale;
  277. }
  278. float min = mins[j];
  279. if (min > max_min) {
  280. max_min = min;
  281. }
  282. }
  283. if (max_scale > 0) {
  284. float iscale = q4scale/max_scale;
  285. for (int j = 0; j < QK_K/16; ++j) {
  286. int l = nearest_int(iscale*scales[j]);
  287. y[i].scales[j] = l;
  288. }
  289. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  290. } else {
  291. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  292. y[i].d = ggml_fp32_to_fp16(0.f);
  293. }
  294. if (max_min > 0) {
  295. float iscale = q4scale/max_min;
  296. for (int j = 0; j < QK_K/16; ++j) {
  297. int l = nearest_int(iscale*mins[j]);
  298. y[i].scales[j] |= (l << 4);
  299. }
  300. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  301. } else {
  302. y[i].dmin = ggml_fp32_to_fp16(0.f);
  303. }
  304. for (int j = 0; j < QK_K/16; ++j) {
  305. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  306. if (!d) continue;
  307. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  308. for (int ii = 0; ii < 16; ++ii) {
  309. int l = nearest_int((x[16*j + ii] + dm)/d);
  310. l = MAX(0, MIN(3, l));
  311. L[16*j + ii] = l;
  312. }
  313. }
  314. #if QK_K == 256
  315. for (int j = 0; j < QK_K; j += 128) {
  316. for (int l = 0; l < 32; ++l) {
  317. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  318. }
  319. }
  320. #else
  321. for (int l = 0; l < 16; ++l) {
  322. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  323. }
  324. #endif
  325. x += QK_K;
  326. }
  327. }
  328. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  329. assert(k % QK_K == 0);
  330. const int nb = k / QK_K;
  331. for (int i = 0; i < nb; i++) {
  332. const float d = ggml_fp16_to_fp32(x[i].d);
  333. const float min = ggml_fp16_to_fp32(x[i].dmin);
  334. const uint8_t * q = x[i].qs;
  335. #if QK_K == 256
  336. int is = 0;
  337. float dl, ml;
  338. for (int n = 0; n < QK_K; n += 128) {
  339. int shift = 0;
  340. for (int j = 0; j < 4; ++j) {
  341. uint8_t sc = x[i].scales[is++];
  342. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  343. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  344. sc = x[i].scales[is++];
  345. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  346. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  347. shift += 2;
  348. }
  349. q += 32;
  350. }
  351. #else
  352. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  353. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  354. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  355. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  356. for (int l = 0; l < 16; ++l) {
  357. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  358. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  359. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  360. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  361. }
  362. y += QK_K;
  363. #endif
  364. }
  365. }
  366. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  367. quantize_row_q2_K_reference(x, vy, k);
  368. }
  369. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  370. const int nb = k / QK_K;
  371. // TODO - collect histograms - although, at a second thought, I don't really care about them
  372. (void)hist;
  373. for (int j = 0; j < nb; j += k) {
  374. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  375. quantize_row_q2_K_reference(src + j, y, k);
  376. }
  377. return (n/QK_K*sizeof(block_q2_K));
  378. }
  379. //========================= 3-bit (de)-quantization
  380. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  381. assert(k % QK_K == 0);
  382. const int nb = k / QK_K;
  383. int8_t L[QK_K];
  384. float scales[QK_K / 16];
  385. for (int i = 0; i < nb; i++) {
  386. float max_scale = 0;
  387. float amax = 0;
  388. for (int j = 0; j < QK_K/16; ++j) {
  389. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  390. float scale = fabsf(scales[j]);
  391. if (scale > amax) {
  392. amax = scale; max_scale = scales[j];
  393. }
  394. }
  395. #if QK_K == 256
  396. memset(y[i].scales, 0, 12);
  397. if (max_scale) {
  398. float iscale = -32.f/max_scale;
  399. for (int j = 0; j < QK_K/16; ++j) {
  400. int8_t l = nearest_int(iscale*scales[j]);
  401. l = MAX(-32, MIN(31, l)) + 32;
  402. if (j < 8) {
  403. y[i].scales[j] = l & 0xF;
  404. } else {
  405. y[i].scales[j-8] |= ((l & 0xF) << 4);
  406. }
  407. l >>= 4;
  408. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  409. }
  410. y[i].d = ggml_fp32_to_fp16(1/iscale);
  411. } else {
  412. y[i].d = ggml_fp32_to_fp16(0.f);
  413. }
  414. int8_t sc;
  415. for (int j = 0; j < QK_K/16; ++j) {
  416. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  417. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  418. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  419. if (!d) {
  420. continue;
  421. }
  422. for (int ii = 0; ii < 16; ++ii) {
  423. int l = nearest_int(x[16*j + ii]/d);
  424. l = MAX(-4, MIN(3, l));
  425. L[16*j + ii] = l + 4;
  426. }
  427. }
  428. #else
  429. if (max_scale) {
  430. float iscale = -8.f/max_scale;
  431. for (int j = 0; j < QK_K/16; j+=2) {
  432. int l1 = nearest_int(iscale*scales[j]);
  433. l1 = 8 + MAX(-8, MIN(7, l1));
  434. int l2 = nearest_int(iscale*scales[j+1]);
  435. l2 = 8 + MAX(-8, MIN(7, l2));
  436. y[i].scales[j/2] = l1 | (l2 << 4);
  437. }
  438. y[i].d = ggml_fp32_to_fp16(1/iscale);
  439. } else {
  440. for (int j = 0; j < QK_K/16; j+=2) {
  441. y[i].scales[j/2] = 0;
  442. }
  443. y[i].d = ggml_fp32_to_fp16(0.f);
  444. }
  445. for (int j = 0; j < QK_K/16; ++j) {
  446. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  447. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  448. if (!d) {
  449. continue;
  450. }
  451. for (int ii = 0; ii < 16; ++ii) {
  452. int l = nearest_int(x[16*j + ii]/d);
  453. l = MAX(-4, MIN(3, l));
  454. L[16*j + ii] = l + 4;
  455. }
  456. }
  457. #endif
  458. memset(y[i].hmask, 0, QK_K/8);
  459. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  460. int m = 0;
  461. uint8_t hm = 1;
  462. for (int j = 0; j < QK_K; ++j) {
  463. if (L[j] > 3) {
  464. y[i].hmask[m] |= hm;
  465. L[j] -= 4;
  466. }
  467. if (++m == QK_K/8) {
  468. m = 0; hm <<= 1;
  469. }
  470. }
  471. #if QK_K == 256
  472. for (int j = 0; j < QK_K; j += 128) {
  473. for (int l = 0; l < 32; ++l) {
  474. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  475. }
  476. }
  477. #else
  478. for (int l = 0; l < 16; ++l) {
  479. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  480. }
  481. #endif
  482. x += QK_K;
  483. }
  484. }
  485. #if QK_K == 256
  486. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  487. assert(k % QK_K == 0);
  488. const int nb = k / QK_K;
  489. const uint32_t kmask1 = 0x03030303;
  490. const uint32_t kmask2 = 0x0f0f0f0f;
  491. uint32_t aux[4];
  492. const int8_t * scales = (const int8_t*)aux;
  493. for (int i = 0; i < nb; i++) {
  494. const float d_all = ggml_fp16_to_fp32(x[i].d);
  495. const uint8_t * restrict q = x[i].qs;
  496. const uint8_t * restrict hm = x[i].hmask;
  497. uint8_t m = 1;
  498. memcpy(aux, x[i].scales, 12);
  499. uint32_t tmp = aux[2];
  500. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  501. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  502. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  503. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  504. int is = 0;
  505. float dl;
  506. for (int n = 0; n < QK_K; n += 128) {
  507. int shift = 0;
  508. for (int j = 0; j < 4; ++j) {
  509. dl = d_all * (scales[is++] - 32);
  510. for (int l = 0; l < 16; ++l) {
  511. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  512. }
  513. dl = d_all * (scales[is++] - 32);
  514. for (int l = 0; l < 16; ++l) {
  515. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  516. }
  517. shift += 2;
  518. m <<= 1;
  519. }
  520. q += 32;
  521. }
  522. }
  523. }
  524. #else
  525. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  526. assert(k % QK_K == 0);
  527. assert(QK_K == 64);
  528. const int nb = k / QK_K;
  529. for (int i = 0; i < nb; i++) {
  530. const float d_all = ggml_fp16_to_fp32(x[i].d);
  531. const uint8_t * restrict q = x[i].qs;
  532. const uint8_t * restrict hm = x[i].hmask;
  533. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  534. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  535. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  536. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  537. for (int l=0; l<8; ++l) {
  538. uint8_t h = hm[l];
  539. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  540. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  541. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  542. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  543. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  544. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  545. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  546. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  547. }
  548. y += QK_K;
  549. }
  550. }
  551. #endif
  552. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  553. quantize_row_q3_K_reference(x, vy, k);
  554. }
  555. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  556. const int nb = k / QK_K;
  557. // TODO - collect histograms - although, at a second thought, I don't really care about them
  558. (void)hist;
  559. for (int j = 0; j < nb; j += k) {
  560. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  561. quantize_row_q3_K_reference(src + j, y, k);
  562. }
  563. return (n/QK_K*sizeof(block_q3_K));
  564. }
  565. // ====================== 4-bit (de)-quantization
  566. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  567. assert(k % QK_K == 0);
  568. const int nb = k / QK_K;
  569. uint8_t L[QK_K];
  570. float mins[QK_K/32];
  571. float scales[QK_K/32];
  572. for (int i = 0; i < nb; i++) {
  573. float max_scale = 0; // as we are deducting the min, scales are always positive
  574. float max_min = 0;
  575. for (int j = 0; j < QK_K/32; ++j) {
  576. scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
  577. float scale = scales[j];
  578. if (scale > max_scale) {
  579. max_scale = scale;
  580. }
  581. float min = mins[j];
  582. if (min > max_min) {
  583. max_min = min;
  584. }
  585. }
  586. #if QK_K == 256
  587. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  588. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  589. for (int j = 0; j < QK_K/32; ++j) {
  590. uint8_t ls = nearest_int(inv_scale*scales[j]);
  591. uint8_t lm = nearest_int(inv_min*mins[j]);
  592. ls = MIN(63, ls);
  593. lm = MIN(63, lm);
  594. if (j < 4) {
  595. y[i].scales[j] = ls;
  596. y[i].scales[j+4] = lm;
  597. } else {
  598. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  599. y[i].scales[j-4] |= ((ls >> 4) << 6);
  600. y[i].scales[j-0] |= ((lm >> 4) << 6);
  601. }
  602. }
  603. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  604. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  605. uint8_t sc, m;
  606. for (int j = 0; j < QK_K/32; ++j) {
  607. get_scale_min_k4(j, y[i].scales, &sc, &m);
  608. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  609. if (!d) continue;
  610. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  611. for (int ii = 0; ii < 32; ++ii) {
  612. int l = nearest_int((x[32*j + ii] + dm)/d);
  613. l = MAX(0, MIN(15, l));
  614. L[32*j + ii] = l;
  615. }
  616. }
  617. #else
  618. const float s_factor = 15.f;
  619. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  620. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  621. int d1 = nearest_int(inv_scale*scales[0]);
  622. int m1 = nearest_int(inv_min*mins[0]);
  623. int d2 = nearest_int(inv_scale*scales[1]);
  624. int m2 = nearest_int(inv_min*mins[1]);
  625. y[i].scales[0] = d1 | (m1 << 4);
  626. y[i].scales[1] = d2 | (m2 << 4);
  627. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  628. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  629. float sumlx = 0;
  630. int suml2 = 0;
  631. for (int j = 0; j < QK_K/32; ++j) {
  632. const uint8_t sd = y[i].scales[j] & 0xF;
  633. const uint8_t sm = y[i].scales[j] >> 4;
  634. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  635. if (!d) continue;
  636. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  637. for (int ii = 0; ii < 32; ++ii) {
