| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678 |
- #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
- #define _USE_MATH_DEFINES // For M_PI on MSVC
- #include "ggml-impl.h"
- #include "ggml-quants.h"
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #include <malloc.h> // using malloc.h with MSC/MINGW
- #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
- #include <alloca.h>
- #endif
- #include <assert.h>
- #include <errno.h>
- #include <time.h>
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdint.h>
- #include <inttypes.h>
- #include <stdio.h>
- #include <float.h>
- #include <limits.h>
- #include <stdarg.h>
- #include <signal.h>
- #ifdef GGML_USE_METAL
- #include <unistd.h>
- #endif
- #if defined(_MSC_VER)
- // disable "possible loss of data" to avoid hundreds of casts
- // we should just be careful :)
- #pragma warning(disable: 4244 4267)
- // disable POSIX deprecation warnings
- // these functions are never going away, anyway
- #pragma warning(disable: 4996)
- #endif
- #if defined(_WIN32)
- #include <windows.h>
- typedef volatile LONG atomic_int;
- typedef atomic_int atomic_bool;
- static void atomic_store(atomic_int * ptr, LONG val) {
- InterlockedExchange(ptr, val);
- }
- static LONG atomic_load(atomic_int * ptr) {
- return InterlockedCompareExchange(ptr, 0, 0);
- }
- static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
- return InterlockedExchangeAdd(ptr, inc);
- }
- static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
- return atomic_fetch_add(ptr, -(dec));
- }
- typedef HANDLE pthread_t;
- typedef DWORD thread_ret_t;
- static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
- (void) unused;
- HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
- if (handle == NULL)
- {
- return EAGAIN;
- }
- *out = handle;
- return 0;
- }
- static int pthread_join(pthread_t thread, void * unused) {
- (void) unused;
- int ret = (int) WaitForSingleObject(thread, INFINITE);
- CloseHandle(thread);
- return ret;
- }
- static int sched_yield (void) {
- Sleep (0);
- return 0;
- }
- #else
- #include <pthread.h>
- #include <stdatomic.h>
- typedef void * thread_ret_t;
- #include <sys/types.h>
- #include <sys/stat.h>
- #include <unistd.h>
- #endif
- #ifdef GGML_USE_CPU_HBM
- #include <hbwmalloc.h>
- #endif
- #if defined(__APPLE__)
- #include <TargetConditionals.h>
- #endif
- #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
- (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
- #include <sys/wait.h>
- void ggml_print_backtrace(void) {
- /*
- #include <execinfo.h>
- #include <dlfcn.h>
- void * trace[100];
- int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
- backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
- */
- // backtrack_symbols does not show line numbers, use gdb instead
- char attach[32];
- snprintf(attach, sizeof(attach), "attach %d", getpid());
- int pid = fork();
- if (pid == 0) {
- execlp("gdb", "gdb", "--batch",
- "-ex", "set style enabled on",
- "-ex", attach,
- "-ex", "bt -frame-info source-and-location",
- "-ex", "detach",
- "-ex", "quit",
- (char *) NULL);
- } else {
- waitpid(pid, NULL, 0);
- }
- }
- #else
- void ggml_print_backtrace(void) {
- // platform not supported
- }
- #endif
- /*#define GGML_PERF*/
- #define GGML_DEBUG 0
- #define GGML_GELU_FP16
- #define GGML_GELU_QUICK_FP16
- #define GGML_SILU_FP16
- // #define GGML_CROSS_ENTROPY_EXP_FP16
- // #define GGML_FLASH_ATTN_EXP_FP16
- #define GGML_SOFT_MAX_UNROLL 4
- #define GGML_VEC_DOT_UNROLL 2
- #define GGML_VEC_MAD_UNROLL 32
- //
- // logging
- //
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- //
- // end of logging block
- //
- #ifdef GGML_USE_ACCELERATE
- // uncomment to use vDSP for soft max computation
- // note: not sure if it is actually faster
- //#define GGML_SOFT_MAX_ACCELERATE
- #endif
- #if defined(_MSC_VER) || defined(__MINGW32__)
- #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
- #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
- #else
- inline static void * ggml_aligned_malloc(size_t size) {
- if (size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
- return NULL;
- }
- void * aligned_memory = NULL;
- #ifdef GGML_USE_CPU_HBM
- int result = hbw_posix_memalign(&aligned_memory, 16, size);
- #elif GGML_USE_METAL
- int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
- #else
- int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
- #endif
- if (result != 0) {
- // Handle allocation failure
- const char *error_desc = "unknown allocation error";
- switch (result) {
- case EINVAL:
- error_desc = "invalid alignment value";
- break;
- case ENOMEM:
- error_desc = "insufficient memory";
- break;
- }
- GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
- GGML_ASSERT(false);
- return NULL;
- }
- return aligned_memory;
- }
- #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
- #ifdef GGML_USE_CPU_HBM
- #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
- #else
- #define GGML_ALIGNED_FREE(ptr) free(ptr)
- #endif
- #endif
- inline static void * ggml_malloc(size_t size) {
- if (size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
- return NULL;
- }
- void * result = malloc(size);
- if (result == NULL) {
- GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
- GGML_ASSERT(false);
- }
- return result;
- }
- // calloc
- inline static void * ggml_calloc(size_t num, size_t size) {
- if (num == 0 || size == 0) {
- GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
- return NULL;
- }
- void * result = calloc(num, size);
- if (result == NULL) {
- GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
- GGML_ASSERT(false);
- }
- return result;
- }
- #define GGML_MALLOC(size) ggml_malloc(size)
- #define GGML_CALLOC(num, size) ggml_calloc(num, size)
- #define GGML_FREE(ptr) free(ptr)
- #define UNUSED GGML_UNUSED
- #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
- #if defined(GGML_USE_ACCELERATE)
- #include <Accelerate/Accelerate.h>
- #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
- #include "ggml-opencl.h"
- #endif
- #elif defined(GGML_USE_OPENBLAS)
- #if defined(GGML_BLAS_USE_MKL)
- #include <mkl.h>
- #else
- #include <cblas.h>
- #endif
- #elif defined(GGML_USE_CUBLAS)
- #include "ggml-cuda.h"
- #elif defined(GGML_USE_CLBLAST)
- #include "ggml-opencl.h"
- #elif defined(GGML_USE_VULKAN)
- #include "ggml-vulkan.h"
- #elif defined(GGML_USE_SYCL)
- #include "ggml-sycl.h"
- #endif
- // floating point type used to accumulate sums
- typedef double ggml_float;
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- //
- // global data
- //
- // precomputed gelu table for f16 (128 KB)
- static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
- // precomputed quick gelu table for f16 (128 KB)
- static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
- // precomputed silu table for f16 (128 KB)
- static ggml_fp16_t ggml_table_silu_f16[1 << 16];
- // precomputed exp table for f16 (128 KB)
- static ggml_fp16_t ggml_table_exp_f16[1 << 16];
- // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
- float ggml_table_f32_f16[1 << 16];
- // note: do not use these inside ggml.c
- // these are meant to be used via the ggml.h API
- float ggml_fp16_to_fp32(ggml_fp16_t x) {
- return (float) GGML_FP16_TO_FP32(x);
- }
- ggml_fp16_t ggml_fp32_to_fp16(float x) {
- return GGML_FP32_TO_FP16(x);
- }
- void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
- for (int i = 0; i < n; i++) {
- y[i] = GGML_FP16_TO_FP32(x[i]);
- }
- }
- void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
- int i = 0;
- #if defined(__F16C__)
- for (; i + 7 < n; i += 8) {
- __m256 x_vec = _mm256_loadu_ps(x + i);
- __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storeu_si128((__m128i *)(y + i), y_vec);
- }
- for(; i + 3 < n; i += 4) {
- __m128 x_vec = _mm_loadu_ps(x + i);
- __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
- _mm_storel_epi64((__m128i *)(y + i), y_vec);
- }
- #endif
- for (; i < n; i++) {
- y[i] = GGML_FP32_TO_FP16(x[i]);
- }
- }
- //
- // timing
- //
- #if defined(_MSC_VER) || defined(__MINGW32__)
- static int64_t timer_freq, timer_start;
- void ggml_time_init(void) {
- LARGE_INTEGER t;
- QueryPerformanceFrequency(&t);
- timer_freq = t.QuadPart;
- // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
- // and the uptime is high enough.
- // We subtract the program start time to reduce the likelihood of that happening.
- QueryPerformanceCounter(&t);
- timer_start = t.QuadPart;
- }
- int64_t ggml_time_ms(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000) / timer_freq;
- }
- int64_t ggml_time_us(void) {
- LARGE_INTEGER t;
- QueryPerformanceCounter(&t);
- return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
- }
- #else
- void ggml_time_init(void) {}
- int64_t ggml_time_ms(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
- }
- int64_t ggml_time_us(void) {
- struct timespec ts;
- clock_gettime(CLOCK_MONOTONIC, &ts);
- return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
- }
- #endif
- int64_t ggml_cycles(void) {
- return clock();
- }
- int64_t ggml_cycles_per_ms(void) {
- return CLOCKS_PER_SEC/1000;
- }
- #ifdef GGML_PERF
- #define ggml_perf_time_ms() ggml_time_ms()
- #define ggml_perf_time_us() ggml_time_us()
- #define ggml_perf_cycles() ggml_cycles()
- #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
- #else
- #define ggml_perf_time_ms() 0
- #define ggml_perf_time_us() 0
- #define ggml_perf_cycles() 0
- #define ggml_perf_cycles_per_ms() 0
- #endif
- //
- // cache line
- //
- #if defined(__cpp_lib_hardware_interference_size)
- #define CACHE_LINE_SIZE hardware_destructive_interference_size
- #else
- #if defined(__POWER9_VECTOR__)
- #define CACHE_LINE_SIZE 128
- #else
- #define CACHE_LINE_SIZE 64
- #endif
- #endif
- static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
- static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
- static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
- static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
- [GGML_TYPE_I8] = {
- .type_name = "i8",
- .blck_size = 1,
- .type_size = sizeof(int8_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I16] = {
- .type_name = "i16",
- .blck_size = 1,
- .type_size = sizeof(int16_t),
- .is_quantized = false,
- },
- [GGML_TYPE_I32] = {
- .type_name = "i32",
- .blck_size = 1,
- .type_size = sizeof(int32_t),
- .is_quantized = false,
- },
- [GGML_TYPE_F32] = {
- .type_name = "f32",
- .blck_size = 1,
- .type_size = sizeof(float),
- .is_quantized = false,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
- .vec_dot_type = GGML_TYPE_F32,
- .nrows = 1,
- },
- [GGML_TYPE_F16] = {
- .type_name = "f16",
- .blck_size = 1,
- .type_size = sizeof(ggml_fp16_t),
- .is_quantized = false,
- .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
- .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
- .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
- .vec_dot_type = GGML_TYPE_F16,
- .nrows = 1,
- },
- [GGML_TYPE_Q4_0] = {
- .type_name = "q4_0",
- .blck_size = QK4_0,
- .type_size = sizeof(block_q4_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_0,
- .from_float = quantize_row_q4_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
- .vec_dot = ggml_vec_dot_q4_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- #if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
- #else
- .nrows = 1,
- #endif
- },
- [GGML_TYPE_Q4_1] = {
- .type_name = "q4_1",
- .blck_size = QK4_1,
- .type_size = sizeof(block_q4_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_1,
- .from_float = quantize_row_q4_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
- .vec_dot = ggml_vec_dot_q4_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- #if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
- #else
- .nrows = 1,
- #endif
- },
- [4] = { // GGML_TYPE_Q4_2
- .type_name = "DEPRECATED",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- .to_float = NULL,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = NULL,
- .vec_dot_type = GGML_TYPE_COUNT,
- .nrows = 1,
- },
- [5] = { // GGML_TYPE_Q4_3
- .type_name = "DEPRECATED",
- .blck_size = 0,
- .type_size = 0,
- .is_quantized = false,
- .to_float = NULL,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = NULL,
- .vec_dot_type = GGML_TYPE_COUNT,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_0] = {
- .type_name = "q5_0",
- .blck_size = QK5_0,
- .type_size = sizeof(block_q5_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_0,
- .from_float = quantize_row_q5_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
- .vec_dot = ggml_vec_dot_q5_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_1] = {
- .type_name = "q5_1",
- .blck_size = QK5_1,
- .type_size = sizeof(block_q5_1),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_1,
- .from_float = quantize_row_q5_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
- .vec_dot = ggml_vec_dot_q5_1_q8_1,
- .vec_dot_type = GGML_TYPE_Q8_1,
- .nrows = 1,
- },
- [GGML_TYPE_Q8_0] = {
- .type_name = "q8_0",
- .blck_size = QK8_0,
- .type_size = sizeof(block_q8_0),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q8_0,
- .from_float = quantize_row_q8_0,
- .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
- .vec_dot = ggml_vec_dot_q8_0_q8_0,
- .vec_dot_type = GGML_TYPE_Q8_0,
- #if defined (__ARM_FEATURE_MATMUL_INT8)
- .nrows = 2,
- #else
- .nrows = 1,
- #endif
- },
- [GGML_TYPE_Q8_1] = {
- .type_name = "q8_1",
- .blck_size = QK8_1,
- .type_size = sizeof(block_q8_1),
- .is_quantized = true,
- .from_float = quantize_row_q8_1,
- .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
- .vec_dot_type = GGML_TYPE_Q8_1,
- .nrows = 1,
- },
- [GGML_TYPE_Q2_K] = {
- .type_name = "q2_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q2_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q2_K,
- .from_float = quantize_row_q2_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
- .vec_dot = ggml_vec_dot_q2_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q3_K] = {
- .type_name = "q3_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q3_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q3_K,
- .from_float = quantize_row_q3_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
- .vec_dot = ggml_vec_dot_q3_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q4_K] = {
- .type_name = "q4_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q4_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q4_K,
- .from_float = quantize_row_q4_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
- .vec_dot = ggml_vec_dot_q4_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q5_K] = {
- .type_name = "q5_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q5_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q5_K,
- .from_float = quantize_row_q5_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
- .vec_dot = ggml_vec_dot_q5_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q6_K] = {
- .type_name = "q6_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q6_K),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_q6_K,
- .from_float = quantize_row_q6_K,
- .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
- .vec_dot = ggml_vec_dot_q6_K_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_XXS] = {
- .type_name = "iq2_xxs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_xxs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ2_XS] = {
- .type_name = "iq2_xs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq2_xs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
- .from_float = NULL,
- .from_float_reference = NULL,
- .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_IQ3_XXS] = {
- .type_name = "iq3_xxs",
- .blck_size = QK_K,
- .type_size = sizeof(block_iq3_xxs),
- .is_quantized = true,
- .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
- .from_float = quantize_row_iq3_xxs,
- .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
- .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
- .vec_dot_type = GGML_TYPE_Q8_K,
- .nrows = 1,
- },
- [GGML_TYPE_Q8_K] = {
- .type_name = "q8_K",
- .blck_size = QK_K,
- .type_size = sizeof(block_q8_K),
- .is_quantized = true,
- .from_float = quantize_row_q8_K,
- }
- };
- // For internal test use
- ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
- GGML_ASSERT(type < GGML_TYPE_COUNT);
- return type_traits[type];
- }
- //
- // simd mappings
- //
- #if defined(__ARM_NEON)
- #if !defined(__aarch64__)
- // 64-bit compatibility
- inline static float vaddvq_f32(float32x4_t v) {
- return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
- }
- #endif
- #endif
- // we define a common set of C macros which map to specific intrinsics based on the current architecture
- // we then implement the fundamental computation operations below using only these macros
- // adding support for new architectures requires to define the corresponding SIMD macros
