perplexity.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <cstring>
  6. #include <ctime>
  7. #include <sstream>
  8. #include <thread>
  9. #include <mutex>
  10. #include <vector>
  11. #include <array>
  12. #include <fstream>
  13. #include <sstream>
  14. #if defined(_MSC_VER)
  15. #pragma warning(disable: 4244 4267) // possible loss of data
  16. #endif
  17. struct results_perplexity {
  18. std::vector<llama_token> tokens;
  19. double ppl_value;
  20. std::vector<float> logits;
  21. std::vector<float> probs;
  22. };
  23. struct results_log_softmax {
  24. double log_softmax;
  25. float logit;
  26. float prob;
  27. };
  28. static void write_logfile(
  29. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  30. const struct results_perplexity & results
  31. ) {
  32. if (params.logdir.empty()) {
  33. return;
  34. }
  35. if (params.hellaswag) {
  36. fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  37. return;
  38. }
  39. const std::string timestamp = get_sortable_timestamp();
  40. const bool success = create_directory_with_parents(params.logdir);
  41. if (!success) {
  42. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  43. __func__, params.logdir.c_str());
  44. return;
  45. }
  46. const std::string logfile_path = params.logdir + timestamp + ".yml";
  47. FILE * logfile = fopen(logfile_path.c_str(), "w");
  48. if (logfile == NULL) {
  49. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  50. return;
  51. }
  52. fprintf(logfile, "binary: main\n");
  53. char model_desc[128];
  54. llama_model_desc(model, model_desc, sizeof(model_desc));
  55. dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
  56. fprintf(logfile, "\n");
  57. fprintf(logfile, "######################\n");
  58. fprintf(logfile, "# Perplexity Results #\n");
  59. fprintf(logfile, "######################\n");
  60. fprintf(logfile, "\n");
  61. dump_vector_float_yaml(logfile, "logits", results.logits);
  62. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  63. dump_vector_float_yaml(logfile, "probs", results.probs);
  64. llama_dump_timing_info_yaml(logfile, ctx);
  65. fclose(logfile);
  66. }
  67. static std::vector<float> softmax(const std::vector<float>& logits) {
  68. std::vector<float> probs(logits.size());
  69. float max_logit = logits[0];
  70. for (float v : logits) {
  71. max_logit = std::max(max_logit, v);
  72. }
  73. double sum_exp = 0.0;
  74. for (size_t i = 0; i < logits.size(); i++) {
  75. // Subtract the maximum logit value from the current logit value for numerical stability
  76. const float logit = logits[i] - max_logit;
  77. const float exp_logit = expf(logit);
  78. sum_exp += exp_logit;
  79. probs[i] = exp_logit;
  80. }
  81. for (size_t i = 0; i < probs.size(); i++) {
  82. probs[i] /= sum_exp;
  83. }
  84. return probs;
  85. }
  86. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  87. float max_logit = logits[0];
  88. for (int i = 1; i < n_vocab; ++i) {
  89. max_logit = std::max(max_logit, logits[i]);
  90. }
  91. double sum_exp = 0.0;
  92. for (int i = 0; i < n_vocab; ++i) {
  93. sum_exp += expf(logits[i] - max_logit);
  94. }
  95. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  96. }
  97. static void process_logits(
  98. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  99. double & nll, double & nll2, float * logit_history, float * prob_history
  100. ) {
  101. std::mutex mutex;
  102. int counter = 0;
  103. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  104. double local_nll = 0;
  105. double local_nll2 = 0;
  106. while (true) {
  107. std::unique_lock<std::mutex> lock(mutex);
  108. int i = counter++;
  109. if (i >= n_token) {
  110. nll += local_nll; nll2 += local_nll2;
  111. break;
  112. }
  113. lock.unlock();
  114. const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  115. const double v = -results.log_softmax;
  116. local_nll += v;
  117. local_nll2 += v*v;
  118. logit_history[i] = results.logit;
  119. prob_history[i] = results.prob;
  120. }
  121. };
  122. for (auto & w : workers) {
  123. w = std::thread(compute);
  124. }
  125. compute();
  126. for (auto & w : workers) {
  127. w.join();
  128. }
  129. }
  130. static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
  131. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  132. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  133. // Output: `perplexity: 13.5106 [114/114]`
  134. // BOS tokens will be added for each chunk before eval
  135. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  136. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  137. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  138. const int n_ctx = llama_n_ctx(ctx);
  139. if (int(tokens.size()) < 2*n_ctx) {
  140. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  141. n_ctx);
  142. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  143. return {std::move(tokens), 0., {}, {}};
  144. }
  145. std::vector<float> logit_history;
  146. std::vector<float> prob_history;
  147. logit_history.resize(tokens.size());
  148. prob_history.resize(tokens.size());
  149. if (params.ppl_stride <= 0) {
  150. fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  151. return {tokens, -1, logit_history, prob_history};
  152. }
  153. const int calc_chunk = n_ctx;
  154. fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  155. if (int(tokens.size()) <= calc_chunk) {
