ggml.c 666 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. GGML_ASSERT(false);
  185. return NULL;
  186. }
  187. return aligned_memory;
  188. }
  189. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  190. #ifdef GGML_USE_CPU_HBM
  191. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  192. #else
  193. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  194. #endif
  195. #endif
  196. inline static void * ggml_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  199. return NULL;
  200. }
  201. void * result = malloc(size);
  202. if (result == NULL) {
  203. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. }
  206. return result;
  207. }
  208. // calloc
  209. inline static void * ggml_calloc(size_t num, size_t size) {
  210. if (num == 0 || size == 0) {
  211. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  212. return NULL;
  213. }
  214. void * result = calloc(num, size);
  215. if (result == NULL) {
  216. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  217. GGML_ASSERT(false);
  218. }
  219. return result;
  220. }
  221. #define GGML_MALLOC(size) ggml_malloc(size)
  222. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  223. #define GGML_FREE(ptr) free(ptr)
  224. #define UNUSED GGML_UNUSED
  225. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  226. #if defined(GGML_USE_ACCELERATE)
  227. #include <Accelerate/Accelerate.h>
  228. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  229. #include "ggml-opencl.h"
  230. #endif
  231. #elif defined(GGML_USE_OPENBLAS)
  232. #if defined(GGML_BLAS_USE_MKL)
  233. #include <mkl.h>
  234. #else
  235. #include <cblas.h>
  236. #endif
  237. #elif defined(GGML_USE_CUBLAS)
  238. #include "ggml-cuda.h"
  239. #elif defined(GGML_USE_CLBLAST)
  240. #include "ggml-opencl.h"
  241. #elif defined(GGML_USE_VULKAN)
  242. #include "ggml-vulkan.h"
  243. #elif defined(GGML_USE_SYCL)
  244. #include "ggml-sycl.h"
  245. #endif
  246. // floating point type used to accumulate sums
  247. typedef double ggml_float;
  248. #undef MIN
  249. #undef MAX
  250. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  251. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  252. //
  253. // global data
  254. //
  255. // precomputed gelu table for f16 (128 KB)
  256. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  257. // precomputed quick gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  264. float ggml_table_f32_f16[1 << 16];
  265. // note: do not use these inside ggml.c
  266. // these are meant to be used via the ggml.h API
  267. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  268. return (float) GGML_FP16_TO_FP32(x);
  269. }
  270. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  271. return GGML_FP32_TO_FP16(x);
  272. }
  273. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  274. for (int i = 0; i < n; i++) {
  275. y[i] = GGML_FP16_TO_FP32(x[i]);
  276. }
  277. }
  278. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  279. int i = 0;
  280. #if defined(__F16C__)
  281. for (; i + 7 < n; i += 8) {
  282. __m256 x_vec = _mm256_loadu_ps(x + i);
  283. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  284. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  285. }
  286. for(; i + 3 < n; i += 4) {
  287. __m128 x_vec = _mm_loadu_ps(x + i);
  288. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  290. }
  291. #endif
  292. for (; i < n; i++) {
  293. y[i] = GGML_FP32_TO_FP16(x[i]);
  294. }
  295. }
  296. //
  297. // timing
  298. //
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. static int64_t timer_freq, timer_start;
  301. void ggml_time_init(void) {
  302. LARGE_INTEGER t;
  303. QueryPerformanceFrequency(&t);
  304. timer_freq = t.QuadPart;
  305. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  306. // and the uptime is high enough.
  307. // We subtract the program start time to reduce the likelihood of that happening.
  308. QueryPerformanceCounter(&t);
  309. timer_start = t.QuadPart;
  310. }
  311. int64_t ggml_time_ms(void) {
  312. LARGE_INTEGER t;
  313. QueryPerformanceCounter(&t);
  314. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  315. }
  316. int64_t ggml_time_us(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  320. }
  321. #else
  322. void ggml_time_init(void) {}
  323. int64_t ggml_time_ms(void) {
  324. struct timespec ts;
  325. clock_gettime(CLOCK_MONOTONIC, &ts);
  326. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  327. }
  328. int64_t ggml_time_us(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  332. }
  333. #endif
  334. int64_t ggml_cycles(void) {
  335. return clock();
  336. }
  337. int64_t ggml_cycles_per_ms(void) {
  338. return CLOCKS_PER_SEC/1000;
  339. }
  340. #ifdef GGML_PERF
  341. #define ggml_perf_time_ms() ggml_time_ms()
  342. #define ggml_perf_time_us() ggml_time_us()
  343. #define ggml_perf_cycles() ggml_cycles()
  344. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  345. #else
  346. #define ggml_perf_time_ms() 0
  347. #define ggml_perf_time_us() 0
  348. #define ggml_perf_cycles() 0
  349. #define ggml_perf_cycles_per_ms() 0
  350. #endif
  351. //
  352. // cache line
  353. //
  354. #if defined(__cpp_lib_hardware_interference_size)
  355. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  356. #else
  357. #if defined(__POWER9_VECTOR__)
  358. #define CACHE_LINE_SIZE 128
  359. #else
  360. #define CACHE_LINE_SIZE 64
  361. #endif
  362. #endif
  363. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  364. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  365. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  366. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  367. [GGML_TYPE_I8] = {
  368. .type_name = "i8",
  369. .blck_size = 1,
  370. .type_size = sizeof(int8_t),
  371. .is_quantized = false,
  372. },
  373. [GGML_TYPE_I16] = {
  374. .type_name = "i16",
  375. .blck_size = 1,
  376. .type_size = sizeof(int16_t),
  377. .is_quantized = false,
  378. },
  379. [GGML_TYPE_I32] = {
  380. .type_name = "i32",
  381. .blck_size = 1,
  382. .type_size = sizeof(int32_t),
  383. .is_quantized = false,
  384. },
  385. [GGML_TYPE_F32] = {
  386. .type_name = "f32",
  387. .blck_size = 1,
  388. .type_size = sizeof(float),
  389. .is_quantized = false,
  390. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  391. .vec_dot_type = GGML_TYPE_F32,
  392. .nrows = 1,
  393. },
  394. [GGML_TYPE_F16] = {
  395. .type_name = "f16",
  396. .blck_size = 1,
  397. .type_size = sizeof(ggml_fp16_t),
  398. .is_quantized = false,
  399. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  400. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  401. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  402. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  403. .vec_dot_type = GGML_TYPE_F16,
  404. .nrows = 1,
  405. },
  406. [GGML_TYPE_Q4_0] = {
  407. .type_name = "q4_0",
  408. .blck_size = QK4_0,
  409. .type_size = sizeof(block_q4_0),
  410. .is_quantized = true,
  411. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  412. .from_float = quantize_row_q4_0,
  413. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  414. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  415. .vec_dot_type = GGML_TYPE_Q8_0,
  416. #if defined (__ARM_FEATURE_MATMUL_INT8)
  417. .nrows = 2,
  418. #else
  419. .nrows = 1,
  420. #endif
  421. },
  422. [GGML_TYPE_Q4_1] = {
  423. .type_name = "q4_1",
  424. .blck_size = QK4_1,
  425. .type_size = sizeof(block_q4_1),
  426. .is_quantized = true,
  427. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  428. .from_float = quantize_row_q4_1,
  429. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  430. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  431. .vec_dot_type = GGML_TYPE_Q8_1,
  432. #if defined (__ARM_FEATURE_MATMUL_INT8)
  433. .nrows = 2,
  434. #else
  435. .nrows = 1,
  436. #endif
  437. },
  438. [4] = { // GGML_TYPE_Q4_2
  439. .type_name = "DEPRECATED",
  440. .blck_size = 0,
  441. .type_size = 0,
  442. .is_quantized = false,
  443. .to_float = NULL,
  444. .from_float = NULL,
  445. .from_float_reference = NULL,
  446. .vec_dot = NULL,
  447. .vec_dot_type = GGML_TYPE_COUNT,
  448. .nrows = 1,
  449. },
  450. [5] = { // GGML_TYPE_Q4_3
  451. .type_name = "DEPRECATED",
  452. .blck_size = 0,
  453. .type_size = 0,
  454. .is_quantized = false,
  455. .to_float = NULL,
  456. .from_float = NULL,
  457. .from_float_reference = NULL,
  458. .vec_dot = NULL,
  459. .vec_dot_type = GGML_TYPE_COUNT,
  460. .nrows = 1,
  461. },
  462. [GGML_TYPE_Q5_0] = {
  463. .type_name = "q5_0",
  464. .blck_size = QK5_0,
  465. .type_size = sizeof(block_q5_0),
  466. .is_quantized = true,
  467. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  468. .from_float = quantize_row_q5_0,
  469. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  470. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  471. .vec_dot_type = GGML_TYPE_Q8_0,
  472. .nrows = 1,
  473. },
  474. [GGML_TYPE_Q5_1] = {
  475. .type_name = "q5_1",
  476. .blck_size = QK5_1,
  477. .type_size = sizeof(block_q5_1),
  478. .is_quantized = true,
  479. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  480. .from_float = quantize_row_q5_1,
  481. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  482. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  483. .vec_dot_type = GGML_TYPE_Q8_1,
  484. .nrows = 1,
  485. },
  486. [GGML_TYPE_Q8_0] = {
  487. .type_name = "q8_0",
  488. .blck_size = QK8_0,
  489. .type_size = sizeof(block_q8_0),
  490. .is_quantized = true,
  491. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  492. .from_float = quantize_row_q8_0,
  493. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  494. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  495. .vec_dot_type = GGML_TYPE_Q8_0,
  496. #if defined (__ARM_FEATURE_MATMUL_INT8)
  497. .nrows = 2,
  498. #else
  499. .nrows = 1,
  500. #endif
  501. },
  502. [GGML_TYPE_Q8_1] = {
  503. .type_name = "q8_1",
  504. .blck_size = QK8_1,
  505. .type_size = sizeof(block_q8_1),
  506. .is_quantized = true,
  507. .from_float = quantize_row_q8_1,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  509. .vec_dot_type = GGML_TYPE_Q8_1,
  510. .nrows = 1,
  511. },
  512. [GGML_TYPE_Q2_K] = {
  513. .type_name = "q2_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q2_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  518. .from_float = quantize_row_q2_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  520. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. .nrows = 1,
  523. },
  524. [GGML_TYPE_Q3_K] = {
  525. .type_name = "q3_K",
  526. .blck_size = QK_K,
  527. .type_size = sizeof(block_q3_K),
  528. .is_quantized = true,
  529. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  530. .from_float = quantize_row_q3_K,
  531. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  532. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  533. .vec_dot_type = GGML_TYPE_Q8_K,
  534. .nrows = 1,
  535. },
  536. [GGML_TYPE_Q4_K] = {
  537. .type_name = "q4_K",
  538. .blck_size = QK_K,
  539. .type_size = sizeof(block_q4_K),
  540. .is_quantized = true,
  541. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  542. .from_float = quantize_row_q4_K,
  543. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  544. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  545. .vec_dot_type = GGML_TYPE_Q8_K,
  546. .nrows = 1,
  547. },
  548. [GGML_TYPE_Q5_K] = {
  549. .type_name = "q5_K",
  550. .blck_size = QK_K,
  551. .type_size = sizeof(block_q5_K),
  552. .is_quantized = true,
  553. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  554. .from_float = quantize_row_q5_K,
  555. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  556. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  557. .vec_dot_type = GGML_TYPE_Q8_K,
  558. .nrows = 1,
  559. },
  560. [GGML_TYPE_Q6_K] = {
  561. .type_name = "q6_K",
  562. .blck_size = QK_K,
  563. .type_size = sizeof(block_q6_K),
  564. .is_quantized = true,
  565. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  566. .from_float = quantize_row_q6_K,
  567. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  568. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  569. .vec_dot_type = GGML_TYPE_Q8_K,
  570. .nrows = 1,
  571. },
  572. [GGML_TYPE_IQ2_XXS] = {
  573. .type_name = "iq2_xxs",
  574. .blck_size = QK_K,
  575. .type_size = sizeof(block_iq2_xxs),
  576. .is_quantized = true,
  577. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  578. .from_float = NULL,
  579. .from_float_reference = NULL,
  580. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  581. .vec_dot_type = GGML_TYPE_Q8_K,
  582. .nrows = 1,
  583. },
  584. [GGML_TYPE_IQ2_XS] = {
  585. .type_name = "iq2_xs",
  586. .blck_size = QK_K,
  587. .type_size = sizeof(block_iq2_xs),
  588. .is_quantized = true,
  589. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  590. .from_float = NULL,
  591. .from_float_reference = NULL,
  592. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  593. .vec_dot_type = GGML_TYPE_Q8_K,
  594. .nrows = 1,
  595. },
  596. [GGML_TYPE_IQ3_XXS] = {
  597. .type_name = "iq3_xxs",
  598. .blck_size = QK_K,
  599. .type_size = sizeof(block_iq3_xxs),
  600. .is_quantized = true,
  601. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  602. .from_float = quantize_row_iq3_xxs,
  603. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  604. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  605. .vec_dot_type = GGML_TYPE_Q8_K,
  606. .nrows = 1,
  607. },
  608. [GGML_TYPE_Q8_K] = {
  609. .type_name = "q8_K",
  610. .blck_size = QK_K,
  611. .type_size = sizeof(block_q8_K),
  612. .is_quantized = true,
  613. .from_float = quantize_row_q8_K,
  614. }
  615. };
  616. // For internal test use
  617. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  618. GGML_ASSERT(type < GGML_TYPE_COUNT);
  619. return type_traits[type];
  620. }
  621. //
  622. // simd mappings
  623. //
  624. #if defined(__ARM_NEON)
  625. #if !defined(__aarch64__)
  626. // 64-bit compatibility
  627. inline static float vaddvq_f32(float32x4_t v) {
  628. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  629. }
  630. #endif
  631. #endif
  632. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  633. // we then implement the fundamental computation operations below using only these macros
  634. // adding support for new architectures requires to define the corresponding SIMD macros
  635. //
  636. // GGML_F32_STEP / GGML_F16_STEP
  637. // number of elements to process in a single step
  638. //
  639. // GGML_F32_EPR / GGML_F16_EPR
  640. // number of elements to fit in a single register
  641. //
  642. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  643. #define GGML_SIMD
  644. // F32 NEON
  645. #define GGML_F32_STEP 16
  646. #define GGML_F32_EPR 4
  647. #define GGML_F32x4 float32x4_t
  648. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  649. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  650. #define GGML_F32x4_LOAD vld1q_f32
  651. #define GGML_F32x4_STORE vst1q_f32
  652. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  653. #define GGML_F32x4_ADD vaddq_f32
  654. #define GGML_F32x4_MUL vmulq_f32
  655. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  656. #define GGML_F32x4_REDUCE(res, x) \
  657. { \
  658. int offset = GGML_F32_ARR >> 1; \
  659. for (int i = 0; i < offset; ++i) { \
  660. x[i] = vaddq_f32(x[i], x[offset+i]); \
  661. } \
  662. offset >>= 1; \
  663. for (int i = 0; i < offset; ++i) { \
  664. x[i] = vaddq_f32(x[i], x[offset+i]); \
  665. } \
  666. offset >>= 1; \
  667. for (int i = 0; i < offset; ++i) { \
  668. x[i] = vaddq_f32(x[i], x[offset+i]); \
  669. } \
  670. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  671. }
  672. #define GGML_F32_VEC GGML_F32x4
  673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  681. // F16 NEON
  682. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  683. #define GGML_F16_STEP 32
  684. #define GGML_F16_EPR 8
  685. #define GGML_F16x8 float16x8_t
  686. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  687. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  688. #define GGML_F16x8_LOAD vld1q_f16
  689. #define GGML_F16x8_STORE vst1q_f16
  690. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  691. #define GGML_F16x8_ADD vaddq_f16
  692. #define GGML_F16x8_MUL vmulq_f16
  693. #define GGML_F16x8_REDUCE(res, x) \
  694. do { \
  695. int offset = GGML_F16_ARR >> 1; \
  696. for (int i = 0; i < offset; ++i) { \
  697. x[i] = vaddq_f16(x[i], x[offset+i]); \
  698. } \
  699. offset >>= 1; \
  700. for (int i = 0; i < offset; ++i) { \
  701. x[i] = vaddq_f16(x[i], x[offset+i]); \
  702. } \
  703. offset >>= 1; \
  704. for (int i = 0; i < offset; ++i) { \
  705. x[i] = vaddq_f16(x[i], x[offset+i]); \
  706. } \
  707. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  708. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  709. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  710. } while (0)
  711. #define GGML_F16_VEC GGML_F16x8
  712. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  713. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  714. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  715. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  716. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  717. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  718. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  719. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  720. #else
  721. // if FP16 vector arithmetic is not supported, we use FP32 instead
  722. // and take advantage of the vcvt_ functions to convert to/from FP16
  723. #define GGML_F16_STEP 16
  724. #define GGML_F16_EPR 4
  725. #define GGML_F32Cx4 float32x4_t
  726. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  727. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  728. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  729. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  730. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  731. #define GGML_F32Cx4_ADD vaddq_f32
  732. #define GGML_F32Cx4_MUL vmulq_f32
  733. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  734. #define GGML_F16_VEC GGML_F32Cx4
  735. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  736. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  737. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  738. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  739. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  740. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  741. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  742. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  743. #endif
  744. #elif defined(__AVX__)
  745. #define GGML_SIMD
  746. // F32 AVX
  747. #define GGML_F32_STEP 32
  748. #define GGML_F32_EPR 8
  749. #define GGML_F32x8 __m256
  750. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  751. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  752. #define GGML_F32x8_LOAD _mm256_loadu_ps
  753. #define GGML_F32x8_STORE _mm256_storeu_ps
  754. #if defined(__FMA__)
  755. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  756. #else
  757. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  758. #endif
  759. #define GGML_F32x8_ADD _mm256_add_ps
  760. #define GGML_F32x8_MUL _mm256_mul_ps
  761. #define GGML_F32x8_REDUCE(res, x) \
  762. do { \
  763. int offset = GGML_F32_ARR >> 1; \
  764. for (int i = 0; i < offset; ++i) { \
  765. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  766. } \
  767. offset >>= 1; \
  768. for (int i = 0; i < offset; ++i) { \
  769. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  770. } \
  771. offset >>= 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  774. } \
  775. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  776. _mm256_extractf128_ps(x[0], 1)); \
  777. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  778. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  779. } while (0)
  780. // TODO: is this optimal ?
  781. #define GGML_F32_VEC GGML_F32x8
  782. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  783. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  784. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  785. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  786. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  787. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  788. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  789. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  790. // F16 AVX
  791. #define GGML_F16_STEP 32
  792. #define GGML_F16_EPR 8
  793. // F16 arithmetic is not supported by AVX, so we use F32 instead
  794. #define GGML_F32Cx8 __m256
  795. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  796. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  797. #if defined(__F16C__)
  798. // the _mm256_cvt intrinsics require F16C
  799. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  800. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  801. #else
  802. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  803. float tmp[8];
  804. for (int i = 0; i < 8; i++) {
  805. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  806. }
  807. return _mm256_loadu_ps(tmp);
  808. }
  809. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  810. float arr[8];
  811. _mm256_storeu_ps(arr, y);
  812. for (int i = 0; i < 8; i++)
  813. x[i] = GGML_FP32_TO_FP16(arr[i]);
  814. }
  815. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  816. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  817. #endif
  818. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  819. #define GGML_F32Cx8_ADD _mm256_add_ps
  820. #define GGML_F32Cx8_MUL _mm256_mul_ps
  821. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  822. #define GGML_F16_VEC GGML_F32Cx8
  823. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  824. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  825. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  826. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  827. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  828. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  829. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  830. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  831. #elif defined(__POWER9_VECTOR__)
  832. #define GGML_SIMD
  833. // F32 POWER9
  834. #define GGML_F32_STEP 32
  835. #define GGML_F32_EPR 4
  836. #define GGML_F32x4 vector float
  837. #define GGML_F32x4_ZERO 0.0f
  838. #define GGML_F32x4_SET1 vec_splats
  839. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  840. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  841. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  842. #define GGML_F32x4_ADD vec_add
  843. #define GGML_F32x4_MUL vec_mul
  844. #define GGML_F32x4_REDUCE(res, x) \
  845. { \
  846. int offset = GGML_F32_ARR >> 1; \
  847. for (int i = 0; i < offset; ++i) { \
  848. x[i] = vec_add(x[i], x[offset+i]); \
  849. } \
  850. offset >>= 1; \
  851. for (int i = 0; i < offset; ++i) { \
  852. x[i] = vec_add(x[i], x[offset+i]); \
  853. } \
  854. offset >>= 1; \
  855. for (int i = 0; i < offset; ++i) { \
  856. x[i] = vec_add(x[i], x[offset+i]); \
  857. } \
  858. res = vec_extract(x[0], 0) + \
  859. vec_extract(x[0], 1) + \
  860. vec_extract(x[0], 2) + \
  861. vec_extract(x[0], 3); \
  862. }
  863. #define GGML_F32_VEC GGML_F32x4
  864. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  865. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  866. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  867. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  868. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  869. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  870. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  871. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  872. // F16 POWER9
  873. #define GGML_F16_STEP GGML_F32_STEP
  874. #define GGML_F16_EPR GGML_F32_EPR
  875. #define GGML_F16_VEC GGML_F32x4
  876. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  879. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  880. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  881. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  882. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  883. vec_extract_fp32_from_shortl(vec_xl(0, p))
  884. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  885. #define GGML_F16_VEC_STORE(p, r, i) \
  886. if (i & 0x1) \
  887. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  888. r[i - GGML_ENDIAN_BYTE(0)]), \
  889. 0, p - GGML_F16_EPR)
  890. #elif defined(__wasm_simd128__)
  891. #define GGML_SIMD
  892. // F32 WASM
  893. #define GGML_F32_STEP 16
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 v128_t
  896. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  897. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  898. #define GGML_F32x4_LOAD wasm_v128_load
  899. #define GGML_F32x4_STORE wasm_v128_store
  900. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  901. #define GGML_F32x4_ADD wasm_f32x4_add
  902. #define GGML_F32x4_MUL wasm_f32x4_mul
  903. #define GGML_F32x4_REDUCE(res, x) \
  904. { \
  905. int offset = GGML_F32_ARR >> 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  916. } \
  917. res = wasm_f32x4_extract_lane(x[0], 0) + \
  918. wasm_f32x4_extract_lane(x[0], 1) + \
  919. wasm_f32x4_extract_lane(x[0], 2) + \
  920. wasm_f32x4_extract_lane(x[0], 3); \
  921. }
  922. #define GGML_F32_VEC GGML_F32x4
  923. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  924. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  925. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  926. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  927. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  928. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  929. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  930. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  931. // F16 WASM
  932. #define GGML_F16_STEP 16
  933. #define GGML_F16_EPR 4
  934. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  935. float tmp[4];
  936. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  937. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  938. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  939. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  940. return wasm_v128_load(tmp);
  941. }
  942. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  943. float tmp[4];
  944. wasm_v128_store(tmp, x);
  945. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  946. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  947. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  948. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  949. }
  950. #define GGML_F16x4 v128_t
  951. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  952. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  953. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  954. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  955. #define GGML_F16x4_FMA GGML_F32x4_FMA
  956. #define GGML_F16x4_ADD wasm_f32x4_add
  957. #define GGML_F16x4_MUL wasm_f32x4_mul
  958. #define GGML_F16x4_REDUCE(res, x) \
  959. { \
  960. int offset = GGML_F16_ARR >> 1; \
  961. for (int i = 0; i < offset; ++i) { \
  962. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  963. } \
  964. offset >>= 1; \
  965. for (int i = 0; i < offset; ++i) { \
  966. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  967. } \
  968. offset >>= 1; \
  969. for (int i = 0; i < offset; ++i) { \
  970. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  971. } \
  972. res = wasm_f32x4_extract_lane(x[0], 0) + \
  973. wasm_f32x4_extract_lane(x[0], 1) + \
  974. wasm_f32x4_extract_lane(x[0], 2) + \
  975. wasm_f32x4_extract_lane(x[0], 3); \
  976. }
  977. #define GGML_F16_VEC GGML_F16x4
  978. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  979. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  980. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  981. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  982. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  983. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  984. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  985. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  986. #elif defined(__SSE3__)
  987. #define GGML_SIMD
  988. // F32 SSE
  989. #define GGML_F32_STEP 32
  990. #define GGML_F32_EPR 4
  991. #define GGML_F32x4 __m128
  992. #define GGML_F32x4_ZERO _mm_setzero_ps()
  993. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  994. #define GGML_F32x4_LOAD _mm_loadu_ps
  995. #define GGML_F32x4_STORE _mm_storeu_ps
  996. #if defined(__FMA__)
  997. // TODO: Does this work?
  998. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  999. #else
  1000. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1001. #endif
  1002. #define GGML_F32x4_ADD _mm_add_ps
  1003. #define GGML_F32x4_MUL _mm_mul_ps
  1004. #define GGML_F32x4_REDUCE(res, x) \
  1005. { \
  1006. int offset = GGML_F32_ARR >> 1; \
  1007. for (int i = 0; i < offset; ++i) { \
  1008. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1009. } \
  1010. offset >>= 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. offset >>= 1; \
  1015. for (int i = 0; i < offset; ++i) { \
  1016. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1017. } \
  1018. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1019. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1020. }
  1021. // TODO: is this optimal ?
  1022. #define GGML_F32_VEC GGML_F32x4
  1023. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1024. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1025. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1026. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1027. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1028. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1029. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1030. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1031. // F16 SSE
  1032. #define GGML_F16_STEP 32
  1033. #define GGML_F16_EPR 4
  1034. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1035. float tmp[4];
  1036. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1037. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1038. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1039. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1040. return _mm_loadu_ps(tmp);
  1041. }
  1042. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1043. float arr[4];
  1044. _mm_storeu_ps(arr, y);
  1045. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1046. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1047. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1048. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1049. }
  1050. #define GGML_F32Cx4 __m128
  1051. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1052. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1053. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1054. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1055. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1056. #define GGML_F32Cx4_ADD _mm_add_ps
  1057. #define GGML_F32Cx4_MUL _mm_mul_ps
  1058. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1059. #define GGML_F16_VEC GGML_F32Cx4
  1060. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1061. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1062. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1063. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1064. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1065. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1066. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1067. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1068. #endif
  1069. // GGML_F32_ARR / GGML_F16_ARR
  1070. // number of registers to use per step
  1071. #ifdef GGML_SIMD
  1072. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1073. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1074. #endif
  1075. //
  1076. // fundamental operations
  1077. //
  1078. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1079. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1080. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1081. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1082. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1083. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1084. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1085. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1086. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1087. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1088. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1089. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1090. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1091. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1092. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1093. assert(nrc == 1);
  1094. UNUSED(nrc);
  1095. UNUSED(bx);
  1096. UNUSED(by);
  1097. UNUSED(bs);
  1098. #ifdef GGML_SIMD
  1099. float sumf = 0.0f;
  1100. const int np = (n & ~(GGML_F32_STEP - 1));
  1101. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1102. GGML_F32_VEC ax[GGML_F32_ARR];
  1103. GGML_F32_VEC ay[GGML_F32_ARR];
  1104. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1105. for (int j = 0; j < GGML_F32_ARR; j++) {
  1106. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1107. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1108. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1109. }
  1110. }
  1111. // reduce sum0..sum3 to sum0
  1112. GGML_F32_VEC_REDUCE(sumf, sum);
  1113. // leftovers
  1114. for (int i = np; i < n; ++i) {
  1115. sumf += x[i]*y[i];
  1116. }
  1117. #else
  1118. // scalar
  1119. ggml_float sumf = 0.0;
  1120. for (int i = 0; i < n; ++i) {
  1121. sumf += (ggml_float)(x[i]*y[i]);
  1122. }
  1123. #endif
  1124. *s = sumf;
  1125. }
  1126. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1127. assert(nrc == 1);
  1128. UNUSED(nrc);
  1129. UNUSED(bx);
  1130. UNUSED(by);
  1131. UNUSED(bs);
  1132. ggml_float sumf = 0.0;
  1133. #if defined(GGML_SIMD)
  1134. const int np = (n & ~(GGML_F16_STEP - 1));
  1135. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1136. GGML_F16_VEC ax[GGML_F16_ARR];
  1137. GGML_F16_VEC ay[GGML_F16_ARR];
  1138. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1139. for (int j = 0; j < GGML_F16_ARR; j++) {
  1140. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1141. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1142. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1143. }
  1144. }
  1145. // reduce sum0..sum3 to sum0
  1146. GGML_F16_VEC_REDUCE(sumf, sum);
  1147. // leftovers
  1148. for (int i = np; i < n; ++i) {
  1149. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1150. }
  1151. #else
  1152. for (int i = 0; i < n; ++i) {
  1153. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1154. }
  1155. #endif
  1156. *s = sumf;
  1157. }
  1158. // compute GGML_VEC_DOT_UNROLL dot products at once
  1159. // xs - x row stride in bytes
  1160. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1161. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1162. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1163. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1164. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1165. }
  1166. #if defined(GGML_SIMD)
  1167. const int np = (n & ~(GGML_F16_STEP - 1));
  1168. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1169. GGML_F16_VEC ax[GGML_F16_ARR];
  1170. GGML_F16_VEC ay[GGML_F16_ARR];
  1171. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1172. for (int j = 0; j < GGML_F16_ARR; j++) {
  1173. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1174. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1175. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1176. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1177. }
  1178. }
  1179. }
  1180. // reduce sum0..sum3 to sum0
  1181. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1182. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1183. }
  1184. // leftovers
  1185. for (int i = np; i < n; ++i) {
  1186. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1187. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1188. }
  1189. }
  1190. #else
  1191. for (int i = 0; i < n; ++i) {
  1192. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1193. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1194. }
  1195. }
  1196. #endif
  1197. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1198. s[i] = sumf[i];
  1199. }
  1200. }
  1201. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1202. #if defined(GGML_SIMD)
  1203. const int np = (n & ~(GGML_F32_STEP - 1));
  1204. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1205. GGML_F32_VEC ax[GGML_F32_ARR];
  1206. GGML_F32_VEC ay[GGML_F32_ARR];
  1207. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1208. for (int j = 0; j < GGML_F32_ARR; j++) {
  1209. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1210. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1211. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1212. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1213. }
  1214. }
  1215. // leftovers
  1216. for (int i = np; i < n; ++i) {
  1217. y[i] += x[i]*v;
  1218. }
  1219. #else
  1220. // scalar
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] += x[i]*v;
  1223. }
  1224. #endif
  1225. }
  1226. // xs and vs are byte strides of x and v
  1227. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1228. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1229. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1230. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1231. x[i] = (const float *) ((const char *) xv + i*xs);
  1232. v[i] = (const float *) ((const char *) vv + i*vs);
  1233. }
  1234. #if defined(GGML_SIMD)
  1235. const int np = (n & ~(GGML_F32_STEP - 1));
  1236. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1237. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1238. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1239. }
  1240. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1241. GGML_F32_VEC ay[GGML_F32_ARR];
  1242. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1243. for (int j = 0; j < GGML_F32_ARR; j++) {
  1244. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1245. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1246. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1247. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1248. }
  1249. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1250. }
  1251. }
  1252. // leftovers
  1253. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1254. for (int i = np; i < n; ++i) {
  1255. y[i] += x[k][i]*v[k][0];
  1256. }
  1257. }
  1258. #else
  1259. // scalar
  1260. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] += x[k][i]*v[k][0];
  1263. }
  1264. }
  1265. #endif
  1266. }
  1267. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1268. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1269. #if defined(GGML_USE_ACCELERATE)
  1270. vDSP_vsmul(y, 1, &v, y, 1, n);
  1271. #elif defined(GGML_SIMD)
  1272. const int np = (n & ~(GGML_F32_STEP - 1));
  1273. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1274. GGML_F32_VEC ay[GGML_F32_ARR];
  1275. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1276. for (int j = 0; j < GGML_F32_ARR; j++) {
  1277. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1278. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1279. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1280. }
  1281. }
  1282. // leftovers
  1283. for (int i = np; i < n; ++i) {
  1284. y[i] *= v;
  1285. }
  1286. #else
  1287. // scalar
  1288. for (int i = 0; i < n; ++i) {
  1289. y[i] *= v;
  1290. }
  1291. #endif
  1292. }
  1293. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1294. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1295. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1296. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1297. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1298. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1299. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1300. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1301. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1302. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1303. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1304. // TODO: optimize performance
  1305. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1306. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1307. static const float GELU_COEF_A = 0.044715f;
  1308. static const float GELU_QUICK_COEF = -1.702f;
  1309. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1310. inline static float ggml_gelu_f32(float x) {
  1311. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1312. }
  1313. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1314. const uint16_t * i16 = (const uint16_t *) x;
  1315. for (int i = 0; i < n; ++i) {
  1316. y[i] = ggml_table_gelu_f16[i16[i]];
  1317. }
  1318. }
  1319. #ifdef GGML_GELU_FP16
  1320. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1321. uint16_t t;
  1322. for (int i = 0; i < n; ++i) {
  1323. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1324. memcpy(&t, &fp16, sizeof(uint16_t));
  1325. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1326. }
  1327. }
  1328. #else
  1329. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1330. for (int i = 0; i < n; ++i) {
  1331. y[i] = ggml_gelu_f32(x[i]);
  1332. }
  1333. }
  1334. #endif
  1335. inline static float ggml_gelu_quick_f32(float x) {
  1336. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1337. }
  1338. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1339. // const uint16_t * i16 = (const uint16_t *) x;
  1340. // for (int i = 0; i < n; ++i) {
  1341. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1342. // }
  1343. //}
  1344. #ifdef GGML_GELU_QUICK_FP16
  1345. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1346. uint16_t t;
  1347. for (int i = 0; i < n; ++i) {
  1348. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1349. memcpy(&t, &fp16, sizeof(uint16_t));
  1350. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1351. }
  1352. }
  1353. #else
  1354. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1355. for (int i = 0; i < n; ++i) {
  1356. y[i] = ggml_gelu_quick_f32(x[i]);
  1357. }
  1358. }
  1359. #endif
  1360. // Sigmoid Linear Unit (SiLU) function
  1361. inline static float ggml_silu_f32(float x) {
  1362. return x/(1.0f + expf(-x));
  1363. }
  1364. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1365. // const uint16_t * i16 = (const uint16_t *) x;
  1366. // for (int i = 0; i < n; ++i) {
  1367. // y[i] = ggml_table_silu_f16[i16[i]];
  1368. // }
  1369. //}
  1370. #ifdef GGML_SILU_FP16
  1371. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1372. uint16_t t;
  1373. for (int i = 0; i < n; ++i) {
  1374. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1375. memcpy(&t, &fp16, sizeof(uint16_t));
  1376. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1377. }
  1378. }
  1379. #else
  1380. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1381. for (int i = 0; i < n; ++i) {
  1382. y[i] = ggml_silu_f32(x[i]);
  1383. }
  1384. }
  1385. #endif
  1386. inline static float ggml_silu_backward_f32(float x, float dy) {
  1387. const float s = 1.0f/(1.0f + expf(-x));
  1388. return dy*s*(1.0f + x*(1.0f - s));
  1389. }
  1390. #ifdef GGML_SILU_FP16
  1391. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1392. for (int i = 0; i < n; ++i) {
  1393. // we did not use x[i] to compute forward silu but its f16 equivalent
  1394. // take derivative at f16 of x[i]:
  1395. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1396. float usedx = GGML_FP16_TO_FP32(fp16);
  1397. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1398. }
  1399. }
  1400. #else
  1401. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1402. for (int i = 0; i < n; ++i) {
  1403. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1404. }
  1405. }
  1406. #endif
  1407. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1408. #ifndef GGML_USE_ACCELERATE
  1409. ggml_float sum = 0.0;
  1410. for (int i = 0; i < n; ++i) {
  1411. sum += (ggml_float)x[i];
  1412. }
  1413. *s = sum;
  1414. #else
  1415. vDSP_sve(x, 1, s, n);
  1416. #endif
  1417. }
  1418. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1419. ggml_float sum = 0.0;
  1420. for (int i = 0; i < n; ++i) {
  1421. sum += (ggml_float)x[i];
  1422. }
  1423. *s = sum;
  1424. }
  1425. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1426. float sum = 0.0f;
  1427. for (int i = 0; i < n; ++i) {
  1428. sum += GGML_FP16_TO_FP32(x[i]);
  1429. }
  1430. *s = sum;
  1431. }
  1432. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1433. #ifndef GGML_USE_ACCELERATE
  1434. float max = -INFINITY;
  1435. for (int i = 0; i < n; ++i) {
  1436. max = MAX(max, x[i]);
  1437. }
  1438. *s = max;
  1439. #else
  1440. vDSP_maxv(x, 1, s, n);
  1441. #endif
  1442. }
  1443. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1444. ggml_vec_norm_f32(n, s, x);
  1445. *s = 1.f/(*s);
  1446. }
  1447. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1448. float max = -INFINITY;
  1449. int idx = 0;
  1450. for (int i = 0; i < n; ++i) {
  1451. max = MAX(max, x[i]);
  1452. if (max == x[i]) { idx = i; }
  1453. }
  1454. *s = idx;
  1455. }
  1456. //
  1457. // data types
  1458. //
  1459. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1460. "NONE",
  1461. "DUP",
  1462. "ADD",
  1463. "ADD1",
  1464. "ACC",
  1465. "SUB",
  1466. "MUL",
  1467. "DIV",
  1468. "SQR",
  1469. "SQRT",
  1470. "LOG",
  1471. "SUM",
  1472. "SUM_ROWS",
  1473. "MEAN",
  1474. "ARGMAX",
  1475. "REPEAT",
  1476. "REPEAT_BACK",
  1477. "CONCAT",
  1478. "SILU_BACK",
  1479. "NORM",
  1480. "RMS_NORM",
  1481. "RMS_NORM_BACK",
  1482. "GROUP_NORM",
  1483. "MUL_MAT",
  1484. "MUL_MAT_ID",
  1485. "OUT_PROD",
  1486. "SCALE",
  1487. "SET",
  1488. "CPY",
  1489. "CONT",
  1490. "RESHAPE",
  1491. "VIEW",
  1492. "PERMUTE",
  1493. "TRANSPOSE",
  1494. "GET_ROWS",
  1495. "GET_ROWS_BACK",
  1496. "DIAG",
  1497. "DIAG_MASK_INF",
  1498. "DIAG_MASK_ZERO",
  1499. "SOFT_MAX",
  1500. "SOFT_MAX_BACK",
  1501. "ROPE",
  1502. "ROPE_BACK",
  1503. "ALIBI",
  1504. "CLAMP",
  1505. "CONV_TRANSPOSE_1D",
  1506. "IM2COL",
  1507. "CONV_TRANSPOSE_2D",
  1508. "POOL_1D",
  1509. "POOL_2D",
  1510. "UPSCALE",
  1511. "PAD",
  1512. "ARGSORT",
  1513. "LEAKY_RELU",
  1514. "FLASH_ATTN",
  1515. "FLASH_FF",
  1516. "FLASH_ATTN_BACK",
  1517. "WIN_PART",
  1518. "WIN_UNPART",
  1519. "GET_REL_POS",
  1520. "ADD_REL_POS",
  1521. "UNARY",
  1522. "MAP_UNARY",
  1523. "MAP_BINARY",
  1524. "MAP_CUSTOM1_F32",
  1525. "MAP_CUSTOM2_F32",
  1526. "MAP_CUSTOM3_F32",
  1527. "MAP_CUSTOM1",
  1528. "MAP_CUSTOM2",
  1529. "MAP_CUSTOM3",
  1530. "CROSS_ENTROPY_LOSS",
  1531. "CROSS_ENTROPY_LOSS_BACK",
  1532. };
  1533. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1534. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1535. "none",
  1536. "x",
  1537. "x+y",
  1538. "x+y",
  1539. "view(x,nb,offset)+=y->x",
  1540. "x-y",
  1541. "x*y",
  1542. "x/y",
  1543. "x^2",
  1544. "√x",
  1545. "log(x)",
  1546. "Σx",
  1547. "Σx_k",
  1548. "Σx/n",
  1549. "argmax(x)",
  1550. "repeat(x)",
  1551. "repeat_back(x)",
  1552. "concat(x, y)",
  1553. "silu_back(x)",
  1554. "norm(x)",
  1555. "rms_norm(x)",
  1556. "rms_norm_back(x)",
  1557. "group_norm(x)",
  1558. "X*Y",
  1559. "X[i]*Y",
  1560. "X*Y",
  1561. "x*v",
  1562. "y-\\>view(x)",
  1563. "x-\\>y",
  1564. "cont(x)",
  1565. "reshape(x)",
  1566. "view(x)",
  1567. "permute(x)",
  1568. "transpose(x)",
  1569. "get_rows(x)",
  1570. "get_rows_back(x)",
  1571. "diag(x)",
  1572. "diag_mask_inf(x)",
  1573. "diag_mask_zero(x)",
  1574. "soft_max(x)",
  1575. "soft_max_back(x)",
  1576. "rope(x)",
  1577. "rope_back(x)",
  1578. "alibi(x)",
  1579. "clamp(x)",
  1580. "conv_transpose_1d(x)",
  1581. "im2col(x)",
  1582. "conv_transpose_2d(x)",
  1583. "pool_1d(x)",
  1584. "pool_2d(x)",
  1585. "upscale(x)",
  1586. "pad(x)",
  1587. "argsort(x)",
  1588. "leaky_relu(x)",
  1589. "flash_attn(x)",
  1590. "flash_ff(x)",
  1591. "flash_attn_back(x)",
  1592. "win_part(x)",
  1593. "win_unpart(x)",
  1594. "get_rel_pos(x)",
  1595. "add_rel_pos(x)",
  1596. "unary(x)",
  1597. "f(x)",
  1598. "f(x,y)",
  1599. "custom_f32(x)",
  1600. "custom_f32(x,y)",
  1601. "custom_f32(x,y,z)",
  1602. "custom(x)",
  1603. "custom(x,y)",
  1604. "custom(x,y,z)",
  1605. "cross_entropy_loss(x,y)",
  1606. "cross_entropy_loss_back(x,y)",
  1607. };
  1608. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1609. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1610. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1611. "ABS",
  1612. "SGN",
  1613. "NEG",
  1614. "STEP",
  1615. "TANH",
  1616. "ELU",
  1617. "RELU",
  1618. "GELU",
  1619. "GELU_QUICK",
  1620. "SILU",
  1621. "HARDSWISH",
  1622. "HARDSIGMOID",
  1623. };
  1624. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1625. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1626. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1627. // WARN:
  1628. // Mis-configuration can lead to problem that's hard to reason about:
  1629. // * At best it crash or talks nosense.
  1630. // * At worst it talks slightly difference but hard to perceive.
  1631. //
  1632. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1633. // Take care about compile options (e.g., GGML_USE_xxx).
  1634. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1635. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1636. static void ggml_setup_op_has_task_pass(void) {
  1637. { // INIT
  1638. bool * p = GGML_OP_HAS_INIT;
  1639. p[GGML_OP_ACC ] = true;
  1640. p[GGML_OP_MUL_MAT ] = true;
  1641. p[GGML_OP_MUL_MAT_ID ] = true;
  1642. p[GGML_OP_OUT_PROD ] = true;
  1643. p[GGML_OP_SET ] = true;
  1644. p[GGML_OP_GET_ROWS_BACK ] = true;
  1645. p[GGML_OP_DIAG_MASK_INF ] = true;
  1646. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1647. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1648. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1649. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1650. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1651. p[GGML_OP_ADD_REL_POS ] = true;
  1652. }
  1653. { // FINALIZE
  1654. bool * p = GGML_OP_HAS_FINALIZE;
  1655. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1656. }
  1657. }
  1658. //
  1659. // ggml context
  1660. //
  1661. struct ggml_context {
  1662. size_t mem_size;
  1663. void * mem_buffer;
  1664. bool mem_buffer_owned;
  1665. bool no_alloc;
  1666. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1667. int n_objects;
  1668. struct ggml_object * objects_begin;
  1669. struct ggml_object * objects_end;
  1670. struct ggml_scratch scratch;
  1671. struct ggml_scratch scratch_save;
  1672. };
  1673. struct ggml_context_container {
  1674. bool used;
  1675. struct ggml_context context;
  1676. };
  1677. //
  1678. // NUMA support
  1679. //
  1680. #define GGML_NUMA_MAX_NODES 8
  1681. #define GGML_NUMA_MAX_CPUS 512
  1682. struct ggml_numa_node {
  1683. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1684. uint32_t n_cpus;
  1685. };
  1686. struct ggml_numa_nodes {
  1687. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1688. uint32_t n_nodes;
  1689. uint32_t total_cpus; // hardware threads on system
  1690. };
  1691. //
  1692. // ggml state
  1693. //
  1694. struct ggml_state {
  1695. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1696. struct ggml_numa_nodes numa;
  1697. };
  1698. // global state
  1699. static struct ggml_state g_state;
  1700. static atomic_int g_state_barrier = 0;
  1701. // barrier via spin lock
  1702. inline static void ggml_critical_section_start(void) {
  1703. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1704. while (processing > 0) {
  1705. // wait for other threads to finish
  1706. atomic_fetch_sub(&g_state_barrier, 1);
  1707. sched_yield(); // TODO: reconsider this
  1708. processing = atomic_fetch_add(&g_state_barrier, 1);
  1709. }
  1710. }
  1711. // TODO: make this somehow automatically executed
  1712. // some sort of "sentry" mechanism
  1713. inline static void ggml_critical_section_end(void) {
  1714. atomic_fetch_sub(&g_state_barrier, 1);
  1715. }
  1716. void ggml_numa_init(void) {
  1717. if (g_state.numa.n_nodes > 0) {
  1718. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1719. return;
  1720. }
  1721. #ifdef __linux__
  1722. struct stat st;
  1723. char path[256];
  1724. int rv;
  1725. // enumerate nodes
  1726. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1727. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1728. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1729. if (stat(path, &st) != 0) { break; }
  1730. ++g_state.numa.n_nodes;
  1731. }
  1732. // enumerate CPUs
  1733. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1734. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1735. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1736. if (stat(path, &st) != 0) { break; }
  1737. ++g_state.numa.total_cpus;
  1738. }
  1739. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1740. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1741. g_state.numa.n_nodes = 0;
  1742. return;
  1743. }
  1744. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1745. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1746. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1747. node->n_cpus = 0;
  1748. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1749. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1750. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1751. if (stat(path, &st) == 0) {
  1752. node->cpus[node->n_cpus++] = c;
  1753. GGML_PRINT_DEBUG(" %u", c);
  1754. }
  1755. }
  1756. GGML_PRINT_DEBUG("\n");
  1757. }
  1758. if (ggml_is_numa()) {
  1759. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1760. if (fptr != NULL) {
  1761. char buf[42];
  1762. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1763. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1764. }
  1765. fclose(fptr);
  1766. }
  1767. }
  1768. #else
  1769. // TODO
  1770. #endif
  1771. }
  1772. bool ggml_is_numa(void) {
  1773. return g_state.numa.n_nodes > 1;
  1774. }
  1775. ////////////////////////////////////////////////////////////////////////////////
  1776. void ggml_print_object(const struct ggml_object * obj) {
  1777. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1778. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1779. }
  1780. void ggml_print_objects(const struct ggml_context * ctx) {
  1781. struct ggml_object * obj = ctx->objects_begin;
  1782. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1783. while (obj != NULL) {
  1784. ggml_print_object(obj);
  1785. obj = obj->next;
  1786. }
  1787. GGML_PRINT("%s: --- end ---\n", __func__);
  1788. }
  1789. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1790. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1791. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1792. }
  1793. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1794. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1795. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1796. }
  1797. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1798. size_t nbytes;
  1799. size_t blck_size = ggml_blck_size(tensor->type);
  1800. if (blck_size == 1) {
  1801. nbytes = ggml_type_size(tensor->type);
  1802. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1803. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1804. }
  1805. }
  1806. else {
  1807. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1808. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1809. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1810. }
  1811. }
  1812. return nbytes;
  1813. }
  1814. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1815. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1816. }
  1817. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1818. return type_traits[type].blck_size;
  1819. }
  1820. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1821. return type_traits[type].type_size;
  1822. }
  1823. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1824. assert(ne % ggml_blck_size(type) == 0);
  1825. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1826. }
  1827. double ggml_type_sizef(enum ggml_type type) {
  1828. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1829. }
  1830. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1831. return type_traits[type].type_name;
  1832. }
  1833. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1834. return type_traits[type].is_quantized;
  1835. }
  1836. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1837. return GGML_OP_NAME[op];
  1838. }
  1839. const char * ggml_op_symbol(enum ggml_op op) {
  1840. return GGML_OP_SYMBOL[op];
  1841. }
  1842. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1843. return GGML_UNARY_OP_NAME[op];
  1844. }
  1845. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1846. if (t->op == GGML_OP_UNARY) {
  1847. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1848. return ggml_unary_op_name(uop);
  1849. }
  1850. else {
  1851. return ggml_op_name(t->op);
  1852. }
  1853. }
  1854. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1855. return ggml_type_size(tensor->type);
  1856. }
  1857. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1858. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1859. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1860. }
  1861. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1862. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1863. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1864. }
  1865. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1866. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1867. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1868. }
  1869. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1870. return tensor->ne[3] == 1;
  1871. }
  1872. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1873. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1874. if (tensor->ne[i] > 1) {
  1875. return i + 1;
  1876. }
  1877. }
  1878. return 1;
  1879. }
  1880. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1881. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1882. return (t0->ne[0] == t1->ne[0]) &&
  1883. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1884. (t1->ne[3]%t0->ne[3] == 0);
  1885. }
  1886. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1887. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1888. return (t0->ne[1] == t1->ne[1]) &&
  1889. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1890. (t1->ne[3]%t0->ne[3] == 0);
  1891. }
  1892. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1893. enum ggml_type wtype = GGML_TYPE_COUNT;
  1894. switch (ftype) {
  1895. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1896. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1897. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1898. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1899. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1900. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1901. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1902. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1903. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1904. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1905. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1906. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1907. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1908. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1909. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1910. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1911. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1912. }
  1913. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1914. return wtype;
  1915. }
  1916. size_t ggml_tensor_overhead(void) {
  1917. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1918. }
  1919. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1920. return tensor->nb[0] > tensor->nb[1];
  1921. }
  1922. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1923. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1924. return
  1925. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1926. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1927. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1928. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1929. }
  1930. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1931. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1932. return
  1933. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1934. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1935. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1936. }
  1937. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1938. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1939. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1940. }
  1941. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1942. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1943. return
  1944. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1945. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1946. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1947. }
  1948. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1949. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1950. return
  1951. (t0->ne[0] == t1->ne[0] ) &&
  1952. (t0->ne[1] == t1->ne[1] ) &&
  1953. (t0->ne[2] == t1->ne[2] ) &&
  1954. (t0->ne[3] == t1->ne[3] );
  1955. }
  1956. // check if t1 can be represented as a repeatition of t0
  1957. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1958. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1959. return
  1960. (t1->ne[0]%t0->ne[0] == 0) &&
  1961. (t1->ne[1]%t0->ne[1] == 0) &&
  1962. (t1->ne[2]%t0->ne[2] == 0) &&
  1963. (t1->ne[3]%t0->ne[3] == 0);
  1964. }
  1965. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1966. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1967. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1968. }
  1969. static inline int ggml_up32(int n) {
  1970. return (n + 31) & ~31;
  1971. }
  1972. //static inline int ggml_up64(int n) {
  1973. // return (n + 63) & ~63;
  1974. //}
  1975. static inline int ggml_up(int n, int m) {
  1976. // assert m is a power of 2
  1977. GGML_ASSERT((m & (m - 1)) == 0);
  1978. return (n + m - 1) & ~(m - 1);
  1979. }
  1980. // assert that pointer is aligned to GGML_MEM_ALIGN
  1981. #define ggml_assert_aligned(ptr) \
  1982. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1983. ////////////////////////////////////////////////////////////////////////////////
  1984. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1985. // make this function thread safe
  1986. ggml_critical_section_start();
  1987. static bool is_first_call = true;
  1988. if (is_first_call) {
  1989. // initialize time system (required on Windows)
  1990. ggml_time_init();
  1991. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1992. {
  1993. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1994. ggml_fp16_t ii;
  1995. for (int i = 0; i < (1 << 16); ++i) {
  1996. uint16_t ui = i;
  1997. memcpy(&ii, &ui, sizeof(ii));
  1998. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1999. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2000. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2001. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2002. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2003. }
  2004. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2005. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2006. }
  2007. // initialize g_state
  2008. {
  2009. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2010. g_state = (struct ggml_state) {
  2011. /*.contexts =*/ { { 0 } },
  2012. /*.numa =*/ {
  2013. .n_nodes = 0,
  2014. .total_cpus = 0,
  2015. },
  2016. };
  2017. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2018. g_state.contexts[i].used = false;
  2019. }
  2020. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2021. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2022. }
  2023. #if defined(GGML_USE_CUBLAS)
  2024. ggml_init_cublas();
  2025. #elif defined(GGML_USE_CLBLAST)
  2026. ggml_cl_init();
  2027. #elif defined(GGML_USE_VULKAN)
  2028. ggml_vk_init_cpu_assist();
  2029. #elif defined(GGML_USE_SYCL)
  2030. ggml_init_sycl();
  2031. #endif
  2032. ggml_setup_op_has_task_pass();
  2033. is_first_call = false;
  2034. }
  2035. // find non-used context in g_state
  2036. struct ggml_context * ctx = NULL;
  2037. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2038. if (!g_state.contexts[i].used) {
  2039. g_state.contexts[i].used = true;
  2040. ctx = &g_state.contexts[i].context;
  2041. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2042. break;
  2043. }
  2044. }
  2045. if (ctx == NULL) {
  2046. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2047. ggml_critical_section_end();
  2048. return NULL;
  2049. }
  2050. // allow to call ggml_init with 0 size
  2051. if (params.mem_size == 0) {
  2052. params.mem_size = GGML_MEM_ALIGN;
  2053. }
  2054. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2055. *ctx = (struct ggml_context) {
  2056. /*.mem_size =*/ mem_size,
  2057. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2058. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2059. /*.no_alloc =*/ params.no_alloc,
  2060. /*.no_alloc_save =*/ params.no_alloc,
  2061. /*.n_objects =*/ 0,
  2062. /*.objects_begin =*/ NULL,
  2063. /*.objects_end =*/ NULL,
  2064. /*.scratch =*/ { 0, 0, NULL, },
  2065. /*.scratch_save =*/ { 0, 0, NULL, },
  2066. };
  2067. GGML_ASSERT(ctx->mem_buffer != NULL);
  2068. ggml_assert_aligned(ctx->mem_buffer);
  2069. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2070. ggml_critical_section_end();
  2071. return ctx;
  2072. }
  2073. void ggml_free(struct ggml_context * ctx) {
  2074. if (ctx == NULL) {
  2075. return;
  2076. }
  2077. // make this function thread safe
  2078. ggml_critical_section_start();
  2079. bool found = false;
  2080. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2081. if (&g_state.contexts[i].context == ctx) {
  2082. g_state.contexts[i].used = false;
  2083. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2084. __func__, i, ggml_used_mem(ctx));
  2085. if (ctx->mem_buffer_owned) {
  2086. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2087. }
  2088. found = true;
  2089. break;
  2090. }
  2091. }
  2092. if (!found) {
  2093. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2094. }
  2095. ggml_critical_section_end();
  2096. }
  2097. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2098. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2099. }
  2100. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2101. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2102. ctx->scratch = scratch;
  2103. return result;
  2104. }
  2105. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2106. return ctx->no_alloc;
  2107. }
  2108. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2109. ctx->no_alloc = no_alloc;
  2110. }
  2111. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2112. return ctx->mem_buffer;
  2113. }
  2114. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2115. return ctx->mem_size;
  2116. }
  2117. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2118. size_t max_size = 0;
  2119. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2120. size_t bytes = ggml_nbytes(tensor);
  2121. max_size = MAX(max_size, bytes);
  2122. }
  2123. return max_size;
  2124. }
  2125. // IMPORTANT:
  2126. // when creating "opt" tensors, always save and load the scratch buffer
  2127. // this is an error prone process, but it is necessary to support inplace
  2128. // operators when using scratch buffers
  2129. // TODO: implement a better way
  2130. static void ggml_scratch_save(struct ggml_context * ctx) {
  2131. // this is needed to allow opt tensors to store their data
  2132. // TODO: again, need to find a better way
  2133. ctx->no_alloc_save = ctx->no_alloc;
  2134. ctx->no_alloc = false;
  2135. ctx->scratch_save = ctx->scratch;
  2136. ctx->scratch.data = NULL;
  2137. }
  2138. static void ggml_scratch_load(struct ggml_context * ctx) {
  2139. ctx->no_alloc = ctx->no_alloc_save;
  2140. ctx->scratch = ctx->scratch_save;
  2141. }
  2142. ////////////////////////////////////////////////////////////////////////////////
  2143. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2144. // always insert objects at the end of the context's memory pool
  2145. struct ggml_object * obj_cur = ctx->objects_end;
  2146. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2147. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2148. const size_t cur_end = cur_offs + cur_size;
  2149. // align to GGML_MEM_ALIGN
  2150. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2151. char * const mem_buffer = ctx->mem_buffer;
  2152. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2153. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2154. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2155. __func__, cur_end + size_needed, ctx->mem_size);
  2156. assert(false);
  2157. return NULL;
  2158. }
  2159. *obj_new = (struct ggml_object) {
  2160. .offs = cur_end + GGML_OBJECT_SIZE,
  2161. .size = size_needed,
  2162. .next = NULL,
  2163. .type = type,
  2164. };
  2165. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2166. if (obj_cur != NULL) {
  2167. obj_cur->next = obj_new;
  2168. } else {
  2169. // this is the first object in this context
  2170. ctx->objects_begin = obj_new;
  2171. }
  2172. ctx->objects_end = obj_new;
  2173. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2174. return obj_new;
  2175. }
  2176. static struct ggml_tensor * ggml_new_tensor_impl(
  2177. struct ggml_context * ctx,
  2178. enum ggml_type type,
  2179. int n_dims,
  2180. const int64_t * ne,
  2181. struct ggml_tensor * view_src,
  2182. size_t view_offs) {
  2183. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2184. // find the base tensor and absolute offset
  2185. if (view_src != NULL && view_src->view_src != NULL) {
  2186. view_offs += view_src->view_offs;
  2187. view_src = view_src->view_src;
  2188. }
  2189. size_t data_size = ggml_row_size(type, ne[0]);
  2190. for (int i = 1; i < n_dims; i++) {
  2191. data_size *= ne[i];
  2192. }
  2193. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2194. void * data = view_src != NULL ? view_src->data : NULL;
  2195. if (data != NULL) {
  2196. data = (char *) data + view_offs;
  2197. }
  2198. size_t obj_alloc_size = 0;
  2199. if (view_src == NULL && !ctx->no_alloc) {
  2200. if (ctx->scratch.data != NULL) {
  2201. // allocate tensor data in the scratch buffer
  2202. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2203. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2204. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2205. assert(false);
  2206. return NULL;
  2207. }
  2208. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2209. ctx->scratch.offs += data_size;
  2210. } else {
  2211. // allocate tensor data in the context's memory pool
  2212. obj_alloc_size = data_size;
  2213. }
  2214. }
  2215. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2216. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2217. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2218. *result = (struct ggml_tensor) {
  2219. /*.type =*/ type,
  2220. /*.backend =*/ GGML_BACKEND_CPU,
  2221. /*.buffer =*/ NULL,
  2222. /*.ne =*/ { 1, 1, 1, 1 },
  2223. /*.nb =*/ { 0, 0, 0, 0 },
  2224. /*.op =*/ GGML_OP_NONE,
  2225. /*.op_params =*/ { 0 },
  2226. /*.is_param =*/ false,
  2227. /*.grad =*/ NULL,
  2228. /*.src =*/ { NULL },
  2229. /*.perf_runs =*/ 0,
  2230. /*.perf_cycles =*/ 0,
  2231. /*.perf_time_us =*/ 0,
  2232. /*.view_src =*/ view_src,
  2233. /*.view_offs =*/ view_offs,
  2234. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2235. /*.name =*/ { 0 },
  2236. /*.extra =*/ NULL,
  2237. /*.padding =*/ { 0 },
  2238. };
  2239. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2240. //ggml_assert_aligned(result->data);
  2241. for (int i = 0; i < n_dims; i++) {
  2242. result->ne[i] = ne[i];
  2243. }
  2244. result->nb[0] = ggml_type_size(type);
  2245. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2246. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2247. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2248. }
  2249. ctx->n_objects++;
  2250. return result;
  2251. }
  2252. struct ggml_tensor * ggml_new_tensor(
  2253. struct ggml_context * ctx,
  2254. enum ggml_type type,
  2255. int n_dims,
  2256. const int64_t * ne) {
  2257. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2258. }
  2259. struct ggml_tensor * ggml_new_tensor_1d(
  2260. struct ggml_context * ctx,
  2261. enum ggml_type type,
  2262. int64_t ne0) {
  2263. return ggml_new_tensor(ctx, type, 1, &ne0);
  2264. }
  2265. struct ggml_tensor * ggml_new_tensor_2d(
  2266. struct ggml_context * ctx,
  2267. enum ggml_type type,
  2268. int64_t ne0,
  2269. int64_t ne1) {
  2270. const int64_t ne[2] = { ne0, ne1 };
  2271. return ggml_new_tensor(ctx, type, 2, ne);
  2272. }
  2273. struct ggml_tensor * ggml_new_tensor_3d(
  2274. struct ggml_context * ctx,
  2275. enum ggml_type type,
  2276. int64_t ne0,
  2277. int64_t ne1,
  2278. int64_t ne2) {
  2279. const int64_t ne[3] = { ne0, ne1, ne2 };
  2280. return ggml_new_tensor(ctx, type, 3, ne);
  2281. }
  2282. struct ggml_tensor * ggml_new_tensor_4d(
  2283. struct ggml_context * ctx,
  2284. enum ggml_type type,
  2285. int64_t ne0,
  2286. int64_t ne1,
  2287. int64_t ne2,
  2288. int64_t ne3) {
  2289. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2290. return ggml_new_tensor(ctx, type, 4, ne);
  2291. }
  2292. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2293. ggml_scratch_save(ctx);
  2294. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2295. ggml_scratch_load(ctx);
  2296. ggml_set_i32(result, value);
  2297. return result;
  2298. }
  2299. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2300. ggml_scratch_save(ctx);
  2301. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2302. ggml_scratch_load(ctx);
  2303. ggml_set_f32(result, value);
  2304. return result;
  2305. }
  2306. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2307. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2308. }
  2309. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2310. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2311. assert(params_size <= GGML_MAX_OP_PARAMS);
  2312. memcpy(tensor->op_params, params, params_size);
  2313. }
  2314. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2315. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2316. return ((const int32_t *)(tensor->op_params))[i];
  2317. }
  2318. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2319. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2320. ((int32_t *)(tensor->op_params))[i] = value;
  2321. }
  2322. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2323. memset(tensor->data, 0, ggml_nbytes(tensor));
  2324. return tensor;
  2325. }
  2326. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2327. const int n = ggml_nrows(tensor);
  2328. const int nc = tensor->ne[0];
  2329. const size_t n1 = tensor->nb[1];
  2330. char * const data = tensor->data;
  2331. switch (tensor->type) {
  2332. case GGML_TYPE_I8:
  2333. {
  2334. assert(tensor->nb[0] == sizeof(int8_t));
  2335. for (int i = 0; i < n; i++) {
  2336. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2337. }
  2338. } break;
  2339. case GGML_TYPE_I16:
  2340. {
  2341. assert(tensor->nb[0] == sizeof(int16_t));
  2342. for (int i = 0; i < n; i++) {
  2343. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2344. }
  2345. } break;
  2346. case GGML_TYPE_I32:
  2347. {
  2348. assert(tensor->nb[0] == sizeof(int32_t));
  2349. for (int i = 0; i < n; i++) {
  2350. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2351. }
  2352. } break;
  2353. case GGML_TYPE_F16:
  2354. {
  2355. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2356. for (int i = 0; i < n; i++) {
  2357. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2358. }
  2359. } break;
  2360. case GGML_TYPE_F32:
  2361. {
  2362. assert(tensor->nb[0] == sizeof(float));
  2363. for (int i = 0; i < n; i++) {
  2364. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2365. }
  2366. } break;
  2367. default:
  2368. {
  2369. GGML_ASSERT(false);
  2370. } break;
  2371. }
  2372. return tensor;
  2373. }
  2374. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2375. const int n = ggml_nrows(tensor);
  2376. const int nc = tensor->ne[0];
  2377. const size_t n1 = tensor->nb[1];