- //
- // GGML_F32_STEP / GGML_F16_STEP
- // number of elements to process in a single step
- //
- // GGML_F32_EPR / GGML_F16_EPR
- // number of elements to fit in a single register
- //
- #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
- #define GGML_SIMD
- // F32 NEON
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 float32x4_t
- #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32x4_LOAD vld1q_f32
- #define GGML_F32x4_STORE vst1q_f32
- #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32x4_ADD vaddq_f32
- #define GGML_F32x4_MUL vmulq_f32
- #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f32(x[i], x[offset+i]); \
- } \
- res = GGML_F32x4_REDUCE_ONE(x[0]); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 NEON
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- #define GGML_F16x8 float16x8_t
- #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
- #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
- #define GGML_F16x8_LOAD vld1q_f16
- #define GGML_F16x8_STORE vst1q_f16
- #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
- #define GGML_F16x8_ADD vaddq_f16
- #define GGML_F16x8_MUL vmulq_f16
- #define GGML_F16x8_REDUCE(res, x) \
- do { \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vaddq_f16(x[i], x[offset+i]); \
- } \
- const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
- const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
- res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
- } while (0)
- #define GGML_F16_VEC GGML_F16x8
- #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x8_FMA
- #define GGML_F16_VEC_ADD GGML_F16x8_ADD
- #define GGML_F16_VEC_MUL GGML_F16x8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
- #else
- // if FP16 vector arithmetic is not supported, we use FP32 instead
- // and take advantage of the vcvt_ functions to convert to/from FP16
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- #define GGML_F32Cx4 float32x4_t
- #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
- #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
- #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
- #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
- #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
- #define GGML_F32Cx4_ADD vaddq_f32
- #define GGML_F32Cx4_MUL vmulq_f32
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- #elif defined(__AVX__)
- #define GGML_SIMD
- // F32 AVX
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 8
- #define GGML_F32x8 __m256
- #define GGML_F32x8_ZERO _mm256_setzero_ps()
- #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
- #define GGML_F32x8_LOAD _mm256_loadu_ps
- #define GGML_F32x8_STORE _mm256_storeu_ps
- #if defined(__FMA__)
- #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
- #endif
- #define GGML_F32x8_ADD _mm256_add_ps
- #define GGML_F32x8_MUL _mm256_mul_ps
- #define GGML_F32x8_REDUCE(res, x) \
- do { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm256_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
- _mm256_extractf128_ps(x[0], 1)); \
- const __m128 t1 = _mm_hadd_ps(t0, t0); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
- } while (0)
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x8
- #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x8_STORE
- #define GGML_F32_VEC_FMA GGML_F32x8_FMA
- #define GGML_F32_VEC_ADD GGML_F32x8_ADD
- #define GGML_F32_VEC_MUL GGML_F32x8_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
- // F16 AVX
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 8
- // F16 arithmetic is not supported by AVX, so we use F32 instead
- #define GGML_F32Cx8 __m256
- #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
- #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
- #if defined(__F16C__)
- // the _mm256_cvt intrinsics require F16C
- #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
- #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
- #else
- static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
- float tmp[8];
- for (int i = 0; i < 8; i++) {
- tmp[i] = GGML_FP16_TO_FP32(x[i]);
- }
- return _mm256_loadu_ps(tmp);
- }
- static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
- float arr[8];
- _mm256_storeu_ps(arr, y);
- for (int i = 0; i < 8; i++)
- x[i] = GGML_FP32_TO_FP16(arr[i]);
- }
- #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
- #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
- #endif
- #define GGML_F32Cx8_FMA GGML_F32x8_FMA
- #define GGML_F32Cx8_ADD _mm256_add_ps
- #define GGML_F32Cx8_MUL _mm256_mul_ps
- #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
- #define GGML_F16_VEC GGML_F32Cx8
- #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
- #elif defined(__POWER9_VECTOR__)
- #define GGML_SIMD
- // F32 POWER9
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 vector float
- #define GGML_F32x4_ZERO 0.0f
- #define GGML_F32x4_SET1 vec_splats
- #define GGML_F32x4_LOAD(p) vec_xl(0, p)
- #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
- #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
- #define GGML_F32x4_ADD vec_add
- #define GGML_F32x4_MUL vec_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = vec_add(x[i], x[offset+i]); \
- } \
- res = vec_extract(x[0], 0) + \
- vec_extract(x[0], 1) + \
- vec_extract(x[0], 2) + \
- vec_extract(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 POWER9
- #define GGML_F16_STEP GGML_F32_STEP
- #define GGML_F16_EPR GGML_F32_EPR
- #define GGML_F16_VEC GGML_F32x4
- #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F16_VEC_FMA GGML_F32x4_FMA
- #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
- // Use vec_xl, not vec_ld, in case the load address is not aligned.
- #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
- vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
- vec_extract_fp32_from_shortl(vec_xl(0, p))
- #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
- #define GGML_F16_VEC_STORE(p, r, i) \
- if (i & 0x1) \
- vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
- r[i - GGML_ENDIAN_BYTE(0)]), \
- 0, p - GGML_F16_EPR)
- #elif defined(__wasm_simd128__)
- #define GGML_SIMD
- // F32 WASM
- #define GGML_F32_STEP 16
- #define GGML_F32_EPR 4
- #define GGML_F32x4 v128_t
- #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F32x4_LOAD wasm_v128_load
- #define GGML_F32x4_STORE wasm_v128_store
- #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
- #define GGML_F32x4_ADD wasm_f32x4_add
- #define GGML_F32x4_MUL wasm_f32x4_mul
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 WASM
- #define GGML_F16_STEP 16
- #define GGML_F16_EPR 4
- inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(p[0]);
- tmp[1] = GGML_FP16_TO_FP32(p[1]);
- tmp[2] = GGML_FP16_TO_FP32(p[2]);
- tmp[3] = GGML_FP16_TO_FP32(p[3]);
- return wasm_v128_load(tmp);
- }
- inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
- float tmp[4];
- wasm_v128_store(tmp, x);
- p[0] = GGML_FP32_TO_FP16(tmp[0]);
- p[1] = GGML_FP32_TO_FP16(tmp[1]);
- p[2] = GGML_FP32_TO_FP16(tmp[2]);
- p[3] = GGML_FP32_TO_FP16(tmp[3]);
- }
- #define GGML_F16x4 v128_t
- #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
- #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
- #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
- #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
- #define GGML_F16x4_FMA GGML_F32x4_FMA
- #define GGML_F16x4_ADD wasm_f32x4_add
- #define GGML_F16x4_MUL wasm_f32x4_mul
- #define GGML_F16x4_REDUCE(res, x) \
- { \
- int offset = GGML_F16_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
- } \
- res = wasm_f32x4_extract_lane(x[0], 0) + \
- wasm_f32x4_extract_lane(x[0], 1) + \
- wasm_f32x4_extract_lane(x[0], 2) + \
- wasm_f32x4_extract_lane(x[0], 3); \
- }
- #define GGML_F16_VEC GGML_F16x4
- #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F16x4_FMA
- #define GGML_F16_VEC_ADD GGML_F16x4_ADD
- #define GGML_F16_VEC_MUL GGML_F16x4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
- #elif defined(__SSE3__)
- #define GGML_SIMD
- // F32 SSE
- #define GGML_F32_STEP 32
- #define GGML_F32_EPR 4
- #define GGML_F32x4 __m128
- #define GGML_F32x4_ZERO _mm_setzero_ps()
- #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32x4_LOAD _mm_loadu_ps
- #define GGML_F32x4_STORE _mm_storeu_ps
- #if defined(__FMA__)
- // TODO: Does this work?
- #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
- #else
- #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
- #endif
- #define GGML_F32x4_ADD _mm_add_ps
- #define GGML_F32x4_MUL _mm_mul_ps
- #define GGML_F32x4_REDUCE(res, x) \
- { \
- int offset = GGML_F32_ARR >> 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- offset >>= 1; \
- for (int i = 0; i < offset; ++i) { \
- x[i] = _mm_add_ps(x[i], x[offset+i]); \
- } \
- const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
- res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
- }
- // TODO: is this optimal ?
- #define GGML_F32_VEC GGML_F32x4
- #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
- #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
- #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
- #define GGML_F32_VEC_STORE GGML_F32x4_STORE
- #define GGML_F32_VEC_FMA GGML_F32x4_FMA
- #define GGML_F32_VEC_ADD GGML_F32x4_ADD
- #define GGML_F32_VEC_MUL GGML_F32x4_MUL
- #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
- // F16 SSE
- #define GGML_F16_STEP 32
- #define GGML_F16_EPR 4
- static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
- float tmp[4];
- tmp[0] = GGML_FP16_TO_FP32(x[0]);
- tmp[1] = GGML_FP16_TO_FP32(x[1]);
- tmp[2] = GGML_FP16_TO_FP32(x[2]);
- tmp[3] = GGML_FP16_TO_FP32(x[3]);
- return _mm_loadu_ps(tmp);
- }
- static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
- float arr[4];
- _mm_storeu_ps(arr, y);
- x[0] = GGML_FP32_TO_FP16(arr[0]);
- x[1] = GGML_FP32_TO_FP16(arr[1]);
- x[2] = GGML_FP32_TO_FP16(arr[2]);
- x[3] = GGML_FP32_TO_FP16(arr[3]);
- }
- #define GGML_F32Cx4 __m128
- #define GGML_F32Cx4_ZERO _mm_setzero_ps()
- #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
- #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
- #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
- #define GGML_F32Cx4_FMA GGML_F32x4_FMA
- #define GGML_F32Cx4_ADD _mm_add_ps
- #define GGML_F32Cx4_MUL _mm_mul_ps
- #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
- #define GGML_F16_VEC GGML_F32Cx4
- #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
- #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
- #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
- #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
- #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
- #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
- #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
- #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
- #endif
- // GGML_F32_ARR / GGML_F16_ARR
- // number of registers to use per step
- #ifdef GGML_SIMD
- #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
- #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
- #endif
- //
- // fundamental operations
- //
- inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
- inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
- inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
- inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
- inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
- inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
- inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
- inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
- inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
- inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
- static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
- #ifdef GGML_SIMD
- float sumf = 0.0f;
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += x[i]*y[i];
- }
- #else
- // scalar
- ggml_float sumf = 0.0;
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(x[i]*y[i]);
- }
- #endif
- *s = sumf;
- }
- static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
- assert(nrc == 1);
- UNUSED(nrc);
- UNUSED(bx);
- UNUSED(by);
- UNUSED(bs);
- ggml_float sumf = 0.0;
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F16_VEC_REDUCE(sumf, sum);
- // leftovers
- for (int i = np; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #else
- for (int i = 0; i < n; ++i) {
- sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
- }
- #endif
- *s = sumf;
- }
- // compute GGML_VEC_DOT_UNROLL dot products at once
- // xs - x row stride in bytes
- inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
- ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
- ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
- }
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F16_STEP - 1));
- GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
- GGML_F16_VEC ax[GGML_F16_ARR];
- GGML_F16_VEC ay[GGML_F16_ARR];
- for (int i = 0; i < np; i += GGML_F16_STEP) {
- for (int j = 0; j < GGML_F16_ARR; j++) {
- ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
- sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
- }
- }
- }
- // reduce sum0..sum3 to sum0
- for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
- GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #else
- for (int i = 0; i < n; ++i) {
- for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
- sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
- }
- }
- #endif
- for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
- s[i] = sumf[i];
- }
- }
- inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] += x[i]*v;
- }
- #endif
- }
- // xs and vs are byte strides of x and v
- inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
- const float * restrict x[GGML_VEC_MAD_UNROLL];
- const float * restrict v[GGML_VEC_MAD_UNROLL];
- for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
- x[i] = (const float *) ((const char *) xv + i*xs);
- v[i] = (const float *) ((const char *) vv + i*vs);
- }
- #if defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- vx[k] = GGML_F32_VEC_SET1(v[k][0]);
- }
- GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
- }
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- for (int i = np; i < n; ++i) {
- y[i] += x[k][i]*v[k][0];
- }
- }
- #else
- // scalar
- for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
- for (int i = 0; i < n; ++i) {
- y[i] += x[k][i]*v[k][0];
- }
- }
- #endif
- }
- //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
- inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
- #if defined(GGML_USE_ACCELERATE)
- vDSP_vsmul(y, 1, &v, y, 1, n);
- #elif defined(GGML_SIMD)
- const int np = (n & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
- ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
- GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
- }
- }
- // leftovers
- for (int i = np; i < n; ++i) {
- y[i] *= v;
- }
- #else
- // scalar
- for (int i = 0; i < n; ++i) {
- y[i] *= v;
- }
- #endif
- }
- inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
- inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
- inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
- inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
- inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
- inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
- inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
- inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
- inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
- inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
- inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
- // TODO: optimize performance
- inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
- inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
- static const float GELU_COEF_A = 0.044715f;
- static const float GELU_QUICK_COEF = -1.702f;
- static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
- inline static float ggml_gelu_f32(float x) {
- return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
- }
- inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- const uint16_t * i16 = (const uint16_t *) x;
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_table_gelu_f16[i16[i]];
- }
- }
- #ifdef GGML_GELU_FP16
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_f32(x[i]);
- }
- }
- #endif
- inline static float ggml_gelu_quick_f32(float x) {
- return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
- }
- //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- // const uint16_t * i16 = (const uint16_t *) x;
- // for (int i = 0; i < n; ++i) {
- // y[i] = ggml_table_gelu_quick_f16[i16[i]];
- // }
- //}
- #ifdef GGML_GELU_QUICK_FP16
- inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_gelu_quick_f32(x[i]);
- }
- }
- #endif