  156. fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  157. tokens.size(), n_ctx, params.ppl_stride);
  158. return {tokens, -1, logit_history, prob_history};
  159. }
  160. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  161. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  162. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  163. const int n_batch = params.n_batch;
  164. int count = 0;
  165. double nll = 0.0;
  166. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  167. for (int i = 0; i < n_chunk; ++i) {
  168. const int start = i * params.ppl_stride;
  169. const int end = start + calc_chunk;
  170. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  171. //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  172. std::vector<float> logits;
  173. const auto t_start = std::chrono::high_resolution_clock::now();
  174. // clear the KV cache
  175. llama_kv_cache_clear(ctx);
  176. for (int j = 0; j < num_batches; ++j) {
  177. const int batch_start = start + j * n_batch;
  178. const int batch_size = std::min(end - batch_start, n_batch);
  179. //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  180. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  181. //fprintf(stderr, "%s : failed to eval\n", __func__);
  182. return {tokens, -1, logit_history, prob_history};
  183. }
  184. // save original token and restore it after eval
  185. const auto token_org = tokens[batch_start];
  186. // add BOS token for the first batch of each chunk
  187. if (add_bos && j == 0) {
  188. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  189. }
  190. const auto batch_logits = llama_get_logits(ctx);
  191. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  192. if (j == 0) {
  193. tokens[batch_start] = token_org;
  194. }
  195. }
  196. const auto t_end = std::chrono::high_resolution_clock::now();
  197. if (i == 0) {
  198. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  199. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  200. int total_seconds = (int)(t_total * n_chunk);
  201. if (total_seconds >= 60*60) {
  202. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  203. total_seconds = total_seconds % (60*60);
  204. }
  205. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  206. }
  207. //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  208. for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
  209. // Calculate probability of next token, given the previous ones.
  210. const std::vector<float> tok_logits(
  211. logits.begin() + (j + 0) * n_vocab,
  212. logits.begin() + (j + 1) * n_vocab);
  213. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  214. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  215. prob_history[start + j + 1] = prob;
  216. nll += -std::log(prob);
  217. ++count;
  218. }
  219. // perplexity is e^(average negative log-likelihood)
  220. if (params.ppl_output_type == 0) {
  221. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  222. } else {
  223. printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  224. }
  225. fflush(stdout);
  226. }
  227. printf("\n");
  228. return {tokens, std::exp(nll / count), logit_history, prob_history};
  229. }
  230. static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
  231. if (params.ppl_stride > 0) {
  232. return perplexity_v2(ctx, params);
  233. }
  234. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  235. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  236. // Output: `perplexity: 13.5106 [114/114]`
  237. // BOS tokens will be added for each chunk before eval
  238. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  239. const int n_ctx = llama_n_ctx(ctx);
  240. auto tim1 = std::chrono::high_resolution_clock::now();
  241. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  242. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  243. auto tim2 = std::chrono::high_resolution_clock::now();
  244. fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  245. if (int(tokens.size()) < 2*n_ctx) {
  246. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
  247. n_ctx);
  248. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  249. return {std::move(tokens), 0., {}, {}};
  250. }
  251. std::vector<float> logit_history;
  252. logit_history.resize(tokens.size());
  253. std::vector<float> prob_history;
  254. prob_history.resize(tokens.size());
  255. const int n_chunk_max = tokens.size() / n_ctx;
  256. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  257. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  258. const int n_batch = params.n_batch;
  259. int count = 0;
  260. double nll = 0.0;
  261. double nll2 = 0.0;
  262. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  263. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  264. for (int i = 0; i < n_chunk; ++i) {
  265. const int start = i * n_ctx;
  266. const int end = start + n_ctx;
  267. const int num_batches = (n_ctx + n_batch - 1) / n_batch;
  268. std::vector<float> logits;
  269. const auto t_start = std::chrono::high_resolution_clock::now();
  270. // clear the KV cache
  271. llama_kv_cache_clear(ctx);
  272. for (int j = 0; j < num_batches; ++j) {
  273. const int batch_start = start + j * n_batch;
  274. const int batch_size = std::min(end - batch_start, n_batch);
  275. // save original token and restore it after eval