  2378. char * const data = tensor->data;
  2379. switch (tensor->type) {
  2380. case GGML_TYPE_I8:
  2381. {
  2382. assert(tensor->nb[0] == sizeof(int8_t));
  2383. for (int i = 0; i < n; i++) {
  2384. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2385. }
  2386. } break;
  2387. case GGML_TYPE_I16:
  2388. {
  2389. assert(tensor->nb[0] == sizeof(int16_t));
  2390. for (int i = 0; i < n; i++) {
  2391. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2392. }
  2393. } break;
  2394. case GGML_TYPE_I32:
  2395. {
  2396. assert(tensor->nb[0] == sizeof(int32_t));
  2397. for (int i = 0; i < n; i++) {
  2398. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2399. }
  2400. } break;
  2401. case GGML_TYPE_F16:
  2402. {
  2403. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2404. for (int i = 0; i < n; i++) {
  2405. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2406. }
  2407. } break;
  2408. case GGML_TYPE_F32:
  2409. {
  2410. assert(tensor->nb[0] == sizeof(float));
  2411. for (int i = 0; i < n; i++) {
  2412. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2413. }
  2414. } break;
  2415. default:
  2416. {
  2417. GGML_ASSERT(false);
  2418. } break;
  2419. }
  2420. return tensor;
  2421. }
  2422. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2423. const int64_t ne2 = tensor->ne[2];
  2424. const int64_t ne1 = tensor->ne[1];
  2425. const int64_t ne0 = tensor->ne[0];
  2426. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2427. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2428. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2429. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2430. if (i0) {
  2431. * i0 = i0_;
  2432. }
  2433. if (i1) {
  2434. * i1 = i1_;
  2435. }
  2436. if (i2) {
  2437. * i2 = i2_;
  2438. }
  2439. if (i3) {
  2440. * i3 = i3_;
  2441. }
  2442. }
  2443. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2444. if (!ggml_is_contiguous(tensor)) {
  2445. int64_t id[4] = { 0, 0, 0, 0 };
  2446. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2447. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2448. }
  2449. switch (tensor->type) {
  2450. case GGML_TYPE_I8:
  2451. {
  2452. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2453. return ((int8_t *)(tensor->data))[i];
  2454. }
  2455. case GGML_TYPE_I16:
  2456. {
  2457. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2458. return ((int16_t *)(tensor->data))[i];
  2459. }
  2460. case GGML_TYPE_I32:
  2461. {
  2462. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2463. return ((int32_t *)(tensor->data))[i];
  2464. }
  2465. case GGML_TYPE_F16:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2468. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2469. }
  2470. case GGML_TYPE_F32:
  2471. {
  2472. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2473. return ((float *)(tensor->data))[i];
  2474. }
  2475. default:
  2476. {
  2477. GGML_ASSERT(false);
  2478. }
  2479. }
  2480. return 0.0f;
  2481. }
  2482. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2483. if (!ggml_is_contiguous(tensor)) {
  2484. int64_t id[4] = { 0, 0, 0, 0 };
  2485. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2486. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2487. return;
  2488. }
  2489. switch (tensor->type) {
  2490. case GGML_TYPE_I8:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2493. ((int8_t *)(tensor->data))[i] = value;
  2494. } break;
  2495. case GGML_TYPE_I16:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2498. ((int16_t *)(tensor->data))[i] = value;
  2499. } break;
  2500. case GGML_TYPE_I32:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2503. ((int32_t *)(tensor->data))[i] = value;
  2504. } break;
  2505. case GGML_TYPE_F16:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2508. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2509. } break;
  2510. case GGML_TYPE_F32:
  2511. {
  2512. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2513. ((float *)(tensor->data))[i] = value;
  2514. } break;
  2515. default:
  2516. {
  2517. GGML_ASSERT(false);
  2518. } break;
  2519. }
  2520. }
  2521. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2522. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2523. switch (tensor->type) {
  2524. case GGML_TYPE_I8:
  2525. return ((int8_t *) data)[0];
  2526. case GGML_TYPE_I16:
  2527. return ((int16_t *) data)[0];
  2528. case GGML_TYPE_I32:
  2529. return ((int32_t *) data)[0];
  2530. case GGML_TYPE_F16:
  2531. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2532. case GGML_TYPE_F32:
  2533. return ((float *) data)[0];
  2534. default:
  2535. GGML_ASSERT(false);
  2536. }
  2537. return 0.0f;
  2538. }
  2539. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2540. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2541. switch (tensor->type) {
  2542. case GGML_TYPE_I8:
  2543. {
  2544. ((int8_t *)(data))[0] = value;
  2545. } break;
  2546. case GGML_TYPE_I16:
  2547. {
  2548. ((int16_t *)(data))[0] = value;
  2549. } break;
  2550. case GGML_TYPE_I32:
  2551. {
  2552. ((int32_t *)(data))[0] = value;
  2553. } break;
  2554. case GGML_TYPE_F16:
  2555. {
  2556. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2557. } break;
  2558. case GGML_TYPE_F32:
  2559. {
  2560. ((float *)(data))[0] = value;
  2561. } break;
  2562. default:
  2563. {
  2564. GGML_ASSERT(false);
  2565. } break;
  2566. }
  2567. }
  2568. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2569. if (!ggml_is_contiguous(tensor)) {
  2570. int64_t id[4] = { 0, 0, 0, 0 };
  2571. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2572. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2573. }
  2574. switch (tensor->type) {
  2575. case GGML_TYPE_I8:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2578. return ((int8_t *)(tensor->data))[i];
  2579. }
  2580. case GGML_TYPE_I16:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2583. return ((int16_t *)(tensor->data))[i];
  2584. }
  2585. case GGML_TYPE_I32:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2588. return ((int32_t *)(tensor->data))[i];
  2589. }
  2590. case GGML_TYPE_F16:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2593. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2594. }
  2595. case GGML_TYPE_F32:
  2596. {
  2597. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2598. return ((float *)(tensor->data))[i];
  2599. }
  2600. default:
  2601. {
  2602. GGML_ASSERT(false);
  2603. }
  2604. }
  2605. return 0.0f;
  2606. }
  2607. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2608. if (!ggml_is_contiguous(tensor)) {
  2609. int64_t id[4] = { 0, 0, 0, 0 };
  2610. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2611. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2612. return;
  2613. }
  2614. switch (tensor->type) {
  2615. case GGML_TYPE_I8:
  2616. {
  2617. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2618. ((int8_t *)(tensor->data))[i] = value;
  2619. } break;
  2620. case GGML_TYPE_I16:
  2621. {
  2622. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2623. ((int16_t *)(tensor->data))[i] = value;
  2624. } break;
  2625. case GGML_TYPE_I32:
  2626. {
  2627. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2628. ((int32_t *)(tensor->data))[i] = value;
  2629. } break;
  2630. case GGML_TYPE_F16:
  2631. {
  2632. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2633. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2634. } break;
  2635. case GGML_TYPE_F32:
  2636. {
  2637. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2638. ((float *)(tensor->data))[i] = value;
  2639. } break;
  2640. default:
  2641. {
  2642. GGML_ASSERT(false);
  2643. } break;
  2644. }
  2645. }
  2646. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2647. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2648. switch (tensor->type) {
  2649. case GGML_TYPE_I8:
  2650. return ((int8_t *) data)[0];
  2651. case GGML_TYPE_I16:
  2652. return ((int16_t *) data)[0];
  2653. case GGML_TYPE_I32:
  2654. return ((int32_t *) data)[0];
  2655. case GGML_TYPE_F16:
  2656. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2657. case GGML_TYPE_F32:
  2658. return ((float *) data)[0];
  2659. default:
  2660. GGML_ASSERT(false);
  2661. }
  2662. return 0.0f;
  2663. }
  2664. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2665. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2666. switch (tensor->type) {
  2667. case GGML_TYPE_I8:
  2668. {
  2669. ((int8_t *)(data))[0] = value;
  2670. } break;
  2671. case GGML_TYPE_I16:
  2672. {
  2673. ((int16_t *)(data))[0] = value;
  2674. } break;
  2675. case GGML_TYPE_I32:
  2676. {
  2677. ((int32_t *)(data))[0] = value;
  2678. } break;
  2679. case GGML_TYPE_F16:
  2680. {
  2681. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2682. } break;
  2683. case GGML_TYPE_F32:
  2684. {
  2685. ((float *)(data))[0] = value;
  2686. } break;
  2687. default:
  2688. {
  2689. GGML_ASSERT(false);
  2690. } break;
  2691. }
  2692. }
  2693. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2694. return tensor->data;
  2695. }
  2696. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2697. assert(tensor->type == GGML_TYPE_F32);
  2698. return (float *)(tensor->data);
  2699. }
  2700. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2701. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2702. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2703. }
  2704. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2705. return tensor->name;
  2706. }
  2707. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2708. strncpy(tensor->name, name, sizeof(tensor->name));
  2709. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2710. return tensor;
  2711. }
  2712. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2713. va_list args;
  2714. va_start(args, fmt);
  2715. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2716. va_end(args);
  2717. return tensor;
  2718. }
  2719. struct ggml_tensor * ggml_view_tensor(
  2720. struct ggml_context * ctx,
  2721. struct ggml_tensor * src) {
  2722. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2723. ggml_format_name(result, "%s (view)", src->name);
  2724. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2725. result->nb[i] = src->nb[i];
  2726. }
  2727. return result;
  2728. }
  2729. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2730. struct ggml_object * obj = ctx->objects_begin;
  2731. char * const mem_buffer = ctx->mem_buffer;
  2732. while (obj != NULL) {
  2733. if (obj->type == GGML_OBJECT_TENSOR) {
  2734. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2735. }
  2736. obj = obj->next;
  2737. }
  2738. return NULL;
  2739. }
  2740. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2741. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2742. obj = obj->next;
  2743. char * const mem_buffer = ctx->mem_buffer;
  2744. while (obj != NULL) {
  2745. if (obj->type == GGML_OBJECT_TENSOR) {
  2746. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2747. }
  2748. obj = obj->next;
  2749. }
  2750. return NULL;
  2751. }
  2752. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2753. struct ggml_object * obj = ctx->objects_begin;
  2754. char * const mem_buffer = ctx->mem_buffer;
  2755. while (obj != NULL) {
  2756. if (obj->type == GGML_OBJECT_TENSOR) {
  2757. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2758. if (strcmp(cur->name, name) == 0) {
  2759. return cur;
  2760. }
  2761. }
  2762. obj = obj->next;
  2763. }
  2764. return NULL;
  2765. }
  2766. ////////////////////////////////////////////////////////////////////////////////
  2767. // ggml_dup
  2768. static struct ggml_tensor * ggml_dup_impl(
  2769. struct ggml_context * ctx,
  2770. struct ggml_tensor * a,
  2771. bool inplace) {
  2772. bool is_node = false;
  2773. if (!inplace && (a->grad)) {
  2774. is_node = true;
  2775. }
  2776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2777. result->op = GGML_OP_DUP;
  2778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2779. result->src[0] = a;
  2780. return result;
  2781. }
  2782. struct ggml_tensor * ggml_dup(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a) {
  2785. return ggml_dup_impl(ctx, a, false);
  2786. }
  2787. struct ggml_tensor * ggml_dup_inplace(
  2788. struct ggml_context * ctx,
  2789. struct ggml_tensor * a) {
  2790. return ggml_dup_impl(ctx, a, true);
  2791. }
  2792. // ggml_add
  2793. static struct ggml_tensor * ggml_add_impl(
  2794. struct ggml_context * ctx,
  2795. struct ggml_tensor * a,
  2796. struct ggml_tensor * b,
  2797. bool inplace) {
  2798. GGML_ASSERT(ggml_can_repeat(b, a));
  2799. bool is_node = false;
  2800. if (!inplace && (a->grad || b->grad)) {
  2801. // TODO: support backward pass for broadcasting
  2802. GGML_ASSERT(ggml_are_same_shape(a, b));
  2803. is_node = true;
  2804. }
  2805. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2806. result->op = GGML_OP_ADD;
  2807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2808. result->src[0] = a;
  2809. result->src[1] = b;
  2810. return result;
  2811. }
  2812. struct ggml_tensor * ggml_add(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a,
  2815. struct ggml_tensor * b) {
  2816. return ggml_add_impl(ctx, a, b, false);
  2817. }
  2818. struct ggml_tensor * ggml_add_inplace(
  2819. struct ggml_context * ctx,
  2820. struct ggml_tensor * a,
  2821. struct ggml_tensor * b) {
  2822. return ggml_add_impl(ctx, a, b, true);
  2823. }
  2824. // ggml_add_cast
  2825. static struct ggml_tensor * ggml_add_cast_impl(
  2826. struct ggml_context * ctx,
  2827. struct ggml_tensor * a,
  2828. struct ggml_tensor * b,
  2829. enum ggml_type type) {
  2830. // TODO: support less-strict constraint
  2831. // GGML_ASSERT(ggml_can_repeat(b, a));
  2832. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2833. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2834. bool is_node = false;
  2835. if (a->grad || b->grad) {
  2836. // TODO: support backward pass for broadcasting
  2837. GGML_ASSERT(ggml_are_same_shape(a, b));
  2838. is_node = true;
  2839. }
  2840. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2841. result->op = GGML_OP_ADD;
  2842. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2843. result->src[0] = a;
  2844. result->src[1] = b;
  2845. return result;
  2846. }
  2847. struct ggml_tensor * ggml_add_cast(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * a,
  2850. struct ggml_tensor * b,
  2851. enum ggml_type type) {
  2852. return ggml_add_cast_impl(ctx, a, b, type);
  2853. }
  2854. // ggml_add1
  2855. static struct ggml_tensor * ggml_add1_impl(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * a,
  2858. struct ggml_tensor * b,
  2859. bool inplace) {
  2860. GGML_ASSERT(ggml_is_scalar(b));
  2861. GGML_ASSERT(ggml_is_padded_1d(a));
  2862. bool is_node = false;
  2863. if (a->grad || b->grad) {
  2864. is_node = true;
  2865. }
  2866. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2867. result->op = GGML_OP_ADD1;
  2868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2869. result->src[0] = a;
  2870. result->src[1] = b;
  2871. return result;
  2872. }
  2873. struct ggml_tensor * ggml_add1(
  2874. struct ggml_context * ctx,
  2875. struct ggml_tensor * a,
  2876. struct ggml_tensor * b) {
  2877. return ggml_add1_impl(ctx, a, b, false);
  2878. }
  2879. struct ggml_tensor * ggml_add1_inplace(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a,
  2882. struct ggml_tensor * b) {
  2883. return ggml_add1_impl(ctx, a, b, true);
  2884. }
  2885. // ggml_acc
  2886. static struct ggml_tensor * ggml_acc_impl(
  2887. struct ggml_context * ctx,
  2888. struct ggml_tensor * a,
  2889. struct ggml_tensor * b,
  2890. size_t nb1,
  2891. size_t nb2,
  2892. size_t nb3,
  2893. size_t offset,
  2894. bool inplace) {
  2895. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2896. GGML_ASSERT(ggml_is_contiguous(a));
  2897. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2898. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2899. bool is_node = false;
  2900. if (!inplace && (a->grad || b->grad)) {
  2901. is_node = true;
  2902. }
  2903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2904. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2905. ggml_set_op_params(result, params, sizeof(params));
  2906. result->op = GGML_OP_ACC;
  2907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2908. result->src[0] = a;
  2909. result->src[1] = b;
  2910. return result;
  2911. }
  2912. struct ggml_tensor * ggml_acc(
  2913. struct ggml_context * ctx,
  2914. struct ggml_tensor * a,
  2915. struct ggml_tensor * b,
  2916. size_t nb1,
  2917. size_t nb2,
  2918. size_t nb3,
  2919. size_t offset) {
  2920. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2921. }
  2922. struct ggml_tensor * ggml_acc_inplace(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a,
  2925. struct ggml_tensor * b,
  2926. size_t nb1,
  2927. size_t nb2,
  2928. size_t nb3,
  2929. size_t offset) {
  2930. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2931. }
  2932. // ggml_sub
  2933. static struct ggml_tensor * ggml_sub_impl(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. struct ggml_tensor * b,
  2937. bool inplace) {
  2938. GGML_ASSERT(ggml_are_same_shape(a, b));
  2939. bool is_node = false;
  2940. if (!inplace && (a->grad || b->grad)) {
  2941. is_node = true;
  2942. }
  2943. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2944. result->op = GGML_OP_SUB;
  2945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2946. result->src[0] = a;
  2947. result->src[1] = b;
  2948. return result;
  2949. }
  2950. struct ggml_tensor * ggml_sub(
  2951. struct ggml_context * ctx,
  2952. struct ggml_tensor * a,
  2953. struct ggml_tensor * b) {
  2954. return ggml_sub_impl(ctx, a, b, false);
  2955. }
  2956. struct ggml_tensor * ggml_sub_inplace(
  2957. struct ggml_context * ctx,
  2958. struct ggml_tensor * a,
  2959. struct ggml_tensor * b) {
  2960. return ggml_sub_impl(ctx, a, b, true);
  2961. }
  2962. // ggml_mul
  2963. static struct ggml_tensor * ggml_mul_impl(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a,
  2966. struct ggml_tensor * b,
  2967. bool inplace) {
  2968. GGML_ASSERT(ggml_can_repeat(b, a));
  2969. bool is_node = false;
  2970. if (!inplace && (a->grad || b->grad)) {
  2971. // TODO: support backward pass for broadcasting
  2972. GGML_ASSERT(ggml_are_same_shape(a, b));
  2973. is_node = true;
  2974. }
  2975. if (inplace) {
  2976. GGML_ASSERT(!is_node);
  2977. }
  2978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2979. result->op = GGML_OP_MUL;
  2980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2981. result->src[0] = a;
  2982. result->src[1] = b;
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_mul(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. struct ggml_tensor * b) {
  2989. return ggml_mul_impl(ctx, a, b, false);
  2990. }
  2991. struct ggml_tensor * ggml_mul_inplace(
  2992. struct ggml_context * ctx,
  2993. struct ggml_tensor * a,
  2994. struct ggml_tensor * b) {
  2995. return ggml_mul_impl(ctx, a, b, true);
  2996. }
  2997. // ggml_div
  2998. static struct ggml_tensor * ggml_div_impl(
  2999. struct ggml_context * ctx,
  3000. struct ggml_tensor * a,
  3001. struct ggml_tensor * b,
  3002. bool inplace) {
  3003. GGML_ASSERT(ggml_can_repeat(b, a));
  3004. bool is_node = false;
  3005. if (!inplace && (a->grad || b->grad)) {
  3006. is_node = true;
  3007. }
  3008. if (inplace) {
  3009. GGML_ASSERT(!is_node);
  3010. }
  3011. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3012. result->op = GGML_OP_DIV;
  3013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3014. result->src[0] = a;
  3015. result->src[1] = b;
  3016. return result;
  3017. }
  3018. struct ggml_tensor * ggml_div(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * a,
  3021. struct ggml_tensor * b) {
  3022. return ggml_div_impl(ctx, a, b, false);
  3023. }
  3024. struct ggml_tensor * ggml_div_inplace(
  3025. struct ggml_context * ctx,
  3026. struct ggml_tensor * a,
  3027. struct ggml_tensor * b) {
  3028. return ggml_div_impl(ctx, a, b, true);
  3029. }
  3030. // ggml_sqr
  3031. static struct ggml_tensor * ggml_sqr_impl(
  3032. struct ggml_context * ctx,
  3033. struct ggml_tensor * a,
  3034. bool inplace) {
  3035. bool is_node = false;
  3036. if (!inplace && (a->grad)) {
  3037. is_node = true;
  3038. }
  3039. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3040. result->op = GGML_OP_SQR;
  3041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3042. result->src[0] = a;
  3043. return result;
  3044. }
  3045. struct ggml_tensor * ggml_sqr(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a) {
  3048. return ggml_sqr_impl(ctx, a, false);
  3049. }
  3050. struct ggml_tensor * ggml_sqr_inplace(
  3051. struct ggml_context * ctx,
  3052. struct ggml_tensor * a) {
  3053. return ggml_sqr_impl(ctx, a, true);
  3054. }
  3055. // ggml_sqrt
  3056. static struct ggml_tensor * ggml_sqrt_impl(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. bool inplace) {
  3060. bool is_node = false;
  3061. if (!inplace && (a->grad)) {
  3062. is_node = true;
  3063. }
  3064. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3065. result->op = GGML_OP_SQRT;
  3066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3067. result->src[0] = a;
  3068. return result;
  3069. }
  3070. struct ggml_tensor * ggml_sqrt(
  3071. struct ggml_context * ctx,
  3072. struct ggml_tensor * a) {
  3073. return ggml_sqrt_impl(ctx, a, false);
  3074. }
  3075. struct ggml_tensor * ggml_sqrt_inplace(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a) {
  3078. return ggml_sqrt_impl(ctx, a, true);
  3079. }
  3080. // ggml_log
  3081. static struct ggml_tensor * ggml_log_impl(
  3082. struct ggml_context * ctx,
  3083. struct ggml_tensor * a,
  3084. bool inplace) {
  3085. bool is_node = false;
  3086. if (!inplace && (a->grad)) {
  3087. is_node = true;
  3088. }
  3089. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3090. result->op = GGML_OP_LOG;
  3091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3092. result->src[0] = a;
  3093. return result;
  3094. }
  3095. struct ggml_tensor * ggml_log(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_log_impl(ctx, a, false);
  3099. }
  3100. struct ggml_tensor * ggml_log_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_log_impl(ctx, a, true);
  3104. }
  3105. // ggml_sum
  3106. struct ggml_tensor * ggml_sum(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. bool is_node = false;
  3110. if (a->grad) {
  3111. is_node = true;
  3112. }
  3113. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3114. result->op = GGML_OP_SUM;
  3115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3116. result->src[0] = a;
  3117. return result;
  3118. }
  3119. // ggml_sum_rows
  3120. struct ggml_tensor * ggml_sum_rows(
  3121. struct ggml_context * ctx,
  3122. struct ggml_tensor * a) {
  3123. bool is_node = false;
  3124. if (a->grad) {
  3125. is_node = true;
  3126. }
  3127. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3128. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3129. ne[i] = a->ne[i];
  3130. }
  3131. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3132. result->op = GGML_OP_SUM_ROWS;
  3133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3134. result->src[0] = a;
  3135. return result;
  3136. }
  3137. // ggml_mean
  3138. struct ggml_tensor * ggml_mean(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. bool is_node = false;
  3142. if (a->grad) {
  3143. GGML_ASSERT(false); // TODO: implement
  3144. is_node = true;
  3145. }
  3146. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3147. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3148. result->op = GGML_OP_MEAN;
  3149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3150. result->src[0] = a;
  3151. return result;
  3152. }
  3153. // ggml_argmax
  3154. struct ggml_tensor * ggml_argmax(
  3155. struct ggml_context * ctx,
  3156. struct ggml_tensor * a) {
  3157. GGML_ASSERT(ggml_is_matrix(a));
  3158. bool is_node = false;
  3159. if (a->grad) {
  3160. GGML_ASSERT(false);
  3161. is_node = true;
  3162. }
  3163. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3164. result->op = GGML_OP_ARGMAX;
  3165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3166. result->src[0] = a;
  3167. return result;
  3168. }
  3169. // ggml_repeat
  3170. struct ggml_tensor * ggml_repeat(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. struct ggml_tensor * b) {
  3174. GGML_ASSERT(ggml_can_repeat(a, b));
  3175. bool is_node = false;
  3176. if (a->grad) {
  3177. is_node = true;
  3178. }
  3179. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3180. result->op = GGML_OP_REPEAT;
  3181. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3182. result->src[0] = a;
  3183. return result;
  3184. }
  3185. // ggml_repeat_back
  3186. struct ggml_tensor * ggml_repeat_back(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a,
  3189. struct ggml_tensor * b) {
  3190. GGML_ASSERT(ggml_can_repeat(b, a));
  3191. bool is_node = false;
  3192. if (a->grad) {
  3193. is_node = true;
  3194. }
  3195. if (ggml_are_same_shape(a, b) && !is_node) {
  3196. return a;
  3197. }
  3198. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3199. result->op = GGML_OP_REPEAT_BACK;
  3200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3201. result->src[0] = a;
  3202. return result;
  3203. }
  3204. // ggml_concat
  3205. struct ggml_tensor * ggml_concat(
  3206. struct ggml_context* ctx,
  3207. struct ggml_tensor* a,
  3208. struct ggml_tensor* b) {
  3209. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3210. bool is_node = false;
  3211. if (a->grad || b->grad) {
  3212. is_node = true;
  3213. }
  3214. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3215. result->op = GGML_OP_CONCAT;
  3216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3217. result->src[0] = a;
  3218. result->src[1] = b;
  3219. return result;
  3220. }
  3221. // ggml_abs
  3222. struct ggml_tensor * ggml_abs(
  3223. struct ggml_context * ctx,
  3224. struct ggml_tensor * a) {
  3225. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3226. }
  3227. struct ggml_tensor * ggml_abs_inplace(
  3228. struct ggml_context * ctx,
  3229. struct ggml_tensor * a) {
  3230. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3231. }
  3232. // ggml_sgn
  3233. struct ggml_tensor * ggml_sgn(
  3234. struct ggml_context * ctx,
  3235. struct ggml_tensor * a) {
  3236. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3237. }
  3238. struct ggml_tensor * ggml_sgn_inplace(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a) {
  3241. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3242. }
  3243. // ggml_neg
  3244. struct ggml_tensor * ggml_neg(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a) {
  3247. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3248. }
  3249. struct ggml_tensor * ggml_neg_inplace(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a) {
  3252. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3253. }
  3254. // ggml_step
  3255. struct ggml_tensor * ggml_step(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a) {
  3258. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3259. }
  3260. struct ggml_tensor * ggml_step_inplace(
  3261. struct ggml_context * ctx,
  3262. struct ggml_tensor * a) {
  3263. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3264. }
  3265. // ggml_tanh
  3266. struct ggml_tensor * ggml_tanh(
  3267. struct ggml_context * ctx,
  3268. struct ggml_tensor * a) {
  3269. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3270. }
  3271. struct ggml_tensor * ggml_tanh_inplace(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a) {
  3274. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3275. }
  3276. // ggml_elu
  3277. struct ggml_tensor * ggml_elu(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a) {
  3280. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3281. }
  3282. struct ggml_tensor * ggml_elu_inplace(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a) {
  3285. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3286. }
  3287. // ggml_relu
  3288. struct ggml_tensor * ggml_relu(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a) {
  3291. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3292. }
  3293. struct ggml_tensor * ggml_relu_inplace(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a) {
  3296. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3297. }
  3298. // ggml_leaky_relu
  3299. struct ggml_tensor * ggml_leaky_relu(
  3300. struct ggml_context * ctx,
  3301. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3302. bool is_node = false;
  3303. if (!inplace && (a->grad)) {
  3304. is_node = true;
  3305. }
  3306. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3307. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3308. result->op = GGML_OP_LEAKY_RELU;
  3309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3310. result->src[0] = a;
  3311. return result;
  3312. }
  3313. // ggml_gelu
  3314. struct ggml_tensor * ggml_gelu(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a) {
  3317. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3318. }
  3319. struct ggml_tensor * ggml_gelu_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a) {
  3322. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3323. }
  3324. // ggml_gelu_quick
  3325. struct ggml_tensor * ggml_gelu_quick(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a) {
  3328. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3329. }
  3330. struct ggml_tensor * ggml_gelu_quick_inplace(
  3331. struct ggml_context * ctx,
  3332. struct ggml_tensor * a) {
  3333. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3334. }
  3335. // ggml_silu
  3336. struct ggml_tensor * ggml_silu(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a) {
  3339. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3340. }
  3341. struct ggml_tensor * ggml_silu_inplace(
  3342. struct ggml_context * ctx,
  3343. struct ggml_tensor * a) {
  3344. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3345. }
  3346. // ggml_silu_back
  3347. struct ggml_tensor * ggml_silu_back(
  3348. struct ggml_context * ctx,
  3349. struct ggml_tensor * a,
  3350. struct ggml_tensor * b) {
  3351. bool is_node = false;
  3352. if (a->grad || b->grad) {
  3353. // TODO: implement backward
  3354. is_node = true;
  3355. }
  3356. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3357. result->op = GGML_OP_SILU_BACK;
  3358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3359. result->src[0] = a;
  3360. result->src[1] = b;
  3361. return result;
  3362. }
  3363. // ggml hardswish
  3364. struct ggml_tensor * ggml_hardswish(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a) {
  3367. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3368. }
  3369. // ggml hardsigmoid
  3370. struct ggml_tensor * ggml_hardsigmoid(
  3371. struct ggml_context * ctx,
  3372. struct ggml_tensor * a) {
  3373. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3374. }
  3375. // ggml_norm
  3376. static struct ggml_tensor * ggml_norm_impl(
  3377. struct ggml_context * ctx,
  3378. struct ggml_tensor * a,
  3379. float eps,
  3380. bool inplace) {
  3381. bool is_node = false;
  3382. if (!inplace && (a->grad)) {
  3383. GGML_ASSERT(false); // TODO: implement backward
  3384. is_node = true;
  3385. }
  3386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3387. ggml_set_op_params(result, &eps, sizeof(eps));
  3388. result->op = GGML_OP_NORM;
  3389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3390. result->src[0] = a;
  3391. return result;
  3392. }
  3393. struct ggml_tensor * ggml_norm(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a,
  3396. float eps) {
  3397. return ggml_norm_impl(ctx, a, eps, false);
  3398. }
  3399. struct ggml_tensor * ggml_norm_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a,
  3402. float eps) {
  3403. return ggml_norm_impl(ctx, a, eps, true);
  3404. }
  3405. // ggml_rms_norm
  3406. static struct ggml_tensor * ggml_rms_norm_impl(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a,
  3409. float eps,
  3410. bool inplace) {
  3411. bool is_node = false;
  3412. if (!inplace && (a->grad)) {
  3413. is_node = true;
  3414. }
  3415. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3416. ggml_set_op_params(result, &eps, sizeof(eps));
  3417. result->op = GGML_OP_RMS_NORM;
  3418. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3419. result->src[0] = a;
  3420. return result;
  3421. }
  3422. struct ggml_tensor * ggml_rms_norm(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a,
  3425. float eps) {
  3426. return ggml_rms_norm_impl(ctx, a, eps, false);
  3427. }
  3428. struct ggml_tensor * ggml_rms_norm_inplace(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a,
  3431. float eps) {
  3432. return ggml_rms_norm_impl(ctx, a, eps, true);
  3433. }
  3434. // ggml_rms_norm_back
  3435. struct ggml_tensor * ggml_rms_norm_back(
  3436. struct ggml_context * ctx,
  3437. struct ggml_tensor * a,
  3438. struct ggml_tensor * b,
  3439. float eps) {
  3440. bool is_node = false;
  3441. if (a->grad) {
  3442. // TODO: implement backward
  3443. is_node = true;
  3444. }
  3445. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3446. ggml_set_op_params(result, &eps, sizeof(eps));
  3447. result->op = GGML_OP_RMS_NORM_BACK;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. result->src[1] = b;
  3451. return result;
  3452. }
  3453. // ggml_group_norm
  3454. static struct ggml_tensor * ggml_group_norm_impl(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. int n_groups,
  3458. bool inplace) {
  3459. bool is_node = false;
  3460. if (!inplace && (a->grad)) {
  3461. GGML_ASSERT(false); // TODO: implement backward
  3462. is_node = true;
  3463. }
  3464. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3465. result->op_params[0] = n_groups;
  3466. result->op = GGML_OP_GROUP_NORM;
  3467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3468. result->src[0] = a;
  3469. return result;
  3470. }
  3471. struct ggml_tensor * ggml_group_norm(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. int n_groups) {
  3475. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3476. }
  3477. struct ggml_tensor * ggml_group_norm_inplace(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. int n_groups) {
  3481. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3482. }
  3483. // ggml_mul_mat
  3484. struct ggml_tensor * ggml_mul_mat(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. struct ggml_tensor * b) {
  3488. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3489. GGML_ASSERT(!ggml_is_transposed(a));
  3490. bool is_node = false;
  3491. if (a->grad || b->grad) {
  3492. is_node = true;
  3493. }
  3494. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3495. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3496. result->op = GGML_OP_MUL_MAT;
  3497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3498. result->src[0] = a;
  3499. result->src[1] = b;
  3500. return result;
  3501. }
  3502. void ggml_mul_mat_set_prec(
  3503. struct ggml_tensor * a,
  3504. enum ggml_prec prec) {
  3505. const int32_t prec_i32 = (int32_t) prec;
  3506. ggml_set_op_params_i32(a, 0, prec_i32);
  3507. }
  3508. // ggml_mul_mat_id
  3509. struct ggml_tensor * ggml_mul_mat_id(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * const as[],
  3512. int n_as,
  3513. struct ggml_tensor * ids,
  3514. int id,
  3515. struct ggml_tensor * b) {
  3516. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3517. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3518. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3519. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3520. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3521. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3522. bool is_node = false;
  3523. if (as[0]->grad || b->grad) {
  3524. is_node = true;
  3525. }
  3526. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3527. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3528. ggml_set_op_params_i32(result, 0, id);
  3529. ggml_set_op_params_i32(result, 1, n_as);
  3530. result->op = GGML_OP_MUL_MAT_ID;
  3531. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3532. result->src[0] = ids;
  3533. result->src[1] = b;
  3534. for (int i = 0; i < n_as; i++) {
  3535. struct ggml_tensor * a = as[i];
  3536. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3537. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3538. GGML_ASSERT(!ggml_is_transposed(a));
  3539. result->src[i + 2] = a;
  3540. }
  3541. return result;
  3542. }
  3543. // ggml_out_prod
  3544. struct ggml_tensor * ggml_out_prod(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. struct ggml_tensor * b) {
  3548. GGML_ASSERT(ggml_can_out_prod(a, b));
  3549. GGML_ASSERT(!ggml_is_transposed(a));
  3550. bool is_node = false;
  3551. if (a->grad || b->grad) {
  3552. is_node = true;
  3553. }
  3554. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3555. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3556. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3557. result->op = GGML_OP_OUT_PROD;
  3558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3559. result->src[0] = a;
  3560. result->src[1] = b;
  3561. return result;
  3562. }
  3563. // ggml_scale
  3564. static struct ggml_tensor * ggml_scale_impl(
  3565. struct ggml_context * ctx,
  3566. struct ggml_tensor * a,
  3567. float s,
  3568. bool inplace) {
  3569. GGML_ASSERT(ggml_is_padded_1d(a));
  3570. bool is_node = false;
  3571. if (a->grad) {
  3572. is_node = true;
  3573. }
  3574. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3575. ggml_set_op_params(result, &s, sizeof(s));
  3576. result->op = GGML_OP_SCALE;
  3577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3578. result->src[0] = a;
  3579. return result;
  3580. }
  3581. struct ggml_tensor * ggml_scale(
  3582. struct ggml_context * ctx,
  3583. struct ggml_tensor * a,
  3584. float s) {
  3585. return ggml_scale_impl(ctx, a, s, false);
  3586. }
  3587. struct ggml_tensor * ggml_scale_inplace(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. float s) {
  3591. return ggml_scale_impl(ctx, a, s, true);
  3592. }
  3593. // ggml_set
  3594. static struct ggml_tensor * ggml_set_impl(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a,
  3597. struct ggml_tensor * b,
  3598. size_t nb1,
  3599. size_t nb2,
  3600. size_t nb3,
  3601. size_t offset,
  3602. bool inplace) {
  3603. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3604. bool is_node = false;
  3605. if (a->grad || b->grad) {
  3606. is_node = true;
  3607. }
  3608. // make a view of the destination
  3609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3610. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3611. ggml_set_op_params(result, params, sizeof(params));
  3612. result->op = GGML_OP_SET;
  3613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3614. result->src[0] = a;
  3615. result->src[1] = b;
  3616. return result;
  3617. }
  3618. struct ggml_tensor * ggml_set(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. struct ggml_tensor * b,
  3622. size_t nb1,
  3623. size_t nb2,
  3624. size_t nb3,
  3625. size_t offset) {
  3626. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3627. }
  3628. struct ggml_tensor * ggml_set_inplace(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b,
  3632. size_t nb1,
  3633. size_t nb2,
  3634. size_t nb3,
  3635. size_t offset) {
  3636. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3637. }
  3638. struct ggml_tensor * ggml_set_1d(
  3639. struct ggml_context * ctx,
  3640. struct ggml_tensor * a,
  3641. struct ggml_tensor * b,
  3642. size_t offset) {
  3643. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3644. }
  3645. struct ggml_tensor * ggml_set_1d_inplace(
  3646. struct ggml_context * ctx,
  3647. struct ggml_tensor * a,
  3648. struct ggml_tensor * b,
  3649. size_t offset) {
  3650. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3651. }
  3652. struct ggml_tensor * ggml_set_2d(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. struct ggml_tensor * b,
  3656. size_t nb1,
  3657. size_t offset) {
  3658. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3659. }
  3660. struct ggml_tensor * ggml_set_2d_inplace(
  3661. struct ggml_context * ctx,
  3662. struct ggml_tensor * a,
  3663. struct ggml_tensor * b,
  3664. size_t nb1,
  3665. size_t offset) {
  3666. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3667. }
  3668. // ggml_cpy
  3669. static struct ggml_tensor * ggml_cpy_impl(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a,
  3672. struct ggml_tensor * b) {
  3673. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3674. bool is_node = false;
  3675. if (a->grad || b->grad) {
  3676. // inplace is false and either one have a grad
  3677. is_node = true;
  3678. }
  3679. // make a view of the destination
  3680. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3681. if (strlen(b->name) > 0) {
  3682. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3683. } else {
  3684. ggml_format_name(result, "%s (copy)", a->name);
  3685. }
  3686. result->op = GGML_OP_CPY;
  3687. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3688. result->src[0] = a;
  3689. result->src[1] = b;
  3690. return result;
  3691. }
  3692. struct ggml_tensor * ggml_cpy(
  3693. struct ggml_context * ctx,
  3694. struct ggml_tensor * a,
  3695. struct ggml_tensor * b) {
  3696. return ggml_cpy_impl(ctx, a, b);
  3697. }
  3698. struct ggml_tensor * ggml_cast(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. enum ggml_type type) {
  3702. bool is_node = false;
  3703. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3704. ggml_format_name(result, "%s (copy)", a->name);
  3705. result->op = GGML_OP_CPY;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src[0] = a;
  3708. result->src[1] = result;
  3709. return result;
  3710. }
  3711. // ggml_cont
  3712. static struct ggml_tensor * ggml_cont_impl(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a) {
  3715. bool is_node = false;
  3716. if (a->grad) {
  3717. is_node = true;
  3718. }
  3719. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3720. ggml_format_name(result, "%s (cont)", a->name);
  3721. result->op = GGML_OP_CONT;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_cont(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a) {
  3729. return ggml_cont_impl(ctx, a);
  3730. }
  3731. // make contiguous, with new shape
  3732. GGML_API struct ggml_tensor * ggml_cont_1d(
  3733. struct ggml_context * ctx,
  3734. struct ggml_tensor * a,
  3735. int64_t ne0) {
  3736. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3737. }
  3738. GGML_API struct ggml_tensor * ggml_cont_2d(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. int64_t ne0,
  3742. int64_t ne1) {
  3743. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3744. }
  3745. GGML_API struct ggml_tensor * ggml_cont_3d(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. int64_t ne0,
  3749. int64_t ne1,
  3750. int64_t ne2) {
  3751. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3752. }
  3753. struct ggml_tensor * ggml_cont_4d(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. int64_t ne0,
  3757. int64_t ne1,
  3758. int64_t ne2,
  3759. int64_t ne3) {
  3760. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3761. bool is_node = false;
  3762. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3763. ggml_format_name(result, "%s (cont)", a->name);
  3764. result->op = GGML_OP_CONT;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src[0] = a;
  3767. return result;
  3768. }
  3769. // ggml_reshape
  3770. struct ggml_tensor * ggml_reshape(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a,
  3773. struct ggml_tensor * b) {
  3774. GGML_ASSERT(ggml_is_contiguous(a));
  3775. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3776. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3777. bool is_node = false;
  3778. if (a->grad) {
  3779. is_node = true;
  3780. }
  3781. if (b->grad) {
  3782. // gradient propagation is not supported
  3783. //GGML_ASSERT(false);
  3784. }
  3785. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3786. ggml_format_name(result, "%s (reshaped)", a->name);
  3787. result->op = GGML_OP_RESHAPE;
  3788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3789. result->src[0] = a;
  3790. return result;
  3791. }
  3792. struct ggml_tensor * ggml_reshape_1d(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a,
  3795. int64_t ne0) {
  3796. GGML_ASSERT(ggml_is_contiguous(a));
  3797. GGML_ASSERT(ggml_nelements(a) == ne0);
  3798. bool is_node = false;
  3799. if (a->grad) {
  3800. is_node = true;
  3801. }
  3802. const int64_t ne[1] = { ne0 };
  3803. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3804. ggml_format_name(result, "%s (reshaped)", a->name);
  3805. result->op = GGML_OP_RESHAPE;
  3806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3807. result->src[0] = a;
  3808. return result;
  3809. }
  3810. struct ggml_tensor * ggml_reshape_2d(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a,
  3813. int64_t ne0,
  3814. int64_t ne1) {
  3815. GGML_ASSERT(ggml_is_contiguous(a));
  3816. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3817. bool is_node = false;
  3818. if (a->grad) {
  3819. is_node = true;
  3820. }
  3821. const int64_t ne[2] = { ne0, ne1 };
  3822. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3823. ggml_format_name(result, "%s (reshaped)", a->name);
  3824. result->op = GGML_OP_RESHAPE;
  3825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3826. result->src[0] = a;
  3827. return result;
  3828. }
  3829. struct ggml_tensor * ggml_reshape_3d(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. int64_t ne0,
  3833. int64_t ne1,
  3834. int64_t ne2) {
  3835. GGML_ASSERT(ggml_is_contiguous(a));
  3836. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3837. bool is_node = false;
  3838. if (a->grad) {
  3839. is_node = true;
  3840. }
  3841. const int64_t ne[3] = { ne0, ne1, ne2 };
  3842. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3843. ggml_format_name(result, "%s (reshaped)", a->name);
  3844. result->op = GGML_OP_RESHAPE;
  3845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3846. result->src[0] = a;
  3847. return result;
  3848. }
  3849. struct ggml_tensor * ggml_reshape_4d(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. int64_t ne0,
  3853. int64_t ne1,
  3854. int64_t ne2,
  3855. int64_t ne3) {
  3856. GGML_ASSERT(ggml_is_contiguous(a));
  3857. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3858. bool is_node = false;
  3859. if (a->grad) {
  3860. is_node = true;
  3861. }
  3862. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3863. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3864. ggml_format_name(result, "%s (reshaped)", a->name);
  3865. result->op = GGML_OP_RESHAPE;
  3866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3867. result->src[0] = a;
  3868. return result;
  3869. }
  3870. static struct ggml_tensor * ggml_view_impl(
  3871. struct ggml_context * ctx,
  3872. struct ggml_tensor * a,
  3873. int n_dims,
  3874. const int64_t * ne,
  3875. size_t offset) {
  3876. bool is_node = false;
  3877. if (a->grad) {
  3878. is_node = true;
  3879. }
  3880. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3881. ggml_format_name(result, "%s (view)", a->name);
  3882. ggml_set_op_params(result, &offset, sizeof(offset));
  3883. result->op = GGML_OP_VIEW;
  3884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3885. result->src[0] = a;
  3886. return result;
  3887. }
  3888. // ggml_view_1d
  3889. struct ggml_tensor * ggml_view_1d(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int64_t ne0,
  3893. size_t offset) {
  3894. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3895. return result;
  3896. }
  3897. // ggml_view_2d
  3898. struct ggml_tensor * ggml_view_2d(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. int64_t ne0,
  3902. int64_t ne1,
  3903. size_t nb1,
  3904. size_t offset) {
  3905. const int64_t ne[2] = { ne0, ne1 };
  3906. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3907. result->nb[1] = nb1;
  3908. result->nb[2] = result->nb[1]*ne1;
  3909. result->nb[3] = result->nb[2];
  3910. return result;
  3911. }
  3912. // ggml_view_3d
  3913. struct ggml_tensor * ggml_view_3d(
  3914. struct ggml_context * ctx,
  3915. struct ggml_tensor * a,
  3916. int64_t ne0,
  3917. int64_t ne1,
  3918. int64_t ne2,
  3919. size_t nb1,
  3920. size_t nb2,
  3921. size_t offset) {
  3922. const int64_t ne[3] = { ne0, ne1, ne2 };
  3923. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3924. result->nb[1] = nb1;
  3925. result->nb[2] = nb2;
  3926. result->nb[3] = result->nb[2]*ne2;
  3927. return result;
  3928. }
  3929. // ggml_view_4d
  3930. struct ggml_tensor * ggml_view_4d(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. int64_t ne0,
  3934. int64_t ne1,
  3935. int64_t ne2,
  3936. int64_t ne3,
  3937. size_t nb1,
  3938. size_t nb2,
  3939. size_t nb3,
  3940. size_t offset) {
  3941. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3942. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3943. result->nb[1] = nb1;
  3944. result->nb[2] = nb2;
  3945. result->nb[3] = nb3;
  3946. return result;
  3947. }
  3948. // ggml_permute
  3949. struct ggml_tensor * ggml_permute(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. int axis0,
  3953. int axis1,
  3954. int axis2,
  3955. int axis3) {
  3956. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3957. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3958. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3959. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3960. GGML_ASSERT(axis0 != axis1);
  3961. GGML_ASSERT(axis0 != axis2);
  3962. GGML_ASSERT(axis0 != axis3);
  3963. GGML_ASSERT(axis1 != axis2);
  3964. GGML_ASSERT(axis1 != axis3);
  3965. GGML_ASSERT(axis2 != axis3);
  3966. bool is_node = false;
  3967. if (a->grad) {
  3968. is_node = true;
  3969. }
  3970. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3971. ggml_format_name(result, "%s (permuted)", a->name);
  3972. int ne[GGML_MAX_DIMS];
  3973. int nb[GGML_MAX_DIMS];
  3974. ne[axis0] = a->ne[0];
  3975. ne[axis1] = a->ne[1];
  3976. ne[axis2] = a->ne[2];
  3977. ne[axis3] = a->ne[3];
  3978. nb[axis0] = a->nb[0];
  3979. nb[axis1] = a->nb[1];
  3980. nb[axis2] = a->nb[2];
  3981. nb[axis3] = a->nb[3];
  3982. result->ne[0] = ne[0];
  3983. result->ne[1] = ne[1];
  3984. result->ne[2] = ne[2];
  3985. result->ne[3] = ne[3];
  3986. result->nb[0] = nb[0];
  3987. result->nb[1] = nb[1];
  3988. result->nb[2] = nb[2];
  3989. result->nb[3] = nb[3];
  3990. result->op = GGML_OP_PERMUTE;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3994. ggml_set_op_params(result, params, sizeof(params));
  3995. return result;
  3996. }
  3997. // ggml_transpose
  3998. struct ggml_tensor * ggml_transpose(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a) {
  4001. bool is_node = false;
  4002. if (a->grad) {
  4003. is_node = true;
  4004. }
  4005. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4006. ggml_format_name(result, "%s (transposed)", a->name);
  4007. result->ne[0] = a->ne[1];
  4008. result->ne[1] = a->ne[0];
  4009. result->nb[0] = a->nb[1];
  4010. result->nb[1] = a->nb[0];
  4011. result->op = GGML_OP_TRANSPOSE;
  4012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4013. result->src[0] = a;
  4014. return result;
  4015. }
  4016. // ggml_get_rows
  4017. struct ggml_tensor * ggml_get_rows(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a,
  4020. struct ggml_tensor * b) {
  4021. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4022. GGML_ASSERT(b->ne[3] == 1);
  4023. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4024. bool is_node = false;
  4025. if (a->grad || b->grad) {
  4026. is_node = true;
  4027. }
  4028. // TODO: implement non F32 return
  4029. enum ggml_type type = GGML_TYPE_F32;
  4030. if (a->type == GGML_TYPE_I32) {
  4031. type = a->type;
  4032. }
  4033. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4034. result->op = GGML_OP_GET_ROWS;
  4035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4036. result->src[0] = a;
  4037. result->src[1] = b;
  4038. return result;
  4039. }
  4040. // ggml_get_rows_back
  4041. struct ggml_tensor * ggml_get_rows_back(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. struct ggml_tensor * b,
  4045. struct ggml_tensor * c) {
  4046. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4047. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4048. bool is_node = false;
  4049. if (a->grad || b->grad) {
  4050. is_node = true;
  4051. }
  4052. // TODO: implement non F32 return
  4053. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4054. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4055. result->op = GGML_OP_GET_ROWS_BACK;
  4056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4057. result->src[0] = a;
  4058. result->src[1] = b;
  4059. return result;
  4060. }
  4061. // ggml_diag
  4062. struct ggml_tensor * ggml_diag(
  4063. struct ggml_context * ctx,
  4064. struct ggml_tensor * a) {
  4065. GGML_ASSERT(a->ne[1] == 1);
  4066. bool is_node = false;
  4067. if (a->grad) {
  4068. is_node = true;
  4069. }
  4070. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4071. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4072. result->op = GGML_OP_DIAG;
  4073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4074. result->src[0] = a;
  4075. return result;
  4076. }
  4077. // ggml_diag_mask_inf
  4078. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4079. struct ggml_context * ctx,
  4080. struct ggml_tensor * a,
  4081. int n_past,
  4082. bool inplace) {
  4083. bool is_node = false;
  4084. if (a->grad) {
  4085. is_node = true;
  4086. }
  4087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4088. int32_t params[] = { n_past };
  4089. ggml_set_op_params(result, params, sizeof(params));
  4090. result->op = GGML_OP_DIAG_MASK_INF;
  4091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4092. result->src[0] = a;
  4093. return result;
  4094. }
  4095. struct ggml_tensor * ggml_diag_mask_inf(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a,
  4098. int n_past) {
  4099. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4100. }
  4101. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. int n_past) {
  4105. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4106. }
  4107. // ggml_diag_mask_zero
  4108. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. int n_past,
  4112. bool inplace) {
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. int32_t params[] = { n_past };
  4119. ggml_set_op_params(result, params, sizeof(params));
  4120. result->op = GGML_OP_DIAG_MASK_ZERO;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_diag_mask_zero(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. int n_past) {
  4129. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4130. }
  4131. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. int n_past) {
  4135. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4136. }
  4137. // ggml_soft_max
  4138. static struct ggml_tensor * ggml_soft_max_impl(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. struct ggml_tensor * mask,
  4142. float scale,
  4143. bool inplace) {
  4144. GGML_ASSERT(ggml_is_contiguous(a));
  4145. if (mask) {
  4146. GGML_ASSERT(ggml_is_contiguous(mask));
  4147. GGML_ASSERT(mask->ne[2] == 1);
  4148. GGML_ASSERT(mask->ne[3] == 1);
  4149. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4150. }
  4151. bool is_node = false;
  4152. if (a->grad) {
  4153. is_node = true;
  4154. }
  4155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4156. float params[] = { scale };
  4157. ggml_set_op_params(result, params, sizeof(params));
  4158. result->op = GGML_OP_SOFT_MAX;
  4159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4160. result->src[0] = a;
  4161. result->src[1] = mask;
  4162. return result;
  4163. }
  4164. struct ggml_tensor * ggml_soft_max(
  4165. struct ggml_context * ctx,
  4166. struct ggml_tensor * a) {
  4167. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4168. }
  4169. struct ggml_tensor * ggml_soft_max_inplace(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a) {
  4172. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4173. }
  4174. struct ggml_tensor * ggml_soft_max_ext(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. struct ggml_tensor * mask,
  4178. float scale) {
  4179. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4180. }
  4181. // ggml_soft_max_back
  4182. static struct ggml_tensor * ggml_soft_max_back_impl(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b,
  4186. bool inplace) {
  4187. bool is_node = false;
  4188. if (a->grad || b->grad) {
  4189. is_node = true; // TODO : implement backward pass
  4190. }
  4191. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4192. result->op = GGML_OP_SOFT_MAX_BACK;
  4193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4194. result->src[0] = a;
  4195. result->src[1] = b;
  4196. return result;
  4197. }
  4198. struct ggml_tensor * ggml_soft_max_back(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. struct ggml_tensor * b) {
  4202. return ggml_soft_max_back_impl(ctx, a, b, false);
  4203. }
  4204. struct ggml_tensor * ggml_soft_max_back_inplace(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. struct ggml_tensor * b) {
  4208. return ggml_soft_max_back_impl(ctx, a, b, true);
  4209. }
  4210. // ggml_rope
  4211. static struct ggml_tensor * ggml_rope_impl(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int n_dims,
  4216. int mode,
  4217. int n_ctx,
  4218. int n_orig_ctx,
  4219. float freq_base,
  4220. float freq_scale,
  4221. float ext_factor,
  4222. float attn_factor,
  4223. float beta_fast,
  4224. float beta_slow,
  4225. float xpos_base,
  4226. bool xpos_down,
  4227. bool inplace) {
  4228. GGML_ASSERT(ggml_is_vector(b));
  4229. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4230. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4231. bool is_node = false;
  4232. if (a->grad) {
  4233. is_node = true;
  4234. }
  4235. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4236. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4237. memcpy(params + 5, &freq_base, sizeof(float));
  4238. memcpy(params + 6, &freq_scale, sizeof(float));
  4239. memcpy(params + 7, &ext_factor, sizeof(float));
  4240. memcpy(params + 8, &attn_factor, sizeof(float));
  4241. memcpy(params + 9, &beta_fast, sizeof(float));
  4242. memcpy(params + 10, &beta_slow, sizeof(float));
  4243. memcpy(params + 11, &xpos_base, sizeof(float));
  4244. memcpy(params + 12, &xpos_down, sizeof(bool));
  4245. ggml_set_op_params(result, params, sizeof(params));
  4246. result->op = GGML_OP_ROPE;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src[0] = a;
  4249. result->src[1] = b;
  4250. return result;
  4251. }
  4252. struct ggml_tensor * ggml_rope(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. int n_dims,
  4257. int mode,
  4258. int n_ctx) {
  4259. return ggml_rope_impl(
  4260. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4261. );
  4262. }
  4263. struct ggml_tensor * ggml_rope_inplace(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. struct ggml_tensor * b,
  4267. int n_dims,
  4268. int mode,
  4269. int n_ctx) {
  4270. return ggml_rope_impl(
  4271. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4272. );
  4273. }
  4274. struct ggml_tensor * ggml_rope_custom(
  4275. struct ggml_context * ctx,
  4276. struct ggml_tensor * a,
  4277. struct ggml_tensor * b,
  4278. int n_dims,
  4279. int mode,
  4280. int n_ctx,
  4281. int n_orig_ctx,
  4282. float freq_base,
  4283. float freq_scale,
  4284. float ext_factor,
  4285. float attn_factor,
  4286. float beta_fast,
  4287. float beta_slow) {
  4288. return ggml_rope_impl(
  4289. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4290. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4291. );
  4292. }
  4293. struct ggml_tensor * ggml_rope_custom_inplace(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b,
  4297. int n_dims,
  4298. int mode,
  4299. int n_ctx,
  4300. int n_orig_ctx,
  4301. float freq_base,
  4302. float freq_scale,
  4303. float ext_factor,
  4304. float attn_factor,
  4305. float beta_fast,
  4306. float beta_slow) {
  4307. return ggml_rope_impl(
  4308. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4309. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4310. );
  4311. }
  4312. struct ggml_tensor * ggml_rope_xpos_inplace(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a,
  4315. struct ggml_tensor * b,
  4316. int n_dims,
  4317. float base,
  4318. bool down) {
  4319. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4320. }
  4321. // ggml_rope_back
  4322. struct ggml_tensor * ggml_rope_back(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b,
  4326. int n_dims,
  4327. int mode,
  4328. int n_ctx,
  4329. int n_orig_ctx,
  4330. float freq_base,
  4331. float freq_scale,
  4332. float ext_factor,
  4333. float attn_factor,
  4334. float beta_fast,
  4335. float beta_slow,
  4336. float xpos_base,
  4337. bool xpos_down) {
  4338. GGML_ASSERT(ggml_is_vector(b));
  4339. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4340. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4341. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4342. bool is_node = false;
  4343. if (a->grad) {
  4344. is_node = false; // TODO: implement backward
  4345. }
  4346. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4347. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4348. memcpy(params + 5, &freq_base, sizeof(float));
  4349. memcpy(params + 6, &freq_scale, sizeof(float));
  4350. memcpy(params + 7, &ext_factor, sizeof(float));
  4351. memcpy(params + 8, &attn_factor, sizeof(float));
  4352. memcpy(params + 9, &beta_fast, sizeof(float));
  4353. memcpy(params + 10, &beta_slow, sizeof(float));
  4354. memcpy(params + 11, &xpos_base, sizeof(float));
  4355. memcpy(params + 12, &xpos_down, sizeof(bool));
  4356. ggml_set_op_params(result, params, sizeof(params));
  4357. result->op = GGML_OP_ROPE_BACK;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src[0] = a;
  4360. result->src[1] = b;
  4361. return result;
  4362. }
  4363. // ggml_alibi
  4364. struct ggml_tensor * ggml_alibi(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a,
  4367. int n_past,
  4368. int n_head,
  4369. float bias_max) {
  4370. GGML_ASSERT(n_past >= 0);
  4371. bool is_node = false;
  4372. if (a->grad) {
  4373. GGML_ASSERT(false); // TODO: implement backward
  4374. is_node = true;
  4375. }
  4376. // TODO: when implement backward, fix this:
  4377. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4378. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4379. int32_t op_params[3] = { n_past, n_head };
  4380. memcpy(op_params + 2, &bias_max, sizeof(float));
  4381. ggml_set_op_params(result, op_params, sizeof(op_params));
  4382. result->op = GGML_OP_ALIBI;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src[0] = a;
  4385. return result;
  4386. }
  4387. // ggml_clamp
  4388. struct ggml_tensor * ggml_clamp(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. float min,
  4392. float max) {
  4393. bool is_node = false;
  4394. if (a->grad) {
  4395. GGML_ASSERT(false); // TODO: implement backward
  4396. is_node = true;
  4397. }
  4398. // TODO: when implement backward, fix this:
  4399. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4400. float params[] = { min, max };
  4401. ggml_set_op_params(result, params, sizeof(params));
  4402. result->op = GGML_OP_CLAMP;
  4403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4404. result->src[0] = a;
  4405. return result;
  4406. }
  4407. // ggml_conv_1d
  4408. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4409. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4410. }
  4411. GGML_API struct ggml_tensor * ggml_conv_1d(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. struct ggml_tensor * b,
  4415. int s0,
  4416. int p0,
  4417. int d0) {
  4418. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4419. struct ggml_tensor * result =
  4420. ggml_mul_mat(ctx,
  4421. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4422. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4423. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4424. return result;
  4425. }
  4426. // ggml_conv_1d_ph
  4427. struct ggml_tensor* ggml_conv_1d_ph(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. struct ggml_tensor * b,
  4431. int s,
  4432. int d) {
  4433. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4434. }
  4435. // ggml_conv_transpose_1d
  4436. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4437. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4438. }
  4439. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4440. struct ggml_context * ctx,
  4441. struct ggml_tensor * a,
  4442. struct ggml_tensor * b,
  4443. int s0,
  4444. int p0,
  4445. int d0) {
  4446. GGML_ASSERT(ggml_is_matrix(b));
  4447. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4448. GGML_ASSERT(a->ne[3] == 1);
  4449. GGML_ASSERT(p0 == 0);
  4450. GGML_ASSERT(d0 == 1);
  4451. bool is_node = false;
  4452. if (a->grad || b->grad) {
  4453. GGML_ASSERT(false); // TODO: implement backward
  4454. is_node = true;
  4455. }
  4456. const int64_t ne[4] = {
  4457. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4458. a->ne[1], b->ne[2], 1,
  4459. };
  4460. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4461. int32_t params[] = { s0, p0, d0 };
  4462. ggml_set_op_params(result, params, sizeof(params));
  4463. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. result->src[1] = b;
  4467. return result;
  4468. }
  4469. // ggml_conv_depthwise
  4470. struct ggml_tensor * ggml_conv_depthwise_2d(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. struct ggml_tensor * b,
  4474. int s0,
  4475. int s1,
  4476. int p0,
  4477. int p1,
  4478. int d0,
  4479. int d1) {
  4480. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4481. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4482. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4483. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4484. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4485. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4486. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4487. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4488. return result;
  4489. }
  4490. // ggml_conv_2d
  4491. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4492. // a: [OC,IC, KH, KW]
  4493. // b: [N, IC, IH, IW]
  4494. // result: [N, OH, OW, IC*KH*KW]
  4495. struct ggml_tensor * ggml_im2col(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. struct ggml_tensor * b,
  4499. int s0,
  4500. int s1,
  4501. int p0,
  4502. int p1,
  4503. int d0,
  4504. int d1,
  4505. bool is_2D,
  4506. enum ggml_type dst_type) {
  4507. if(is_2D) {
  4508. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4509. } else {
  4510. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4511. }
  4512. bool is_node = false;
  4513. if (a->grad || b->grad) {
  4514. GGML_ASSERT(false); // TODO: implement backward
  4515. is_node = true;
  4516. }
  4517. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4518. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4519. const int64_t ne[4] = {
  4520. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4521. OW,
  4522. is_2D ? OH : b->ne[2],
  4523. is_2D ? b->ne[3] : 1,
  4524. };
  4525. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4526. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4527. ggml_set_op_params(result, params, sizeof(params));
  4528. result->op = GGML_OP_IM2COL;
  4529. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4530. result->src[0] = a;
  4531. result->src[1] = b;
  4532. return result;
  4533. }
  4534. // a: [OC,IC, KH, KW]
  4535. // b: [N, IC, IH, IW]
  4536. // result: [N, OC, OH, OW]
  4537. struct ggml_tensor * ggml_conv_2d(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b,
  4541. int s0,
  4542. int s1,
  4543. int p0,
  4544. int p1,
  4545. int d0,
  4546. int d1) {
  4547. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4548. struct ggml_tensor * result =
  4549. ggml_mul_mat(ctx,
  4550. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4551. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4552. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4553. return result;
  4554. }
  4555. // ggml_conv_2d_sk_p0
  4556. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. struct ggml_tensor * b) {
  4560. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4561. }
  4562. // ggml_conv_2d_s1_ph
  4563. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b) {
  4567. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4568. }
  4569. // ggml_conv_transpose_2d_p0
  4570. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4571. return (ins - 1) * s - 2 * p + ks;
  4572. }
  4573. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a,
  4576. struct ggml_tensor * b,
  4577. int stride) {
  4578. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4579. bool is_node = false;
  4580. if (a->grad || b->grad) {
  4581. GGML_ASSERT(false); // TODO: implement backward
  4582. is_node = true;
  4583. }
  4584. const int64_t ne[4] = {
  4585. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4586. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4587. a->ne[2], b->ne[3],
  4588. };
  4589. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4590. ggml_set_op_params_i32(result, 0, stride);
  4591. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4592. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4593. result->src[0] = a;
  4594. result->src[1] = b;
  4595. return result;
  4596. }
  4597. // ggml_pool_*
  4598. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4599. return (ins + 2 * p - ks) / s + 1;
  4600. }
  4601. // ggml_pool_1d
  4602. struct ggml_tensor * ggml_pool_1d(
  4603. struct ggml_context * ctx,
  4604. struct ggml_tensor * a,
  4605. enum ggml_op_pool op,
  4606. int k0,
  4607. int s0,
  4608. int p0) {
  4609. bool is_node = false;
  4610. if (a->grad) {
  4611. GGML_ASSERT(false); // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. const int64_t ne[2] = {
  4615. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4616. a->ne[1],
  4617. };
  4618. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4619. int32_t params[] = { op, k0, s0, p0 };
  4620. ggml_set_op_params(result, params, sizeof(params));
  4621. result->op = GGML_OP_POOL_1D;
  4622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4623. result->src[0] = a;
  4624. return result;
  4625. }
  4626. // ggml_pool_2d
  4627. struct ggml_tensor * ggml_pool_2d(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. enum ggml_op_pool op,
  4631. int k0,
  4632. int k1,
  4633. int s0,
  4634. int s1,
  4635. float p0,
  4636. float p1) {
  4637. bool is_node = false;
  4638. if (a->grad) {
  4639. GGML_ASSERT(false); // TODO: implement backward
  4640. is_node = true;
  4641. }
  4642. struct ggml_tensor * result;
  4643. const int64_t ne[3] = {
  4644. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4645. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4646. a->ne[2],
  4647. };
  4648. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4649. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4650. ggml_set_op_params(result, params, sizeof(params));
  4651. result->op = GGML_OP_POOL_2D;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src[0] = a;
  4654. return result;
  4655. }
  4656. // ggml_upscale
  4657. static struct ggml_tensor * ggml_upscale_impl(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int scale_factor) {
  4661. bool is_node = false;
  4662. if (a->grad) {
  4663. GGML_ASSERT(false); // TODO: implement backward
  4664. is_node = true;
  4665. }
  4666. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4667. a->ne[0] * scale_factor,
  4668. a->ne[1] * scale_factor,
  4669. a->ne[2], a->ne[3]);
  4670. result->op = GGML_OP_UPSCALE;
  4671. result->op_params[0] = scale_factor;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. return result;
  4675. }
  4676. struct ggml_tensor * ggml_pad(
  4677. struct ggml_context * ctx,
  4678. struct ggml_tensor * a,
  4679. int p0, int p1, int p2, int p3) {
  4680. bool is_node = false;
  4681. if (a->grad) {
  4682. GGML_ASSERT(false); // TODO: implement backward
  4683. is_node = true;
  4684. }
  4685. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4686. a->ne[0] + p0,
  4687. a->ne[1] + p1,
  4688. a->ne[2] + p2,
  4689. a->ne[3] + p3);
  4690. result->op = GGML_OP_PAD;
  4691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4692. result->src[0] = a;
  4693. return result;
  4694. }
  4695. struct ggml_tensor * ggml_upscale(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. int scale_factor) {
  4699. return ggml_upscale_impl(ctx, a, scale_factor);
  4700. }
  4701. // ggml_argsort
  4702. struct ggml_tensor * ggml_argsort(
  4703. struct ggml_context * ctx,
  4704. struct ggml_tensor * a,
  4705. enum ggml_sort_order order) {
  4706. bool is_node = false;
  4707. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4708. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4709. result->op = GGML_OP_ARGSORT;
  4710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4711. result->src[0] = a;
  4712. return result;
  4713. }
  4714. // ggml_top_k
  4715. struct ggml_tensor * ggml_top_k(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. int k) {
  4719. GGML_ASSERT(a->ne[0] >= k);
  4720. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4721. result = ggml_view_4d(ctx, result,
  4722. k, result->ne[1], result->ne[2], result->ne[3],
  4723. result->nb[1], result->nb[2], result->nb[3],
  4724. 0);
  4725. return result;
  4726. }
  4727. // ggml_flash_attn
  4728. struct ggml_tensor * ggml_flash_attn(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * q,
  4731. struct ggml_tensor * k,
  4732. struct ggml_tensor * v,
  4733. bool masked) {
  4734. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4735. // TODO: check if vT can be multiplied by (k*qT)
  4736. bool is_node = false;
  4737. if (q->grad || k->grad || v->grad) {
  4738. is_node = true;
  4739. }
  4740. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4741. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4742. int32_t t = masked ? 1 : 0;
  4743. ggml_set_op_params(result, &t, sizeof(t));
  4744. result->op = GGML_OP_FLASH_ATTN;
  4745. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4746. result->src[0] = q;
  4747. result->src[1] = k;
  4748. result->src[2] = v;
  4749. return result;
  4750. }
  4751. // ggml_flash_ff
  4752. struct ggml_tensor * ggml_flash_ff(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. struct ggml_tensor * b0,
  4756. struct ggml_tensor * b1,
  4757. struct ggml_tensor * c0,
  4758. struct ggml_tensor * c1) {
  4759. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4760. // TODO: more checks
  4761. bool is_node = false;
  4762. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4763. is_node = true;
  4764. }
  4765. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4766. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4767. result->op = GGML_OP_FLASH_FF;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src[0] = a;
  4770. result->src[1] = b0;
  4771. result->src[2] = b1;
  4772. result->src[3] = c0;
  4773. result->src[4] = c1;
  4774. return result;
  4775. }
  4776. // ggml_flash_attn_back
  4777. struct ggml_tensor * ggml_flash_attn_back(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * q,
  4780. struct ggml_tensor * k,
  4781. struct ggml_tensor * v,
  4782. struct ggml_tensor * d,
  4783. bool masked) {
  4784. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4785. // TODO: check if vT can be multiplied by (k*qT)
  4786. // d shape [D,N,ne2,ne3]
  4787. // q shape [D,N,ne2,ne3]
  4788. // k shape [D,M,kvne2,ne3]
  4789. // v shape [M,D,kvne2,ne3]
  4790. const int64_t D = q->ne[0];
  4791. const int64_t N = q->ne[1];
  4792. const int64_t M = k->ne[1];
  4793. const int64_t ne2 = q->ne[2];
  4794. const int64_t ne3 = q->ne[3];
  4795. const int64_t kvne2 = k->ne[2];
  4796. GGML_ASSERT(k->ne[0] == D);
  4797. GGML_ASSERT(v->ne[0] == M);
  4798. GGML_ASSERT(v->ne[1] == D);
  4799. GGML_ASSERT(d->ne[0] == D);
  4800. GGML_ASSERT(d->ne[1] == N);
  4801. GGML_ASSERT(k->ne[2] == kvne2);
  4802. GGML_ASSERT(k->ne[3] == ne3);
  4803. GGML_ASSERT(v->ne[2] == kvne2);
  4804. GGML_ASSERT(v->ne[3] == ne3);
  4805. GGML_ASSERT(d->ne[2] == ne2);
  4806. GGML_ASSERT(d->ne[3] == ne3);
  4807. GGML_ASSERT(ne2 % kvne2 == 0);
  4808. bool is_node = false;
  4809. if (q->grad || k->grad || v->grad) {
  4810. // when using this operation (in backwards pass) these grads are set.