  638. int l = nearest_int((x[32*j + ii] + m)/d);
  639. l = MAX(0, MIN(15, l));
  640. L[32*j + ii] = l;
  641. sumlx += (x[32*j + ii] + m)*l*sd;
  642. suml2 += l*l*sd*sd;
  643. }
  644. }
  645. if (suml2) {
  646. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  647. }
  648. #endif
  649. uint8_t * q = y[i].qs;
  650. for (int j = 0; j < QK_K; j += 64) {
  651. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  652. q += 32;
  653. }
  654. x += QK_K;
  655. }
  656. }
  657. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  658. assert(k % QK_K == 0);
  659. const int nb = k / QK_K;
  660. for (int i = 0; i < nb; i++) {
  661. const uint8_t * q = x[i].qs;
  662. #if QK_K == 256
  663. const float d = ggml_fp16_to_fp32(x[i].d);
  664. const float min = ggml_fp16_to_fp32(x[i].dmin);
  665. int is = 0;
  666. uint8_t sc, m;
  667. for (int j = 0; j < QK_K; j += 64) {
  668. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  669. const float d1 = d * sc; const float m1 = min * m;
  670. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  671. const float d2 = d * sc; const float m2 = min * m;
  672. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  673. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  674. q += 32; is += 2;
  675. }
  676. #else
  677. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  678. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  679. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  680. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  681. for (int l = 0; l < 32; ++l) {
  682. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  683. y[l+32] = d2 * (q[l] >> 4) - m2;
  684. }
  685. y += QK_K;
  686. #endif
  687. }
  688. }
  689. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  690. assert(k % QK_K == 0);
  691. block_q4_K * restrict y = vy;
  692. quantize_row_q4_K_reference(x, y, k);
  693. }
  694. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  695. assert(k % QK_K == 0);
  696. const int nb = k / QK_K;
  697. (void)hist; // TODO: collect histograms
  698. for (int j = 0; j < nb; j += k) {
  699. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  700. quantize_row_q4_K_reference(src + j, y, k);
  701. }
  702. return (n/QK_K*sizeof(block_q4_K));
  703. }
  704. // ====================== 5-bit (de)-quantization
  705. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  706. assert(k % QK_K == 0);
  707. const int nb = k / QK_K;
  708. #if QK_K == 256
  709. uint8_t L[QK_K];
  710. float mins[QK_K/32];
  711. float scales[QK_K/32];
  712. #else
  713. int8_t L[QK_K];
  714. float scales[QK_K/16];
  715. #endif
  716. for (int i = 0; i < nb; i++) {
  717. #if QK_K == 256
  718. float max_scale = 0; // as we are deducting the min, scales are always positive
  719. float max_min = 0;
  720. for (int j = 0; j < QK_K/32; ++j) {
  721. scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
  722. float scale = scales[j];
  723. if (scale > max_scale) {
  724. max_scale = scale;
  725. }
  726. float min = mins[j];
  727. if (min > max_min) {
  728. max_min = min;
  729. }
  730. }
  731. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  732. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  733. for (int j = 0; j < QK_K/32; ++j) {
  734. uint8_t ls = nearest_int(inv_scale*scales[j]);
  735. uint8_t lm = nearest_int(inv_min*mins[j]);
  736. ls = MIN(63, ls);
  737. lm = MIN(63, lm);
  738. if (j < 4) {
  739. y[i].scales[j] = ls;
  740. y[i].scales[j+4] = lm;
  741. } else {
  742. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  743. y[i].scales[j-4] |= ((ls >> 4) << 6);
  744. y[i].scales[j-0] |= ((lm >> 4) << 6);
  745. }
  746. }
  747. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  748. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  749. uint8_t sc, m;
  750. for (int j = 0; j < QK_K/32; ++j) {
  751. get_scale_min_k4(j, y[i].scales, &sc, &m);
  752. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  753. if (!d) continue;
  754. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  755. for (int ii = 0; ii < 32; ++ii) {
  756. int l = nearest_int((x[32*j + ii] + dm)/d);
  757. l = MAX(0, MIN(31, l));
  758. L[32*j + ii] = l;
  759. }
  760. }
  761. uint8_t * restrict qh = y[i].qh;
  762. uint8_t * restrict ql = y[i].qs;
  763. memset(qh, 0, QK_K/8);
  764. uint8_t m1 = 1, m2 = 2;
  765. for (int n = 0; n < QK_K; n += 64) {
  766. for (int j = 0; j < 32; ++j) {
  767. int l1 = L[n + j];
  768. if (l1 > 15) {
  769. l1 -= 16; qh[j] |= m1;
  770. }
  771. int l2 = L[n + j + 32];
  772. if (l2 > 15) {
  773. l2 -= 16; qh[j] |= m2;
  774. }
  775. ql[j] = l1 | (l2 << 4);
  776. }
  777. m1 <<= 2; m2 <<= 2;
  778. ql += 32;
  779. }
  780. #else
  781. float max_scale = 0, amax = 0;
  782. for (int j = 0; j < QK_K/16; ++j) {
  783. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  784. float abs_scale = fabsf(scales[j]);
  785. if (abs_scale > amax) {
  786. amax = abs_scale;
  787. max_scale = scales[j];
  788. }
  789. }
  790. float iscale = -128.f/max_scale;
  791. for (int j = 0; j < QK_K/16; ++j) {
  792. int l = nearest_int(iscale*scales[j]);
  793. y[i].scales[j] = MAX(-128, MIN(127, l));
  794. }
  795. y[i].d = ggml_fp32_to_fp16(1/iscale);
  796. for (int j = 0; j < QK_K/16; ++j) {
  797. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  798. if (!d) continue;
  799. for (int ii = 0; ii < 16; ++ii) {
  800. int l = nearest_int(x[16*j + ii]/d);
  801. l = MAX(-16, MIN(15, l));
  802. L[16*j + ii] = l + 16;
  803. }
  804. }
  805. uint8_t * restrict qh = y[i].qh;
  806. uint8_t * restrict ql = y[i].qs;
  807. memset(qh, 0, QK_K/8);
  808. for (int j = 0; j < 32; ++j) {
  809. int jm = j%8;
  810. int is = j/8;
  811. int l1 = L[j];
  812. if (l1 > 15) {
  813. l1 -= 16; qh[jm] |= (1 << is);
  814. }
  815. int l2 = L[j + 32];
  816. if (l2 > 15) {
  817. l2 -= 16; qh[jm] |= (1 << (4 + is));
  818. }
  819. ql[j] = l1 | (l2 << 4);
  820. }
  821. #endif
  822. x += QK_K;
  823. }
  824. }
  825. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  826. assert(k % QK_K == 0);
  827. const int nb = k / QK_K;
  828. for (int i = 0; i < nb; i++) {
  829. const uint8_t * ql = x[i].qs;
  830. const uint8_t * qh = x[i].qh;
  831. #if QK_K == 256
  832. const float d = ggml_fp16_to_fp32(x[i].d);
  833. const float min = ggml_fp16_to_fp32(x[i].dmin);
  834. int is = 0;
  835. uint8_t sc, m;
  836. uint8_t u1 = 1, u2 = 2;
  837. for (int j = 0; j < QK_K; j += 64) {
  838. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  839. const float d1 = d * sc; const float m1 = min * m;
  840. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  841. const float d2 = d * sc; const float m2 = min * m;
  842. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  843. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  844. ql += 32; is += 2;
  845. u1 <<= 2; u2 <<= 2;
  846. }
  847. #else
  848. float d = ggml_fp16_to_fp32(x[i].d);
  849. const int8_t * restrict s = x[i].scales;
  850. for (int l = 0; l < 8; ++l) {
  851. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  852. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  853. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  854. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  855. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  856. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  857. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  858. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  859. }
  860. y += QK_K;
  861. #endif
  862. }
  863. }
  864. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  865. assert(k % QK_K == 0);
  866. block_q5_K * restrict y = vy;
  867. quantize_row_q5_K_reference(x, y, k);
  868. }
  869. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  870. assert(k % QK_K == 0);
  871. const int nb = k / QK_K;
  872. (void)hist;
  873. for (int j = 0; j < nb; j += k) {
  874. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  875. quantize_row_q5_K_reference(src + j, y, k);
  876. }
  877. return (n/QK_K*sizeof(block_q5_K));
  878. }
  879. // ====================== 6-bit (de)-quantization
  880. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  881. assert(k % QK_K == 0);
  882. const int nb = k / QK_K;
  883. int8_t L[QK_K];
  884. float scales[QK_K/16];
  885. for (int i = 0; i < nb; i++) {
  886. float max_scale = 0;
  887. float max_abs_scale = 0;
  888. for (int ib = 0; ib < QK_K/16; ++ib) {
  889. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  890. scales[ib] = scale;
  891. const float abs_scale = fabsf(scale);
  892. if (abs_scale > max_abs_scale) {
  893. max_abs_scale = abs_scale;
  894. max_scale = scale;
  895. }
  896. }
  897. float iscale = -128.f/max_scale;
  898. y[i].d = ggml_fp32_to_fp16(1/iscale);
  899. for (int ib = 0; ib < QK_K/16; ++ib) {
  900. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  901. }
  902. for (int j = 0; j < QK_K/16; ++j) {
  903. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  904. if (!d) {
  905. continue;
  906. }
  907. for (int ii = 0; ii < 16; ++ii) {
  908. int l = nearest_int(x[16*j + ii]/d);
  909. l = MAX(-32, MIN(31, l));
  910. L[16*j + ii] = l + 32;
  911. }
  912. }
  913. uint8_t * restrict ql = y[i].ql;
  914. uint8_t * restrict qh = y[i].qh;
  915. #if QK_K == 256
  916. for (int j = 0; j < QK_K; j += 128) {
  917. for (int l = 0; l < 32; ++l) {
  918. const uint8_t q1 = L[j + l + 0] & 0xF;
  919. const uint8_t q2 = L[j + l + 32] & 0xF;
  920. const uint8_t q3 = L[j + l + 64] & 0xF;
  921. const uint8_t q4 = L[j + l + 96] & 0xF;
  922. ql[l+ 0] = q1 | (q3 << 4);
  923. ql[l+32] = q2 | (q4 << 4);
  924. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  925. }
  926. ql += 64;
  927. qh += 32;
  928. }
  929. #else
  930. for (int l = 0; l < 32; ++l) {
  931. const uint8_t q1 = L[l + 0] & 0xF;
  932. const uint8_t q2 = L[l + 32] & 0xF;
  933. ql[l] = q1 | (q2 << 4);
  934. }
  935. for (int l = 0; l < 16; ++l) {
  936. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  937. }
  938. #endif
  939. x += QK_K;
  940. }
  941. }
  942. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  943. assert(k % QK_K == 0);
  944. const int nb = k / QK_K;
  945. for (int i = 0; i < nb; i++) {
  946. const float d = ggml_fp16_to_fp32(x[i].d);
  947. const uint8_t * restrict ql = x[i].ql;
  948. const uint8_t * restrict qh = x[i].qh;
  949. const int8_t * restrict sc = x[i].scales;
  950. #if QK_K == 256
  951. for (int n = 0; n < QK_K; n += 128) {
  952. for (int l = 0; l < 32; ++l) {
  953. int is = l/16;
  954. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  955. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  956. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  957. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  958. y[l + 0] = d * sc[is + 0] * q1;
  959. y[l + 32] = d * sc[is + 2] * q2;
  960. y[l + 64] = d * sc[is + 4] * q3;
  961. y[l + 96] = d * sc[is + 6] * q4;
  962. }
  963. y += 128;
  964. ql += 64;
  965. qh += 32;
  966. sc += 8;
  967. }
  968. #else
  969. for (int l = 0; l < 16; ++l) {
  970. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  971. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  972. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  973. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  974. y[l+ 0] = d * sc[0] * q1;
  975. y[l+16] = d * sc[1] * q2;
  976. y[l+32] = d * sc[2] * q3;
  977. y[l+48] = d * sc[3] * q4;
  978. }
  979. y += 64;
  980. #endif
  981. }
  982. }
  983. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  984. assert(k % QK_K == 0);
  985. block_q6_K * restrict y = vy;
  986. quantize_row_q6_K_reference(x, y, k);
  987. }
  988. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  989. assert(k % QK_K == 0);
  990. const int nb = k / QK_K;
  991. (void)hist; // TODO
  992. for (int j = 0; j < nb; j += k) {
  993. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  994. quantize_row_q6_K_reference(src + j, y, k);
  995. }
  996. return (n/QK_K*sizeof(block_q6_K));
  997. }
  998. //===================================== Q8_K ==============================================
  999. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1000. assert(k % QK_K == 0);
  1001. const int nb = k / QK_K;
  1002. for (int i = 0; i < nb; i++) {
  1003. float max = 0;
  1004. float amax = 0;