  276. const auto token_org = tokens[batch_start];
  277. // add BOS token for the first batch of each chunk
  278. if (add_bos && j == 0) {
  279. tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
  280. }
  281. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
  282. fprintf(stderr, "%s : failed to eval\n", __func__);
  283. return {tokens, -1, logit_history, prob_history};
  284. }
  285. // restore the original token in case it was set to BOS
  286. tokens[batch_start] = token_org;
  287. const auto * batch_logits = llama_get_logits(ctx);
  288. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  289. }
  290. const auto t_end = std::chrono::high_resolution_clock::now();
  291. if (i == 0) {
  292. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  293. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  294. int total_seconds = (int)(t_total * n_chunk);
  295. if (total_seconds >= 60*60) {
  296. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  297. total_seconds = total_seconds % (60*60);
  298. }
  299. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  300. }
  301. // We get the logits for all the tokens in the context window (params.n_ctx)
  302. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  303. // calculate the perplexity over the last half of the window (so the model always has
  304. // some context to predict the token).
  305. //
  306. // We rely on the fact that attention in the forward pass only looks at previous
  307. // tokens here, so the logits returned for each token are an accurate representation
  308. // of what the model would have predicted at that point.
  309. //
  310. // Example, we have a context window of 512, we will compute perplexity for each of the
  311. // last 256 tokens. Then, we split the input up into context window size chunks to
  312. // process the entire prompt.
  313. const int first = n_ctx/2;
  314. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
  315. workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
  316. count += n_ctx - first - 1;
  317. // perplexity is e^(average negative log-likelihood)
  318. if (params.ppl_output_type == 0) {
  319. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  320. } else {
  321. double av = nll/count;
  322. double av2 = nll2/count - av*av;
  323. if (av2 > 0) av2 = sqrt(av2/(count-1));
  324. printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
  325. }
  326. fflush(stdout);
  327. }
  328. printf("\n");
  329. nll2 /= count;
  330. nll /= count;
  331. const double ppl = exp(nll);
  332. nll2 -= nll * nll;
  333. if (nll2 > 0) {
  334. nll2 = sqrt(nll2/(count-1));
  335. printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  336. } else {
  337. printf("Unexpected negative standard deviation of log(prob)\n");
  338. }
  339. return {tokens, ppl, logit_history, prob_history};
  340. }
  341. static std::vector<float> evaluate_tokens(llama_context * ctx, std::vector<int> & tokens,
  342. int n_past, int n_batch, int n_vocab) {
  343. std::vector<float> result;
  344. result.reserve(tokens.size() * n_vocab);
  345. size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
  346. for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
  347. size_t n_tokens = tokens.size() - i_chunk * n_batch;
  348. n_tokens = std::min(n_tokens, size_t(n_batch));
  349. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  350. if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
  351. fprintf(stderr, "%s : failed to eval\n", __func__);
  352. return {};
  353. }
  354. const auto logits = llama_get_logits(ctx);
  355. result.insert(result.end(), logits, logits + n_tokens * n_vocab);
  356. n_past += n_tokens;
  357. }
  358. return result;
  359. }
  360. static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  361. // Calculates hellaswag score (acc_norm) from prompt
  362. //
  363. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  364. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  365. //
  366. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  367. //
  368. // Datafile layout:
  369. // ['??'] denotes json fields
  370. // 6 lines per task:
  371. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  372. // ['label'] - The index the best common sense ending aka gold ending
  373. // ['endings'][0] - Endings added to the first part of the query
  374. // ['endings'][1]
  375. // ['endings'][2]
  376. // ['endings'][3]
  377. std::vector<std::string> prompt_lines;
  378. std::istringstream strstream(params.prompt);
  379. std::string line;
  380. while (std::getline(strstream,line,'\n')) {
  381. prompt_lines.push_back(line);
  382. }
  383. if( prompt_lines.size() % 6 != 0) {
  384. fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
  385. return;
  386. }
  387. size_t hs_task_count = prompt_lines.size()/6;
  388. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  389. const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
  390. fprintf(stderr, "================================= is_spm = %d\n", is_spm);
  391. // This is needed as usual for LLaMA models
  392. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  393. // Number of tasks to use when computing the score
  394. if ( params.hellaswag_tasks < hs_task_count ) {
  395. hs_task_count = params.hellaswag_tasks;
  396. }
  397. // The tasks should be randomized so the score stabilizes quickly.