  4811. // we don't want to create (big) grad of our result, so is_node is false.
  4812. is_node = false;
  4813. }
  4814. // store gradients of q, k and v as continuous tensors concatenated in result.
  4815. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4816. const int64_t elem_q = ggml_nelements(q);
  4817. const int64_t elem_k = ggml_nelements(k);
  4818. const int64_t elem_v = ggml_nelements(v);
  4819. enum ggml_type result_type = GGML_TYPE_F32;
  4820. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4821. const size_t tsize = ggml_type_size(result_type);
  4822. const size_t offs_q = 0;
  4823. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4824. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4825. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4826. const size_t nelements = (end + tsize - 1)/tsize;
  4827. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4828. int32_t masked_i = masked ? 1 : 0;
  4829. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4830. result->op = GGML_OP_FLASH_ATTN_BACK;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src[0] = q;
  4833. result->src[1] = k;
  4834. result->src[2] = v;
  4835. result->src[3] = d;
  4836. return result;
  4837. }
  4838. // ggml_win_part
  4839. struct ggml_tensor * ggml_win_part(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. int w) {
  4843. GGML_ASSERT(a->ne[3] == 1);
  4844. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4845. bool is_node = false;
  4846. if (a->grad) {
  4847. GGML_ASSERT(false); // TODO: implement backward
  4848. is_node = true;
  4849. }
  4850. // padding
  4851. const int px = (w - a->ne[1]%w)%w;
  4852. const int py = (w - a->ne[2]%w)%w;
  4853. const int npx = (px + a->ne[1])/w;
  4854. const int npy = (py + a->ne[2])/w;
  4855. const int np = npx*npy;
  4856. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4857. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4858. int32_t params[] = { npx, npy, w };
  4859. ggml_set_op_params(result, params, sizeof(params));
  4860. result->op = GGML_OP_WIN_PART;
  4861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4862. result->src[0] = a;
  4863. return result;
  4864. }
  4865. // ggml_win_unpart
  4866. struct ggml_tensor * ggml_win_unpart(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. int w0,
  4870. int h0,
  4871. int w) {
  4872. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4873. bool is_node = false;
  4874. if (a->grad) {
  4875. GGML_ASSERT(false); // TODO: implement backward
  4876. is_node = true;
  4877. }
  4878. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4879. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4880. int32_t params[] = { w };
  4881. ggml_set_op_params(result, params, sizeof(params));
  4882. result->op = GGML_OP_WIN_UNPART;
  4883. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4884. result->src[0] = a;
  4885. return result;
  4886. }
  4887. // ggml_get_rel_pos
  4888. struct ggml_tensor * ggml_get_rel_pos(
  4889. struct ggml_context * ctx,
  4890. struct ggml_tensor * a,
  4891. int qh,
  4892. int kh) {
  4893. GGML_ASSERT(qh == kh);
  4894. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4895. bool is_node = false;
  4896. if (a->grad) {
  4897. GGML_ASSERT(false); // TODO: implement backward
  4898. is_node = true;
  4899. }
  4900. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4901. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4902. result->op = GGML_OP_GET_REL_POS;
  4903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4904. result->src[0] = a;
  4905. return result;
  4906. }
  4907. // ggml_add_rel_pos
  4908. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. struct ggml_tensor * pw,
  4912. struct ggml_tensor * ph,
  4913. bool inplace) {
  4914. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4915. GGML_ASSERT(ggml_is_contiguous(a));
  4916. GGML_ASSERT(ggml_is_contiguous(pw));
  4917. GGML_ASSERT(ggml_is_contiguous(ph));
  4918. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4919. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4920. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4921. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4922. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4923. bool is_node = false;
  4924. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4925. is_node = true;
  4926. }
  4927. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4928. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4929. result->op = GGML_OP_ADD_REL_POS;
  4930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4931. result->src[0] = a;
  4932. result->src[1] = pw;
  4933. result->src[2] = ph;
  4934. return result;
  4935. }
  4936. struct ggml_tensor * ggml_add_rel_pos(
  4937. struct ggml_context * ctx,
  4938. struct ggml_tensor * a,
  4939. struct ggml_tensor * pw,
  4940. struct ggml_tensor * ph) {
  4941. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4942. }
  4943. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4944. struct ggml_context * ctx,
  4945. struct ggml_tensor * a,
  4946. struct ggml_tensor * pw,
  4947. struct ggml_tensor * ph) {
  4948. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4949. }
  4950. // gmml_unary
  4951. static struct ggml_tensor * ggml_unary_impl(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. enum ggml_unary_op op,
  4955. bool inplace) {
  4956. bool is_node = false;
  4957. if (!inplace && (a->grad)) {
  4958. is_node = true;
  4959. }
  4960. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4961. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4962. result->op = GGML_OP_UNARY;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. struct ggml_tensor * ggml_unary(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. enum ggml_unary_op op) {
  4971. return ggml_unary_impl(ctx, a, op, false);
  4972. }
  4973. struct ggml_tensor * ggml_unary_inplace(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. enum ggml_unary_op op) {
  4977. return ggml_unary_impl(ctx, a, op, true);
  4978. }
  4979. // ggml_map_unary
  4980. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4981. struct ggml_context * ctx,
  4982. struct ggml_tensor * a,
  4983. const ggml_unary_op_f32_t fun,
  4984. bool inplace) {
  4985. bool is_node = false;
  4986. if (!inplace && a->grad) {
  4987. is_node = true;
  4988. }
  4989. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4990. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4991. result->op = GGML_OP_MAP_UNARY;
  4992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4993. result->src[0] = a;
  4994. return result;
  4995. }
  4996. struct ggml_tensor * ggml_map_unary_f32(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. const ggml_unary_op_f32_t fun) {
  5000. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5001. }
  5002. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. const ggml_unary_op_f32_t fun) {
  5006. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5007. }
  5008. // ggml_map_binary
  5009. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. struct ggml_tensor * b,
  5013. const ggml_binary_op_f32_t fun,
  5014. bool inplace) {
  5015. GGML_ASSERT(ggml_are_same_shape(a, b));
  5016. bool is_node = false;
  5017. if (!inplace && (a->grad || b->grad)) {
  5018. is_node = true;
  5019. }
  5020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5021. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5022. result->op = GGML_OP_MAP_BINARY;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src[0] = a;
  5025. result->src[1] = b;
  5026. return result;
  5027. }
  5028. struct ggml_tensor * ggml_map_binary_f32(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. struct ggml_tensor * b,
  5032. const ggml_binary_op_f32_t fun) {
  5033. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5034. }
  5035. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * b,
  5039. const ggml_binary_op_f32_t fun) {
  5040. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5041. }
  5042. // ggml_map_custom1_f32
  5043. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. const ggml_custom1_op_f32_t fun,
  5047. bool inplace) {
  5048. bool is_node = false;
  5049. if (!inplace && a->grad) {
  5050. is_node = true;
  5051. }
  5052. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5053. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5054. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5056. result->src[0] = a;
  5057. return result;
  5058. }
  5059. struct ggml_tensor * ggml_map_custom1_f32(
  5060. struct ggml_context * ctx,
  5061. struct ggml_tensor * a,
  5062. const ggml_custom1_op_f32_t fun) {
  5063. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5064. }
  5065. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. const ggml_custom1_op_f32_t fun) {
  5069. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5070. }
  5071. // ggml_map_custom2_f32
  5072. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a,
  5075. struct ggml_tensor * b,
  5076. const ggml_custom2_op_f32_t fun,
  5077. bool inplace) {
  5078. bool is_node = false;
  5079. if (!inplace && (a->grad || b->grad)) {
  5080. is_node = true;
  5081. }
  5082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5083. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5084. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src[0] = a;
  5087. result->src[1] = b;
  5088. return result;
  5089. }
  5090. struct ggml_tensor * ggml_map_custom2_f32(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. struct ggml_tensor * b,
  5094. const ggml_custom2_op_f32_t fun) {
  5095. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5096. }
  5097. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b,
  5101. const ggml_custom2_op_f32_t fun) {
  5102. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5103. }
  5104. // ggml_map_custom3_f32
  5105. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. struct ggml_tensor * b,
  5109. struct ggml_tensor * c,
  5110. const ggml_custom3_op_f32_t fun,
  5111. bool inplace) {
  5112. bool is_node = false;
  5113. if (!inplace && (a->grad || b->grad || c->grad)) {
  5114. is_node = true;
  5115. }
  5116. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5117. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5118. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = b;
  5122. result->src[2] = c;
  5123. return result;
  5124. }
  5125. struct ggml_tensor * ggml_map_custom3_f32(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. struct ggml_tensor * b,
  5129. struct ggml_tensor * c,
  5130. const ggml_custom3_op_f32_t fun) {
  5131. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5132. }
  5133. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a,
  5136. struct ggml_tensor * b,
  5137. struct ggml_tensor * c,
  5138. const ggml_custom3_op_f32_t fun) {
  5139. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5140. }
  5141. // ggml_map_custom1
  5142. struct ggml_map_custom1_op_params {
  5143. ggml_custom1_op_t fun;
  5144. int n_tasks;
  5145. void * userdata;
  5146. };
  5147. static struct ggml_tensor * ggml_map_custom1_impl(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. const ggml_custom1_op_t fun,
  5151. int n_tasks,
  5152. void * userdata,
  5153. bool inplace) {
  5154. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5155. bool is_node = false;
  5156. if (!inplace && a->grad) {
  5157. is_node = true;
  5158. }
  5159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5160. struct ggml_map_custom1_op_params params = {
  5161. /*.fun =*/ fun,
  5162. /*.n_tasks =*/ n_tasks,
  5163. /*.userdata =*/ userdata
  5164. };
  5165. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5166. result->op = GGML_OP_MAP_CUSTOM1;
  5167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5168. result->src[0] = a;
  5169. return result;
  5170. }
  5171. struct ggml_tensor * ggml_map_custom1(
  5172. struct ggml_context * ctx,
  5173. struct ggml_tensor * a,
  5174. const ggml_custom1_op_t fun,
  5175. int n_tasks,
  5176. void * userdata) {
  5177. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5178. }
  5179. struct ggml_tensor * ggml_map_custom1_inplace(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. const ggml_custom1_op_t fun,
  5183. int n_tasks,
  5184. void * userdata) {
  5185. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5186. }
  5187. // ggml_map_custom2
  5188. struct ggml_map_custom2_op_params {
  5189. ggml_custom2_op_t fun;
  5190. int n_tasks;
  5191. void * userdata;
  5192. };
  5193. static struct ggml_tensor * ggml_map_custom2_impl(
  5194. struct ggml_context * ctx,
  5195. struct ggml_tensor * a,
  5196. struct ggml_tensor * b,
  5197. const ggml_custom2_op_t fun,
  5198. int n_tasks,
  5199. void * userdata,
  5200. bool inplace) {
  5201. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5202. bool is_node = false;
  5203. if (!inplace && (a->grad || b->grad)) {
  5204. is_node = true;
  5205. }
  5206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5207. struct ggml_map_custom2_op_params params = {
  5208. /*.fun =*/ fun,
  5209. /*.n_tasks =*/ n_tasks,
  5210. /*.userdata =*/ userdata
  5211. };
  5212. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5213. result->op = GGML_OP_MAP_CUSTOM2;
  5214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5215. result->src[0] = a;
  5216. result->src[1] = b;
  5217. return result;
  5218. }
  5219. struct ggml_tensor * ggml_map_custom2(
  5220. struct ggml_context * ctx,
  5221. struct ggml_tensor * a,
  5222. struct ggml_tensor * b,
  5223. const ggml_custom2_op_t fun,
  5224. int n_tasks,
  5225. void * userdata) {
  5226. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5227. }
  5228. struct ggml_tensor * ggml_map_custom2_inplace(
  5229. struct ggml_context * ctx,
  5230. struct ggml_tensor * a,
  5231. struct ggml_tensor * b,
  5232. const ggml_custom2_op_t fun,
  5233. int n_tasks,
  5234. void * userdata) {
  5235. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5236. }
  5237. // ggml_map_custom3
  5238. struct ggml_map_custom3_op_params {
  5239. ggml_custom3_op_t fun;
  5240. int n_tasks;
  5241. void * userdata;
  5242. };
  5243. static struct ggml_tensor * ggml_map_custom3_impl(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * a,
  5246. struct ggml_tensor * b,
  5247. struct ggml_tensor * c,
  5248. const ggml_custom3_op_t fun,
  5249. int n_tasks,
  5250. void * userdata,
  5251. bool inplace) {
  5252. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5253. bool is_node = false;
  5254. if (!inplace && (a->grad || b->grad || c->grad)) {
  5255. is_node = true;
  5256. }
  5257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5258. struct ggml_map_custom3_op_params params = {
  5259. /*.fun =*/ fun,
  5260. /*.n_tasks =*/ n_tasks,
  5261. /*.userdata =*/ userdata
  5262. };
  5263. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5264. result->op = GGML_OP_MAP_CUSTOM3;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src[0] = a;
  5267. result->src[1] = b;
  5268. result->src[2] = c;
  5269. return result;
  5270. }
  5271. struct ggml_tensor * ggml_map_custom3(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. struct ggml_tensor * b,
  5275. struct ggml_tensor * c,
  5276. const ggml_custom3_op_t fun,
  5277. int n_tasks,
  5278. void * userdata) {
  5279. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5280. }
  5281. struct ggml_tensor * ggml_map_custom3_inplace(
  5282. struct ggml_context * ctx,
  5283. struct ggml_tensor * a,
  5284. struct ggml_tensor * b,
  5285. struct ggml_tensor * c,
  5286. const ggml_custom3_op_t fun,
  5287. int n_tasks,
  5288. void * userdata) {
  5289. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5290. }
  5291. // ggml_cross_entropy_loss
  5292. struct ggml_tensor * ggml_cross_entropy_loss(
  5293. struct ggml_context * ctx,
  5294. struct ggml_tensor * a,
  5295. struct ggml_tensor * b) {
  5296. GGML_ASSERT(ggml_are_same_shape(a, b));
  5297. bool is_node = false;
  5298. if (a->grad || b->grad) {
  5299. is_node = true;
  5300. }
  5301. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5302. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5304. result->src[0] = a;
  5305. result->src[1] = b;
  5306. return result;
  5307. }
  5308. // ggml_cross_entropy_loss_back
  5309. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a,
  5312. struct ggml_tensor * b,
  5313. struct ggml_tensor * c) {
  5314. GGML_ASSERT(ggml_are_same_shape(a, b));
  5315. GGML_ASSERT(ggml_is_scalar(c));
  5316. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5317. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5318. result->grad = NULL;
  5319. result->src[0] = a;
  5320. result->src[1] = b;
  5321. result->src[2] = c;
  5322. return result;
  5323. }
  5324. ////////////////////////////////////////////////////////////////////////////////
  5325. void ggml_set_param(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * tensor) {
  5328. tensor->is_param = true;
  5329. GGML_ASSERT(tensor->grad == NULL);
  5330. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5331. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5332. }
  5333. // ggml_compute_forward_dup
  5334. static void ggml_compute_forward_dup_same_cont(
  5335. const struct ggml_compute_params * params,
  5336. const struct ggml_tensor * src0,
  5337. struct ggml_tensor * dst) {
  5338. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5339. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5340. GGML_ASSERT(src0->type == dst->type);
  5341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5342. return;
  5343. }
  5344. const size_t nb00 = src0->nb[0];
  5345. const size_t nb0 = dst->nb[0];
  5346. const int ith = params->ith; // thread index
  5347. const int nth = params->nth; // number of threads
  5348. // parallelize by elements
  5349. const int ne = ggml_nelements(dst);
  5350. const int dr = (ne + nth - 1) / nth;
  5351. const int ie0 = dr * ith;
  5352. const int ie1 = MIN(ie0 + dr, ne);
  5353. if (ie0 < ie1) {
  5354. memcpy(
  5355. ((char *) dst->data + ie0*nb0),
  5356. ((char *) src0->data + ie0*nb00),
  5357. (ie1 - ie0) * ggml_type_size(src0->type));
  5358. }
  5359. }
  5360. static void ggml_compute_forward_dup_f16(
  5361. const struct ggml_compute_params * params,
  5362. const struct ggml_tensor * src0,
  5363. struct ggml_tensor * dst) {
  5364. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5366. return;
  5367. }
  5368. GGML_TENSOR_UNARY_OP_LOCALS
  5369. const int ith = params->ith; // thread index
  5370. const int nth = params->nth; // number of threads
  5371. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5372. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5373. return;
  5374. }
  5375. // parallelize by rows
  5376. const int nr = ne01;
  5377. // number of rows per thread
  5378. const int dr = (nr + nth - 1) / nth;
  5379. // row range for this thread
  5380. const int ir0 = dr * ith;
  5381. const int ir1 = MIN(ir0 + dr, nr);
  5382. if (src0->type == dst->type &&
  5383. ne00 == ne0 &&
  5384. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5385. // copy by rows
  5386. const size_t rs = ne00*nb00;
  5387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5389. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5390. memcpy(
  5391. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5392. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5393. rs);
  5394. }
  5395. }
  5396. }
  5397. return;
  5398. }
  5399. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5400. if (ggml_is_contiguous(dst)) {
  5401. if (nb00 == sizeof(ggml_fp16_t)) {
  5402. if (dst->type == GGML_TYPE_F16) {
  5403. size_t id = 0;
  5404. const size_t rs = ne00 * nb00;
  5405. char * dst_ptr = (char *) dst->data;
  5406. for (int i03 = 0; i03 < ne03; i03++) {
  5407. for (int i02 = 0; i02 < ne02; i02++) {
  5408. id += rs * ir0;
  5409. for (int i01 = ir0; i01 < ir1; i01++) {
  5410. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5411. memcpy(dst_ptr + id, src0_ptr, rs);
  5412. id += rs;
  5413. }
  5414. id += rs * (ne01 - ir1);
  5415. }
  5416. }
  5417. } else if (dst->type == GGML_TYPE_F32) {
  5418. size_t id = 0;
  5419. float * dst_ptr = (float *) dst->data;
  5420. for (int i03 = 0; i03 < ne03; i03++) {
  5421. for (int i02 = 0; i02 < ne02; i02++) {
  5422. id += ne00 * ir0;
  5423. for (int i01 = ir0; i01 < ir1; i01++) {
  5424. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5425. for (int i00 = 0; i00 < ne00; i00++) {
  5426. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5427. id++;
  5428. }
  5429. }
  5430. id += ne00 * (ne01 - ir1);
  5431. }
  5432. }
  5433. } else if (type_traits[dst->type].from_float) {
  5434. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5435. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5436. size_t id = 0;
  5437. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5438. char * dst_ptr = (char *) dst->data;
  5439. for (int i03 = 0; i03 < ne03; i03++) {
  5440. for (int i02 = 0; i02 < ne02; i02++) {
  5441. id += rs * ir0;
  5442. for (int i01 = ir0; i01 < ir1; i01++) {
  5443. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5444. for (int i00 = 0; i00 < ne00; i00++) {
  5445. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5446. }
  5447. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5448. id += rs;
  5449. }
  5450. id += rs * (ne01 - ir1);
  5451. }
  5452. }
  5453. } else {
  5454. GGML_ASSERT(false); // TODO: implement
  5455. }
  5456. } else {
  5457. //printf("%s: this is not optimal - fix me\n", __func__);
  5458. if (dst->type == GGML_TYPE_F32) {
  5459. size_t id = 0;
  5460. float * dst_ptr = (float *) dst->data;
  5461. for (int i03 = 0; i03 < ne03; i03++) {
  5462. for (int i02 = 0; i02 < ne02; i02++) {
  5463. id += ne00 * ir0;
  5464. for (int i01 = ir0; i01 < ir1; i01++) {
  5465. for (int i00 = 0; i00 < ne00; i00++) {
  5466. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5467. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5468. id++;
  5469. }
  5470. }
  5471. id += ne00 * (ne01 - ir1);
  5472. }
  5473. }
  5474. } else if (dst->type == GGML_TYPE_F16) {
  5475. size_t id = 0;
  5476. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5477. for (int i03 = 0; i03 < ne03; i03++) {
  5478. for (int i02 = 0; i02 < ne02; i02++) {
  5479. id += ne00 * ir0;
  5480. for (int i01 = ir0; i01 < ir1; i01++) {
  5481. for (int i00 = 0; i00 < ne00; i00++) {
  5482. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5483. dst_ptr[id] = *src0_ptr;
  5484. id++;
  5485. }
  5486. }
  5487. id += ne00 * (ne01 - ir1);
  5488. }
  5489. }
  5490. } else {
  5491. GGML_ASSERT(false); // TODO: implement
  5492. }
  5493. }
  5494. return;
  5495. }
  5496. // dst counters
  5497. int64_t i10 = 0;
  5498. int64_t i11 = 0;
  5499. int64_t i12 = 0;
  5500. int64_t i13 = 0;
  5501. if (dst->type == GGML_TYPE_F16) {
  5502. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5503. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5504. i10 += ne00 * ir0;
  5505. while (i10 >= ne0) {
  5506. i10 -= ne0;
  5507. if (++i11 == ne1) {
  5508. i11 = 0;
  5509. if (++i12 == ne2) {
  5510. i12 = 0;
  5511. if (++i13 == ne3) {
  5512. i13 = 0;
  5513. }
  5514. }
  5515. }
  5516. }
  5517. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5518. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5519. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5520. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5521. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5522. if (++i10 == ne00) {
  5523. i10 = 0;
  5524. if (++i11 == ne01) {
  5525. i11 = 0;
  5526. if (++i12 == ne02) {
  5527. i12 = 0;
  5528. if (++i13 == ne03) {
  5529. i13 = 0;
  5530. }
  5531. }
  5532. }
  5533. }
  5534. }
  5535. }
  5536. i10 += ne00 * (ne01 - ir1);
  5537. while (i10 >= ne0) {
  5538. i10 -= ne0;
  5539. if (++i11 == ne1) {
  5540. i11 = 0;
  5541. if (++i12 == ne2) {
  5542. i12 = 0;
  5543. if (++i13 == ne3) {
  5544. i13 = 0;
  5545. }
  5546. }
  5547. }
  5548. }
  5549. }
  5550. }
  5551. } else if (dst->type == GGML_TYPE_F32) {
  5552. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5553. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5554. i10 += ne00 * ir0;
  5555. while (i10 >= ne0) {
  5556. i10 -= ne0;
  5557. if (++i11 == ne1) {
  5558. i11 = 0;
  5559. if (++i12 == ne2) {
  5560. i12 = 0;
  5561. if (++i13 == ne3) {
  5562. i13 = 0;
  5563. }
  5564. }
  5565. }
  5566. }
  5567. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5568. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5569. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5570. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5571. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5572. if (++i10 == ne0) {
  5573. i10 = 0;
  5574. if (++i11 == ne1) {
  5575. i11 = 0;
  5576. if (++i12 == ne2) {
  5577. i12 = 0;
  5578. if (++i13 == ne3) {
  5579. i13 = 0;
  5580. }
  5581. }
  5582. }
  5583. }
  5584. }
  5585. }
  5586. i10 += ne00 * (ne01 - ir1);
  5587. while (i10 >= ne0) {
  5588. i10 -= ne0;
  5589. if (++i11 == ne1) {
  5590. i11 = 0;
  5591. if (++i12 == ne2) {
  5592. i12 = 0;
  5593. if (++i13 == ne3) {
  5594. i13 = 0;
  5595. }
  5596. }
  5597. }
  5598. }
  5599. }
  5600. }
  5601. } else {
  5602. GGML_ASSERT(false); // TODO: implement
  5603. }
  5604. }
  5605. static void ggml_compute_forward_dup_f32(
  5606. const struct ggml_compute_params * params,
  5607. const struct ggml_tensor * src0,
  5608. struct ggml_tensor * dst) {
  5609. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5611. return;
  5612. }
  5613. GGML_TENSOR_UNARY_OP_LOCALS
  5614. const int ith = params->ith; // thread index
  5615. const int nth = params->nth; // number of threads
  5616. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5617. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5618. return;
  5619. }
  5620. // parallelize by rows
  5621. const int nr = ne01;
  5622. // number of rows per thread
  5623. const int dr = (nr + nth - 1) / nth;
  5624. // row range for this thread
  5625. const int ir0 = dr * ith;
  5626. const int ir1 = MIN(ir0 + dr, nr);
  5627. if (src0->type == dst->type &&
  5628. ne00 == ne0 &&
  5629. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5630. // copy by rows
  5631. const size_t rs = ne00*nb00;
  5632. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5633. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5634. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5635. memcpy(
  5636. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5637. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5638. rs);
  5639. }
  5640. }
  5641. }
  5642. return;
  5643. }
  5644. if (ggml_is_contiguous(dst)) {
  5645. // TODO: simplify
  5646. if (nb00 == sizeof(float)) {
  5647. if (dst->type == GGML_TYPE_F32) {
  5648. size_t id = 0;
  5649. const size_t rs = ne00 * nb00;
  5650. char * dst_ptr = (char *) dst->data;
  5651. for (int i03 = 0; i03 < ne03; i03++) {
  5652. for (int i02 = 0; i02 < ne02; i02++) {
  5653. id += rs * ir0;
  5654. for (int i01 = ir0; i01 < ir1; i01++) {
  5655. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5656. memcpy(dst_ptr + id, src0_ptr, rs);
  5657. id += rs;
  5658. }
  5659. id += rs * (ne01 - ir1);
  5660. }
  5661. }
  5662. } else if (type_traits[dst->type].from_float) {
  5663. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5664. size_t id = 0;
  5665. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5666. char * dst_ptr = (char *) dst->data;
  5667. for (int i03 = 0; i03 < ne03; i03++) {
  5668. for (int i02 = 0; i02 < ne02; i02++) {
  5669. id += rs * ir0;
  5670. for (int i01 = ir0; i01 < ir1; i01++) {
  5671. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5672. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5673. id += rs;
  5674. }
  5675. id += rs * (ne01 - ir1);
  5676. }
  5677. }
  5678. } else {
  5679. GGML_ASSERT(false); // TODO: implement
  5680. }
  5681. } else {
  5682. //printf("%s: this is not optimal - fix me\n", __func__);
  5683. if (dst->type == GGML_TYPE_F32) {
  5684. size_t id = 0;
  5685. float * dst_ptr = (float *) dst->data;
  5686. for (int i03 = 0; i03 < ne03; i03++) {
  5687. for (int i02 = 0; i02 < ne02; i02++) {
  5688. id += ne00 * ir0;
  5689. for (int i01 = ir0; i01 < ir1; i01++) {
  5690. for (int i00 = 0; i00 < ne00; i00++) {
  5691. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5692. dst_ptr[id] = *src0_ptr;
  5693. id++;
  5694. }
  5695. }
  5696. id += ne00 * (ne01 - ir1);
  5697. }
  5698. }
  5699. } else if (dst->type == GGML_TYPE_F16) {
  5700. size_t id = 0;
  5701. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5702. for (int i03 = 0; i03 < ne03; i03++) {
  5703. for (int i02 = 0; i02 < ne02; i02++) {
  5704. id += ne00 * ir0;
  5705. for (int i01 = ir0; i01 < ir1; i01++) {
  5706. for (int i00 = 0; i00 < ne00; i00++) {
  5707. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5708. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5709. id++;
  5710. }
  5711. }
  5712. id += ne00 * (ne01 - ir1);
  5713. }
  5714. }
  5715. } else {
  5716. GGML_ASSERT(false); // TODO: implement
  5717. }
  5718. }
  5719. return;
  5720. }
  5721. // dst counters
  5722. int64_t i10 = 0;
  5723. int64_t i11 = 0;
  5724. int64_t i12 = 0;
  5725. int64_t i13 = 0;
  5726. if (dst->type == GGML_TYPE_F32) {
  5727. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5728. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5729. i10 += ne00 * ir0;
  5730. while (i10 >= ne0) {
  5731. i10 -= ne0;
  5732. if (++i11 == ne1) {
  5733. i11 = 0;
  5734. if (++i12 == ne2) {
  5735. i12 = 0;
  5736. if (++i13 == ne3) {
  5737. i13 = 0;
  5738. }
  5739. }
  5740. }
  5741. }
  5742. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5743. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5744. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5745. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5746. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5747. if (++i10 == ne0) {
  5748. i10 = 0;
  5749. if (++i11 == ne1) {
  5750. i11 = 0;
  5751. if (++i12 == ne2) {
  5752. i12 = 0;
  5753. if (++i13 == ne3) {
  5754. i13 = 0;
  5755. }
  5756. }
  5757. }
  5758. }
  5759. }
  5760. }
  5761. i10 += ne00 * (ne01 - ir1);
  5762. while (i10 >= ne0) {
  5763. i10 -= ne0;
  5764. if (++i11 == ne1) {
  5765. i11 = 0;
  5766. if (++i12 == ne2) {
  5767. i12 = 0;
  5768. if (++i13 == ne3) {
  5769. i13 = 0;
  5770. }
  5771. }
  5772. }
  5773. }
  5774. }
  5775. }
  5776. } else if (dst->type == GGML_TYPE_F16) {
  5777. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5778. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5779. i10 += ne00 * ir0;
  5780. while (i10 >= ne0) {
  5781. i10 -= ne0;
  5782. if (++i11 == ne1) {
  5783. i11 = 0;
  5784. if (++i12 == ne2) {
  5785. i12 = 0;
  5786. if (++i13 == ne3) {
  5787. i13 = 0;
  5788. }
  5789. }
  5790. }
  5791. }
  5792. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5793. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5794. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5795. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5796. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5797. if (++i10 == ne0) {
  5798. i10 = 0;
  5799. if (++i11 == ne1) {
  5800. i11 = 0;
  5801. if (++i12 == ne2) {
  5802. i12 = 0;
  5803. if (++i13 == ne3) {
  5804. i13 = 0;
  5805. }
  5806. }
  5807. }
  5808. }
  5809. }
  5810. }
  5811. i10 += ne00 * (ne01 - ir1);
  5812. while (i10 >= ne0) {
  5813. i10 -= ne0;
  5814. if (++i11 == ne1) {
  5815. i11 = 0;
  5816. if (++i12 == ne2) {
  5817. i12 = 0;
  5818. if (++i13 == ne3) {
  5819. i13 = 0;
  5820. }
  5821. }
  5822. }
  5823. }
  5824. }
  5825. }
  5826. } else {
  5827. GGML_ASSERT(false); // TODO: implement
  5828. }
  5829. }
  5830. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5831. static void ggml_compute_forward_dup_bytes(
  5832. const struct ggml_compute_params * params,
  5833. const struct ggml_tensor * src0,
  5834. struct ggml_tensor * dst) {
  5835. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5836. GGML_ASSERT(src0->type == dst->type);
  5837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5838. return;
  5839. }
  5840. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5841. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5842. return;
  5843. }
  5844. GGML_TENSOR_UNARY_OP_LOCALS;
  5845. const size_t type_size = ggml_type_size(src0->type);
  5846. const int ith = params->ith; // thread index
  5847. const int nth = params->nth; // number of threads
  5848. // parallelize by rows
  5849. const int nr = ne01;
  5850. // number of rows per thread
  5851. const int dr = (nr + nth - 1) / nth;
  5852. // row range for this thread
  5853. const int ir0 = dr * ith;
  5854. const int ir1 = MIN(ir0 + dr, nr);
  5855. if (src0->type == dst->type &&
  5856. ne00 == ne0 &&
  5857. nb00 == type_size && nb0 == type_size) {
  5858. // copy by rows
  5859. const size_t rs = ne00 * type_size;
  5860. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5861. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5862. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5863. memcpy(
  5864. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5865. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5866. rs);
  5867. }
  5868. }
  5869. }
  5870. return;
  5871. }
  5872. if (ggml_is_contiguous(dst)) {
  5873. size_t id = 0;
  5874. char * dst_ptr = (char *) dst->data;
  5875. const size_t rs = ne00 * type_size;
  5876. if (nb00 == type_size) {
  5877. // src0 is contigous on first dimension, copy by rows
  5878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5880. id += rs * ir0;
  5881. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5882. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5883. memcpy(dst_ptr + id, src0_ptr, rs);
  5884. id += rs;
  5885. }
  5886. id += rs * (ne01 - ir1);
  5887. }
  5888. }
  5889. } else {
  5890. //printf("%s: this is not optimal - fix me\n", __func__);
  5891. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5892. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5893. id += rs * ir0;
  5894. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5895. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5896. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5897. memcpy(dst_ptr + id, src0_ptr, type_size);
  5898. id += type_size;
  5899. }
  5900. }
  5901. id += rs * (ne01 - ir1);
  5902. }
  5903. }
  5904. }
  5905. return;
  5906. }
  5907. // dst counters
  5908. int64_t i10 = 0;
  5909. int64_t i11 = 0;
  5910. int64_t i12 = 0;
  5911. int64_t i13 = 0;
  5912. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5913. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5914. i10 += ne00 * ir0;
  5915. while (i10 >= ne0) {
  5916. i10 -= ne0;
  5917. if (++i11 == ne1) {
  5918. i11 = 0;
  5919. if (++i12 == ne2) {
  5920. i12 = 0;
  5921. if (++i13 == ne3) {
  5922. i13 = 0;
  5923. }
  5924. }
  5925. }
  5926. }
  5927. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5928. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5929. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5930. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5931. memcpy(dst_ptr, src0_ptr, type_size);
  5932. if (++i10 == ne0) {
  5933. i10 = 0;
  5934. if (++i11 == ne1) {
  5935. i11 = 0;
  5936. if (++i12 == ne2) {
  5937. i12 = 0;
  5938. if (++i13 == ne3) {
  5939. i13 = 0;
  5940. }
  5941. }
  5942. }
  5943. }
  5944. }
  5945. }
  5946. i10 += ne00 * (ne01 - ir1);
  5947. while (i10 >= ne0) {
  5948. i10 -= ne0;
  5949. if (++i11 == ne1) {
  5950. i11 = 0;
  5951. if (++i12 == ne2) {
  5952. i12 = 0;
  5953. if (++i13 == ne3) {
  5954. i13 = 0;
  5955. }
  5956. }
  5957. }
  5958. }
  5959. }
  5960. }
  5961. }
  5962. static void ggml_compute_forward_dup(
  5963. const struct ggml_compute_params * params,
  5964. const struct ggml_tensor * src0,
  5965. struct ggml_tensor * dst) {
  5966. if (src0->type == dst->type) {
  5967. ggml_compute_forward_dup_bytes(params, src0, dst);
  5968. return;
  5969. }
  5970. switch (src0->type) {
  5971. case GGML_TYPE_F16:
  5972. {
  5973. ggml_compute_forward_dup_f16(params, src0, dst);
  5974. } break;
  5975. case GGML_TYPE_F32:
  5976. {
  5977. ggml_compute_forward_dup_f32(params, src0, dst);
  5978. } break;
  5979. default:
  5980. {
  5981. GGML_ASSERT(false);
  5982. } break;
  5983. }
  5984. }
  5985. // ggml_compute_forward_add
  5986. static void ggml_compute_forward_add_f32(
  5987. const struct ggml_compute_params * params,
  5988. const struct ggml_tensor * src0,
  5989. const struct ggml_tensor * src1,
  5990. struct ggml_tensor * dst) {
  5991. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5992. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5993. return;
  5994. }
  5995. const int ith = params->ith;
  5996. const int nth = params->nth;
  5997. #ifdef GGML_USE_CLBLAST
  5998. if (src1->backend == GGML_BACKEND_GPU) {
  5999. // TODO: OpenCL kernel support full broadcast
  6000. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6001. if (ith == 0) {
  6002. ggml_cl_add(src0, src1, dst);
  6003. }
  6004. return;
  6005. }
  6006. #endif
  6007. const int nr = ggml_nrows(src0);
  6008. GGML_TENSOR_BINARY_OP_LOCALS
  6009. GGML_ASSERT( nb0 == sizeof(float));
  6010. GGML_ASSERT(nb00 == sizeof(float));
  6011. // rows per thread
  6012. const int dr = (nr + nth - 1)/nth;
  6013. // row range for this thread
  6014. const int ir0 = dr*ith;
  6015. const int ir1 = MIN(ir0 + dr, nr);
  6016. if (nb10 == sizeof(float)) {
  6017. for (int ir = ir0; ir < ir1; ++ir) {
  6018. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6019. const int64_t i03 = ir/(ne02*ne01);
  6020. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6021. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6022. const int64_t i13 = i03 % ne13;
  6023. const int64_t i12 = i02 % ne12;
  6024. const int64_t i11 = i01 % ne11;
  6025. const int64_t nr0 = ne00 / ne10;
  6026. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6027. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6028. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6029. for (int64_t r = 0; r < nr0; ++r) {
  6030. #ifdef GGML_USE_ACCELERATE
  6031. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6032. #else
  6033. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6034. #endif
  6035. }
  6036. }
  6037. } else {
  6038. // src1 is not contiguous
  6039. for (int ir = ir0; ir < ir1; ++ir) {
  6040. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6041. const int64_t i03 = ir/(ne02*ne01);
  6042. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6043. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6044. const int64_t i13 = i03 % ne13;
  6045. const int64_t i12 = i02 % ne12;
  6046. const int64_t i11 = i01 % ne11;
  6047. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6048. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6049. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6050. const int64_t i10 = i0 % ne10;
  6051. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6052. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6053. }
  6054. }
  6055. }
  6056. }
  6057. static void ggml_compute_forward_add_f16_f32(
  6058. const struct ggml_compute_params * params,
  6059. const struct ggml_tensor * src0,
  6060. const struct ggml_tensor * src1,
  6061. struct ggml_tensor * dst) {
  6062. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6064. return;
  6065. }
  6066. const int ith = params->ith;
  6067. const int nth = params->nth;
  6068. const int nr = ggml_nrows(src0);
  6069. GGML_TENSOR_BINARY_OP_LOCALS
  6070. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6071. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6072. if (dst->type == GGML_TYPE_F32) {
  6073. GGML_ASSERT( nb0 == sizeof(float));
  6074. }
  6075. else {
  6076. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6077. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6078. }
  6079. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6080. // rows per thread
  6081. const int dr = (nr + nth - 1)/nth;
  6082. // row range for this thread
  6083. const int ir0 = dr*ith;
  6084. const int ir1 = MIN(ir0 + dr, nr);
  6085. if (nb10 == sizeof(float)) {
  6086. if (dst->type == GGML_TYPE_F16) {
  6087. for (int ir = ir0; ir < ir1; ++ir) {
  6088. // src0, src1 and dst are same shape => same indices
  6089. const int i3 = ir/(ne2*ne1);
  6090. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6091. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6092. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6093. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6094. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6095. for (int i = 0; i < ne0; i++) {
  6096. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6097. }
  6098. }
  6099. } else {
  6100. for (int ir = ir0; ir < ir1; ++ir) {
  6101. // src0, src1 and dst are same shape => same indices
  6102. const int i3 = ir/(ne2*ne1);
  6103. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6104. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6105. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6106. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6107. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6108. for (int i = 0; i < ne0; i++) {
  6109. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6110. }
  6111. }
  6112. }
  6113. }
  6114. else {
  6115. // src1 is not contiguous
  6116. GGML_ASSERT(false);
  6117. }
  6118. }
  6119. static void ggml_compute_forward_add_f16_f16(
  6120. const struct ggml_compute_params * params,
  6121. const struct ggml_tensor * src0,
  6122. const struct ggml_tensor * src1,
  6123. struct ggml_tensor * dst) {
  6124. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6126. return;
  6127. }
  6128. const int ith = params->ith;
  6129. const int nth = params->nth;
  6130. const int nr = ggml_nrows(src0);
  6131. GGML_TENSOR_BINARY_OP_LOCALS
  6132. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6133. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6134. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6135. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6136. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6137. // rows per thread
  6138. const int dr = (nr + nth - 1)/nth;
  6139. // row range for this thread
  6140. const int ir0 = dr*ith;
  6141. const int ir1 = MIN(ir0 + dr, nr);
  6142. if (nb10 == sizeof(ggml_fp16_t)) {
  6143. for (int ir = ir0; ir < ir1; ++ir) {
  6144. // src0, src1 and dst are same shape => same indices
  6145. const int i3 = ir/(ne2*ne1);
  6146. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6147. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6148. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6149. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6150. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6151. for (int i = 0; i < ne0; i++) {
  6152. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6153. }
  6154. }
  6155. }
  6156. else {
  6157. // src1 is not contiguous
  6158. GGML_ASSERT(false);
  6159. }
  6160. }
  6161. static void ggml_compute_forward_add_q_f32(
  6162. const struct ggml_compute_params * params,
  6163. const struct ggml_tensor * src0,
  6164. const struct ggml_tensor * src1,
  6165. struct ggml_tensor * dst) {
  6166. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6167. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6168. return;
  6169. }
  6170. const int nr = ggml_nrows(src0);
  6171. GGML_TENSOR_BINARY_OP_LOCALS
  6172. const int ith = params->ith;
  6173. const int nth = params->nth;
  6174. const enum ggml_type type = src0->type;
  6175. const enum ggml_type dtype = dst->type;
  6176. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6177. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6178. // we don't support permuted src0 or src1
  6179. GGML_ASSERT(nb00 == ggml_type_size(type));
  6180. GGML_ASSERT(nb10 == sizeof(float));
  6181. // dst cannot be transposed or permuted
  6182. GGML_ASSERT(nb0 <= nb1);
  6183. GGML_ASSERT(nb1 <= nb2);
  6184. GGML_ASSERT(nb2 <= nb3);
  6185. GGML_ASSERT(ggml_is_quantized(src0->type));
  6186. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6187. // rows per thread
  6188. const int dr = (nr + nth - 1)/nth;
  6189. // row range for this thread
  6190. const int ir0 = dr*ith;
  6191. const int ir1 = MIN(ir0 + dr, nr);
  6192. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6193. for (int ir = ir0; ir < ir1; ++ir) {
  6194. // src0 indices
  6195. const int i03 = ir/(ne02*ne01);
  6196. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6197. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6198. // src1 and dst are same shape as src0 => same indices
  6199. const int i13 = i03;
  6200. const int i12 = i02;
  6201. const int i11 = i01;
  6202. const int i3 = i03;
  6203. const int i2 = i02;
  6204. const int i1 = i01;
  6205. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6206. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6207. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6208. assert(ne00 % 32 == 0);
  6209. // unquantize row from src0 to temp buffer
  6210. dequantize_row_q(src0_row, wdata, ne00);
  6211. // add src1
  6212. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6213. // quantize row to dst
  6214. if (quantize_row_q != NULL) {
  6215. quantize_row_q(wdata, dst_row, ne00);
  6216. } else {
  6217. memcpy(dst_row, wdata, ne0*nb0);
  6218. }
  6219. }
  6220. }
  6221. static void ggml_compute_forward_add(
  6222. const struct ggml_compute_params * params,
  6223. const struct ggml_tensor * src0,
  6224. const struct ggml_tensor * src1,
  6225. struct ggml_tensor * dst) {
  6226. switch (src0->type) {
  6227. case GGML_TYPE_F32:
  6228. {
  6229. if (src1->type == GGML_TYPE_F32) {
  6230. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6231. }
  6232. else {
  6233. GGML_ASSERT(false);
  6234. }
  6235. } break;
  6236. case GGML_TYPE_F16:
  6237. {
  6238. if (src1->type == GGML_TYPE_F16) {
  6239. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6240. }
  6241. else if (src1->type == GGML_TYPE_F32) {
  6242. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6243. }
  6244. else {
  6245. GGML_ASSERT(false);
  6246. }
  6247. } break;
  6248. case GGML_TYPE_Q4_0:
  6249. case GGML_TYPE_Q4_1:
  6250. case GGML_TYPE_Q5_0:
  6251. case GGML_TYPE_Q5_1:
  6252. case GGML_TYPE_Q8_0:
  6253. case GGML_TYPE_Q2_K:
  6254. case GGML_TYPE_Q3_K:
  6255. case GGML_TYPE_Q4_K:
  6256. case GGML_TYPE_Q5_K:
  6257. case GGML_TYPE_Q6_K:
  6258. case GGML_TYPE_IQ2_XXS:
  6259. case GGML_TYPE_IQ2_XS:
  6260. case GGML_TYPE_IQ3_XXS:
  6261. {
  6262. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6263. } break;
  6264. default:
  6265. {
  6266. GGML_ASSERT(false);
  6267. } break;
  6268. }
  6269. }
  6270. // ggml_compute_forward_add1
  6271. static void ggml_compute_forward_add1_f32(
  6272. const struct ggml_compute_params * params,
  6273. const struct ggml_tensor * src0,
  6274. const struct ggml_tensor * src1,
  6275. struct ggml_tensor * dst) {
  6276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6277. GGML_ASSERT(ggml_is_scalar(src1));
  6278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6279. return;
  6280. }
  6281. const int ith = params->ith;
  6282. const int nth = params->nth;
  6283. const int nr = ggml_nrows(src0);
  6284. GGML_TENSOR_UNARY_OP_LOCALS
  6285. GGML_ASSERT( nb0 == sizeof(float));
  6286. GGML_ASSERT(nb00 == sizeof(float));
  6287. // rows per thread
  6288. const int dr = (nr + nth - 1)/nth;
  6289. // row range for this thread
  6290. const int ir0 = dr*ith;
  6291. const int ir1 = MIN(ir0 + dr, nr);
  6292. for (int ir = ir0; ir < ir1; ++ir) {
  6293. // src0 and dst are same shape => same indices
  6294. const int i3 = ir/(ne2*ne1);
  6295. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6296. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6297. #ifdef GGML_USE_ACCELERATE
  6298. UNUSED(ggml_vec_add1_f32);
  6299. vDSP_vadd(
  6300. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6301. (float *) ((char *) src1->data), 0,
  6302. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6303. ne0);
  6304. #else
  6305. ggml_vec_add1_f32(ne0,
  6306. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6307. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6308. *(float *) src1->data);
  6309. #endif
  6310. }
  6311. }
  6312. static void ggml_compute_forward_add1_f16_f32(
  6313. const struct ggml_compute_params * params,
  6314. const struct ggml_tensor * src0,
  6315. const struct ggml_tensor * src1,
  6316. struct ggml_tensor * dst) {
  6317. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6318. GGML_ASSERT(ggml_is_scalar(src1));
  6319. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6320. return;
  6321. }
  6322. // scalar to add
  6323. const float v = *(float *) src1->data;
  6324. const int ith = params->ith;
  6325. const int nth = params->nth;
  6326. const int nr = ggml_nrows(src0);
  6327. GGML_TENSOR_UNARY_OP_LOCALS
  6328. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6329. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6330. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6331. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6332. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6333. // rows per thread
  6334. const int dr = (nr + nth - 1)/nth;
  6335. // row range for this thread
  6336. const int ir0 = dr*ith;
  6337. const int ir1 = MIN(ir0 + dr, nr);
  6338. for (int ir = ir0; ir < ir1; ++ir) {
  6339. // src0 and dst are same shape => same indices
  6340. const int i3 = ir/(ne2*ne1);
  6341. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6342. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6343. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6344. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6345. for (int i = 0; i < ne0; i++) {
  6346. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6347. }
  6348. }
  6349. }
  6350. static void ggml_compute_forward_add1_f16_f16(
  6351. const struct ggml_compute_params * params,
  6352. const struct ggml_tensor * src0,
  6353. const struct ggml_tensor * src1,
  6354. struct ggml_tensor * dst) {
  6355. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6356. GGML_ASSERT(ggml_is_scalar(src1));
  6357. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6358. return;
  6359. }
  6360. // scalar to add
  6361. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6362. const int ith = params->ith;
  6363. const int nth = params->nth;
  6364. const int nr = ggml_nrows(src0);
  6365. GGML_TENSOR_UNARY_OP_LOCALS
  6366. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6367. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6368. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6369. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6370. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6371. // rows per thread
  6372. const int dr = (nr + nth - 1)/nth;
  6373. // row range for this thread
  6374. const int ir0 = dr*ith;
  6375. const int ir1 = MIN(ir0 + dr, nr);
  6376. for (int ir = ir0; ir < ir1; ++ir) {
  6377. // src0 and dst are same shape => same indices
  6378. const int i3 = ir/(ne2*ne1);
  6379. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6380. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6381. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6382. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6383. for (int i = 0; i < ne0; i++) {
  6384. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6385. }
  6386. }
  6387. }
  6388. static void ggml_compute_forward_add1_q_f32(
  6389. const struct ggml_compute_params * params,
  6390. const struct ggml_tensor * src0,
  6391. const struct ggml_tensor * src1,
  6392. struct ggml_tensor * dst) {
  6393. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6394. GGML_ASSERT(ggml_is_scalar(src1));
  6395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6396. return;
  6397. }
  6398. // scalar to add
  6399. const float v = *(float *) src1->data;
  6400. const int ith = params->ith;
  6401. const int nth = params->nth;
  6402. const int nr = ggml_nrows(src0);
  6403. GGML_TENSOR_UNARY_OP_LOCALS
  6404. const enum ggml_type type = src0->type;
  6405. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6406. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6407. // we don't support permuted src0
  6408. GGML_ASSERT(nb00 == ggml_type_size(type));
  6409. // dst cannot be transposed or permuted
  6410. GGML_ASSERT(nb0 <= nb1);
  6411. GGML_ASSERT(nb1 <= nb2);
  6412. GGML_ASSERT(nb2 <= nb3);
  6413. GGML_ASSERT(ggml_is_quantized(src0->type));
  6414. GGML_ASSERT(dst->type == src0->type);
  6415. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6416. // rows per thread
  6417. const int dr = (nr + nth - 1)/nth;
  6418. // row range for this thread
  6419. const int ir0 = dr*ith;
  6420. const int ir1 = MIN(ir0 + dr, nr);
  6421. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6422. for (int ir = ir0; ir < ir1; ++ir) {
  6423. // src0 and dst are same shape => same indices
  6424. const int i3 = ir/(ne2*ne1);
  6425. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6426. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6427. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6428. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6429. assert(ne0 % 32 == 0);
  6430. // unquantize row from src0 to temp buffer
  6431. dequantize_row_q(src0_row, wdata, ne0);
  6432. // add src1
  6433. ggml_vec_acc1_f32(ne0, wdata, v);
  6434. // quantize row to dst
  6435. quantize_row_q(wdata, dst_row, ne0);
  6436. }
  6437. }
  6438. static void ggml_compute_forward_add1(
  6439. const struct ggml_compute_params * params,
  6440. const struct ggml_tensor * src0,
  6441. const struct ggml_tensor * src1,
  6442. struct ggml_tensor * dst) {
  6443. switch (src0->type) {
  6444. case GGML_TYPE_F32:
  6445. {
  6446. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6447. } break;
  6448. case GGML_TYPE_F16:
  6449. {
  6450. if (src1->type == GGML_TYPE_F16) {
  6451. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6452. }
  6453. else if (src1->type == GGML_TYPE_F32) {
  6454. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6455. }
  6456. else {
  6457. GGML_ASSERT(false);
  6458. }
  6459. } break;
  6460. case GGML_TYPE_Q4_0:
  6461. case GGML_TYPE_Q4_1:
  6462. case GGML_TYPE_Q5_0:
  6463. case GGML_TYPE_Q5_1:
  6464. case GGML_TYPE_Q8_0:
  6465. case GGML_TYPE_Q8_1:
  6466. case GGML_TYPE_Q2_K:
  6467. case GGML_TYPE_Q3_K:
  6468. case GGML_TYPE_Q4_K:
  6469. case GGML_TYPE_Q5_K:
  6470. case GGML_TYPE_Q6_K:
  6471. case GGML_TYPE_IQ2_XXS:
  6472. case GGML_TYPE_IQ2_XS:
  6473. case GGML_TYPE_IQ3_XXS:
  6474. {
  6475. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6476. } break;
  6477. default:
  6478. {
  6479. GGML_ASSERT(false);
  6480. } break;
  6481. }
  6482. }
  6483. // ggml_compute_forward_acc
  6484. static void ggml_compute_forward_acc_f32(
  6485. const struct ggml_compute_params * params,
  6486. const struct ggml_tensor * src0,
  6487. const struct ggml_tensor * src1,
  6488. struct ggml_tensor * dst) {
  6489. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6490. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6491. // view src0 and dst with these strides and data offset inbytes during acc
  6492. // nb0 is implicitly element_size because src0 and dst are contiguous
  6493. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6494. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6495. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6496. size_t offset = ((int32_t *) dst->op_params)[3];
  6497. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6498. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6499. if (params->ith != 0) {
  6500. return;
  6501. }
  6502. // memcpy needs to be synchronized across threads to avoid race conditions.
  6503. // => do it in INIT phase
  6504. memcpy(
  6505. ((char *) dst->data),
  6506. ((char *) src0->data),
  6507. ggml_nbytes(dst));
  6508. }
  6509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6510. return;
  6511. }
  6512. const int ith = params->ith;
  6513. const int nth = params->nth;
  6514. const int nr = ggml_nrows(src1);
  6515. const int nc = src1->ne[0];
  6516. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6517. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6518. // src0 and dst as viewed during acc
  6519. const size_t nb0 = ggml_element_size(src0);
  6520. const size_t nb00 = nb0;
  6521. const size_t nb01 = nb1;
  6522. const size_t nb02 = nb2;
  6523. const size_t nb03 = nb3;
  6524. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6525. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6526. GGML_ASSERT(nb10 == sizeof(float));
  6527. // rows per thread
  6528. const int dr = (nr + nth - 1)/nth;
  6529. // row range for this thread
  6530. const int ir0 = dr*ith;
  6531. const int ir1 = MIN(ir0 + dr, nr);
  6532. for (int ir = ir0; ir < ir1; ++ir) {
  6533. // src0 and dst are viewed with shape of src1 and offset
  6534. // => same indices
  6535. const int i3 = ir/(ne12*ne11);
  6536. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6537. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6538. #ifdef GGML_USE_ACCELERATE
  6539. vDSP_vadd(
  6540. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6541. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6542. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6543. #else
  6544. ggml_vec_add_f32(nc,
  6545. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6546. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6547. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6548. #endif
  6549. }
  6550. }
  6551. static void ggml_compute_forward_acc(
  6552. const struct ggml_compute_params * params,
  6553. const struct ggml_tensor * src0,
  6554. const struct ggml_tensor * src1,
  6555. struct ggml_tensor * dst) {
  6556. switch (src0->type) {
  6557. case GGML_TYPE_F32:
  6558. {
  6559. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6560. } break;
  6561. case GGML_TYPE_F16:
  6562. case GGML_TYPE_Q4_0:
  6563. case GGML_TYPE_Q4_1:
  6564. case GGML_TYPE_Q5_0:
  6565. case GGML_TYPE_Q5_1:
  6566. case GGML_TYPE_Q8_0:
  6567. case GGML_TYPE_Q8_1:
  6568. case GGML_TYPE_Q2_K:
  6569. case GGML_TYPE_Q3_K:
  6570. case GGML_TYPE_Q4_K:
  6571. case GGML_TYPE_Q5_K:
  6572. case GGML_TYPE_Q6_K:
  6573. case GGML_TYPE_IQ2_XXS:
  6574. case GGML_TYPE_IQ2_XS:
  6575. case GGML_TYPE_IQ3_XXS:
  6576. default:
  6577. {
  6578. GGML_ASSERT(false);
  6579. } break;
  6580. }
  6581. }
  6582. // ggml_compute_forward_sub
  6583. static void ggml_compute_forward_sub_f32(
  6584. const struct ggml_compute_params * params,
  6585. const struct ggml_tensor * src0,
  6586. const struct ggml_tensor * src1,
  6587. struct ggml_tensor * dst) {
  6588. assert(params->ith == 0);
  6589. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6591. return;
  6592. }
  6593. const int nr = ggml_nrows(src0);
  6594. GGML_TENSOR_BINARY_OP_LOCALS
  6595. GGML_ASSERT( nb0 == sizeof(float));
  6596. GGML_ASSERT(nb00 == sizeof(float));
  6597. if (nb10 == sizeof(float)) {
  6598. for (int ir = 0; ir < nr; ++ir) {
  6599. // src0, src1 and dst are same shape => same indices
  6600. const int i3 = ir/(ne2*ne1);
  6601. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6602. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6603. #ifdef GGML_USE_ACCELERATE
  6604. vDSP_vsub(
  6605. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6606. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6607. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6608. ne0);
  6609. #else
  6610. ggml_vec_sub_f32(ne0,
  6611. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6612. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6613. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6614. #endif
  6615. // }
  6616. // }
  6617. }
  6618. } else {
  6619. // src1 is not contiguous
  6620. for (int ir = 0; ir < nr; ++ir) {
  6621. // src0, src1 and dst are same shape => same indices
  6622. const int i3 = ir/(ne2*ne1);
  6623. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6624. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6625. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6626. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6627. for (int i0 = 0; i0 < ne0; i0++) {
  6628. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6629. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6630. }
  6631. }
  6632. }
  6633. }
  6634. static void ggml_compute_forward_sub(
  6635. const struct ggml_compute_params * params,
  6636. const struct ggml_tensor * src0,
  6637. const struct ggml_tensor * src1,
  6638. struct ggml_tensor * dst) {
  6639. switch (src0->type) {
  6640. case GGML_TYPE_F32:
  6641. {
  6642. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6643. } break;
  6644. default:
  6645. {
  6646. GGML_ASSERT(false);
  6647. } break;
  6648. }
  6649. }
  6650. // ggml_compute_forward_mul
  6651. static void ggml_compute_forward_mul_f32(
  6652. const struct ggml_compute_params * params,
  6653. const struct ggml_tensor * src0,
  6654. const struct ggml_tensor * src1,
  6655. struct ggml_tensor * dst) {
  6656. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6657. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6658. return;
  6659. }
  6660. const int ith = params->ith;
  6661. const int nth = params->nth;
  6662. #if defined(GGML_USE_CLBLAST)
  6663. if (src1->backend == GGML_BACKEND_GPU) {
  6664. // TODO: OpenCL kernel support full broadcast
  6665. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6666. if (ith == 0) {
  6667. ggml_cl_mul(src0, src1, dst);
  6668. }
  6669. return;
  6670. }
  6671. #endif
  6672. const int64_t nr = ggml_nrows(src0);
  6673. GGML_TENSOR_BINARY_OP_LOCALS
  6674. GGML_ASSERT( nb0 == sizeof(float));
  6675. GGML_ASSERT(nb00 == sizeof(float));
  6676. if (nb10 == sizeof(float)) {
  6677. for (int64_t ir = ith; ir < nr; ir += nth) {
  6678. // src0 and dst are same shape => same indices
  6679. const int64_t i03 = ir/(ne02*ne01);
  6680. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6681. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6682. const int64_t i13 = i03 % ne13;
  6683. const int64_t i12 = i02 % ne12;
  6684. const int64_t i11 = i01 % ne11;
  6685. const int64_t nr0 = ne00 / ne10;
  6686. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6687. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6688. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6689. for (int64_t r = 0 ; r < nr0; ++r) {
  6690. #ifdef GGML_USE_ACCELERATE
  6691. UNUSED(ggml_vec_mul_f32);
  6692. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6693. #else
  6694. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6695. #endif
  6696. }
  6697. }
  6698. } else {
  6699. // src1 is not contiguous
  6700. for (int64_t ir = ith; ir < nr; ir += nth) {
  6701. // src0 and dst are same shape => same indices
  6702. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6703. const int64_t i03 = ir/(ne02*ne01);
  6704. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6705. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6706. const int64_t i13 = i03 % ne13;
  6707. const int64_t i12 = i02 % ne12;
  6708. const int64_t i11 = i01 % ne11;
  6709. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6710. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6711. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6712. const int64_t i10 = i0 % ne10;
  6713. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6714. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6715. }
  6716. }
  6717. }
  6718. }
  6719. static void ggml_compute_forward_mul(
  6720. const struct ggml_compute_params * params,
  6721. const struct ggml_tensor * src0,
  6722. const struct ggml_tensor * src1,
  6723. struct ggml_tensor * dst) {
  6724. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6725. switch (src0->type) {
  6726. case GGML_TYPE_F32:
  6727. {
  6728. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6729. } break;
  6730. default:
  6731. {
  6732. GGML_ASSERT(false);
  6733. } break;
  6734. }
  6735. }
  6736. // ggml_compute_forward_div
  6737. static void ggml_compute_forward_div_f32(
  6738. const struct ggml_compute_params * params,
  6739. const struct ggml_tensor * src0,
  6740. const struct ggml_tensor * src1,
  6741. struct ggml_tensor * dst) {
  6742. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6743. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6744. return;
  6745. }
  6746. const int ith = params->ith;
  6747. const int nth = params->nth;
  6748. const int64_t nr = ggml_nrows(src0);
  6749. GGML_TENSOR_BINARY_OP_LOCALS
  6750. GGML_ASSERT( nb0 == sizeof(float));
  6751. GGML_ASSERT(nb00 == sizeof(float));
  6752. if (nb10 == sizeof(float)) {
  6753. for (int64_t ir = ith; ir < nr; ir += nth) {
  6754. // src0 and dst are same shape => same indices
  6755. const int64_t i03 = ir/(ne02*ne01);
  6756. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6757. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6758. const int64_t i13 = i03 % ne13;
  6759. const int64_t i12 = i02 % ne12;
  6760. const int64_t i11 = i01 % ne11;
  6761. const int64_t nr0 = ne00 / ne10;
  6762. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6763. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6764. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6765. for (int64_t r = 0; r < nr0; ++r) {
  6766. #ifdef GGML_USE_ACCELERATE
  6767. UNUSED(ggml_vec_div_f32);
  6768. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6769. #else
  6770. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6771. #endif
  6772. }
  6773. }
  6774. } else {
  6775. // src1 is not contiguous
  6776. for (int64_t ir = ith; ir < nr; ir += nth) {
  6777. // src0 and dst are same shape => same indices
  6778. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6779. const int64_t i03 = ir/(ne02*ne01);
  6780. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6781. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6782. const int64_t i13 = i03 % ne13;
  6783. const int64_t i12 = i02 % ne12;
  6784. const int64_t i11 = i01 % ne11;
  6785. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6786. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6787. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6788. const int64_t i10 = i0 % ne10;
  6789. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6790. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6791. }
  6792. }
  6793. }
  6794. }
  6795. static void ggml_compute_forward_div(
  6796. const struct ggml_compute_params * params,
  6797. const struct ggml_tensor * src0,
  6798. const struct ggml_tensor * src1,
  6799. struct ggml_tensor * dst) {
  6800. switch (src0->type) {
  6801. case GGML_TYPE_F32:
  6802. {
  6803. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6804. } break;
  6805. default:
  6806. {
  6807. GGML_ASSERT(false);
  6808. } break;
  6809. }
  6810. }
  6811. // ggml_compute_forward_sqr
  6812. static void ggml_compute_forward_sqr_f32(
  6813. const struct ggml_compute_params * params,
  6814. const struct ggml_tensor * src0,
  6815. struct ggml_tensor * dst) {
  6816. assert(params->ith == 0);
  6817. assert(ggml_are_same_shape(src0, dst));
  6818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6819. return;
  6820. }
  6821. const int n = ggml_nrows(src0);
  6822. const int nc = src0->ne[0];
  6823. assert( dst->nb[0] == sizeof(float));
  6824. assert(src0->nb[0] == sizeof(float));
  6825. for (int i = 0; i < n; i++) {
  6826. ggml_vec_sqr_f32(nc,
  6827. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6828. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6829. }
  6830. }
  6831. static void ggml_compute_forward_sqr(
  6832. const struct ggml_compute_params * params,
  6833. const struct ggml_tensor * src0,
  6834. struct ggml_tensor * dst) {
  6835. switch (src0->type) {
  6836. case GGML_TYPE_F32:
  6837. {
  6838. ggml_compute_forward_sqr_f32(params, src0, dst);
  6839. } break;
  6840. default:
  6841. {
  6842. GGML_ASSERT(false);
  6843. } break;
  6844. }
  6845. }
  6846. // ggml_compute_forward_sqrt
  6847. static void ggml_compute_forward_sqrt_f32(
  6848. const struct ggml_compute_params * params,
  6849. const struct ggml_tensor * src0,
  6850. struct ggml_tensor * dst) {
  6851. assert(params->ith == 0);
  6852. assert(ggml_are_same_shape(src0, dst));
  6853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6854. return;
  6855. }
  6856. const int n = ggml_nrows(src0);
  6857. const int nc = src0->ne[0];
  6858. assert( dst->nb[0] == sizeof(float));
  6859. assert(src0->nb[0] == sizeof(float));
  6860. for (int i = 0; i < n; i++) {
  6861. ggml_vec_sqrt_f32(nc,
  6862. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6863. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6864. }
  6865. }
  6866. static void ggml_compute_forward_sqrt(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. struct ggml_tensor * dst) {
  6870. switch (src0->type) {
  6871. case GGML_TYPE_F32:
  6872. {
  6873. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6874. } break;
  6875. default:
  6876. {
  6877. GGML_ASSERT(false);
  6878. } break;
  6879. }
  6880. }
  6881. // ggml_compute_forward_log
  6882. static void ggml_compute_forward_log_f32(
  6883. const struct ggml_compute_params * params,
  6884. const struct ggml_tensor * src0,
  6885. struct ggml_tensor * dst) {
  6886. GGML_ASSERT(params->ith == 0);
  6887. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6889. return;
  6890. }
  6891. const int n = ggml_nrows(src0);
  6892. const int nc = src0->ne[0];
  6893. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6894. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6895. for (int i = 0; i < n; i++) {
  6896. ggml_vec_log_f32(nc,
  6897. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6898. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6899. }
  6900. }
  6901. static void ggml_compute_forward_log(
  6902. const struct ggml_compute_params * params,
  6903. const struct ggml_tensor * src0,
  6904. struct ggml_tensor * dst) {
  6905. switch (src0->type) {
  6906. case GGML_TYPE_F32:
  6907. {
  6908. ggml_compute_forward_log_f32(params, src0, dst);
  6909. } break;
  6910. default:
  6911. {
  6912. GGML_ASSERT(false);
  6913. } break;
  6914. }
  6915. }
  6916. // ggml_compute_forward_sum
  6917. static void ggml_compute_forward_sum_f32(
  6918. const struct ggml_compute_params * params,
  6919. const struct ggml_tensor * src0,
  6920. struct ggml_tensor * dst) {
  6921. assert(params->ith == 0);
  6922. assert(ggml_is_scalar(dst));
  6923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6924. return;
  6925. }
  6926. assert(ggml_is_scalar(dst));
  6927. assert(src0->nb[0] == sizeof(float));
  6928. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6929. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6930. ggml_float sum = 0;
  6931. ggml_float row_sum = 0;
  6932. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6933. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6934. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6935. ggml_vec_sum_f32_ggf(ne00,
  6936. &row_sum,
  6937. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6938. sum += row_sum;
  6939. }
  6940. }
  6941. }
  6942. ((float *) dst->data)[0] = sum;
  6943. }
  6944. static void ggml_compute_forward_sum_f16(
  6945. const struct ggml_compute_params * params,
  6946. const struct ggml_tensor * src0,
  6947. struct ggml_tensor * dst) {
  6948. assert(params->ith == 0);
  6949. assert(ggml_is_scalar(dst));
  6950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6951. return;
  6952. }
  6953. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6954. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6955. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6956. float sum = 0;
  6957. float row_sum = 0;
  6958. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6960. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6961. ggml_vec_sum_f16_ggf(ne00,
  6962. &row_sum,
  6963. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6964. sum += row_sum;
  6965. }
  6966. }
  6967. }
  6968. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6969. }
  6970. static void ggml_compute_forward_sum(
  6971. const struct ggml_compute_params * params,
  6972. const struct ggml_tensor * src0,
  6973. struct ggml_tensor * dst) {
  6974. switch (src0->type) {
  6975. case GGML_TYPE_F32:
  6976. {
  6977. ggml_compute_forward_sum_f32(params, src0, dst);
  6978. } break;
  6979. case GGML_TYPE_F16:
  6980. {
  6981. ggml_compute_forward_sum_f16(params, src0, dst);
  6982. } break;
  6983. default:
  6984. {
  6985. GGML_ASSERT(false);
  6986. } break;
  6987. }
  6988. }
  6989. // ggml_compute_forward_sum_rows
  6990. static void ggml_compute_forward_sum_rows_f32(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. struct ggml_tensor * dst) {
  6994. GGML_ASSERT(params->ith == 0);
  6995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6996. return;
  6997. }
  6998. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6999. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7000. GGML_TENSOR_UNARY_OP_LOCALS
  7001. GGML_ASSERT(ne0 == 1);
  7002. GGML_ASSERT(ne1 == ne01);
  7003. GGML_ASSERT(ne2 == ne02);
  7004. GGML_ASSERT(ne3 == ne03);
  7005. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7006. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7007. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7008. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7009. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7010. float row_sum = 0;
  7011. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7012. dst_row[0] = row_sum;
  7013. }
  7014. }
  7015. }
  7016. }
  7017. static void ggml_compute_forward_sum_rows(
  7018. const struct ggml_compute_params * params,
  7019. const struct ggml_tensor * src0,
  7020. struct ggml_tensor * dst) {
  7021. switch (src0->type) {
  7022. case GGML_TYPE_F32:
  7023. {
  7024. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7025. } break;
  7026. default:
  7027. {
  7028. GGML_ASSERT(false);
  7029. } break;
  7030. }
  7031. }
  7032. // ggml_compute_forward_mean
  7033. static void ggml_compute_forward_mean_f32(
  7034. const struct ggml_compute_params * params,
  7035. const struct ggml_tensor * src0,
  7036. struct ggml_tensor * dst) {
  7037. assert(params->ith == 0);
  7038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7039. return;
  7040. }
  7041. assert(src0->nb[0] == sizeof(float));
  7042. GGML_TENSOR_UNARY_OP_LOCALS
  7043. assert(ne0 == 1);
  7044. assert(ne1 == ne01);
  7045. assert(ne2 == ne02);
  7046. assert(ne3 == ne03);
  7047. UNUSED(ne0);
  7048. UNUSED(ne1);
  7049. UNUSED(ne2);
  7050. UNUSED(ne3);
  7051. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7052. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7053. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7054. ggml_vec_sum_f32(ne00,
  7055. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7056. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7057. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7058. }
  7059. }
  7060. }
  7061. }
  7062. static void ggml_compute_forward_mean(
  7063. const struct ggml_compute_params * params,
  7064. const struct ggml_tensor * src0,
  7065. struct ggml_tensor * dst) {
  7066. switch (src0->type) {
  7067. case GGML_TYPE_F32:
  7068. {
  7069. ggml_compute_forward_mean_f32(params, src0, dst);
  7070. } break;
  7071. default:
  7072. {
  7073. GGML_ASSERT(false);
  7074. } break;
  7075. }
  7076. }
  7077. // ggml_compute_forward_argmax
  7078. static void ggml_compute_forward_argmax_f32(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. struct ggml_tensor * dst) {
  7082. assert(params->ith == 0);
  7083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7084. return;
  7085. }
  7086. assert(src0->nb[0] == sizeof(float));
  7087. assert(dst->nb[0] == sizeof(float));
  7088. const int64_t ne00 = src0->ne[0];
  7089. const int64_t ne01 = src0->ne[1];
  7090. const size_t nb01 = src0->nb[1];
  7091. const size_t nb0 = dst->nb[0];
  7092. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7093. float * src = (float *) ((char *) src0->data + i1*nb01);
  7094. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7095. int v = 0;
  7096. ggml_vec_argmax_f32(ne00, &v, src);
  7097. dst_[0] = v;
  7098. }
  7099. }
  7100. static void ggml_compute_forward_argmax(
  7101. const struct ggml_compute_params * params,
  7102. const struct ggml_tensor * src0,
  7103. struct ggml_tensor * dst) {
  7104. switch (src0->type) {
  7105. case GGML_TYPE_F32:
  7106. {
  7107. ggml_compute_forward_argmax_f32(params, src0, dst);
  7108. } break;
  7109. default:
  7110. {
  7111. GGML_ASSERT(false);
  7112. } break;
  7113. }
  7114. }
  7115. // ggml_compute_forward_repeat
  7116. static void ggml_compute_forward_repeat_f32(
  7117. const struct ggml_compute_params * params,
  7118. const struct ggml_tensor * src0,
  7119. struct ggml_tensor * dst) {
  7120. GGML_ASSERT(params->ith == 0);
  7121. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7123. return;
  7124. }
  7125. GGML_TENSOR_UNARY_OP_LOCALS
  7126. // guaranteed to be an integer due to the check in ggml_can_repeat
  7127. const int nr0 = (int)(ne0/ne00);
  7128. const int nr1 = (int)(ne1/ne01);
  7129. const int nr2 = (int)(ne2/ne02);
  7130. const int nr3 = (int)(ne3/ne03);
  7131. // TODO: support for transposed / permuted tensors
  7132. GGML_ASSERT(nb0 == sizeof(float));
  7133. GGML_ASSERT(nb00 == sizeof(float));
  7134. // TODO: maybe this is not optimal?