  1005. for (int j = 0; j < QK_K; ++j) {
  1006. float ax = fabsf(x[j]);
  1007. if (ax > amax) {
  1008. amax = ax; max = x[j];
  1009. }
  1010. }
  1011. if (!amax) {
  1012. y[i].d = 0;
  1013. memset(y[i].qs, 0, QK_K);
  1014. x += QK_K;
  1015. continue;
  1016. }
  1017. const float iscale = -128.f/max;
  1018. for (int j = 0; j < QK_K; ++j) {
  1019. int v = nearest_int(iscale*x[j]);
  1020. y[i].qs[j] = MIN(127, v);
  1021. }
  1022. for (int j = 0; j < QK_K/16; ++j) {
  1023. int sum = 0;
  1024. for (int ii = 0; ii < 16; ++ii) {
  1025. sum += y[i].qs[j*16 + ii];
  1026. }
  1027. y[i].bsums[j] = sum;
  1028. }
  1029. y[i].d = 1/iscale;
  1030. x += QK_K;
  1031. }
  1032. }
  1033. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1034. assert(k % QK_K == 0);
  1035. const int nb = k / QK_K;
  1036. for (int i = 0; i < nb; i++) {
  1037. for (int j = 0; j < QK_K; ++j) {
  1038. *y++ = x[i].d * x[i].qs[j];
  1039. }
  1040. }
  1041. }
  1042. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1043. quantize_row_q8_K_reference(x, y, k);
  1044. }
  1045. //===================================== Dot ptoducts =================================
  1046. //
  1047. // Helper functions
  1048. //
  1049. #if __AVX__ || __AVX2__ || __AVX512F__
  1050. // horizontally add 8 floats
  1051. static inline float hsum_float_8(const __m256 x) {
  1052. __m128 res = _mm256_extractf128_ps(x, 1);
  1053. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1054. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1055. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1056. return _mm_cvtss_f32(res);
  1057. }
  1058. // shuffles to pick the required scales in dot products
  1059. static inline __m256i get_scale_shuffle_q3k(int i) {
  1060. static const uint8_t k_shuffle[128] = {
  1061. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1062. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1063. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1064. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1065. };
  1066. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1067. }
  1068. static inline __m256i get_scale_shuffle_k4(int i) {
  1069. static const uint8_t k_shuffle[256] = {
  1070. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1071. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1072. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1073. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1074. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1075. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1076. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1077. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1078. };
  1079. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1080. }
  1081. static inline __m128i get_scale_shuffle(int i) {
  1082. static const uint8_t k_shuffle[128] = {
  1083. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1084. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1085. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1086. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1087. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1088. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1089. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1090. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1091. };
  1092. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1093. }
  1094. #endif
  1095. #if QK_K == 256
  1096. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1097. const block_q2_K * restrict x = vx;
  1098. const block_q8_K * restrict y = vy;
  1099. const int nb = n / QK_K;
  1100. #ifdef __ARM_NEON
  1101. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1102. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1103. const int32x4_t vzero = vdupq_n_s32(0);
  1104. int8x16x2_t q2bytes;
  1105. uint8_t aux[16];
  1106. float sum = 0;
  1107. for (int i = 0; i < nb; ++i) {
  1108. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1109. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1110. const uint8_t * restrict q2 = x[i].qs;
  1111. const int8_t * restrict q8 = y[i].qs;
  1112. const uint8_t * restrict sc = x[i].scales;
  1113. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1114. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1115. vst1q_u8(aux, scales);
  1116. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1117. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1118. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1119. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1120. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1121. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1122. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1123. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1124. int isum = 0;
  1125. int is = 0;
  1126. // We use this macro instead of a function call because for some reason
  1127. // the code runs 2-3% slower, even if the function is declared inline
  1128. #if defined(__ARM_FEATURE_DOTPROD)
  1129. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1130. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1131. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1132. #else
  1133. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1134. {\
  1135. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1136. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1137. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1138. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1139. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1140. }
  1141. #endif
  1142. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1143. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1144. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1145. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1146. MULTIPLY_ACCUM_WITH_SCALE((index));
  1147. for (int j = 0; j < QK_K/128; ++j) {
  1148. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1149. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1150. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1151. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1152. MULTIPLY_ACCUM_WITH_SCALE(0);
  1153. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1154. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1155. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1156. is += 8;
  1157. }
  1158. sum += d * isum;
  1159. }
  1160. *s = sum;
  1161. #elif defined __AVX2__
  1162. const __m256i m3 = _mm256_set1_epi8(3);
  1163. const __m128i m4 = _mm_set1_epi8(0xF);
  1164. __m256 acc = _mm256_setzero_ps();
  1165. for (int i = 0; i < nb; ++i) {
  1166. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1167. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1168. const uint8_t * restrict q2 = x[i].qs;
  1169. const int8_t * restrict q8 = y[i].qs;
  1170. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1171. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1172. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1173. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1174. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1175. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1176. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1177. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1178. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1179. const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
  1180. __m256i sumi = _mm256_setzero_si256();
  1181. for (int j = 0; j < QK_K/128; ++j) {
  1182. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1183. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1184. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1185. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1186. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1187. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1188. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1189. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1190. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1191. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1192. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1193. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1194. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1195. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1196. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1197. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1198. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1199. p0 = _mm256_add_epi32(p0, p1);
  1200. p2 = _mm256_add_epi32(p2, p3);
  1201. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1202. }
  1203. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1204. }
  1205. *s = hsum_float_8(acc);
  1206. #else
  1207. float sumf = 0;
  1208. for (int i = 0; i < nb; ++i) {
  1209. const uint8_t * q2 = x[i].qs;
  1210. const int8_t * q8 = y[i].qs;
  1211. const uint8_t * sc = x[i].scales;
  1212. int summs = 0;
  1213. for (int j = 0; j < 16; ++j) {
  1214. summs += y[i].bsums[j] * (sc[j] >> 4);
  1215. }
  1216. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1217. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1218. int isum = 0;
  1219. int is = 0;
  1220. int d;
  1221. for (int k = 0; k < QK_K/128; ++k) {
  1222. int shift = 0;
  1223. for (int j = 0; j < 4; ++j) {
  1224. d = sc[is++] & 0xF;
  1225. int isuml = 0;
  1226. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1227. isum += d * isuml;
  1228. d = sc[is++] & 0xF;
  1229. isuml = 0;
  1230. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1231. isum += d * isuml;
  1232. shift += 2;
  1233. q8 += 32;
  1234. }
  1235. q2 += 32;
  1236. }
  1237. sumf += dall * isum - dmin * summs;
  1238. }
  1239. *s = sumf;
  1240. #endif
  1241. }
  1242. #else
  1243. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1244. const block_q2_K * restrict x = vx;
  1245. const block_q8_K * restrict y = vy;
  1246. const int nb = n / QK_K;
  1247. #ifdef __ARM_NEON
  1248. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1249. const int32x4_t vzero = vdupq_n_s32(0);
  1250. int8x16x4_t q2bytes;
  1251. uint32_t aux32[2];
  1252. const uint8_t * scales = (const uint8_t *)aux32;
  1253. float sum = 0;
  1254. for (int i = 0; i < nb; ++i) {
  1255. const float d = y[i].d * (float)x[i].d;
  1256. const float dmin = -y[i].d * (float)x[i].dmin;
  1257. const uint8_t * restrict q2 = x[i].qs;
  1258. const int8_t * restrict q8 = y[i].qs;
  1259. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1260. aux32[0] = sc[0] & 0x0f0f0f0f;
  1261. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1262. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1263. int isum1 = 0, isum2 = 0;
  1264. const uint8x16_t q2bits = vld1q_u8(q2);
  1265. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1266. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1267. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1268. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1269. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1270. #if defined(__ARM_FEATURE_DOTPROD)
  1271. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1272. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1273. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1274. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1275. #else
  1276. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1277. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1278. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1279. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1280. isum1 += vaddvq_s16(p1) * scales[0];
  1281. isum2 += vaddvq_s16(p2) * scales[1];
  1282. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1283. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1284. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1285. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1286. isum1 += vaddvq_s16(p3) * scales[2];
  1287. isum2 += vaddvq_s16(p4) * scales[3];
  1288. #endif
  1289. sum += d * (isum1 + isum2);
  1290. }
  1291. *s = sum;
  1292. #elif defined __AVX2__
  1293. const __m256i m3 = _mm256_set1_epi8(3);
  1294. __m256 acc = _mm256_setzero_ps();
  1295. uint32_t ud, um;
  1296. const uint8_t * restrict db = (const uint8_t *)&ud;
  1297. const uint8_t * restrict mb = (const uint8_t *)&um;
  1298. float summs = 0;
  1299. // TODO: optimize this