  398. bool randomize_tasks = true;
  399. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  400. std::mt19937 rng(1);
  401. // Dataholder for hellaswag tasks
  402. struct hs_data_t {
  403. std::string context;
  404. size_t gold_ending_idx;
  405. std::string ending[4];
  406. size_t ending_logprob_count[4];
  407. double ending_logprob[4];
  408. };
  409. fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  410. // Select and read data from prompt lines
  411. hs_data_t *hs_data = new hs_data_t[hs_task_count];
  412. for (size_t i=0; i < hs_task_count; i++) {
  413. size_t idx = i;
  414. // Select a random example of those left in the prompt
  415. if (randomize_tasks) {
  416. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  417. idx = dist(rng);
  418. }
  419. hs_data[i].context = prompt_lines[idx*6];
  420. hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  421. for (size_t j=0; j < 4; j++) {
  422. hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
  423. }
  424. // Delete the selected random example from the prompt
  425. if (randomize_tasks) {
  426. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  427. }
  428. }
  429. fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
  430. printf("\ntask\tacc_norm\n");
  431. double acc = 0.0f;
  432. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  433. const int n_ctx = llama_n_ctx(ctx);
  434. std::vector<std::vector<int>> ending_tokens(4);
  435. std::vector<float> tok_logits(n_vocab);
  436. for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
  437. // Tokenize the context to count tokens
  438. std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
  439. size_t context_size = context_embd.size();
  440. for (int i = 0; i < 4; ++i) {
  441. ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
  442. for (int k = 0; k < int(context_size); ++k) {
  443. if (ending_tokens[i][k] != context_embd[k]) {
  444. fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
  445. break;
  446. }
  447. }
  448. }
  449. // Do the 1st ending
  450. // In this case we include the context when evaluating
  451. //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
  452. auto query_embd = ending_tokens[0];
  453. auto query_size = query_embd.size();
  454. // Stop if query wont fit the ctx window
  455. if (query_size > (size_t)n_ctx) {
  456. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  457. return;
  458. }
  459. // Speedup small evaluations by evaluating atleast 32 tokens
  460. if (query_size < 32) {
  461. query_embd.resize(32);
  462. }
  463. // clear the KV cache
  464. llama_kv_cache_clear(ctx);
  465. auto logits = evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
  466. if (logits.empty()) {
  467. fprintf(stderr, "%s : failed to eval\n", __func__);
  468. return;
  469. }
  470. std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
  471. const auto first_probs = softmax(tok_logits);
  472. hs_data[task_idx].ending_logprob_count[0] = 1;
  473. hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
  474. // Calculate the logprobs over the ending
  475. for (size_t j = context_size; j < query_size - 1; j++) {
  476. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  477. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  478. hs_data[task_idx].ending_logprob[0] += std::log(prob);
  479. hs_data[task_idx].ending_logprob_count[0]++;
  480. }
  481. // Calculate the mean token logprob for acc_norm
  482. hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
  483. // Do the remaining endings
  484. // For these, we use the bare ending with n_past = context_size
  485. //
  486. for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
  487. // Tokenize the query
  488. query_embd.resize(ending_tokens[ending_idx].size() - context_size);
  489. std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
  490. query_size = query_embd.size();
  491. // Stop if query wont fit the ctx window
  492. if (context_size + query_size > (size_t)n_ctx) {
  493. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  494. return;
  495. }
  496. // Speedup small evaluations by evaluating atleast 32 tokens
  497. // No, resizing to 32 is actually slightly slower (at least on CUDA)