  7135. for (int i3 = 0; i3 < nr3; i3++) {
  7136. for (int k3 = 0; k3 < ne03; k3++) {
  7137. for (int i2 = 0; i2 < nr2; i2++) {
  7138. for (int k2 = 0; k2 < ne02; k2++) {
  7139. for (int i1 = 0; i1 < nr1; i1++) {
  7140. for (int k1 = 0; k1 < ne01; k1++) {
  7141. for (int i0 = 0; i0 < nr0; i0++) {
  7142. ggml_vec_cpy_f32(ne00,
  7143. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7144. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7145. }
  7146. }
  7147. }
  7148. }
  7149. }
  7150. }
  7151. }
  7152. }
  7153. static void ggml_compute_forward_repeat_f16(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. struct ggml_tensor * dst) {
  7157. GGML_ASSERT(params->ith == 0);
  7158. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7160. return;
  7161. }
  7162. GGML_TENSOR_UNARY_OP_LOCALS
  7163. // guaranteed to be an integer due to the check in ggml_can_repeat
  7164. const int nr0 = (int)(ne0/ne00);
  7165. const int nr1 = (int)(ne1/ne01);
  7166. const int nr2 = (int)(ne2/ne02);
  7167. const int nr3 = (int)(ne3/ne03);
  7168. // TODO: support for transposed / permuted tensors
  7169. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7170. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7171. // TODO: maybe this is not optimal?
  7172. for (int i3 = 0; i3 < nr3; i3++) {
  7173. for (int k3 = 0; k3 < ne03; k3++) {
  7174. for (int i2 = 0; i2 < nr2; i2++) {
  7175. for (int k2 = 0; k2 < ne02; k2++) {
  7176. for (int i1 = 0; i1 < nr1; i1++) {
  7177. for (int k1 = 0; k1 < ne01; k1++) {
  7178. for (int i0 = 0; i0 < nr0; i0++) {
  7179. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7180. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7181. // ggml_vec_cpy_f16(ne00, y, x)
  7182. for (int i = 0; i < ne00; ++i) {
  7183. y[i] = x[i];
  7184. }
  7185. }
  7186. }
  7187. }
  7188. }
  7189. }
  7190. }
  7191. }
  7192. }
  7193. static void ggml_compute_forward_repeat(
  7194. const struct ggml_compute_params * params,
  7195. const struct ggml_tensor * src0,
  7196. struct ggml_tensor * dst) {
  7197. switch (src0->type) {
  7198. case GGML_TYPE_F16:
  7199. case GGML_TYPE_I16:
  7200. {
  7201. ggml_compute_forward_repeat_f16(params, src0, dst);
  7202. } break;
  7203. case GGML_TYPE_F32:
  7204. case GGML_TYPE_I32:
  7205. {
  7206. ggml_compute_forward_repeat_f32(params, src0, dst);
  7207. } break;
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. // ggml_compute_forward_repeat_back
  7215. static void ggml_compute_forward_repeat_back_f32(
  7216. const struct ggml_compute_params * params,
  7217. const struct ggml_tensor * src0,
  7218. struct ggml_tensor * dst) {
  7219. GGML_ASSERT(params->ith == 0);
  7220. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7221. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7222. return;
  7223. }
  7224. GGML_TENSOR_UNARY_OP_LOCALS
  7225. // guaranteed to be an integer due to the check in ggml_can_repeat
  7226. const int nr0 = (int)(ne00/ne0);
  7227. const int nr1 = (int)(ne01/ne1);
  7228. const int nr2 = (int)(ne02/ne2);
  7229. const int nr3 = (int)(ne03/ne3);
  7230. // TODO: support for transposed / permuted tensors
  7231. GGML_ASSERT(nb0 == sizeof(float));
  7232. GGML_ASSERT(nb00 == sizeof(float));
  7233. if (ggml_is_contiguous(dst)) {
  7234. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7235. } else {
  7236. for (int k3 = 0; k3 < ne3; k3++) {
  7237. for (int k2 = 0; k2 < ne2; k2++) {
  7238. for (int k1 = 0; k1 < ne1; k1++) {
  7239. ggml_vec_set_f32(ne0,
  7240. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7241. 0);
  7242. }
  7243. }
  7244. }
  7245. }
  7246. // TODO: maybe this is not optimal?
  7247. for (int i3 = 0; i3 < nr3; i3++) {
  7248. for (int k3 = 0; k3 < ne3; k3++) {
  7249. for (int i2 = 0; i2 < nr2; i2++) {
  7250. for (int k2 = 0; k2 < ne2; k2++) {
  7251. for (int i1 = 0; i1 < nr1; i1++) {
  7252. for (int k1 = 0; k1 < ne1; k1++) {
  7253. for (int i0 = 0; i0 < nr0; i0++) {
  7254. ggml_vec_acc_f32(ne0,
  7255. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7256. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7257. }
  7258. }
  7259. }
  7260. }
  7261. }
  7262. }
  7263. }
  7264. }
  7265. static void ggml_compute_forward_repeat_back(
  7266. const struct ggml_compute_params * params,
  7267. const struct ggml_tensor * src0,
  7268. struct ggml_tensor * dst) {
  7269. switch (src0->type) {
  7270. case GGML_TYPE_F32:
  7271. {
  7272. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7273. } break;
  7274. default:
  7275. {
  7276. GGML_ASSERT(false);
  7277. } break;
  7278. }
  7279. }
  7280. // ggml_compute_forward_concat
  7281. static void ggml_compute_forward_concat_f32(
  7282. const struct ggml_compute_params * params,
  7283. const struct ggml_tensor * src0,
  7284. const struct ggml_tensor * src1,
  7285. struct ggml_tensor * dst) {
  7286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7287. return;
  7288. }
  7289. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7290. const int ith = params->ith;
  7291. const int nth = params->nth;
  7292. GGML_TENSOR_BINARY_OP_LOCALS
  7293. // TODO: support for transposed / permuted tensors
  7294. GGML_ASSERT(nb0 == sizeof(float));
  7295. GGML_ASSERT(nb00 == sizeof(float));
  7296. GGML_ASSERT(nb10 == sizeof(float));
  7297. for (int i3 = 0; i3 < ne3; i3++) {
  7298. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7299. if (i2 < ne02) { // src0
  7300. for (int i1 = 0; i1 < ne1; i1++) {
  7301. for (int i0 = 0; i0 < ne0; i0++) {
  7302. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7303. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7304. *y = *x;
  7305. }
  7306. }
  7307. } // src1
  7308. else {
  7309. for (int i1 = 0; i1 < ne1; i1++) {
  7310. for (int i0 = 0; i0 < ne0; i0++) {
  7311. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7312. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7313. *y = *x;
  7314. }
  7315. }
  7316. }
  7317. }
  7318. }
  7319. }
  7320. static void ggml_compute_forward_concat(
  7321. const struct ggml_compute_params* params,
  7322. const struct ggml_tensor* src0,
  7323. const struct ggml_tensor* src1,
  7324. struct ggml_tensor* dst) {
  7325. switch (src0->type) {
  7326. case GGML_TYPE_F32:
  7327. case GGML_TYPE_I32:
  7328. {
  7329. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7330. } break;
  7331. default:
  7332. {
  7333. GGML_ASSERT(false);
  7334. } break;
  7335. }
  7336. }
  7337. // ggml_compute_forward_abs
  7338. static void ggml_compute_forward_abs_f32(
  7339. const struct ggml_compute_params * params,
  7340. const struct ggml_tensor * src0,
  7341. struct ggml_tensor * dst) {
  7342. assert(params->ith == 0);
  7343. assert(ggml_are_same_shape(src0, dst));
  7344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7345. return;
  7346. }
  7347. const int n = ggml_nrows(src0);
  7348. const int nc = src0->ne[0];
  7349. assert(dst->nb[0] == sizeof(float));
  7350. assert(src0->nb[0] == sizeof(float));
  7351. for (int i = 0; i < n; i++) {
  7352. ggml_vec_abs_f32(nc,
  7353. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7354. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7355. }
  7356. }
  7357. static void ggml_compute_forward_abs(
  7358. const struct ggml_compute_params * params,
  7359. const struct ggml_tensor * src0,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_abs_f32(params, src0, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_sgn
  7373. static void ggml_compute_forward_sgn_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. struct ggml_tensor * dst) {
  7377. assert(params->ith == 0);
  7378. assert(ggml_are_same_shape(src0, dst));
  7379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7380. return;
  7381. }
  7382. const int n = ggml_nrows(src0);
  7383. const int nc = src0->ne[0];
  7384. assert(dst->nb[0] == sizeof(float));
  7385. assert(src0->nb[0] == sizeof(float));
  7386. for (int i = 0; i < n; i++) {
  7387. ggml_vec_sgn_f32(nc,
  7388. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7389. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7390. }
  7391. }
  7392. static void ggml_compute_forward_sgn(
  7393. const struct ggml_compute_params * params,
  7394. const struct ggml_tensor * src0,
  7395. struct ggml_tensor * dst) {
  7396. switch (src0->type) {
  7397. case GGML_TYPE_F32:
  7398. {
  7399. ggml_compute_forward_sgn_f32(params, src0, dst);
  7400. } break;
  7401. default:
  7402. {
  7403. GGML_ASSERT(false);
  7404. } break;
  7405. }
  7406. }
  7407. // ggml_compute_forward_neg
  7408. static void ggml_compute_forward_neg_f32(
  7409. const struct ggml_compute_params * params,
  7410. const struct ggml_tensor * src0,
  7411. struct ggml_tensor * dst) {
  7412. assert(params->ith == 0);
  7413. assert(ggml_are_same_shape(src0, dst));
  7414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7415. return;
  7416. }
  7417. const int n = ggml_nrows(src0);
  7418. const int nc = src0->ne[0];
  7419. assert(dst->nb[0] == sizeof(float));
  7420. assert(src0->nb[0] == sizeof(float));
  7421. for (int i = 0; i < n; i++) {
  7422. ggml_vec_neg_f32(nc,
  7423. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7424. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7425. }
  7426. }
  7427. static void ggml_compute_forward_neg(
  7428. const struct ggml_compute_params * params,
  7429. const struct ggml_tensor * src0,
  7430. struct ggml_tensor * dst) {
  7431. switch (src0->type) {
  7432. case GGML_TYPE_F32:
  7433. {
  7434. ggml_compute_forward_neg_f32(params, src0, dst);
  7435. } break;
  7436. default:
  7437. {
  7438. GGML_ASSERT(false);
  7439. } break;
  7440. }
  7441. }
  7442. // ggml_compute_forward_step
  7443. static void ggml_compute_forward_step_f32(
  7444. const struct ggml_compute_params * params,
  7445. const struct ggml_tensor * src0,
  7446. struct ggml_tensor * dst) {
  7447. assert(params->ith == 0);
  7448. assert(ggml_are_same_shape(src0, dst));
  7449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7450. return;
  7451. }
  7452. const int n = ggml_nrows(src0);
  7453. const int nc = src0->ne[0];
  7454. assert(dst->nb[0] == sizeof(float));
  7455. assert(src0->nb[0] == sizeof(float));
  7456. for (int i = 0; i < n; i++) {
  7457. ggml_vec_step_f32(nc,
  7458. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7459. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7460. }
  7461. }
  7462. static void ggml_compute_forward_step(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. struct ggml_tensor * dst) {
  7466. switch (src0->type) {
  7467. case GGML_TYPE_F32:
  7468. {
  7469. ggml_compute_forward_step_f32(params, src0, dst);
  7470. } break;
  7471. default:
  7472. {
  7473. GGML_ASSERT(false);
  7474. } break;
  7475. }
  7476. }
  7477. // ggml_compute_forward_tanh
  7478. static void ggml_compute_forward_tanh_f32(
  7479. const struct ggml_compute_params * params,
  7480. const struct ggml_tensor * src0,
  7481. struct ggml_tensor * dst) {
  7482. assert(params->ith == 0);
  7483. assert(ggml_are_same_shape(src0, dst));
  7484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7485. return;
  7486. }
  7487. const int n = ggml_nrows(src0);
  7488. const int nc = src0->ne[0];
  7489. assert(dst->nb[0] == sizeof(float));
  7490. assert(src0->nb[0] == sizeof(float));
  7491. for (int i = 0; i < n; i++) {
  7492. ggml_vec_tanh_f32(nc,
  7493. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7494. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7495. }
  7496. }
  7497. static void ggml_compute_forward_tanh(
  7498. const struct ggml_compute_params * params,
  7499. const struct ggml_tensor * src0,
  7500. struct ggml_tensor * dst) {
  7501. switch (src0->type) {
  7502. case GGML_TYPE_F32:
  7503. {
  7504. ggml_compute_forward_tanh_f32(params, src0, dst);
  7505. } break;
  7506. default:
  7507. {
  7508. GGML_ASSERT(false);
  7509. } break;
  7510. }
  7511. }
  7512. // ggml_compute_forward_elu
  7513. static void ggml_compute_forward_elu_f32(
  7514. const struct ggml_compute_params * params,
  7515. const struct ggml_tensor * src0,
  7516. struct ggml_tensor * dst) {
  7517. assert(params->ith == 0);
  7518. assert(ggml_are_same_shape(src0, dst));
  7519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7520. return;
  7521. }
  7522. const int n = ggml_nrows(src0);
  7523. const int nc = src0->ne[0];
  7524. assert(dst->nb[0] == sizeof(float));
  7525. assert(src0->nb[0] == sizeof(float));
  7526. for (int i = 0; i < n; i++) {
  7527. ggml_vec_elu_f32(nc,
  7528. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7529. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7530. }
  7531. }
  7532. static void ggml_compute_forward_elu(
  7533. const struct ggml_compute_params * params,
  7534. const struct ggml_tensor * src0,
  7535. struct ggml_tensor * dst) {
  7536. switch (src0->type) {
  7537. case GGML_TYPE_F32:
  7538. {
  7539. ggml_compute_forward_elu_f32(params, src0, dst);
  7540. } break;
  7541. default:
  7542. {
  7543. GGML_ASSERT(false);
  7544. } break;
  7545. }
  7546. }
  7547. // ggml_compute_forward_relu
  7548. static void ggml_compute_forward_relu_f32(
  7549. const struct ggml_compute_params * params,
  7550. const struct ggml_tensor * src0,
  7551. struct ggml_tensor * dst) {
  7552. assert(params->ith == 0);
  7553. assert(ggml_are_same_shape(src0, dst));
  7554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7555. return;
  7556. }
  7557. const int n = ggml_nrows(src0);
  7558. const int nc = src0->ne[0];
  7559. assert(dst->nb[0] == sizeof(float));
  7560. assert(src0->nb[0] == sizeof(float));
  7561. for (int i = 0; i < n; i++) {
  7562. ggml_vec_relu_f32(nc,
  7563. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7564. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7565. }
  7566. }
  7567. static void ggml_compute_forward_relu(
  7568. const struct ggml_compute_params * params,
  7569. const struct ggml_tensor * src0,
  7570. struct ggml_tensor * dst) {
  7571. switch (src0->type) {
  7572. case GGML_TYPE_F32:
  7573. {
  7574. ggml_compute_forward_relu_f32(params, src0, dst);
  7575. } break;
  7576. default:
  7577. {
  7578. GGML_ASSERT(false);
  7579. } break;
  7580. }
  7581. }
  7582. // ggml_compute_forward_gelu
  7583. static void ggml_compute_forward_gelu_f32(
  7584. const struct ggml_compute_params * params,
  7585. const struct ggml_tensor * src0,
  7586. struct ggml_tensor * dst) {
  7587. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7588. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7589. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7590. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7591. return;
  7592. }
  7593. const int ith = params->ith;
  7594. const int nth = params->nth;
  7595. const int nc = src0->ne[0];
  7596. const int nr = ggml_nrows(src0);
  7597. // rows per thread
  7598. const int dr = (nr + nth - 1)/nth;
  7599. // row range for this thread
  7600. const int ir0 = dr*ith;
  7601. const int ir1 = MIN(ir0 + dr, nr);
  7602. for (int i1 = ir0; i1 < ir1; i1++) {
  7603. ggml_vec_gelu_f32(nc,
  7604. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7605. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7606. #ifndef NDEBUG
  7607. for (int k = 0; k < nc; k++) {
  7608. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7609. UNUSED(x);
  7610. assert(!isnan(x));
  7611. assert(!isinf(x));
  7612. }
  7613. #endif
  7614. }
  7615. }
  7616. static void ggml_compute_forward_gelu(
  7617. const struct ggml_compute_params * params,
  7618. const struct ggml_tensor * src0,
  7619. struct ggml_tensor * dst) {
  7620. switch (src0->type) {
  7621. case GGML_TYPE_F32:
  7622. {
  7623. ggml_compute_forward_gelu_f32(params, src0, dst);
  7624. } break;
  7625. default:
  7626. {
  7627. GGML_ASSERT(false);
  7628. } break;
  7629. }
  7630. }
  7631. // ggml_compute_forward_gelu_quick
  7632. static void ggml_compute_forward_gelu_quick_f32(
  7633. const struct ggml_compute_params * params,
  7634. const struct ggml_tensor * src0,
  7635. struct ggml_tensor * dst) {
  7636. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7637. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7638. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7640. return;
  7641. }
  7642. const int ith = params->ith;
  7643. const int nth = params->nth;
  7644. const int nc = src0->ne[0];
  7645. const int nr = ggml_nrows(src0);
  7646. // rows per thread
  7647. const int dr = (nr + nth - 1)/nth;
  7648. // row range for this thread
  7649. const int ir0 = dr*ith;
  7650. const int ir1 = MIN(ir0 + dr, nr);
  7651. for (int i1 = ir0; i1 < ir1; i1++) {
  7652. ggml_vec_gelu_quick_f32(nc,
  7653. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7654. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7655. #ifndef NDEBUG
  7656. for (int k = 0; k < nc; k++) {
  7657. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7658. UNUSED(x);
  7659. assert(!isnan(x));
  7660. assert(!isinf(x));
  7661. }
  7662. #endif
  7663. }
  7664. }
  7665. static void ggml_compute_forward_gelu_quick(
  7666. const struct ggml_compute_params * params,
  7667. const struct ggml_tensor * src0,
  7668. struct ggml_tensor * dst) {
  7669. switch (src0->type) {
  7670. case GGML_TYPE_F32:
  7671. {
  7672. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7673. } break;
  7674. default:
  7675. {
  7676. GGML_ASSERT(false);
  7677. } break;
  7678. }
  7679. }
  7680. // ggml_compute_forward_silu
  7681. static void ggml_compute_forward_silu_f32(
  7682. const struct ggml_compute_params * params,
  7683. const struct ggml_tensor * src0,
  7684. struct ggml_tensor * dst) {
  7685. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7686. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7687. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7689. return;
  7690. }
  7691. const int ith = params->ith;
  7692. const int nth = params->nth;
  7693. const int nc = src0->ne[0];
  7694. const int nr = ggml_nrows(src0);
  7695. // rows per thread
  7696. const int dr = (nr + nth - 1)/nth;
  7697. // row range for this thread
  7698. const int ir0 = dr*ith;
  7699. const int ir1 = MIN(ir0 + dr, nr);
  7700. for (int i1 = ir0; i1 < ir1; i1++) {
  7701. ggml_vec_silu_f32(nc,
  7702. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7703. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7704. #ifndef NDEBUG
  7705. for (int k = 0; k < nc; k++) {
  7706. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7707. UNUSED(x);
  7708. assert(!isnan(x));
  7709. assert(!isinf(x));
  7710. }
  7711. #endif
  7712. }
  7713. }
  7714. static void ggml_compute_forward_silu(
  7715. const struct ggml_compute_params * params,
  7716. const struct ggml_tensor * src0,
  7717. struct ggml_tensor * dst) {
  7718. switch (src0->type) {
  7719. case GGML_TYPE_F32:
  7720. {
  7721. ggml_compute_forward_silu_f32(params, src0, dst);
  7722. } break;
  7723. default:
  7724. {
  7725. GGML_ASSERT(false);
  7726. } break;
  7727. }
  7728. }
  7729. // ggml_compute_forward_leaky_relu
  7730. static void ggml_compute_forward_leaky_relu_f32(
  7731. const struct ggml_compute_params * params,
  7732. const struct ggml_tensor * src0,
  7733. struct ggml_tensor * dst) {
  7734. assert(params->ith == 0);
  7735. assert(ggml_are_same_shape(src0, dst));
  7736. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7737. return;
  7738. }
  7739. const int n = ggml_nrows(src0);
  7740. const int nc = src0->ne[0];
  7741. float negative_slope;
  7742. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7743. assert(dst->nb[0] == sizeof(float));
  7744. assert(src0->nb[0] == sizeof(float));
  7745. for (int i = 0; i < n; i++) {
  7746. ggml_vec_leaky_relu_f32(nc,
  7747. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7748. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7749. }
  7750. }
  7751. static void ggml_compute_forward_leaky_relu(
  7752. const struct ggml_compute_params * params,
  7753. const struct ggml_tensor * src0,
  7754. struct ggml_tensor * dst) {
  7755. switch (src0->type) {
  7756. case GGML_TYPE_F32:
  7757. {
  7758. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7759. } break;
  7760. default:
  7761. {
  7762. GGML_ASSERT(false);
  7763. } break;
  7764. }
  7765. }
  7766. // ggml_compute_forward_silu_back
  7767. static void ggml_compute_forward_silu_back_f32(
  7768. const struct ggml_compute_params * params,
  7769. const struct ggml_tensor * src0,
  7770. const struct ggml_tensor * grad,
  7771. struct ggml_tensor * dst) {
  7772. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7773. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7774. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7775. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7776. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7778. return;
  7779. }
  7780. const int ith = params->ith;
  7781. const int nth = params->nth;
  7782. const int nc = src0->ne[0];
  7783. const int nr = ggml_nrows(src0);
  7784. // rows per thread
  7785. const int dr = (nr + nth - 1)/nth;
  7786. // row range for this thread
  7787. const int ir0 = dr*ith;
  7788. const int ir1 = MIN(ir0 + dr, nr);
  7789. for (int i1 = ir0; i1 < ir1; i1++) {
  7790. ggml_vec_silu_backward_f32(nc,
  7791. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7792. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7793. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7794. #ifndef NDEBUG
  7795. for (int k = 0; k < nc; k++) {
  7796. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7797. UNUSED(x);
  7798. assert(!isnan(x));
  7799. assert(!isinf(x));
  7800. }
  7801. #endif
  7802. }
  7803. }
  7804. static void ggml_compute_forward_silu_back(
  7805. const struct ggml_compute_params * params,
  7806. const struct ggml_tensor * src0,
  7807. const struct ggml_tensor * grad,
  7808. struct ggml_tensor * dst) {
  7809. switch (src0->type) {
  7810. case GGML_TYPE_F32:
  7811. {
  7812. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7813. } break;
  7814. default:
  7815. {
  7816. GGML_ASSERT(false);
  7817. } break;
  7818. }
  7819. }
  7820. static void ggml_compute_forward_hardswish_f32(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. struct ggml_tensor * dst) {
  7824. assert(params->ith == 0);
  7825. assert(ggml_are_same_shape(src0, dst));
  7826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7827. return;
  7828. }
  7829. const int n = ggml_nrows(src0);
  7830. const int nc = src0->ne[0];
  7831. assert(dst->nb[0] == sizeof(float));
  7832. assert(src0->nb[0] == sizeof(float));
  7833. for (int i = 0; i < n; i++) {
  7834. ggml_vec_hardswish_f32(nc,
  7835. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7836. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7837. }
  7838. }
  7839. static void ggml_compute_forward_hardswish(
  7840. const struct ggml_compute_params * params,
  7841. const struct ggml_tensor * src0,
  7842. struct ggml_tensor * dst) {
  7843. switch (src0->type) {
  7844. case GGML_TYPE_F32:
  7845. {
  7846. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7847. } break;
  7848. default:
  7849. {
  7850. GGML_ASSERT(false);
  7851. } break;
  7852. }
  7853. }
  7854. static void ggml_compute_forward_hardsigmoid_f32(
  7855. const struct ggml_compute_params * params,
  7856. const struct ggml_tensor * src0,
  7857. struct ggml_tensor * dst) {
  7858. assert(params->ith == 0);
  7859. assert(ggml_are_same_shape(src0, dst));
  7860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7861. return;
  7862. }
  7863. const int n = ggml_nrows(src0);
  7864. const int nc = src0->ne[0];
  7865. assert(dst->nb[0] == sizeof(float));
  7866. assert(src0->nb[0] == sizeof(float));
  7867. for (int i = 0; i < n; i++) {
  7868. ggml_vec_hardsigmoid_f32(nc,
  7869. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7870. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7871. }
  7872. }
  7873. static void ggml_compute_forward_hardsigmoid(
  7874. const struct ggml_compute_params * params,
  7875. const struct ggml_tensor * src0,
  7876. struct ggml_tensor * dst) {
  7877. switch (src0->type) {
  7878. case GGML_TYPE_F32:
  7879. {
  7880. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7881. } break;
  7882. default:
  7883. {
  7884. GGML_ASSERT(false);
  7885. } break;
  7886. }
  7887. }
  7888. // ggml_compute_forward_norm
  7889. static void ggml_compute_forward_norm_f32(
  7890. const struct ggml_compute_params * params,
  7891. const struct ggml_tensor * src0,
  7892. struct ggml_tensor * dst) {
  7893. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7894. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7895. return;
  7896. }
  7897. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7898. const int ith = params->ith;
  7899. const int nth = params->nth;
  7900. GGML_TENSOR_UNARY_OP_LOCALS
  7901. float eps;
  7902. memcpy(&eps, dst->op_params, sizeof(float));
  7903. GGML_ASSERT(eps > 0.0f);
  7904. // TODO: optimize
  7905. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7907. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7908. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7909. ggml_float sum = 0.0;
  7910. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7911. sum += (ggml_float)x[i00];
  7912. }
  7913. float mean = sum/ne00;
  7914. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7915. ggml_float sum2 = 0.0;
  7916. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7917. float v = x[i00] - mean;
  7918. y[i00] = v;
  7919. sum2 += (ggml_float)(v*v);
  7920. }
  7921. float variance = sum2/ne00;
  7922. const float scale = 1.0f/sqrtf(variance + eps);
  7923. ggml_vec_scale_f32(ne00, y, scale);
  7924. }
  7925. }
  7926. }
  7927. }
  7928. static void ggml_compute_forward_norm(
  7929. const struct ggml_compute_params * params,
  7930. const struct ggml_tensor * src0,
  7931. struct ggml_tensor * dst) {
  7932. switch (src0->type) {
  7933. case GGML_TYPE_F32:
  7934. {
  7935. ggml_compute_forward_norm_f32(params, src0, dst);
  7936. } break;
  7937. default:
  7938. {
  7939. GGML_ASSERT(false);
  7940. } break;
  7941. }
  7942. }
  7943. // ggml_compute_forward_group_rms_norm
  7944. static void ggml_compute_forward_rms_norm_f32(
  7945. const struct ggml_compute_params * params,
  7946. const struct ggml_tensor * src0,
  7947. struct ggml_tensor * dst) {
  7948. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7950. return;
  7951. }
  7952. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7953. const int ith = params->ith;
  7954. const int nth = params->nth;
  7955. GGML_TENSOR_UNARY_OP_LOCALS
  7956. float eps;
  7957. memcpy(&eps, dst->op_params, sizeof(float));
  7958. GGML_ASSERT(eps > 0.0f);
  7959. // TODO: optimize
  7960. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7961. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7962. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7963. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7964. ggml_float sum = 0.0;
  7965. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7966. sum += (ggml_float)(x[i00] * x[i00]);
  7967. }
  7968. const float mean = sum/ne00;
  7969. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7970. memcpy(y, x, ne00 * sizeof(float));
  7971. // for (int i00 = 0; i00 < ne00; i00++) {
  7972. // y[i00] = x[i00];
  7973. // }
  7974. const float scale = 1.0f/sqrtf(mean + eps);
  7975. ggml_vec_scale_f32(ne00, y, scale);
  7976. }
  7977. }
  7978. }
  7979. }
  7980. static void ggml_compute_forward_rms_norm(
  7981. const struct ggml_compute_params * params,
  7982. const struct ggml_tensor * src0,
  7983. struct ggml_tensor * dst) {
  7984. switch (src0->type) {
  7985. case GGML_TYPE_F32:
  7986. {
  7987. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7988. } break;
  7989. default:
  7990. {
  7991. GGML_ASSERT(false);
  7992. } break;
  7993. }
  7994. }
  7995. static void ggml_compute_forward_rms_norm_back_f32(
  7996. const struct ggml_compute_params * params,
  7997. const struct ggml_tensor * src0,
  7998. const struct ggml_tensor * src1,
  7999. struct ggml_tensor * dst) {
  8000. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8002. return;
  8003. }
  8004. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8005. const int ith = params->ith;
  8006. const int nth = params->nth;
  8007. GGML_TENSOR_BINARY_OP_LOCALS
  8008. float eps;
  8009. memcpy(&eps, dst->op_params, sizeof(float));
  8010. // TODO: optimize
  8011. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8013. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8014. // src1 is same shape as src0 => same indices
  8015. const int64_t i11 = i01;
  8016. const int64_t i12 = i02;
  8017. const int64_t i13 = i03;
  8018. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8019. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8020. ggml_float sum_xx = 0.0;
  8021. ggml_float sum_xdz = 0.0;
  8022. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8023. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8024. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8025. }
  8026. //const float mean = (float)(sum_xx)/ne00;
  8027. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8028. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8029. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8030. // we could cache rms from forward pass to improve performance.
  8031. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8032. //const float rms = sqrtf(mean_eps);
  8033. const float rrms = 1.0f / sqrtf(mean_eps);
  8034. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8035. {
  8036. // z = rms_norm(x)
  8037. //
  8038. // rms_norm(src0) =
  8039. // scale(
  8040. // src0,
  8041. // div(
  8042. // 1,
  8043. // sqrt(
  8044. // add(
  8045. // scale(
  8046. // sum(
  8047. // sqr(
  8048. // src0)),
  8049. // (1.0/N)),
  8050. // eps))));
  8051. // postorder:
  8052. // ## op args grad
  8053. // 00 param src0 grad[#00]
  8054. // 01 const 1
  8055. // 02 sqr (#00) grad[#02]
  8056. // 03 sum (#02) grad[#03]
  8057. // 04 const 1/N
  8058. // 05 scale (#03, #04) grad[#05]
  8059. // 06 const eps
  8060. // 07 add (#05, #06) grad[#07]
  8061. // 08 sqrt (#07) grad[#08]
  8062. // 09 div (#01,#08) grad[#09]
  8063. // 10 scale (#00,#09) grad[#10]
  8064. //
  8065. // backward pass, given grad[#10]
  8066. // #10: scale
  8067. // grad[#00] += scale(grad[#10],#09)
  8068. // grad[#09] += sum(mul(grad[#10],#00))
  8069. // #09: div
  8070. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8071. // #08: sqrt
  8072. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8073. // #07: add
  8074. // grad[#05] += grad[#07]
  8075. // #05: scale
  8076. // grad[#03] += scale(grad[#05],#04)
  8077. // #03: sum
  8078. // grad[#02] += repeat(grad[#03], #02)
  8079. // #02:
  8080. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8081. //
  8082. // substitute and simplify:
  8083. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8084. // grad[#02] = repeat(grad[#03], #02)
  8085. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8086. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8087. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8088. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8089. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8090. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8091. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8092. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8093. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8094. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8095. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8096. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8097. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8098. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8099. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8100. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8101. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8102. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8103. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8104. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8105. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8106. // a = b*c + d*e
  8107. // a = b*c*f/f + d*e*f/f
  8108. // a = (b*c*f + d*e*f)*(1/f)
  8109. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8110. // a = (b + d*e/c)*c
  8111. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8112. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8113. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8114. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8115. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8116. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8117. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8118. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8119. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8120. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8121. }
  8122. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8123. // post-order:
  8124. // dx := x
  8125. // dx := scale(dx,-mean_xdz/mean_eps)
  8126. // dx := add(dx, dz)
  8127. // dx := scale(dx, rrms)
  8128. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8129. ggml_vec_cpy_f32 (ne00, dx, x);
  8130. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8131. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8132. ggml_vec_acc_f32 (ne00, dx, dz);
  8133. ggml_vec_scale_f32(ne00, dx, rrms);
  8134. }
  8135. }
  8136. }
  8137. }
  8138. static void ggml_compute_forward_rms_norm_back(
  8139. const struct ggml_compute_params * params,
  8140. const struct ggml_tensor * src0,
  8141. const struct ggml_tensor * src1,
  8142. struct ggml_tensor * dst) {
  8143. switch (src0->type) {
  8144. case GGML_TYPE_F32:
  8145. {
  8146. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8147. } break;
  8148. default:
  8149. {
  8150. GGML_ASSERT(false);
  8151. } break;
  8152. }
  8153. }
  8154. // ggml_compute_forward_group_norm
  8155. static void ggml_compute_forward_group_norm_f32(
  8156. const struct ggml_compute_params * params,
  8157. const struct ggml_tensor * src0,
  8158. struct ggml_tensor * dst) {
  8159. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8160. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8161. return;
  8162. }
  8163. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8164. const int ith = params->ith;
  8165. const int nth = params->nth;
  8166. GGML_TENSOR_UNARY_OP_LOCALS
  8167. const float eps = 1e-6f; // TODO: make this a parameter
  8168. // TODO: optimize
  8169. int n_channels = src0->ne[2];
  8170. int n_groups = dst->op_params[0];
  8171. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8172. for (int i = ith; i < n_groups; i+=nth) {
  8173. int start = i * n_channels_per_group;
  8174. int end = start + n_channels_per_group;
  8175. if (end > n_channels) {
  8176. end = n_channels;
  8177. }
  8178. int step = end - start;
  8179. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8180. ggml_float sum = 0.0;
  8181. for (int64_t i02 = start; i02 < end; i02++) {
  8182. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8183. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8184. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8185. sum += (ggml_float)x[i00];
  8186. }
  8187. }
  8188. }
  8189. float mean = sum / (ne00 * ne01 * step);
  8190. ggml_float sum2 = 0.0;
  8191. for (int64_t i02 = start; i02 < end; i02++) {
  8192. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8193. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8194. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8195. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8196. float v = x[i00] - mean;
  8197. y[i00] = v;
  8198. sum2 += (ggml_float)(v * v);
  8199. }
  8200. }
  8201. }
  8202. float variance = sum2 / (ne00 * ne01 * step);
  8203. const float scale = 1.0f / sqrtf(variance + eps);
  8204. for (int64_t i02 = start; i02 < end; i02++) {
  8205. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8206. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8207. ggml_vec_scale_f32(ne00, y, scale);
  8208. }
  8209. }
  8210. }
  8211. }
  8212. }
  8213. static void ggml_compute_forward_group_norm(
  8214. const struct ggml_compute_params * params,
  8215. const struct ggml_tensor * src0,
  8216. struct ggml_tensor * dst) {
  8217. switch (src0->type) {
  8218. case GGML_TYPE_F32:
  8219. {
  8220. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8221. } break;
  8222. default:
  8223. {
  8224. GGML_ASSERT(false);
  8225. } break;
  8226. }
  8227. }
  8228. // ggml_compute_forward_mul_mat
  8229. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8230. // helper function to determine if it is better to use BLAS or not
  8231. // for large matrices, BLAS is faster
  8232. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8233. const struct ggml_tensor * src0 = dst->src[0];
  8234. const struct ggml_tensor * src1 = dst->src[1];
  8235. //const int64_t ne00 = src0->ne[0];
  8236. //const int64_t ne01 = src0->ne[1];
  8237. const int64_t ne10 = src1->ne[0];
  8238. const int64_t ne0 = dst->ne[0];
  8239. const int64_t ne1 = dst->ne[1];
  8240. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8241. // all the experts for each batch element and the processing would become incredibly slow
  8242. // TODO: find the optimal values for these
  8243. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8244. ggml_is_contiguous(src0) &&
  8245. ggml_is_contiguous(src1) &&
  8246. //src0->type == GGML_TYPE_F32 &&
  8247. src1->type == GGML_TYPE_F32 &&
  8248. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8249. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8250. return true;
  8251. }
  8252. return false;
  8253. }
  8254. #endif
  8255. static void ggml_compute_forward_mul_mat(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. const struct ggml_tensor * src1,
  8259. struct ggml_tensor * dst) {
  8260. int64_t t0 = ggml_perf_time_us();
  8261. UNUSED(t0);
  8262. GGML_TENSOR_BINARY_OP_LOCALS
  8263. const int ith = params->ith;
  8264. const int nth = params->nth;
  8265. const enum ggml_type type = src0->type;
  8266. const bool src1_cont = ggml_is_contiguous(src1);
  8267. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8268. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8269. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8270. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8271. GGML_ASSERT(ne0 == ne01);
  8272. GGML_ASSERT(ne1 == ne11);
  8273. GGML_ASSERT(ne2 == ne12);
  8274. GGML_ASSERT(ne3 == ne13);
  8275. // we don't support permuted src0 or src1
  8276. GGML_ASSERT(nb00 == ggml_type_size(type));
  8277. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8278. // dst cannot be transposed or permuted
  8279. GGML_ASSERT(nb0 == sizeof(float));
  8280. GGML_ASSERT(nb0 <= nb1);
  8281. GGML_ASSERT(nb1 <= nb2);
  8282. GGML_ASSERT(nb2 <= nb3);
  8283. // broadcast factors
  8284. const int64_t r2 = ne12/ne02;
  8285. const int64_t r3 = ne13/ne03;
  8286. // nb01 >= nb00 - src0 is not transposed
  8287. // compute by src0 rows
  8288. #if defined(GGML_USE_CLBLAST)
  8289. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8290. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8291. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8292. }
  8293. return;
  8294. }
  8295. #endif
  8296. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8297. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8298. const int64_t ne_plane = ne01*ne00;
  8299. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8300. UNUSED(desired_wsize);
  8301. if (params->type == GGML_TASK_INIT) {
  8302. if (type != GGML_TYPE_F32) {
  8303. assert(params->wsize >= desired_wsize);
  8304. // parallelize by src0 rows
  8305. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8306. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8307. // broadcast src0 into src1 across 2nd,3rd dimension
  8308. const int64_t i03 = i13/r3;
  8309. const int64_t i02 = i12/r2;
  8310. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8311. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8312. ggml_to_float_t const to_float = type_traits[type].to_float;
  8313. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8314. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8315. }
  8316. }
  8317. }
  8318. }
  8319. return;
  8320. }
  8321. if (params->type == GGML_TASK_FINALIZE) {
  8322. return;
  8323. }
  8324. // perform sgemm, parallelization controlled by blas lib
  8325. if (ith != 0) {
  8326. return;
  8327. }
  8328. //const int64_t tgemm0 = ggml_perf_time_us();
  8329. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8330. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8331. const int64_t i03 = i13/r3;
  8332. const int64_t i02 = i12/r2;
  8333. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8334. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8335. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8336. if (type != GGML_TYPE_F32) {
  8337. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8338. }
  8339. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8340. ne1, ne01, ne10,
  8341. 1.0f, y, ne10,
  8342. x, ne00,
  8343. 0.0f, d, ne01);
  8344. }
  8345. }
  8346. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8347. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8348. return;
  8349. }
  8350. #endif
  8351. if (params->type == GGML_TASK_INIT) {
  8352. if (ith != 0) {
  8353. return;
  8354. }
  8355. if (src1->type != vec_dot_type) {
  8356. char * wdata = params->wdata;
  8357. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8358. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8359. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8360. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8361. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8362. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8363. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8364. wdata += row_size;
  8365. }
  8366. }
  8367. }
  8368. }
  8369. return;
  8370. }
  8371. if (params->type == GGML_TASK_FINALIZE) {
  8372. return;
  8373. }
  8374. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8375. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8376. const int64_t nr0 = ne01; // src0 rows
  8377. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8378. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8379. // distribute the thread work across the inner or outer loop based on which one is larger
  8380. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8381. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8382. const int64_t ith0 = ith % nth0;
  8383. const int64_t ith1 = ith / nth0;
  8384. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8385. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8386. const int64_t ir010 = dr0*ith0;
  8387. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8388. const int64_t ir110 = dr1*ith1;
  8389. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8390. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8391. // threads with no work simply yield (not sure if it helps)
  8392. if (ir010 >= ir011 || ir110 >= ir111) {
  8393. sched_yield();
  8394. return;
  8395. }
  8396. assert(ne12 % ne02 == 0);
  8397. assert(ne13 % ne03 == 0);
  8398. // block-tiling attempt
  8399. const int64_t blck_0 = 16;
  8400. const int64_t blck_1 = 16;
  8401. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8402. int64_t nrc = vec_dot_num_rows;
  8403. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8404. // this check can be removed once they are extended to support odd numbered rows/cols too
  8405. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8406. nrc = 1;
  8407. }
  8408. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8409. // attempt to reduce false-sharing (does not seem to make a difference)
  8410. // 16 * 2, accounting for mmla kernels
  8411. float tmp[32];
  8412. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8413. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8414. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8415. const int64_t i13 = (ir1/(ne12*ne1));
  8416. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8417. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8418. // broadcast src0 into src1
  8419. const int64_t i03 = i13/r3;
  8420. const int64_t i02 = i12/r2;
  8421. const int64_t i1 = i11;
  8422. const int64_t i2 = i12;
  8423. const int64_t i3 = i13;
  8424. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8425. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8426. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8427. // the original src1 data pointer, so we should index using the indices directly
  8428. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8429. const char * src1_col = (const char *) wdata +
  8430. (src1_cont || src1->type != vec_dot_type
  8431. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8432. : (i11*nb11 + i12*nb12 + i13*nb13));
  8433. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8434. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8435. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8436. //}
  8437. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8438. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8439. }
  8440. for (int cn = 0; cn < nrc; ++cn) {
  8441. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8442. }
  8443. }
  8444. }
  8445. }
  8446. }
  8447. // ggml_compute_forward_mul_mat_id
  8448. static void ggml_compute_forward_mul_mat_id(
  8449. const struct ggml_compute_params * params,
  8450. const struct ggml_tensor * ids,
  8451. const struct ggml_tensor * src1,
  8452. struct ggml_tensor * dst) {
  8453. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8454. GGML_TENSOR_BINARY_OP_LOCALS
  8455. const int ith = params->ith;
  8456. const int nth = params->nth;
  8457. const enum ggml_type type = src0->type;
  8458. const bool src1_cont = ggml_is_contiguous(src1);
  8459. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8460. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8461. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8462. GGML_ASSERT(ne0 == ne01);
  8463. GGML_ASSERT(ne1 == ne11);
  8464. GGML_ASSERT(ne2 == ne12);
  8465. GGML_ASSERT(ne3 == ne13);
  8466. // we don't support permuted src0 or src1
  8467. GGML_ASSERT(nb00 == ggml_type_size(type));
  8468. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8469. // dst cannot be transposed or permuted
  8470. GGML_ASSERT(nb0 == sizeof(float));
  8471. GGML_ASSERT(nb0 <= nb1);
  8472. GGML_ASSERT(nb1 <= nb2);
  8473. GGML_ASSERT(nb2 <= nb3);
  8474. // broadcast factors
  8475. const int64_t r2 = ne12/ne02;
  8476. const int64_t r3 = ne13/ne03;
  8477. // row groups
  8478. const int id = ggml_get_op_params_i32(dst, 0);
  8479. const int n_as = ggml_get_op_params_i32(dst, 1);
  8480. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8481. (char *) params->wdata :
  8482. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8483. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8484. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8485. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8486. if (params->type == GGML_TASK_INIT) {
  8487. if (ith != 0) {
  8488. return;
  8489. }
  8490. char * wdata = params->wdata;
  8491. if (src1->type != vec_dot_type) {
  8492. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8493. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8494. assert(src1->type == GGML_TYPE_F32);
  8495. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8496. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8497. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8498. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8499. wdata += row_size;
  8500. }
  8501. }
  8502. }
  8503. }
  8504. // initialize matrix_row_counts
  8505. GGML_ASSERT(wdata == wdata_src1_end);
  8506. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8507. // group rows by src0 matrix
  8508. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8509. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8510. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8511. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8512. matrix_row_counts[row_id] += 1;
  8513. }
  8514. return;
  8515. }
  8516. if (params->type == GGML_TASK_FINALIZE) {
  8517. return;
  8518. }
  8519. // compute each matrix multiplication in sequence
  8520. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8521. const int64_t cne1 = matrix_row_counts[cur_a];
  8522. if (cne1 == 0) {
  8523. continue;
  8524. }
  8525. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8526. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8527. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8528. const int64_t nr0 = ne01; // src0 rows
  8529. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8530. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8531. // distribute the thread work across the inner or outer loop based on which one is larger
  8532. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8533. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8534. const int64_t ith0 = ith % nth0;
  8535. const int64_t ith1 = ith / nth0;
  8536. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8537. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8538. const int64_t ir010 = dr0*ith0;
  8539. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8540. const int64_t ir110 = dr1*ith1;
  8541. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8542. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8543. // threads with no work simply yield (not sure if it helps)
  8544. if (ir010 >= ir011 || ir110 >= ir111) {
  8545. sched_yield();
  8546. continue;
  8547. }
  8548. assert(ne12 % ne02 == 0);
  8549. assert(ne13 % ne03 == 0);
  8550. // block-tiling attempt
  8551. const int64_t blck_0 = 16;
  8552. const int64_t blck_1 = 16;
  8553. // attempt to reduce false-sharing (does not seem to make a difference)
  8554. float tmp[16];
  8555. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8556. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8557. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8558. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8559. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8560. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8561. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8562. // broadcast src0 into src1
  8563. const int64_t i03 = i13/r3;
  8564. const int64_t i02 = i12/r2;
  8565. const int64_t i1 = i11;
  8566. const int64_t i2 = i12;
  8567. const int64_t i3 = i13;
  8568. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8569. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8570. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8571. // the original src1 data pointer, so we should index using the indices directly
  8572. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8573. const char * src1_col = (const char *) wdata +
  8574. (src1_cont || src1->type != vec_dot_type
  8575. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8576. : (i11*nb11 + i12*nb12 + i13*nb13));
  8577. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8578. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8579. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8580. //}
  8581. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8582. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8583. }
  8584. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8585. }
  8586. }
  8587. }
  8588. }
  8589. #undef MMID_MATRIX_ROW
  8590. }
  8591. // ggml_compute_forward_out_prod
  8592. static void ggml_compute_forward_out_prod_f32(
  8593. const struct ggml_compute_params * params,
  8594. const struct ggml_tensor * src0,
  8595. const struct ggml_tensor * src1,
  8596. struct ggml_tensor * dst) {
  8597. // int64_t t0 = ggml_perf_time_us();
  8598. // UNUSED(t0);
  8599. GGML_TENSOR_BINARY_OP_LOCALS
  8600. const int ith = params->ith;
  8601. const int nth = params->nth;
  8602. GGML_ASSERT(ne0 == ne00);
  8603. GGML_ASSERT(ne1 == ne10);
  8604. GGML_ASSERT(ne2 == ne02);
  8605. GGML_ASSERT(ne02 == ne12);
  8606. GGML_ASSERT(ne3 == ne13);
  8607. GGML_ASSERT(ne03 == ne13);
  8608. // we don't support permuted src0 or src1
  8609. GGML_ASSERT(nb00 == sizeof(float));
  8610. // dst cannot be transposed or permuted
  8611. GGML_ASSERT(nb0 == sizeof(float));
  8612. // GGML_ASSERT(nb0 <= nb1);
  8613. // GGML_ASSERT(nb1 <= nb2);
  8614. // GGML_ASSERT(nb2 <= nb3);
  8615. // nb01 >= nb00 - src0 is not transposed
  8616. // compute by src0 rows
  8617. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8618. // TODO: #if defined(GGML_USE_CLBLAST)
  8619. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8620. bool use_blas = ggml_is_matrix(src0) &&
  8621. ggml_is_matrix(src1) &&
  8622. ggml_is_contiguous(src0) &&
  8623. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8624. #endif
  8625. if (params->type == GGML_TASK_INIT) {
  8626. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8627. if (use_blas) {
  8628. return;
  8629. }
  8630. #endif
  8631. if (ith != 0) {
  8632. return;
  8633. }
  8634. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8635. return;
  8636. }
  8637. if (params->type == GGML_TASK_FINALIZE) {
  8638. return;
  8639. }
  8640. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8641. if (use_blas) {
  8642. if (params->ith != 0) { // All threads other than the first do no work.
  8643. return;
  8644. }
  8645. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8646. // src0: (k,n)
  8647. // src1: (k,m)
  8648. // dst: (m,n)
  8649. //
  8650. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8651. // Also expressed as (major,minor)
  8652. // a: (m,k): so src1 transposed
  8653. // b: (k,n): so src0
  8654. // c: (m,n)
  8655. //
  8656. // However, if ggml_is_transposed(src1) is true, then
  8657. // src1->data already contains a transposed version, so sgemm mustn't
  8658. // transpose it further.
  8659. int n = src0->ne[0];
  8660. int k = src0->ne[1];
  8661. int m = src1->ne[0];
  8662. int transposeA, lda;
  8663. if (!ggml_is_transposed(src1)) {
  8664. transposeA = CblasTrans;
  8665. lda = m;
  8666. } else {
  8667. transposeA = CblasNoTrans;
  8668. lda = k;
  8669. }
  8670. float * a = (float *) ((char *) src1->data);
  8671. float * b = (float *) ((char *) src0->data);
  8672. float * c = (float *) ((char *) dst->data);
  8673. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8674. return;
  8675. }
  8676. #endif
  8677. // dst[:,:,:,:] = 0
  8678. // for i2,i3:
  8679. // for i1:
  8680. // for i01:
  8681. // for i0:
  8682. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8683. // parallelize by last three dimensions
  8684. // total rows in dst
  8685. const int64_t nr = ne1*ne2*ne3;
  8686. // rows per thread
  8687. const int64_t dr = (nr + nth - 1)/nth;
  8688. // row range for this thread
  8689. const int64_t ir0 = dr*ith;
  8690. const int64_t ir1 = MIN(ir0 + dr, nr);
  8691. // block-tiling attempt
  8692. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8693. const int64_t blck_1 = 16;
  8694. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8695. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8696. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8697. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8698. for (int64_t ir = bir; ir < bir1; ++ir) {
  8699. // dst indices
  8700. const int64_t i3 = ir/(ne2*ne1);
  8701. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8702. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8703. const int64_t i02 = i2;
  8704. const int64_t i03 = i3;
  8705. //const int64_t i10 = i1;
  8706. const int64_t i12 = i2;
  8707. const int64_t i13 = i3;
  8708. #if GGML_VEC_MAD_UNROLL > 2
  8709. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8710. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8711. const int64_t i11 = i01;
  8712. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8713. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8714. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8715. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8716. }
  8717. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8718. const int64_t i11 = i01;
  8719. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8720. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8721. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8722. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8723. }
  8724. #else
  8725. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8726. const int64_t i11 = i01;
  8727. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8728. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8729. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8730. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8731. }
  8732. #endif
  8733. }
  8734. }
  8735. }
  8736. //int64_t t1 = ggml_perf_time_us();
  8737. //static int64_t acc = 0;
  8738. //acc += t1 - t0;
  8739. //if (t1 - t0 > 10) {
  8740. // printf("\n");
  8741. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8742. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8743. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8744. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8745. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8746. //}
  8747. }
  8748. static void ggml_compute_forward_out_prod_q_f32(
  8749. const struct ggml_compute_params * params,
  8750. const struct ggml_tensor * src0,
  8751. const struct ggml_tensor * src1,
  8752. struct ggml_tensor * dst) {
  8753. // int64_t t0 = ggml_perf_time_us();
  8754. // UNUSED(t0);
  8755. GGML_TENSOR_BINARY_OP_LOCALS;
  8756. const int ith = params->ith;
  8757. const int nth = params->nth;
  8758. const enum ggml_type type = src0->type;
  8759. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8760. GGML_ASSERT(ne02 == ne12);
  8761. GGML_ASSERT(ne03 == ne13);
  8762. GGML_ASSERT(ne2 == ne12);
  8763. GGML_ASSERT(ne3 == ne13);
  8764. // we don't support permuted src0 dim0
  8765. GGML_ASSERT(nb00 == ggml_type_size(type));
  8766. // dst dim0 cannot be transposed or permuted
  8767. GGML_ASSERT(nb0 == sizeof(float));
  8768. // GGML_ASSERT(nb0 <= nb1);
  8769. // GGML_ASSERT(nb1 <= nb2);
  8770. // GGML_ASSERT(nb2 <= nb3);
  8771. GGML_ASSERT(ne0 == ne00);
  8772. GGML_ASSERT(ne1 == ne10);
  8773. GGML_ASSERT(ne2 == ne02);
  8774. GGML_ASSERT(ne3 == ne03);
  8775. // nb01 >= nb00 - src0 is not transposed
  8776. // compute by src0 rows
  8777. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8778. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8779. if (params->type == GGML_TASK_INIT) {
  8780. if (ith != 0) {
  8781. return;
  8782. }
  8783. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8784. return;
  8785. }
  8786. if (params->type == GGML_TASK_FINALIZE) {
  8787. return;
  8788. }
  8789. // parallelize by last three dimensions
  8790. // total rows in dst
  8791. const int64_t nr = ne1*ne2*ne3;
  8792. // rows per thread
  8793. const int64_t dr = (nr + nth - 1)/nth;
  8794. // row range for this thread
  8795. const int64_t ir0 = dr*ith;
  8796. const int64_t ir1 = MIN(ir0 + dr, nr);
  8797. // dst[:,:,:,:] = 0
  8798. // for i2,i3:
  8799. // for i1:
  8800. // for i01:
  8801. // for i0:
  8802. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8803. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8804. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8805. // dst indices
  8806. const int64_t i3 = ir/(ne2*ne1);
  8807. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8808. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8809. const int64_t i02 = i2;
  8810. const int64_t i03 = i3;
  8811. //const int64_t i10 = i1;
  8812. const int64_t i12 = i2;
  8813. const int64_t i13 = i3;
  8814. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8815. const int64_t i11 = i01;
  8816. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8817. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8818. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8819. dequantize_row_q(s0, wdata, ne0);
  8820. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8821. }
  8822. }
  8823. //int64_t t1 = ggml_perf_time_us();
  8824. //static int64_t acc = 0;
  8825. //acc += t1 - t0;
  8826. //if (t1 - t0 > 10) {
  8827. // printf("\n");
  8828. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8829. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8830. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8831. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8832. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8833. //}
  8834. }
  8835. static void ggml_compute_forward_out_prod(
  8836. const struct ggml_compute_params * params,
  8837. const struct ggml_tensor * src0,
  8838. const struct ggml_tensor * src1,
  8839. struct ggml_tensor * dst) {
  8840. switch (src0->type) {
  8841. case GGML_TYPE_Q4_0:
  8842. case GGML_TYPE_Q4_1:
  8843. case GGML_TYPE_Q5_0:
  8844. case GGML_TYPE_Q5_1:
  8845. case GGML_TYPE_Q8_0:
  8846. case GGML_TYPE_Q2_K:
  8847. case GGML_TYPE_Q3_K:
  8848. case GGML_TYPE_Q4_K:
  8849. case GGML_TYPE_Q5_K:
  8850. case GGML_TYPE_Q6_K:
  8851. case GGML_TYPE_IQ2_XXS:
  8852. case GGML_TYPE_IQ2_XS:
  8853. case GGML_TYPE_IQ3_XXS:
  8854. {
  8855. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8856. } break;
  8857. case GGML_TYPE_F16:
  8858. {
  8859. GGML_ASSERT(false); // todo
  8860. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8861. } break;
  8862. case GGML_TYPE_F32:
  8863. {
  8864. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8865. } break;
  8866. default:
  8867. {
  8868. GGML_ASSERT(false);
  8869. } break;
  8870. }
  8871. }
  8872. // ggml_compute_forward_scale
  8873. static void ggml_compute_forward_scale_f32(
  8874. const struct ggml_compute_params * params,
  8875. const struct ggml_tensor * src0,
  8876. struct ggml_tensor * dst) {
  8877. GGML_ASSERT(ggml_is_contiguous(src0));
  8878. GGML_ASSERT(ggml_is_contiguous(dst));
  8879. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8881. return;
  8882. }
  8883. // scale factor
  8884. float v;
  8885. memcpy(&v, dst->op_params, sizeof(float));
  8886. const int ith = params->ith;
  8887. const int nth = params->nth;
  8888. const int nc = src0->ne[0];
  8889. const int nr = ggml_nrows(src0);
  8890. // rows per thread
  8891. const int dr = (nr + nth - 1)/nth;
  8892. // row range for this thread
  8893. const int ir0 = dr*ith;
  8894. const int ir1 = MIN(ir0 + dr, nr);
  8895. const size_t nb01 = src0->nb[1];
  8896. const size_t nb1 = dst->nb[1];
  8897. for (int i1 = ir0; i1 < ir1; i1++) {
  8898. if (dst->data != src0->data) {
  8899. // src0 is same shape as dst => same indices
  8900. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8901. }
  8902. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8903. }
  8904. }
  8905. static void ggml_compute_forward_scale(
  8906. const struct ggml_compute_params * params,
  8907. const struct ggml_tensor * src0,
  8908. struct ggml_tensor * dst) {
  8909. switch (src0->type) {
  8910. case GGML_TYPE_F32:
  8911. {
  8912. ggml_compute_forward_scale_f32(params, src0, dst);
  8913. } break;
  8914. default:
  8915. {
  8916. GGML_ASSERT(false);
  8917. } break;
  8918. }
  8919. }
  8920. // ggml_compute_forward_set
  8921. static void ggml_compute_forward_set_f32(
  8922. const struct ggml_compute_params * params,
  8923. const struct ggml_tensor * src0,
  8924. const struct ggml_tensor * src1,
  8925. struct ggml_tensor * dst) {
  8926. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8927. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8928. // view src0 and dst with these strides and data offset inbytes during set
  8929. // nb0 is implicitly element_size because src0 and dst are contiguous
  8930. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8931. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8932. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8933. size_t offset = ((int32_t *) dst->op_params)[3];
  8934. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8935. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8936. if (params->ith != 0) {
  8937. return;
  8938. }
  8939. // memcpy needs to be synchronized across threads to avoid race conditions.