  1300. for (int i = 0; i < nb; ++i) {
  1301. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1302. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1303. const uint8_t * restrict q2 = x[i].qs;
  1304. const int8_t * restrict q8 = y[i].qs;
  1305. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1306. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1307. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1308. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1309. summs += dmin * smin;
  1310. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1311. const __m256i q2_0 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1312. const __m256i q2_1 = _mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1313. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1314. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1315. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1316. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1317. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1318. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1319. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1320. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1321. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1322. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1323. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1324. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1325. }
  1326. *s = hsum_float_8(acc) + summs;
  1327. #else
  1328. float sumf = 0;
  1329. int isum[4];
  1330. for (int i = 0; i < nb; ++i) {
  1331. const uint8_t * q2 = x[i].qs;
  1332. const int8_t * q8 = y[i].qs;
  1333. const uint8_t * sc = x[i].scales;
  1334. int summs = 0;
  1335. for (int j = 0; j < QK_K/16; ++j) {
  1336. summs += y[i].bsums[j] * (sc[j] >> 4);
  1337. }
  1338. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1339. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1340. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1341. for (int l = 0; l < 16; ++l) {
  1342. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1343. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1344. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1345. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1346. }
  1347. for (int l = 0; l < 4; ++l) {
  1348. isum[l] *= (sc[l] & 0xF);
  1349. }
  1350. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1351. }
  1352. *s = sumf;
  1353. #endif
  1354. }
  1355. #endif
  1356. #if QK_K == 256
  1357. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1358. assert(n % QK_K == 0);
  1359. const uint32_t kmask1 = 0x03030303;
  1360. const uint32_t kmask2 = 0x0f0f0f0f;
  1361. const block_q3_K * restrict x = vx;
  1362. const block_q8_K * restrict y = vy;
  1363. const int nb = n / QK_K;
  1364. #ifdef __ARM_NEON
  1365. uint32_t aux[3];
  1366. uint32_t utmp[4];
  1367. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1368. #ifdef __ARM_FEATURE_DOTPROD
  1369. const int32x4_t vzero = vdupq_n_s32(0);
  1370. #endif
  1371. const uint8x16_t m0 = vdupq_n_u8(1);
  1372. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1373. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1374. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1375. const int8_t m32 = 32;
  1376. int8x16x4_t q3bytes;
  1377. float sum = 0;
  1378. for (int i = 0; i < nb; ++i) {
  1379. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1380. const uint8_t * restrict q3 = x[i].qs;
  1381. const uint8_t * restrict qh = x[i].hmask;
  1382. const int8_t * restrict q8 = y[i].qs;
  1383. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1384. uint8x16x4_t q3h;
  1385. int32_t isum = 0;
  1386. // Set up scales
  1387. memcpy(aux, x[i].scales, 12);
  1388. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1389. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1390. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1391. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1392. int8_t * scale = (int8_t *)utmp;
  1393. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1394. for (int j = 0; j < QK_K/128; ++j) {
  1395. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1396. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1397. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1398. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1399. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1400. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1401. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1402. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1403. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1404. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1405. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1406. #if defined(__ARM_FEATURE_DOTPROD)
  1407. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1408. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1409. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1410. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1411. #else
  1412. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1413. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1414. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1415. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1416. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1417. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1418. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1419. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1420. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1421. #endif
  1422. scale += 4;
  1423. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1424. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1425. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1426. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1427. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1428. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1429. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1430. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1431. #if defined(__ARM_FEATURE_DOTPROD)
  1432. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1433. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1434. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1435. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1436. #else
  1437. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1438. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1439. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1440. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1441. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1442. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1443. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1444. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1445. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1446. #endif
  1447. scale += 4;
  1448. if (j == 0) {
  1449. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1450. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1451. }
  1452. }
  1453. sum += d * isum;
  1454. }
  1455. *s = sum;
  1456. #elif defined __AVX2__
  1457. const __m256i m3 = _mm256_set1_epi8(3);
  1458. const __m256i mone = _mm256_set1_epi8(1);
  1459. const __m128i m32 = _mm_set1_epi8(32);
  1460. __m256 acc = _mm256_setzero_ps();
  1461. uint32_t aux[3];
  1462. for (int i = 0; i < nb; ++i) {
  1463. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1464. const uint8_t * restrict q3 = x[i].qs;
  1465. const int8_t * restrict q8 = y[i].qs;
  1466. // Set up scales
  1467. memcpy(aux, x[i].scales, 12);
  1468. __m128i scales128 = _mm_set_epi32(
  1469. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1470. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1471. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1472. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1473. scales128 = _mm_sub_epi8(scales128, m32);
  1474. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1475. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1476. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1477. const __m256i scales[2] = {_mm256_set_m128i(l_scales, l_scales), _mm256_set_m128i(h_scales, h_scales)};
  1478. // high bit
  1479. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1480. // integer accumulator
  1481. __m256i sumi = _mm256_setzero_si256();
  1482. int bit = 0;
  1483. int is = 0;
  1484. for (int j = 0; j < QK_K/128; ++j) {
  1485. // load low 2 bits
  1486. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1487. // prepare low and high bits
  1488. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1489. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1490. ++bit;
  1491. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1492. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1493. ++bit;
  1494. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1495. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1496. ++bit;
  1497. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1498. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1499. ++bit;
  1500. // load Q8 quants
  1501. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1502. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1503. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1504. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1505. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1506. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1507. // and 2 if the high bit was set)
  1508. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1509. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1510. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1511. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1512. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1513. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1514. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1515. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1516. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1517. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1518. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1519. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1520. // multiply with scales
  1521. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1522. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1523. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1524. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1525. // accumulate
  1526. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1527. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1528. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1529. }
  1530. // multiply with block scale and accumulate
  1531. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1532. }
  1533. *s = hsum_float_8(acc);
  1534. #else
  1535. // scalar version
  1536. // This function is written like this so the compiler can manage to vectorize most of it
  1537. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1538. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1539. // The ideal situation would be if we could just write the code once, and the compiler would
  1540. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1541. // write vectorized versions for AVX, ARM_NEON, etc.
  1542. int8_t aux8[QK_K];
  1543. int16_t aux16[8];
  1544. float sums [8];
  1545. int32_t aux32[8];
  1546. memset(sums, 0, 8*sizeof(float));
  1547. uint32_t auxs[4];
  1548. const int8_t * scales = (const int8_t*)auxs;
  1549. float sumf = 0;
  1550. for (int i = 0; i < nb; ++i) {
  1551. const uint8_t * restrict q3 = x[i].qs;
  1552. const uint8_t * restrict hm = x[i].hmask;
  1553. const int8_t * restrict q8 = y[i].qs;
  1554. memset(aux32, 0, 8*sizeof(int32_t));
  1555. int8_t * restrict a = aux8;
  1556. uint8_t m = 1;
  1557. for (int j = 0; j < QK_K; j += 128) {
  1558. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1559. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1560. a += 32; m <<= 1;
  1561. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1562. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1563. a += 32; m <<= 1;
  1564. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1565. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1566. a += 32; m <<= 1;
  1567. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1568. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1569. a += 32; m <<= 1;