- // Sigmoid Linear Unit (SiLU) function
- inline static float ggml_silu_f32(float x) {
- return x/(1.0f + expf(-x));
- }
- //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
- // const uint16_t * i16 = (const uint16_t *) x;
- // for (int i = 0; i < n; ++i) {
- // y[i] = ggml_table_silu_f16[i16[i]];
- // }
- //}
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- uint16_t t;
- for (int i = 0; i < n; ++i) {
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- memcpy(&t, &fp16, sizeof(uint16_t));
- y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
- }
- }
- #else
- inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
- for (int i = 0; i < n; ++i) {
- y[i] = ggml_silu_f32(x[i]);
- }
- }
- #endif
- inline static float ggml_silu_backward_f32(float x, float dy) {
- const float s = 1.0f/(1.0f + expf(-x));
- return dy*s*(1.0f + x*(1.0f - s));
- }
- #ifdef GGML_SILU_FP16
- inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- // we did not use x[i] to compute forward silu but its f16 equivalent
- // take derivative at f16 of x[i]:
- ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
- float usedx = GGML_FP16_TO_FP32(fp16);
- dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
- }
- }
- #else
- inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
- for (int i = 0; i < n; ++i) {
- dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
- }
- }
- #endif
- inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- #else
- vDSP_sve(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
- ggml_float sum = 0.0;
- for (int i = 0; i < n; ++i) {
- sum += (ggml_float)x[i];
- }
- *s = sum;
- }
- inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
- float sum = 0.0f;
- for (int i = 0; i < n; ++i) {
- sum += GGML_FP16_TO_FP32(x[i]);
- }
- *s = sum;
- }
- inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
- #ifndef GGML_USE_ACCELERATE
- float max = -INFINITY;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- }
- *s = max;
- #else
- vDSP_maxv(x, 1, s, n);
- #endif
- }
- inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
- ggml_vec_norm_f32(n, s, x);
- *s = 1.f/(*s);
- }
- inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
- float max = -INFINITY;
- int idx = 0;
- for (int i = 0; i < n; ++i) {
- max = MAX(max, x[i]);
- if (max == x[i]) { idx = i; }
- }
- *s = idx;
- }
- //
- // data types
- //
- static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
- "NONE",
- "DUP",
- "ADD",
- "ADD1",
- "ACC",
- "SUB",
- "MUL",
- "DIV",
- "SQR",
- "SQRT",
- "LOG",
- "SUM",
- "SUM_ROWS",
- "MEAN",
- "ARGMAX",
- "REPEAT",
- "REPEAT_BACK",
- "CONCAT",
- "SILU_BACK",
- "NORM",
- "RMS_NORM",
- "RMS_NORM_BACK",
- "GROUP_NORM",
- "MUL_MAT",
- "MUL_MAT_ID",
- "OUT_PROD",
- "SCALE",
- "SET",
- "CPY",
- "CONT",
- "RESHAPE",
- "VIEW",
- "PERMUTE",
- "TRANSPOSE",
- "GET_ROWS",
- "GET_ROWS_BACK",
- "DIAG",
- "DIAG_MASK_INF",
- "DIAG_MASK_ZERO",
- "SOFT_MAX",
- "SOFT_MAX_BACK",
- "ROPE",
- "ROPE_BACK",
- "ALIBI",
- "CLAMP",
- "CONV_TRANSPOSE_1D",
- "IM2COL",
- "CONV_TRANSPOSE_2D",
- "POOL_1D",
- "POOL_2D",
- "UPSCALE",
- "PAD",
- "ARGSORT",
- "LEAKY_RELU",
- "FLASH_ATTN",
- "FLASH_FF",
- "FLASH_ATTN_BACK",
- "WIN_PART",
- "WIN_UNPART",
- "GET_REL_POS",
- "ADD_REL_POS",
- "UNARY",
- "MAP_UNARY",
- "MAP_BINARY",
- "MAP_CUSTOM1_F32",
- "MAP_CUSTOM2_F32",
- "MAP_CUSTOM3_F32",
- "MAP_CUSTOM1",
- "MAP_CUSTOM2",
- "MAP_CUSTOM3",
- "CROSS_ENTROPY_LOSS",
- "CROSS_ENTROPY_LOSS_BACK",
- };
- static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
- static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
- "none",
- "x",
- "x+y",
- "x+y",
- "view(x,nb,offset)+=y->x",
- "x-y",
- "x*y",
- "x/y",
- "x^2",
- "√x",
- "log(x)",
- "Σx",
- "Σx_k",
- "Σx/n",
- "argmax(x)",
- "repeat(x)",
- "repeat_back(x)",
- "concat(x, y)",
- "silu_back(x)",
- "norm(x)",
- "rms_norm(x)",
- "rms_norm_back(x)",
- "group_norm(x)",
- "X*Y",
- "X[i]*Y",
- "X*Y",
- "x*v",
- "y-\\>view(x)",
- "x-\\>y",
- "cont(x)",
- "reshape(x)",
- "view(x)",
- "permute(x)",
- "transpose(x)",
- "get_rows(x)",
- "get_rows_back(x)",
- "diag(x)",
- "diag_mask_inf(x)",
- "diag_mask_zero(x)",
- "soft_max(x)",
- "soft_max_back(x)",
- "rope(x)",
- "rope_back(x)",
- "alibi(x)",
- "clamp(x)",
- "conv_transpose_1d(x)",
- "im2col(x)",
- "conv_transpose_2d(x)",
- "pool_1d(x)",
- "pool_2d(x)",
- "upscale(x)",
- "pad(x)",
- "argsort(x)",
- "leaky_relu(x)",
- "flash_attn(x)",
- "flash_ff(x)",
- "flash_attn_back(x)",
- "win_part(x)",
- "win_unpart(x)",
- "get_rel_pos(x)",
- "add_rel_pos(x)",
- "unary(x)",
- "f(x)",
- "f(x,y)",
- "custom_f32(x)",
- "custom_f32(x,y)",
- "custom_f32(x,y,z)",
- "custom(x)",
- "custom(x,y)",
- "custom(x,y,z)",
- "cross_entropy_loss(x,y)",
- "cross_entropy_loss_back(x,y)",
- };
- static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
- static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
- static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
- "ABS",
- "SGN",
- "NEG",
- "STEP",
- "TANH",
- "ELU",
- "RELU",
- "GELU",
- "GELU_QUICK",
- "SILU",
- "HARDSWISH",
- "HARDSIGMOID",
- };
- static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
- static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
- static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
- // WARN:
- // Mis-configuration can lead to problem that's hard to reason about:
- // * At best it crash or talks nosense.
- // * At worst it talks slightly difference but hard to perceive.
- //
- // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
- // Take care about compile options (e.g., GGML_USE_xxx).
- static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
- static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
- static void ggml_setup_op_has_task_pass(void) {
- { // INIT
- bool * p = GGML_OP_HAS_INIT;
- p[GGML_OP_ACC ] = true;
- p[GGML_OP_MUL_MAT ] = true;
- p[GGML_OP_MUL_MAT_ID ] = true;
- p[GGML_OP_OUT_PROD ] = true;
- p[GGML_OP_SET ] = true;
- p[GGML_OP_GET_ROWS_BACK ] = true;
- p[GGML_OP_DIAG_MASK_INF ] = true;
- p[GGML_OP_DIAG_MASK_ZERO ] = true;
- p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
- p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
- p[GGML_OP_FLASH_ATTN_BACK ] = true;
- p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
- p[GGML_OP_ADD_REL_POS ] = true;
- }
- { // FINALIZE
- bool * p = GGML_OP_HAS_FINALIZE;
- p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
- }
- }
- //
- // ggml context
- //
- struct ggml_context {
- size_t mem_size;
- void * mem_buffer;
- bool mem_buffer_owned;
- bool no_alloc;
- bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
- int n_objects;
- struct ggml_object * objects_begin;
- struct ggml_object * objects_end;
- struct ggml_scratch scratch;
- struct ggml_scratch scratch_save;
- };
- struct ggml_context_container {
- bool used;
- struct ggml_context context;
- };
- //
- // NUMA support
- //
- #define GGML_NUMA_MAX_NODES 8
- #define GGML_NUMA_MAX_CPUS 512
- struct ggml_numa_node {
- uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
- uint32_t n_cpus;
- };
- struct ggml_numa_nodes {
- struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
- uint32_t n_nodes;
- uint32_t total_cpus; // hardware threads on system
- };
- //
- // ggml state
- //
- struct ggml_state {
- struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
- struct ggml_numa_nodes numa;
- };
- // global state
- static struct ggml_state g_state;
- static atomic_int g_state_barrier = 0;
- // barrier via spin lock
- inline static void ggml_critical_section_start(void) {
- int processing = atomic_fetch_add(&g_state_barrier, 1);
- while (processing > 0) {
- // wait for other threads to finish
- atomic_fetch_sub(&g_state_barrier, 1);
- sched_yield(); // TODO: reconsider this
- processing = atomic_fetch_add(&g_state_barrier, 1);
- }
- }
- // TODO: make this somehow automatically executed
- // some sort of "sentry" mechanism
- inline static void ggml_critical_section_end(void) {
- atomic_fetch_sub(&g_state_barrier, 1);
- }
- void ggml_numa_init(void) {
- if (g_state.numa.n_nodes > 0) {
- fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
- return;
- }
- #ifdef __linux__
- struct stat st;
- char path[256];
- int rv;
- // enumerate nodes
- while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.n_nodes;
- }
- // enumerate CPUs
- while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) != 0) { break; }
- ++g_state.numa.total_cpus;
- }
- GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
- if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
- g_state.numa.n_nodes = 0;
- return;
- }
- for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
- struct ggml_numa_node * node = &g_state.numa.nodes[n];
- GGML_PRINT_DEBUG("CPUs on node %u:", n);
- node->n_cpus = 0;
- for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
- rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
- GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
- if (stat(path, &st) == 0) {
- node->cpus[node->n_cpus++] = c;
- GGML_PRINT_DEBUG(" %u", c);
- }
- }
- GGML_PRINT_DEBUG("\n");
- }
- if (ggml_is_numa()) {
- FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
- if (fptr != NULL) {
- char buf[42];
- if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
- GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
- }
- fclose(fptr);
- }
- }
- #else
- // TODO
- #endif
- }
- bool ggml_is_numa(void) {
- return g_state.numa.n_nodes > 1;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_print_object(const struct ggml_object * obj) {
- GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
- obj->type, obj->offs, obj->size, (const void *) obj->next);
- }
- void ggml_print_objects(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
- while (obj != NULL) {
- ggml_print_object(obj);
- obj = obj->next;
- }
- GGML_PRINT("%s: --- end ---\n", __func__);
- }
- GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
- }
- GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
- size_t nbytes;
- size_t blck_size = ggml_blck_size(tensor->type);
- if (blck_size == 1) {
- nbytes = ggml_type_size(tensor->type);
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- }
- else {
- nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
- }
- }
- return nbytes;
- }
- size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
- return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
- }
- GGML_CALL int ggml_blck_size(enum ggml_type type) {
- return type_traits[type].blck_size;
- }
- GGML_CALL size_t ggml_type_size(enum ggml_type type) {
- return type_traits[type].type_size;
- }
- GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
- assert(ne % ggml_blck_size(type) == 0);
- return ggml_type_size(type)*ne/ggml_blck_size(type);
- }
- double ggml_type_sizef(enum ggml_type type) {
- return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
- }
- GGML_CALL const char * ggml_type_name(enum ggml_type type) {
- return type_traits[type].type_name;
- }
- GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
- return type_traits[type].is_quantized;
- }
- GGML_CALL const char * ggml_op_name(enum ggml_op op) {
- return GGML_OP_NAME[op];
- }
- const char * ggml_op_symbol(enum ggml_op op) {
- return GGML_OP_SYMBOL[op];
- }
- const char * ggml_unary_op_name(enum ggml_unary_op op) {
- return GGML_UNARY_OP_NAME[op];
- }
- GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
- if (t->op == GGML_OP_UNARY) {
- enum ggml_unary_op uop = ggml_get_unary_op(t);
- return ggml_unary_op_name(uop);
- }
- else {
- return ggml_op_name(t->op);
- }
- }
- GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
- return ggml_type_size(tensor->type);
- }
- bool ggml_is_scalar(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- bool ggml_is_vector(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- bool ggml_is_matrix(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- bool ggml_is_3d(const struct ggml_tensor * tensor) {
- return tensor->ne[3] == 1;
- }
- int ggml_n_dims(const struct ggml_tensor * tensor) {
- for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
- if (tensor->ne[i] > 1) {
- return i + 1;
- }
- }
- return 1;
- }
- static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[1] == t1->ne[1]) &&
- (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
- (t1->ne[3]%t0->ne[3] == 0);
- }
- enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
- enum ggml_type wtype = GGML_TYPE_COUNT;
- switch (ftype) {
- case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
- case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
- case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
- case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
- case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
- case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
- case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
- case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
- case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
- case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
- case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
- case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
- case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
- case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
- case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
- case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
- case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
- }
- GGML_ASSERT(wtype != GGML_TYPE_COUNT);
- return wtype;
- }
- size_t ggml_tensor_overhead(void) {
- return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
- }
- GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
- return tensor->nb[0] > tensor->nb[1];
- }
- GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
- }
- static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- tensor->nb[0] == ggml_type_size(tensor->type) &&
- tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
- tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
- }
- bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t0->ne[0] == t1->ne[0] ) &&
- (t0->ne[1] == t1->ne[1] ) &&
- (t0->ne[2] == t1->ne[2] ) &&
- (t0->ne[3] == t1->ne[3] );
- }
- // check if t1 can be represented as a repeatition of t0
- static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return
- (t1->ne[0]%t0->ne[0] == 0) &&
- (t1->ne[1]%t0->ne[1] == 0) &&
- (t1->ne[2]%t0->ne[2] == 0) &&
- (t1->ne[3]%t0->ne[3] == 0);
- }
- static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
- }
- static inline int ggml_up32(int n) {
- return (n + 31) & ~31;
- }
- //static inline int ggml_up64(int n) {
- // return (n + 63) & ~63;
- //}
- static inline int ggml_up(int n, int m) {
- // assert m is a power of 2
- GGML_ASSERT((m & (m - 1)) == 0);
- return (n + m - 1) & ~(m - 1);
- }
- // assert that pointer is aligned to GGML_MEM_ALIGN
- #define ggml_assert_aligned(ptr) \
- GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
- ////////////////////////////////////////////////////////////////////////////////
- struct ggml_context * ggml_init(struct ggml_init_params params) {
- // make this function thread safe
- ggml_critical_section_start();
- static bool is_first_call = true;
- if (is_first_call) {
- // initialize time system (required on Windows)
- ggml_time_init();
- // initialize GELU, Quick GELU, SILU and EXP F32 tables
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- ggml_fp16_t ii;
- for (int i = 0; i < (1 << 16); ++i) {
- uint16_t ui = i;
- memcpy(&ii, &ui, sizeof(ii));
- const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
- ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
- ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
- ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
- ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- // initialize g_state
- {
- const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
- g_state = (struct ggml_state) {
- /*.contexts =*/ { { 0 } },
- /*.numa =*/ {
- .n_nodes = 0,
- .total_cpus = 0,
- },
- };
- for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
- g_state.contexts[i].used = false;
- }
- const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
- GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
- }
- #if defined(GGML_USE_CUBLAS)
- ggml_init_cublas();
- #elif defined(GGML_USE_CLBLAST)
- ggml_cl_init();
- #elif defined(GGML_USE_VULKAN)
- ggml_vk_init_cpu_assist();
- #elif defined(GGML_USE_SYCL)
- ggml_init_sycl();
- #endif
- ggml_setup_op_has_task_pass();
- is_first_call = false;
- }
- // find non-used context in g_state
- struct ggml_context * ctx = NULL;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (!g_state.contexts[i].used) {
- g_state.contexts[i].used = true;
- ctx = &g_state.contexts[i].context;
- GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