  498. //if (query_size < 32) {
  499. // query_embd.resize(32);
  500. //}
  501. // Evaluate the query
  502. logits = evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab);
  503. if (logits.empty()) {
  504. fprintf(stderr, "%s : failed to eval\n", __func__);
  505. return;
  506. }
  507. hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
  508. hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
  509. // Calculate the logprobs over the ending
  510. for (size_t j = 0; j < query_size - 1; j++) {
  511. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  512. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  513. hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
  514. hs_data[task_idx].ending_logprob_count[ending_idx]++;
  515. }
  516. // Calculate the mean token logprob for acc_norm
  517. hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
  518. // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
  519. // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
  520. }
  521. // Find the ending with maximum logprob
  522. size_t ending_logprob_max_idx = 0;
  523. double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
  524. for (size_t j = 1; j < 4; j++) {
  525. if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
  526. ending_logprob_max_idx = j;
  527. ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
  528. }
  529. }
  530. // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
  531. // If the gold ending got the maximum logprobe add one accuracy point
  532. if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
  533. acc += 1.0;
  534. }
  535. // Print the accumulated accuracy mean x 100
  536. printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
  537. fflush(stdout);
  538. }
  539. delete [] hs_data;
  540. printf("\n");
  541. }
  542. struct winogrande_entry {
  543. std::string first;
  544. std::string second;
  545. std::array<std::string, 2> choices;
  546. int answer;
  547. };
  548. static std::vector<winogrande_entry> load_winogrande_from_csv(const std::string& prompt) {
  549. std::vector<winogrande_entry> result;
  550. std::istringstream in(prompt);
  551. std::string line;
  552. std::array<int, 4> comma_pos;
  553. while (true) {
  554. std::getline(in, line);
  555. if (in.fail() || in.eof()) break;
  556. int ipos = 0;
  557. bool quote_open = false;
  558. for (int i = 0; i < int(line.size()); ++i) {
  559. if (!quote_open) {
  560. if (line[i] == ',') {
  561. comma_pos[ipos++] = i;
  562. if (ipos == 4) break;
  563. }
  564. else if (line[i] == '"') {
  565. quote_open = true;
  566. }
  567. }
  568. else {
  569. if (line[i] == '"') {
  570. quote_open = false;
  571. }
  572. }
  573. }
  574. if (ipos != 4) {
  575. printf("%s: failed to find comma separators in <%s>\n", __func__, line.c_str());
  576. continue;
  577. }
  578. auto sentence = line[comma_pos[0]+1] == '"' ? line.substr(comma_pos[0]+2, comma_pos[1] - comma_pos[0] - 3)
  579. : line.substr(comma_pos[0]+1, comma_pos[1] - comma_pos[0] - 1);
  580. auto choice1 = line.substr(comma_pos[1]+1, comma_pos[2] - comma_pos[1] - 1);
  581. auto choice2 = line.substr(comma_pos[2]+1, comma_pos[3] - comma_pos[2] - 1);
  582. auto answer = line.substr(comma_pos[3]+1, line.size() - comma_pos[3] - 1);
  583. auto index = line.substr(0, comma_pos[0]);
  584. int where = 0;
  585. for ( ; where < int(sentence.size()); ++where) {
  586. if (sentence[where] == '_') break;
  587. }
  588. if (where == int(sentence.size())) {
  589. printf("%s: no _ in <%s>\n", __func__, sentence.c_str());
  590. continue;
  591. }
  592. std::istringstream stream(answer.c_str());
  593. int i_answer; stream >> i_answer;
  594. if (stream.fail() || i_answer < 1 || i_answer > 2) {
  595. printf("%s: failed to parse answer <%s>\n", __func__, answer.c_str());
  596. continue;
  597. }
  598. result.emplace_back();
  599. auto& wg = result.back();
  600. wg.first = sentence.substr(0, where);
  601. wg.second = sentence.substr(where + 1, sentence.size() - where - 1);
  602. wg.choices[0] = std::move(choice1);
  603. wg.choices[1] = std::move(choice2);
  604. wg.answer = i_answer;
  605. }
  606. return result;
  607. }
  608. /*
  609. * Evaluates the Winogrande score.