  1570. q3 += 32;
  1571. }
  1572. a = aux8;
  1573. memcpy(auxs, x[i].scales, 12);
  1574. uint32_t tmp = auxs[2];
  1575. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1576. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1577. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1578. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1579. for (int j = 0; j < QK_K/16; ++j) {
  1580. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1581. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1582. q8 += 8; a += 8;
  1583. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1584. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1585. q8 += 8; a += 8;
  1586. }
  1587. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1588. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1589. }
  1590. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1591. *s = sumf;
  1592. #endif
  1593. }
  1594. #else
  1595. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1596. assert(n % QK_K == 0);
  1597. const block_q3_K * restrict x = vx;
  1598. const block_q8_K * restrict y = vy;
  1599. const int nb = n / QK_K;
  1600. #ifdef __ARM_NEON
  1601. #ifdef __ARM_FEATURE_DOTPROD
  1602. const int32x4_t vzero = vdupq_n_s32(0);
  1603. #endif
  1604. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1605. const uint8x16_t mh = vdupq_n_u8(4);
  1606. int8x16x4_t q3bytes;
  1607. uint16_t aux16[2];
  1608. int8_t * scales = (int8_t *)aux16;
  1609. float sum = 0;
  1610. for (int i = 0; i < nb; ++i) {
  1611. uint8x16x4_t q3h;
  1612. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1613. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1614. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1615. const uint16_t a = *(const uint16_t *)x[i].scales;
  1616. aux16[0] = a & 0x0f0f;
  1617. aux16[1] = (a >> 4) & 0x0f0f;
  1618. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1619. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1620. const float d = y[i].d * (float)x[i].d;
  1621. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1622. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1623. q3h.val[1] = vandq_u8(mh, htmp);
  1624. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1625. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1626. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1627. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1628. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1629. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1630. #if defined(__ARM_FEATURE_DOTPROD)
  1631. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1632. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1633. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1634. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1635. #else
  1636. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1637. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1638. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1639. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1640. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1641. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1642. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1643. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1644. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1645. #endif
  1646. sum += d * isum;
  1647. }
  1648. *s = sum;
  1649. #elif defined __AVX2__
  1650. const __m256i m3 = _mm256_set1_epi8(3);
  1651. const __m256i m1 = _mm256_set1_epi8(1);
  1652. __m256 acc = _mm256_setzero_ps();
  1653. uint64_t aux64;
  1654. uint16_t aux16[2];
  1655. const int8_t * aux8 = (const int8_t *)aux16;
  1656. for (int i = 0; i < nb; ++i) {
  1657. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1658. const uint8_t * restrict q3 = x[i].qs;
  1659. const int8_t * restrict q8 = y[i].qs;
  1660. const uint16_t a = *(const uint16_t *)x[i].scales;
  1661. aux16[0] = a & 0x0f0f;
  1662. aux16[1] = (a >> 4) & 0x0f0f;
  1663. const __m256i scale_0 = _mm256_set_m128i(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1664. const __m256i scale_1 = _mm256_set_m128i(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1665. memcpy(&aux64, x[i].hmask, 8);
  1666. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1667. __m256i q3h_0 = _mm256_set_m128i(_mm_srli_epi16(haux, 2), haux);
  1668. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1669. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1670. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1671. // load low 2 bits
  1672. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1673. // prepare low and high bits
  1674. const __m256i q3aux = _mm256_set_m128i(_mm_srli_epi16(q3bits, 2), q3bits);
  1675. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1676. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1677. // load Q8 quants
  1678. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1679. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1680. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1681. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1682. // and 2 if the high bit was set)
  1683. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1684. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1685. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1686. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1687. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1688. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1689. // multiply with scales
  1690. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1691. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1692. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1693. // multiply with block scale and accumulate
  1694. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1695. }
  1696. *s = hsum_float_8(acc);
  1697. #else
  1698. int8_t aux8[QK_K];
  1699. int16_t aux16[8];
  1700. float sums [8];
  1701. int32_t aux32[8];
  1702. int32_t scales[4];
  1703. memset(sums, 0, 8*sizeof(float));
  1704. float sumf = 0;
  1705. for (int i = 0; i < nb; ++i) {
  1706. const uint8_t * restrict q3 = x[i].qs;
  1707. const uint8_t * restrict hm = x[i].hmask;
  1708. const int8_t * restrict q8 = y[i].qs;
  1709. int8_t * restrict a = aux8;
  1710. for (int l = 0; l < 8; ++l) {
  1711. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  1712. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  1713. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  1714. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  1715. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  1716. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  1717. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  1718. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  1719. }
  1720. scales[0] = (x[i].scales[0] & 0xF) - 8;
  1721. scales[1] = (x[i].scales[0] >> 4) - 8;
  1722. scales[2] = (x[i].scales[1] & 0xF) - 8;
  1723. scales[3] = (x[i].scales[1] >> 4) - 8;
  1724. memset(aux32, 0, 8*sizeof(int32_t));
  1725. for (int j = 0; j < QK_K/16; ++j) {
  1726. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1727. q8 += 8; a += 8;
  1728. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  1729. q8 += 8; a += 8;
  1730. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  1731. }
  1732. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1733. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1734. }
  1735. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1736. *s = sumf;
  1737. #endif
  1738. }
  1739. #endif
  1740. #if QK_K == 256
  1741. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1742. assert(n % QK_K == 0);
  1743. const block_q4_K * restrict x = vx;
  1744. const block_q8_K * restrict y = vy;
  1745. const int nb = n / QK_K;
  1746. static const uint32_t kmask1 = 0x3f3f3f3f;
  1747. static const uint32_t kmask2 = 0x0f0f0f0f;
  1748. static const uint32_t kmask3 = 0x03030303;
  1749. uint32_t utmp[4];
  1750. #ifdef __ARM_NEON
  1751. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1752. #ifdef __ARM_FEATURE_DOTPROD
  1753. const int32x4_t mzero = vdupq_n_s32(0);
  1754. #endif
  1755. int8x16x2_t q4bytes;
  1756. int8x16x2_t q8bytes;
  1757. float sumf = 0;
  1758. for (int i = 0; i < nb; ++i) {
  1759. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1760. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1761. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  1762. memcpy(utmp, x[i].scales, 12);
  1763. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  1764. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  1765. utmp[0] &= kmask1;
  1766. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  1767. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  1768. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  1769. sumf -= dmin * vaddvq_s32(prod);
  1770. const uint8_t * scales = (const uint8_t *)utmp;
  1771. const uint8_t * restrict q4 = x[i].qs;
  1772. const int8_t * restrict q8 = y[i].qs;
  1773. //int32x4_t isum = mzero;
  1774. int32_t sumi1 = 0;
  1775. int32_t sumi2 = 0;
  1776. for (int j = 0; j < QK_K/64; ++j) {
  1777. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  1778. #ifdef __ARM_FEATURE_DOTPROD
  1779. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1780. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  1781. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  1782. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  1783. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  1784. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1785. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  1786. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  1787. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  1788. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  1789. #else
  1790. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1791. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  1792. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  1793. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1794. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1795. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1796. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1797. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  1798. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1799. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  1800. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  1801. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1802. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1803. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1804. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1805. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  1806. #endif
  1807. }
  1808. sumf += d * (sumi1 + sumi2);
  1809. }
  1810. *s = sumf;
  1811. #elif defined __AVX2__
  1812. const __m256i m4 = _mm256_set1_epi8(0xF);
  1813. __m256 acc = _mm256_setzero_ps();
  1814. __m128 acc_m = _mm_setzero_ps();
  1815. for (int i = 0; i < nb; ++i) {
  1816. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1817. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1818. memcpy(utmp, x[i].scales, 12);
  1819. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  1820. const uint32_t uaux = utmp[1] & kmask1;
  1821. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  1822. utmp[2] = uaux;
  1823. utmp[0] &= kmask1;
  1824. const uint8_t * restrict q4 = x[i].qs;
  1825. const int8_t * restrict q8 = y[i].qs;
  1826. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  1827. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  1828. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  1829. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  1830. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  1831. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  1832. const __m256i scales = _mm256_set_m128i(sc128, sc128);
  1833. __m256i sumi = _mm256_setzero_si256();
  1834. for (int j = 0; j < QK_K/64; ++j) {
  1835. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  1836. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  1837. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  1838. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  1839. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  1840. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1841. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  1842. p16l = _mm256_madd_epi16(scale_l, p16l);