- break;
- }
- }
- if (ctx == NULL) {
- GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
- ggml_critical_section_end();
- return NULL;
- }
- // allow to call ggml_init with 0 size
- if (params.mem_size == 0) {
- params.mem_size = GGML_MEM_ALIGN;
- }
- const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
- *ctx = (struct ggml_context) {
- /*.mem_size =*/ mem_size,
- /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
- /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
- /*.no_alloc =*/ params.no_alloc,
- /*.no_alloc_save =*/ params.no_alloc,
- /*.n_objects =*/ 0,
- /*.objects_begin =*/ NULL,
- /*.objects_end =*/ NULL,
- /*.scratch =*/ { 0, 0, NULL, },
- /*.scratch_save =*/ { 0, 0, NULL, },
- };
- GGML_ASSERT(ctx->mem_buffer != NULL);
- ggml_assert_aligned(ctx->mem_buffer);
- GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
- ggml_critical_section_end();
- return ctx;
- }
- void ggml_free(struct ggml_context * ctx) {
- if (ctx == NULL) {
- return;
- }
- // make this function thread safe
- ggml_critical_section_start();
- bool found = false;
- for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
- if (&g_state.contexts[i].context == ctx) {
- g_state.contexts[i].used = false;
- GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
- __func__, i, ggml_used_mem(ctx));
- if (ctx->mem_buffer_owned) {
- GGML_ALIGNED_FREE(ctx->mem_buffer);
- }
- found = true;
- break;
- }
- }
- if (!found) {
- GGML_PRINT_DEBUG("%s: context not found\n", __func__);
- }
- ggml_critical_section_end();
- }
- size_t ggml_used_mem(const struct ggml_context * ctx) {
- return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
- }
- size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
- const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
- ctx->scratch = scratch;
- return result;
- }
- bool ggml_get_no_alloc(struct ggml_context * ctx) {
- return ctx->no_alloc;
- }
- void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
- ctx->no_alloc = no_alloc;
- }
- void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
- return ctx->mem_buffer;
- }
- size_t ggml_get_mem_size(const struct ggml_context * ctx) {
- return ctx->mem_size;
- }
- size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
- size_t max_size = 0;
- for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
- size_t bytes = ggml_nbytes(tensor);
- max_size = MAX(max_size, bytes);
- }
- return max_size;
- }
- // IMPORTANT:
- // when creating "opt" tensors, always save and load the scratch buffer
- // this is an error prone process, but it is necessary to support inplace
- // operators when using scratch buffers
- // TODO: implement a better way
- static void ggml_scratch_save(struct ggml_context * ctx) {
- // this is needed to allow opt tensors to store their data
- // TODO: again, need to find a better way
- ctx->no_alloc_save = ctx->no_alloc;
- ctx->no_alloc = false;
- ctx->scratch_save = ctx->scratch;
- ctx->scratch.data = NULL;
- }
- static void ggml_scratch_load(struct ggml_context * ctx) {
- ctx->no_alloc = ctx->no_alloc_save;
- ctx->scratch = ctx->scratch_save;
- }
- ////////////////////////////////////////////////////////////////////////////////
- static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
- // always insert objects at the end of the context's memory pool
- struct ggml_object * obj_cur = ctx->objects_end;
- const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
- const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
- const size_t cur_end = cur_offs + cur_size;
- // align to GGML_MEM_ALIGN
- size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
- char * const mem_buffer = ctx->mem_buffer;
- struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
- if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
- GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
- __func__, cur_end + size_needed, ctx->mem_size);
- assert(false);
- return NULL;
- }
- *obj_new = (struct ggml_object) {
- .offs = cur_end + GGML_OBJECT_SIZE,
- .size = size_needed,
- .next = NULL,
- .type = type,
- };
- ggml_assert_aligned(mem_buffer + obj_new->offs);
- if (obj_cur != NULL) {
- obj_cur->next = obj_new;
- } else {
- // this is the first object in this context
- ctx->objects_begin = obj_new;
- }
- ctx->objects_end = obj_new;
- //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
- return obj_new;
- }
- static struct ggml_tensor * ggml_new_tensor_impl(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne,
- struct ggml_tensor * view_src,
- size_t view_offs) {
- assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
- // find the base tensor and absolute offset
- if (view_src != NULL && view_src->view_src != NULL) {
- view_offs += view_src->view_offs;
- view_src = view_src->view_src;
- }
- size_t data_size = ggml_row_size(type, ne[0]);
- for (int i = 1; i < n_dims; i++) {
- data_size *= ne[i];
- }
- GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
- void * data = view_src != NULL ? view_src->data : NULL;
- if (data != NULL) {
- data = (char *) data + view_offs;
- }
- size_t obj_alloc_size = 0;
- if (view_src == NULL && !ctx->no_alloc) {
- if (ctx->scratch.data != NULL) {
- // allocate tensor data in the scratch buffer
- if (ctx->scratch.offs + data_size > ctx->scratch.size) {
- GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
- __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
- assert(false);
- return NULL;
- }
- data = (char * const) ctx->scratch.data + ctx->scratch.offs;
- ctx->scratch.offs += data_size;
- } else {
- // allocate tensor data in the context's memory pool
- obj_alloc_size = data_size;
- }
- }
- struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
- // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
- struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
- *result = (struct ggml_tensor) {
- /*.type =*/ type,
- /*.backend =*/ GGML_BACKEND_CPU,
- /*.buffer =*/ NULL,
- /*.ne =*/ { 1, 1, 1, 1 },
- /*.nb =*/ { 0, 0, 0, 0 },
- /*.op =*/ GGML_OP_NONE,
- /*.op_params =*/ { 0 },
- /*.is_param =*/ false,
- /*.grad =*/ NULL,
- /*.src =*/ { NULL },
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- /*.view_src =*/ view_src,
- /*.view_offs =*/ view_offs,
- /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
- /*.name =*/ { 0 },
- /*.extra =*/ NULL,
- /*.padding =*/ { 0 },
- };
- // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
- //ggml_assert_aligned(result->data);
- for (int i = 0; i < n_dims; i++) {
- result->ne[i] = ne[i];
- }
- result->nb[0] = ggml_type_size(type);
- result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
- for (int i = 2; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
- }
- ctx->n_objects++;
- return result;
- }
- struct ggml_tensor * ggml_new_tensor(
- struct ggml_context * ctx,
- enum ggml_type type,
- int n_dims,
- const int64_t * ne) {
- return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
- }
- struct ggml_tensor * ggml_new_tensor_1d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0) {
- return ggml_new_tensor(ctx, type, 1, &ne0);
- }
- struct ggml_tensor * ggml_new_tensor_2d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1) {
- const int64_t ne[2] = { ne0, ne1 };
- return ggml_new_tensor(ctx, type, 2, ne);
- }
- struct ggml_tensor * ggml_new_tensor_3d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- return ggml_new_tensor(ctx, type, 3, ne);
- }
- struct ggml_tensor * ggml_new_tensor_4d(
- struct ggml_context * ctx,
- enum ggml_type type,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- return ggml_new_tensor(ctx, type, 4, ne);
- }
- struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
- ggml_scratch_save(ctx);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
- ggml_scratch_load(ctx);
- ggml_set_i32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
- ggml_scratch_save(ctx);
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
- ggml_scratch_load(ctx);
- ggml_set_f32(result, value);
- return result;
- }
- struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
- return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
- }
- static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
- GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
- assert(params_size <= GGML_MAX_OP_PARAMS);
- memcpy(tensor->op_params, params, params_size);
- }
- static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- return ((const int32_t *)(tensor->op_params))[i];
- }
- static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
- assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
- ((int32_t *)(tensor->op_params))[i] = value;
- }
- struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
- memset(tensor->data, 0, ggml_nbytes(tensor));
- return tensor;
- }
- struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
- const int n = ggml_nrows(tensor);
- const int nc = tensor->ne[0];
- const size_t n1 = tensor->nb[1];
- char * const data = tensor->data;
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- assert(tensor->nb[0] == sizeof(int8_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I16:
- {
- assert(tensor->nb[0] == sizeof(int16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_I32:
- {
- assert(tensor->nb[0] == sizeof(int32_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
- }
- } break;
- case GGML_TYPE_F16:
- {
- assert(tensor->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
- }
- } break;
- case GGML_TYPE_F32:
- {
- assert(tensor->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
- }
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- return tensor;
- }
- void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
- const int64_t ne2 = tensor->ne[2];
- const int64_t ne1 = tensor->ne[1];
- const int64_t ne0 = tensor->ne[0];
- const int64_t i3_ = (i/(ne2*ne1*ne0));
- const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
- const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
- const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
- if (i0) {
- * i0 = i0_;
- }
- if (i1) {
- * i1 = i1_;
- }
- if (i2) {
- * i2 = i2_;
- }
- if (i3) {
- * i3 = i3_;
- }
- }
- int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ASSERT(false);
- }
- }
- return 0.0f;
- }
- void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ASSERT(false);
- }
- return 0.0f;
- }
- void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- return ((int8_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- return ((int16_t *)(tensor->data))[i];
- }
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- return ((int32_t *)(tensor->data))[i];
- }
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
- }
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- return ((float *)(tensor->data))[i];
- }
- default:
- {
- GGML_ASSERT(false);
- }
- }
- return 0.0f;
- }
- void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
- if (!ggml_is_contiguous(tensor)) {
- int64_t id[4] = { 0, 0, 0, 0 };
- ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
- ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
- return;
- }
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
- ((int8_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
- ((int16_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_I32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
- ((int32_t *)(tensor->data))[i] = value;
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
- ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(tensor->nb[0] == sizeof(float));
- ((float *)(tensor->data))[i] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- return ((int8_t *) data)[0];
- case GGML_TYPE_I16:
- return ((int16_t *) data)[0];
- case GGML_TYPE_I32:
- return ((int32_t *) data)[0];
- case GGML_TYPE_F16:
- return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
- case GGML_TYPE_F32:
- return ((float *) data)[0];
- default:
- GGML_ASSERT(false);
- }
- return 0.0f;
- }
- void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
- void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
- switch (tensor->type) {
- case GGML_TYPE_I8:
- {
- ((int8_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I16:
- {
- ((int16_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_I32:
- {
- ((int32_t *)(data))[0] = value;
- } break;
- case GGML_TYPE_F16:
- {
- ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
- } break;
- case GGML_TYPE_F32:
- {
- ((float *)(data))[0] = value;
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- void * ggml_get_data(const struct ggml_tensor * tensor) {
- return tensor->data;
- }
- float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
- assert(tensor->type == GGML_TYPE_F32);
- return (float *)(tensor->data);
- }
- GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
- GGML_ASSERT(tensor->op == GGML_OP_UNARY);
- return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
- }
- const char * ggml_get_name(const struct ggml_tensor * tensor) {
- return tensor->name;
- }
- struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
- strncpy(tensor->name, name, sizeof(tensor->name));
- tensor->name[sizeof(tensor->name) - 1] = '\0';
- return tensor;
- }
- struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
- va_list args;
- va_start(args, fmt);
- vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
- va_end(args);
- return tensor;
- }
- struct ggml_tensor * ggml_view_tensor(
- struct ggml_context * ctx,
- struct ggml_tensor * src) {
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
- ggml_format_name(result, "%s (view)", src->name);
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- result->nb[i] = src->nb[i];
- }
- return result;
- }
- struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
- struct ggml_object * obj = ctx->objects_begin;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TENSOR) {
- return (struct ggml_tensor *)(mem_buffer + obj->offs);
- }
- obj = obj->next;
- }
- return NULL;
- }
- struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
- struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
- obj = obj->next;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TENSOR) {
- return (struct ggml_tensor *)(mem_buffer + obj->offs);
- }
- obj = obj->next;
- }
- return NULL;
- }
- struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
- struct ggml_object * obj = ctx->objects_begin;
- char * const mem_buffer = ctx->mem_buffer;
- while (obj != NULL) {
- if (obj->type == GGML_OBJECT_TENSOR) {
- struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
- if (strcmp(cur->name, name) == 0) {
- return cur;
- }
- }
- obj = obj->next;
- }
- return NULL;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // ggml_dup
- static struct ggml_tensor * ggml_dup_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DUP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_dup(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_dup_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_dup_impl(ctx, a, true);
- }
- // ggml_add
- static struct ggml_tensor * ggml_add_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add_impl(ctx, a, b, true);
- }
- // ggml_add_cast
- static struct ggml_tensor * ggml_add_cast_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type) {
- // TODO: support less-strict constraint
- // GGML_ASSERT(ggml_can_repeat(b, a));
- GGML_ASSERT(ggml_can_repeat_rows(b, a));
- GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
- bool is_node = false;
- if (a->grad || b->grad) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
- result->op = GGML_OP_ADD;
- result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- enum ggml_type type) {
- return ggml_add_cast_impl(ctx, a, b, type);
- }
- // ggml_add1
- static struct ggml_tensor * ggml_add1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_is_scalar(b));
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_ADD1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_add1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_add1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_add1_impl(ctx, a, b, true);
- }
- // ggml_acc
- static struct ggml_tensor * ggml_acc_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- GGML_ASSERT(b->type == GGML_TYPE_F32);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ACC;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_acc(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_acc_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- // ggml_sub
- static struct ggml_tensor * ggml_sub_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SUB;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_sub(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_sub_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_sub_impl(ctx, a, b, true);
- }
- // ggml_mul