  8940. // => do it in INIT phase
  8941. memcpy(
  8942. ((char *) dst->data),
  8943. ((char *) src0->data),
  8944. ggml_nbytes(dst));
  8945. }
  8946. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8947. return;
  8948. }
  8949. const int ith = params->ith;
  8950. const int nth = params->nth;
  8951. const int nr = ggml_nrows(src1);
  8952. const int nc = src1->ne[0];
  8953. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8954. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8955. // src0 and dst as viewed during set
  8956. const size_t nb0 = ggml_element_size(src0);
  8957. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8958. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8959. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8960. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8961. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8962. GGML_ASSERT(nb10 == sizeof(float));
  8963. // rows per thread
  8964. const int dr = (nr + nth - 1)/nth;
  8965. // row range for this thread
  8966. const int ir0 = dr*ith;
  8967. const int ir1 = MIN(ir0 + dr, nr);
  8968. for (int ir = ir0; ir < ir1; ++ir) {
  8969. // src0 and dst are viewed with shape of src1 and offset
  8970. // => same indices
  8971. const int i3 = ir/(ne12*ne11);
  8972. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8973. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8974. ggml_vec_cpy_f32(nc,
  8975. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8976. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8977. }
  8978. }
  8979. static void ggml_compute_forward_set(
  8980. const struct ggml_compute_params * params,
  8981. const struct ggml_tensor * src0,
  8982. const struct ggml_tensor * src1,
  8983. struct ggml_tensor * dst) {
  8984. switch (src0->type) {
  8985. case GGML_TYPE_F32:
  8986. {
  8987. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8988. } break;
  8989. case GGML_TYPE_F16:
  8990. case GGML_TYPE_Q4_0:
  8991. case GGML_TYPE_Q4_1:
  8992. case GGML_TYPE_Q5_0:
  8993. case GGML_TYPE_Q5_1:
  8994. case GGML_TYPE_Q8_0:
  8995. case GGML_TYPE_Q8_1:
  8996. case GGML_TYPE_Q2_K:
  8997. case GGML_TYPE_Q3_K:
  8998. case GGML_TYPE_Q4_K:
  8999. case GGML_TYPE_Q5_K:
  9000. case GGML_TYPE_Q6_K:
  9001. case GGML_TYPE_IQ2_XXS:
  9002. case GGML_TYPE_IQ2_XS:
  9003. case GGML_TYPE_IQ3_XXS:
  9004. default:
  9005. {
  9006. GGML_ASSERT(false);
  9007. } break;
  9008. }
  9009. }
  9010. // ggml_compute_forward_cpy
  9011. static void ggml_compute_forward_cpy(
  9012. const struct ggml_compute_params * params,
  9013. const struct ggml_tensor * src0,
  9014. struct ggml_tensor * dst) {
  9015. ggml_compute_forward_dup(params, src0, dst);
  9016. }
  9017. // ggml_compute_forward_cont
  9018. static void ggml_compute_forward_cont(
  9019. const struct ggml_compute_params * params,
  9020. const struct ggml_tensor * src0,
  9021. struct ggml_tensor * dst) {
  9022. ggml_compute_forward_dup(params, src0, dst);
  9023. }
  9024. // ggml_compute_forward_reshape
  9025. static void ggml_compute_forward_reshape(
  9026. const struct ggml_compute_params * params,
  9027. const struct ggml_tensor * src0,
  9028. struct ggml_tensor * dst) {
  9029. // NOP
  9030. UNUSED(params);
  9031. UNUSED(src0);
  9032. UNUSED(dst);
  9033. }
  9034. // ggml_compute_forward_view
  9035. static void ggml_compute_forward_view(
  9036. const struct ggml_compute_params * params,
  9037. const struct ggml_tensor * src0) {
  9038. // NOP
  9039. UNUSED(params);
  9040. UNUSED(src0);
  9041. }
  9042. // ggml_compute_forward_permute
  9043. static void ggml_compute_forward_permute(
  9044. const struct ggml_compute_params * params,
  9045. const struct ggml_tensor * src0) {
  9046. // NOP
  9047. UNUSED(params);
  9048. UNUSED(src0);
  9049. }
  9050. // ggml_compute_forward_transpose
  9051. static void ggml_compute_forward_transpose(
  9052. const struct ggml_compute_params * params,
  9053. const struct ggml_tensor * src0) {
  9054. // NOP
  9055. UNUSED(params);
  9056. UNUSED(src0);
  9057. }
  9058. // ggml_compute_forward_get_rows
  9059. static void ggml_compute_forward_get_rows_q(
  9060. const struct ggml_compute_params * params,
  9061. const struct ggml_tensor * src0,
  9062. const struct ggml_tensor * src1,
  9063. struct ggml_tensor * dst) {
  9064. assert(params->ith == 0);
  9065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9066. return;
  9067. }
  9068. GGML_TENSOR_BINARY_OP_LOCALS
  9069. const int64_t nc = ne00;
  9070. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9071. const enum ggml_type type = src0->type;
  9072. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9073. assert(ne0 == nc);
  9074. assert(ne02 == ne11);
  9075. assert(nb00 == ggml_type_size(type));
  9076. assert(ggml_nrows(dst) == nr);
  9077. // TODO: multi-thread
  9078. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9079. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9080. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9081. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9082. dequantize_row_q(
  9083. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9084. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9085. }
  9086. }
  9087. }
  9088. }
  9089. static void ggml_compute_forward_get_rows_f16(
  9090. const struct ggml_compute_params * params,
  9091. const struct ggml_tensor * src0,
  9092. const struct ggml_tensor * src1,
  9093. struct ggml_tensor * dst) {
  9094. assert(params->ith == 0);
  9095. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9096. return;
  9097. }
  9098. GGML_TENSOR_BINARY_OP_LOCALS
  9099. const int64_t nc = ne00;
  9100. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9101. assert(ne0 == nc);
  9102. assert(ne02 == ne11);
  9103. assert(nb00 == sizeof(ggml_fp16_t));
  9104. assert(ggml_nrows(dst) == nr);
  9105. // TODO: multi-thread
  9106. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9107. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9108. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9109. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9110. ggml_fp16_to_fp32_row(
  9111. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9112. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9113. }
  9114. }
  9115. }
  9116. }
  9117. static void ggml_compute_forward_get_rows_f32(
  9118. const struct ggml_compute_params * params,
  9119. const struct ggml_tensor * src0,
  9120. const struct ggml_tensor * src1,
  9121. struct ggml_tensor * dst) {
  9122. assert(params->ith == 0);
  9123. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9124. return;
  9125. }
  9126. GGML_TENSOR_BINARY_OP_LOCALS
  9127. const int64_t nc = ne00;
  9128. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9129. assert(ne0 == nc);
  9130. assert(ne02 == ne11);
  9131. assert(nb00 == sizeof(float));
  9132. assert(ggml_nrows(dst) == nr);
  9133. // TODO: multi-thread
  9134. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9135. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9136. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9137. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9138. ggml_vec_cpy_f32(nc,
  9139. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9140. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9141. }
  9142. }
  9143. }
  9144. }
  9145. static void ggml_compute_forward_get_rows(
  9146. const struct ggml_compute_params * params,
  9147. const struct ggml_tensor * src0,
  9148. const struct ggml_tensor * src1,
  9149. struct ggml_tensor * dst) {
  9150. switch (src0->type) {
  9151. case GGML_TYPE_Q4_0:
  9152. case GGML_TYPE_Q4_1:
  9153. case GGML_TYPE_Q5_0:
  9154. case GGML_TYPE_Q5_1:
  9155. case GGML_TYPE_Q8_0:
  9156. case GGML_TYPE_Q8_1:
  9157. case GGML_TYPE_Q2_K:
  9158. case GGML_TYPE_Q3_K:
  9159. case GGML_TYPE_Q4_K:
  9160. case GGML_TYPE_Q5_K:
  9161. case GGML_TYPE_Q6_K:
  9162. case GGML_TYPE_IQ2_XXS:
  9163. case GGML_TYPE_IQ2_XS:
  9164. case GGML_TYPE_IQ3_XXS:
  9165. {
  9166. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9167. } break;
  9168. case GGML_TYPE_F16:
  9169. {
  9170. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9171. } break;
  9172. case GGML_TYPE_F32:
  9173. case GGML_TYPE_I32:
  9174. {
  9175. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9176. } break;
  9177. default:
  9178. {
  9179. GGML_ASSERT(false);
  9180. } break;
  9181. }
  9182. //static bool first = true;
  9183. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9184. //if (first) {
  9185. // first = false;
  9186. //} else {
  9187. // for (int k = 0; k < dst->ne[1]; ++k) {
  9188. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9189. // for (int i = 0; i < 16; ++i) {
  9190. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9191. // }
  9192. // printf("\n");
  9193. // }
  9194. // printf("\n");
  9195. // }
  9196. // printf("\n");
  9197. // exit(0);
  9198. //}
  9199. }
  9200. // ggml_compute_forward_get_rows_back
  9201. static void ggml_compute_forward_get_rows_back_f32_f16(
  9202. const struct ggml_compute_params * params,
  9203. const struct ggml_tensor * src0,
  9204. const struct ggml_tensor * src1,
  9205. struct ggml_tensor * dst) {
  9206. GGML_ASSERT(params->ith == 0);
  9207. GGML_ASSERT(ggml_is_contiguous(dst));
  9208. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9209. if (params->type == GGML_TASK_INIT) {
  9210. if (params->ith != 0) {
  9211. return;
  9212. }
  9213. memset(dst->data, 0, ggml_nbytes(dst));
  9214. }
  9215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9216. return;
  9217. }
  9218. const int nc = src0->ne[0];
  9219. const int nr = ggml_nelements(src1);
  9220. GGML_ASSERT( dst->ne[0] == nc);
  9221. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9222. for (int i = 0; i < nr; ++i) {
  9223. const int r = ((int32_t *) src1->data)[i];
  9224. for (int j = 0; j < nc; ++j) {
  9225. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9226. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9227. }
  9228. }
  9229. }
  9230. static void ggml_compute_forward_get_rows_back_f32(
  9231. const struct ggml_compute_params * params,
  9232. const struct ggml_tensor * src0,
  9233. const struct ggml_tensor * src1,
  9234. struct ggml_tensor * dst) {
  9235. GGML_ASSERT(params->ith == 0);
  9236. GGML_ASSERT(ggml_is_contiguous(dst));
  9237. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9238. if (params->type == GGML_TASK_INIT) {
  9239. if (params->ith != 0) {
  9240. return;
  9241. }
  9242. memset(dst->data, 0, ggml_nbytes(dst));
  9243. }
  9244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9245. return;
  9246. }
  9247. const int nc = src0->ne[0];
  9248. const int nr = ggml_nelements(src1);
  9249. GGML_ASSERT( dst->ne[0] == nc);
  9250. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9251. for (int i = 0; i < nr; ++i) {
  9252. const int r = ((int32_t *) src1->data)[i];
  9253. ggml_vec_add_f32(nc,
  9254. (float *) ((char *) dst->data + r*dst->nb[1]),
  9255. (float *) ((char *) dst->data + r*dst->nb[1]),
  9256. (float *) ((char *) src0->data + i*src0->nb[1]));
  9257. }
  9258. }
  9259. static void ggml_compute_forward_get_rows_back(
  9260. const struct ggml_compute_params * params,
  9261. const struct ggml_tensor * src0,
  9262. const struct ggml_tensor * src1,
  9263. struct ggml_tensor * dst) {
  9264. switch (src0->type) {
  9265. case GGML_TYPE_F16:
  9266. {
  9267. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9268. } break;
  9269. case GGML_TYPE_F32:
  9270. {
  9271. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9272. } break;
  9273. default:
  9274. {
  9275. GGML_ASSERT(false);
  9276. } break;
  9277. }
  9278. //static bool first = true;
  9279. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9280. //if (first) {
  9281. // first = false;
  9282. //} else {
  9283. // for (int k = 0; k < dst->ne[1]; ++k) {
  9284. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9285. // for (int i = 0; i < 16; ++i) {
  9286. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9287. // }
  9288. // printf("\n");
  9289. // }
  9290. // printf("\n");
  9291. // }
  9292. // printf("\n");
  9293. // exit(0);
  9294. //}
  9295. }
  9296. // ggml_compute_forward_diag
  9297. static void ggml_compute_forward_diag_f32(
  9298. const struct ggml_compute_params * params,
  9299. const struct ggml_tensor * src0,
  9300. struct ggml_tensor * dst) {
  9301. GGML_ASSERT(params->ith == 0);
  9302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9303. return;
  9304. }
  9305. // TODO: handle transposed/permuted matrices
  9306. GGML_TENSOR_UNARY_OP_LOCALS
  9307. GGML_ASSERT(ne00 == ne0);
  9308. GGML_ASSERT(ne00 == ne1);
  9309. GGML_ASSERT(ne01 == 1);
  9310. GGML_ASSERT(ne02 == ne2);
  9311. GGML_ASSERT(ne03 == ne3);
  9312. GGML_ASSERT(nb00 == sizeof(float));
  9313. GGML_ASSERT(nb0 == sizeof(float));
  9314. for (int i3 = 0; i3 < ne3; i3++) {
  9315. for (int i2 = 0; i2 < ne2; i2++) {
  9316. for (int i1 = 0; i1 < ne1; i1++) {
  9317. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9318. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9319. for (int i0 = 0; i0 < i1; i0++) {
  9320. d[i0] = 0;
  9321. }
  9322. d[i1] = s[i1];
  9323. for (int i0 = i1+1; i0 < ne0; i0++) {
  9324. d[i0] = 0;
  9325. }
  9326. }
  9327. }
  9328. }
  9329. }
  9330. static void ggml_compute_forward_diag(
  9331. const struct ggml_compute_params * params,
  9332. const struct ggml_tensor * src0,
  9333. struct ggml_tensor * dst) {
  9334. switch (src0->type) {
  9335. case GGML_TYPE_F32:
  9336. {
  9337. ggml_compute_forward_diag_f32(params, src0, dst);
  9338. } break;
  9339. default:
  9340. {
  9341. GGML_ASSERT(false);
  9342. } break;
  9343. }
  9344. }
  9345. // ggml_compute_forward_diag_mask_inf
  9346. static void ggml_compute_forward_diag_mask_f32(
  9347. const struct ggml_compute_params * params,
  9348. const struct ggml_tensor * src0,
  9349. struct ggml_tensor * dst,
  9350. const float value) {
  9351. const int ith = params->ith;
  9352. const int nth = params->nth;
  9353. const int n_past = ((int32_t *) dst->op_params)[0];
  9354. const bool inplace = src0->data == dst->data;
  9355. GGML_ASSERT(n_past >= 0);
  9356. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9357. if (ith != 0) {
  9358. return;
  9359. }
  9360. // memcpy needs to be synchronized across threads to avoid race conditions.
  9361. // => do it in INIT phase
  9362. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9363. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9364. memcpy(
  9365. ((char *) dst->data),
  9366. ((char *) src0->data),
  9367. ggml_nbytes(dst));
  9368. }
  9369. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9370. return;
  9371. }
  9372. // TODO: handle transposed/permuted matrices
  9373. const int n = ggml_nrows(src0);
  9374. const int nc = src0->ne[0];
  9375. const int nr = src0->ne[1];
  9376. const int nz = n/nr;
  9377. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9378. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9379. for (int k = 0; k < nz; k++) {
  9380. for (int j = ith; j < nr; j += nth) {
  9381. for (int i = n_past; i < nc; i++) {
  9382. if (i > n_past + j) {
  9383. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9384. }
  9385. }
  9386. }
  9387. }
  9388. }
  9389. static void ggml_compute_forward_diag_mask_inf(
  9390. const struct ggml_compute_params * params,
  9391. const struct ggml_tensor * src0,
  9392. struct ggml_tensor * dst) {
  9393. switch (src0->type) {
  9394. case GGML_TYPE_F32:
  9395. {
  9396. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9397. } break;
  9398. default:
  9399. {
  9400. GGML_ASSERT(false);
  9401. } break;
  9402. }
  9403. }
  9404. static void ggml_compute_forward_diag_mask_zero(
  9405. const struct ggml_compute_params * params,
  9406. const struct ggml_tensor * src0,
  9407. struct ggml_tensor * dst) {
  9408. switch (src0->type) {
  9409. case GGML_TYPE_F32:
  9410. {
  9411. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9412. } break;
  9413. default:
  9414. {
  9415. GGML_ASSERT(false);
  9416. } break;
  9417. }
  9418. }
  9419. // ggml_compute_forward_soft_max
  9420. static void ggml_compute_forward_soft_max_f32(
  9421. const struct ggml_compute_params * params,
  9422. const struct ggml_tensor * src0,
  9423. const struct ggml_tensor * src1,
  9424. struct ggml_tensor * dst) {
  9425. assert(ggml_is_contiguous(dst));
  9426. assert(ggml_are_same_shape(src0, dst));
  9427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9428. return;
  9429. }
  9430. float scale = 1.0f;
  9431. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9432. // TODO: handle transposed/permuted matrices
  9433. const int ith = params->ith;
  9434. const int nth = params->nth;
  9435. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9436. const int nc = src0->ne[0];
  9437. const int nr = ggml_nrows(src0);
  9438. // rows per thread
  9439. const int dr = (nr + nth - 1)/nth;
  9440. // row range for this thread
  9441. const int ir0 = dr*ith;
  9442. const int ir1 = MIN(ir0 + dr, nr);
  9443. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9444. for (int i1 = ir0; i1 < ir1; i1++) {
  9445. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9446. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9447. // broadcast the mask across rows
  9448. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9449. ggml_vec_cpy_f32 (nc, wp, sp);
  9450. ggml_vec_scale_f32(nc, wp, scale);
  9451. if (mp) {
  9452. ggml_vec_acc_f32(nc, wp, mp);
  9453. }
  9454. #ifndef NDEBUG
  9455. for (int i = 0; i < nc; ++i) {
  9456. //printf("p[%d] = %f\n", i, p[i]);
  9457. assert(!isnan(wp[i]));
  9458. }
  9459. #endif
  9460. float max = -INFINITY;
  9461. ggml_vec_max_f32(nc, &max, wp);
  9462. ggml_float sum = 0.0;
  9463. uint16_t scvt;
  9464. for (int i = 0; i < nc; i++) {
  9465. if (wp[i] == -INFINITY) {
  9466. dp[i] = 0.0f;
  9467. } else {
  9468. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9469. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9470. memcpy(&scvt, &s, sizeof(scvt));
  9471. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9472. sum += (ggml_float)val;
  9473. dp[i] = val;
  9474. }
  9475. }
  9476. assert(sum > 0.0);
  9477. sum = 1.0/sum;
  9478. ggml_vec_scale_f32(nc, dp, sum);
  9479. #ifndef NDEBUG
  9480. for (int i = 0; i < nc; ++i) {
  9481. assert(!isnan(dp[i]));
  9482. assert(!isinf(dp[i]));
  9483. }
  9484. #endif
  9485. }
  9486. }
  9487. static void ggml_compute_forward_soft_max(
  9488. const struct ggml_compute_params * params,
  9489. const struct ggml_tensor * src0,
  9490. const struct ggml_tensor * src1,
  9491. struct ggml_tensor * dst) {
  9492. switch (src0->type) {
  9493. case GGML_TYPE_F32:
  9494. {
  9495. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9496. } break;
  9497. default:
  9498. {
  9499. GGML_ASSERT(false);
  9500. } break;
  9501. }
  9502. }
  9503. // ggml_compute_forward_soft_max_back
  9504. static void ggml_compute_forward_soft_max_back_f32(
  9505. const struct ggml_compute_params * params,
  9506. const struct ggml_tensor * src0,
  9507. const struct ggml_tensor * src1,
  9508. struct ggml_tensor * dst) {
  9509. GGML_ASSERT(ggml_is_contiguous(src0));
  9510. GGML_ASSERT(ggml_is_contiguous(src1));
  9511. GGML_ASSERT(ggml_is_contiguous(dst));
  9512. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9513. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9515. return;
  9516. }
  9517. // TODO: handle transposed/permuted matrices
  9518. const int ith = params->ith;
  9519. const int nth = params->nth;
  9520. const int nc = src0->ne[0];
  9521. const int nr = ggml_nrows(src0);
  9522. // rows per thread
  9523. const int dr = (nr + nth - 1)/nth;
  9524. // row range for this thread
  9525. const int ir0 = dr*ith;
  9526. const int ir1 = MIN(ir0 + dr, nr);
  9527. for (int i1 = ir0; i1 < ir1; i1++) {
  9528. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9529. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9530. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9531. #ifndef NDEBUG
  9532. for (int i = 0; i < nc; ++i) {
  9533. //printf("p[%d] = %f\n", i, p[i]);
  9534. assert(!isnan(dy[i]));
  9535. assert(!isnan(y[i]));
  9536. }
  9537. #endif
  9538. // Jii = yi - yi*yi
  9539. // Jij = -yi*yj
  9540. // J = diag(y)-y.T*y
  9541. // dx = J * dy
  9542. // dxk = sum_i(Jki * dyi)
  9543. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9544. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9545. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9546. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9547. // dxk = -yk * dot(y, dy) + yk*dyk
  9548. // dxk = yk * (- dot(y, dy) + dyk)
  9549. // dxk = yk * (dyk - dot(y, dy))
  9550. //
  9551. // post-order:
  9552. // dot_y_dy := dot(y, dy)
  9553. // dx := dy
  9554. // dx := dx - dot_y_dy
  9555. // dx := dx * y
  9556. // linear runtime, no additional memory
  9557. float dot_y_dy = 0;
  9558. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9559. ggml_vec_cpy_f32 (nc, dx, dy);
  9560. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9561. ggml_vec_mul_f32 (nc, dx, dx, y);
  9562. #ifndef NDEBUG
  9563. for (int i = 0; i < nc; ++i) {
  9564. assert(!isnan(dx[i]));
  9565. assert(!isinf(dx[i]));
  9566. }
  9567. #endif
  9568. }
  9569. }
  9570. static void ggml_compute_forward_soft_max_back(
  9571. const struct ggml_compute_params * params,
  9572. const struct ggml_tensor * src0,
  9573. const struct ggml_tensor * src1,
  9574. struct ggml_tensor * dst) {
  9575. switch (src0->type) {
  9576. case GGML_TYPE_F32:
  9577. {
  9578. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9579. } break;
  9580. default:
  9581. {
  9582. GGML_ASSERT(false);
  9583. } break;
  9584. }
  9585. }
  9586. // ggml_compute_forward_alibi
  9587. static void ggml_compute_forward_alibi_f32(
  9588. const struct ggml_compute_params * params,
  9589. const struct ggml_tensor * src0,
  9590. struct ggml_tensor * dst) {
  9591. assert(params->ith == 0);
  9592. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9593. return;
  9594. }
  9595. //const int n_past = ((int32_t *) dst->op_params)[0];
  9596. const int n_head = ((int32_t *) dst->op_params)[1];
  9597. float max_bias;
  9598. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9599. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9600. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9601. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9602. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9603. const int64_t n = ggml_nrows(src0);
  9604. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9605. const size_t nb0 = src0->nb[0];
  9606. const size_t nb1 = src0->nb[1];
  9607. const size_t nb2 = src0->nb[2];
  9608. //const int nb3 = src0->nb[3];
  9609. GGML_ASSERT(nb0 == sizeof(float));
  9610. GGML_ASSERT(n_head == ne2);
  9611. // add alibi to src0 (KQ_scaled)
  9612. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9613. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9614. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9615. for (int64_t i = 0; i < ne0; i++) {
  9616. for (int64_t j = 0; j < ne1; j++) {
  9617. for (int64_t k = 0; k < ne2_ne3; k++) {
  9618. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9619. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9620. // TODO: k*nb2 or k*nb3
  9621. float m_k;
  9622. if (k < n_heads_log2_floor) {
  9623. m_k = powf(m0, k + 1);
  9624. } else {
  9625. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9626. }
  9627. pdst[0] = i * m_k + src[0];
  9628. }
  9629. }
  9630. }
  9631. }
  9632. static void ggml_compute_forward_alibi_f16(
  9633. const struct ggml_compute_params * params,
  9634. const struct ggml_tensor * src0,
  9635. struct ggml_tensor * dst) {
  9636. assert(params->ith == 0);
  9637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9638. return;
  9639. }
  9640. //const int n_past = ((int32_t *) dst->op_params)[0];
  9641. const int n_head = ((int32_t *) dst->op_params)[1];
  9642. float max_bias;
  9643. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9644. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9645. const int ne1 = src0->ne[1]; // seq_len_without_past
  9646. const int ne2 = src0->ne[2]; // n_head -> this is k
  9647. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9648. const int n = ggml_nrows(src0);
  9649. const int ne2_ne3 = n/ne1; // ne2*ne3
  9650. const int nb0 = src0->nb[0];
  9651. const int nb1 = src0->nb[1];
  9652. const int nb2 = src0->nb[2];
  9653. //const int nb3 = src0->nb[3];
  9654. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9655. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9656. GGML_ASSERT(n_head == ne2);
  9657. // add alibi to src0 (KQ_scaled)
  9658. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9659. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9660. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9661. for (int i = 0; i < ne0; i++) {
  9662. for (int j = 0; j < ne1; j++) {
  9663. for (int k = 0; k < ne2_ne3; k++) {
  9664. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9665. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9666. // TODO: k*nb2 or k*nb3
  9667. float m_k;
  9668. if (k < n_heads_log2_floor) {
  9669. m_k = powf(m0, k + 1);
  9670. } else {
  9671. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9672. }
  9673. // we return F32
  9674. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9675. }
  9676. }
  9677. }
  9678. }
  9679. static void ggml_compute_forward_alibi(
  9680. const struct ggml_compute_params * params,
  9681. const struct ggml_tensor * src0,
  9682. struct ggml_tensor * dst) {
  9683. switch (src0->type) {
  9684. case GGML_TYPE_F16:
  9685. {
  9686. ggml_compute_forward_alibi_f16(params, src0, dst);
  9687. } break;
  9688. case GGML_TYPE_F32:
  9689. {
  9690. ggml_compute_forward_alibi_f32(params, src0, dst);
  9691. } break;
  9692. case GGML_TYPE_Q4_0:
  9693. case GGML_TYPE_Q4_1:
  9694. case GGML_TYPE_Q5_0:
  9695. case GGML_TYPE_Q5_1:
  9696. case GGML_TYPE_Q8_0:
  9697. case GGML_TYPE_Q8_1:
  9698. case GGML_TYPE_Q2_K:
  9699. case GGML_TYPE_Q3_K:
  9700. case GGML_TYPE_Q4_K:
  9701. case GGML_TYPE_Q5_K:
  9702. case GGML_TYPE_Q6_K:
  9703. case GGML_TYPE_IQ2_XXS:
  9704. case GGML_TYPE_IQ2_XS:
  9705. case GGML_TYPE_IQ3_XXS:
  9706. case GGML_TYPE_Q8_K:
  9707. case GGML_TYPE_I8:
  9708. case GGML_TYPE_I16:
  9709. case GGML_TYPE_I32:
  9710. case GGML_TYPE_COUNT:
  9711. {
  9712. GGML_ASSERT(false);
  9713. } break;
  9714. }
  9715. }
  9716. // ggml_compute_forward_clamp
  9717. static void ggml_compute_forward_clamp_f32(
  9718. const struct ggml_compute_params * params,
  9719. const struct ggml_tensor * src0,
  9720. struct ggml_tensor * dst) {
  9721. assert(params->ith == 0);
  9722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9723. return;
  9724. }
  9725. float min;
  9726. float max;
  9727. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9728. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9729. const int ith = params->ith;
  9730. const int nth = params->nth;
  9731. const int n = ggml_nrows(src0);
  9732. const int nc = src0->ne[0];
  9733. const size_t nb00 = src0->nb[0];
  9734. const size_t nb01 = src0->nb[1];
  9735. const size_t nb0 = dst->nb[0];
  9736. const size_t nb1 = dst->nb[1];
  9737. GGML_ASSERT( nb0 == sizeof(float));
  9738. GGML_ASSERT(nb00 == sizeof(float));
  9739. for (int j = ith; j < n; j += nth) {
  9740. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9741. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9742. for (int i = 0; i < nc; i++) {
  9743. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9744. }
  9745. }
  9746. }
  9747. static void ggml_compute_forward_clamp(
  9748. const struct ggml_compute_params * params,
  9749. const struct ggml_tensor * src0,
  9750. struct ggml_tensor * dst) {
  9751. switch (src0->type) {
  9752. case GGML_TYPE_F32:
  9753. {
  9754. ggml_compute_forward_clamp_f32(params, src0, dst);
  9755. } break;
  9756. case GGML_TYPE_F16:
  9757. case GGML_TYPE_Q4_0:
  9758. case GGML_TYPE_Q4_1:
  9759. case GGML_TYPE_Q5_0:
  9760. case GGML_TYPE_Q5_1:
  9761. case GGML_TYPE_Q8_0:
  9762. case GGML_TYPE_Q8_1:
  9763. case GGML_TYPE_Q2_K:
  9764. case GGML_TYPE_Q3_K:
  9765. case GGML_TYPE_Q4_K:
  9766. case GGML_TYPE_Q5_K:
  9767. case GGML_TYPE_Q6_K:
  9768. case GGML_TYPE_IQ2_XXS:
  9769. case GGML_TYPE_IQ2_XS:
  9770. case GGML_TYPE_IQ3_XXS:
  9771. case GGML_TYPE_Q8_K:
  9772. case GGML_TYPE_I8:
  9773. case GGML_TYPE_I16:
  9774. case GGML_TYPE_I32:
  9775. case GGML_TYPE_COUNT:
  9776. {
  9777. GGML_ASSERT(false);
  9778. } break;
  9779. }
  9780. }
  9781. // ggml_compute_forward_rope
  9782. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9783. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9784. return 1 - MIN(1, MAX(0, y));
  9785. }
  9786. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9787. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9788. static void rope_yarn(
  9789. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9790. float * cos_theta, float * sin_theta
  9791. ) {
  9792. // Get n-d rotational scaling corrected for extrapolation
  9793. float theta_interp = freq_scale * theta_extrap;
  9794. float theta = theta_interp;
  9795. if (ext_factor != 0.0f) {
  9796. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9797. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9798. // Get n-d magnitude scaling corrected for interpolation
  9799. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9800. }
  9801. *cos_theta = cosf(theta) * mscale;
  9802. *sin_theta = sinf(theta) * mscale;
  9803. }
  9804. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9805. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9806. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9807. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9808. }
  9809. static void ggml_rope_cache_init(
  9810. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9811. float * cache, float sin_sign, float theta_scale
  9812. ) {
  9813. float theta = theta_base;
  9814. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9815. rope_yarn(
  9816. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9817. );
  9818. cache[i0 + 1] *= sin_sign;
  9819. theta *= theta_scale;
  9820. }
  9821. }
  9822. GGML_CALL void ggml_rope_yarn_corr_dims(
  9823. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9824. ) {
  9825. // start and end correction dims
  9826. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9827. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9828. dims[0] = MAX(0, start);
  9829. dims[1] = MIN(n_dims - 1, end);
  9830. }
  9831. static void ggml_compute_forward_rope_f32(
  9832. const struct ggml_compute_params * params,
  9833. const struct ggml_tensor * src0,
  9834. const struct ggml_tensor * src1,
  9835. struct ggml_tensor * dst,
  9836. const bool forward) {
  9837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9838. return;
  9839. }
  9840. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9841. // these two only relevant for xPos RoPE:
  9842. float xpos_base;
  9843. bool xpos_down;
  9844. //const int n_past = ((int32_t *) dst->op_params)[0];
  9845. const int n_dims = ((int32_t *) dst->op_params)[1];
  9846. const int mode = ((int32_t *) dst->op_params)[2];
  9847. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9848. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9849. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9850. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9851. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9852. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9853. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9854. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9855. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9856. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9857. GGML_TENSOR_UNARY_OP_LOCALS
  9858. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9859. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9860. GGML_ASSERT(nb00 == sizeof(float));
  9861. const int ith = params->ith;
  9862. const int nth = params->nth;
  9863. const int nr = ggml_nrows(dst);
  9864. GGML_ASSERT(n_dims <= ne0);
  9865. GGML_ASSERT(n_dims % 2 == 0);
  9866. // rows per thread
  9867. const int dr = (nr + nth - 1)/nth;
  9868. // row range for this thread
  9869. const int ir0 = dr*ith;
  9870. const int ir1 = MIN(ir0 + dr, nr);
  9871. // row index used to determine which thread to use
  9872. int ir = 0;
  9873. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9874. const float inv_ndims = -1.f/n_dims;
  9875. float corr_dims[2];
  9876. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9877. const bool is_neox = mode & 2;
  9878. const bool is_glm = mode & 4;
  9879. // backward process uses inverse rotation by cos and sin.
  9880. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9881. // this essentially just switches the sign of sin.
  9882. const float sin_sign = forward ? 1.0f : -1.0f;
  9883. const int32_t * pos = (const int32_t *) src1->data;
  9884. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9885. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9886. const int64_t p = pos[i2];
  9887. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9888. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9889. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9890. }
  9891. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9892. if (ir++ < ir0) continue;
  9893. if (ir > ir1) break;
  9894. float theta_base = (float)p;
  9895. if (is_glm) {
  9896. theta_base = MIN(p, n_ctx - 2);
  9897. float block_theta = MAX(p - (n_ctx - 2), 0);
  9898. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9899. const float cos_theta = cosf(theta_base);
  9900. const float sin_theta = sinf(theta_base) * sin_sign;
  9901. const float cos_block_theta = cosf(block_theta);
  9902. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9903. theta_base *= theta_scale;
  9904. block_theta *= theta_scale;
  9905. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9906. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9907. const float x0 = src[0];
  9908. const float x1 = src[n_dims/2];
  9909. const float x2 = src[n_dims];
  9910. const float x3 = src[n_dims/2*3];
  9911. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9912. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9913. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9914. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9915. }
  9916. } else if (!is_neox) {
  9917. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9918. const float cos_theta = cache[i0 + 0];
  9919. const float sin_theta = cache[i0 + 1];
  9920. // zeta scaling for xPos only:
  9921. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9922. if (xpos_down) zeta = 1.0f / zeta;
  9923. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9924. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9925. const float x0 = src[0];
  9926. const float x1 = src[1];
  9927. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9928. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9929. }
  9930. } else {
  9931. // TODO: this might be wrong for ne0 != n_dims - need double check
  9932. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9933. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9934. theta_base *= freq_scale;
  9935. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9936. if (ic < n_dims) {
  9937. const int64_t ib = 0;
  9938. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9939. float cur_rot = inv_ndims * ic - ib;
  9940. float cos_theta, sin_theta;
  9941. rope_yarn(
  9942. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9943. &cos_theta, &sin_theta
  9944. );
  9945. sin_theta *= sin_sign;
  9946. theta_base *= theta_scale;
  9947. const int64_t i0 = ib*n_dims + ic/2;
  9948. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9949. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9950. const float x0 = src[0];
  9951. const float x1 = src[n_dims/2];
  9952. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9953. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9954. } else {
  9955. const int64_t i0 = ic;
  9956. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9957. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9958. dst_data[0] = src[0];
  9959. dst_data[1] = src[1];
  9960. }
  9961. }
  9962. }
  9963. }
  9964. }
  9965. }
  9966. }
  9967. static void ggml_compute_forward_rope_f16(
  9968. const struct ggml_compute_params * params,
  9969. const struct ggml_tensor * src0,
  9970. const struct ggml_tensor * src1,
  9971. struct ggml_tensor * dst,
  9972. const bool forward) {
  9973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9974. return;
  9975. }
  9976. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9977. //const int n_past = ((int32_t *) dst->op_params)[0];
  9978. const int n_dims = ((int32_t *) dst->op_params)[1];
  9979. const int mode = ((int32_t *) dst->op_params)[2];
  9980. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9981. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9982. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9983. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9984. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9985. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9986. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9987. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9988. GGML_TENSOR_UNARY_OP_LOCALS
  9989. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9990. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9991. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9992. const int ith = params->ith;
  9993. const int nth = params->nth;
  9994. const int nr = ggml_nrows(dst);
  9995. GGML_ASSERT(n_dims <= ne0);
  9996. GGML_ASSERT(n_dims % 2 == 0);
  9997. // rows per thread
  9998. const int dr = (nr + nth - 1)/nth;
  9999. // row range for this thread
  10000. const int ir0 = dr*ith;
  10001. const int ir1 = MIN(ir0 + dr, nr);
  10002. // row index used to determine which thread to use
  10003. int ir = 0;
  10004. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10005. const float inv_ndims = -1.f/n_dims;
  10006. float corr_dims[2];
  10007. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10008. const bool is_neox = mode & 2;
  10009. const bool is_glm = mode & 4;
  10010. // backward process uses inverse rotation by cos and sin.
  10011. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10012. // this essentially just switches the sign of sin.
  10013. const float sin_sign = forward ? 1.0f : -1.0f;
  10014. const int32_t * pos = (const int32_t *) src1->data;
  10015. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10016. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10017. const int64_t p = pos[i2];
  10018. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10019. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10020. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10021. }
  10022. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10023. if (ir++ < ir0) continue;
  10024. if (ir > ir1) break;
  10025. float theta_base = (float)p;
  10026. if (is_glm) {
  10027. theta_base = MIN(p, n_ctx - 2);
  10028. float block_theta = MAX(p - (n_ctx - 2), 0);
  10029. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10030. const float cos_theta = cosf(theta_base);
  10031. const float sin_theta = sinf(theta_base) * sin_sign;
  10032. const float cos_block_theta = cosf(block_theta);
  10033. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10034. theta_base *= theta_scale;
  10035. block_theta *= theta_scale;
  10036. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10037. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10038. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10039. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10040. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10041. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10042. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10043. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10044. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10045. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10046. }
  10047. } else if (!is_neox) {
  10048. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10049. const float cos_theta = cache[i0 + 0];
  10050. const float sin_theta = cache[i0 + 1];
  10051. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10052. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10053. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10054. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10055. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10056. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10057. }
  10058. } else {
  10059. // TODO: this might be wrong for ne0 != n_dims - need double check
  10060. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10061. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10062. theta_base *= freq_scale;
  10063. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10064. if (ic < n_dims) {
  10065. const int64_t ib = 0;
  10066. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10067. float cur_rot = inv_ndims * ic - ib;
  10068. float cos_theta, sin_theta;
  10069. rope_yarn(
  10070. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10071. &cos_theta, &sin_theta
  10072. );
  10073. sin_theta *= sin_sign;
  10074. theta_base *= theta_scale;
  10075. const int64_t i0 = ib*n_dims + ic/2;
  10076. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10077. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10078. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10079. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10080. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10081. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10082. } else {
  10083. const int64_t i0 = ic;
  10084. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10085. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10086. dst_data[0] = src[0];
  10087. dst_data[1] = src[1];
  10088. }
  10089. }
  10090. }
  10091. }
  10092. }
  10093. }
  10094. }
  10095. static void ggml_compute_forward_rope(
  10096. const struct ggml_compute_params * params,
  10097. const struct ggml_tensor * src0,
  10098. const struct ggml_tensor * src1,
  10099. struct ggml_tensor * dst) {
  10100. switch (src0->type) {
  10101. case GGML_TYPE_F16:
  10102. {
  10103. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10104. } break;
  10105. case GGML_TYPE_F32:
  10106. {
  10107. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10108. } break;
  10109. default:
  10110. {
  10111. GGML_ASSERT(false);
  10112. } break;
  10113. }
  10114. }
  10115. // ggml_compute_forward_rope_back
  10116. static void ggml_compute_forward_rope_back(
  10117. const struct ggml_compute_params * params,
  10118. const struct ggml_tensor * src0,
  10119. const struct ggml_tensor * src1,
  10120. struct ggml_tensor * dst) {
  10121. switch (src0->type) {
  10122. case GGML_TYPE_F16:
  10123. {
  10124. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10125. } break;
  10126. case GGML_TYPE_F32:
  10127. {
  10128. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10129. } break;
  10130. default:
  10131. {
  10132. GGML_ASSERT(false);
  10133. } break;
  10134. }
  10135. }
  10136. // ggml_compute_forward_conv_transpose_1d
  10137. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10138. const struct ggml_compute_params * params,
  10139. const struct ggml_tensor * src0,
  10140. const struct ggml_tensor * src1,
  10141. struct ggml_tensor * dst) {
  10142. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10143. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10144. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10145. int64_t t0 = ggml_perf_time_us();
  10146. UNUSED(t0);
  10147. GGML_TENSOR_BINARY_OP_LOCALS
  10148. const int ith = params->ith;
  10149. const int nth = params->nth;
  10150. const int nk = ne00*ne01*ne02;
  10151. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10152. GGML_ASSERT(nb10 == sizeof(float));
  10153. if (params->type == GGML_TASK_INIT) {
  10154. if (ith != 0) {
  10155. return;
  10156. }
  10157. memset(params->wdata, 0, params->wsize);
  10158. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10159. {
  10160. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10161. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10162. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10163. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10164. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10165. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10166. dst_data[i00*ne02 + i02] = src[i00];
  10167. }
  10168. }
  10169. }
  10170. }
  10171. // permute source data (src1) from (L x Cin) to (Cin x L)
  10172. {
  10173. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10174. ggml_fp16_t * dst_data = wdata;
  10175. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10176. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10177. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10178. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10179. }
  10180. }
  10181. }
  10182. // need to zero dst since we are accumulating into it
  10183. memset(dst->data, 0, ggml_nbytes(dst));
  10184. return;
  10185. }
  10186. if (params->type == GGML_TASK_FINALIZE) {
  10187. return;
  10188. }
  10189. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10190. // total rows in dst
  10191. const int nr = ne1;
  10192. // rows per thread
  10193. const int dr = (nr + nth - 1)/nth;
  10194. // row range for this thread
  10195. const int ir0 = dr*ith;
  10196. const int ir1 = MIN(ir0 + dr, nr);
  10197. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10198. ggml_fp16_t * const wdata_src = wdata + nk;
  10199. for (int i1 = ir0; i1 < ir1; i1++) {
  10200. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10201. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10202. for (int i10 = 0; i10 < ne10; i10++) {
  10203. const int i1n = i10*ne11;
  10204. for (int i00 = 0; i00 < ne00; i00++) {
  10205. float v = 0;
  10206. ggml_vec_dot_f16(ne02, &v, 0,
  10207. (ggml_fp16_t *) wdata_src + i1n, 0,
  10208. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10209. dst_data[i10*s0 + i00] += v;
  10210. }
  10211. }
  10212. }
  10213. }
  10214. static void ggml_compute_forward_conv_transpose_1d_f32(
  10215. const struct ggml_compute_params * params,
  10216. const struct ggml_tensor * src0,
  10217. const struct ggml_tensor * src1,
  10218. struct ggml_tensor * dst) {
  10219. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10220. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10221. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10222. int64_t t0 = ggml_perf_time_us();
  10223. UNUSED(t0);
  10224. GGML_TENSOR_BINARY_OP_LOCALS
  10225. const int ith = params->ith;
  10226. const int nth = params->nth;
  10227. const int nk = ne00*ne01*ne02;
  10228. GGML_ASSERT(nb00 == sizeof(float));
  10229. GGML_ASSERT(nb10 == sizeof(float));
  10230. if (params->type == GGML_TASK_INIT) {
  10231. if (ith != 0) {
  10232. return;
  10233. }
  10234. memset(params->wdata, 0, params->wsize);
  10235. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10236. {
  10237. float * const wdata = (float *) params->wdata + 0;
  10238. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10239. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10240. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10241. float * dst_data = wdata + i01*ne00*ne02;
  10242. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10243. dst_data[i00*ne02 + i02] = src[i00];
  10244. }
  10245. }
  10246. }
  10247. }
  10248. // prepare source data (src1)
  10249. {
  10250. float * const wdata = (float *) params->wdata + nk;
  10251. float * dst_data = wdata;
  10252. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10253. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10254. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10255. dst_data[i10*ne11 + i11] = src[i10];
  10256. }
  10257. }
  10258. }
  10259. // need to zero dst since we are accumulating into it
  10260. memset(dst->data, 0, ggml_nbytes(dst));
  10261. return;
  10262. }
  10263. if (params->type == GGML_TASK_FINALIZE) {
  10264. return;
  10265. }
  10266. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10267. // total rows in dst
  10268. const int nr = ne1;
  10269. // rows per thread
  10270. const int dr = (nr + nth - 1)/nth;
  10271. // row range for this thread
  10272. const int ir0 = dr*ith;
  10273. const int ir1 = MIN(ir0 + dr, nr);
  10274. float * const wdata = (float *) params->wdata + 0;
  10275. float * const wdata_src = wdata + nk;
  10276. for (int i1 = ir0; i1 < ir1; i1++) {
  10277. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10278. float * wdata_kernel = wdata + i1*ne02*ne00;
  10279. for (int i10 = 0; i10 < ne10; i10++) {
  10280. const int i1n = i10*ne11;
  10281. for (int i00 = 0; i00 < ne00; i00++) {
  10282. float v = 0;
  10283. ggml_vec_dot_f32(ne02, &v, 0,
  10284. wdata_src + i1n, 0,
  10285. wdata_kernel + i00*ne02, 0, 1);
  10286. dst_data[i10*s0 + i00] += v;
  10287. }
  10288. }
  10289. }
  10290. }
  10291. static void ggml_compute_forward_conv_transpose_1d(
  10292. const struct ggml_compute_params * params,
  10293. const struct ggml_tensor * src0,
  10294. const struct ggml_tensor * src1,
  10295. struct ggml_tensor * dst) {
  10296. switch (src0->type) {
  10297. case GGML_TYPE_F16:
  10298. {
  10299. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10300. } break;
  10301. case GGML_TYPE_F32:
  10302. {
  10303. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10304. } break;
  10305. default:
  10306. {
  10307. GGML_ASSERT(false);
  10308. } break;
  10309. }
  10310. }
  10311. // src0: kernel [OC, IC, KH, KW]
  10312. // src1: image [N, IC, IH, IW]
  10313. // dst: result [N, OH, OW, IC*KH*KW]
  10314. static void ggml_compute_forward_im2col_f32(
  10315. const struct ggml_compute_params * params,
  10316. const struct ggml_tensor * src0,
  10317. const struct ggml_tensor * src1,
  10318. struct ggml_tensor * dst) {
  10319. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10320. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10321. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10322. int64_t t0 = ggml_perf_time_us();
  10323. UNUSED(t0);
  10324. GGML_TENSOR_BINARY_OP_LOCALS;
  10325. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10326. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10327. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10328. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10329. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10330. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10331. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10332. const int ith = params->ith;
  10333. const int nth = params->nth;
  10334. const int64_t N = is_2D ? ne13 : ne12;
  10335. const int64_t IC = is_2D ? ne12 : ne11;
  10336. const int64_t IH = is_2D ? ne11 : 1;
  10337. const int64_t IW = ne10;
  10338. const int64_t KH = is_2D ? ne01 : 1;
  10339. const int64_t KW = ne00;
  10340. const int64_t OH = is_2D ? ne2 : 1;
  10341. const int64_t OW = ne1;
  10342. int ofs0 = is_2D ? nb13 : nb12;
  10343. int ofs1 = is_2D ? nb12 : nb11;
  10344. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10345. GGML_ASSERT(nb10 == sizeof(float));
  10346. if (params->type == GGML_TASK_INIT) {
  10347. return;
  10348. }
  10349. if (params->type == GGML_TASK_FINALIZE) {
  10350. return;
  10351. }
  10352. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10353. {
  10354. float * const wdata = (float *) dst->data;
  10355. for (int64_t in = 0; in < N; in++) {
  10356. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10357. for (int64_t iow = 0; iow < OW; iow++) {
  10358. for (int64_t iic = ith; iic < IC; iic += nth) {
  10359. // micro kernel
  10360. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10361. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10362. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10363. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10364. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10365. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10366. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10367. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10368. } else {
  10369. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10370. }
  10371. }
  10372. }
  10373. }
  10374. }
  10375. }
  10376. }
  10377. }
  10378. }
  10379. // src0: kernel [OC, IC, KH, KW]
  10380. // src1: image [N, IC, IH, IW]
  10381. // dst: result [N, OH, OW, IC*KH*KW]
  10382. static void ggml_compute_forward_im2col_f16(
  10383. const struct ggml_compute_params * params,
  10384. const struct ggml_tensor * src0,
  10385. const struct ggml_tensor * src1,
  10386. struct ggml_tensor * dst) {
  10387. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10388. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10389. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10390. int64_t t0 = ggml_perf_time_us();
  10391. UNUSED(t0);
  10392. GGML_TENSOR_BINARY_OP_LOCALS;
  10393. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10394. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10395. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10396. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10397. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10398. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10399. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10400. const int ith = params->ith;
  10401. const int nth = params->nth;
  10402. const int64_t N = is_2D ? ne13 : ne12;
  10403. const int64_t IC = is_2D ? ne12 : ne11;
  10404. const int64_t IH = is_2D ? ne11 : 1;
  10405. const int64_t IW = ne10;
  10406. const int64_t KH = is_2D ? ne01 : 1;
  10407. const int64_t KW = ne00;
  10408. const int64_t OH = is_2D ? ne2 : 1;
  10409. const int64_t OW = ne1;
  10410. int ofs0 = is_2D ? nb13 : nb12;
  10411. int ofs1 = is_2D ? nb12 : nb11;
  10412. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10413. GGML_ASSERT(nb10 == sizeof(float));
  10414. if (params->type == GGML_TASK_INIT) {
  10415. return;
  10416. }
  10417. if (params->type == GGML_TASK_FINALIZE) {
  10418. return;
  10419. }
  10420. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10421. {
  10422. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10423. for (int64_t in = 0; in < N; in++) {
  10424. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10425. for (int64_t iow = 0; iow < OW; iow++) {
  10426. for (int64_t iic = ith; iic < IC; iic += nth) {
  10427. // micro kernel
  10428. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10429. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10430. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10431. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10432. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10433. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10434. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10435. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10436. } else {
  10437. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10438. }
  10439. }
  10440. }
  10441. }
  10442. }
  10443. }
  10444. }
  10445. }
  10446. }
  10447. static void ggml_compute_forward_im2col(
  10448. const struct ggml_compute_params * params,
  10449. const struct ggml_tensor * src0,
  10450. const struct ggml_tensor * src1,
  10451. struct ggml_tensor * dst) {
  10452. switch (dst->type) {
  10453. case GGML_TYPE_F16:
  10454. {
  10455. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10456. } break;
  10457. case GGML_TYPE_F32:
  10458. {
  10459. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10460. } break;
  10461. default:
  10462. {
  10463. GGML_ASSERT(false);
  10464. } break;
  10465. }
  10466. }
  10467. // ggml_compute_forward_conv_transpose_2d
  10468. static void ggml_compute_forward_conv_transpose_2d(
  10469. const struct ggml_compute_params * params,
  10470. const struct ggml_tensor * src0,
  10471. const struct ggml_tensor * src1,
  10472. struct ggml_tensor * dst) {
  10473. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10474. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10475. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10476. int64_t t0 = ggml_perf_time_us();
  10477. UNUSED(t0);
  10478. GGML_TENSOR_BINARY_OP_LOCALS
  10479. const int ith = params->ith;
  10480. const int nth = params->nth;
  10481. const int nk = ne00*ne01*ne02*ne03;
  10482. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10483. GGML_ASSERT(nb10 == sizeof(float));
  10484. if (params->type == GGML_TASK_INIT) {
  10485. if (ith != 0) {
  10486. return;
  10487. }
  10488. memset(params->wdata, 0, params->wsize);
  10489. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10490. {
  10491. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10492. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10493. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10494. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10495. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10496. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10497. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10498. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10499. }
  10500. }
  10501. }
  10502. }
  10503. }
  10504. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10505. {
  10506. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10507. for (int i12 = 0; i12 < ne12; i12++) {
  10508. for (int i11 = 0; i11 < ne11; i11++) {
  10509. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10510. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10511. for (int i10 = 0; i10 < ne10; i10++) {
  10512. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10513. }
  10514. }
  10515. }
  10516. }
  10517. memset(dst->data, 0, ggml_nbytes(dst));
  10518. return;
  10519. }
  10520. if (params->type == GGML_TASK_FINALIZE) {
  10521. return;
  10522. }
  10523. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10524. // total patches in dst
  10525. const int np = ne2;
  10526. // patches per thread
  10527. const int dp = (np + nth - 1)/nth;
  10528. // patch range for this thread
  10529. const int ip0 = dp*ith;
  10530. const int ip1 = MIN(ip0 + dp, np);
  10531. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10532. ggml_fp16_t * const wdata_src = wdata + nk;
  10533. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10534. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10535. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10536. for (int i11 = 0; i11 < ne11; i11++) {
  10537. for (int i10 = 0; i10 < ne10; i10++) {
  10538. const int i1n = i11*ne10*ne12 + i10*ne12;
  10539. for (int i01 = 0; i01 < ne01; i01++) {
  10540. for (int i00 = 0; i00 < ne00; i00++) {
  10541. float v = 0;
  10542. ggml_vec_dot_f16(ne03, &v, 0,
  10543. wdata_src + i1n, 0,
  10544. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10545. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10546. }
  10547. }
  10548. }
  10549. }
  10550. }
  10551. }
  10552. // ggml_compute_forward_pool_1d_sk_p0
  10553. static void ggml_compute_forward_pool_1d_sk_p0(
  10554. const struct ggml_compute_params * params,
  10555. const enum ggml_op_pool op,
  10556. const struct ggml_tensor * src,
  10557. const int k,
  10558. struct ggml_tensor * dst) {
  10559. assert(src->type == GGML_TYPE_F32);
  10560. assert(params->ith == 0);
  10561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10562. return;
  10563. }
  10564. const char * cdata = (const char *)src->data;
  10565. const char * const data_end = cdata + ggml_nbytes(src);
  10566. float * drow = (float *)dst->data;
  10567. const int64_t rs = dst->ne[0];
  10568. while (cdata < data_end) {
  10569. const float * const srow = (const float *)cdata;
  10570. int j = 0;
  10571. for (int64_t i = 0; i < rs; ++i) {
  10572. switch (op) {
  10573. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10574. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10575. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10576. }
  10577. for (int ki = 0; ki < k; ++ki) {
  10578. switch (op) {
  10579. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10580. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10581. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10582. }
  10583. ++j;
  10584. }
  10585. switch (op) {
  10586. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10587. case GGML_OP_POOL_MAX: break;
  10588. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10589. }
  10590. }
  10591. cdata += src->nb[1];
  10592. drow += rs;
  10593. }
  10594. }
  10595. // ggml_compute_forward_pool_1d
  10596. static void ggml_compute_forward_pool_1d(
  10597. const struct ggml_compute_params * params,
  10598. const struct ggml_tensor * src0,
  10599. struct ggml_tensor * dst) {
  10600. const int32_t * opts = (const int32_t *)dst->op_params;
  10601. enum ggml_op_pool op = opts[0];
  10602. const int k0 = opts[1];
  10603. const int s0 = opts[2];
  10604. const int p0 = opts[3];
  10605. GGML_ASSERT(p0 == 0); // padding not supported
  10606. GGML_ASSERT(k0 == s0); // only s = k supported
  10607. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10608. }
  10609. // ggml_compute_forward_pool_2d
  10610. static void ggml_compute_forward_pool_2d(
  10611. const struct ggml_compute_params * params,
  10612. const struct ggml_tensor * src,
  10613. struct ggml_tensor * dst) {
  10614. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10615. GGML_ASSERT(params->ith == 0);
  10616. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10617. return;
  10618. }
  10619. const int32_t * opts = (const int32_t *)dst->op_params;
  10620. enum ggml_op_pool op = opts[0];
  10621. const int k0 = opts[1];
  10622. const int k1 = opts[2];
  10623. const int s0 = opts[3];
  10624. const int s1 = opts[4];
  10625. const int p0 = opts[5];
  10626. const int p1 = opts[6];
  10627. const char * cdata = (const char*)src->data;
  10628. const char * const data_end = cdata + ggml_nbytes(src);
  10629. const int64_t px = dst->ne[0];
  10630. const int64_t py = dst->ne[1];
  10631. const int64_t pa = px * py;
  10632. float * dplane = (float *)dst->data;
  10633. const int ka = k0 * k1;
  10634. const int offset0 = -p0;
  10635. const int offset1 = -p1;
  10636. while (cdata < data_end) {
  10637. for (int oy = 0; oy < py; ++oy) {
  10638. float * const drow = dplane + oy * px;
  10639. for (int ox = 0; ox < px; ++ox) {
  10640. float * const out = drow + ox;
  10641. switch (op) {
  10642. case GGML_OP_POOL_AVG: *out = 0; break;
  10643. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10644. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10645. }
  10646. const int ix = offset0 + ox * s0;
  10647. const int iy = offset1 + oy * s1;
  10648. for (int ky = 0; ky < k1; ++ky) {
  10649. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10650. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10651. for (int kx = 0; kx < k0; ++kx) {
  10652. int j = ix + kx;
  10653. if (j < 0 || j >= src->ne[0]) continue;
  10654. switch (op) {
  10655. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10656. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10657. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10658. }
  10659. }
  10660. }
  10661. switch (op) {
  10662. case GGML_OP_POOL_AVG: *out /= ka; break;
  10663. case GGML_OP_POOL_MAX: break;
  10664. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10665. }
  10666. }
  10667. }
  10668. cdata += src->nb[2];
  10669. dplane += pa;
  10670. }
  10671. }
  10672. // ggml_compute_forward_upscale
  10673. static void ggml_compute_forward_upscale_f32(
  10674. const struct ggml_compute_params * params,
  10675. const struct ggml_tensor * src0,
  10676. struct ggml_tensor * dst) {
  10677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10678. return;
  10679. }
  10680. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10681. const int ith = params->ith;
  10682. const int nth = params->nth;
  10683. GGML_TENSOR_UNARY_OP_LOCALS
  10684. const int scale_factor = dst->op_params[0];
  10685. // TODO: optimize
  10686. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10687. const int64_t i03 = i3;
  10688. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10689. const int64_t i02 = i2;
  10690. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10691. const int64_t i01 = i1 / scale_factor;
  10692. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10693. const int64_t i00 = i0 / scale_factor;
  10694. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10695. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10696. *y = *x;
  10697. }
  10698. }
  10699. }
  10700. }
  10701. }
  10702. static void ggml_compute_forward_upscale(
  10703. const struct ggml_compute_params * params,
  10704. const struct ggml_tensor * src0,
  10705. struct ggml_tensor * dst) {
  10706. switch (src0->type) {
  10707. case GGML_TYPE_F32:
  10708. {
  10709. ggml_compute_forward_upscale_f32(params, src0, dst);
  10710. } break;
  10711. default:
  10712. {
  10713. GGML_ASSERT(false);
  10714. } break;
  10715. }
  10716. }
  10717. // ggml_compute_forward_pad
  10718. static void ggml_compute_forward_pad_f32(
  10719. const struct ggml_compute_params * params,
  10720. const struct ggml_tensor * src0,
  10721. struct ggml_tensor * dst) {
  10722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10723. return;
  10724. }
  10725. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10726. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10727. const int ith = params->ith;
  10728. const int nth = params->nth;
  10729. GGML_TENSOR_UNARY_OP_LOCALS
  10730. float * dst_ptr = (float *) dst->data;
  10731. // TODO: optimize
  10732. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10733. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10734. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10735. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10736. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10737. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10738. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10739. dst_ptr[dst_idx] = *src_ptr;
  10740. } else {
  10741. dst_ptr[dst_idx] = 0;
  10742. }
  10743. }
  10744. }
  10745. }
  10746. }
  10747. }
  10748. static void ggml_compute_forward_pad(
  10749. const struct ggml_compute_params * params,
  10750. const struct ggml_tensor * src0,
  10751. struct ggml_tensor * dst) {
  10752. switch (src0->type) {
  10753. case GGML_TYPE_F32:
  10754. {
  10755. ggml_compute_forward_pad_f32(params, src0, dst);
  10756. } break;
  10757. default:
  10758. {
  10759. GGML_ASSERT(false);
  10760. } break;
  10761. }
  10762. }
  10763. // ggml_compute_forward_argsort
  10764. static void ggml_compute_forward_argsort_f32(
  10765. const struct ggml_compute_params * params,
  10766. const struct ggml_tensor * src0,
  10767. struct ggml_tensor * dst) {
  10768. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10769. return;
  10770. }
  10771. GGML_TENSOR_UNARY_OP_LOCALS
  10772. GGML_ASSERT(nb0 == sizeof(float));
  10773. const int ith = params->ith;
  10774. const int nth = params->nth;
  10775. const int64_t nr = ggml_nrows(src0);
  10776. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10777. for (int64_t i = ith; i < nr; i += nth) {
  10778. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10779. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10780. for (int64_t j = 0; j < ne0; j++) {
  10781. dst_data[j] = j;
  10782. }
  10783. // C doesn't have a functional sort, so we do a bubble sort instead
  10784. for (int64_t j = 0; j < ne0; j++) {
  10785. for (int64_t k = j + 1; k < ne0; k++) {
  10786. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10787. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10788. int32_t tmp = dst_data[j];
  10789. dst_data[j] = dst_data[k];
  10790. dst_data[k] = tmp;
  10791. }
  10792. }
  10793. }
  10794. }
  10795. }
  10796. static void ggml_compute_forward_argsort(
  10797. const struct ggml_compute_params * params,
  10798. const struct ggml_tensor * src0,
  10799. struct ggml_tensor * dst) {
  10800. switch (src0->type) {
  10801. case GGML_TYPE_F32:
  10802. {
  10803. ggml_compute_forward_argsort_f32(params, src0, dst);
  10804. } break;
  10805. default:
  10806. {
  10807. GGML_ASSERT(false);
  10808. } break;
  10809. }
  10810. }
  10811. // ggml_compute_forward_flash_attn
  10812. static void ggml_compute_forward_flash_attn_f32(
  10813. const struct ggml_compute_params * params,
  10814. const struct ggml_tensor * q,
  10815. const struct ggml_tensor * k,
  10816. const struct ggml_tensor * v,
  10817. const bool masked,
  10818. struct ggml_tensor * dst) {
  10819. int64_t t0 = ggml_perf_time_us();
  10820. UNUSED(t0);
  10821. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10822. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10823. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10824. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10825. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10826. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10827. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10828. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10829. const int ith = params->ith;
  10830. const int nth = params->nth;
  10831. const int64_t D = neq0;
  10832. const int64_t N = neq1;
  10833. const int64_t P = nek1 - N;
  10834. const int64_t M = P + N;
  10835. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10836. GGML_ASSERT(ne0 == D);
  10837. GGML_ASSERT(ne1 == N);
  10838. GGML_ASSERT(P >= 0);
  10839. GGML_ASSERT(nbq0 == sizeof(float));
  10840. GGML_ASSERT(nbk0 == sizeof(float));
  10841. GGML_ASSERT(nbv0 == sizeof(float));
  10842. GGML_ASSERT(neq0 == D);
  10843. GGML_ASSERT(nek0 == D);
  10844. GGML_ASSERT(nev1 == D);
  10845. GGML_ASSERT(neq1 == N);
  10846. GGML_ASSERT(nek1 == N + P);
  10847. GGML_ASSERT(nev1 == D);
  10848. // dst cannot be transposed or permuted
  10849. GGML_ASSERT(nb0 == sizeof(float));
  10850. GGML_ASSERT(nb0 <= nb1);
  10851. GGML_ASSERT(nb1 <= nb2);
  10852. GGML_ASSERT(nb2 <= nb3);
  10853. if (params->type == GGML_TASK_INIT) {
  10854. return;
  10855. }
  10856. if (params->type == GGML_TASK_FINALIZE) {
  10857. return;
  10858. }
  10859. // parallelize by q rows using ggml_vec_dot_f32
  10860. // total rows in q
  10861. const int nr = neq1*neq2*neq3;
  10862. // rows per thread
  10863. const int dr = (nr + nth - 1)/nth;
  10864. // row range for this thread
  10865. const int ir0 = dr*ith;
  10866. const int ir1 = MIN(ir0 + dr, nr);
  10867. const float scale = 1.0f/sqrtf(D);
  10868. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10869. for (int ir = ir0; ir < ir1; ++ir) {
  10870. // q indices
  10871. const int iq3 = ir/(neq2*neq1);
  10872. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10873. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10874. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10875. for (int i = M; i < Mup; ++i) {
  10876. S[i] = -INFINITY;
  10877. }
  10878. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10879. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10880. // k indices
  10881. const int ik3 = iq3;
  10882. const int ik2 = iq2 % nek2;
  10883. const int ik1 = ic;
  10884. // S indices
  10885. const int i1 = ik1;
  10886. ggml_vec_dot_f32(neq0,
  10887. S + i1, 0,
  10888. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  10889. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  10890. }
  10891. // scale
  10892. ggml_vec_scale_f32(masked_begin, S, scale);
  10893. for (int64_t i = masked_begin; i < M; i++) {
  10894. S[i] = -INFINITY;
  10895. }
  10896. // softmax
  10897. // exclude known -INF S[..] values from max and loop
  10898. // dont forget to set their SW values to zero
  10899. {
  10900. float max = -INFINITY;
  10901. ggml_vec_max_f32(masked_begin, &max, S);
  10902. ggml_float sum = 0.0;
  10903. {
  10904. #ifdef GGML_SOFT_MAX_ACCELERATE
  10905. max = -max;
  10906. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10907. vvexpf(S, S, &Mup);
  10908. ggml_vec_sum_f32(Mup, &sum, S);
  10909. #else
  10910. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10911. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10912. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10913. if (i >= masked_begin) {
  10914. break;
  10915. }
  10916. float * SS = S + i;
  10917. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10918. if (i + j >= masked_begin) {
  10919. break;
  10920. } else if (SS[j] == -INFINITY) {
  10921. SS[j] = 0.0f;
  10922. } else {
  10923. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10924. const float val = expf(SS[j] - max);
  10925. #else
  10926. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10927. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10928. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10929. #endif
  10930. sump[j] += (ggml_float)val;
  10931. SS[j] = val;
  10932. }
  10933. }
  10934. }
  10935. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10936. sum += sump[i];
  10937. }
  10938. #endif
  10939. }
  10940. assert(sum > 0.0);
  10941. sum = 1.0/sum;
  10942. ggml_vec_scale_f32(masked_begin, S, sum);
  10943. #ifndef NDEBUG
  10944. for (int i = 0; i < masked_begin; ++i) {
  10945. assert(!isnan(S[i]));
  10946. assert(!isinf(S[i]));
  10947. }
  10948. #endif
  10949. }
  10950. for (int64_t ic = 0; ic < nev1; ++ic) {
  10951. // dst indices
  10952. const int i1 = iq1;
  10953. const int i2 = iq2;
  10954. const int i3 = iq3;
  10955. // v indices
  10956. const int iv2 = iq2 % nev2;
  10957. const int iv3 = iq3;
  10958. ggml_vec_dot_f32(masked_begin,
  10959. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  10960. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  10961. S, 0, 1);
  10962. }
  10963. }
  10964. }
  10965. static void ggml_compute_forward_flash_attn_f16(
  10966. const struct ggml_compute_params * params,
  10967. const struct ggml_tensor * q,
  10968. const struct ggml_tensor * k,
  10969. const struct ggml_tensor * v,
  10970. const bool masked,
  10971. struct ggml_tensor * dst) {
  10972. int64_t t0 = ggml_perf_time_us();
  10973. UNUSED(t0);
  10974. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10975. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10976. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10977. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10978. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10979. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10980. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10981. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10982. const int ith = params->ith;
  10983. const int nth = params->nth;
  10984. const int64_t D = neq0;
  10985. const int64_t N = neq1;
  10986. const int64_t P = nek1 - N;
  10987. const int64_t M = P + N;
  10988. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10989. GGML_ASSERT(ne0 == D);
  10990. GGML_ASSERT(ne1 == N);
  10991. GGML_ASSERT(P >= 0);
  10992. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10993. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10994. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10995. GGML_ASSERT(neq0 == D);
  10996. GGML_ASSERT(nek0 == D);
  10997. GGML_ASSERT(nev1 == D);
  10998. GGML_ASSERT(neq1 == N);
  10999. GGML_ASSERT(nek1 == N + P);
  11000. GGML_ASSERT(nev1 == D);
  11001. // dst cannot be transposed or permuted
  11002. GGML_ASSERT(nb0 == sizeof(float));
  11003. GGML_ASSERT(nb0 <= nb1);
  11004. GGML_ASSERT(nb1 <= nb2);
  11005. GGML_ASSERT(nb2 <= nb3);
  11006. if (params->type == GGML_TASK_INIT) {
  11007. return;
  11008. }
  11009. if (params->type == GGML_TASK_FINALIZE) {
  11010. return;
  11011. }
  11012. // parallelize by q rows using ggml_vec_dot_f32
  11013. // total rows in q
  11014. const int nr = neq1*neq2*neq3;
  11015. // rows per thread
  11016. const int dr = (nr + nth - 1)/nth;
  11017. // row range for this thread
  11018. const int ir0 = dr*ith;
  11019. const int ir1 = MIN(ir0 + dr, nr);
  11020. const float scale = 1.0f/sqrtf(D);
  11021. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11022. for (int ir = ir0; ir < ir1; ++ir) {
  11023. // q indices
  11024. const int iq3 = ir/(neq2*neq1);
  11025. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11026. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11027. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11028. for (int i = M; i < Mup; ++i) {
  11029. S[i] = -INFINITY;
  11030. }
  11031. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11032. for (int64_t ic = 0; ic < nek1; ++ic) {
  11033. // k indices
  11034. const int ik3 = iq3;
  11035. const int ik2 = iq2 % nek2;
  11036. const int ik1 = ic;
  11037. // S indices
  11038. const int i1 = ik1;
  11039. ggml_vec_dot_f16(neq0,
  11040. S + i1, 0,
  11041. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11042. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11043. }
  11044. } else {
  11045. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11046. // k indices
  11047. const int ik3 = iq3;
  11048. const int ik2 = iq2 % nek2;
  11049. const int ik1 = ic;
  11050. // S indices
  11051. const int i1 = ik1;
  11052. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11053. S + i1,
  11054. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11055. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11056. }
  11057. }
  11058. // scale
  11059. ggml_vec_scale_f32(nek1, S, scale);
  11060. if (masked) {
  11061. for (int64_t i = P; i < M; i++) {
  11062. if (i > P + iq1) {
  11063. S[i] = -INFINITY;
  11064. }
  11065. }
  11066. }
  11067. // softmax
  11068. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11069. // dont forget to set their S values to zero
  11070. {
  11071. float max = -INFINITY;
  11072. ggml_vec_max_f32(M, &max, S);
  11073. ggml_float sum = 0.0;
  11074. {
  11075. #ifdef GGML_SOFT_MAX_ACCELERATE
  11076. max = -max;
  11077. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11078. vvexpf(S, S, &Mup);
  11079. ggml_vec_sum_f32(Mup, &sum, S);
  11080. #else
  11081. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11082. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11083. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11084. float * SS = S + i;
  11085. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11086. if (SS[j] == -INFINITY) {
  11087. SS[j] = 0.0f;
  11088. } else {
  11089. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11090. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11091. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11092. sump[j] += (ggml_float)val;
  11093. SS[j] = val;
  11094. }
  11095. }
  11096. }
  11097. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11098. sum += sump[i];
  11099. }
  11100. #endif
  11101. }
  11102. assert(sum > 0.0);
  11103. sum = 1.0/sum;
  11104. ggml_vec_scale_f32(M, S, sum);
  11105. #ifndef NDEBUG
  11106. for (int i = 0; i < M; ++i) {
  11107. assert(!isnan(S[i]));
  11108. assert(!isinf(S[i]));
  11109. }
  11110. #endif
  11111. }
  11112. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11113. for (int64_t i = 0; i < M; i++) {
  11114. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11115. }
  11116. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11117. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11118. for (int64_t ic = 0; ic < nev1; ++ic) {
  11119. // dst indices
  11120. const int i1 = iq1;
  11121. const int i2 = iq2;
  11122. const int i3 = iq3;
  11123. // v indices
  11124. const int iv2 = iq2 % nev2;
  11125. const int iv3 = iq3;
  11126. ggml_vec_dot_f16(nev0,
  11127. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11128. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11129. S16, 0, 1);
  11130. }
  11131. } else {
  11132. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11133. // dst indices
  11134. const int i1 = iq1;
  11135. const int i2 = iq2;
  11136. const int i3 = iq3;
  11137. // v indices
  11138. const int iv2 = iq2 % nev2;
  11139. const int iv3 = iq3;
  11140. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11141. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11142. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11143. S16);
  11144. }
  11145. }
  11146. }
  11147. }
  11148. static void ggml_compute_forward_flash_attn(
  11149. const struct ggml_compute_params * params,
  11150. const struct ggml_tensor * q,
  11151. const struct ggml_tensor * k,
  11152. const struct ggml_tensor * v,
  11153. const bool masked,
  11154. struct ggml_tensor * dst) {
  11155. switch (q->type) {
  11156. case GGML_TYPE_F16:
  11157. {
  11158. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11159. } break;
  11160. case GGML_TYPE_F32:
  11161. {
  11162. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11163. } break;
  11164. default:
  11165. {
  11166. GGML_ASSERT(false);
  11167. } break;
  11168. }
  11169. }
  11170. // ggml_compute_forward_flash_ff
  11171. static void ggml_compute_forward_flash_ff_f16(
  11172. const struct ggml_compute_params * params,
  11173. const struct ggml_tensor * a, // F16
  11174. const struct ggml_tensor * b0, // F16 fc_w
  11175. const struct ggml_tensor * b1, // F32 fc_b
  11176. const struct ggml_tensor * c0, // F16 proj_w
  11177. const struct ggml_tensor * c1, // F32 proj_b
  11178. struct ggml_tensor * dst) {
  11179. int64_t t0 = ggml_perf_time_us();
  11180. UNUSED(t0);
  11181. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11182. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11183. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11184. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11185. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11186. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11187. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11188. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11189. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11190. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11191. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11192. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11193. const int ith = params->ith;
  11194. const int nth = params->nth;
  11195. const int64_t D = nea0;
  11196. //const int64_t N = nea1;
  11197. const int64_t M = neb01;
  11198. GGML_ASSERT(ne0 == nea0);
  11199. GGML_ASSERT(ne1 == nea1);
  11200. GGML_ASSERT(ne2 == nea2);
  11201. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11202. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11203. GGML_ASSERT(nbb10 == sizeof(float));
  11204. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11205. GGML_ASSERT(nbc10 == sizeof(float));
  11206. GGML_ASSERT(neb00 == D);
  11207. GGML_ASSERT(neb01 == M);
  11208. GGML_ASSERT(neb10 == M);
  11209. GGML_ASSERT(neb11 == 1);
  11210. GGML_ASSERT(nec00 == M);
  11211. GGML_ASSERT(nec01 == D);
  11212. GGML_ASSERT(nec10 == D);
  11213. GGML_ASSERT(nec11 == 1);
  11214. // dst cannot be transposed or permuted
  11215. GGML_ASSERT(nb0 == sizeof(float));
  11216. GGML_ASSERT(nb0 <= nb1);
  11217. GGML_ASSERT(nb1 <= nb2);
  11218. GGML_ASSERT(nb2 <= nb3);
  11219. if (params->type == GGML_TASK_INIT) {
  11220. return;
  11221. }
  11222. if (params->type == GGML_TASK_FINALIZE) {
  11223. return;
  11224. }
  11225. // parallelize by a rows using ggml_vec_dot_f32
  11226. // total rows in a
  11227. const int nr = nea1*nea2*nea3;
  11228. // rows per thread
  11229. const int dr = (nr + nth - 1)/nth;
  11230. // row range for this thread
  11231. const int ir0 = dr*ith;
  11232. const int ir1 = MIN(ir0 + dr, nr);
  11233. for (int ir = ir0; ir < ir1; ++ir) {
  11234. // a indices
  11235. const int ia3 = ir/(nea2*nea1);
  11236. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11237. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11238. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11239. for (int64_t ic = 0; ic < neb01; ++ic) {
  11240. // b0 indices
  11241. const int ib03 = ia3;
  11242. const int ib02 = ia2;
  11243. const int ib01 = ic;
  11244. // S indices
  11245. const int i1 = ib01;
  11246. ggml_vec_dot_f16(nea0,
  11247. S + i1, 0,
  11248. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11249. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11250. }
  11251. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11252. //ggml_vec_gelu_f32(neb01, S, S);
  11253. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11254. for (int64_t i = 0; i < M; i++) {
  11255. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11256. }
  11257. ggml_vec_gelu_f16(neb01, S16, S16);
  11258. {
  11259. // dst indices
  11260. const int i1 = ia1;
  11261. const int i2 = ia2;
  11262. const int i3 = ia3;
  11263. for (int64_t ic = 0; ic < nec01; ++ic) {
  11264. ggml_vec_dot_f16(neb01,
  11265. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11266. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11267. S16, 0, 1);
  11268. }
  11269. ggml_vec_add_f32(nec01,
  11270. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11271. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11272. (float *) c1->data);
  11273. }
  11274. }
  11275. }
  11276. static void ggml_compute_forward_flash_ff(
  11277. const struct ggml_compute_params * params,
  11278. const struct ggml_tensor * a,
  11279. const struct ggml_tensor * b0,
  11280. const struct ggml_tensor * b1,
  11281. const struct ggml_tensor * c0,
  11282. const struct ggml_tensor * c1,
  11283. struct ggml_tensor * dst) {
  11284. switch (b0->type) {
  11285. case GGML_TYPE_F16:
  11286. {
  11287. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11288. } break;
  11289. case GGML_TYPE_F32:
  11290. {
  11291. GGML_ASSERT(false); // TODO
  11292. } break;
  11293. default:
  11294. {
  11295. GGML_ASSERT(false);
  11296. } break;
  11297. }
  11298. }
  11299. // ggml_compute_forward_flash_attn_back
  11300. static void ggml_compute_forward_flash_attn_back_f32(
  11301. const struct ggml_compute_params * params,
  11302. const struct ggml_tensor * q,
  11303. const struct ggml_tensor * k,
  11304. const struct ggml_tensor * v,
  11305. const struct ggml_tensor * d,
  11306. const bool masked,
  11307. struct ggml_tensor * dst) {
  11308. int64_t t0 = ggml_perf_time_us();
  11309. UNUSED(t0);
  11310. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11311. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11312. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11313. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11314. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11315. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11316. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11317. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11318. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11319. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11320. const int ith = params->ith;
  11321. const int nth = params->nth;
  11322. const int64_t D = neq0;
  11323. const int64_t N = neq1;
  11324. const int64_t P = nek1 - N;
  11325. const int64_t M = P + N;
  11326. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11327. const int mxDM = MAX(D, Mup);
  11328. // GGML_ASSERT(ne0 == D);
  11329. // GGML_ASSERT(ne1 == N);
  11330. GGML_ASSERT(P >= 0);
  11331. GGML_ASSERT(nbq0 == sizeof(float));
  11332. GGML_ASSERT(nbk0 == sizeof(float));
  11333. GGML_ASSERT(nbv0 == sizeof(float));
  11334. GGML_ASSERT(neq0 == D);
  11335. GGML_ASSERT(nek0 == D);
  11336. GGML_ASSERT(nev1 == D);
  11337. GGML_ASSERT(ned0 == D);
  11338. GGML_ASSERT(neq1 == N);
  11339. GGML_ASSERT(nek1 == N + P);
  11340. GGML_ASSERT(nev1 == D);
  11341. GGML_ASSERT(ned1 == N);
  11342. // dst cannot be transposed or permuted
  11343. GGML_ASSERT(nb0 == sizeof(float));
  11344. GGML_ASSERT(nb0 <= nb1);
  11345. GGML_ASSERT(nb1 <= nb2);
  11346. GGML_ASSERT(nb2 <= nb3);
  11347. if (params->type == GGML_TASK_INIT) {
  11348. if (ith == 0) {
  11349. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11350. }
  11351. return;
  11352. }
  11353. if (params->type == GGML_TASK_FINALIZE) {
  11354. return;
  11355. }
  11356. const int64_t elem_q = ggml_nelements(q);
  11357. const int64_t elem_k = ggml_nelements(k);
  11358. enum ggml_type result_type = dst->type;
  11359. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11360. const size_t tsize = ggml_type_size(result_type);
  11361. const size_t offs_q = 0;
  11362. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11363. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11364. void * grad_q = (char *) dst->data;
  11365. void * grad_k = (char *) dst->data + offs_k;
  11366. void * grad_v = (char *) dst->data + offs_v;
  11367. const size_t nbgq1 = nb0*neq0;
  11368. const size_t nbgq2 = nb0*neq0*neq1;
  11369. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11370. const size_t nbgk1 = nb0*nek0;
  11371. const size_t nbgk2 = nb0*nek0*nek1;
  11372. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11373. const size_t nbgv1 = nb0*nev0;
  11374. const size_t nbgv2 = nb0*nev0*nev1;
  11375. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11376. // parallelize by k rows using ggml_vec_dot_f32
  11377. // total rows in k
  11378. const int nr = nek2*nek3;
  11379. // rows per thread
  11380. const int dr = (nr + nth - 1)/nth;
  11381. // row range for this thread
  11382. const int ir0 = dr*ith;
  11383. const int ir1 = MIN(ir0 + dr, nr);
  11384. const float scale = 1.0f/sqrtf(D);
  11385. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11386. // how often k2 (and v2) is repeated in q2
  11387. int nrep = neq2/nek2;
  11388. for (int ir = ir0; ir < ir1; ++ir) {
  11389. // q indices
  11390. const int ik3 = ir/(nek2);
  11391. const int ik2 = ir - ik3*nek2;
  11392. const int iq3 = ik3;
  11393. const int id3 = ik3;
  11394. const int iv3 = ik3;
  11395. const int iv2 = ik2;
  11396. for (int irep = 0; irep < nrep; ++irep) {
  11397. const int iq2 = ik2 + irep*nek2;
  11398. const int id2 = iq2;
  11399. // (ik2 + irep*nek2) % nek2 == ik2
  11400. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11401. const int id1 = iq1;
  11402. // not sure about CACHE_LINE_SIZE_F32..