  1843. sumi = _mm256_add_epi32(sumi, p16l);
  1844. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1845. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  1846. p16h = _mm256_madd_epi16(scale_h, p16h);
  1847. sumi = _mm256_add_epi32(sumi, p16h);
  1848. }
  1849. __m256 vd = _mm256_set1_ps(d);
  1850. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  1851. }
  1852. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  1853. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  1854. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  1855. #else
  1856. const uint8_t * scales = (const uint8_t*)&utmp[0];
  1857. const uint8_t * mins = (const uint8_t*)&utmp[2];
  1858. int8_t aux8[QK_K];
  1859. int16_t aux16[8];
  1860. float sums [8];
  1861. int32_t aux32[8];
  1862. memset(sums, 0, 8*sizeof(float));
  1863. float sumf = 0;
  1864. for (int i = 0; i < nb; ++i) {
  1865. const uint8_t * restrict q4 = x[i].qs;
  1866. const int8_t * restrict q8 = y[i].qs;
  1867. memset(aux32, 0, 8*sizeof(int32_t));
  1868. int8_t * restrict a = aux8;
  1869. for (int j = 0; j < QK_K/64; ++j) {
  1870. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  1871. a += 32;
  1872. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  1873. a += 32; q4 += 32;
  1874. }
  1875. memcpy(utmp, x[i].scales, 12);
  1876. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  1877. const uint32_t uaux = utmp[1] & kmask1;
  1878. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  1879. utmp[2] = uaux;
  1880. utmp[0] &= kmask1;
  1881. int sumi = 0;
  1882. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  1883. a = aux8;
  1884. int is = 0;
  1885. for (int j = 0; j < QK_K/32; ++j) {
  1886. int32_t scale = scales[is++];
  1887. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1888. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  1889. q8 += 8; a += 8;
  1890. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1891. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  1892. q8 += 8; a += 8;
  1893. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1894. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  1895. q8 += 8; a += 8;
  1896. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1897. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  1898. q8 += 8; a += 8;
  1899. }
  1900. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1901. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1902. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  1903. sumf -= dmin * sumi;
  1904. }
  1905. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1906. *s = sumf;
  1907. #endif
  1908. }
  1909. #else
  1910. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1911. assert(n % QK_K == 0);
  1912. const block_q4_K * restrict x = vx;
  1913. const block_q8_K * restrict y = vy;
  1914. const int nb = n / QK_K;
  1915. #ifdef __ARM_NEON
  1916. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1917. #ifdef __ARM_FEATURE_DOTPROD
  1918. const int32x4_t mzero = vdupq_n_s32(0);
  1919. #endif
  1920. float sumf = 0;
  1921. int8x16x2_t q4bytes;
  1922. int8x16x4_t q8bytes;
  1923. float sum_mins = 0.f;
  1924. uint16_t aux16[2];
  1925. const uint8_t * restrict scales = (const uint8_t *)aux16;
  1926. for (int i = 0; i < nb; ++i) {
  1927. const uint8_t * restrict q4 = x[i].qs;
  1928. const int8_t * restrict q8 = y[i].qs;
  1929. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  1930. aux16[0] = a[0] & 0x0f0f;
  1931. aux16[1] = (a[0] >> 4) & 0x0f0f;
  1932. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  1933. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  1934. const float d = y[i].d * (float)x[i].d[0];
  1935. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  1936. #ifdef __ARM_FEATURE_DOTPROD
  1937. q8bytes = vld1q_s8_x4(q8);
  1938. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  1939. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  1940. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  1941. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  1942. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  1943. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  1944. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  1945. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  1946. #else
  1947. q8bytes = vld1q_s8_x4(q8);
  1948. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  1949. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  1950. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1951. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1952. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1953. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1954. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  1955. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  1956. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  1957. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  1958. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  1959. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  1960. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  1961. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  1962. #endif
  1963. sumf += d * (sumi1 + sumi2);
  1964. }
  1965. *s = sumf - sum_mins;
  1966. #elif defined __AVX2__
  1967. const __m256i m4 = _mm256_set1_epi8(0xF);
  1968. __m256 acc = _mm256_setzero_ps();
  1969. float summs = 0;
  1970. uint16_t aux16[2];
  1971. const uint8_t * scales = (const uint8_t *)aux16;
  1972. for (int i = 0; i < nb; ++i) {
  1973. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  1974. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  1975. const __m256 vd = _mm256_set1_ps(d);
  1976. const uint16_t * a = (const uint16_t *)x[i].scales;
  1977. aux16[0] = a[0] & 0x0f0f;
  1978. aux16[1] = (a[0] >> 4) & 0x0f0f;
  1979. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  1980. const uint8_t * restrict q4 = x[i].qs;
  1981. const int8_t * restrict q8 = y[i].qs;
  1982. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  1983. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  1984. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  1985. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1986. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  1987. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  1988. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  1989. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  1990. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  1991. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  1992. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  1993. }
  1994. *s = hsum_float_8(acc) - summs;
  1995. #else
  1996. uint8_t aux8[QK_K];
  1997. int16_t aux16[16];
  1998. float sums [8];
  1999. memset(sums, 0, 8*sizeof(float));
  2000. uint16_t s16[2];
  2001. const uint8_t * restrict scales = (const uint8_t *)s16;
  2002. float sumf = 0;
  2003. for (int i = 0; i < nb; ++i) {
  2004. const uint8_t * restrict q4 = x[i].qs;
  2005. const int8_t * restrict q8 = y[i].qs;
  2006. uint8_t * restrict a = aux8;
  2007. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2008. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2009. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2010. s16[0] = b[0] & 0x0f0f;
  2011. s16[1] = (b[0] >> 4) & 0x0f0f;
  2012. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2013. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2014. for (int j = 0; j < QK_K/32; ++j) {
  2015. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2016. q8 += 16; a += 16;
  2017. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2018. q8 += 16; a += 16;
  2019. const float dl = d * scales[j];
  2020. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2021. }
  2022. }
  2023. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2024. *s = sumf;
  2025. #endif
  2026. }
  2027. #endif
  2028. #if QK_K == 256
  2029. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2030. assert(n % QK_K == 0);
  2031. const block_q5_K * restrict x = vx;
  2032. const block_q8_K * restrict y = vy;
  2033. const int nb = n / QK_K;
  2034. static const uint32_t kmask1 = 0x3f3f3f3f;
  2035. static const uint32_t kmask2 = 0x0f0f0f0f;
  2036. static const uint32_t kmask3 = 0x03030303;
  2037. uint32_t utmp[4];
  2038. #ifdef __ARM_NEON
  2039. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2040. const int32x4_t mzero = vdupq_n_s32(0);
  2041. const uint8x16_t mone = vdupq_n_u8(1);
  2042. const uint8x16_t mtwo = vdupq_n_u8(2);
  2043. int8x16x4_t q5bytes;
  2044. float sumf = 0;
  2045. for (int i = 0; i < nb; ++i) {
  2046. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2047. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2048. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2049. memcpy(utmp, x[i].scales, 12);
  2050. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2051. const uint32_t uaux = utmp[1] & kmask1;
  2052. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2053. utmp[2] = uaux;
  2054. utmp[0] &= kmask1;
  2055. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2056. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2057. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2058. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2059. int32_t sumi_mins = vaddvq_s32(prod);
  2060. const uint8_t * scales = (const uint8_t *)utmp;
  2061. const uint8_t * restrict q5 = x[i].qs;
  2062. const uint8_t * restrict qh = x[i].qh;
  2063. const int8_t * restrict q8 = y[i].qs;
  2064. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2065. uint8x16x4_t q5h;
  2066. int32_t sumi = 0;
  2067. for (int j = 0; j < QK_K/64; ++j) {
  2068. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2069. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2070. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2071. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2072. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2073. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2074. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2075. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2076. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2077. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2078. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2079. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2080. #if defined(__ARM_FEATURE_DOTPROD)
  2081. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2082. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2083. #else
  2084. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2085. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2086. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2087. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2088. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2089. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2090. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2091. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2092. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2093. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2094. #endif
  2095. }
  2096. sumf += d * sumi - dmin * sumi_mins;
  2097. }
  2098. *s = sumf;
  2099. #elif defined __AVX2__
  2100. const __m256i m4 = _mm256_set1_epi8(0xF);
  2101. const __m128i mzero = _mm_setzero_si128();
  2102. const __m256i mone = _mm256_set1_epi8(1);
  2103. __m256 acc = _mm256_setzero_ps();
  2104. float summs = 0.f;
  2105. for (int i = 0; i < nb; ++i) {
  2106. const uint8_t * restrict q5 = x[i].qs;
  2107. const int8_t * restrict q8 = y[i].qs;
  2108. #if QK_K == 256
  2109. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2110. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2111. memcpy(utmp, x[i].scales, 12);
  2112. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2113. const uint32_t uaux = utmp[1] & kmask1;
  2114. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2115. utmp[2] = uaux;
  2116. utmp[0] &= kmask1;
  2117. #else
  2118. // TODO
  2119. const float d = 0, dmin = 0;
  2120. #endif
  2121. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2122. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2123. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2124. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2125. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2126. summs += dmin * _mm_extract_epi32(hsum, 0);