- static struct ggml_tensor * ggml_mul_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- // TODO: support backward pass for broadcasting
- GGML_ASSERT(ggml_are_same_shape(a, b));
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(!is_node);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_MUL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_mul(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_mul_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_mul_impl(ctx, a, b, true);
- }
- // ggml_div
- static struct ggml_tensor * ggml_div_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- if (inplace) {
- GGML_ASSERT(!is_node);
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_DIV;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_div(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_div_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_div_impl(ctx, a, b, true);
- }
- // ggml_sqr
- static struct ggml_tensor * ggml_sqr_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQR;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sqr(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqr_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqr_impl(ctx, a, true);
- }
- // ggml_sqrt
- static struct ggml_tensor * ggml_sqrt_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SQRT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_sqrt(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_sqrt_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_sqrt_impl(ctx, a, true);
- }
- // ggml_log
- static struct ggml_tensor * ggml_log_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_LOG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_log(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, false);
- }
- struct ggml_tensor * ggml_log_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_log_impl(ctx, a, true);
- }
- // ggml_sum
- struct ggml_tensor * ggml_sum(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_SUM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_sum_rows
- struct ggml_tensor * ggml_sum_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- int64_t ne[GGML_MAX_DIMS] = { 1 };
- for (int i = 1; i < GGML_MAX_DIMS; ++i) {
- ne[i] = a->ne[i];
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
- result->op = GGML_OP_SUM_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_mean
- struct ggml_tensor * ggml_mean(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement
- is_node = true;
- }
- int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_MEAN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_argmax
- struct ggml_tensor * ggml_argmax(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(ggml_is_matrix(a));
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false);
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
- result->op = GGML_OP_ARGMAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_repeat
- struct ggml_tensor * ggml_repeat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(a, b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
- result->op = GGML_OP_REPEAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_repeat_back
- struct ggml_tensor * ggml_repeat_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_repeat(b, a));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (ggml_are_same_shape(a, b) && !is_node) {
- return a;
- }
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
- result->op = GGML_OP_REPEAT_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_concat
- struct ggml_tensor * ggml_concat(
- struct ggml_context* ctx,
- struct ggml_tensor* a,
- struct ggml_tensor* b) {
- GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
- result->op = GGML_OP_CONCAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_abs
- struct ggml_tensor * ggml_abs(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
- }
- struct ggml_tensor * ggml_abs_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
- }
- // ggml_sgn
- struct ggml_tensor * ggml_sgn(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
- }
- struct ggml_tensor * ggml_sgn_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
- }
- // ggml_neg
- struct ggml_tensor * ggml_neg(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
- }
- struct ggml_tensor * ggml_neg_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
- }
- // ggml_step
- struct ggml_tensor * ggml_step(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
- }
- struct ggml_tensor * ggml_step_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
- }
- // ggml_tanh
- struct ggml_tensor * ggml_tanh(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
- }
- struct ggml_tensor * ggml_tanh_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
- }
- // ggml_elu
- struct ggml_tensor * ggml_elu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
- }
- struct ggml_tensor * ggml_elu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
- }
- // ggml_relu
- struct ggml_tensor * ggml_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
- }
- struct ggml_tensor * ggml_relu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
- }
- // ggml_leaky_relu
- struct ggml_tensor * ggml_leaky_relu(
- struct ggml_context * ctx,
- struct ggml_tensor * a, float negative_slope, bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
- result->op = GGML_OP_LEAKY_RELU;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_gelu
- struct ggml_tensor * ggml_gelu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
- }
- struct ggml_tensor * ggml_gelu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
- }
- // ggml_gelu_quick
- struct ggml_tensor * ggml_gelu_quick(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
- }
- struct ggml_tensor * ggml_gelu_quick_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
- }
- // ggml_silu
- struct ggml_tensor * ggml_silu(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
- }
- struct ggml_tensor * ggml_silu_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
- }
- // ggml_silu_back
- struct ggml_tensor * ggml_silu_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- bool is_node = false;
- if (a->grad || b->grad) {
- // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SILU_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml hardswish
- struct ggml_tensor * ggml_hardswish(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
- }
- // ggml hardsigmoid
- struct ggml_tensor * ggml_hardsigmoid(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
- }
- // ggml_norm
- static struct ggml_tensor * ggml_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_norm_impl(ctx, a, eps, true);
- }
- // ggml_rms_norm
- static struct ggml_tensor * ggml_rms_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_RMS_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_rms_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, false);
- }
- struct ggml_tensor * ggml_rms_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float eps) {
- return ggml_rms_norm_impl(ctx, a, eps, true);
- }
- // ggml_rms_norm_back
- struct ggml_tensor * ggml_rms_norm_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- float eps) {
- bool is_node = false;
- if (a->grad) {
- // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &eps, sizeof(eps));
- result->op = GGML_OP_RMS_NORM_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_group_norm
- static struct ggml_tensor * ggml_group_norm_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op_params[0] = n_groups;
- result->op = GGML_OP_GROUP_NORM;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_group_norm(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups) {
- return ggml_group_norm_impl(ctx, a, n_groups, false);
- }
- struct ggml_tensor * ggml_group_norm_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_groups) {
- return ggml_group_norm_impl(ctx, a, n_groups, true);
- }
- // ggml_mul_mat
- struct ggml_tensor * ggml_mul_mat(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_MUL_MAT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- void ggml_mul_mat_set_prec(
- struct ggml_tensor * a,
- enum ggml_prec prec) {
- const int32_t prec_i32 = (int32_t) prec;
- ggml_set_op_params_i32(a, 0, prec_i32);
- }
- // ggml_mul_mat_id
- struct ggml_tensor * ggml_mul_mat_id(
- struct ggml_context * ctx,
- struct ggml_tensor * const as[],
- int n_as,
- struct ggml_tensor * ids,
- int id,
- struct ggml_tensor * b) {
- GGML_ASSERT(ids->type == GGML_TYPE_I32);
- GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
- GGML_ASSERT(ids->ne[1] == b->ne[1]);
- GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
- GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
- GGML_ASSERT(id >= 0 && id < ids->ne[0]);
- bool is_node = false;
- if (as[0]->grad || b->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_op_params_i32(result, 0, id);
- ggml_set_op_params_i32(result, 1, n_as);
- result->op = GGML_OP_MUL_MAT_ID;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = ids;
- result->src[1] = b;
- for (int i = 0; i < n_as; i++) {
- struct ggml_tensor * a = as[i];
- GGML_ASSERT(ggml_are_same_shape(as[0], a));
- GGML_ASSERT(ggml_can_mul_mat(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- result->src[i + 2] = a;
- }
- return result;
- }
- // ggml_out_prod
- struct ggml_tensor * ggml_out_prod(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_can_out_prod(a, b));
- GGML_ASSERT(!ggml_is_transposed(a));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
- const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- result->op = GGML_OP_OUT_PROD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_scale
- static struct ggml_tensor * ggml_scale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s,
- bool inplace) {
- GGML_ASSERT(ggml_is_padded_1d(a));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, &s, sizeof(s));
- result->op = GGML_OP_SCALE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_scale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s) {
- return ggml_scale_impl(ctx, a, s, false);
- }
- struct ggml_tensor * ggml_scale_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float s) {
- return ggml_scale_impl(ctx, a, s, true);
- }
- // ggml_set
- static struct ggml_tensor * ggml_set_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset,
- bool inplace) {
- GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_SET;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_set(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- struct ggml_tensor * ggml_set_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
- }
- struct ggml_tensor * ggml_set_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_1d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
- }
- struct ggml_tensor * ggml_set_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
- }
- struct ggml_tensor * ggml_set_2d_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- size_t nb1,
- size_t offset) {
- return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
- }
- // ggml_cpy
- static struct ggml_tensor * ggml_cpy_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (a->grad || b->grad) {
- // inplace is false and either one have a grad
- is_node = true;
- }
- // make a view of the destination
- struct ggml_tensor * result = ggml_view_tensor(ctx, b);
- if (strlen(b->name) > 0) {
- ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
- } else {
- ggml_format_name(result, "%s (copy)", a->name);
- }
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_cpy(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_cpy_impl(ctx, a, b);
- }
- struct ggml_tensor * ggml_cast(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_type type) {
- bool is_node = false;
- struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
- ggml_format_name(result, "%s (copy)", a->name);
- result->op = GGML_OP_CPY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = result;
- return result;
- }
- // ggml_cont
- static struct ggml_tensor * ggml_cont_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- ggml_format_name(result, "%s (cont)", a->name);
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_cont(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_cont_impl(ctx, a);
- }
- // make contiguous, with new shape
- GGML_API struct ggml_tensor * ggml_cont_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
- }
- GGML_API struct ggml_tensor * ggml_cont_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
- }
- GGML_API struct ggml_tensor * ggml_cont_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
- }
- struct ggml_tensor * ggml_cont_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
- bool is_node = false;
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
- ggml_format_name(result, "%s (cont)", a->name);
- result->op = GGML_OP_CONT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_reshape
- struct ggml_tensor * ggml_reshape(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_is_contiguous(a));
- // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
- GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- if (b->grad) {
- // gradient propagation is not supported
- //GGML_ASSERT(false);
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[1] = { ne0 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_reshape_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3) {
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
- ggml_format_name(result, "%s (reshaped)", a->name);
- result->op = GGML_OP_RESHAPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- static struct ggml_tensor * ggml_view_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_dims,
- const int64_t * ne,
- size_t offset) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
- ggml_format_name(result, "%s (view)", a->name);
- ggml_set_op_params(result, &offset, sizeof(offset));
- result->op = GGML_OP_VIEW;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_view_1d
- struct ggml_tensor * ggml_view_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- size_t offset) {
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
- return result;
- }
- // ggml_view_2d
- struct ggml_tensor * ggml_view_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- size_t nb1,
- size_t offset) {
- const int64_t ne[2] = { ne0, ne1 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = result->nb[1]*ne1;
- result->nb[3] = result->nb[2];
- return result;
- }
- // ggml_view_3d
- struct ggml_tensor * ggml_view_3d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- size_t nb1,
- size_t nb2,
- size_t offset) {
- const int64_t ne[3] = { ne0, ne1, ne2 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = result->nb[2]*ne2;
- return result;
- }
- // ggml_view_4d
- struct ggml_tensor * ggml_view_4d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int64_t ne0,
- int64_t ne1,
- int64_t ne2,
- int64_t ne3,
- size_t nb1,
- size_t nb2,
- size_t nb3,
- size_t offset) {
- const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
- struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
- result->nb[1] = nb1;
- result->nb[2] = nb2;
- result->nb[3] = nb3;
- return result;
- }
- // ggml_permute
- struct ggml_tensor * ggml_permute(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int axis0,
- int axis1,
- int axis2,
- int axis3) {
- GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
- GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
- GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
- GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
- GGML_ASSERT(axis0 != axis1);
- GGML_ASSERT(axis0 != axis2);
- GGML_ASSERT(axis0 != axis3);
- GGML_ASSERT(axis1 != axis2);
- GGML_ASSERT(axis1 != axis3);
- GGML_ASSERT(axis2 != axis3);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (permuted)", a->name);
- int ne[GGML_MAX_DIMS];
- int nb[GGML_MAX_DIMS];
- ne[axis0] = a->ne[0];
- ne[axis1] = a->ne[1];
- ne[axis2] = a->ne[2];
- ne[axis3] = a->ne[3];
- nb[axis0] = a->nb[0];
- nb[axis1] = a->nb[1];
- nb[axis2] = a->nb[2];
- nb[axis3] = a->nb[3];
- result->ne[0] = ne[0];
- result->ne[1] = ne[1];
- result->ne[2] = ne[2];
- result->ne[3] = ne[3];
- result->nb[0] = nb[0];
- result->nb[1] = nb[1];
- result->nb[2] = nb[2];
- result->nb[3] = nb[3];
- result->op = GGML_OP_PERMUTE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- int32_t params[] = { axis0, axis1, axis2, axis3 };
- ggml_set_op_params(result, params, sizeof(params));
- return result;
- }
- // ggml_transpose
- struct ggml_tensor * ggml_transpose(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- ggml_format_name(result, "%s (transposed)", a->name);
- result->ne[0] = a->ne[1];
- result->ne[1] = a->ne[0];
- result->nb[0] = a->nb[1];
- result->nb[1] = a->nb[0];
- result->op = GGML_OP_TRANSPOSE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_get_rows