  11403. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11404. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11405. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11406. for (int i = M; i < Mup; ++i) {
  11407. S[i] = -INFINITY;
  11408. }
  11409. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11410. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11411. // k indices
  11412. const int ik1 = ic;
  11413. // S indices
  11414. const int i1 = ik1;
  11415. ggml_vec_dot_f32(neq0,
  11416. S + i1, 0,
  11417. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11418. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11419. }
  11420. // scale
  11421. ggml_vec_scale_f32(masked_begin, S, scale);
  11422. for (int64_t i = masked_begin; i < M; i++) {
  11423. S[i] = -INFINITY;
  11424. }
  11425. // softmax
  11426. // exclude known -INF S[..] values from max and loop
  11427. // dont forget to set their SM values to zero
  11428. {
  11429. float max = -INFINITY;
  11430. ggml_vec_max_f32(masked_begin, &max, S);
  11431. ggml_float sum = 0.0;
  11432. {
  11433. #ifdef GGML_SOFT_MAX_ACCELERATE
  11434. max = -max;
  11435. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11436. vvexpf(SM, SM, &Mup);
  11437. ggml_vec_sum_f32(Mup, &sum, SM);
  11438. #else
  11439. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11440. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11441. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11442. if (i >= masked_begin) {
  11443. break;
  11444. }
  11445. float * SR = S + i;
  11446. float * SW = SM + i;
  11447. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11448. if (i + j >= masked_begin) {
  11449. break;
  11450. } else if (SR[j] == -INFINITY) {
  11451. SW[j] = 0.0f;
  11452. } else {
  11453. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11454. const float val = expf(SR[j] - max);
  11455. #else
  11456. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11457. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11458. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11459. #endif
  11460. sump[j] += (ggml_float)val;
  11461. SW[j] = val;
  11462. }
  11463. }
  11464. }
  11465. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11466. sum += sump[i];
  11467. }
  11468. #endif
  11469. }
  11470. assert(sum > 0.0);
  11471. sum = 1.0/sum;
  11472. ggml_vec_scale_f32(masked_begin, SM, sum);
  11473. }
  11474. // step-by-step explanation
  11475. {
  11476. // forward-process shape grads from backward process
  11477. // parallel_for ik2,ik3:
  11478. // for irep:
  11479. // iq2 = ik2 + irep*nek2
  11480. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11481. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11482. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11483. // for iq1:
  11484. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11485. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11486. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11487. // S0 = -Inf [D,1,1,1]
  11488. // ~S1[i] = dot(kcur[:D,i], qcur)
  11489. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11490. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11491. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11492. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11493. // ~S5[i] = dot(vcur[:,i], S4)
  11494. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11495. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11496. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11497. // dst backward-/ grad[dst] = d
  11498. //
  11499. // output gradients with their dependencies:
  11500. //
  11501. // grad[kcur] = grad[S1].T @ qcur
  11502. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11503. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11504. // grad[S4] = grad[S5] @ vcur
  11505. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11506. // grad[qcur] = grad[S1] @ kcur
  11507. // grad[vcur] = grad[S5].T @ S4
  11508. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11509. //
  11510. // in post-order:
  11511. //
  11512. // S1 = qcur @ kcur.T
  11513. // S2 = S1 * scale
  11514. // S3 = diag_mask_inf(S2, P)
  11515. // S4 = softmax(S3)
  11516. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11517. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11518. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11519. // grad[qcur] = grad[S1] @ kcur
  11520. // grad[kcur] = grad[S1].T @ qcur
  11521. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11522. //
  11523. // using less variables (SM=S4):
  11524. //
  11525. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11526. // SM = softmax(S)
  11527. // S = d[:D,iq1,iq2,iq3] @ vcur
  11528. // dot_SM_gradSM = dot(SM, S)
  11529. // S = SM * (S - dot(SM, S))
  11530. // S = diag_mask_zero(S, P) * scale
  11531. //
  11532. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11533. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11534. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11535. }
  11536. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11537. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11538. // for ic:
  11539. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11540. // exclude known future zero S[..] values from operation
  11541. ggml_vec_set_f32(masked_begin, S, 0);
  11542. for (int64_t ic = 0; ic < D; ++ic) {
  11543. ggml_vec_mad_f32(masked_begin,
  11544. S,
  11545. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11546. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11547. }
  11548. // S = SM * (S - dot(SM, S))
  11549. float dot_SM_gradSM = 0;
  11550. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11551. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11552. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11553. // S = diag_mask_zero(S, P) * scale
  11554. // already done by above ggml_vec_set_f32
  11555. // exclude known zero S[..] values from operation
  11556. ggml_vec_scale_f32(masked_begin, S, scale);
  11557. // S shape [M,1]
  11558. // SM shape [M,1]
  11559. // kcur shape [D,M]
  11560. // qcur shape [D,1]
  11561. // vcur shape [M,D]
  11562. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11563. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11564. // for ic:
  11565. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11566. // exclude known zero S[..] values from loop
  11567. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11568. ggml_vec_mad_f32(D,
  11569. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11570. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11571. S[ic]);
  11572. }
  11573. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11574. // for ic:
  11575. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11576. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11577. // exclude known zero S[..] values from loop
  11578. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11579. ggml_vec_mad_f32(D,
  11580. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11581. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11582. S[ic]);
  11583. }
  11584. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11585. // for ic:
  11586. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11587. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11588. // exclude known zero SM[..] values from mad
  11589. for (int64_t ic = 0; ic < D; ++ic) {
  11590. ggml_vec_mad_f32(masked_begin,
  11591. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11592. SM,
  11593. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11594. }
  11595. }
  11596. }
  11597. }
  11598. }
  11599. static void ggml_compute_forward_flash_attn_back(
  11600. const struct ggml_compute_params * params,
  11601. const struct ggml_tensor * q,
  11602. const struct ggml_tensor * k,
  11603. const struct ggml_tensor * v,
  11604. const struct ggml_tensor * d,
  11605. const bool masked,
  11606. struct ggml_tensor * dst) {
  11607. switch (q->type) {
  11608. case GGML_TYPE_F32:
  11609. {
  11610. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11611. } break;
  11612. default:
  11613. {
  11614. GGML_ASSERT(false);
  11615. } break;
  11616. }
  11617. }
  11618. // ggml_compute_forward_win_part
  11619. static void ggml_compute_forward_win_part_f32(
  11620. const struct ggml_compute_params * params,
  11621. const struct ggml_tensor * src0,
  11622. struct ggml_tensor * dst) {
  11623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11624. return;
  11625. }
  11626. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11627. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11628. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11629. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11630. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11631. assert(ne00 == ne0);
  11632. assert(ne3 == nep0*nep1);
  11633. // TODO: optimize / multi-thread
  11634. for (int py = 0; py < nep1; ++py) {
  11635. for (int px = 0; px < nep0; ++px) {
  11636. const int64_t i3 = py*nep0 + px;
  11637. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11638. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11639. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11640. const int64_t i02 = py*w + i2;
  11641. const int64_t i01 = px*w + i1;
  11642. const int64_t i00 = i0;
  11643. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11644. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11645. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11646. ((float *) dst->data)[i] = 0.0f;
  11647. } else {
  11648. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11649. }
  11650. }
  11651. }
  11652. }
  11653. }
  11654. }
  11655. }
  11656. static void ggml_compute_forward_win_part(
  11657. const struct ggml_compute_params * params,
  11658. const struct ggml_tensor * src0,
  11659. struct ggml_tensor * dst) {
  11660. switch (src0->type) {
  11661. case GGML_TYPE_F32:
  11662. {
  11663. ggml_compute_forward_win_part_f32(params, src0, dst);
  11664. } break;
  11665. default:
  11666. {
  11667. GGML_ASSERT(false);
  11668. } break;
  11669. }
  11670. }
  11671. // ggml_compute_forward_win_unpart
  11672. static void ggml_compute_forward_win_unpart_f32(
  11673. const struct ggml_compute_params * params,
  11674. const struct ggml_tensor * src0,
  11675. struct ggml_tensor * dst) {
  11676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11677. return;
  11678. }
  11679. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11680. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11681. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11682. // padding
  11683. const int px = (w - ne1%w)%w;
  11684. //const int py = (w - ne2%w)%w;
  11685. const int npx = (px + ne1)/w;
  11686. //const int npy = (py + ne2)/w;
  11687. assert(ne0 == ne00);
  11688. // TODO: optimize / multi-thread
  11689. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11690. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11691. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11692. const int ip2 = i2/w;
  11693. const int ip1 = i1/w;
  11694. const int64_t i02 = i2%w;
  11695. const int64_t i01 = i1%w;
  11696. const int64_t i00 = i0;
  11697. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11698. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11699. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11700. }
  11701. }
  11702. }
  11703. }
  11704. static void ggml_compute_forward_win_unpart(
  11705. const struct ggml_compute_params * params,
  11706. const struct ggml_tensor * src0,
  11707. struct ggml_tensor * dst) {
  11708. switch (src0->type) {
  11709. case GGML_TYPE_F32:
  11710. {
  11711. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11712. } break;
  11713. default:
  11714. {
  11715. GGML_ASSERT(false);
  11716. } break;
  11717. }
  11718. }
  11719. //gmml_compute_forward_unary
  11720. static void ggml_compute_forward_unary(
  11721. const struct ggml_compute_params * params,
  11722. const struct ggml_tensor * src0,
  11723. struct ggml_tensor * dst) {
  11724. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11725. switch (op) {
  11726. case GGML_UNARY_OP_ABS:
  11727. {
  11728. ggml_compute_forward_abs(params, src0, dst);
  11729. } break;
  11730. case GGML_UNARY_OP_SGN:
  11731. {
  11732. ggml_compute_forward_sgn(params, src0, dst);
  11733. } break;
  11734. case GGML_UNARY_OP_NEG:
  11735. {
  11736. ggml_compute_forward_neg(params, src0, dst);
  11737. } break;
  11738. case GGML_UNARY_OP_STEP:
  11739. {
  11740. ggml_compute_forward_step(params, src0, dst);
  11741. } break;
  11742. case GGML_UNARY_OP_TANH:
  11743. {
  11744. ggml_compute_forward_tanh(params, src0, dst);
  11745. } break;
  11746. case GGML_UNARY_OP_ELU:
  11747. {
  11748. ggml_compute_forward_elu(params, src0, dst);
  11749. } break;
  11750. case GGML_UNARY_OP_RELU:
  11751. {
  11752. ggml_compute_forward_relu(params, src0, dst);
  11753. } break;
  11754. case GGML_UNARY_OP_GELU:
  11755. {
  11756. ggml_compute_forward_gelu(params, src0, dst);
  11757. } break;
  11758. case GGML_UNARY_OP_GELU_QUICK:
  11759. {
  11760. ggml_compute_forward_gelu_quick(params, src0, dst);
  11761. } break;
  11762. case GGML_UNARY_OP_SILU:
  11763. {
  11764. ggml_compute_forward_silu(params, src0, dst);
  11765. } break;
  11766. case GGML_UNARY_OP_HARDSWISH:
  11767. {
  11768. ggml_compute_forward_hardswish(params, src0, dst);
  11769. } break;
  11770. case GGML_UNARY_OP_HARDSIGMOID:
  11771. {
  11772. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11773. } break;
  11774. default:
  11775. {
  11776. GGML_ASSERT(false);
  11777. } break;
  11778. }
  11779. }
  11780. // ggml_compute_forward_get_rel_pos
  11781. static void ggml_compute_forward_get_rel_pos_f16(
  11782. const struct ggml_compute_params * params,
  11783. const struct ggml_tensor * src0,
  11784. struct ggml_tensor * dst) {
  11785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11786. return;
  11787. }
  11788. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11789. GGML_TENSOR_UNARY_OP_LOCALS
  11790. const int64_t w = ne1;
  11791. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11792. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11793. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11794. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11795. const int64_t pos = (w - i1 - 1) + i2;
  11796. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11797. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11798. }
  11799. }
  11800. }
  11801. }
  11802. static void ggml_compute_forward_get_rel_pos(
  11803. const struct ggml_compute_params * params,
  11804. const struct ggml_tensor * src0,
  11805. struct ggml_tensor * dst) {
  11806. switch (src0->type) {
  11807. case GGML_TYPE_F16:
  11808. {
  11809. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11810. } break;
  11811. default:
  11812. {
  11813. GGML_ASSERT(false);
  11814. } break;
  11815. }
  11816. }
  11817. // ggml_compute_forward_add_rel_pos
  11818. static void ggml_compute_forward_add_rel_pos_f32(
  11819. const struct ggml_compute_params * params,
  11820. const struct ggml_tensor * src0,
  11821. const struct ggml_tensor * src1,
  11822. const struct ggml_tensor * src2,
  11823. struct ggml_tensor * dst) {
  11824. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11825. if (!inplace && params->type == GGML_TASK_INIT) {
  11826. if (params->ith != 0) {
  11827. return;
  11828. }
  11829. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11830. return;
  11831. }
  11832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11833. return;
  11834. }
  11835. int64_t t0 = ggml_perf_time_us();
  11836. UNUSED(t0);
  11837. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11838. float * src1_data = (float *) src1->data;
  11839. float * src2_data = (float *) src2->data;
  11840. float * dst_data = (float *) dst->data;
  11841. const int64_t ne10 = src1->ne[0];
  11842. const int64_t ne11 = src1->ne[1];
  11843. const int64_t ne12 = src1->ne[2];
  11844. const int64_t ne13 = src1->ne[3];
  11845. const int ith = params->ith;
  11846. const int nth = params->nth;
  11847. // total patches in dst
  11848. const int np = ne13;
  11849. // patches per thread
  11850. const int dp = (np + nth - 1)/nth;
  11851. // patch range for this thread
  11852. const int ip0 = dp*ith;
  11853. const int ip1 = MIN(ip0 + dp, np);
  11854. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11855. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11856. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11857. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11858. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11859. const int64_t jp0 = jp1 + i10;
  11860. const float src1_e = src1_data[jp0];
  11861. const float src2_e = src2_data[jp0];
  11862. const int64_t jdh = jp0 * ne10;
  11863. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11864. for (int64_t j = 0; j < ne10; ++j) {
  11865. dst_data[jdh + j ] += src2_e;
  11866. dst_data[jdw + j*ne10] += src1_e;
  11867. }
  11868. }
  11869. }
  11870. }
  11871. }
  11872. }
  11873. static void ggml_compute_forward_add_rel_pos(
  11874. const struct ggml_compute_params * params,
  11875. const struct ggml_tensor * src0,
  11876. const struct ggml_tensor * src1,
  11877. const struct ggml_tensor * src2,
  11878. struct ggml_tensor * dst) {
  11879. switch (src0->type) {
  11880. case GGML_TYPE_F32:
  11881. {
  11882. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11883. } break;
  11884. default:
  11885. {
  11886. GGML_ASSERT(false);
  11887. } break;
  11888. }
  11889. }
  11890. // ggml_compute_forward_map_unary
  11891. static void ggml_compute_forward_map_unary_f32(
  11892. const struct ggml_compute_params * params,
  11893. const struct ggml_tensor * src0,
  11894. struct ggml_tensor * dst,
  11895. const ggml_unary_op_f32_t fun) {
  11896. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11898. return;
  11899. }
  11900. const int n = ggml_nrows(src0);
  11901. const int nc = src0->ne[0];
  11902. assert( dst->nb[0] == sizeof(float));
  11903. assert(src0->nb[0] == sizeof(float));
  11904. for (int i = 0; i < n; i++) {
  11905. fun(nc,
  11906. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11907. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11908. }
  11909. }
  11910. static void ggml_compute_forward_map_unary(
  11911. const struct ggml_compute_params * params,
  11912. const struct ggml_tensor * src0,
  11913. struct ggml_tensor * dst,
  11914. const ggml_unary_op_f32_t fun) {
  11915. switch (src0->type) {
  11916. case GGML_TYPE_F32:
  11917. {
  11918. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11919. } break;
  11920. default:
  11921. {
  11922. GGML_ASSERT(false);
  11923. } break;
  11924. }
  11925. }
  11926. // ggml_compute_forward_map_binary
  11927. static void ggml_compute_forward_map_binary_f32(
  11928. const struct ggml_compute_params * params,
  11929. const struct ggml_tensor * src0,
  11930. const struct ggml_tensor * src1,
  11931. struct ggml_tensor * dst,
  11932. const ggml_binary_op_f32_t fun) {
  11933. assert(params->ith == 0);
  11934. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11935. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11936. return;
  11937. }
  11938. const int n = ggml_nrows(src0);
  11939. const int nc = src0->ne[0];
  11940. assert( dst->nb[0] == sizeof(float));
  11941. assert(src0->nb[0] == sizeof(float));
  11942. assert(src1->nb[0] == sizeof(float));
  11943. for (int i = 0; i < n; i++) {
  11944. fun(nc,
  11945. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11946. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11947. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11948. }
  11949. }
  11950. static void ggml_compute_forward_map_binary(
  11951. const struct ggml_compute_params * params,
  11952. const struct ggml_tensor * src0,
  11953. const struct ggml_tensor * src1,
  11954. struct ggml_tensor * dst,
  11955. const ggml_binary_op_f32_t fun) {
  11956. switch (src0->type) {
  11957. case GGML_TYPE_F32:
  11958. {
  11959. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11960. } break;
  11961. default:
  11962. {
  11963. GGML_ASSERT(false);
  11964. } break;
  11965. }
  11966. }
  11967. // ggml_compute_forward_map_custom1
  11968. static void ggml_compute_forward_map_custom1_f32(
  11969. const struct ggml_compute_params * params,
  11970. const struct ggml_tensor * a,
  11971. struct ggml_tensor * dst,
  11972. const ggml_custom1_op_f32_t fun) {
  11973. assert(params->ith == 0);
  11974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11975. return;
  11976. }
  11977. fun(dst, a);
  11978. }
  11979. // ggml_compute_forward_map_custom2
  11980. static void ggml_compute_forward_map_custom2_f32(
  11981. const struct ggml_compute_params * params,
  11982. const struct ggml_tensor * a,
  11983. const struct ggml_tensor * b,
  11984. struct ggml_tensor * dst,
  11985. const ggml_custom2_op_f32_t fun) {
  11986. assert(params->ith == 0);
  11987. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11988. return;
  11989. }
  11990. fun(dst, a, b);
  11991. }
  11992. // ggml_compute_forward_map_custom3
  11993. static void ggml_compute_forward_map_custom3_f32(
  11994. const struct ggml_compute_params * params,
  11995. const struct ggml_tensor * a,
  11996. const struct ggml_tensor * b,
  11997. const struct ggml_tensor * c,
  11998. struct ggml_tensor * dst,
  11999. const ggml_custom3_op_f32_t fun) {
  12000. assert(params->ith == 0);
  12001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12002. return;
  12003. }
  12004. fun(dst, a, b, c);
  12005. }
  12006. // ggml_compute_forward_map_custom1
  12007. static void ggml_compute_forward_map_custom1(
  12008. const struct ggml_compute_params * params,
  12009. const struct ggml_tensor * a,
  12010. struct ggml_tensor * dst) {
  12011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12012. return;
  12013. }
  12014. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12015. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12016. }
  12017. // ggml_compute_forward_map_custom2
  12018. static void ggml_compute_forward_map_custom2(
  12019. const struct ggml_compute_params * params,
  12020. const struct ggml_tensor * a,
  12021. const struct ggml_tensor * b,
  12022. struct ggml_tensor * dst) {
  12023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12024. return;
  12025. }
  12026. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12027. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12028. }
  12029. // ggml_compute_forward_map_custom3
  12030. static void ggml_compute_forward_map_custom3(
  12031. const struct ggml_compute_params * params,
  12032. const struct ggml_tensor * a,
  12033. const struct ggml_tensor * b,
  12034. const struct ggml_tensor * c,
  12035. struct ggml_tensor * dst) {
  12036. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12037. return;
  12038. }
  12039. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12040. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12041. }
  12042. // ggml_compute_forward_cross_entropy_loss
  12043. static void ggml_compute_forward_cross_entropy_loss_f32(
  12044. const struct ggml_compute_params * params,
  12045. const struct ggml_tensor * src0,
  12046. const struct ggml_tensor * src1,
  12047. struct ggml_tensor * dst) {
  12048. GGML_ASSERT(ggml_is_contiguous(src0));
  12049. GGML_ASSERT(ggml_is_contiguous(src1));
  12050. GGML_ASSERT(ggml_is_scalar(dst));
  12051. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12052. const int ith = params->ith;
  12053. const int nth = params->nth;
  12054. float * sums = (float *) params->wdata;
  12055. // TODO: handle transposed/permuted matrices
  12056. const int nc = src0->ne[0];
  12057. const int nr = ggml_nrows(src0);
  12058. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12059. if (params->type == GGML_TASK_INIT) {
  12060. if (ith == 0) {
  12061. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12062. }
  12063. return;
  12064. }
  12065. if (params->type == GGML_TASK_FINALIZE) {
  12066. if (ith == 0) {
  12067. float * dp = (float *) dst->data;
  12068. ggml_vec_sum_f32(nth, dp, sums);
  12069. dp[0] *= -1.0f / (float) nr;
  12070. }
  12071. return;
  12072. }
  12073. const double eps = 1e-9;
  12074. // rows per thread
  12075. const int dr = (nr + nth - 1)/nth;
  12076. // row range for this thread
  12077. const int ir0 = dr*ith;
  12078. const int ir1 = MIN(ir0 + dr, nr);
  12079. for (int i1 = ir0; i1 < ir1; i1++) {
  12080. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12081. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12082. float * st = ((float *) params->wdata) + nth + ith*nc;
  12083. #ifndef NDEBUG
  12084. for (int i = 0; i < nc; ++i) {
  12085. //printf("p[%d] = %f\n", i, p[i]);
  12086. assert(!isnan(s0[i]));
  12087. assert(!isnan(s1[i]));
  12088. }
  12089. #endif
  12090. // soft_max
  12091. ggml_float sum = 0.0;
  12092. {
  12093. float max = -INFINITY;
  12094. ggml_vec_max_f32(nc, &max, s0);
  12095. uint16_t scvt; UNUSED(scvt);
  12096. for (int i = 0; i < nc; i++) {
  12097. if (s0[i] == -INFINITY) {
  12098. st[i] = 0.0f;
  12099. } else {
  12100. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12101. const float s = s0[i] - max;
  12102. const float val = expf(s);
  12103. #else
  12104. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12105. memcpy(&scvt, &s, sizeof(scvt));
  12106. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12107. #endif
  12108. sum += (ggml_float)val;
  12109. st[i] = val;
  12110. }
  12111. }
  12112. assert(sum > 0.0);
  12113. // sum = 1.0/sum;
  12114. }
  12115. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12116. sum = (1.0 - eps) / sum;
  12117. ggml_vec_scale_f32(nc, st, sum);
  12118. ggml_vec_add1_f32(nc, st, st, eps);
  12119. ggml_vec_log_f32(nc, st, st);
  12120. ggml_vec_mul_f32(nc, st, st, s1);
  12121. float st_sum = 0;
  12122. ggml_vec_sum_f32(nc, &st_sum, st);
  12123. sums[ith] += st_sum;
  12124. #ifndef NDEBUG
  12125. for (int i = 0; i < nc; ++i) {
  12126. assert(!isnan(st[i]));
  12127. assert(!isinf(st[i]));
  12128. }
  12129. #endif
  12130. }
  12131. }
  12132. static void ggml_compute_forward_cross_entropy_loss(
  12133. const struct ggml_compute_params * params,
  12134. const struct ggml_tensor * src0,
  12135. const struct ggml_tensor * src1,
  12136. struct ggml_tensor * dst) {
  12137. switch (src0->type) {
  12138. case GGML_TYPE_F32:
  12139. {
  12140. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12141. } break;
  12142. default:
  12143. {
  12144. GGML_ASSERT(false);
  12145. } break;
  12146. }
  12147. }
  12148. // ggml_compute_forward_cross_entropy_loss_back
  12149. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12150. const struct ggml_compute_params * params,
  12151. const struct ggml_tensor * src0,
  12152. const struct ggml_tensor * src1,
  12153. const struct ggml_tensor * opt0,
  12154. struct ggml_tensor * dst) {
  12155. GGML_ASSERT(ggml_is_contiguous(dst));
  12156. GGML_ASSERT(ggml_is_contiguous(src0));
  12157. GGML_ASSERT(ggml_is_contiguous(src1));
  12158. GGML_ASSERT(ggml_is_contiguous(opt0));
  12159. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12160. const int64_t ith = params->ith;
  12161. const int64_t nth = params->nth;
  12162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12163. return;
  12164. }
  12165. const double eps = 1e-9;
  12166. // TODO: handle transposed/permuted matrices
  12167. const int64_t nc = src0->ne[0];
  12168. const int64_t nr = ggml_nrows(src0);
  12169. // rows per thread
  12170. const int64_t dr = (nr + nth - 1)/nth;
  12171. // row range for this thread
  12172. const int64_t ir0 = dr*ith;
  12173. const int64_t ir1 = MIN(ir0 + dr, nr);
  12174. float * d = (float *) opt0->data;
  12175. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12176. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12177. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12178. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12179. #ifndef NDEBUG
  12180. for (int i = 0; i < nc; ++i) {
  12181. //printf("p[%d] = %f\n", i, p[i]);
  12182. assert(!isnan(s0[i]));
  12183. assert(!isnan(s1[i]));
  12184. }
  12185. #endif
  12186. // soft_max
  12187. ggml_float sum = 0.0;
  12188. {
  12189. float max = -INFINITY;
  12190. ggml_vec_max_f32(nc, &max, s0);
  12191. uint16_t scvt; UNUSED(scvt);
  12192. for (int i = 0; i < nc; i++) {
  12193. if (s0[i] == -INFINITY) {
  12194. ds0[i] = 0.0f;
  12195. } else {
  12196. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12197. const float s = s0[i] - max;
  12198. const float val = expf(s);
  12199. #else
  12200. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12201. memcpy(&scvt, &s, sizeof(scvt));
  12202. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12203. #endif
  12204. sum += (ggml_float)val;
  12205. ds0[i] = val;
  12206. }
  12207. }
  12208. assert(sum > 0.0);
  12209. sum = (1.0 - eps)/sum;
  12210. }
  12211. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12212. ggml_vec_scale_f32(nc, ds0, sum);
  12213. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12214. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12215. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12216. #ifndef NDEBUG
  12217. for (int i = 0; i < nc; ++i) {
  12218. assert(!isnan(ds0[i]));
  12219. assert(!isinf(ds0[i]));
  12220. }
  12221. #endif
  12222. }
  12223. }
  12224. static void ggml_compute_forward_cross_entropy_loss_back(
  12225. const struct ggml_compute_params * params,
  12226. const struct ggml_tensor * src0,
  12227. const struct ggml_tensor * src1,
  12228. const struct ggml_tensor * opt0,
  12229. struct ggml_tensor * dst) {
  12230. switch (src0->type) {
  12231. case GGML_TYPE_F32:
  12232. {
  12233. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12234. } break;
  12235. default:
  12236. {
  12237. GGML_ASSERT(false);
  12238. } break;
  12239. }
  12240. }
  12241. /////////////////////////////////
  12242. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12243. GGML_ASSERT(params);
  12244. if (tensor->op == GGML_OP_NONE) {
  12245. return;
  12246. }
  12247. #ifdef GGML_USE_CUBLAS
  12248. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12249. if (skip_cpu) {
  12250. return;
  12251. }
  12252. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12253. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12254. #elif defined(GGML_USE_VULKAN)
  12255. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12256. #ifdef GGML_VULKAN_CHECK_RESULTS
  12257. if (skip_cpu) {
  12258. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12259. }
  12260. #endif
  12261. if (skip_cpu) {
  12262. return;
  12263. }
  12264. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12265. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12266. #endif // GGML_USE_CUBLAS
  12267. #ifdef GGML_USE_SYCL
  12268. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12269. if (skip_cpu) {
  12270. return;
  12271. }
  12272. #endif // GGML_USE_SYCL
  12273. switch (tensor->op) {
  12274. case GGML_OP_DUP:
  12275. {
  12276. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12277. } break;
  12278. case GGML_OP_ADD:
  12279. {
  12280. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12281. } break;
  12282. case GGML_OP_ADD1:
  12283. {
  12284. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12285. } break;
  12286. case GGML_OP_ACC:
  12287. {
  12288. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12289. } break;
  12290. case GGML_OP_SUB:
  12291. {
  12292. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12293. } break;
  12294. case GGML_OP_MUL:
  12295. {
  12296. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12297. } break;
  12298. case GGML_OP_DIV:
  12299. {
  12300. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12301. } break;
  12302. case GGML_OP_SQR:
  12303. {
  12304. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12305. } break;
  12306. case GGML_OP_SQRT:
  12307. {
  12308. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12309. } break;
  12310. case GGML_OP_LOG:
  12311. {
  12312. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12313. } break;
  12314. case GGML_OP_SUM:
  12315. {
  12316. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12317. } break;
  12318. case GGML_OP_SUM_ROWS:
  12319. {
  12320. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12321. } break;
  12322. case GGML_OP_MEAN:
  12323. {
  12324. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12325. } break;
  12326. case GGML_OP_ARGMAX:
  12327. {
  12328. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12329. } break;
  12330. case GGML_OP_REPEAT:
  12331. {
  12332. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12333. } break;
  12334. case GGML_OP_REPEAT_BACK:
  12335. {
  12336. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12337. } break;
  12338. case GGML_OP_CONCAT:
  12339. {
  12340. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12341. } break;
  12342. case GGML_OP_SILU_BACK:
  12343. {
  12344. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12345. } break;
  12346. case GGML_OP_NORM:
  12347. {
  12348. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12349. } break;
  12350. case GGML_OP_RMS_NORM:
  12351. {
  12352. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12353. } break;
  12354. case GGML_OP_RMS_NORM_BACK:
  12355. {
  12356. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12357. } break;
  12358. case GGML_OP_GROUP_NORM:
  12359. {
  12360. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12361. } break;
  12362. case GGML_OP_MUL_MAT:
  12363. {
  12364. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12365. } break;
  12366. case GGML_OP_MUL_MAT_ID:
  12367. {
  12368. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12369. } break;
  12370. case GGML_OP_OUT_PROD:
  12371. {
  12372. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12373. } break;
  12374. case GGML_OP_SCALE:
  12375. {
  12376. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12377. } break;
  12378. case GGML_OP_SET:
  12379. {
  12380. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12381. } break;
  12382. case GGML_OP_CPY:
  12383. {
  12384. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12385. } break;
  12386. case GGML_OP_CONT:
  12387. {
  12388. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12389. } break;
  12390. case GGML_OP_RESHAPE:
  12391. {
  12392. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12393. } break;
  12394. case GGML_OP_VIEW:
  12395. {
  12396. ggml_compute_forward_view(params, tensor->src[0]);
  12397. } break;
  12398. case GGML_OP_PERMUTE:
  12399. {
  12400. ggml_compute_forward_permute(params, tensor->src[0]);
  12401. } break;
  12402. case GGML_OP_TRANSPOSE:
  12403. {
  12404. ggml_compute_forward_transpose(params, tensor->src[0]);
  12405. } break;
  12406. case GGML_OP_GET_ROWS:
  12407. {
  12408. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12409. } break;
  12410. case GGML_OP_GET_ROWS_BACK:
  12411. {
  12412. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12413. } break;
  12414. case GGML_OP_DIAG:
  12415. {
  12416. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12417. } break;
  12418. case GGML_OP_DIAG_MASK_INF:
  12419. {
  12420. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12421. } break;
  12422. case GGML_OP_DIAG_MASK_ZERO:
  12423. {
  12424. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12425. } break;
  12426. case GGML_OP_SOFT_MAX:
  12427. {
  12428. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12429. } break;
  12430. case GGML_OP_SOFT_MAX_BACK:
  12431. {
  12432. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12433. } break;
  12434. case GGML_OP_ROPE:
  12435. {
  12436. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12437. } break;
  12438. case GGML_OP_ROPE_BACK:
  12439. {
  12440. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12441. } break;
  12442. case GGML_OP_ALIBI:
  12443. {
  12444. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12445. } break;
  12446. case GGML_OP_CLAMP:
  12447. {
  12448. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12449. } break;
  12450. case GGML_OP_CONV_TRANSPOSE_1D:
  12451. {
  12452. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12453. } break;
  12454. case GGML_OP_IM2COL:
  12455. {
  12456. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12457. } break;
  12458. case GGML_OP_CONV_TRANSPOSE_2D:
  12459. {
  12460. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12461. } break;
  12462. case GGML_OP_POOL_1D:
  12463. {
  12464. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12465. } break;
  12466. case GGML_OP_POOL_2D:
  12467. {
  12468. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12469. } break;
  12470. case GGML_OP_UPSCALE:
  12471. {
  12472. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12473. } break;
  12474. case GGML_OP_PAD:
  12475. {
  12476. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12477. } break;
  12478. case GGML_OP_ARGSORT:
  12479. {
  12480. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12481. } break;
  12482. case GGML_OP_LEAKY_RELU:
  12483. {
  12484. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12485. } break;
  12486. case GGML_OP_FLASH_ATTN:
  12487. {
  12488. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12489. GGML_ASSERT(t == 0 || t == 1);
  12490. const bool masked = t != 0;
  12491. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12492. } break;
  12493. case GGML_OP_FLASH_FF:
  12494. {
  12495. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12496. } break;
  12497. case GGML_OP_FLASH_ATTN_BACK:
  12498. {
  12499. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12500. GGML_ASSERT(t == 0 || t == 1);
  12501. bool masked = t != 0;
  12502. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12503. } break;
  12504. case GGML_OP_WIN_PART:
  12505. {
  12506. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12507. } break;
  12508. case GGML_OP_WIN_UNPART:
  12509. {
  12510. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12511. } break;
  12512. case GGML_OP_UNARY:
  12513. {
  12514. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12515. } break;
  12516. case GGML_OP_GET_REL_POS:
  12517. {
  12518. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12519. } break;
  12520. case GGML_OP_ADD_REL_POS:
  12521. {
  12522. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12523. } break;
  12524. case GGML_OP_MAP_UNARY:
  12525. {
  12526. ggml_unary_op_f32_t fun;
  12527. memcpy(&fun, tensor->op_params, sizeof(fun));
  12528. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12529. }
  12530. break;
  12531. case GGML_OP_MAP_BINARY:
  12532. {
  12533. ggml_binary_op_f32_t fun;
  12534. memcpy(&fun, tensor->op_params, sizeof(fun));
  12535. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12536. }
  12537. break;
  12538. case GGML_OP_MAP_CUSTOM1_F32:
  12539. {
  12540. ggml_custom1_op_f32_t fun;
  12541. memcpy(&fun, tensor->op_params, sizeof(fun));
  12542. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12543. }
  12544. break;
  12545. case GGML_OP_MAP_CUSTOM2_F32:
  12546. {
  12547. ggml_custom2_op_f32_t fun;
  12548. memcpy(&fun, tensor->op_params, sizeof(fun));
  12549. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12550. }
  12551. break;
  12552. case GGML_OP_MAP_CUSTOM3_F32:
  12553. {
  12554. ggml_custom3_op_f32_t fun;
  12555. memcpy(&fun, tensor->op_params, sizeof(fun));
  12556. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12557. }
  12558. break;
  12559. case GGML_OP_MAP_CUSTOM1:
  12560. {
  12561. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12562. }
  12563. break;
  12564. case GGML_OP_MAP_CUSTOM2:
  12565. {
  12566. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12567. }
  12568. break;
  12569. case GGML_OP_MAP_CUSTOM3:
  12570. {
  12571. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12572. }
  12573. break;
  12574. case GGML_OP_CROSS_ENTROPY_LOSS:
  12575. {
  12576. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12577. }
  12578. break;
  12579. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12580. {
  12581. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12582. }
  12583. break;
  12584. case GGML_OP_NONE:
  12585. {
  12586. // nop
  12587. } break;
  12588. case GGML_OP_COUNT:
  12589. {
  12590. GGML_ASSERT(false);
  12591. } break;
  12592. }
  12593. }
  12594. ////////////////////////////////////////////////////////////////////////////////
  12595. static size_t ggml_hash_size(size_t min_sz) {
  12596. // next primes after powers of two
  12597. static const size_t primes[] = {
  12598. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12599. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12600. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12601. 16777259, 33554467, 67108879, 134217757, 268435459,
  12602. 536870923, 1073741827, 2147483659
  12603. };
  12604. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12605. // find the smallest prime that is larger or equal to min_sz
  12606. size_t l = 0;
  12607. size_t r = n_primes;
  12608. while (l < r) {
  12609. size_t m = (l + r)/2;
  12610. if (primes[m] < min_sz) {
  12611. l = m + 1;
  12612. } else {
  12613. r = m;
  12614. }
  12615. }
  12616. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12617. return sz;
  12618. }
  12619. static size_t ggml_hash(const void * p) {
  12620. return (size_t)p;
  12621. }
  12622. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12623. size_t h = ggml_hash(key) % hash_set.size;
  12624. // linear probing
  12625. size_t i = h;
  12626. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12627. i = (i + 1) % hash_set.size;
  12628. if (i == h) {
  12629. // visited all hash table entries -> not found
  12630. return GGML_HASHTABLE_FULL;
  12631. }
  12632. }
  12633. return i;
  12634. }
  12635. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12636. size_t i = ggml_hash_find(hash_set, key);
  12637. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12638. }
  12639. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12640. size_t i = ggml_hash_find(hash_set, key);
  12641. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12642. if (hash_set.keys[i] == key) {
  12643. return GGML_HASHTABLE_ALREADY_EXISTS;
  12644. }
  12645. // insert
  12646. GGML_ASSERT(hash_set.keys[i] == NULL);
  12647. hash_set.keys[i] = key;
  12648. return i;
  12649. }
  12650. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12651. size_t i = ggml_hash_find(hash_set, key);
  12652. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12653. hash_set.keys[i] = key;
  12654. return i;
  12655. }
  12656. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12657. size = ggml_hash_size(size);
  12658. struct ggml_hash_set result;
  12659. result.size = size;
  12660. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12661. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12662. return result;
  12663. }
  12664. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12665. GGML_FREE(hash_set.keys);
  12666. }
  12667. struct hash_map {
  12668. struct ggml_hash_set set;
  12669. struct ggml_tensor ** vals;
  12670. };
  12671. static struct hash_map * ggml_new_hash_map(size_t size) {
  12672. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12673. result->set = ggml_hash_set_new(size);
  12674. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12675. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12676. return result;
  12677. }
  12678. static void ggml_hash_map_free(struct hash_map * map) {
  12679. ggml_hash_set_free(map->set);
  12680. GGML_FREE(map->vals);
  12681. GGML_FREE(map);
  12682. }
  12683. // gradient checkpointing
  12684. static struct ggml_tensor * ggml_recompute_graph_node(
  12685. struct ggml_context * ctx,
  12686. struct ggml_cgraph * graph,
  12687. struct hash_map * replacements,
  12688. struct ggml_tensor * node) {
  12689. if (node == NULL) {
  12690. return NULL;
  12691. }
  12692. if (node->is_param) {
  12693. return node;
  12694. }
  12695. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12696. return node;
  12697. }
  12698. int count_children = 0;
  12699. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12700. if (node->src[k]) {
  12701. ++count_children;
  12702. }
  12703. }
  12704. if (count_children == 0) {
  12705. return node;
  12706. }
  12707. size_t i = ggml_hash_find(replacements->set, node);
  12708. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12709. if (replacements->set.keys[i] == node) {
  12710. return replacements->vals[i];
  12711. }
  12712. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12713. // insert clone into replacements
  12714. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12715. replacements->set.keys[i] = node;
  12716. replacements->vals[i] = clone;
  12717. clone->op = node->op;
  12718. clone->grad = node->grad;
  12719. clone->is_param = node->is_param;
  12720. clone->extra = node->extra;
  12721. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12722. clone->nb[k] = node->nb[k];
  12723. }
  12724. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12725. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12726. }
  12727. if (node->view_src != NULL) {
  12728. clone->data = (node->view_src->data == NULL)
  12729. ? NULL // view_src not yet allocated
  12730. : (char *) node->view_src->data // view_src already allocated
  12731. + node->view_offs;
  12732. clone->view_src = node->view_src;
  12733. clone->view_offs = node->view_offs;
  12734. }
  12735. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12736. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12737. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12738. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12739. return clone;
  12740. }
  12741. void ggml_build_backward_gradient_checkpointing(
  12742. struct ggml_context * ctx,
  12743. struct ggml_cgraph * gf,
  12744. struct ggml_cgraph * gb,
  12745. struct ggml_cgraph * gb_tmp,
  12746. struct ggml_tensor * * checkpoints,
  12747. int n_checkpoints) {
  12748. ggml_graph_cpy(gf, gb_tmp);
  12749. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12750. if (n_checkpoints <= 0) {
  12751. ggml_graph_cpy(gb_tmp, gb);
  12752. return;
  12753. }
  12754. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12755. // insert checkpoints in replacements
  12756. for (int i = 0; i < n_checkpoints; ++i) {
  12757. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12758. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12759. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12760. replacements->set.keys[k] = checkpoints[i];
  12761. replacements->vals[k] = checkpoints[i];
  12762. }
  12763. ggml_graph_cpy(gf, gb);
  12764. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12765. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12766. // by recomputing them from checkpoints
  12767. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12768. struct ggml_tensor * node = gb_tmp->nodes[i];
  12769. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12770. // insert new tensors recomputing src, reusing already made replacements,
  12771. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12772. // recurse for input tensors,
  12773. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12774. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12775. }
  12776. // insert rewritten backward node with replacements made into resulting backward graph gb
  12777. ggml_build_forward_expand(gb, node);
  12778. }
  12779. ggml_hash_map_free(replacements);
  12780. }
  12781. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12782. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12783. if (ggml_hash_contains(zero_table, a)) {
  12784. return b;
  12785. } else {
  12786. return ggml_add_impl(ctx, a, b, false);
  12787. }
  12788. }
  12789. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12790. if (ggml_hash_contains(zero_table, a)) {
  12791. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12792. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12793. } else {
  12794. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12795. }
  12796. }
  12797. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12798. if (ggml_hash_contains(zero_table, a)) {
  12799. return ggml_repeat(ctx, b, a);
  12800. } else {
  12801. return ggml_add1_impl(ctx, a, b, false);
  12802. }
  12803. }
  12804. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12805. if (ggml_hash_contains(zero_table, a)) {
  12806. return ggml_neg(ctx, b);
  12807. } else {
  12808. return ggml_sub_impl(ctx, a, b, false);
  12809. }
  12810. }
  12811. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12812. struct ggml_tensor * src0 = tensor->src[0];
  12813. struct ggml_tensor * src1 = tensor->src[1];
  12814. switch (tensor->op) {
  12815. case GGML_OP_DUP:
  12816. {
  12817. if (src0->grad) {
  12818. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12819. }
  12820. } break;
  12821. case GGML_OP_ADD:
  12822. {
  12823. if (src0->grad) {
  12824. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12825. }
  12826. if (src1->grad) {
  12827. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12828. }
  12829. } break;
  12830. case GGML_OP_ADD1:
  12831. {
  12832. if (src0->grad) {
  12833. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12834. }
  12835. if (src1->grad) {
  12836. src1->grad = ggml_add_or_set(ctx,
  12837. src1->grad,
  12838. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12839. zero_table);
  12840. }
  12841. } break;
  12842. case GGML_OP_ACC:
  12843. {
  12844. if (src0->grad) {
  12845. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12846. }
  12847. if (src1->grad) {
  12848. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12849. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12850. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12851. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12852. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12853. tensor->grad,
  12854. src1->grad->ne[0],
  12855. src1->grad->ne[1],
  12856. src1->grad->ne[2],
  12857. src1->grad->ne[3],
  12858. nb1, nb2, nb3, offset);
  12859. src1->grad =
  12860. ggml_add_or_set(ctx,
  12861. src1->grad,
  12862. ggml_reshape(ctx,
  12863. ggml_cont(ctx, tensor_grad_view),
  12864. src1->grad),
  12865. zero_table);
  12866. }
  12867. } break;
  12868. case GGML_OP_SUB:
  12869. {
  12870. if (src0->grad) {
  12871. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12872. }
  12873. if (src1->grad) {
  12874. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12875. }
  12876. } break;
  12877. case GGML_OP_MUL:
  12878. {
  12879. if (src0->grad) {
  12880. src0->grad =
  12881. ggml_add_or_set(ctx,
  12882. src0->grad,
  12883. ggml_mul(ctx, src1, tensor->grad),
  12884. zero_table);
  12885. }
  12886. if (src1->grad) {
  12887. src1->grad =
  12888. ggml_add_or_set(ctx,
  12889. src1->grad,
  12890. ggml_mul(ctx, src0, tensor->grad),
  12891. zero_table);
  12892. }
  12893. } break;
  12894. case GGML_OP_DIV:
  12895. {
  12896. if (src0->grad) {
  12897. src0->grad =
  12898. ggml_add_or_set(ctx,
  12899. src0->grad,
  12900. ggml_div(ctx, tensor->grad, src1),
  12901. zero_table);
  12902. }
  12903. if (src1->grad) {
  12904. src1->grad =
  12905. ggml_sub_or_set(ctx,
  12906. src1->grad,
  12907. ggml_mul(ctx,
  12908. tensor->grad,
  12909. ggml_div(ctx, tensor, src1)),
  12910. zero_table);
  12911. }
  12912. } break;
  12913. case GGML_OP_SQR:
  12914. {
  12915. if (src0->grad) {
  12916. src0->grad =
  12917. ggml_add_or_set(ctx,
  12918. src0->grad,
  12919. ggml_scale(ctx,
  12920. ggml_mul(ctx, src0, tensor->grad),
  12921. 2.0f),
  12922. zero_table);
  12923. }
  12924. } break;
  12925. case GGML_OP_SQRT:
  12926. {
  12927. if (src0->grad) {
  12928. src0->grad =
  12929. ggml_add_or_set(ctx,
  12930. src0->grad,
  12931. ggml_scale(ctx,
  12932. ggml_div(ctx,
  12933. tensor->grad,
  12934. tensor),
  12935. 0.5f),
  12936. zero_table);
  12937. }
  12938. } break;
  12939. case GGML_OP_LOG:
  12940. {
  12941. if (src0->grad) {
  12942. src0->grad =
  12943. ggml_add_or_set(ctx,
  12944. src0->grad,
  12945. ggml_div(ctx,
  12946. tensor->grad,
  12947. src0),
  12948. zero_table);
  12949. }
  12950. } break;
  12951. case GGML_OP_SUM:
  12952. {
  12953. if (src0->grad) {
  12954. src0->grad =
  12955. ggml_add1_or_set(ctx,
  12956. src0->grad,
  12957. tensor->grad,
  12958. zero_table);
  12959. }
  12960. } break;
  12961. case GGML_OP_SUM_ROWS:
  12962. {
  12963. if (src0->grad) {
  12964. src0->grad =
  12965. ggml_add_or_set(ctx,
  12966. src0->grad,
  12967. ggml_repeat(ctx,
  12968. tensor->grad,
  12969. src0->grad),
  12970. zero_table);
  12971. }
  12972. } break;
  12973. case GGML_OP_MEAN:
  12974. case GGML_OP_ARGMAX:
  12975. {
  12976. GGML_ASSERT(false); // TODO: implement
  12977. } break;
  12978. case GGML_OP_REPEAT:
  12979. {
  12980. // necessary for llama
  12981. if (src0->grad) {
  12982. src0->grad = ggml_add_or_set(ctx,
  12983. src0->grad,
  12984. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12985. zero_table);
  12986. }
  12987. } break;
  12988. case GGML_OP_REPEAT_BACK:
  12989. {
  12990. if (src0->grad) {
  12991. // TODO: test this
  12992. src0->grad = ggml_add_or_set(ctx,
  12993. src0->grad,
  12994. ggml_repeat(ctx, tensor->grad, src0->grad),
  12995. zero_table);
  12996. }
  12997. } break;
  12998. case GGML_OP_CONCAT:
  12999. {
  13000. GGML_ASSERT(false); // TODO: implement
  13001. } break;
  13002. case GGML_OP_SILU_BACK:
  13003. {
  13004. GGML_ASSERT(false); // TODO: not implemented
  13005. } break;
  13006. case GGML_OP_NORM:
  13007. {
  13008. GGML_ASSERT(false); // TODO: not implemented
  13009. } break;
  13010. case GGML_OP_RMS_NORM:
  13011. {
  13012. // necessary for llama
  13013. if (src0->grad) {
  13014. float eps;
  13015. memcpy(&eps, tensor->op_params, sizeof(float));
  13016. src0->grad = ggml_add_or_set(ctx,
  13017. src0->grad,
  13018. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13019. zero_table);
  13020. }
  13021. } break;
  13022. case GGML_OP_RMS_NORM_BACK:
  13023. {
  13024. GGML_ASSERT(false); // TODO: not implemented
  13025. } break;
  13026. case GGML_OP_GROUP_NORM:
  13027. {
  13028. GGML_ASSERT(false); // TODO: not implemented
  13029. } break;
  13030. case GGML_OP_MUL_MAT:
  13031. {
  13032. // https://cs231n.github.io/optimization-2/#staged
  13033. // # forward pass
  13034. // s0 = np.random.randn(5, 10)
  13035. // s1 = np.random.randn(10, 3)
  13036. // t = s0.dot(s1)
  13037. // # now suppose we had the gradient on t from above in the circuit
  13038. // dt = np.random.randn(*t.shape) # same shape as t
  13039. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13040. // ds1 = t.T.dot(dt)
  13041. // tensor.shape [m,p,qq,rr]
  13042. // src0.shape [n,m,q1,r1]
  13043. // src1.shape [n,p,qq,rr]
  13044. // necessary for llama
  13045. if (src0->grad) {
  13046. struct ggml_tensor * s1_tg =
  13047. ggml_out_prod(ctx, // [n,m,qq,rr]
  13048. src1, // [n,p,qq,rr]
  13049. tensor->grad); // [m,p,qq,rr]
  13050. const int64_t qq = s1_tg->ne[2];
  13051. const int64_t rr = s1_tg->ne[3];
  13052. const int64_t q1 = src0->ne[2];
  13053. const int64_t r1 = src0->ne[3];
  13054. const bool ne2_broadcasted = qq > q1;
  13055. const bool ne3_broadcasted = rr > r1;
  13056. if (ne2_broadcasted || ne3_broadcasted) {
  13057. // sum broadcast repetitions of s1_tg into shape of src0
  13058. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13059. }
  13060. src0->grad =
  13061. ggml_add_or_set(ctx,
  13062. src0->grad, // [n,m,q1,r1]
  13063. s1_tg, // [n,m,q1,r1]
  13064. zero_table);
  13065. }
  13066. if (src1->grad) {
  13067. src1->grad =
  13068. ggml_add_or_set(ctx,
  13069. src1->grad, // [n,p,qq,rr]
  13070. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13071. // ggml_cont(ctx, // [m,n,q1,r1]
  13072. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13073. // tensor->grad), // [m,p,qq,rr]
  13074. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13075. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13076. // // and then use ggml_out_prod
  13077. ggml_out_prod(ctx, // [n,p,qq,rr]
  13078. src0, // [n,m,q1,r1]
  13079. ggml_transpose(ctx, // [p,m,qq,rr]
  13080. tensor->grad)), // [m,p,qq,rr]
  13081. zero_table);
  13082. }
  13083. } break;
  13084. case GGML_OP_MUL_MAT_ID:
  13085. {
  13086. GGML_ASSERT(false); // TODO: not implemented
  13087. } break;
  13088. case GGML_OP_OUT_PROD:
  13089. {
  13090. GGML_ASSERT(false); // TODO: not implemented
  13091. } break;
  13092. case GGML_OP_SCALE:
  13093. {
  13094. // necessary for llama
  13095. if (src0->grad) {
  13096. float s;
  13097. memcpy(&s, tensor->op_params, sizeof(float));
  13098. src0->grad =
  13099. ggml_add_or_set(ctx,
  13100. src0->grad,
  13101. ggml_scale_impl(ctx, tensor->grad, s, false),
  13102. zero_table);
  13103. }
  13104. } break;
  13105. case GGML_OP_SET:
  13106. {
  13107. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13108. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13109. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13110. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13111. struct ggml_tensor * tensor_grad_view = NULL;
  13112. if (src0->grad || src1->grad) {
  13113. GGML_ASSERT(src0->type == tensor->type);
  13114. GGML_ASSERT(tensor->grad->type == tensor->type);
  13115. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13116. tensor_grad_view = ggml_view_4d(ctx,
  13117. tensor->grad,
  13118. src1->grad->ne[0],
  13119. src1->grad->ne[1],
  13120. src1->grad->ne[2],
  13121. src1->grad->ne[3],
  13122. nb1, nb2, nb3, offset);
  13123. }
  13124. if (src0->grad) {
  13125. src0->grad = ggml_add_or_set(ctx,
  13126. src0->grad,
  13127. ggml_acc_impl(ctx,
  13128. tensor->grad,
  13129. ggml_neg(ctx, tensor_grad_view),
  13130. nb1, nb2, nb3, offset, false),
  13131. zero_table);
  13132. }
  13133. if (src1->grad) {
  13134. src1->grad =
  13135. ggml_add_or_set(ctx,
  13136. src1->grad,
  13137. ggml_reshape(ctx,
  13138. ggml_cont(ctx, tensor_grad_view),
  13139. src1->grad),
  13140. zero_table);
  13141. }
  13142. } break;
  13143. case GGML_OP_CPY:
  13144. {
  13145. // necessary for llama
  13146. // cpy overwrites value of src1 by src0 and returns view(src1)
  13147. // the overwriting is mathematically equivalent to:
  13148. // tensor = src0 * 1 + src1 * 0
  13149. if (src0->grad) {
  13150. // dsrc0 = dtensor * 1
  13151. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13152. }
  13153. if (src1->grad) {
  13154. // dsrc1 = dtensor * 0 -> noop
  13155. }
  13156. } break;
  13157. case GGML_OP_CONT:
  13158. {
  13159. // same as cpy
  13160. if (src0->grad) {
  13161. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13162. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13163. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13164. }
  13165. } break;
  13166. case GGML_OP_RESHAPE:
  13167. {
  13168. // necessary for llama
  13169. if (src0->grad) {
  13170. src0->grad =
  13171. ggml_add_or_set(ctx, src0->grad,
  13172. ggml_reshape(ctx,
  13173. ggml_is_contiguous(tensor->grad)
  13174. ? tensor->grad
  13175. : ggml_cont(ctx, tensor->grad),
  13176. src0->grad),
  13177. zero_table);
  13178. }
  13179. } break;
  13180. case GGML_OP_VIEW:
  13181. {
  13182. // necessary for llama
  13183. if (src0->grad) {
  13184. size_t offset;
  13185. memcpy(&offset, tensor->op_params, sizeof(offset));
  13186. size_t nb1 = tensor->nb[1];
  13187. size_t nb2 = tensor->nb[2];
  13188. size_t nb3 = tensor->nb[3];
  13189. if (src0->type != src0->grad->type) {
  13190. // gradient is typically F32, but src0 could be other type
  13191. size_t ng = ggml_element_size(src0->grad);
  13192. size_t n0 = ggml_element_size(src0);
  13193. GGML_ASSERT(offset % n0 == 0);
  13194. GGML_ASSERT(nb1 % n0 == 0);
  13195. GGML_ASSERT(nb2 % n0 == 0);
  13196. GGML_ASSERT(nb3 % n0 == 0);
  13197. offset = (offset / n0) * ng;
  13198. nb1 = (nb1 / n0) * ng;
  13199. nb2 = (nb2 / n0) * ng;
  13200. nb3 = (nb3 / n0) * ng;
  13201. }
  13202. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13203. }
  13204. } break;
  13205. case GGML_OP_PERMUTE:
  13206. {
  13207. // necessary for llama
  13208. if (src0->grad) {
  13209. int32_t * axes = (int32_t *) tensor->op_params;
  13210. int axis0 = axes[0] & 0x3;
  13211. int axis1 = axes[1] & 0x3;
  13212. int axis2 = axes[2] & 0x3;
  13213. int axis3 = axes[3] & 0x3;
  13214. int axes_backward[4] = {0,0,0,0};
  13215. axes_backward[axis0] = 0;
  13216. axes_backward[axis1] = 1;
  13217. axes_backward[axis2] = 2;
  13218. axes_backward[axis3] = 3;
  13219. src0->grad =
  13220. ggml_add_or_set(ctx, src0->grad,
  13221. ggml_permute(ctx,
  13222. tensor->grad,
  13223. axes_backward[0],
  13224. axes_backward[1],
  13225. axes_backward[2],
  13226. axes_backward[3]),
  13227. zero_table);
  13228. }
  13229. } break;
  13230. case GGML_OP_TRANSPOSE:
  13231. {
  13232. // necessary for llama
  13233. if (src0->grad) {
  13234. src0->grad =
  13235. ggml_add_or_set(ctx, src0->grad,
  13236. ggml_transpose(ctx, tensor->grad),
  13237. zero_table);
  13238. }
  13239. } break;
  13240. case GGML_OP_GET_ROWS:
  13241. {
  13242. // necessary for llama (only for tokenizer)
  13243. if (src0->grad) {
  13244. src0->grad =
  13245. ggml_add_or_set(ctx, src0->grad,
  13246. // last ggml_get_rows_back argument src0->grad is only
  13247. // necessary to setup correct output shape
  13248. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13249. zero_table);
  13250. }
  13251. if (src1->grad) {
  13252. // noop
  13253. }
  13254. } break;
  13255. case GGML_OP_GET_ROWS_BACK:
  13256. {
  13257. GGML_ASSERT(false); // TODO: not implemented
  13258. } break;
  13259. case GGML_OP_DIAG:
  13260. {
  13261. GGML_ASSERT(false); // TODO: not implemented
  13262. } break;
  13263. case GGML_OP_DIAG_MASK_INF:
  13264. {
  13265. // necessary for llama
  13266. if (src0->grad) {
  13267. const int n_past = ((int32_t *) tensor->op_params)[0];
  13268. src0->grad =
  13269. ggml_add_or_set(ctx, src0->grad,
  13270. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13271. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13272. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13273. zero_table);
  13274. }
  13275. } break;
  13276. case GGML_OP_DIAG_MASK_ZERO:
  13277. {
  13278. // necessary for llama
  13279. if (src0->grad) {
  13280. const int n_past = ((int32_t *) tensor->op_params)[0];
  13281. src0->grad =
  13282. ggml_add_or_set(ctx, src0->grad,
  13283. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13284. zero_table);
  13285. }
  13286. } break;
  13287. case GGML_OP_SOFT_MAX:
  13288. {
  13289. // necessary for llama
  13290. if (src0->grad) {
  13291. src0->grad =
  13292. ggml_add_or_set(ctx, src0->grad,
  13293. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13294. zero_table);
  13295. }
  13296. } break;
  13297. case GGML_OP_SOFT_MAX_BACK:
  13298. {
  13299. GGML_ASSERT(false); // TODO: not implemented
  13300. } break;
  13301. case GGML_OP_ROPE:
  13302. {
  13303. // necessary for llama
  13304. if (src0->grad) {
  13305. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13306. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13307. const int mode = ((int32_t *) tensor->op_params)[2];
  13308. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13309. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13310. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13311. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13312. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13313. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13314. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13315. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13316. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13317. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13318. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13319. src0->grad = ggml_add_or_set(ctx,
  13320. src0->grad,
  13321. ggml_rope_back(ctx,
  13322. tensor->grad,
  13323. src1,
  13324. n_dims,
  13325. mode,
  13326. n_ctx,
  13327. n_orig_ctx,
  13328. freq_base,
  13329. freq_scale,
  13330. ext_factor,
  13331. attn_factor,
  13332. beta_fast,
  13333. beta_slow,
  13334. xpos_base,
  13335. xpos_down),
  13336. zero_table);
  13337. }
  13338. } break;
  13339. case GGML_OP_ROPE_BACK:
  13340. {
  13341. if (src0->grad) {
  13342. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13343. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13344. const int mode = ((int32_t *) tensor->op_params)[2];
  13345. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13346. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13347. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13348. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13349. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13350. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13351. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13352. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13353. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13354. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13355. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13356. src0->grad = ggml_add_or_set(ctx,
  13357. src0->grad,
  13358. ggml_rope_impl(ctx,
  13359. tensor->grad,
  13360. src1,
  13361. n_dims,
  13362. mode,
  13363. n_ctx,
  13364. n_orig_ctx,
  13365. freq_base,
  13366. freq_scale,
  13367. ext_factor,
  13368. attn_factor,
  13369. beta_fast,
  13370. beta_slow,
  13371. xpos_base,
  13372. xpos_down,
  13373. false),
  13374. zero_table);
  13375. }
  13376. } break;
  13377. case GGML_OP_ALIBI:
  13378. {
  13379. GGML_ASSERT(false); // TODO: not implemented
  13380. } break;
  13381. case GGML_OP_CLAMP:
  13382. {
  13383. GGML_ASSERT(false); // TODO: not implemented
  13384. } break;
  13385. case GGML_OP_CONV_TRANSPOSE_1D:
  13386. {
  13387. GGML_ASSERT(false); // TODO: not implemented
  13388. } break;
  13389. case GGML_OP_IM2COL:
  13390. {
  13391. GGML_ASSERT(false); // TODO: not implemented
  13392. } break;
  13393. case GGML_OP_CONV_TRANSPOSE_2D:
  13394. {
  13395. GGML_ASSERT(false); // TODO: not implemented
  13396. } break;
  13397. case GGML_OP_POOL_1D:
  13398. {
  13399. GGML_ASSERT(false); // TODO: not implemented
  13400. } break;
  13401. case GGML_OP_POOL_2D:
  13402. {
  13403. GGML_ASSERT(false); // TODO: not implemented
  13404. } break;
  13405. case GGML_OP_UPSCALE:
  13406. {
  13407. GGML_ASSERT(false); // TODO: not implemented
  13408. } break;
  13409. case GGML_OP_PAD:
  13410. {
  13411. GGML_ASSERT(false); // TODO: not implemented
  13412. } break;
  13413. case GGML_OP_ARGSORT:
  13414. {
  13415. GGML_ASSERT(false); // TODO: not implemented
  13416. } break;
  13417. case GGML_OP_LEAKY_RELU:
  13418. {
  13419. GGML_ASSERT(false); // TODO: not implemented
  13420. } break;
  13421. case GGML_OP_FLASH_ATTN:
  13422. {
  13423. struct ggml_tensor * flash_grad = NULL;
  13424. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13425. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13426. GGML_ASSERT(t == 0 || t == 1);
  13427. bool masked = t != 0;
  13428. flash_grad =
  13429. ggml_flash_attn_back(ctx,
  13430. src0,
  13431. src1,
  13432. tensor->src[2],
  13433. tensor->grad,
  13434. masked);
  13435. }
  13436. struct ggml_tensor * src2 = tensor->src[2];
  13437. const int64_t elem_q = ggml_nelements(src0);
  13438. const int64_t elem_k = ggml_nelements(src1);
  13439. const int64_t elem_v = ggml_nelements(src2);
  13440. enum ggml_type result_type = flash_grad->type;
  13441. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13442. const size_t tsize = ggml_type_size(result_type);
  13443. const size_t offs_q = 0;
  13444. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13445. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13446. if (src0->grad) {
  13447. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13448. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13449. src0->grad = ggml_add_or_set(ctx,
  13450. src0->grad,
  13451. grad_q,
  13452. zero_table);
  13453. }
  13454. if (src1->grad) {
  13455. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13456. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13457. src1->grad = ggml_add_or_set(ctx,
  13458. src1->grad,
  13459. grad_k,
  13460. zero_table);
  13461. }
  13462. if (src2->grad) {
  13463. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13464. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13465. src2->grad = ggml_add_or_set(ctx,
  13466. src2->grad,
  13467. grad_v,
  13468. zero_table);
  13469. }
  13470. } break;
  13471. case GGML_OP_FLASH_FF:
  13472. {
  13473. GGML_ASSERT(false); // not supported
  13474. } break;
  13475. case GGML_OP_FLASH_ATTN_BACK:
  13476. {
  13477. GGML_ASSERT(false); // not supported
  13478. } break;
  13479. case GGML_OP_WIN_PART:
  13480. case GGML_OP_WIN_UNPART:
  13481. case GGML_OP_UNARY:
  13482. {
  13483. switch (ggml_get_unary_op(tensor)) {
  13484. case GGML_UNARY_OP_ABS:
  13485. {
  13486. if (src0->grad) {
  13487. src0->grad =
  13488. ggml_add_or_set(ctx,
  13489. src0->grad,
  13490. ggml_mul(ctx,
  13491. ggml_sgn(ctx, src0),
  13492. tensor->grad),
  13493. zero_table);
  13494. }
  13495. } break;
  13496. case GGML_UNARY_OP_SGN:
  13497. {
  13498. if (src0->grad) {
  13499. // noop
  13500. }
  13501. } break;
  13502. case GGML_UNARY_OP_NEG:
  13503. {
  13504. if (src0->grad) {
  13505. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13506. }
  13507. } break;
  13508. case GGML_UNARY_OP_STEP:
  13509. {
  13510. if (src0->grad) {
  13511. // noop
  13512. }
  13513. } break;
  13514. case GGML_UNARY_OP_TANH:
  13515. {
  13516. GGML_ASSERT(false); // TODO: not implemented
  13517. } break;
  13518. case GGML_UNARY_OP_ELU:
  13519. {
  13520. GGML_ASSERT(false); // TODO: not implemented
  13521. } break;
  13522. case GGML_UNARY_OP_RELU:
  13523. {
  13524. if (src0->grad) {
  13525. src0->grad = ggml_add_or_set(ctx,
  13526. src0->grad,
  13527. ggml_mul(ctx,
  13528. ggml_step(ctx, src0),
  13529. tensor->grad),
  13530. zero_table);
  13531. }
  13532. } break;
  13533. case GGML_UNARY_OP_GELU:
  13534. {
  13535. GGML_ASSERT(false); // TODO: not implemented
  13536. } break;
  13537. case GGML_UNARY_OP_GELU_QUICK:
  13538. {
  13539. GGML_ASSERT(false); // TODO: not implemented
  13540. } break;
  13541. case GGML_UNARY_OP_SILU:
  13542. {
  13543. // necessary for llama
  13544. if (src0->grad) {
  13545. src0->grad = ggml_add_or_set(ctx,
  13546. src0->grad,
  13547. ggml_silu_back(ctx, src0, tensor->grad),
  13548. zero_table);
  13549. }
  13550. } break;
  13551. default:
  13552. GGML_ASSERT(false);
  13553. }
  13554. } break;
  13555. case GGML_OP_GET_REL_POS:
  13556. case GGML_OP_ADD_REL_POS:
  13557. case GGML_OP_MAP_UNARY:
  13558. case GGML_OP_MAP_BINARY:
  13559. case GGML_OP_MAP_CUSTOM1_F32:
  13560. case GGML_OP_MAP_CUSTOM2_F32:
  13561. case GGML_OP_MAP_CUSTOM3_F32:
  13562. case GGML_OP_MAP_CUSTOM1:
  13563. case GGML_OP_MAP_CUSTOM2:
  13564. case GGML_OP_MAP_CUSTOM3:
  13565. {
  13566. GGML_ASSERT(false); // not supported
  13567. } break;
  13568. case GGML_OP_CROSS_ENTROPY_LOSS:
  13569. {
  13570. if (src0->grad) {
  13571. src0->grad = ggml_add_or_set(ctx,
  13572. src0->grad,
  13573. ggml_cross_entropy_loss_back(ctx,
  13574. src0,
  13575. src1,
  13576. tensor->grad),
  13577. zero_table);
  13578. }
  13579. } break;
  13580. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13581. {
  13582. GGML_ASSERT(false); // not supported
  13583. } break;
  13584. case GGML_OP_NONE:
  13585. {
  13586. // nop
  13587. } break;
  13588. case GGML_OP_COUNT:
  13589. {
  13590. GGML_ASSERT(false);
  13591. } break;
  13592. }
  13593. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13594. if (tensor->src[i] && tensor->src[i]->grad) {
  13595. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13596. }
  13597. }
  13598. }
  13599. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13600. if (node->grad == NULL) {
  13601. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13602. // it can also happen during forward pass, if the user performs computations with constants
  13603. if (node->op != GGML_OP_NONE) {
  13604. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13605. }
  13606. }
  13607. // check if already visited
  13608. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13609. return;
  13610. }
  13611. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13612. const int k =
  13613. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13614. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13615. /* unknown order, just fall back to using i*/ i;
  13616. if (node->src[k]) {
  13617. ggml_visit_parents(cgraph, node->src[k]);
  13618. }
  13619. }
  13620. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13621. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13622. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13623. if (strlen(node->name) == 0) {
  13624. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13625. }
  13626. cgraph->leafs[cgraph->n_leafs] = node;
  13627. cgraph->n_leafs++;
  13628. } else {
  13629. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13630. if (strlen(node->name) == 0) {
  13631. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13632. }
  13633. cgraph->nodes[cgraph->n_nodes] = node;
  13634. if (cgraph->grads) {
  13635. cgraph->grads[cgraph->n_nodes] = node->grad;
  13636. }
  13637. cgraph->n_nodes++;
  13638. }
  13639. }
  13640. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13641. if (!expand) {
  13642. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13643. ggml_graph_clear(cgraph);
  13644. }
  13645. const int n0 = cgraph->n_nodes;
  13646. UNUSED(n0);
  13647. ggml_visit_parents(cgraph, tensor);
  13648. const int n_new = cgraph->n_nodes - n0;
  13649. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13650. if (n_new > 0) {
  13651. // the last added node should always be starting point
  13652. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13653. }
  13654. }
  13655. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13656. ggml_build_forward_impl(cgraph, tensor, true);
  13657. }
  13658. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13659. GGML_ASSERT(gf->n_nodes > 0);
  13660. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13661. if (keep) {
  13662. for (int i = 0; i < gf->n_nodes; i++) {
  13663. struct ggml_tensor * node = gf->nodes[i];
  13664. if (node->grad) {
  13665. node->grad = ggml_dup_tensor(ctx, node);
  13666. gf->grads[i] = node->grad;
  13667. }
  13668. }
  13669. }
  13670. // remember original gradients which start with zero values
  13671. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13672. for (int i = 0; i < gf->n_nodes; i++) {
  13673. if (gf->grads[i]) {
  13674. ggml_hash_insert(zero_table, gf->grads[i]);
  13675. }
  13676. }
  13677. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13678. struct ggml_tensor * node = gf->nodes[i];
  13679. // inplace operations to add gradients are not created by ggml_compute_backward
  13680. // use allocator to automatically make inplace operations
  13681. if (node->grad) {
  13682. ggml_compute_backward(ctx, node, zero_table);
  13683. }
  13684. }
  13685. for (int i = 0; i < gf->n_nodes; i++) {
  13686. struct ggml_tensor * node = gf->nodes[i];
  13687. if (node->is_param) {
  13688. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13689. ggml_build_forward_expand(gb, node->grad);
  13690. }
  13691. }
  13692. ggml_hash_set_free(zero_table);
  13693. }
  13694. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13695. size_t nbytes = sizeof(struct ggml_cgraph);
  13696. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13697. if (grads) {
  13698. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13699. }
  13700. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13701. return nbytes;
  13702. }
  13703. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13704. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13705. }
  13706. size_t ggml_graph_overhead(void) {
  13707. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13708. }
  13709. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13710. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13711. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13712. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13713. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13714. size_t hash_size = ggml_hash_size(size * 2);
  13715. struct ggml_tensor ** nodes_ptr = data_start;
  13716. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13717. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13718. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13719. // check that we allocated the correct amount of memory
  13720. assert(obj_size == (size_t) (
  13721. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13722. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13723. *cgraph = (struct ggml_cgraph) {
  13724. /*.size =*/ size,
  13725. /*.n_nodes =*/ 0,
  13726. /*.n_leafs =*/ 0,
  13727. /*.nodes =*/ nodes_ptr,
  13728. /*.grads =*/ grads_ptr,
  13729. /*.leafs =*/ leafs_ptr,
  13730. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13731. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13732. /*.perf_runs =*/ 0,
  13733. /*.perf_cycles =*/ 0,
  13734. /*.perf_time_us =*/ 0,
  13735. };
  13736. return cgraph;
  13737. }
  13738. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13739. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13740. }
  13741. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13742. struct ggml_cgraph cgraph = {
  13743. /*.size =*/ 0,
  13744. /*.n_nodes =*/ i1 - i0,
  13745. /*.n_leafs =*/ 0,
  13746. /*.nodes =*/ cgraph0->nodes + i0,
  13747. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13748. /*.leafs =*/ NULL,
  13749. /*.hash_table =*/ { 0, NULL },
  13750. /*.order =*/ cgraph0->order,
  13751. /*.perf_runs =*/ 0,
  13752. /*.perf_cycles =*/ 0,
  13753. /*.perf_time_us =*/ 0,
  13754. };
  13755. return cgraph;
  13756. }
  13757. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13758. GGML_ASSERT(dst->size >= src->n_leafs);
  13759. GGML_ASSERT(dst->size >= src->n_nodes);
  13760. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13761. dst->n_leafs = src->n_leafs;
  13762. dst->n_nodes = src->n_nodes;
  13763. dst->order = src->order;
  13764. for (int i = 0; i < src->n_leafs; ++i) {
  13765. dst->leafs[i] = src->leafs[i];
  13766. }
  13767. for (int i = 0; i < src->n_nodes; ++i) {
  13768. dst->nodes[i] = src->nodes[i];
  13769. }
  13770. if (src->grads) {
  13771. GGML_ASSERT(dst->grads != NULL);
  13772. for (int i = 0; i < src->n_nodes; ++i) {
  13773. dst->grads[i] = src->grads[i];
  13774. }
  13775. }
  13776. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13777. if (src->visited_hash_table.keys[i]) {
  13778. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13779. }
  13780. }
  13781. }
  13782. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13783. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13784. ggml_graph_cpy(cgraph, result);
  13785. return result;
  13786. }
  13787. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13788. GGML_ASSERT(cgraph->grads != NULL);
  13789. for (int i = 0; i < cgraph->n_nodes; i++) {
  13790. struct ggml_tensor * grad = cgraph->grads[i];
  13791. if (grad) {
  13792. ggml_set_zero(grad);
  13793. }
  13794. }
  13795. }
  13796. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13797. cgraph->n_leafs = 0;
  13798. cgraph->n_nodes = 0;
  13799. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13800. }
  13801. //
  13802. // thread data
  13803. //
  13804. // synchronization is done via busy loops
  13805. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13806. //
  13807. #ifdef __APPLE__
  13808. //#include <os/lock.h>
  13809. //
  13810. //typedef os_unfair_lock ggml_lock_t;
  13811. //
  13812. //#define ggml_lock_init(x) UNUSED(x)
  13813. //#define ggml_lock_destroy(x) UNUSED(x)
  13814. //#define ggml_lock_lock os_unfair_lock_lock
  13815. //#define ggml_lock_unlock os_unfair_lock_unlock
  13816. //
  13817. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13818. typedef int ggml_lock_t;
  13819. #define ggml_lock_init(x) UNUSED(x)
  13820. #define ggml_lock_destroy(x) UNUSED(x)
  13821. #define ggml_lock_lock(x) UNUSED(x)
  13822. #define ggml_lock_unlock(x) UNUSED(x)
  13823. #define GGML_LOCK_INITIALIZER 0
  13824. typedef pthread_t ggml_thread_t;
  13825. #define ggml_thread_create pthread_create
  13826. #define ggml_thread_join pthread_join
  13827. #else
  13828. //typedef pthread_spinlock_t ggml_lock_t;
  13829. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13830. //#define ggml_lock_destroy pthread_spin_destroy
  13831. //#define ggml_lock_lock pthread_spin_lock
  13832. //#define ggml_lock_unlock pthread_spin_unlock
  13833. typedef int ggml_lock_t;
  13834. #define ggml_lock_init(x) UNUSED(x)
  13835. #define ggml_lock_destroy(x) UNUSED(x)
  13836. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13837. #define ggml_lock_lock(x) _mm_pause()
  13838. #else
  13839. #define ggml_lock_lock(x) UNUSED(x)
  13840. #endif
  13841. #define ggml_lock_unlock(x) UNUSED(x)
  13842. #define GGML_LOCK_INITIALIZER 0
  13843. typedef pthread_t ggml_thread_t;
  13844. #define ggml_thread_create pthread_create
  13845. #define ggml_thread_join pthread_join
  13846. #endif
  13847. // Android's libc implementation "bionic" does not support setting affinity
  13848. #if defined(__linux__) && !defined(__BIONIC__)
  13849. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13850. if (!ggml_is_numa()) {
  13851. return;
  13852. }
  13853. // run thread on node_num thread_n / (threads per node)
  13854. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13855. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13856. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13857. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13858. CPU_ZERO_S(setsize, cpus);
  13859. for (size_t i = 0; i < node->n_cpus; ++i) {
  13860. CPU_SET_S(node->cpus[i], setsize, cpus);
  13861. }
  13862. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13863. if (rv) {
  13864. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13865. strerror(rv));
  13866. }
  13867. CPU_FREE(cpus);
  13868. }
  13869. static void clear_numa_thread_affinity(void) {
  13870. if (!ggml_is_numa()) {
  13871. return;
  13872. }
  13873. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13874. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13875. CPU_ZERO_S(setsize, cpus);
  13876. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13877. CPU_SET_S(i, setsize, cpus);
  13878. }
  13879. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13880. if (rv) {
  13881. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13882. strerror(rv));
  13883. }
  13884. CPU_FREE(cpus);
  13885. }
  13886. #else
  13887. // TODO: Windows etc.
  13888. // (the linux implementation may also work on BSD, someone should test)
  13889. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13890. static void clear_numa_thread_affinity(void) {}
  13891. #endif
  13892. struct ggml_compute_state_shared {
  13893. const struct ggml_cgraph * cgraph;
  13894. const struct ggml_cplan * cplan;
  13895. int64_t perf_node_start_cycles;
  13896. int64_t perf_node_start_time_us;
  13897. const int n_threads;
  13898. // synchronization primitives
  13899. atomic_int n_active; // num active threads
  13900. atomic_int node_n; // active graph node
  13901. atomic_int node_task; // active graph node task phase
  13902. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  13903. void * abort_callback_data;
  13904. };
  13905. struct ggml_compute_state {
  13906. ggml_thread_t thrd;
  13907. int ith;
  13908. struct ggml_compute_state_shared * shared;
  13909. };
  13910. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13911. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13912. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13913. node->perf_runs++;
  13914. node->perf_cycles += cycles_cur;
  13915. node->perf_time_us += time_us_cur;
  13916. }
  13917. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13918. int n_tasks = 0;
  13919. switch (node->op) {
  13920. case GGML_OP_CPY:
  13921. case GGML_OP_DUP:
  13922. case GGML_OP_ADD:
  13923. case GGML_OP_ADD1:
  13924. case GGML_OP_ACC:
  13925. {
  13926. n_tasks = n_threads;
  13927. } break;
  13928. case GGML_OP_SUB:
  13929. case GGML_OP_SQR:
  13930. case GGML_OP_SQRT:
  13931. case GGML_OP_LOG:
  13932. case GGML_OP_SUM:
  13933. case GGML_OP_SUM_ROWS:
  13934. case GGML_OP_MEAN:
  13935. case GGML_OP_ARGMAX:
  13936. case GGML_OP_REPEAT:
  13937. case GGML_OP_REPEAT_BACK:
  13938. case GGML_OP_LEAKY_RELU:
  13939. {
  13940. n_tasks = 1;
  13941. } break;
  13942. case GGML_OP_UNARY:
  13943. switch (ggml_get_unary_op(node)) {
  13944. case GGML_UNARY_OP_ABS:
  13945. case GGML_UNARY_OP_SGN:
  13946. case GGML_UNARY_OP_NEG:
  13947. case GGML_UNARY_OP_STEP:
  13948. case GGML_UNARY_OP_TANH:
  13949. case GGML_UNARY_OP_ELU:
  13950. case GGML_UNARY_OP_RELU:
  13951. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13952. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13953. {
  13954. n_tasks = 1;
  13955. } break;
  13956. case GGML_UNARY_OP_GELU:
  13957. case GGML_UNARY_OP_GELU_QUICK:
  13958. case GGML_UNARY_OP_SILU:
  13959. {
  13960. n_tasks = n_threads;
  13961. } break;
  13962. default:
  13963. GGML_ASSERT(false);
  13964. }
  13965. break;
  13966. case GGML_OP_SILU_BACK:
  13967. case GGML_OP_MUL:
  13968. case GGML_OP_DIV:
  13969. case GGML_OP_NORM:
  13970. case GGML_OP_RMS_NORM:
  13971. case GGML_OP_RMS_NORM_BACK:
  13972. case GGML_OP_GROUP_NORM:
  13973. case GGML_OP_CONCAT:
  13974. {
  13975. n_tasks = n_threads;
  13976. } break;
  13977. case GGML_OP_MUL_MAT:
  13978. {
  13979. n_tasks = n_threads;
  13980. // TODO: use different scheduling for different matrix sizes
  13981. //const int nr0 = ggml_nrows(node->src[0]);
  13982. //const int nr1 = ggml_nrows(node->src[1]);
  13983. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13984. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13985. } break;
  13986. case GGML_OP_MUL_MAT_ID:
  13987. {
  13988. n_tasks = n_threads;
  13989. } break;
  13990. case GGML_OP_OUT_PROD:
  13991. {
  13992. n_tasks = n_threads;
  13993. } break;
  13994. case GGML_OP_SCALE:
  13995. case GGML_OP_SET:
  13996. case GGML_OP_CONT:
  13997. case GGML_OP_RESHAPE:
  13998. case GGML_OP_VIEW:
  13999. case GGML_OP_PERMUTE:
  14000. case GGML_OP_TRANSPOSE:
  14001. case GGML_OP_GET_ROWS:
  14002. case GGML_OP_GET_ROWS_BACK:
  14003. case GGML_OP_DIAG:
  14004. {
  14005. n_tasks = 1;
  14006. } break;
  14007. case GGML_OP_DIAG_MASK_ZERO:
  14008. case GGML_OP_DIAG_MASK_INF:
  14009. case GGML_OP_SOFT_MAX_BACK:
  14010. case GGML_OP_ROPE:
  14011. case GGML_OP_ROPE_BACK:
  14012. case GGML_OP_ADD_REL_POS:
  14013. {
  14014. n_tasks = n_threads;
  14015. } break;
  14016. case GGML_OP_ALIBI:
  14017. {
  14018. n_tasks = 1; //TODO
  14019. } break;
  14020. case GGML_OP_CLAMP:
  14021. {
  14022. n_tasks = 1; //TODO
  14023. } break;
  14024. case GGML_OP_SOFT_MAX:
  14025. {
  14026. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14027. } break;
  14028. case GGML_OP_CONV_TRANSPOSE_1D:
  14029. {
  14030. n_tasks = n_threads;
  14031. } break;
  14032. case GGML_OP_IM2COL:
  14033. {
  14034. n_tasks = n_threads;
  14035. } break;
  14036. case GGML_OP_CONV_TRANSPOSE_2D:
  14037. {
  14038. n_tasks = n_threads;
  14039. } break;
  14040. case GGML_OP_POOL_1D:
  14041. case GGML_OP_POOL_2D:
  14042. {
  14043. n_tasks = 1;
  14044. } break;
  14045. case GGML_OP_UPSCALE:
  14046. {
  14047. n_tasks = n_threads;
  14048. } break;
  14049. case GGML_OP_PAD:
  14050. {
  14051. n_tasks = n_threads;
  14052. } break;
  14053. case GGML_OP_ARGSORT:
  14054. {
  14055. n_tasks = n_threads;
  14056. } break;
  14057. case GGML_OP_FLASH_ATTN:
  14058. {
  14059. n_tasks = n_threads;
  14060. } break;
  14061. case GGML_OP_FLASH_FF:
  14062. {
  14063. n_tasks = n_threads;
  14064. } break;
  14065. case GGML_OP_FLASH_ATTN_BACK:
  14066. {
  14067. n_tasks = n_threads;
  14068. } break;
  14069. case GGML_OP_WIN_PART:
  14070. case GGML_OP_WIN_UNPART:
  14071. case GGML_OP_GET_REL_POS:
  14072. case GGML_OP_MAP_UNARY:
  14073. case GGML_OP_MAP_BINARY:
  14074. case GGML_OP_MAP_CUSTOM1_F32:
  14075. case GGML_OP_MAP_CUSTOM2_F32:
  14076. case GGML_OP_MAP_CUSTOM3_F32:
  14077. {
  14078. n_tasks = 1;
  14079. } break;
  14080. case GGML_OP_MAP_CUSTOM1:
  14081. {
  14082. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14083. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14084. n_tasks = n_threads;
  14085. } else {
  14086. n_tasks = MIN(p->n_tasks, n_threads);
  14087. }
  14088. } break;
  14089. case GGML_OP_MAP_CUSTOM2:
  14090. {
  14091. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14092. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14093. n_tasks = n_threads;
  14094. } else {
  14095. n_tasks = MIN(p->n_tasks, n_threads);
  14096. }
  14097. } break;
  14098. case GGML_OP_MAP_CUSTOM3:
  14099. {
  14100. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14101. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14102. n_tasks = n_threads;
  14103. } else {
  14104. n_tasks = MIN(p->n_tasks, n_threads);
  14105. }
  14106. } break;
  14107. case GGML_OP_CROSS_ENTROPY_LOSS:
  14108. {
  14109. n_tasks = n_threads;
  14110. } break;
  14111. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14112. {
  14113. n_tasks = n_threads;
  14114. } break;
  14115. case GGML_OP_NONE:
  14116. {
  14117. n_tasks = 1;
  14118. } break;
  14119. case GGML_OP_COUNT:
  14120. {
  14121. GGML_ASSERT(false);
  14122. } break;
  14123. default:
  14124. {
  14125. fprintf(stderr, "%s: op not implemented: ", __func__);
  14126. if (node->op < GGML_OP_COUNT) {
  14127. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14128. } else {
  14129. fprintf(stderr, "%d\n", node->op);
  14130. }
  14131. GGML_ASSERT(false);
  14132. } break;
  14133. }
  14134. assert(n_tasks > 0);
  14135. return n_tasks;
  14136. }
  14137. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14138. // wait for other threads to finish
  14139. const int last_node_n = * node_n;
  14140. while (true) {
  14141. if (do_yield) {
  14142. sched_yield();
  14143. }
  14144. * node_n = atomic_load(&state->shared->node_n);
  14145. if (* node_n != last_node_n) break;
  14146. }
  14147. }
  14148. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14149. // wait for other threads to finish
  14150. const int last_task_phase = * task_phase;
  14151. while (true) {
  14152. if (do_yield) {
  14153. sched_yield();
  14154. }
  14155. * task_phase = atomic_load(&state->shared->node_task);
  14156. if (* task_phase != last_task_phase) break;
  14157. }
  14158. }
  14159. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14160. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14161. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14162. const struct ggml_cplan * cplan = state->shared->cplan;
  14163. const int n_threads = state->shared->n_threads;
  14164. set_numa_thread_affinity(state->ith, n_threads);
  14165. int node_n = -1;
  14166. int task_phase = GGML_TASK_FINALIZE;
  14167. while (true) {
  14168. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14169. state->shared->node_n += 1;
  14170. return (thread_ret_t) GGML_EXIT_ABORTED;
  14171. }
  14172. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14173. // all other threads are finished and spinning
  14174. // do finalize and init here so we don't have synchronize again
  14175. struct ggml_compute_params params = {
  14176. /*.type =*/ GGML_TASK_FINALIZE,
  14177. /*.ith =*/ 0,
  14178. /*.nth =*/ 0,
  14179. /*.wsize =*/ cplan->work_size,
  14180. /*.wdata =*/ cplan->work_data,
  14181. };
  14182. if (node_n != -1) {
  14183. /* FINALIZE */
  14184. struct ggml_tensor * node = cgraph->nodes[node_n];
  14185. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14186. params.nth = ggml_get_n_tasks(node, n_threads);
  14187. ggml_compute_forward(&params, node);
  14188. }
  14189. ggml_graph_compute_perf_stats_node(node, state->shared);
  14190. }
  14191. // distribute new work or execute it direct if 1T
  14192. while (++node_n < cgraph->n_nodes) {
  14193. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14194. struct ggml_tensor * node = cgraph->nodes[node_n];
  14195. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14196. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14197. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14198. params.nth = n_tasks;
  14199. if (n_tasks == 1) {
  14200. /* INIT */
  14201. if (GGML_OP_HAS_INIT[node->op]) {
  14202. params.type = GGML_TASK_INIT;
  14203. ggml_compute_forward(&params, node);
  14204. }
  14205. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14206. // they do something more efficient than spinning (?)
  14207. params.type = GGML_TASK_COMPUTE;
  14208. ggml_compute_forward(&params, node);
  14209. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14210. params.type = GGML_TASK_FINALIZE;
  14211. ggml_compute_forward(&params, node);
  14212. }
  14213. ggml_graph_compute_perf_stats_node(node, state->shared);
  14214. } else {
  14215. break;
  14216. }
  14217. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14218. break;
  14219. }
  14220. }
  14221. task_phase = GGML_TASK_INIT;
  14222. atomic_store(&state->shared->n_active, n_threads);
  14223. atomic_store(&state->shared->node_n, node_n);
  14224. atomic_store(&state->shared->node_task, task_phase);
  14225. } else {
  14226. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14227. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14228. }
  14229. // check if we should stop
  14230. if (node_n >= cgraph->n_nodes) break;
  14231. /* INIT & COMPUTE */
  14232. struct ggml_tensor * node = cgraph->nodes[node_n];
  14233. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14234. struct ggml_compute_params params = {
  14235. /*.type =*/ GGML_TASK_INIT,
  14236. /*.ith =*/ state->ith,
  14237. /*.nth =*/ n_tasks,
  14238. /*.wsize =*/ cplan->work_size,
  14239. /*.wdata =*/ cplan->work_data,
  14240. };
  14241. if (state->ith < n_tasks) {
  14242. if (GGML_OP_HAS_INIT[node->op]) {
  14243. ggml_compute_forward(&params, node);
  14244. }
  14245. }
  14246. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14247. task_phase = GGML_TASK_COMPUTE;
  14248. atomic_store(&state->shared->n_active, n_threads);
  14249. atomic_store(&state->shared->node_task, task_phase);
  14250. }
  14251. else {
  14252. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14253. // depending on the workload and the operating system.
  14254. // since it is not clear what is the best approach, it should potentially become user-configurable
  14255. // ref: https://github.com/ggerganov/ggml/issues/291
  14256. // UPD: adding the do_yield flag seems to resolve the issue universally
  14257. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14258. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14259. }
  14260. if (state->ith < n_tasks) {
  14261. params.type = GGML_TASK_COMPUTE;
  14262. ggml_compute_forward(&params, node);
  14263. }
  14264. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14265. task_phase = GGML_TASK_FINALIZE;
  14266. atomic_store(&state->shared->n_active, n_threads);
  14267. atomic_store(&state->shared->node_task, task_phase);
  14268. }
  14269. else {
  14270. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14271. }
  14272. }
  14273. return GGML_EXIT_SUCCESS;
  14274. }
  14275. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14276. if (n_threads <= 0) {
  14277. n_threads = GGML_DEFAULT_N_THREADS;
  14278. }
  14279. size_t work_size = 0;
  14280. struct ggml_cplan cplan;
  14281. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14282. int max_tasks = 1;
  14283. // thread scheduling for the different operations + work buffer size estimation
  14284. for (int i = 0; i < cgraph->n_nodes; i++) {
  14285. struct ggml_tensor * node = cgraph->nodes[i];
  14286. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14287. max_tasks = MAX(max_tasks, n_tasks);
  14288. size_t cur = 0;
  14289. switch (node->op) {
  14290. case GGML_OP_CPY:
  14291. case GGML_OP_DUP:
  14292. {
  14293. if (ggml_is_quantized(node->type)) {
  14294. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14295. }
  14296. } break;
  14297. case GGML_OP_ADD:
  14298. case GGML_OP_ADD1:
  14299. {
  14300. if (ggml_is_quantized(node->src[0]->type)) {
  14301. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14302. }
  14303. } break;
  14304. case GGML_OP_ACC:
  14305. {
  14306. if (ggml_is_quantized(node->src[0]->type)) {
  14307. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14308. }
  14309. } break;
  14310. case GGML_OP_MUL_MAT:
  14311. {
  14312. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14313. #if defined(GGML_USE_CLBLAST)
  14314. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14315. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14316. } else
  14317. #endif
  14318. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14319. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14320. if (node->src[0]->type != GGML_TYPE_F32) {
  14321. // here we need memory for fully dequantized matrix from src0
  14322. // take into account that src0 can be broadcasted into src1[2,3]
  14323. cur = ggml_type_size(GGML_TYPE_F32)
  14324. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14325. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14326. }
  14327. } else
  14328. #endif
  14329. if (node->src[1]->type != vec_dot_type) {
  14330. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14331. }
  14332. } break;
  14333. case GGML_OP_MUL_MAT_ID:
  14334. {
  14335. cur = 0;
  14336. const struct ggml_tensor * src0 = node->src[2];
  14337. const struct ggml_tensor * src1 = node->src[1];
  14338. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14339. if (src1->type != vec_dot_type) {
  14340. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14341. }
  14342. const int n_as = ggml_get_op_params_i32(node, 1);
  14343. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14344. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14345. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14346. } break;
  14347. case GGML_OP_OUT_PROD:
  14348. {
  14349. if (ggml_is_quantized(node->src[0]->type)) {
  14350. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14351. }
  14352. } break;
  14353. case GGML_OP_SOFT_MAX:
  14354. case GGML_OP_ROPE:
  14355. {
  14356. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14357. } break;
  14358. case GGML_OP_CONV_TRANSPOSE_1D:
  14359. {
  14360. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14361. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14362. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14363. const int64_t ne00 = node->src[0]->ne[0]; // K
  14364. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14365. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14366. const int64_t ne10 = node->src[1]->ne[0]; // L
  14367. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14368. if (node->src[0]->type == GGML_TYPE_F16 &&
  14369. node->src[1]->type == GGML_TYPE_F32) {
  14370. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14371. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14372. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14373. node->src[1]->type == GGML_TYPE_F32) {
  14374. cur += sizeof(float)*ne00*ne01*ne02;
  14375. cur += sizeof(float)*ne10*ne11;
  14376. } else {
  14377. GGML_ASSERT(false);
  14378. }
  14379. } break;
  14380. case GGML_OP_CONV_TRANSPOSE_2D:
  14381. {
  14382. const int64_t ne00 = node->src[0]->ne[0]; // W
  14383. const int64_t ne01 = node->src[0]->ne[1]; // H
  14384. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14385. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14386. const int64_t ne10 = node->src[1]->ne[0]; // W
  14387. const int64_t ne11 = node->src[1]->ne[1]; // H
  14388. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14389. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14390. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14391. } break;
  14392. case GGML_OP_FLASH_ATTN:
  14393. {
  14394. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14395. if (node->src[1]->type == GGML_TYPE_F32) {
  14396. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14397. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14398. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14399. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14400. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14401. }
  14402. } break;
  14403. case GGML_OP_FLASH_FF:
  14404. {
  14405. if (node->src[1]->type == GGML_TYPE_F32) {
  14406. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14407. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14408. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14409. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14410. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14411. }
  14412. } break;
  14413. case GGML_OP_FLASH_ATTN_BACK:
  14414. {
  14415. const int64_t D = node->src[0]->ne[0];
  14416. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14417. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14418. if (node->src[1]->type == GGML_TYPE_F32) {
  14419. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14420. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14421. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14422. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14423. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14424. }
  14425. } break;
  14426. case GGML_OP_CROSS_ENTROPY_LOSS:
  14427. {
  14428. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14429. } break;
  14430. case GGML_OP_COUNT:
  14431. {
  14432. GGML_ASSERT(false);
  14433. } break;
  14434. default:
  14435. break;
  14436. }
  14437. work_size = MAX(work_size, cur);
  14438. }
  14439. if (work_size > 0) {
  14440. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14441. }
  14442. cplan.n_threads = MIN(max_tasks, n_threads);
  14443. cplan.work_size = work_size;
  14444. cplan.work_data = NULL;
  14445. return cplan;
  14446. }
  14447. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14448. {
  14449. GGML_ASSERT(cplan);
  14450. GGML_ASSERT(cplan->n_threads > 0);
  14451. if (cplan->work_size > 0) {
  14452. GGML_ASSERT(cplan->work_data);
  14453. }
  14454. }
  14455. #ifdef GGML_USE_VULKAN
  14456. for (int i = 0; i < cgraph->n_nodes; i++) {
  14457. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14458. }
  14459. ggml_vk_preallocate_buffers_cpu_assist();
  14460. for (int i = 0; i < cgraph->n_nodes; i++) {
  14461. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14462. }
  14463. #endif
  14464. const int n_threads = cplan->n_threads;
  14465. struct ggml_compute_state_shared state_shared = {
  14466. /*.cgraph =*/ cgraph,
  14467. /*.cgraph_plan =*/ cplan,
  14468. /*.perf_node_start_cycles =*/ 0,
  14469. /*.perf_node_start_time_us =*/ 0,
  14470. /*.n_threads =*/ n_threads,
  14471. /*.n_active =*/ n_threads,
  14472. /*.node_n =*/ -1,
  14473. /*.node_task =*/ GGML_TASK_FINALIZE,
  14474. /*.abort_callback =*/ NULL,
  14475. /*.abort_callback_data =*/ NULL,
  14476. };
  14477. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14478. // create thread pool
  14479. if (n_threads > 1) {
  14480. for (int j = 1; j < n_threads; ++j) {
  14481. workers[j] = (struct ggml_compute_state) {
  14482. .thrd = 0,
  14483. .ith = j,
  14484. .shared = &state_shared,
  14485. };
  14486. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14487. GGML_ASSERT(rc == 0);
  14488. UNUSED(rc);
  14489. }
  14490. }
  14491. workers[0].ith = 0;
  14492. workers[0].shared = &state_shared;
  14493. const int64_t perf_start_cycles = ggml_perf_cycles();
  14494. const int64_t perf_start_time_us = ggml_perf_time_us();
  14495. // this is a work thread too
  14496. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14497. // don't leave affinity set on the main thread
  14498. clear_numa_thread_affinity();
  14499. // join or kill thread pool
  14500. if (n_threads > 1) {
  14501. for (int j = 1; j < n_threads; j++) {
  14502. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14503. GGML_ASSERT(rc == 0);
  14504. }
  14505. }
  14506. #ifdef GGML_USE_VULKAN
  14507. ggml_vk_graph_cleanup_cpu_assist();
  14508. #endif
  14509. // performance stats (graph)
  14510. {
  14511. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14512. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14513. cgraph->perf_runs++;
  14514. cgraph->perf_cycles += perf_cycles_cur;
  14515. cgraph->perf_time_us += perf_time_us_cur;
  14516. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14517. __func__, cgraph->perf_runs,
  14518. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14519. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14520. (double) perf_time_us_cur / 1000.0,
  14521. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14522. }
  14523. return compute_status;
  14524. }
  14525. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14526. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14527. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14528. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14529. ggml_graph_compute(cgraph, &cplan);
  14530. }
  14531. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14532. for (int i = 0; i < cgraph->n_leafs; i++) {
  14533. struct ggml_tensor * leaf = cgraph->leafs[i];
  14534. if (strcmp(leaf->name, name) == 0) {
  14535. return leaf;
  14536. }
  14537. }
  14538. for (int i = 0; i < cgraph->n_nodes; i++) {
  14539. struct ggml_tensor * node = cgraph->nodes[i];
  14540. if (strcmp(node->name, name) == 0) {
  14541. return node;
  14542. }
  14543. }
  14544. return NULL;
  14545. }
  14546. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14547. const int64_t * ne = tensor->ne;
  14548. const size_t * nb = tensor->nb;
  14549. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14550. ggml_type_name(tensor->type),
  14551. ggml_op_name (tensor->op),
  14552. ggml_n_dims(tensor),
  14553. ne[0], ne[1], ne[2], ne[3],
  14554. nb[0], nb[1], nb[2], nb[3],
  14555. tensor->data,
  14556. tensor->name);
  14557. }
  14558. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14559. const int64_t * ne = tensor->ne;
  14560. const size_t * nb = tensor->nb;
  14561. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14562. arg,
  14563. ggml_type_name(tensor->type),
  14564. ggml_op_name (tensor->op),
  14565. ggml_n_dims(tensor),
  14566. ne[0], ne[1], ne[2], ne[3],
  14567. nb[0], nb[1], nb[2], nb[3],
  14568. tensor->data,
  14569. tensor->name);
  14570. }
  14571. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14572. uint64_t size_eval = 0;
  14573. // compute size of intermediate results
  14574. // TODO: does not take into account scratch buffers !!!!