  2127. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2128. const __m256i scales = _mm256_set_m128i(sc128, sc128);
  2129. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2130. __m256i hmask = mone;
  2131. __m256i sumi = _mm256_setzero_si256();
  2132. int bit = 0;
  2133. for (int j = 0; j < QK_K/64; ++j) {
  2134. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2135. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2136. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2137. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2138. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2139. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2140. hmask = _mm256_slli_epi16(hmask, 1);
  2141. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2142. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2143. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2144. hmask = _mm256_slli_epi16(hmask, 1);
  2145. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2146. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2147. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2148. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2149. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2150. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2151. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2152. }
  2153. __m256 vd = _mm256_set1_ps(d);
  2154. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2155. }
  2156. *s = hsum_float_8(acc) + summs;
  2157. #else
  2158. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2159. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2160. int8_t aux8[QK_K];
  2161. int16_t aux16[8];
  2162. float sums [8];
  2163. int32_t aux32[8];
  2164. memset(sums, 0, 8*sizeof(float));
  2165. float sumf = 0;
  2166. for (int i = 0; i < nb; ++i) {
  2167. const uint8_t * restrict q4 = x[i].qs;
  2168. const uint8_t * restrict hm = x[i].qh;
  2169. const int8_t * restrict q8 = y[i].qs;
  2170. memset(aux32, 0, 8*sizeof(int32_t));
  2171. int8_t * restrict a = aux8;
  2172. uint8_t m = 1;
  2173. for (int j = 0; j < QK_K/64; ++j) {
  2174. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2175. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2176. a += 32; m <<= 1;
  2177. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2178. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2179. a += 32; m <<= 1;
  2180. q4 += 32;
  2181. }
  2182. memcpy(utmp, x[i].scales, 12);
  2183. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2184. const uint32_t uaux = utmp[1] & kmask1;
  2185. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2186. utmp[2] = uaux;
  2187. utmp[0] &= kmask1;
  2188. int sumi = 0;
  2189. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2190. a = aux8;
  2191. int is = 0;
  2192. for (int j = 0; j < QK_K/32; ++j) {
  2193. int32_t scale = scales[is++];
  2194. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2195. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2196. q8 += 8; a += 8;
  2197. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2198. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2199. q8 += 8; a += 8;
  2200. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2201. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2202. q8 += 8; a += 8;
  2203. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2204. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2205. q8 += 8; a += 8;
  2206. }
  2207. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2208. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2209. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2210. sumf -= dmin * sumi;
  2211. }
  2212. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2213. *s = sumf;
  2214. #endif
  2215. }
  2216. #else
  2217. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2218. assert(n % QK_K == 0);
  2219. const block_q5_K * restrict x = vx;
  2220. const block_q8_K * restrict y = vy;
  2221. const int nb = n / QK_K;
  2222. #ifdef __ARM_NEON
  2223. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2224. const int32x4_t mzero = vdupq_n_s32(0);
  2225. const uint8x16_t mh = vdupq_n_u8(16);
  2226. int8x16x4_t q5bytes;
  2227. uint8x16x4_t q5h;
  2228. float sumf = 0;
  2229. for (int i = 0; i < nb; ++i) {
  2230. const float d = y[i].d * (float)x[i].d;
  2231. const int8_t * sc = x[i].scales;
  2232. const uint8_t * restrict q5 = x[i].qs;
  2233. const uint8_t * restrict qh = x[i].qh;
  2234. const int8_t * restrict q8 = y[i].qs;
  2235. const uint8x8_t qhbits = vld1_u8(qh);
  2236. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2237. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2238. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2239. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2240. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2241. q5h.val[2] = vbicq_u8(mh, htmp);
  2242. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2243. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2244. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2245. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2246. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2247. #if defined(__ARM_FEATURE_DOTPROD)
  2248. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2249. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2250. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2251. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2252. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2253. #else
  2254. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2255. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2256. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2257. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2258. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2259. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2260. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2261. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2262. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2263. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2264. sumf += d*sumi;
  2265. #endif
  2266. }
  2267. *s = sumf;
  2268. #elif defined __AVX2__
  2269. const __m256i m4 = _mm256_set1_epi8(0xF);
  2270. const __m256i mone = _mm256_set1_epi8(1);
  2271. __m256 acc = _mm256_setzero_ps();
  2272. for (int i = 0; i < nb; ++i) {
  2273. const uint8_t * restrict q5 = x[i].qs;
  2274. const int8_t * restrict q8 = y[i].qs;
  2275. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2276. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2277. const __m256i scale_l = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2278. const __m256i scale_h = _mm256_set_m128i(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2279. int64_t aux64;
  2280. memcpy(&aux64, x[i].qh, 8);
  2281. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2282. const __m256i haux256 = _mm256_set_m128i(_mm_srli_epi16(haux128, 2), haux128);
  2283. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2284. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2285. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2286. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2287. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2288. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2289. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2290. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2291. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2292. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2293. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2294. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2295. }
  2296. *s = hsum_float_8(acc);
  2297. #else
  2298. uint8_t aux8[QK_K];
  2299. int16_t aux16[16];
  2300. float sums [8];
  2301. memset(sums, 0, 8*sizeof(float));
  2302. float sumf = 0;
  2303. for (int i = 0; i < nb; ++i) {
  2304. const uint8_t * restrict q4 = x[i].qs;
  2305. const uint8_t * restrict hm = x[i].qh;
  2306. const int8_t * restrict q8 = y[i].qs;
  2307. uint8_t * restrict a = aux8;
  2308. for (int l = 0; l < 32; ++l) {
  2309. a[l+ 0] = q4[l] & 0xF;
  2310. a[l+32] = q4[l] >> 4;
  2311. }
  2312. for (int is = 0; is < 8; ++is) {
  2313. uint8_t m = 1 << is;
  2314. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2315. }
  2316. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2317. const int8_t * restrict sc = x[i].scales;
  2318. for (int j = 0; j < QK_K/16; ++j) {
  2319. const float dl = d * sc[j];
  2320. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2321. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2322. q8 += 16; a += 16;
  2323. }
  2324. }
  2325. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2326. *s = sumf;
  2327. #endif
  2328. }
  2329. #endif
  2330. #if QK_K == 256
  2331. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2332. assert(n % QK_K == 0);
  2333. const block_q6_K * restrict x = vx;
  2334. const block_q8_K * restrict y = vy;
  2335. const int nb = n / QK_K;
  2336. #ifdef __ARM_NEON
  2337. float sum = 0;
  2338. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2339. const int32x4_t vzero = vdupq_n_s32(0);
  2340. //const int8x16_t m32s = vdupq_n_s8(32);
  2341. const uint8x16_t mone = vdupq_n_u8(3);
  2342. int8x16x4_t q6bytes;
  2343. uint8x16x4_t q6h;
  2344. for (int i = 0; i < nb; ++i) {
  2345. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2346. const uint8_t * restrict q6 = x[i].ql;
  2347. const uint8_t * restrict qh = x[i].qh;
  2348. const int8_t * restrict q8 = y[i].qs;
  2349. const int8_t * restrict scale = x[i].scales;
  2350. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2351. const int8x16_t scales = vld1q_s8(scale);
  2352. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2353. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2354. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2355. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2356. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2357. int32_t isum_mins = vaddvq_s32(prod);
  2358. int32_t isum = 0;
  2359. for (int j = 0; j < QK_K/128; ++j) {
  2360. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2361. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2362. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2363. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2364. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2365. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2366. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2367. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2368. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2369. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2370. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2371. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2372. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2373. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2374. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2375. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2376. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2377. #if defined(__ARM_FEATURE_DOTPROD)
  2378. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2379. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2380. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2381. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2382. scale += 4;
  2383. #else
  2384. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2385. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2386. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2387. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2388. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2389. scale += 2;
  2390. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2391. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2392. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2393. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2394. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2395. scale += 2;
  2396. #endif
