| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250 |
- #include "common.h"
- #include "llama.h"
- #include <algorithm>
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- // mutates the input string
- static std::vector<int> parse_list(char * p) {
- std::vector<int> ret;
- char * q = p;
- while (*p) {
- if (*p == ',') {
- *p = '\0';
- ret.push_back(std::atoi(q));
- q = p + 1;
- }
- ++p;
- }
- ret.push_back(std::atoi(q));
- return ret;
- }
- int main(int argc, char ** argv) {
- gpt_params params;
- if (argc == 1 || argv[1][0] == '-') {
- printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
- printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
- printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
- return 1 ;
- }
- int n_kv_max = 2048;
- int is_pp_shared = 0;
- int n_gpu_layers = 0;
- int mmq = 0;
- std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
- std::vector<int> n_tg = { 128, 256, };
- std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
- //std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
- if (argc >= 2) {
- params.model = argv[1];
- }
- if (argc >= 3) {
- n_kv_max = std::atoi(argv[2]);
- }
- if (argc >= 4) {
- is_pp_shared = std::atoi(argv[3]);
- }
- if (argc >= 5) {
- n_gpu_layers = std::atoi(argv[4]);
- }
- if (argc >= 6) {
- mmq = std::atoi(argv[5]);
- }
- if (argc >= 7) {
- n_pp = parse_list(argv[6]);
- }
- if (argc >= 8) {
- n_tg = parse_list(argv[7]);
- }
- if (argc >= 9) {
- n_pl = parse_list(argv[8]);
- }
- // init LLM
- llama_backend_init(params.numa);
- // initialize the model
- llama_model_params model_params = llama_model_default_params();
- const std::vector<float> t_split(llama_max_devices(), 0.0f);
- model_params.n_gpu_layers = n_gpu_layers;
- model_params.tensor_split = t_split.data();
- llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.seed = 1234;
- ctx_params.n_ctx = n_kv_max;
- ctx_params.n_batch = 512;
- ctx_params.mul_mat_q = mmq;
- ctx_params.n_threads = params.n_threads;
- ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
- if (ctx == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
- // decode in batches of ctx_params.n_batch tokens
- auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
- for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
- const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
- llama_batch batch_view = {
- n_tokens,
- batch.token + i,
- nullptr,
- batch.pos + i,
- batch.n_seq_id + i,
- batch.seq_id + i,
- batch.logits + i,
- 0, 0, 0, // unused
- };
- const int ret = llama_decode(ctx, batch_view);
- if (ret != 0) {
- LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
- return false;
- }
- }
- return true;
- };
- // warm up
- {
- for (int i = 0; i < 16; ++i) {
- llama_batch_add(batch, 0, i, { 0 }, false);
- }
- if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- }
- LOG_TEE("\n");
- LOG_TEE("%s: n_kv_max = %d, is_pp_shared = %d, n_gpu_layers = %d, mmq = %d, n_threads = %d, n_threads_batch = %d\n", __func__, n_kv_max, is_pp_shared, n_gpu_layers, mmq, ctx_params.n_threads, ctx_params.n_threads_batch);
- LOG_TEE("\n");
- LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
- LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
- for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
- for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
- for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
- const int pp = n_pp[i_pp];
- const int tg = n_tg[i_tg];
- const int pl = n_pl[i_pl];
- const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
- if (n_ctx_req > n_kv_max) {
- continue;
- }
- llama_batch_clear(batch);
- const int n_tokens = is_pp_shared ? pp : pl*pp;
- for (int i = 0; i < n_tokens; ++i) {
- llama_batch_add(batch, 0, i, { 0 }, false);
- }
- batch.logits[batch.n_tokens - 1] = true;
- const auto t_pp_start = ggml_time_us();
- llama_kv_cache_clear(ctx);
- if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- if (is_pp_shared) {
- for (int32_t i = 1; i < pl; ++i) {
- llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
- }
- }
- const auto t_pp_end = ggml_time_us();
- const auto t_tg_start = ggml_time_us();
- for (int i = 0; i < tg; ++i) {
- llama_batch_clear(batch);
- for (int j = 0; j < pl; ++j) {
- llama_batch_add(batch, 0, pp + i, { j }, true);
- }
- if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
- LOG_TEE("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- }
- const auto t_tg_end = ggml_time_us();
- const int32_t n_kv = n_ctx_req;
- const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
- const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
- const float t = t_pp + t_tg;
- const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
- const float speed_tg = pl*tg / t_tg;
- const float speed = n_kv / t;
- LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
- }
- }
- }
- llama_print_timings(ctx);
- llama_batch_free(batch);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|