  14575. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14576. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14577. }
  14578. // print
  14579. {
  14580. FILE * fout = stdout;
  14581. fprintf(fout, "\n");
  14582. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14583. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14584. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14585. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14586. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14587. // header
  14588. fprintf(fout, "\n");
  14589. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14590. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14591. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14592. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14593. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14594. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14595. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14596. }
  14597. // header
  14598. fprintf(fout, "\n");
  14599. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14600. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14601. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14602. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14603. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14604. if (cgraph->nodes[i]->src[j]) {
  14605. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14606. }
  14607. }
  14608. fprintf(fout, "\n");
  14609. }
  14610. fprintf(fout, "\n");
  14611. }
  14612. // write binary data
  14613. {
  14614. FILE * fout = fopen(fname, "wb");
  14615. if (!fout) {
  14616. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14617. return;
  14618. }
  14619. // header
  14620. {
  14621. const uint32_t magic = GGML_FILE_MAGIC;
  14622. const uint32_t version = GGML_FILE_VERSION;
  14623. const uint32_t n_leafs = cgraph->n_leafs;
  14624. const uint32_t n_nodes = cgraph->n_nodes;
  14625. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14626. fwrite(&version, sizeof(uint32_t), 1, fout);
  14627. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14628. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14629. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14630. }
  14631. // leafs
  14632. {
  14633. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14634. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14635. const uint32_t type = tensor->type;
  14636. const uint32_t op = tensor->op;
  14637. fwrite(&type, sizeof(uint32_t), 1, fout);
  14638. fwrite(&op, sizeof(uint32_t), 1, fout);
  14639. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14640. const uint64_t ne = tensor->ne[j];
  14641. const uint64_t nb = tensor->nb[j];
  14642. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14643. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14644. }
  14645. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14646. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14647. // dump the data
  14648. // TODO: pad this to 32 byte boundary
  14649. {
  14650. const size_t size = ggml_nbytes(tensor);
  14651. fwrite(tensor->data, sizeof(char), size, fout);
  14652. }
  14653. }
  14654. }
  14655. // nodes
  14656. {
  14657. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14658. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14659. const uint32_t type = tensor->type;
  14660. const uint32_t op = tensor->op;
  14661. fwrite(&type, sizeof(uint32_t), 1, fout);
  14662. fwrite(&op, sizeof(uint32_t), 1, fout);
  14663. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14664. const uint64_t ne = tensor->ne[j];
  14665. const uint64_t nb = tensor->nb[j];
  14666. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14667. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14668. }
  14669. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14670. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14671. // output the op arguments
  14672. {
  14673. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14674. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14675. args[j] = tensor->src[j];
  14676. }
  14677. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14678. if (args[j]) {
  14679. int32_t idx = -1;
  14680. // check if leaf
  14681. {
  14682. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14683. if (args[j] == cgraph->leafs[k]) {
  14684. idx = k;
  14685. break;
  14686. }
  14687. }
  14688. }
  14689. // check if node
  14690. if (idx == -1) {
  14691. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14692. if (args[j] == cgraph->nodes[k]) {
  14693. idx = cgraph->n_leafs + k;
  14694. break;
  14695. }
  14696. }
  14697. }
  14698. if (idx == -1) {
  14699. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14700. fclose(fout);
  14701. return;
  14702. }
  14703. fwrite(&idx, sizeof(int32_t), 1, fout);
  14704. } else {
  14705. const int32_t nul = -1;
  14706. fwrite(&nul, sizeof(int32_t), 1, fout);
  14707. }
  14708. }
  14709. }
  14710. }
  14711. }
  14712. fclose(fout);
  14713. }
  14714. }
  14715. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14716. assert(*ctx_data == NULL);
  14717. assert(*ctx_eval == NULL);
  14718. struct ggml_cgraph * result = NULL;
  14719. struct ggml_tensor * data = NULL;
  14720. // read file into data
  14721. {
  14722. FILE * fin = fopen(fname, "rb");
  14723. if (!fin) {
  14724. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14725. return result;
  14726. }
  14727. size_t fsize = 0;
  14728. fseek(fin, 0, SEEK_END);
  14729. fsize = ftell(fin);
  14730. fseek(fin, 0, SEEK_SET);
  14731. // create the data context
  14732. {
  14733. const size_t overhead = 1*ggml_tensor_overhead();
  14734. struct ggml_init_params params = {
  14735. .mem_size = fsize + overhead,
  14736. .mem_buffer = NULL,
  14737. .no_alloc = false,
  14738. };
  14739. *ctx_data = ggml_init(params);
  14740. if (!*ctx_data) {
  14741. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14742. fclose(fin);
  14743. return result;
  14744. }
  14745. }
  14746. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14747. {
  14748. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14749. if (ret != fsize) {
  14750. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14751. fclose(fin);
  14752. return result;
  14753. }
  14754. }
  14755. fclose(fin);
  14756. }
  14757. // populate result
  14758. {
  14759. char * ptr = (char *) data->data;
  14760. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14761. if (magic != GGML_FILE_MAGIC) {
  14762. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14763. return result;
  14764. }
  14765. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14766. if (version != GGML_FILE_VERSION) {
  14767. fprintf(stderr, "%s: invalid version number\n", __func__);
  14768. return result;
  14769. }
  14770. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14771. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14772. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14773. const int graph_size = MAX(n_leafs, n_nodes);
  14774. // create the data context
  14775. {
  14776. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14777. struct ggml_init_params params = {
  14778. .mem_size = size_eval + overhead,
  14779. .mem_buffer = NULL,
  14780. .no_alloc = true,
  14781. };
  14782. *ctx_eval = ggml_init(params);
  14783. if (!*ctx_eval) {
  14784. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14785. return result;
  14786. }
  14787. }
  14788. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14789. result->n_leafs = n_leafs;
  14790. result->n_nodes = n_nodes;
  14791. // leafs
  14792. {
  14793. uint32_t type;
  14794. uint32_t op;
  14795. for (uint32_t i = 0; i < n_leafs; ++i) {
  14796. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14797. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14798. int64_t ne[GGML_MAX_DIMS];
  14799. size_t nb[GGML_MAX_DIMS];
  14800. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14801. uint64_t ne_cur;
  14802. uint64_t nb_cur;
  14803. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14804. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14805. ne[j] = ne_cur;
  14806. nb[j] = nb_cur;
  14807. }
  14808. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14809. tensor->op = (enum ggml_op) op;
  14810. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14811. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14812. tensor->data = (void *) ptr;
  14813. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14814. tensor->nb[j] = nb[j];
  14815. }
  14816. result->leafs[i] = tensor;
  14817. ptr += ggml_nbytes(tensor);
  14818. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14819. }
  14820. }
  14821. ggml_set_no_alloc(*ctx_eval, false);
  14822. // nodes
  14823. {
  14824. uint32_t type;
  14825. uint32_t op;
  14826. for (uint32_t i = 0; i < n_nodes; ++i) {
  14827. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14828. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14829. enum ggml_op eop = (enum ggml_op) op;
  14830. int64_t ne[GGML_MAX_DIMS];
  14831. size_t nb[GGML_MAX_DIMS];
  14832. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14833. uint64_t ne_cur;
  14834. uint64_t nb_cur;
  14835. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14836. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14837. ne[j] = ne_cur;
  14838. nb[j] = nb_cur;
  14839. }
  14840. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14841. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14842. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14843. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14844. // parse args
  14845. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14846. const int32_t arg_idx = ptr_arg_idx[j];
  14847. if (arg_idx == -1) {
  14848. continue;
  14849. }
  14850. if (arg_idx < result->n_leafs) {
  14851. args[j] = result->leafs[arg_idx];
  14852. } else {
  14853. args[j] = result->nodes[arg_idx - result->n_leafs];
  14854. }
  14855. }
  14856. // create the tensor
  14857. // "view" operations are handled differently
  14858. // TODO: handle inplace ops - currently a copy is always made
  14859. struct ggml_tensor * tensor = NULL;
  14860. switch (eop) {
  14861. // TODO: implement other view ops
  14862. case GGML_OP_RESHAPE:
  14863. {
  14864. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14865. } break;
  14866. case GGML_OP_VIEW:
  14867. {
  14868. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14869. size_t offs;
  14870. memcpy(&offs, ptr_op_params, sizeof(offs));
  14871. tensor->data = ((char *) tensor->data) + offs;
  14872. } break;
  14873. case GGML_OP_TRANSPOSE:
  14874. {
  14875. tensor = ggml_transpose(*ctx_eval, args[0]);
  14876. } break;
  14877. case GGML_OP_PERMUTE:
  14878. {
  14879. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14880. } break;
  14881. default:
  14882. {
  14883. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14884. tensor->op = eop;
  14885. } break;
  14886. }
  14887. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14888. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14889. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14890. tensor->nb[j] = nb[j];
  14891. }
  14892. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14893. tensor->src[j] = args[j];
  14894. }
  14895. result->nodes[i] = tensor;
  14896. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14897. }
  14898. }
  14899. }
  14900. return result;
  14901. }
  14902. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14903. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14904. GGML_PRINT("=== GRAPH ===\n");
  14905. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14906. for (int i = 0; i < cgraph->n_nodes; i++) {
  14907. struct ggml_tensor * node = cgraph->nodes[i];
  14908. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14909. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14910. i,
  14911. node->ne[0], node->ne[1], node->ne[2],
  14912. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14913. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14914. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14915. (double) node->perf_time_us / 1000.0,
  14916. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14917. }
  14918. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14919. for (int i = 0; i < cgraph->n_leafs; i++) {
  14920. struct ggml_tensor * node = cgraph->leafs[i];
  14921. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14922. i,
  14923. node->ne[0], node->ne[1],
  14924. ggml_op_name(node->op),
  14925. ggml_get_name(node));
  14926. }
  14927. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14928. if (perf_total_per_op_us[i] == 0) {
  14929. continue;
  14930. }
  14931. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14932. }
  14933. GGML_PRINT("========================================\n");
  14934. }
  14935. // check if node is part of the graph
  14936. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14937. if (cgraph == NULL) {
  14938. return true;
  14939. }
  14940. for (int i = 0; i < cgraph->n_nodes; i++) {
  14941. if (cgraph->nodes[i] == node) {
  14942. return true;
  14943. }
  14944. }
  14945. return false;
  14946. }
  14947. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14948. for (int i = 0; i < cgraph->n_nodes; i++) {
  14949. struct ggml_tensor * parent = cgraph->nodes[i];
  14950. if (parent->grad == node) {
  14951. return parent;
  14952. }
  14953. }
  14954. return NULL;
  14955. }
  14956. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14957. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14958. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14959. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14960. gparent0 ? (void *) gparent0 : (void *) parent,
  14961. gparent0 ? "g" : "x",
  14962. gparent ? (void *) gparent : (void *) node,
  14963. gparent ? "g" : "x",
  14964. gparent ? "empty" : "vee",
  14965. gparent ? "dashed" : "solid",
  14966. label);
  14967. }
  14968. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14969. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14970. (void *) parent, "x",
  14971. (void *) node, "x",
  14972. label);
  14973. }
  14974. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14975. char color[16];
  14976. FILE * fp = fopen(filename, "w");
  14977. GGML_ASSERT(fp);
  14978. fprintf(fp, "digraph G {\n");
  14979. fprintf(fp, " newrank = true;\n");
  14980. fprintf(fp, " rankdir = LR;\n");
  14981. for (int i = 0; i < gb->n_nodes; i++) {
  14982. struct ggml_tensor * node = gb->nodes[i];
  14983. if (ggml_graph_get_parent(gb, node) != NULL) {
  14984. continue;
  14985. }
  14986. if (node->is_param) {
  14987. snprintf(color, sizeof(color), "yellow");
  14988. } else if (node->grad) {
  14989. if (ggml_graph_find(gf, node)) {
  14990. snprintf(color, sizeof(color), "green");
  14991. } else {
  14992. snprintf(color, sizeof(color), "lightblue");
  14993. }
  14994. } else {
  14995. snprintf(color, sizeof(color), "white");
  14996. }
  14997. fprintf(fp, " \"%p\" [ "
  14998. "style = filled; fillcolor = %s; shape = record; "
  14999. "label=\"",
  15000. (void *) node, color);
  15001. if (strlen(node->name) > 0) {
  15002. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15003. } else {
  15004. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15005. }
  15006. if (ggml_is_matrix(node)) {
  15007. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15008. } else {
  15009. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15010. }
  15011. if (node->grad) {
  15012. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15013. } else {
  15014. fprintf(fp, "\"; ]\n");
  15015. }
  15016. }
  15017. for (int i = 0; i < gb->n_leafs; i++) {
  15018. struct ggml_tensor * node = gb->leafs[i];
  15019. snprintf(color, sizeof(color), "pink");
  15020. fprintf(fp, " \"%p\" [ "
  15021. "style = filled; fillcolor = %s; shape = record; "
  15022. "label=\"<x>",
  15023. (void *) node, color);
  15024. if (strlen(node->name) > 0) {
  15025. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15026. } else {
  15027. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15028. }
  15029. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15030. if (ggml_nelements(node) < 5) {
  15031. fprintf(fp, " | (");
  15032. for (int j = 0; j < ggml_nelements(node); j++) {
  15033. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15034. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15035. }
  15036. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15037. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15038. }
  15039. else {
  15040. fprintf(fp, "#");
  15041. }
  15042. if (j < ggml_nelements(node) - 1) {
  15043. fprintf(fp, ", ");
  15044. }
  15045. }
  15046. fprintf(fp, ")");
  15047. }
  15048. fprintf(fp, "\"; ]\n");
  15049. }
  15050. for (int i = 0; i < gb->n_nodes; i++) {
  15051. struct ggml_tensor * node = gb->nodes[i];
  15052. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15053. if (node->src[j]) {
  15054. char label[16];
  15055. snprintf(label, sizeof(label), "src %d", j);
  15056. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15057. }
  15058. }
  15059. }
  15060. for (int i = 0; i < gb->n_leafs; i++) {
  15061. struct ggml_tensor * node = gb->leafs[i];
  15062. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15063. if (node->src[j]) {
  15064. char label[16];
  15065. snprintf(label, sizeof(label), "src %d", j);
  15066. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15067. }
  15068. }
  15069. }
  15070. fprintf(fp, "}\n");
  15071. fclose(fp);
  15072. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15073. }
  15074. ////////////////////////////////////////////////////////////////////////////////
  15075. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15076. int i = 0;
  15077. for (int p = 0; p < np; ++p) {
  15078. const int64_t ne = ggml_nelements(ps[p]) ;
  15079. // TODO: add function to set tensor from array
  15080. for (int64_t j = 0; j < ne; ++j) {
  15081. ggml_set_f32_1d(ps[p], j, x[i++]);
  15082. }
  15083. }
  15084. }
  15085. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15086. int i = 0;
  15087. for (int p = 0; p < np; ++p) {
  15088. const int64_t ne = ggml_nelements(ps[p]) ;
  15089. // TODO: add function to get all elements at once
  15090. for (int64_t j = 0; j < ne; ++j) {
  15091. x[i++] = ggml_get_f32_1d(ps[p], j);
  15092. }
  15093. }
  15094. }
  15095. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15096. int64_t i = 0;
  15097. for (int p = 0; p < np; ++p) {
  15098. const int64_t ne = ggml_nelements(ps[p]) ;
  15099. // TODO: add function to get all elements at once
  15100. for (int64_t j = 0; j < ne; ++j) {
  15101. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15102. }
  15103. }
  15104. }
  15105. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15106. int64_t i = 0;
  15107. for (int p = 0; p < np; ++p) {
  15108. const int64_t ne = ggml_nelements(ps[p]) ;
  15109. // TODO: add function to get all elements at once
  15110. for (int64_t j = 0; j < ne; ++j) {
  15111. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15112. }
  15113. }
  15114. }
  15115. //
  15116. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15117. //
  15118. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15119. //
  15120. static enum ggml_opt_result ggml_opt_adam(
  15121. struct ggml_context * ctx,
  15122. struct ggml_opt_context * opt,
  15123. struct ggml_opt_params params,
  15124. struct ggml_tensor * f,
  15125. struct ggml_cgraph * gf,
  15126. struct ggml_cgraph * gb,
  15127. ggml_opt_callback callback,
  15128. void * callback_data) {
  15129. GGML_ASSERT(ggml_is_scalar(f));
  15130. // these will store the parameters we want to optimize
  15131. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15132. int np = 0;
  15133. int64_t nx = 0;
  15134. for (int i = 0; i < gf->n_nodes; ++i) {
  15135. if (gf->nodes[i]->is_param) {
  15136. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15137. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15138. ps[np++] = gf->nodes[i];
  15139. nx += ggml_nelements(gf->nodes[i]);
  15140. }
  15141. }
  15142. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15143. int iter = opt->iter;
  15144. ggml_opt_init(opt->ctx, opt, params, nx);
  15145. opt->iter = iter;
  15146. }
  15147. // constants
  15148. float sched = params.adam.sched;
  15149. const float alpha = params.adam.alpha;
  15150. const float decay = params.adam.decay * alpha;
  15151. const float beta1 = params.adam.beta1;
  15152. const float beta2 = params.adam.beta2;
  15153. const float eps = params.adam.eps;
  15154. const float gclip = params.adam.gclip;
  15155. const int decay_min_ndim = params.adam.decay_min_ndim;
  15156. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15157. const float accum_norm = 1.0f / (float) n_accum;
  15158. float * g = opt->adam.g->data; // gradients
  15159. float * m = opt->adam.m->data; // first moment
  15160. float * v = opt->adam.v->data; // second moment
  15161. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15162. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15163. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15164. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15165. bool cancel = false;
  15166. // compute the function value
  15167. float fx = 0;
  15168. ggml_set_zero(opt->adam.g);
  15169. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15170. if (callback) {
  15171. callback(callback_data, accum_step, &sched, &cancel);
  15172. if (cancel) {
  15173. return GGML_OPT_CANCEL;
  15174. }
  15175. }
  15176. // ggml_graph_reset (gf);
  15177. ggml_set_f32 (f->grad, 1.0f);
  15178. ggml_graph_compute(gb, &cplan);
  15179. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15180. fx += ggml_get_f32_1d(f, 0);
  15181. }
  15182. fx *= accum_norm;
  15183. opt->adam.fx_prev = fx;
  15184. opt->adam.fx_best = opt->adam.fx_prev;
  15185. if (pf) {
  15186. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15187. }
  15188. opt->loss_before = opt->adam.fx_prev;
  15189. opt->loss_after = opt->adam.fx_prev;
  15190. // initialize
  15191. if (opt->just_initialized) {
  15192. opt->adam.n_no_improvement = 0;
  15193. opt->just_initialized = false;
  15194. }
  15195. float * fx_best = &opt->adam.fx_best;
  15196. float * fx_prev = &opt->adam.fx_prev;
  15197. int * n_no_improvement = &opt->adam.n_no_improvement;
  15198. int iter0 = opt->iter;
  15199. // run the optimizer
  15200. for (int t = 0; t < params.adam.n_iter; ++t) {
  15201. opt->iter = iter0 + t + 1;
  15202. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15203. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15204. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15205. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15206. for (int i = 0; i < np; ++i) {
  15207. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15208. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15209. }
  15210. const int64_t t_start_wall = ggml_time_us();
  15211. const int64_t t_start_cpu = ggml_cycles();
  15212. UNUSED(t_start_wall);
  15213. UNUSED(t_start_cpu);
  15214. {
  15215. float gnorm = 1.0f;
  15216. if (gclip > 0.0f) {
  15217. // gradient clipping
  15218. ggml_float sum = 0.0;
  15219. for (int64_t i = 0; i < nx; ++i) {
  15220. sum += (ggml_float)(g[i]*g[i]);
  15221. }
  15222. ggml_float norm = sqrt(sum);
  15223. if (norm > (ggml_float) gclip) {
  15224. gnorm = (float) ((ggml_float) gclip / norm);
  15225. }
  15226. }
  15227. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15228. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15229. int64_t i = 0;
  15230. for (int p = 0; p < np; ++p) {
  15231. const int64_t ne = ggml_nelements(ps[p]);
  15232. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15233. for (int64_t j = 0; j < ne; ++j) {
  15234. float x = ggml_get_f32_1d(ps[p], j);
  15235. float g_ = g[i]*gnorm;
  15236. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15237. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15238. float mh = m[i]*beta1h;
  15239. float vh = v[i]*beta2h;
  15240. vh = sqrtf(vh) + eps;
  15241. x = x*(1.0f - p_decay) - mh/vh;
  15242. ggml_set_f32_1d(ps[p], j, x);
  15243. ++i;
  15244. }
  15245. }
  15246. }
  15247. fx = 0;
  15248. ggml_set_zero(opt->adam.g);
  15249. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15250. if (callback) {
  15251. callback(callback_data, accum_step, &sched, &cancel);
  15252. if (cancel) {
  15253. return GGML_OPT_CANCEL;;
  15254. }
  15255. }
  15256. // ggml_graph_reset (gf);
  15257. ggml_set_f32 (f->grad, 1.0f);
  15258. ggml_graph_compute(gb, &cplan);
  15259. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15260. fx += ggml_get_f32_1d(f, 0);
  15261. }
  15262. fx *= accum_norm;
  15263. opt->loss_after = fx;
  15264. // check convergence
  15265. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15266. GGML_PRINT_DEBUG("converged\n");
  15267. return GGML_OPT_OK;
  15268. }
  15269. // delta-based convergence test
  15270. if (pf != NULL) {
  15271. // need at least params.past iterations to start checking for convergence
  15272. if (params.past <= iter0 + t) {
  15273. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15274. if (fabsf(rate) < params.delta) {
  15275. return GGML_OPT_OK;
  15276. }
  15277. }
  15278. pf[(iter0 + t)%params.past] = fx;
  15279. }
  15280. // check for improvement
  15281. if (params.max_no_improvement > 0) {
  15282. if (fx_best[0] > fx) {
  15283. fx_best[0] = fx;
  15284. n_no_improvement[0] = 0;
  15285. } else {
  15286. ++n_no_improvement[0];
  15287. if (n_no_improvement[0] >= params.max_no_improvement) {
  15288. return GGML_OPT_OK;
  15289. }
  15290. }
  15291. }
  15292. fx_prev[0] = fx;
  15293. {
  15294. const int64_t t_end_cpu = ggml_cycles();
  15295. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15296. UNUSED(t_end_cpu);
  15297. const int64_t t_end_wall = ggml_time_us();
  15298. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15299. UNUSED(t_end_wall);
  15300. }
  15301. }
  15302. return GGML_OPT_DID_NOT_CONVERGE;
  15303. }
  15304. //
  15305. // L-BFGS
  15306. //
  15307. // the L-BFGS implementation below is based on the following implementation:
  15308. //
  15309. // https://github.com/chokkan/liblbfgs
  15310. //
  15311. struct ggml_lbfgs_iteration_data {
  15312. float alpha;
  15313. float ys;
  15314. float * s;
  15315. float * y;
  15316. };
  15317. static enum ggml_opt_result linesearch_backtracking(
  15318. const struct ggml_opt_params * params,
  15319. int nx,
  15320. float * x,
  15321. float * fx,
  15322. float * g,
  15323. float * d,
  15324. float * step,
  15325. const float * xp,
  15326. struct ggml_tensor * f,
  15327. struct ggml_cgraph * gb,
  15328. struct ggml_cplan * cplan,
  15329. const int np,
  15330. struct ggml_tensor * ps[],
  15331. bool * cancel,
  15332. ggml_opt_callback callback,
  15333. void * callback_data) {
  15334. int count = 0;
  15335. float width = 0.0f;
  15336. float dg = 0.0f;
  15337. float finit = 0.0f;
  15338. float dginit = 0.0f;
  15339. float dgtest = 0.0f;
  15340. const float dec = 0.5f;
  15341. const float inc = 2.1f;
  15342. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15343. const float accum_norm = 1.0f / (float) n_accum;
  15344. if (*step <= 0.f) {
  15345. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15346. }
  15347. // compute the initial gradient in the search direction
  15348. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15349. // make sure that d points to a descent direction
  15350. if (0 < dginit) {
  15351. return GGML_LINESEARCH_FAIL;
  15352. }
  15353. // initialize local variables
  15354. finit = *fx;
  15355. dgtest = params->lbfgs.ftol*dginit;
  15356. while (true) {
  15357. ggml_vec_cpy_f32(nx, x, xp);
  15358. ggml_vec_mad_f32(nx, x, d, *step);
  15359. // evaluate the function and gradient values
  15360. {
  15361. ggml_opt_set_params(np, ps, x);
  15362. *fx = 0;
  15363. memset(g, 0, sizeof(float)*nx);
  15364. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15365. if (callback) {
  15366. // LBFG-S does not support learning rate -> ignore learning schedule
  15367. float sched = 0;
  15368. callback(callback_data, accum_step, &sched, cancel);
  15369. if (*cancel) {
  15370. return GGML_OPT_CANCEL;
  15371. }
  15372. }
  15373. // ggml_graph_reset (gf);
  15374. ggml_set_f32 (f->grad, 1.0f);
  15375. ggml_graph_compute(gb, cplan);
  15376. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15377. *fx += ggml_get_f32_1d(f, 0);
  15378. }
  15379. *fx *= accum_norm;
  15380. }
  15381. ++count;
  15382. if (*fx > finit + (*step)*dgtest) {
  15383. width = dec;
  15384. } else {
  15385. // Armijo condition is satisfied
  15386. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15387. return count;
  15388. }
  15389. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15390. // check the Wolfe condition
  15391. if (dg < params->lbfgs.wolfe * dginit) {
  15392. width = inc;
  15393. } else {
  15394. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15395. // regular Wolfe conditions
  15396. return count;
  15397. }
  15398. if(dg > -params->lbfgs.wolfe*dginit) {
  15399. width = dec;
  15400. } else {
  15401. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15402. return count;
  15403. }
  15404. }
  15405. }
  15406. if (*step < params->lbfgs.min_step) {
  15407. return GGML_LINESEARCH_MINIMUM_STEP;
  15408. }
  15409. if (*step > params->lbfgs.max_step) {
  15410. return GGML_LINESEARCH_MAXIMUM_STEP;
  15411. }
  15412. if (params->lbfgs.max_linesearch <= count) {
  15413. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15414. }
  15415. (*step) *= width;
  15416. }
  15417. GGML_UNREACHABLE();
  15418. }
  15419. static enum ggml_opt_result ggml_opt_lbfgs(
  15420. struct ggml_context * ctx,
  15421. struct ggml_opt_context * opt,
  15422. struct ggml_opt_params params,
  15423. struct ggml_tensor * f,
  15424. struct ggml_cgraph * gf,
  15425. struct ggml_cgraph * gb,
  15426. ggml_opt_callback callback,
  15427. void * callback_data) {
  15428. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15429. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15430. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15431. return GGML_OPT_INVALID_WOLFE;
  15432. }
  15433. }
  15434. const int m = params.lbfgs.m;
  15435. // these will store the parameters we want to optimize
  15436. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15437. int np = 0;
  15438. int nx = 0;
  15439. for (int i = 0; i < gf->n_nodes; ++i) {
  15440. if (gf->nodes[i]->is_param) {
  15441. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15442. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15443. ps[np++] = gf->nodes[i];
  15444. nx += ggml_nelements(gf->nodes[i]);
  15445. }
  15446. }
  15447. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15448. int iter = opt->iter;
  15449. ggml_opt_init(ctx, opt, params, nx);
  15450. opt->iter = iter;
  15451. }
  15452. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15453. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15454. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15455. float * x = opt->lbfgs.x->data; // current parameters
  15456. float * xp = opt->lbfgs.xp->data; // previous parameters
  15457. float * g = opt->lbfgs.g->data; // current gradient
  15458. float * gp = opt->lbfgs.gp->data; // previous gradient
  15459. float * d = opt->lbfgs.d->data; // search direction
  15460. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15461. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15462. const float accum_norm = 1.0f / (float) n_accum;
  15463. float fx = 0.0f; // cost function value
  15464. float xnorm = 0.0f; // ||x||
  15465. float gnorm = 0.0f; // ||g||
  15466. // initialize x from the graph nodes
  15467. ggml_opt_get_params(np, ps, x);
  15468. // the L-BFGS memory
  15469. float * lm_alpha = opt->lbfgs.lmal->data;
  15470. float * lm_ys = opt->lbfgs.lmys->data;
  15471. float * lm_s = opt->lbfgs.lms->data;
  15472. float * lm_y = opt->lbfgs.lmy->data;
  15473. bool cancel = false;
  15474. // evaluate the function value and its gradient
  15475. {
  15476. ggml_opt_set_params(np, ps, x);
  15477. fx = 0;
  15478. memset(g, 0, sizeof(float)*nx);
  15479. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15480. if (callback) {
  15481. // LBFG-S does not support learning rate -> ignore learning schedule
  15482. float sched = 0;
  15483. callback(callback_data, accum_step, &sched, &cancel);
  15484. if (cancel) {
  15485. return GGML_OPT_CANCEL;
  15486. }
  15487. }
  15488. // ggml_graph_reset (gf);
  15489. ggml_set_f32 (f->grad, 1.0f);
  15490. ggml_graph_compute(gb, &cplan);
  15491. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15492. fx += ggml_get_f32_1d(f, 0);
  15493. }
  15494. fx *= accum_norm;
  15495. opt->loss_before = fx;
  15496. opt->loss_after = fx;
  15497. }
  15498. // search direction = -gradient
  15499. ggml_vec_neg_f32(nx, d, g);
  15500. // ||x||, ||g||
  15501. ggml_vec_norm_f32(nx, &xnorm, x);
  15502. ggml_vec_norm_f32(nx, &gnorm, g);
  15503. if (xnorm < 1.0f) {
  15504. xnorm = 1.0f;
  15505. }
  15506. // already optimized
  15507. if (gnorm/xnorm <= params.lbfgs.eps) {
  15508. return GGML_OPT_OK;
  15509. }
  15510. if (opt->just_initialized) {
  15511. if (pf) {
  15512. pf[0] = fx;
  15513. }
  15514. opt->lbfgs.fx_best = fx;
  15515. // initial step
  15516. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15517. opt->lbfgs.j = 0;
  15518. opt->lbfgs.k = 1;
  15519. opt->lbfgs.end = 0;
  15520. opt->lbfgs.n_no_improvement = 0;
  15521. opt->just_initialized = false;
  15522. }
  15523. float * fx_best = &opt->lbfgs.fx_best;
  15524. float * step = &opt->lbfgs.step;
  15525. int * j = &opt->lbfgs.j;
  15526. int * k = &opt->lbfgs.k;
  15527. int * end = &opt->lbfgs.end;
  15528. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15529. int ls = 0;
  15530. int bound = 0;
  15531. float ys = 0.0f;
  15532. float yy = 0.0f;
  15533. float beta = 0.0f;
  15534. int it = 0;
  15535. while (true) {
  15536. // store the current position and gradient vectors
  15537. ggml_vec_cpy_f32(nx, xp, x);
  15538. ggml_vec_cpy_f32(nx, gp, g);
  15539. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15540. // to determine if the optimization should be cancelled
  15541. // this is a simple change, but not doing this atm, since I don't have a nice
  15542. // way to test and don't want to break something with so many changes lined up
  15543. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15544. if (cancel) {
  15545. return GGML_OPT_CANCEL;
  15546. }
  15547. if (ls < 0) {
  15548. // linesearch failed - go back to the previous point and return
  15549. ggml_vec_cpy_f32(nx, x, xp);
  15550. ggml_vec_cpy_f32(nx, g, gp);
  15551. return ls;
  15552. }
  15553. opt->loss_after = fx;
  15554. ggml_vec_norm_f32(nx, &xnorm, x);
  15555. ggml_vec_norm_f32(nx, &gnorm, g);
  15556. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15557. if (xnorm < 1.0f) {
  15558. xnorm = 1.0f;
  15559. }
  15560. if (gnorm/xnorm <= params.lbfgs.eps) {
  15561. // converged
  15562. return GGML_OPT_OK;
  15563. }
  15564. // delta-based convergence test
  15565. if (pf != NULL) {
  15566. // need at least params.past iterations to start checking for convergence
  15567. if (params.past <= k[0]) {
  15568. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15569. if (fabsf(rate) < params.delta) {
  15570. return GGML_OPT_OK;
  15571. }
  15572. }
  15573. pf[k[0]%params.past] = fx;
  15574. }
  15575. // check for improvement
  15576. if (params.max_no_improvement > 0) {
  15577. if (fx < fx_best[0]) {
  15578. fx_best[0] = fx;
  15579. n_no_improvement[0] = 0;
  15580. } else {
  15581. n_no_improvement[0]++;
  15582. if (n_no_improvement[0] >= params.max_no_improvement) {
  15583. return GGML_OPT_OK;
  15584. }
  15585. }
  15586. }
  15587. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15588. // reached the maximum number of iterations
  15589. return GGML_OPT_DID_NOT_CONVERGE;
  15590. }
  15591. // update vectors s and y:
  15592. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15593. // y_{k+1} = g_{k+1} - g_{k}.
  15594. //
  15595. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15596. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15597. // compute scalars ys and yy:
  15598. // ys = y^t \cdot s -> 1 / \rho.
  15599. // yy = y^t \cdot y.
  15600. //
  15601. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15602. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15603. lm_ys[end[0]] = ys;
  15604. // find new search direction
  15605. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15606. bound = (m <= k[0]) ? m : k[0];
  15607. k[0]++;
  15608. it++;
  15609. end[0] = (end[0] + 1)%m;
  15610. // initialize search direction with -g
  15611. ggml_vec_neg_f32(nx, d, g);
  15612. j[0] = end[0];
  15613. for (int i = 0; i < bound; ++i) {
  15614. j[0] = (j[0] + m - 1) % m;
  15615. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15616. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15617. lm_alpha[j[0]] /= lm_ys[j[0]];
  15618. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15619. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15620. }
  15621. ggml_vec_scale_f32(nx, d, ys/yy);
  15622. for (int i = 0; i < bound; ++i) {
  15623. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15624. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15625. beta /= lm_ys[j[0]];
  15626. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15627. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15628. j[0] = (j[0] + 1)%m;
  15629. }
  15630. step[0] = 1.0;
  15631. }
  15632. GGML_UNREACHABLE();
  15633. }
  15634. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15635. struct ggml_opt_params result;
  15636. switch (type) {
  15637. case GGML_OPT_ADAM:
  15638. {
  15639. result = (struct ggml_opt_params) {
  15640. .type = GGML_OPT_ADAM,
  15641. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15642. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15643. .past = 0,
  15644. .delta = 1e-5f,
  15645. .max_no_improvement = 100,
  15646. .print_forward_graph = true,
  15647. .print_backward_graph = true,
  15648. .n_gradient_accumulation = 1,
  15649. .adam = {
  15650. .n_iter = 10000,
  15651. .sched = 1.000f,
  15652. .decay = 0.0f,
  15653. .decay_min_ndim = 2,
  15654. .alpha = 0.001f,
  15655. .beta1 = 0.9f,
  15656. .beta2 = 0.999f,
  15657. .eps = 1e-8f,
  15658. .eps_f = 1e-5f,
  15659. .eps_g = 1e-3f,
  15660. .gclip = 0.0f,
  15661. },
  15662. };
  15663. } break;
  15664. case GGML_OPT_LBFGS:
  15665. {
  15666. result = (struct ggml_opt_params) {
  15667. .type = GGML_OPT_LBFGS,
  15668. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15669. .n_threads = 1,
  15670. .past = 0,
  15671. .delta = 1e-5f,
  15672. .max_no_improvement = 0,
  15673. .print_forward_graph = true,
  15674. .print_backward_graph = true,
  15675. .n_gradient_accumulation = 1,
  15676. .lbfgs = {
  15677. .m = 6,
  15678. .n_iter = 100,
  15679. .max_linesearch = 20,
  15680. .eps = 1e-5f,
  15681. .ftol = 1e-4f,
  15682. .wolfe = 0.9f,
  15683. .min_step = 1e-20f,
  15684. .max_step = 1e+20f,
  15685. .linesearch = GGML_LINESEARCH_DEFAULT,
  15686. },
  15687. };
  15688. } break;
  15689. }
  15690. return result;
  15691. }
  15692. GGML_API void ggml_opt_init(
  15693. struct ggml_context * ctx,
  15694. struct ggml_opt_context * opt,
  15695. struct ggml_opt_params params,
  15696. int64_t nx) {
  15697. opt->ctx = ctx;
  15698. opt->params = params;
  15699. opt->iter = 0;
  15700. opt->nx = nx;
  15701. opt->just_initialized = true;
  15702. if (opt->ctx == NULL) {
  15703. struct ggml_init_params ctx_opt_params;
  15704. if (opt->params.type == GGML_OPT_ADAM) {
  15705. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15706. if (opt->params.past > 0) {
  15707. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15708. }
  15709. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15710. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15711. if (opt->params.past > 0) {
  15712. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15713. }
  15714. }
  15715. ctx_opt_params.mem_buffer = NULL;
  15716. ctx_opt_params.no_alloc = false;
  15717. opt->ctx = ggml_init(ctx_opt_params);
  15718. }
  15719. switch (opt->params.type) {
  15720. case GGML_OPT_ADAM:
  15721. {
  15722. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15723. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15724. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15725. opt->adam.pf = params.past > 0
  15726. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15727. : NULL;
  15728. ggml_set_zero(opt->adam.m);
  15729. ggml_set_zero(opt->adam.v);
  15730. if (opt->adam.pf) {
  15731. ggml_set_zero(opt->adam.pf);
  15732. }
  15733. } break;
  15734. case GGML_OPT_LBFGS:
  15735. {
  15736. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15737. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15738. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15739. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15740. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15741. opt->lbfgs.pf = params.past > 0
  15742. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15743. : NULL;
  15744. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15745. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15746. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15747. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15748. ggml_set_zero(opt->lbfgs.x);
  15749. ggml_set_zero(opt->lbfgs.xp);
  15750. ggml_set_zero(opt->lbfgs.g);
  15751. ggml_set_zero(opt->lbfgs.gp);
  15752. ggml_set_zero(opt->lbfgs.d);
  15753. if (opt->lbfgs.pf) {
  15754. ggml_set_zero(opt->lbfgs.pf);
  15755. }
  15756. ggml_set_zero(opt->lbfgs.lmal);
  15757. ggml_set_zero(opt->lbfgs.lmys);
  15758. ggml_set_zero(opt->lbfgs.lms);
  15759. ggml_set_zero(opt->lbfgs.lmy);
  15760. } break;
  15761. }
  15762. }
  15763. enum ggml_opt_result ggml_opt(
  15764. struct ggml_context * ctx,
  15765. struct ggml_opt_params params,
  15766. struct ggml_tensor * f) {
  15767. bool free_ctx = false;
  15768. if (ctx == NULL) {
  15769. struct ggml_init_params params_ctx = {
  15770. .mem_size = 16*1024*1024,
  15771. .mem_buffer = NULL,
  15772. .no_alloc = false,
  15773. };
  15774. ctx = ggml_init(params_ctx);
  15775. if (ctx == NULL) {
  15776. return GGML_OPT_NO_CONTEXT;
  15777. }
  15778. free_ctx = true;
  15779. }
  15780. enum ggml_opt_result result = GGML_OPT_OK;
  15781. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15782. ggml_opt_init(ctx, opt, params, 0);
  15783. result = ggml_opt_resume(ctx, opt, f);
  15784. if (free_ctx) {
  15785. ggml_free(ctx);
  15786. }
  15787. return result;
  15788. }
  15789. enum ggml_opt_result ggml_opt_resume(
  15790. struct ggml_context * ctx,
  15791. struct ggml_opt_context * opt,
  15792. struct ggml_tensor * f) {
  15793. // build forward + backward compute graphs
  15794. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15795. ggml_build_forward_expand(gf, f);
  15796. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15797. ggml_build_backward_expand(ctx, gf, gb, true);
  15798. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15799. }
  15800. enum ggml_opt_result ggml_opt_resume_g(
  15801. struct ggml_context * ctx,
  15802. struct ggml_opt_context * opt,
  15803. struct ggml_tensor * f,
  15804. struct ggml_cgraph * gf,
  15805. struct ggml_cgraph * gb,
  15806. ggml_opt_callback callback,
  15807. void * callback_data) {
  15808. // build forward + backward compute graphs
  15809. enum ggml_opt_result result = GGML_OPT_OK;
  15810. switch (opt->params.type) {
  15811. case GGML_OPT_ADAM:
  15812. {
  15813. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15814. } break;
  15815. case GGML_OPT_LBFGS:
  15816. {
  15817. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15818. } break;
  15819. }
  15820. if (opt->params.print_forward_graph) {
  15821. ggml_graph_print (gf);
  15822. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15823. }
  15824. if (opt->params.print_backward_graph) {
  15825. ggml_graph_print (gb);
  15826. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15827. }
  15828. return result;
  15829. }
  15830. ////////////////////////////////////////////////////////////////////////////////
  15831. void ggml_quantize_init(enum ggml_type type) {
  15832. ggml_critical_section_start();
  15833. switch (type) {
  15834. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15835. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15836. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15837. default: // nothing
  15838. break;
  15839. }
  15840. ggml_critical_section_end();
  15841. }
  15842. void ggml_quantize_free(void) {
  15843. ggml_critical_section_start();
  15844. iq2xs_free_impl(256);
  15845. iq2xs_free_impl(512);
  15846. ggml_critical_section_end();
  15847. }
  15848. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15849. assert(k % QK4_0 == 0);
  15850. const int nb = k / QK4_0;
  15851. for (int b = 0; b < n; b += k) {
  15852. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15853. quantize_row_q4_0_reference(src + b, y, k);
  15854. for (int i = 0; i < nb; i++) {
  15855. for (int j = 0; j < QK4_0; j += 2) {
  15856. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15857. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15858. hist[vi0]++;
  15859. hist[vi1]++;
  15860. }
  15861. }
  15862. }
  15863. return (n/QK4_0*sizeof(block_q4_0));
  15864. }
  15865. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15866. assert(k % QK4_1 == 0);
  15867. const int nb = k / QK4_1;
  15868. for (int b = 0; b < n; b += k) {
  15869. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15870. quantize_row_q4_1_reference(src + b, y, k);
  15871. for (int i = 0; i < nb; i++) {
  15872. for (int j = 0; j < QK4_1; j += 2) {
  15873. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15874. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15875. hist[vi0]++;
  15876. hist[vi1]++;
  15877. }
  15878. }
  15879. }
  15880. return (n/QK4_1*sizeof(block_q4_1));
  15881. }
  15882. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15883. assert(k % QK5_0 == 0);
  15884. const int nb = k / QK5_0;
  15885. for (int b = 0; b < n; b += k) {
  15886. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15887. quantize_row_q5_0_reference(src + b, y, k);
  15888. for (int i = 0; i < nb; i++) {
  15889. uint32_t qh;
  15890. memcpy(&qh, &y[i].qh, sizeof(qh));
  15891. for (int j = 0; j < QK5_0; j += 2) {
  15892. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15893. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15894. // cast to 16 bins
  15895. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15896. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15897. hist[vi0]++;
  15898. hist[vi1]++;
  15899. }
  15900. }
  15901. }
  15902. return (n/QK5_0*sizeof(block_q5_0));
  15903. }
  15904. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15905. assert(k % QK5_1 == 0);
  15906. const int nb = k / QK5_1;
  15907. for (int b = 0; b < n; b += k) {
  15908. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15909. quantize_row_q5_1_reference(src + b, y, k);
  15910. for (int i = 0; i < nb; i++) {
  15911. uint32_t qh;
  15912. memcpy(&qh, &y[i].qh, sizeof(qh));
  15913. for (int j = 0; j < QK5_1; j += 2) {
  15914. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15915. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15916. // cast to 16 bins
  15917. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15918. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15919. hist[vi0]++;
  15920. hist[vi1]++;
  15921. }
  15922. }
  15923. }
  15924. return (n/QK5_1*sizeof(block_q5_1));
  15925. }
  15926. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15927. assert(k % QK8_0 == 0);
  15928. const int nb = k / QK8_0;
  15929. for (int b = 0; b < n; b += k) {
  15930. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15931. quantize_row_q8_0_reference(src + b, y, k);
  15932. for (int i = 0; i < nb; i++) {
  15933. for (int j = 0; j < QK8_0; ++j) {
  15934. const int8_t vi = y[i].qs[j];
  15935. hist[vi/16 + 8]++;
  15936. }
  15937. }
  15938. }
  15939. return (n/QK8_0*sizeof(block_q8_0));
  15940. }
  15941. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15942. return
  15943. type == GGML_TYPE_IQ2_XXS ||
  15944. type == GGML_TYPE_IQ2_XS;
  15945. }
  15946. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15947. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15948. ggml_quantize_init(type); // this is noop if already initialized
  15949. size_t result = 0;
  15950. int n = nrows * n_per_row;
  15951. switch (type) {
  15952. case GGML_TYPE_Q4_0:
  15953. {
  15954. GGML_ASSERT(start % QK4_0 == 0);
  15955. GGML_ASSERT(start % n_per_row == 0);
  15956. size_t start_row = start / n_per_row;
  15957. size_t row_size = ggml_row_size(type, n_per_row);
  15958. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15959. GGML_ASSERT(result == row_size * nrows);
  15960. } break;
  15961. case GGML_TYPE_Q4_1:
  15962. {
  15963. GGML_ASSERT(start % QK4_1 == 0);
  15964. GGML_ASSERT(start % n_per_row == 0);
  15965. size_t start_row = start / n_per_row;
  15966. size_t row_size = ggml_row_size(type, n_per_row);
  15967. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15968. GGML_ASSERT(result == row_size * nrows);
  15969. } break;
  15970. case GGML_TYPE_Q5_0:
  15971. {
  15972. GGML_ASSERT(start % QK5_0 == 0);
  15973. GGML_ASSERT(start % n_per_row == 0);
  15974. size_t start_row = start / n_per_row;
  15975. size_t row_size = ggml_row_size(type, n_per_row);
  15976. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15977. GGML_ASSERT(result == row_size * nrows);
  15978. } break;
  15979. case GGML_TYPE_Q5_1:
  15980. {
  15981. GGML_ASSERT(start % QK5_1 == 0);
  15982. GGML_ASSERT(start % n_per_row == 0);
  15983. size_t start_row = start / n_per_row;
  15984. size_t row_size = ggml_row_size(type, n_per_row);
  15985. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15986. GGML_ASSERT(result == row_size * nrows);
  15987. } break;
  15988. case GGML_TYPE_Q8_0:
  15989. {
  15990. GGML_ASSERT(start % QK8_0 == 0);
  15991. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15992. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15993. } break;
  15994. case GGML_TYPE_Q2_K:
  15995. {
  15996. GGML_ASSERT(start % QK_K == 0);
  15997. GGML_ASSERT(start % n_per_row == 0);
  15998. size_t start_row = start / n_per_row;
  15999. size_t row_size = ggml_row_size(type, n_per_row);
  16000. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16001. GGML_ASSERT(result == row_size * nrows);
  16002. } break;
  16003. case GGML_TYPE_Q3_K:
  16004. {
  16005. GGML_ASSERT(start % QK_K == 0);
  16006. GGML_ASSERT(start % n_per_row == 0);
  16007. size_t start_row = start / n_per_row;
  16008. size_t row_size = ggml_row_size(type, n_per_row);
  16009. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16010. GGML_ASSERT(result == row_size * nrows);
  16011. } break;
  16012. case GGML_TYPE_Q4_K:
  16013. {
  16014. GGML_ASSERT(start % QK_K == 0);
  16015. GGML_ASSERT(start % n_per_row == 0);
  16016. size_t start_row = start / n_per_row;
  16017. size_t row_size = ggml_row_size(type, n_per_row);
  16018. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16019. GGML_ASSERT(result == row_size * nrows);
  16020. } break;
  16021. case GGML_TYPE_Q5_K:
  16022. {
  16023. GGML_ASSERT(start % QK_K == 0);
  16024. GGML_ASSERT(start % n_per_row == 0);
  16025. size_t start_row = start / n_per_row;
  16026. size_t row_size = ggml_row_size(type, n_per_row);
  16027. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16028. GGML_ASSERT(result == row_size * nrows);
  16029. } break;
  16030. case GGML_TYPE_Q6_K:
  16031. {
  16032. GGML_ASSERT(start % QK_K == 0);
  16033. GGML_ASSERT(start % n_per_row == 0);
  16034. size_t start_row = start / n_per_row;
  16035. size_t row_size = ggml_row_size(type, n_per_row);
  16036. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16037. GGML_ASSERT(result == row_size * nrows);
  16038. } break;
  16039. case GGML_TYPE_IQ2_XXS:
  16040. {
  16041. GGML_ASSERT(start % QK_K == 0);
  16042. GGML_ASSERT(start % n_per_row == 0);
  16043. GGML_ASSERT(imatrix);
  16044. size_t start_row = start / n_per_row;
  16045. size_t row_size = ggml_row_size(type, n_per_row);
  16046. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16047. GGML_ASSERT(result == row_size * nrows);
  16048. } break;
  16049. case GGML_TYPE_IQ2_XS:
  16050. {
  16051. GGML_ASSERT(start % QK_K == 0);
  16052. GGML_ASSERT(start % n_per_row == 0);
  16053. GGML_ASSERT(imatrix);
  16054. size_t start_row = start / n_per_row;
  16055. size_t row_size = ggml_row_size(type, n_per_row);
  16056. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16057. GGML_ASSERT(result == row_size * nrows);
  16058. } break;
  16059. case GGML_TYPE_IQ3_XXS:
  16060. {
  16061. GGML_ASSERT(start % QK_K == 0);
  16062. GGML_ASSERT(start % n_per_row == 0);
  16063. size_t start_row = start / n_per_row;
  16064. size_t row_size = ggml_row_size(type, n_per_row);
  16065. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16066. GGML_ASSERT(result == row_size * nrows);
  16067. } break;
  16068. case GGML_TYPE_F16:
  16069. {
  16070. size_t elemsize = sizeof(ggml_fp16_t);
  16071. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16072. result = n * elemsize;
  16073. } break;
  16074. case GGML_TYPE_F32:
  16075. {
  16076. size_t elemsize = sizeof(float);
  16077. result = n * elemsize;
  16078. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16079. } break;
  16080. default:
  16081. assert(false);
  16082. }
  16083. return result;
  16084. }
  16085. ////////////////////////////////////////////////////////////////////////////////
  16086. struct gguf_str {
  16087. uint64_t n; // GGUFv2
  16088. char * data;
  16089. };
  16090. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16091. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16092. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16093. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16094. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16095. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16096. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16097. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16098. [GGUF_TYPE_BOOL] = sizeof(bool),
  16099. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16100. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16101. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16102. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16103. [GGUF_TYPE_ARRAY] = 0, // undefined
  16104. };
  16105. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16106. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16107. [GGUF_TYPE_UINT8] = "u8",
  16108. [GGUF_TYPE_INT8] = "i8",
  16109. [GGUF_TYPE_UINT16] = "u16",
  16110. [GGUF_TYPE_INT16] = "i16",
  16111. [GGUF_TYPE_UINT32] = "u32",
  16112. [GGUF_TYPE_INT32] = "i32",
  16113. [GGUF_TYPE_FLOAT32] = "f32",
  16114. [GGUF_TYPE_BOOL] = "bool",
  16115. [GGUF_TYPE_STRING] = "str",
  16116. [GGUF_TYPE_ARRAY] = "arr",
  16117. [GGUF_TYPE_UINT64] = "u64",
  16118. [GGUF_TYPE_INT64] = "i64",
  16119. [GGUF_TYPE_FLOAT64] = "f64",
  16120. };
  16121. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16122. union gguf_value {
  16123. uint8_t uint8;
  16124. int8_t int8;
  16125. uint16_t uint16;
  16126. int16_t int16;
  16127. uint32_t uint32;
  16128. int32_t int32;
  16129. float float32;
  16130. uint64_t uint64;
  16131. int64_t int64;
  16132. double float64;
  16133. bool bool_;
  16134. struct gguf_str str;
  16135. struct {
  16136. enum gguf_type type;
  16137. uint64_t n; // GGUFv2
  16138. void * data;
  16139. } arr;
  16140. };
  16141. struct gguf_kv {
  16142. struct gguf_str key;
  16143. enum gguf_type type;
  16144. union gguf_value value;
  16145. };
  16146. struct gguf_header {
  16147. char magic[4];
  16148. uint32_t version;
  16149. uint64_t n_tensors; // GGUFv2
  16150. uint64_t n_kv; // GGUFv2
  16151. };
  16152. struct gguf_tensor_info {
  16153. struct gguf_str name;
  16154. uint32_t n_dims;
  16155. uint64_t ne[GGML_MAX_DIMS];
  16156. enum ggml_type type;
  16157. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16158. // for writing API
  16159. const void * data;
  16160. size_t size;
  16161. };
  16162. struct gguf_context {
  16163. struct gguf_header header;
  16164. struct gguf_kv * kv;
  16165. struct gguf_tensor_info * infos;
  16166. size_t alignment;
  16167. size_t offset; // offset of `data` from beginning of file
  16168. size_t size; // size of `data` in bytes
  16169. //uint8_t * padding;
  16170. void * data;
  16171. };
  16172. static size_t gguf_type_size(enum gguf_type type) {
  16173. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16174. return GGUF_TYPE_SIZE[type];
  16175. }
  16176. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16177. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16178. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16179. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16180. GGML_ASSERT(info->ne[i] > 0);
  16181. }
  16182. // prevent overflow for total number of elements
  16183. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16184. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16185. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16186. }
  16187. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16188. const size_t n = fread(dst, 1, size, file);
  16189. *offset += n;
  16190. return n == size;
  16191. }
  16192. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16193. p->n = 0;
  16194. p->data = NULL;
  16195. bool ok = true;
  16196. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16197. // early exit if string length is invalid, prevents from integer overflow
  16198. if (p->n == SIZE_MAX) {
  16199. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16200. return false;
  16201. }
  16202. p->data = GGML_CALLOC(p->n + 1, 1);
  16203. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16204. return ok;
  16205. }
  16206. struct gguf_context * gguf_init_empty(void) {
  16207. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16208. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16209. ctx->header.version = GGUF_VERSION;
  16210. ctx->header.n_tensors = 0;
  16211. ctx->header.n_kv = 0;
  16212. ctx->kv = NULL;
  16213. ctx->infos = NULL;
  16214. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16215. ctx->offset = 0;
  16216. ctx->size = 0;
  16217. ctx->data = NULL;
  16218. return ctx;
  16219. }
  16220. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16221. FILE * file = fopen(fname, "rb");
  16222. if (!file) {
  16223. return NULL;
  16224. }
  16225. // offset from start of file
  16226. size_t offset = 0;
  16227. char magic[4];
  16228. // check the magic before making allocations
  16229. {
  16230. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16231. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16232. if (magic[i] != GGUF_MAGIC[i]) {
  16233. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16234. fclose(file);
  16235. return NULL;
  16236. }
  16237. }
  16238. }
  16239. bool ok = true;
  16240. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16241. // read the header
  16242. {
  16243. strncpy(ctx->header.magic, magic, 4);
  16244. ctx->kv = NULL;
  16245. ctx->infos = NULL;
  16246. ctx->data = NULL;
  16247. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16248. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16249. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16250. if (ctx->header.version == 1) {
  16251. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16252. fclose(file);
  16253. gguf_free(ctx);
  16254. return NULL;
  16255. }
  16256. // sanity-checks to prevent from integer/buffer overflows
  16257. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16258. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16259. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16260. if (!ok) {
  16261. fprintf(stderr, "%s: failed to read header\n", __func__);
  16262. fclose(file);
  16263. gguf_free(ctx);
  16264. return NULL;
  16265. }
  16266. }
  16267. // read the kv pairs
  16268. {
  16269. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16270. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16271. struct gguf_kv * kv = &ctx->kv[i];
  16272. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16273. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16274. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16275. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16276. switch (kv->type) {
  16277. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16278. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16279. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16280. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16281. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16282. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16283. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16284. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16285. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16286. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16287. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16288. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16289. case GGUF_TYPE_ARRAY:
  16290. {
  16291. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16292. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16293. switch (kv->value.arr.type) {
  16294. case GGUF_TYPE_UINT8:
  16295. case GGUF_TYPE_INT8:
  16296. case GGUF_TYPE_UINT16:
  16297. case GGUF_TYPE_INT16:
  16298. case GGUF_TYPE_UINT32:
  16299. case GGUF_TYPE_INT32:
  16300. case GGUF_TYPE_FLOAT32:
  16301. case GGUF_TYPE_UINT64:
  16302. case GGUF_TYPE_INT64:
  16303. case GGUF_TYPE_FLOAT64:
  16304. case GGUF_TYPE_BOOL:
  16305. {
  16306. // prevent from integer overflow in the malloc below
  16307. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16308. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16309. fclose(file);
  16310. gguf_free(ctx);
  16311. return NULL;
  16312. }
  16313. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16314. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16315. } break;
  16316. case GGUF_TYPE_STRING:
  16317. {
  16318. // prevent from integer overflow in the malloc below
  16319. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16320. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16321. fclose(file);
  16322. gguf_free(ctx);
  16323. return NULL;
  16324. }
  16325. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16326. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16327. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16328. }
  16329. } break;
  16330. case GGUF_TYPE_ARRAY:
  16331. default: GGML_ASSERT(false && "invalid type"); break;
  16332. }
  16333. } break;
  16334. default: GGML_ASSERT(false && "invalid type");
  16335. }
  16336. if (!ok) {
  16337. break;
  16338. }
  16339. }
  16340. if (!ok) {
  16341. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16342. fclose(file);
  16343. gguf_free(ctx);
  16344. return NULL;
  16345. }
  16346. }
  16347. // read the tensor infos
  16348. {
  16349. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16350. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16351. struct gguf_tensor_info * info = &ctx->infos[i];
  16352. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16353. info->ne[j] = 1;
  16354. }
  16355. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16356. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16357. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16358. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16359. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16360. }
  16361. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16362. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16363. gguf_tensor_info_sanitize(info);
  16364. if (!ok) {
  16365. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16366. fclose(file);
  16367. gguf_free(ctx);
  16368. return NULL;
  16369. }
  16370. }
  16371. }
  16372. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16373. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16374. if (alignment_idx != -1) {
  16375. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16376. }
  16377. // we require the data section to be aligned, so take into account any padding
  16378. {
  16379. const size_t offset_pad = offset % ctx->alignment;
  16380. if (offset_pad != 0) {
  16381. offset += ctx->alignment - offset_pad;
  16382. fseek(file, offset, SEEK_SET);
  16383. }
  16384. }
  16385. // store the current file offset - this is where the data section starts
  16386. ctx->offset = offset;
  16387. // compute the total size of the data section, taking into account the alignment
  16388. {
  16389. ctx->size = 0;
  16390. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16391. struct gguf_tensor_info * info = &ctx->infos[i];
  16392. const int64_t ne =
  16393. (int64_t) info->ne[0] *
  16394. (int64_t) info->ne[1] *
  16395. (int64_t) info->ne[2] *
  16396. (int64_t) info->ne[3];
  16397. if (ne % ggml_blck_size(info->type) != 0) {
  16398. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16399. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16400. fclose(file);
  16401. gguf_free(ctx);
  16402. return NULL;
  16403. }
  16404. const size_t size_cur = ggml_row_size(info->type, ne);
  16405. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16406. }
  16407. }
  16408. // load the tensor data only if requested
  16409. if (params.ctx != NULL) {
  16410. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16411. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16412. // the ggml_tensor structs to the appropriate locations in the binary blob
  16413. // compute the exact size needed for the new ggml_context
  16414. const size_t mem_size =
  16415. params.no_alloc ?
  16416. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16417. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16418. struct ggml_init_params pdata = {
  16419. .mem_size = mem_size,
  16420. .mem_buffer = NULL,
  16421. .no_alloc = params.no_alloc,
  16422. };
  16423. *params.ctx = ggml_init(pdata);
  16424. struct ggml_context * ctx_data = *params.ctx;
  16425. struct ggml_tensor * data = NULL;
  16426. if (!params.no_alloc) {
  16427. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16428. ok = ok && data != NULL;
  16429. // read the binary blob with the tensor data
  16430. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16431. if (!ok) {
  16432. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16433. fclose(file);
  16434. ggml_free(ctx_data);
  16435. gguf_free(ctx);
  16436. return NULL;
  16437. }
  16438. ctx->data = data->data;
  16439. }
  16440. ggml_set_no_alloc(ctx_data, true);
  16441. // create the tensors
  16442. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16443. const int64_t ne[GGML_MAX_DIMS] = {
  16444. ctx->infos[i].ne[0],
  16445. ctx->infos[i].ne[1],
  16446. ctx->infos[i].ne[2],
  16447. ctx->infos[i].ne[3],
  16448. };
  16449. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16450. ok = ok && cur != NULL;
  16451. ggml_set_name(cur, ctx->infos[i].name.data);
  16452. if (!ok) {
  16453. break;
  16454. }
  16455. // point the data member to the appropriate location in the binary blob using the tensor infos
  16456. if (!params.no_alloc) {
  16457. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16458. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16459. }
  16460. }
  16461. if (!ok) {
  16462. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16463. fclose(file);
  16464. ggml_free(ctx_data);
  16465. gguf_free(ctx);
  16466. return NULL;
  16467. }
  16468. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16469. }
  16470. fclose(file);
  16471. return ctx;
  16472. }
  16473. void gguf_free(struct gguf_context * ctx) {
  16474. if (ctx == NULL) {
  16475. return;
  16476. }
  16477. if (ctx->kv) {
  16478. // free string memory - not great..
  16479. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16480. struct gguf_kv * kv = &ctx->kv[i];
  16481. if (kv->key.data) {
  16482. GGML_FREE(kv->key.data);
  16483. }
  16484. if (kv->type == GGUF_TYPE_STRING) {
  16485. if (kv->value.str.data) {
  16486. GGML_FREE(kv->value.str.data);
  16487. }
  16488. }
  16489. if (kv->type == GGUF_TYPE_ARRAY) {
  16490. if (kv->value.arr.data) {
  16491. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16492. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16493. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16494. if (str->data) {
  16495. GGML_FREE(str->data);
  16496. }
  16497. }
  16498. }
  16499. GGML_FREE(kv->value.arr.data);
  16500. }
  16501. }
  16502. }
  16503. GGML_FREE(ctx->kv);
  16504. }
  16505. if (ctx->infos) {
  16506. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16507. struct gguf_tensor_info * info = &ctx->infos[i];
  16508. if (info->name.data) {
  16509. GGML_FREE(info->name.data);
  16510. }
  16511. }
  16512. GGML_FREE(ctx->infos);
  16513. }
  16514. GGML_ALIGNED_FREE(ctx);
  16515. }
  16516. const char * gguf_type_name(enum gguf_type type) {
  16517. return GGUF_TYPE_NAME[type];
  16518. }
  16519. int gguf_get_version(const struct gguf_context * ctx) {
  16520. return ctx->header.version;
  16521. }
  16522. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16523. return ctx->alignment;
  16524. }
  16525. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16526. return ctx->offset;
  16527. }
  16528. void * gguf_get_data(const struct gguf_context * ctx) {
  16529. return ctx->data;
  16530. }
  16531. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16532. return ctx->header.n_kv;
  16533. }
  16534. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16535. // return -1 if key not found
  16536. int keyfound = -1;
  16537. const int n_kv = gguf_get_n_kv(ctx);
  16538. for (int i = 0; i < n_kv; ++i) {
  16539. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16540. keyfound = i;
  16541. break;
  16542. }
  16543. }
  16544. return keyfound;
  16545. }
  16546. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16547. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16548. return ctx->kv[key_id].key.data;
  16549. }
  16550. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16551. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16552. return ctx->kv[key_id].type;
  16553. }
  16554. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16555. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16556. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16557. return ctx->kv[key_id].value.arr.type;
  16558. }
  16559. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16560. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16561. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16562. return ctx->kv[key_id].value.arr.data;
  16563. }
  16564. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16565. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16566. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16567. struct gguf_kv * kv = &ctx->kv[key_id];
  16568. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16569. return str->data;
  16570. }
  16571. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16572. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16573. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16574. return ctx->kv[key_id].value.arr.n;
  16575. }
  16576. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16577. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16578. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16579. return ctx->kv[key_id].value.uint8;
  16580. }
  16581. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16582. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16583. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16584. return ctx->kv[key_id].value.int8;
  16585. }
  16586. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16587. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16588. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16589. return ctx->kv[key_id].value.uint16;
  16590. }
  16591. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16592. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16593. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16594. return ctx->kv[key_id].value.int16;
  16595. }
  16596. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16597. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16598. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16599. return ctx->kv[key_id].value.uint32;
  16600. }
  16601. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16602. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16603. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16604. return ctx->kv[key_id].value.int32;
  16605. }
  16606. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16607. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16608. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16609. return ctx->kv[key_id].value.float32;
  16610. }
  16611. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16612. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16613. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16614. return ctx->kv[key_id].value.uint64;
  16615. }
  16616. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16617. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16618. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16619. return ctx->kv[key_id].value.int64;
  16620. }
  16621. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16622. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16623. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16624. return ctx->kv[key_id].value.float64;
  16625. }
  16626. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16627. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16628. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16629. return ctx->kv[key_id].value.bool_;
  16630. }
  16631. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16632. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16633. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16634. return ctx->kv[key_id].value.str.data;
  16635. }
  16636. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16637. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16638. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16639. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16640. return &ctx->kv[key_id].value;
  16641. }
  16642. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16643. return ctx->header.n_tensors;
  16644. }
  16645. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16646. // return -1 if tensor not found
  16647. int tensorfound = -1;
  16648. const int n_tensors = gguf_get_n_tensors(ctx);
  16649. for (int i = 0; i < n_tensors; ++i) {
  16650. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16651. tensorfound = i;
  16652. break;
  16653. }
  16654. }
  16655. return tensorfound;
  16656. }
  16657. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16658. return ctx->infos[i].offset;
  16659. }
  16660. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16661. return ctx->infos[i].name.data;
  16662. }
  16663. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16664. return ctx->infos[i].type;
  16665. }
  16666. // returns the index
  16667. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16668. const int idx = gguf_find_key(ctx, key);
  16669. if (idx >= 0) {
  16670. return idx;
  16671. }
  16672. const int n_kv = gguf_get_n_kv(ctx);
  16673. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16674. ctx->kv[n_kv].key.n = strlen(key);
  16675. ctx->kv[n_kv].key.data = strdup(key);
  16676. ctx->header.n_kv++;
  16677. return n_kv;
  16678. }
  16679. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16680. const int idx = gguf_get_or_add_key(ctx, key);
  16681. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16682. ctx->kv[idx].value.uint8 = val;
  16683. }
  16684. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16685. const int idx = gguf_get_or_add_key(ctx, key);
  16686. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16687. ctx->kv[idx].value.int8 = val;
  16688. }
  16689. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16690. const int idx = gguf_get_or_add_key(ctx, key);
  16691. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16692. ctx->kv[idx].value.uint16 = val;
  16693. }
  16694. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16695. const int idx = gguf_get_or_add_key(ctx, key);
  16696. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16697. ctx->kv[idx].value.int16 = val;
  16698. }
  16699. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16700. const int idx = gguf_get_or_add_key(ctx, key);
  16701. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16702. ctx->kv[idx].value.uint32 = val;
  16703. }
  16704. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16705. const int idx = gguf_get_or_add_key(ctx, key);
  16706. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16707. ctx->kv[idx].value.int32 = val;
  16708. }
  16709. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16710. const int idx = gguf_get_or_add_key(ctx, key);
  16711. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16712. ctx->kv[idx].value.float32 = val;
  16713. }
  16714. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16715. const int idx = gguf_get_or_add_key(ctx, key);
  16716. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16717. ctx->kv[idx].value.uint64 = val;
  16718. }
  16719. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16720. const int idx = gguf_get_or_add_key(ctx, key);
  16721. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16722. ctx->kv[idx].value.int64 = val;
  16723. }
  16724. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16725. const int idx = gguf_get_or_add_key(ctx, key);
  16726. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16727. ctx->kv[idx].value.float64 = val;
  16728. }
  16729. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16730. const int idx = gguf_get_or_add_key(ctx, key);
  16731. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16732. ctx->kv[idx].value.bool_ = val;
  16733. }
  16734. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16735. const int idx = gguf_get_or_add_key(ctx, key);
  16736. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16737. ctx->kv[idx].value.str.n = strlen(val);
  16738. ctx->kv[idx].value.str.data = strdup(val);
  16739. }
  16740. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16741. const int idx = gguf_get_or_add_key(ctx, key);
  16742. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16743. ctx->kv[idx].value.arr.type = type;
  16744. ctx->kv[idx].value.arr.n = n;
  16745. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16746. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16747. }
  16748. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16749. const int idx = gguf_get_or_add_key(ctx, key);
  16750. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16751. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16752. ctx->kv[idx].value.arr.n = n;
  16753. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16754. for (int i = 0; i < n; i++) {
  16755. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16756. str->n = strlen(data[i]);
  16757. str->data = strdup(data[i]);
  16758. }
  16759. }
  16760. // set or add KV pairs from another context
  16761. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16762. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16763. switch (src->kv[i].type) {
  16764. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16765. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16766. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16767. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16768. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16769. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16770. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16771. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16772. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16773. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16774. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16775. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16776. case GGUF_TYPE_ARRAY:
  16777. {
  16778. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16779. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16780. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16781. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16782. }
  16783. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16784. GGML_FREE((void *)data);
  16785. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16786. GGML_ASSERT(false && "nested arrays not supported");
  16787. } else {
  16788. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16789. }
  16790. } break;
  16791. default: GGML_ASSERT(false && "invalid type"); break;
  16792. }
  16793. }
  16794. }
  16795. void gguf_add_tensor(
  16796. struct gguf_context * ctx,
  16797. const struct ggml_tensor * tensor) {
  16798. const int idx = ctx->header.n_tensors;
  16799. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16800. ctx->infos[idx].name.n = strlen(tensor->name);
  16801. ctx->infos[idx].name.data = strdup(tensor->name);
  16802. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16803. ctx->infos[idx].ne[i] = 1;
  16804. }
  16805. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16806. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16807. ctx->infos[idx].ne[i] = tensor->ne[i];
  16808. }
  16809. ctx->infos[idx].type = tensor->type;
  16810. ctx->infos[idx].offset = 0;
  16811. ctx->infos[idx].data = tensor->data;
  16812. ctx->infos[idx].size = ggml_nbytes(tensor);
  16813. if (ctx->header.n_tensors > 0) {
  16814. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16815. }
  16816. ctx->header.n_tensors++;
  16817. }
  16818. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16819. const int idx = gguf_find_tensor(ctx, name);
  16820. if (idx < 0) {
  16821. GGML_ASSERT(false && "tensor not found");
  16822. }
  16823. ctx->infos[idx].type = type;
  16824. }
  16825. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16826. const int idx = gguf_find_tensor(ctx, name);
  16827. if (idx < 0) {
  16828. GGML_ASSERT(false && "tensor not found");
  16829. }
  16830. ctx->infos[idx].data = data;
  16831. ctx->infos[idx].size = size;
  16832. // update offsets
  16833. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16834. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16835. }
  16836. }
  16837. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16838. // fwrite(&val->n, sizeof(val->n), 1, file);
  16839. // fwrite(val->data, sizeof(char), val->n, file);
  16840. //}
  16841. //
  16842. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16843. // fwrite(val, sizeof(char), size, file);
  16844. //}
  16845. struct gguf_buf {
  16846. void * data;
  16847. size_t size;
  16848. size_t offset;
  16849. };
  16850. static struct gguf_buf gguf_buf_init(size_t size) {
  16851. struct gguf_buf buf = {
  16852. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16853. /*buf.size =*/ size,
  16854. /*buf.offset =*/ 0,
  16855. };
  16856. return buf;
  16857. }
  16858. static void gguf_buf_free(struct gguf_buf buf) {
  16859. if (buf.data) {
  16860. GGML_FREE(buf.data);
  16861. }
  16862. }
  16863. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16864. if (buf->offset + size > buf->size) {
  16865. buf->size = 1.5*(buf->offset + size);
  16866. if (buf->data) {
  16867. buf->data = realloc(buf->data, buf->size);
  16868. }
  16869. }
  16870. }
  16871. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16872. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16873. if (buf->data) {
  16874. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16875. }
  16876. buf->offset += sizeof(val->n);
  16877. if (buf->data) {
  16878. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16879. }
  16880. buf->offset += val->n;
  16881. }
  16882. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16883. gguf_buf_grow(buf, el_size);
  16884. if (buf->data) {
  16885. memcpy((char *) buf->data + buf->offset, val, el_size);
  16886. }
  16887. buf->offset += el_size;
  16888. }
  16889. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16890. // write header
  16891. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16892. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16893. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16894. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16895. // write key-value pairs
  16896. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16897. struct gguf_kv * kv = &ctx->kv[i];
  16898. gguf_bwrite_str(buf, &kv->key);
  16899. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16900. switch (kv->type) {
  16901. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16902. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16903. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16904. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16905. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16906. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16907. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16908. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16909. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16910. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16911. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16912. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16913. case GGUF_TYPE_ARRAY:
  16914. {
  16915. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16916. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16917. switch (kv->value.arr.type) {
  16918. case GGUF_TYPE_UINT8:
  16919. case GGUF_TYPE_INT8:
  16920. case GGUF_TYPE_UINT16:
  16921. case GGUF_TYPE_INT16:
  16922. case GGUF_TYPE_UINT32:
  16923. case GGUF_TYPE_INT32:
  16924. case GGUF_TYPE_FLOAT32:
  16925. case GGUF_TYPE_UINT64:
  16926. case GGUF_TYPE_INT64:
  16927. case GGUF_TYPE_FLOAT64:
  16928. case GGUF_TYPE_BOOL:
  16929. {
  16930. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16931. } break;
  16932. case GGUF_TYPE_STRING:
  16933. {
  16934. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16935. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16936. }
  16937. } break;
  16938. case GGUF_TYPE_ARRAY:
  16939. default: GGML_ASSERT(false && "invalid type"); break;
  16940. }
  16941. } break;
  16942. default: GGML_ASSERT(false && "invalid type");
  16943. }
  16944. }
  16945. // write tensor infos
  16946. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16947. struct gguf_tensor_info * info = &ctx->infos[i];
  16948. gguf_bwrite_str(buf, &info->name);
  16949. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16950. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16951. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16952. }
  16953. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16954. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16955. }
  16956. // we require the data section to be aligned, so take into account any padding
  16957. {
  16958. const size_t offset = buf->offset;
  16959. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16960. if (offset_pad != offset) {
  16961. uint8_t pad = 0;
  16962. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16963. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16964. }
  16965. }
  16966. }
  16967. if (only_meta) {
  16968. return;
  16969. }
  16970. size_t offset = 0;
  16971. // write tensor data
  16972. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16973. struct gguf_tensor_info * info = &ctx->infos[i];
  16974. const size_t size = info->size;
  16975. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16976. gguf_bwrite_el(buf, info->data, size);
  16977. if (size_pad != size) {
  16978. uint8_t pad = 0;
  16979. for (size_t j = 0; j < size_pad - size; ++j) {
  16980. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16981. }
  16982. }
  16983. GGML_ASSERT(offset == info->offset);
  16984. offset += size_pad;
  16985. }
  16986. }
  16987. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16988. FILE * file = fopen(fname, "wb");
  16989. if (!file) {
  16990. GGML_ASSERT(false && "failed to open file for writing");
  16991. }
  16992. struct gguf_buf buf = gguf_buf_init(16*1024);
  16993. gguf_write_to_buf(ctx, &buf, only_meta);
  16994. fwrite(buf.data, 1, buf.offset, file);
  16995. gguf_buf_free(buf);
  16996. fclose(file);
  16997. }
  16998. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16999. // no allocs - only compute size
  17000. struct gguf_buf buf = gguf_buf_init(0);
  17001. gguf_write_to_buf(ctx, &buf, true);
  17002. return buf.offset;
  17003. }
  17004. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17005. struct gguf_buf buf = gguf_buf_init(16*1024);
  17006. gguf_write_to_buf(ctx, &buf, true);
  17007. memcpy(data, buf.data, buf.offset);
  17008. gguf_buf_free(buf);
  17009. }
  17010. ////////////////////////////////////////////////////////////////////////////////
  17011. int ggml_cpu_has_avx(void) {
  17012. #if defined(__AVX__)
  17013. return 1;
  17014. #else
  17015. return 0;
  17016. #endif
  17017. }
  17018. int ggml_cpu_has_avx_vnni(void) {
  17019. #if defined(__AVXVNNI__)
  17020. return 1;
  17021. #else
  17022. return 0;
  17023. #endif
  17024. }
  17025. int ggml_cpu_has_avx2(void) {
  17026. #if defined(__AVX2__)
  17027. return 1;
  17028. #else
  17029. return 0;
  17030. #endif
  17031. }
  17032. int ggml_cpu_has_avx512(void) {
  17033. #if defined(__AVX512F__)
  17034. return 1;
  17035. #else
  17036. return 0;
  17037. #endif
  17038. }
  17039. int ggml_cpu_has_avx512_vbmi(void) {
  17040. #if defined(__AVX512VBMI__)
  17041. return 1;
  17042. #else
  17043. return 0;
  17044. #endif
  17045. }
  17046. int ggml_cpu_has_avx512_vnni(void) {
  17047. #if defined(__AVX512VNNI__)
  17048. return 1;
  17049. #else
  17050. return 0;
  17051. #endif
  17052. }
  17053. int ggml_cpu_has_fma(void) {
  17054. #if defined(__FMA__)
  17055. return 1;
  17056. #else
  17057. return 0;
  17058. #endif
  17059. }
  17060. int ggml_cpu_has_neon(void) {
  17061. #if defined(__ARM_NEON)
  17062. return 1;
  17063. #else
  17064. return 0;
  17065. #endif
  17066. }
  17067. int ggml_cpu_has_arm_fma(void) {
  17068. #if defined(__ARM_FEATURE_FMA)
  17069. return 1;
  17070. #else
  17071. return 0;
  17072. #endif
  17073. }
  17074. int ggml_cpu_has_metal(void) {
  17075. #if defined(GGML_USE_METAL)
  17076. return 1;
  17077. #else
  17078. return 0;
  17079. #endif
  17080. }
  17081. int ggml_cpu_has_f16c(void) {
  17082. #if defined(__F16C__)
  17083. return 1;
  17084. #else
  17085. return 0;
  17086. #endif
  17087. }
  17088. int ggml_cpu_has_fp16_va(void) {
  17089. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17090. return 1;
  17091. #else
  17092. return 0;
  17093. #endif
  17094. }
  17095. int ggml_cpu_has_wasm_simd(void) {
  17096. #if defined(__wasm_simd128__)
  17097. return 1;
  17098. #else
  17099. return 0;
  17100. #endif
  17101. }
  17102. int ggml_cpu_has_blas(void) {
  17103. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17104. return 1;
  17105. #else
  17106. return 0;
  17107. #endif
  17108. }
  17109. int ggml_cpu_has_cublas(void) {
  17110. #if defined(GGML_USE_CUBLAS)
  17111. return 1;
  17112. #else
  17113. return 0;
  17114. #endif
  17115. }
  17116. int ggml_cpu_has_clblast(void) {
  17117. #if defined(GGML_USE_CLBLAST)
  17118. return 1;
  17119. #else
  17120. return 0;
  17121. #endif
  17122. }
  17123. int ggml_cpu_has_vulkan(void) {
  17124. #if defined(GGML_USE_VULKAN)
  17125. return 1;
  17126. #else
  17127. return 0;
  17128. #endif
  17129. }
  17130. int ggml_cpu_has_kompute(void) {
  17131. #if defined(GGML_USE_KOMPUTE)
  17132. return 1;
  17133. #else
  17134. return 0;
  17135. #endif
  17136. }
  17137. int ggml_cpu_has_sycl(void) {
  17138. #if defined(GGML_USE_SYCL)
  17139. return 1;
  17140. #else
  17141. return 0;
  17142. #endif
  17143. }
  17144. int ggml_cpu_has_gpublas(void) {
  17145. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17146. ggml_cpu_has_sycl();
  17147. }
  17148. int ggml_cpu_has_sse3(void) {
  17149. #if defined(__SSE3__)
  17150. return 1;
  17151. #else
  17152. return 0;
  17153. #endif
  17154. }
  17155. int ggml_cpu_has_ssse3(void) {
  17156. #if defined(__SSSE3__)
  17157. return 1;
  17158. #else
  17159. return 0;
  17160. #endif
  17161. }
  17162. int ggml_cpu_has_vsx(void) {
  17163. #if defined(__POWER9_VECTOR__)
  17164. return 1;
  17165. #else
  17166. return 0;
  17167. #endif
  17168. }
  17169. int ggml_cpu_has_matmul_int8(void) {
  17170. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17171. return 1;
  17172. #else
  17173. return 0;
  17174. #endif
  17175. }
  17176. ////////////////////////////////////////////////////////////////////////////////