  2397. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2398. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2399. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2400. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2401. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2402. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2403. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2404. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2405. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2406. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2407. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2408. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2409. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2410. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2411. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2412. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2413. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2414. #if defined(__ARM_FEATURE_DOTPROD)
  2415. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2416. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2417. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2418. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2419. scale += 4;
  2420. //for (int l = 0; l < 4; ++l) {
  2421. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2422. // isum += vaddvq_s32(p) * *scale++;
  2423. //}
  2424. #else
  2425. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2426. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2427. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2428. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2429. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2430. scale += 2;
  2431. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2432. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2433. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2434. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2435. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2436. scale += 2;
  2437. #endif
  2438. }
  2439. //sum += isum * d_all * y[i].d;
  2440. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  2441. }
  2442. *s = sum;
  2443. #elif defined __AVX2__
  2444. const __m256i m4 = _mm256_set1_epi8(0xF);
  2445. const __m256i m2 = _mm256_set1_epi8(3);
  2446. const __m256i m32s = _mm256_set1_epi8(32);
  2447. __m256 acc = _mm256_setzero_ps();
  2448. for (int i = 0; i < nb; ++i) {
  2449. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2450. const uint8_t * restrict q4 = x[i].ql;
  2451. const uint8_t * restrict qh = x[i].qh;
  2452. const int8_t * restrict q8 = y[i].qs;
  2453. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  2454. __m256i sumi = _mm256_setzero_si256();
  2455. int is = 0;
  2456. for (int j = 0; j < QK_K/128; ++j) {
  2457. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  2458. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  2459. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  2460. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  2461. is += 4;
  2462. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2463. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2464. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  2465. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  2466. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  2467. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  2468. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  2469. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  2470. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  2471. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  2472. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  2473. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2474. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2475. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2476. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2477. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  2478. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  2479. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  2480. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  2481. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  2482. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  2483. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  2484. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  2485. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  2486. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  2487. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  2488. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  2489. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  2490. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  2491. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  2492. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  2493. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2494. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  2495. }
  2496. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  2497. }
  2498. *s = hsum_float_8(acc);
  2499. #else
  2500. int8_t aux8[QK_K];
  2501. int16_t aux16[8];
  2502. float sums [8];
  2503. int32_t aux32[8];
  2504. memset(sums, 0, 8*sizeof(float));
  2505. float sumf = 0;
  2506. for (int i = 0; i < nb; ++i) {
  2507. const uint8_t * restrict q4 = x[i].ql;
  2508. const uint8_t * restrict qh = x[i].qh;
  2509. const int8_t * restrict q8 = y[i].qs;
  2510. memset(aux32, 0, 8*sizeof(int32_t));
  2511. int8_t * restrict a = aux8;
  2512. for (int j = 0; j < QK_K; j += 128) {
  2513. for (int l = 0; l < 32; ++l) {
  2514. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2515. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2516. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2517. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2518. }
  2519. a += 128;
  2520. q4 += 64;
  2521. qh += 32;
  2522. }
  2523. a = aux8;
  2524. int is = 0;
  2525. for (int j = 0; j < QK_K/16; ++j) {
  2526. int scale = x[i].scales[is++];
  2527. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2528. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2529. q8 += 8; a += 8;
  2530. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2531. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2532. q8 += 8; a += 8;
  2533. }
  2534. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2535. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2536. }
  2537. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2538. *s = sumf;
  2539. #endif
  2540. }
  2541. #else
  2542. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2543. assert(n % QK_K == 0);
  2544. const block_q6_K * restrict x = vx;
  2545. const block_q8_K * restrict y = vy;
  2546. const int nb = n / QK_K;
  2547. #ifdef __ARM_NEON
  2548. float sum = 0;
  2549. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2550. const int32x4_t vzero = vdupq_n_s32(0);
  2551. const int8x16_t m32s = vdupq_n_s8(32);
  2552. const uint8x16_t mone = vdupq_n_u8(3);
  2553. int8x16x4_t q6bytes;
  2554. uint8x16x4_t q6h;
  2555. for (int i = 0; i < nb; ++i) {
  2556. const float d_all = (float)x[i].d;
  2557. const uint8_t * restrict q6 = x[i].ql;
  2558. const uint8_t * restrict qh = x[i].qh;
  2559. const int8_t * restrict q8 = y[i].qs;
  2560. const int8_t * restrict scale = x[i].scales;
  2561. int32_t isum = 0;
  2562. uint8x16_t qhbits = vld1q_u8(qh);
  2563. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  2564. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2565. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  2566. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  2567. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2568. shifted = vshrq_n_u8(qhbits, 4);
  2569. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2570. shifted = vshrq_n_u8(qhbits, 6);
  2571. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2572. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2573. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2574. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  2575. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  2576. #if defined(__ARM_FEATURE_DOTPROD)
  2577. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2578. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2579. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2580. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2581. #else
  2582. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2583. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2584. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2585. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2586. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2587. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2588. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2589. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2590. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2591. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  2592. #endif
  2593. sum += isum * d_all * y[i].d;
  2594. }
  2595. *s = sum;
  2596. #elif defined __AVX2__
  2597. const __m256i m4 = _mm256_set1_epi8(0xF);
  2598. const __m256i m2 = _mm256_set1_epi8(3);
  2599. const __m256i m32s = _mm256_set1_epi8(32);
  2600. __m256 acc = _mm256_setzero_ps();
  2601. for (int i = 0; i < nb; ++i) {
  2602. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2603. const uint8_t * restrict q4 = x[i].ql;
  2604. const uint8_t * restrict qh = x[i].qh;
  2605. const int8_t * restrict q8 = y[i].qs;
  2606. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  2607. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  2608. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  2609. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  2610. __m256i sumi = _mm256_setzero_si256();
  2611. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  2612. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  2613. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  2614. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  2615. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  2616. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_set_m128i(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  2617. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  2618. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  2619. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2620. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2621. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  2622. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  2623. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  2624. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  2625. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  2626. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  2627. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  2628. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  2629. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2630. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  2631. }
  2632. *s = hsum_float_8(acc);
  2633. #else
  2634. int8_t aux8[QK_K];
  2635. int16_t aux16[8];
  2636. float sums [8];
  2637. int32_t aux32[8];
  2638. memset(sums, 0, 8*sizeof(float));
  2639. float sumf = 0;
  2640. for (int i = 0; i < nb; ++i) {
  2641. const uint8_t * restrict q4 = x[i].ql;
  2642. const uint8_t * restrict qh = x[i].qh;
  2643. const int8_t * restrict q8 = y[i].qs;
  2644. memset(aux32, 0, 8*sizeof(int32_t));
  2645. int8_t * restrict a = aux8;
  2646. for (int l = 0; l < 16; ++l) {
  2647. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2648. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2649. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2650. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2651. }
  2652. int is = 0;
  2653. for (int j = 0; j < QK_K/16; ++j) {
  2654. int scale = x[i].scales[is++];
  2655. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2656. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2657. q8 += 8; a += 8;
  2658. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2659. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2660. q8 += 8; a += 8;
  2661. }
  2662. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2663. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2664. }
  2665. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2666. *s = sumf;
  2667. #endif
  2668. }
  2669. #endif