  610. * Uses a CSV containing task index, dentence, choice 1, choice 2, answer (1 or 2)
  611. * You can get one such dataset from e.g. https://huggingface.co/datasets/ikawrakow/winogrande-eval-for-llama.cpp
  612. * As an example, the 1st row in the above dataset is
  613. *
  614. * 0,Sarah was a much better surgeon than Maria so _ always got the easier cases.,Sarah,Maria,2
  615. *
  616. */
  617. static void winogrande_score(llama_context * ctx, const gpt_params & params) {
  618. constexpr int k_min_trailing_ctx = 3;
  619. auto data = load_winogrande_from_csv(params.prompt);
  620. if (data.empty()) {
  621. fprintf(stderr, "%s: no tasks\n", __func__);
  622. return;
  623. }
  624. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, data.size());
  625. if (params.winogrande_tasks > 0 && params.winogrande_tasks < data.size()) {
  626. fprintf(stderr, "%s : selecting %zu random tasks\n", __func__, params.winogrande_tasks);
  627. std::mt19937 rng(1);
  628. std::vector<int> aux(data.size());
  629. for (int i = 0; i < int(data.size()); ++i) {
  630. aux[i] = i;
  631. }
  632. float scale = 1/(1.f + (float)rng.max());
  633. std::vector<winogrande_entry> selected;
  634. selected.reserve(params.winogrande_tasks);
  635. for (int i = 0; i < int(params.winogrande_tasks); ++i) {
  636. int j = int(scale*rng()*aux.size());
  637. selected[i] = std::move(data[aux[j]]);
  638. aux[j] = aux.back();
  639. aux.pop_back();
  640. }
  641. data = std::move(selected);
  642. }
  643. // This is needed as usual for LLaMA models
  644. const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
  645. fprintf(stderr, "%s : calculating winogrande score over selected tasks.\n", __func__);
  646. const int n_vocab = llama_n_vocab(llama_get_model(ctx));
  647. const int n_ctx = llama_n_ctx(ctx);
  648. std::vector<float> tok_logits(n_vocab);
  649. int n_correct = 0;
  650. int n_done = 0;
  651. for (size_t task_idx = 0; task_idx < data.size(); task_idx++) {
  652. const auto& task = data[task_idx];
  653. auto base_context = ::llama_tokenize(ctx, task.first, add_bos);
  654. auto base_ctx_1st = ::llama_tokenize(ctx, task.first + task.choices[0], add_bos);
  655. auto base_ctx_2nd = ::llama_tokenize(ctx, task.first + task.choices[1], add_bos);
  656. auto sentence_1st = task.first + task.choices[0] + task.second;
  657. auto sentence_2nd = task.first + task.choices[1] + task.second;
  658. auto query_1st = ::llama_tokenize(ctx, sentence_1st, add_bos);
  659. auto query_2nd = ::llama_tokenize(ctx, sentence_2nd, add_bos);
  660. if (query_1st.size() > (size_t)n_ctx || query_2nd.size() > (size_t)n_ctx) {
  661. fprintf(stderr, "%s : number of tokens in queries %zu, %zu > n_ctxl\n", __func__, query_1st.size(), query_2nd.size());
  662. return;
  663. }
  664. auto query_1st_size = query_1st.size();
  665. auto query_2nd_size = query_2nd.size();
  666. // Speedup small evaluations by evaluating atleast 32 tokens
  667. // For Winogrande this seems to slow it down rather than speed it up.
  668. //if (query_1st.size() < 32) query_1st.resize(32);
  669. //if (query_2nd.size() < 32) query_2nd.resize(32);
  670. llama_kv_cache_clear(ctx);
  671. auto logits_1st = evaluate_tokens(ctx, query_1st, 0, params.n_batch, n_vocab);
  672. llama_kv_cache_clear(ctx);
  673. auto logits_2nd = evaluate_tokens(ctx, query_2nd, 0, params.n_batch, n_vocab);
  674. if (logits_1st.empty() || logits_2nd.empty()) {
  675. fprintf(stderr, "%s : failed to eval\n", __func__);
  676. return;
  677. }
  678. bool skip_choice = query_1st_size - base_ctx_1st.size() > k_min_trailing_ctx &&
  679. query_2nd_size - base_ctx_2nd.size() > k_min_trailing_ctx;
  680. float score_1st = 0;
  681. bool is_nan_1st = false;
  682. const auto& base_1 = skip_choice ? base_ctx_1st : base_context;
  683. const int last_1st = query_1st_size - base_1.size() > 1 ? 1 : 0;
  684. for (size_t j = base_1.size()-1; j < query_1st_size-1-last_1st; ++j) {
  685. std::memcpy(tok_logits.data(), logits_1st.data() + j*n_vocab, n_vocab*sizeof(float));
  686. const float prob = softmax(tok_logits)[query_1st[j+1]];
  687. if (std::isnan(prob) || !prob) {
  688. fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
  689. prob, j, sentence_1st.c_str(), base_context.size());
  690. is_nan_1st = true;
  691. break;
  692. }
  693. score_1st += std::log(prob);
  694. }
  695. score_1st /= (query_1st_size - base_1.size() - last_1st);
  696. float score_2nd = 0;
  697. bool is_nan_2nd = false;
  698. const auto& base_2 = skip_choice ? base_ctx_2nd : base_context;
  699. const int last_2nd = query_2nd_size - base_2.size() > 1 ? 1 : 0;
  700. for (size_t j = base_2.size()-1; j < query_2nd_size-1-last_2nd; ++j) {
  701. std::memcpy(tok_logits.data(), logits_2nd.data() + j*n_vocab, n_vocab*sizeof(float));
  702. const float prob = softmax(tok_logits)[query_2nd[j+1]];
  703. if (std::isnan(prob) || !prob) {
  704. fprintf(stderr, "%s: %g probability for token %zu when evaluating <%s>. Base context has %zu tokens\n", __func__,
  705. prob, j, sentence_2nd.c_str(), base_context.size());
  706. is_nan_2nd = true;
  707. break;
  708. }
  709. score_2nd += std::log(prob);
  710. }
  711. score_2nd /= (query_2nd_size - base_2.size() - last_2nd);
  712. if (is_nan_1st || is_nan_2nd) {
  713. continue;
  714. }
  715. if (std::isnan(score_1st) || std::isnan(score_2nd)) {
  716. printf("================== NaN score %g, %g) for:\n", score_1st, score_2nd);
  717. printf("Q1: <%s> - %zu tokens\n", sentence_1st.c_str(), query_1st_size);
  718. printf("Q2: <%s> - %zu tokens\n", sentence_2nd.c_str(), query_2nd_size);
  719. printf("B : <%s> - %zu tokens\n", task.first.c_str(), base_context.size());
  720. printf("base_1 has %zu tokens, base_2 has %zu tokens, skip_choice = %d\n", base_1.size(), base_2.size(), skip_choice);
  721. continue;
  722. }
  723. int result = score_1st > score_2nd ? 1 : 2;
  724. if (result == task.answer) {
  725. ++n_correct;
  726. }
  727. ++n_done;
  728. // Print the accumulated accuracy mean x 100
  729. printf("%zu\t%.4lf\t%10.6f %10.6f %d %d\n",task_idx+1, 100.0 * n_correct/n_done,score_1st,score_2nd,result,task.answer);
  730. fflush(stdout);
  731. }
  732. printf("\n");
  733. if (n_done < 100) return;
  734. const float p = 1.f*n_correct/n_done;
  735. const float sigma = 100.f*sqrt(p*(1-p)/(n_done-1));
  736. printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma);
  737. }
  738. int main(int argc, char ** argv) {
  739. gpt_params params;
  740. params.n_batch = 512;
  741. if (!gpt_params_parse(argc, argv, params)) {
  742. return 1;
  743. }
  744. params.logits_all = true;
  745. params.n_batch = std::min(params.n_batch, params.n_ctx);
  746. if (params.ppl_stride > 0) {
  747. fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  748. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  749. params.n_ctx += params.ppl_stride/2;
  750. }
  751. print_build_info();
  752. if (params.seed == LLAMA_DEFAULT_SEED) {
  753. params.seed = time(NULL);
  754. }
  755. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  756. std::mt19937 rng(params.seed);
  757. if (params.random_prompt) {
  758. params.prompt = gpt_random_prompt(rng);
  759. }
  760. llama_backend_init(params.numa);
  761. llama_model * model;
  762. llama_context * ctx;
  763. // load the model and apply lora adapter, if any
  764. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  765. if (model == NULL) {
  766. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  767. return 1;
  768. }
  769. const int n_ctx_train = llama_n_ctx_train(model);
  770. if (params.n_ctx > n_ctx_train) {
  771. fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
  772. __func__, n_ctx_train, params.n_ctx);
  773. }
  774. // print system information
  775. {
  776. fprintf(stderr, "\n");
  777. fprintf(stderr, "%s\n", get_system_info(params).c_str());
  778. }
  779. struct results_perplexity results;
  780. if (params.hellaswag) {
  781. hellaswag_score(ctx, params);
  782. } else if (params.winogrande) {
  783. winogrande_score(ctx, params);
  784. } else {
  785. results = perplexity(ctx, params);
  786. }
  787. llama_print_timings(ctx);
  788. write_logfile(ctx, params, model, results);
  789. llama_free(ctx);
  790. llama_free_model(model);
  791. llama_backend_free();
  792. return 0;
  793. }