- struct ggml_tensor * ggml_get_rows(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(a->ne[2] == b->ne[1]);
- GGML_ASSERT(b->ne[3] == 1);
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // TODO: implement non F32 return
- enum ggml_type type = GGML_TYPE_F32;
- if (a->type == GGML_TYPE_I32) {
- type = a->type;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
- result->op = GGML_OP_GET_ROWS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_get_rows_back
- struct ggml_tensor * ggml_get_rows_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- // TODO: implement non F32 return
- //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
- struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
- result->op = GGML_OP_GET_ROWS_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_diag
- struct ggml_tensor * ggml_diag(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- GGML_ASSERT(a->ne[1] == 1);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
- struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
- result->op = GGML_OP_DIAG;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_diag_mask_inf
- static struct ggml_tensor * ggml_diag_mask_inf_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_DIAG_MASK_INF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_inf(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_inf_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
- }
- // ggml_diag_mask_zero
- static struct ggml_tensor * ggml_diag_mask_zero_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- bool inplace) {
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[] = { n_past };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_DIAG_MASK_ZERO;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_diag_mask_zero(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
- }
- struct ggml_tensor * ggml_diag_mask_zero_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past) {
- return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
- }
- // ggml_soft_max
- static struct ggml_tensor * ggml_soft_max_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale,
- bool inplace) {
- GGML_ASSERT(ggml_is_contiguous(a));
- if (mask) {
- GGML_ASSERT(ggml_is_contiguous(mask));
- GGML_ASSERT(mask->ne[2] == 1);
- GGML_ASSERT(mask->ne[3] == 1);
- GGML_ASSERT(ggml_can_repeat_rows(mask, a));
- }
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- float params[] = { scale };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_SOFT_MAX;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = mask;
- return result;
- }
- struct ggml_tensor * ggml_soft_max(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
- }
- struct ggml_tensor * ggml_soft_max_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a) {
- return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
- }
- struct ggml_tensor * ggml_soft_max_ext(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * mask,
- float scale) {
- return ggml_soft_max_impl(ctx, a, mask, scale, false);
- }
- // ggml_soft_max_back
- static struct ggml_tensor * ggml_soft_max_back_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- bool inplace) {
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true; // TODO : implement backward pass
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_SOFT_MAX_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_soft_max_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_soft_max_back_impl(ctx, a, b, false);
- }
- struct ggml_tensor * ggml_soft_max_back_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_soft_max_back_impl(ctx, a, b, true);
- }
- // ggml_rope
- static struct ggml_tensor * ggml_rope_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx,
- int n_orig_ctx,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow,
- float xpos_base,
- bool xpos_down,
- bool inplace) {
- GGML_ASSERT(ggml_is_vector(b));
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- GGML_ASSERT(a->ne[2] == b->ne[0]);
- bool is_node = false;
- if (a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
- memcpy(params + 5, &freq_base, sizeof(float));
- memcpy(params + 6, &freq_scale, sizeof(float));
- memcpy(params + 7, &ext_factor, sizeof(float));
- memcpy(params + 8, &attn_factor, sizeof(float));
- memcpy(params + 9, &beta_fast, sizeof(float));
- memcpy(params + 10, &beta_slow, sizeof(float));
- memcpy(params + 11, &xpos_base, sizeof(float));
- memcpy(params + 12, &xpos_down, sizeof(bool));
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ROPE;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_rope(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx) {
- return ggml_rope_impl(
- ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
- );
- }
- struct ggml_tensor * ggml_rope_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx) {
- return ggml_rope_impl(
- ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
- );
- }
- struct ggml_tensor * ggml_rope_custom(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx,
- int n_orig_ctx,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
- );
- }
- struct ggml_tensor * ggml_rope_custom_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx,
- int n_orig_ctx,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow) {
- return ggml_rope_impl(
- ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
- ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
- );
- }
- struct ggml_tensor * ggml_rope_xpos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- float base,
- bool down) {
- return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
- }
- // ggml_rope_back
- struct ggml_tensor * ggml_rope_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int n_dims,
- int mode,
- int n_ctx,
- int n_orig_ctx,
- float freq_base,
- float freq_scale,
- float ext_factor,
- float attn_factor,
- float beta_fast,
- float beta_slow,
- float xpos_base,
- bool xpos_down) {
- GGML_ASSERT(ggml_is_vector(b));
- GGML_ASSERT(b->type == GGML_TYPE_I32);
- GGML_ASSERT(a->ne[2] == b->ne[0]);
- GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
- bool is_node = false;
- if (a->grad) {
- is_node = false; // TODO: implement backward
- }
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
- memcpy(params + 5, &freq_base, sizeof(float));
- memcpy(params + 6, &freq_scale, sizeof(float));
- memcpy(params + 7, &ext_factor, sizeof(float));
- memcpy(params + 8, &attn_factor, sizeof(float));
- memcpy(params + 9, &beta_fast, sizeof(float));
- memcpy(params + 10, &beta_slow, sizeof(float));
- memcpy(params + 11, &xpos_base, sizeof(float));
- memcpy(params + 12, &xpos_down, sizeof(bool));
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_ROPE_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_alibi
- struct ggml_tensor * ggml_alibi(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int n_past,
- int n_head,
- float bias_max) {
- GGML_ASSERT(n_past >= 0);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- int32_t op_params[3] = { n_past, n_head };
- memcpy(op_params + 2, &bias_max, sizeof(float));
- ggml_set_op_params(result, op_params, sizeof(op_params));
- result->op = GGML_OP_ALIBI;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_clamp
- struct ggml_tensor * ggml_clamp(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- float min,
- float max) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // TODO: when implement backward, fix this:
- struct ggml_tensor * result = ggml_view_tensor(ctx, a);
- float params[] = { min, max };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CLAMP;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_conv_1d
- static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
- }
- GGML_API struct ggml_tensor * ggml_conv_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
- struct ggml_tensor * result =
- ggml_mul_mat(ctx,
- ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
- ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
- result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
- return result;
- }
- // ggml_conv_1d_ph
- struct ggml_tensor* ggml_conv_1d_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s,
- int d) {
- return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
- }
- // ggml_conv_transpose_1d
- static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
- return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
- }
- GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int p0,
- int d0) {
- GGML_ASSERT(ggml_is_matrix(b));
- GGML_ASSERT(a->ne[2] == b->ne[1]);
- GGML_ASSERT(a->ne[3] == 1);
- GGML_ASSERT(p0 == 0);
- GGML_ASSERT(d0 == 1);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
- a->ne[1], b->ne[2], 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { s0, p0, d0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_CONV_TRANSPOSE_1D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_conv_depthwise
- struct ggml_tensor * ggml_conv_depthwise_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
- struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
- struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
- ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
- s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
- struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
- new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
- struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
- result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
- return result;
- }
- // ggml_conv_2d
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- // a: [OC,IC, KH, KW]
- // b: [N, IC, IH, IW]
- // result: [N, OH, OW, IC*KH*KW]
- struct ggml_tensor * ggml_im2col(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1,
- bool is_2D,
- enum ggml_type dst_type) {
- if(is_2D) {
- GGML_ASSERT(a->ne[2] == b->ne[2]);
- } else {
- GGML_ASSERT(a->ne[1] == b->ne[1]);
- }
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
- const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
- const int64_t ne[4] = {
- is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
- OW,
- is_2D ? OH : b->ne[2],
- is_2D ? b->ne[3] : 1,
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
- int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_IM2COL;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // a: [OC,IC, KH, KW]
- // b: [N, IC, IH, IW]
- // result: [N, OC, OH, OW]
- struct ggml_tensor * ggml_conv_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int s0,
- int s1,
- int p0,
- int p1,
- int d0,
- int d1) {
- struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
- struct ggml_tensor * result =
- ggml_mul_mat(ctx,
- ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
- ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
- result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
- return result;
- }
- // ggml_conv_2d_sk_p0
- struct ggml_tensor * ggml_conv_2d_sk_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
- }
- // ggml_conv_2d_s1_ph
- struct ggml_tensor * ggml_conv_2d_s1_ph(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
- }
- // ggml_conv_transpose_2d_p0
- static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
- return (ins - 1) * s - 2 * p + ks;
- }
- struct ggml_tensor * ggml_conv_transpose_2d_p0(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- int stride) {
- GGML_ASSERT(a->ne[3] == b->ne[2]);
- bool is_node = false;
- if (a->grad || b->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = {
- ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
- ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
- a->ne[2], b->ne[3],
- };
- struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- ggml_set_op_params_i32(result, 0, stride);
- result->op = GGML_OP_CONV_TRANSPOSE_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_pool_*
- static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
- return (ins + 2 * p - ks) / s + 1;
- }
- // ggml_pool_1d
- struct ggml_tensor * ggml_pool_1d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int s0,
- int p0) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[2] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- a->ne[1],
- };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
- int32_t params[] = { op, k0, s0, p0 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_1D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_pool_2d
- struct ggml_tensor * ggml_pool_2d(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_op_pool op,
- int k0,
- int k1,
- int s0,
- int s1,
- float p0,
- float p1) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result;
- const int64_t ne[3] = {
- ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
- ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
- a->ne[2],
- };
- result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
- int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_POOL_2D;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_upscale
- static struct ggml_tensor * ggml_upscale_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- a->ne[0] * scale_factor,
- a->ne[1] * scale_factor,
- a->ne[2], a->ne[3]);
- result->op = GGML_OP_UPSCALE;
- result->op_params[0] = scale_factor;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_pad(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int p0, int p1, int p2, int p3) {
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
- a->ne[0] + p0,
- a->ne[1] + p1,
- a->ne[2] + p2,
- a->ne[3] + p3);
- result->op = GGML_OP_PAD;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_upscale(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int scale_factor) {
- return ggml_upscale_impl(ctx, a, scale_factor);
- }
- // ggml_argsort
- struct ggml_tensor * ggml_argsort(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_sort_order order) {
- bool is_node = false;
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
- ggml_set_op_params_i32(result, 0, (int32_t) order);
- result->op = GGML_OP_ARGSORT;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_top_k
- struct ggml_tensor * ggml_top_k(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int k) {
- GGML_ASSERT(a->ne[0] >= k);
- struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
- result = ggml_view_4d(ctx, result,
- k, result->ne[1], result->ne[2], result->ne[3],
- result->nb[1], result->nb[2], result->nb[3],
- 0);
- return result;
- }
- // ggml_flash_attn
- struct ggml_tensor * ggml_flash_attn(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- bool masked) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- bool is_node = false;
- if (q->grad || k->grad || v->grad) {
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
- int32_t t = masked ? 1 : 0;
- ggml_set_op_params(result, &t, sizeof(t));
- result->op = GGML_OP_FLASH_ATTN;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- return result;
- }
- // ggml_flash_ff
- struct ggml_tensor * ggml_flash_ff(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b0,
- struct ggml_tensor * b1,
- struct ggml_tensor * c0,
- struct ggml_tensor * c1) {
- GGML_ASSERT(ggml_can_mul_mat(b0, a));
- // TODO: more checks
- bool is_node = false;
- if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
- is_node = true;
- }
- //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
- result->op = GGML_OP_FLASH_FF;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b0;
- result->src[2] = b1;
- result->src[3] = c0;
- result->src[4] = c1;
- return result;
- }
- // ggml_flash_attn_back
- struct ggml_tensor * ggml_flash_attn_back(
- struct ggml_context * ctx,
- struct ggml_tensor * q,
- struct ggml_tensor * k,
- struct ggml_tensor * v,
- struct ggml_tensor * d,
- bool masked) {
- GGML_ASSERT(ggml_can_mul_mat(k, q));
- // TODO: check if vT can be multiplied by (k*qT)
- // d shape [D,N,ne2,ne3]
- // q shape [D,N,ne2,ne3]
- // k shape [D,M,kvne2,ne3]
- // v shape [M,D,kvne2,ne3]
- const int64_t D = q->ne[0];
- const int64_t N = q->ne[1];
- const int64_t M = k->ne[1];
- const int64_t ne2 = q->ne[2];
- const int64_t ne3 = q->ne[3];
- const int64_t kvne2 = k->ne[2];
- GGML_ASSERT(k->ne[0] == D);
- GGML_ASSERT(v->ne[0] == M);
- GGML_ASSERT(v->ne[1] == D);
- GGML_ASSERT(d->ne[0] == D);
- GGML_ASSERT(d->ne[1] == N);
- GGML_ASSERT(k->ne[2] == kvne2);
- GGML_ASSERT(k->ne[3] == ne3);
- GGML_ASSERT(v->ne[2] == kvne2);
- GGML_ASSERT(v->ne[3] == ne3);
- GGML_ASSERT(d->ne[2] == ne2);
- GGML_ASSERT(d->ne[3] == ne3);
- GGML_ASSERT(ne2 % kvne2 == 0);
- bool is_node = false;
- if (q->grad || k->grad || v->grad) {
- // when using this operation (in backwards pass) these grads are set.
- // we don't want to create (big) grad of our result, so is_node is false.
- is_node = false;
- }
- // store gradients of q, k and v as continuous tensors concatenated in result.
- // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
- const int64_t elem_v = ggml_nelements(v);
- enum ggml_type result_type = GGML_TYPE_F32;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
- const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
- const size_t nelements = (end + tsize - 1)/tsize;
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
- int32_t masked_i = masked ? 1 : 0;
- ggml_set_op_params(result, &masked_i, sizeof(masked_i));
- result->op = GGML_OP_FLASH_ATTN_BACK;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = q;
- result->src[1] = k;
- result->src[2] = v;
- result->src[3] = d;
- return result;
- }
- // ggml_win_part
- struct ggml_tensor * ggml_win_part(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w) {
- GGML_ASSERT(a->ne[3] == 1);
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- // padding
- const int px = (w - a->ne[1]%w)%w;
- const int py = (w - a->ne[2]%w)%w;
- const int npx = (px + a->ne[1])/w;
- const int npy = (py + a->ne[2])/w;
- const int np = npx*npy;
- const int64_t ne[4] = { a->ne[0], w, w, np, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
- int32_t params[] = { npx, npy, w };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_WIN_PART;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_win_unpart
- struct ggml_tensor * ggml_win_unpart(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int w0,
- int h0,
- int w) {
- GGML_ASSERT(a->type == GGML_TYPE_F32);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
- int32_t params[] = { w };
- ggml_set_op_params(result, params, sizeof(params));
- result->op = GGML_OP_WIN_UNPART;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_get_rel_pos
- struct ggml_tensor * ggml_get_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- int qh,
- int kh) {
- GGML_ASSERT(qh == kh);
- GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
- bool is_node = false;
- if (a->grad) {
- GGML_ASSERT(false); // TODO: implement backward
- is_node = true;
- }
- const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
- struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
- result->op = GGML_OP_GET_REL_POS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- // ggml_add_rel_pos
- static struct ggml_tensor * ggml_add_rel_pos_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(pw, ph));
- GGML_ASSERT(ggml_is_contiguous(a));
- GGML_ASSERT(ggml_is_contiguous(pw));
- GGML_ASSERT(ggml_is_contiguous(ph));
- GGML_ASSERT(ph->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->type == GGML_TYPE_F32);
- GGML_ASSERT(pw->ne[3] == a->ne[2]);
- GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
- GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
- bool is_node = false;
- if (!inplace && (a->grad || pw->grad || ph->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
- result->op = GGML_OP_ADD_REL_POS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = pw;
- result->src[2] = ph;
- return result;
- }
- struct ggml_tensor * ggml_add_rel_pos(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
- }
- struct ggml_tensor * ggml_add_rel_pos_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * pw,
- struct ggml_tensor * ph) {
- return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
- }
- // gmml_unary
- static struct ggml_tensor * ggml_unary_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params_i32(result, 0, (int32_t) op);
- result->op = GGML_OP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_unary(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, false);
- }
- struct ggml_tensor * ggml_unary_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- enum ggml_unary_op op) {
- return ggml_unary_impl(ctx, a, op, true);
- }
- // ggml_map_unary
- static struct ggml_tensor * ggml_map_unary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_UNARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_unary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, false);
- }
- struct ggml_tensor * ggml_map_unary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_unary_op_f32_t fun) {
- return ggml_map_unary_impl_f32(ctx, a, fun, true);
- }
- // ggml_map_binary
- static struct ggml_tensor * ggml_map_binary_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun,
- bool inplace) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_BINARY;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_binary_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
- }
- struct ggml_tensor * ggml_map_binary_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_binary_op_f32_t fun) {
- return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
- }
- // ggml_map_custom1_f32
- static struct ggml_tensor * ggml_map_custom1_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM1_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_custom1_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun) {
- return ggml_map_custom1_impl_f32(ctx, a, fun, false);
- }
- struct ggml_tensor * ggml_map_custom1_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_f32_t fun) {
- return ggml_map_custom1_impl_f32(ctx, a, fun, true);
- }
- // ggml_map_custom2_f32
- static struct ggml_tensor * ggml_map_custom2_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM2_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_custom2_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun) {
- return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
- }
- struct ggml_tensor * ggml_map_custom2_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_f32_t fun) {
- return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
- }
- // ggml_map_custom3_f32
- static struct ggml_tensor * ggml_map_custom3_impl_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun,
- bool inplace) {
- bool is_node = false;
- if (!inplace && (a->grad || b->grad || c->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
- result->op = GGML_OP_MAP_CUSTOM3_F32;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_map_custom3_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun) {
- return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
- }
- struct ggml_tensor * ggml_map_custom3_inplace_f32(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_f32_t fun) {
- return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
- }
- // ggml_map_custom1
- struct ggml_map_custom1_op_params {
- ggml_custom1_op_t fun;
- int n_tasks;
- void * userdata;
- };
- static struct ggml_tensor * ggml_map_custom1_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- bool is_node = false;
- if (!inplace && a->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom1_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM1;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- return result;
- }
- struct ggml_tensor * ggml_map_custom1(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom1_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- const ggml_custom1_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
- }
- // ggml_map_custom2
- struct ggml_map_custom2_op_params {
- ggml_custom2_op_t fun;
- int n_tasks;
- void * userdata;
- };
- static struct ggml_tensor * ggml_map_custom2_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom2_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM2;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- struct ggml_tensor * ggml_map_custom2(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom2_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- const ggml_custom2_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
- }
- // ggml_map_custom3
- struct ggml_map_custom3_op_params {
- ggml_custom3_op_t fun;
- int n_tasks;
- void * userdata;
- };
- static struct ggml_tensor * ggml_map_custom3_impl(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata,
- bool inplace) {
- GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
- bool is_node = false;
- if (!inplace && (a->grad || b->grad || c->grad)) {
- is_node = true;
- }
- struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
- struct ggml_map_custom3_op_params params = {
- /*.fun =*/ fun,
- /*.n_tasks =*/ n_tasks,
- /*.userdata =*/ userdata
- };
- ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
- result->op = GGML_OP_MAP_CUSTOM3;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- struct ggml_tensor * ggml_map_custom3(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
- }
- struct ggml_tensor * ggml_map_custom3_inplace(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c,
- const ggml_custom3_op_t fun,
- int n_tasks,
- void * userdata) {
- return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
- }
- // ggml_cross_entropy_loss
- struct ggml_tensor * ggml_cross_entropy_loss(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- bool is_node = false;
- if (a->grad || b->grad) {
- is_node = true;
- }
- struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
- result->op = GGML_OP_CROSS_ENTROPY_LOSS;
- result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
- result->src[0] = a;
- result->src[1] = b;
- return result;
- }
- // ggml_cross_entropy_loss_back
- struct ggml_tensor * ggml_cross_entropy_loss_back(
- struct ggml_context * ctx,
- struct ggml_tensor * a,
- struct ggml_tensor * b,
- struct ggml_tensor * c) {
- GGML_ASSERT(ggml_are_same_shape(a, b));
- GGML_ASSERT(ggml_is_scalar(c));
- struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
- result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
- result->grad = NULL;
- result->src[0] = a;
- result->src[1] = b;
- result->src[2] = c;
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_set_param(
- struct ggml_context * ctx,
- struct ggml_tensor * tensor) {
- tensor->is_param = true;
- GGML_ASSERT(tensor->grad == NULL);
- tensor->grad = ggml_dup_tensor(ctx, tensor);
- ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
- }
- // ggml_compute_forward_dup
- static void ggml_compute_forward_dup_same_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(src0->type == dst->type);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const size_t nb00 = src0->nb[0];
- const size_t nb0 = dst->nb[0];
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by elements
- const int ne = ggml_nelements(dst);
- const int dr = (ne + nth - 1) / nth;
- const int ie0 = dr * ith;
- const int ie1 = MIN(ie0 + dr, ne);
- if (ie0 < ie1) {
- memcpy(
- ((char *) dst->data + ie0*nb0),
- ((char *) src0->data + ie0*nb00),
- (ie1 - ie0) * ggml_type_size(src0->type));
- }
- }
- static void ggml_compute_forward_dup_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
- }
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (nb00 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (type_traits[dst->type].from_float) {
- ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- quantize_row_q(src0_ptr, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(float));
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ASSERT(false); // TODO: implement
- }
- }
- // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
- static void ggml_compute_forward_dup_bytes(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(src0->type == dst->type);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
- ggml_compute_forward_dup_same_cont(params, src0, dst);
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS;
- const size_t type_size = ggml_type_size(src0->type);
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == type_size && nb0 == type_size) {
- // copy by rows
- const size_t rs = ne00 * type_size;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- size_t id = 0;
- char * dst_ptr = (char *) dst->data;
- const size_t rs = ne00 * type_size;
- if (nb00 == type_size) {
- // src0 is contigous on first dimension, copy by rows
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, type_size);
- id += type_size;
- }
- }
- id += rs * (ne01 - ir1);
- }
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, type_size);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_dup(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (src0->type == dst->type) {
- ggml_compute_forward_dup_bytes(params, src0, dst);
- return;
- }
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add
- static void ggml_compute_forward_add_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- #ifdef GGML_USE_CLBLAST
- if (src1->backend == GGML_BACKEND_GPU) {
- // TODO: OpenCL kernel support full broadcast
- GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
- if (ith == 0) {
- ggml_cl_add(src0, src1, dst);
- }
- return;
- }
- #endif
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(float)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- const int64_t nr0 = ne00 / ne10;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
- for (int64_t r = 0; r < nr0; ++r) {
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
- #else
- ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
- #endif
- }
- }
- } else {
- // src1 is not contiguous
- for (int ir = ir0; ir < ir1; ++ir) {
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i10 = i0 % ne10;
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
- dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_add_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- if (dst->type == GGML_TYPE_F32) {
- GGML_ASSERT( nb0 == sizeof(float));
- }
- else {
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- }
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(float)) {
- if (dst->type == GGML_TYPE_F16) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
- }
- }
- } else {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
- }
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
- }
- static void ggml_compute_forward_add_f16_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (nb10 == sizeof(ggml_fp16_t)) {
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
- }
- }
- }
- else {
- // src1 is not contiguous
- GGML_ASSERT(false);
- }
- }
- static void ggml_compute_forward_add_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- const enum ggml_type dtype = dst->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- // src1 and dst are same shape as src0 => same indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = i01;
- const int i3 = i03;
- const int i2 = i02;
- const int i1 = i01;
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
- void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- assert(ne00 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne00);
- // add src1
- ggml_vec_acc_f32(ne00, wdata, src1_row);
- // quantize row to dst
- if (quantize_row_q != NULL) {
- quantize_row_q(wdata, dst_row, ne00);
- } else {
- memcpy(dst_row, wdata, ne0*nb0);
- }
- }
- }
- static void ggml_compute_forward_add(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- {
- ggml_compute_forward_add_q_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add1
- static void ggml_compute_forward_add1_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_add1_f32);
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data), 0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_add1_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- *(float *) src1->data);
- #endif
- }
- }
- static void ggml_compute_forward_add1_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_f16_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
- // we don't support permuted src0
- GGML_ASSERT(nb00 == ggml_type_size(type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
- void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
- assert(ne0 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne0);
- // add src1
- ggml_vec_acc1_f32(ne0, wdata, v);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne0);
- }
- }
- static void ggml_compute_forward_add1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add1_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
- }
- else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- {
- ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_acc
- static void ggml_compute_forward_acc_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during acc
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- if (params->ith != 0) {
- return;
- }
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- // src0 and dst as viewed during acc
- const size_t nb0 = ggml_element_size(src0);
- const size_t nb00 = nb0;
- const size_t nb01 = nb1;
- const size_t nb02 = nb2;
- const size_t nb03 = nb3;
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
- #else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- }
- }
- static void ggml_compute_forward_acc(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_acc_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sub
- static void ggml_compute_forward_sub_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vsub(
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_sub_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- // }
- // }
- }
- } else {
- // src1 is not contiguous
- for (int ir = 0; ir < nr; ++ir) {
- // src0, src1 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i0 = 0; i0 < ne0; i0++) {
- float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
- dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
- }
- }
- }
- }
- static void ggml_compute_forward_sub(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sub_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul
- static void ggml_compute_forward_mul_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- #if defined(GGML_USE_CLBLAST)
- if (src1->backend == GGML_BACKEND_GPU) {
- // TODO: OpenCL kernel support full broadcast
- GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
- if (ith == 0) {
- ggml_cl_mul(src0, src1, dst);
- }
- return;
- }
- #endif
- const int64_t nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- const int64_t nr0 = ne00 / ne10;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
- for (int64_t r = 0 ; r < nr0; ++r) {
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_mul_f32);
- vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
- #else
- ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
- #endif
- }
- }
- } else {
- // src1 is not contiguous
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- for (int64_t i0 = 0; i0 < ne00; ++i0) {
- const int64_t i10 = i0 % ne10;
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
- dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
- }
- }
- }
- }
- static void ggml_compute_forward_mul(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mul_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_div
- static void ggml_compute_forward_div_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (nb10 == sizeof(float)) {
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- const int64_t nr0 = ne00 / ne10;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
- for (int64_t r = 0; r < nr0; ++r) {
- #ifdef GGML_USE_ACCELERATE
- UNUSED(ggml_vec_div_f32);
- vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
- #else
- ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
- #endif
- }
- }
- } else {
- // src1 is not contiguous
- for (int64_t ir = ith; ir < nr; ir += nth) {
- // src0 and dst are same shape => same indices
- // src1 is broadcastable across src0 and dst in i1, i2, i3
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const int64_t i13 = i03 % ne13;
- const int64_t i12 = i02 % ne12;
- const int64_t i11 = i01 % ne11;
- float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
- float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
- for (int64_t i0 = 0; i0 < ne00; ++i0) {
- const int64_t i10 = i0 % ne10;
- float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
- dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
- }
- }
- }
- }
- static void ggml_compute_forward_div(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_div_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqr
- static void ggml_compute_forward_sqr_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqr_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqr(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqr_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sqrt
- static void ggml_compute_forward_sqrt_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sqrt_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sqrt(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sqrt_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_log
- static void ggml_compute_forward_log_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_log_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_log(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_log_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum
- static void ggml_compute_forward_sum_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
- ggml_float sum = 0;
- ggml_float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32_ggf(ne00,
- &row_sum,
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- sum += row_sum;
- }
- }
- }
- ((float *) dst->data)[0] = sum;
- }
- static void ggml_compute_forward_sum_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_is_scalar(dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
- float sum = 0;
- float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f16_ggf(ne00,
- &row_sum,
- (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
- }
- static void ggml_compute_forward_sum(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, src0, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_sum_f16(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sum_rows
- static void ggml_compute_forward_sum_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(dst->nb[0] == sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(ne0 == 1);
- GGML_ASSERT(ne1 == ne01);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- for (int64_t i3 = 0; i3 < ne03; i3++) {
- for (int64_t i2 = 0; i2 < ne02; i2++) {
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
- float row_sum = 0;
- ggml_vec_sum_f32(ne00, &row_sum, src_row);
- dst_row[0] = row_sum;
- }
- }
- }
- }
- static void ggml_compute_forward_sum_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_rows_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mean
- static void ggml_compute_forward_mean_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- UNUSED(ne0);
- UNUSED(ne1);
- UNUSED(ne2);
- UNUSED(ne3);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
- }
- static void ggml_compute_forward_mean(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_argmax
- static void ggml_compute_forward_argmax_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- assert(dst->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src = (float *) ((char *) src0->data + i1*nb01);
- int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
- int v = 0;
- ggml_vec_argmax_f32(ne00, &v, src);
- dst_[0] = v;
- }
- }
- static void ggml_compute_forward_argmax(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argmax_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_repeat
- static void ggml_compute_forward_repeat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_cpy_f32(ne00,
- (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
- (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
- ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
- // ggml_vec_cpy_f16(ne00, y, x)
- for (int i = 0; i < ne00; ++i) {
- y[i] = x[i];
- }
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_I16:
- {
- ggml_compute_forward_repeat_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_repeat_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_repeat_back
- static void ggml_compute_forward_repeat_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_can_repeat(dst, src0));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne00/ne0);
- const int nr1 = (int)(ne01/ne1);
- const int nr2 = (int)(ne02/ne2);
- const int nr3 = (int)(ne03/ne3);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (ggml_is_contiguous(dst)) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- } else {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- ggml_vec_set_f32(ne0,
- (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
- 0);
- }
- }
- }
- }
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_acc_f32(ne0,
- (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
- (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_back_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_concat
- static void ggml_compute_forward_concat_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- if (i2 < ne02) { // src0
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
- float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
- *y = *x;
- }
- }
- } // src1
- else {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
- float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
- *y = *x;
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_concat(
- const struct ggml_compute_params* params,
- const struct ggml_tensor* src0,
- const struct ggml_tensor* src1,
- struct ggml_tensor* dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_concat_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_abs
- static void ggml_compute_forward_abs_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_abs_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_abs(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_abs_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_sgn
- static void ggml_compute_forward_sgn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_sgn_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_sgn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sgn_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_neg
- static void ggml_compute_forward_neg_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_neg_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_neg(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_neg_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_step
- static void ggml_compute_forward_step_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_step_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_step(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_step_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_tanh
- static void ggml_compute_forward_tanh_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_tanh_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_tanh(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_tanh_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_elu
- static void ggml_compute_forward_elu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_elu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_elu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_elu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_relu
- static void ggml_compute_forward_relu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_relu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_relu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_gelu
- static void ggml_compute_forward_gelu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_gelu_quick
- static void ggml_compute_forward_gelu_quick_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_quick(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_quick_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_silu
- static void ggml_compute_forward_silu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_leaky_relu
- static void ggml_compute_forward_leaky_relu_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_leaky_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
- }
- }
- static void ggml_compute_forward_leaky_relu(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_leaky_relu_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_silu_back
- static void ggml_compute_forward_silu_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * grad,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
- GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src0, grad));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])),
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * grad,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_hardswish_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_hardswish_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_hardswish(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_hardswish_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_hardsigmoid_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_hardsigmoid_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_hardsigmoid(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_norm
- static void ggml_compute_forward_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- GGML_ASSERT(eps > 0.0f);
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_group_rms_norm
- static void ggml_compute_forward_rms_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- GGML_ASSERT(eps > 0.0f);
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
- const float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
- const float scale = 1.0f/sqrtf(mean + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_rms_norm_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- // src1 is same shape as src0 => same indices
- const int64_t i11 = i01;
- const int64_t i12 = i02;
- const int64_t i13 = i03;
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
- ggml_float sum_xx = 0.0;
- ggml_float sum_xdz = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum_xx += (ggml_float)(x[i00] * x[i00]);
- sum_xdz += (ggml_float)(x[i00] * dz[i00]);
- }
- //const float mean = (float)(sum_xx)/ne00;
- const float mean_eps = (float)(sum_xx)/ne00 + eps;
- const float sum_eps = (float)(sum_xx) + eps*ne00;
- //const float mean_xdz = (float)(sum_xdz)/ne00;
- // we could cache rms from forward pass to improve performance.
- // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
- //const float rms = sqrtf(mean_eps);
- const float rrms = 1.0f / sqrtf(mean_eps);
- //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
- {
- // z = rms_norm(x)
- //
- // rms_norm(src0) =
- // scale(
- // src0,
- // div(
- // 1,
- // sqrt(
- // add(
- // scale(
- // sum(
- // sqr(
- // src0)),
- // (1.0/N)),
- // eps))));
- // postorder:
- // ## op args grad
- // 00 param src0 grad[#00]
- // 01 const 1
- // 02 sqr (#00) grad[#02]
- // 03 sum (#02) grad[#03]
- // 04 const 1/N
- // 05 scale (#03, #04) grad[#05]
- // 06 const eps
- // 07 add (#05, #06) grad[#07]
- // 08 sqrt (#07) grad[#08]
- // 09 div (#01,#08) grad[#09]
- // 10 scale (#00,#09) grad[#10]
- //
- // backward pass, given grad[#10]
- // #10: scale
- // grad[#00] += scale(grad[#10],#09)
- // grad[#09] += sum(mul(grad[#10],#00))
- // #09: div
- // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
- // #08: sqrt
- // grad[#07] += mul(grad[#08], div(0.5, #08))
- // #07: add
- // grad[#05] += grad[#07]
- // #05: scale
- // grad[#03] += scale(grad[#05],#04)
- // #03: sum
- // grad[#02] += repeat(grad[#03], #02)
- // #02:
- // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
- //
- // substitute and simplify:
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#02] = repeat(grad[#03], #02)
- // grad[#02] = repeat(scale(grad[#05],#04), #02)
- // grad[#02] = repeat(scale(grad[#07],#04), #02)
- // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
- // a = b*c + d*e
- // a = b*c*f/f + d*e*f/f
- // a = (b*c*f + d*e*f)*(1/f)
- // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
- // a = (b + d*e/c)*c
- // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
- // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
- // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
- // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
- // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
- // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
- // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- }
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // post-order:
- // dx := x
- // dx := scale(dx,-mean_xdz/mean_eps)
- // dx := add(dx, dz)
- // dx := scale(dx, rrms)
- float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_vec_cpy_f32 (ne00, dx, x);
- // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
- ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
- ggml_vec_acc_f32 (ne00, dx, dz);
- ggml_vec_scale_f32(ne00, dx, rrms);
- }
- }
- }
- }
- static void ggml_compute_forward_rms_norm_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_group_norm
- static void ggml_compute_forward_group_norm_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- const float eps = 1e-6f; // TODO: make this a parameter
- // TODO: optimize
- int n_channels = src0->ne[2];
- int n_groups = dst->op_params[0];
- int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
- for (int i = ith; i < n_groups; i+=nth) {
- int start = i * n_channels_per_group;
- int end = start + n_channels_per_group;
- if (end > n_channels) {
- end = n_channels;
- }
- int step = end - start;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- ggml_float sum = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- }
- }
- float mean = sum / (ne00 * ne01 * step);
- ggml_float sum2 = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v * v);
- }
- }
- }
- float variance = sum2 / (ne00 * ne01 * step);
- const float scale = 1.0f / sqrtf(variance + eps);
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- }
- static void ggml_compute_forward_group_norm(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_group_norm_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_mul_mat
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- // helper function to determine if it is better to use BLAS or not
- // for large matrices, BLAS is faster
- static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- //const int64_t ne00 = src0->ne[0];
- //const int64_t ne01 = src0->ne[1];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
- // all the experts for each batch element and the processing would become incredibly slow
- // TODO: find the optimal values for these
- if (dst->op != GGML_OP_MUL_MAT_ID &&
- ggml_is_contiguous(src0) &&
- ggml_is_contiguous(src1) &&
- //src0->type == GGML_TYPE_F32 &&
- src1->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
- /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
- return true;
- }
- return false;
- }
- #endif
- static void ggml_compute_forward_mul_mat(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- const bool src1_cont = ggml_is_contiguous(src1);
- ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
- ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
- int64_t const vec_dot_num_rows = type_traits[type].nrows;
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- #if defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(src0, src1, dst)) {
- if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
- ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
- }
- return;
- }
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(dst)) {
- const int64_t ne_plane = ne01*ne00;
- const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
- UNUSED(desired_wsize);
- if (params->type == GGML_TASK_INIT) {
- if (type != GGML_TYPE_F32) {
- assert(params->wsize >= desired_wsize);
- // parallelize by src0 rows
- for (int64_t i13 = 0; i13 < ne13; i13++) {
- for (int64_t i12 = 0; i12 < ne12; i12++) {
- // broadcast src0 into src1 across 2nd,3rd dimension
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
- float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
- ggml_to_float_t const to_float = type_traits[type].to_float;
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
- }
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // perform sgemm, parallelization controlled by blas lib
- if (ith != 0) {
- return;
- }
- //const int64_t tgemm0 = ggml_perf_time_us();
- for (int64_t i13 = 0; i13 < ne13; i13++) {
- for (int64_t i12 = 0; i12 < ne12; i12++) {
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
- const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
- float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
- if (type != GGML_TYPE_F32) {
- x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
- }
- cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
- ne1, ne01, ne10,
- 1.0f, y, ne10,
- x, ne00,
- 0.0f, d, ne01);
- }
- }
- //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
- //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
- return;
- }
- #endif
- if (params->type == GGML_TASK_INIT) {
- if (ith != 0) {
- return;
- }
- if (src1->type != vec_dot_type) {
- char * wdata = params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- assert(params->wsize >= ne11*ne12*ne13*row_size);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- wdata += row_size;
- }
- }
- }
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- const int64_t nr0 = ne01; // src0 rows
- const int64_t nr1 = ne1*ne12*ne13; // src1 rows
- //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
- // distribute the thread work across the inner or outer loop based on which one is larger
- const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
- const int64_t ith0 = ith % nth0;
- const int64_t ith1 = ith / nth0;
- const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
- const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
- const int64_t ir010 = dr0*ith0;
- const int64_t ir011 = MIN(ir010 + dr0, nr0);
- const int64_t ir110 = dr1*ith1;
- const int64_t ir111 = MIN(ir110 + dr1, nr1);
- //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
- // threads with no work simply yield (not sure if it helps)
- if (ir010 >= ir011 || ir110 >= ir111) {
- sched_yield();
- return;
- }
- assert(ne12 % ne02 == 0);
- assert(ne13 % ne03 == 0);
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
- // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
- int64_t nrc = vec_dot_num_rows;
- // TODO: currently the mmla kernels support only even numbered rows/cols.
- // this check can be removed once they are extended to support odd numbered rows/cols too
- if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
- nrc = 1;
- }
- const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
- // attempt to reduce false-sharing (does not seem to make a difference)
- // 16 * 2, accounting for mmla kernels
- float tmp[32];
- for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
- for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
- const int64_t i13 = (ir1/(ne12*ne1));
- const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
- const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
- // broadcast src0 into src1
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const int64_t i1 = i11;
- const int64_t i2 = i12;
- const int64_t i3 = i13;
- const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char *) wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
- : (i11*nb11 + i12*nb12 + i13*nb13));
- float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
- vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
- }
- for (int cn = 0; cn < nrc; ++cn) {
- memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
- }
- }
- }
- }
- }
- // ggml_compute_forward_mul_mat_id
- static void ggml_compute_forward_mul_mat_id(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * ids,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- const bool src1_cont = ggml_is_contiguous(src1);
- ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
- enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
- ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
- GGML_ASSERT(ne0 == ne01);
- GGML_ASSERT(ne1 == ne11);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == ggml_type_size(src1->type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- // row groups
- const int id = ggml_get_op_params_i32(dst, 0);
- const int n_as = ggml_get_op_params_i32(dst, 1);
- char * wdata_src1_end = (src1->type == vec_dot_type) ?
- (char *) params->wdata :
- (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
- int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
- int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
- #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
- if (params->type == GGML_TASK_INIT) {
- if (ith != 0) {
- return;
- }
- char * wdata = params->wdata;
- if (src1->type != vec_dot_type) {
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- assert(params->wsize >= ne11*ne12*ne13*row_size);
- assert(src1->type == GGML_TYPE_F32);
- for (int64_t i13 = 0; i13 < ne13; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
- wdata += row_size;
- }
- }
- }
- }
- // initialize matrix_row_counts
- GGML_ASSERT(wdata == wdata_src1_end);
- memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
- // group rows by src0 matrix
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
- matrix_row_counts[row_id] += 1;
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // compute each matrix multiplication in sequence
- for (int cur_a = 0; cur_a < n_as; ++cur_a) {
- const int64_t cne1 = matrix_row_counts[cur_a];
- if (cne1 == 0) {
- continue;
- }
- const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
- const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
- const size_t row_size = ggml_row_size(vec_dot_type, ne10);
- const int64_t nr0 = ne01; // src0 rows
- const int64_t nr1 = cne1*ne12*ne13; // src1 rows
- //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
- // distribute the thread work across the inner or outer loop based on which one is larger
- const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
- const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
- const int64_t ith0 = ith % nth0;
- const int64_t ith1 = ith / nth0;
- const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
- const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
- const int64_t ir010 = dr0*ith0;
- const int64_t ir011 = MIN(ir010 + dr0, nr0);
- const int64_t ir110 = dr1*ith1;
- const int64_t ir111 = MIN(ir110 + dr1, nr1);
- //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
- // threads with no work simply yield (not sure if it helps)
- if (ir010 >= ir011 || ir110 >= ir111) {
- sched_yield();
- continue;
- }
- assert(ne12 % ne02 == 0);
- assert(ne13 % ne03 == 0);
- // block-tiling attempt
- const int64_t blck_0 = 16;
- const int64_t blck_1 = 16;
- // attempt to reduce false-sharing (does not seem to make a difference)
- float tmp[16];
- for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
- for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
- for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
- const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
- const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
- const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
- const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
- // broadcast src0 into src1
- const int64_t i03 = i13/r3;
- const int64_t i02 = i12/r2;
- const int64_t i1 = i11;
- const int64_t i2 = i12;
- const int64_t i3 = i13;
- const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
- // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
- // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
- // the original src1 data pointer, so we should index using the indices directly
- // TODO: this is a bit of a hack, we should probably have a better way to handle this
- const char * src1_col = (const char *) wdata +
- (src1_cont || src1->type != vec_dot_type
- ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
- : (i11*nb11 + i12*nb12 + i13*nb13));
- float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
- //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
- //}
- for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
- vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
- }
- memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
- }
- }
- }
- }
- #undef MMID_MATRIX_ROW
- }
- // ggml_compute_forward_out_prod
- static void ggml_compute_forward_out_prod_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- // int64_t t0 = ggml_perf_time_us();
- // UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne3 == ne13);
- GGML_ASSERT(ne03 == ne13);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
- // TODO: #if defined(GGML_USE_CLBLAST)
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- bool use_blas = ggml_is_matrix(src0) &&
- ggml_is_matrix(src1) &&
- ggml_is_contiguous(src0) &&
- (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
- #endif
- if (params->type == GGML_TASK_INIT) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
- if (use_blas) {
- return;
- }
- #endif
- if (ith != 0) {
- return;
- }
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (use_blas) {
- if (params->ith != 0) { // All threads other than the first do no work.
- return;
- }
- // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
- // src0: (k,n)
- // src1: (k,m)
- // dst: (m,n)
- //
- // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
- // Also expressed as (major,minor)
- // a: (m,k): so src1 transposed
- // b: (k,n): so src0
- // c: (m,n)
- //
- // However, if ggml_is_transposed(src1) is true, then
- // src1->data already contains a transposed version, so sgemm mustn't
- // transpose it further.
- int n = src0->ne[0];
- int k = src0->ne[1];
- int m = src1->ne[0];
- int transposeA, lda;
- if (!ggml_is_transposed(src1)) {
- transposeA = CblasTrans;
- lda = m;
- } else {
- transposeA = CblasNoTrans;
- lda = k;
- }
- float * a = (float *) ((char *) src1->data);
- float * b = (float *) ((char *) src0->data);
- float * c = (float *) ((char *) dst->data);
- cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
- return;
- }
- #endif
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
- // parallelize by last three dimensions
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- // block-tiling attempt
- const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
- const int64_t blck_1 = 16;
- for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
- const int64_t bir1 = MIN(bir + blck_1, ir1);
- for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
- const int64_t bne01 = MIN(bi01 + blck_0, ne01);
- for (int64_t ir = bir; ir < bir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
- const int64_t i02 = i2;
- const int64_t i03 = i3;
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
- #if GGML_VEC_MAD_UNROLL > 2
- const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
- for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
- }
- for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
- #else
- for (int64_t i01 = bi01; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
- #endif
- }
- }
- }
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_out_prod_q_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- // int64_t t0 = ggml_perf_time_us();
- // UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 dim0
- GGML_ASSERT(nb00 == ggml_type_size(type));
- // dst dim0 cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
- // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
- if (params->type == GGML_TASK_INIT) {
- if (ith != 0) {
- return;
- }
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by last three dimensions
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
- const int64_t i02 = i2;
- const int64_t i03 = i3;
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- dequantize_row_q(s0, wdata, ne0);
- ggml_vec_mad_f32(ne0, d, wdata, *s1);
- }
- }
- //int64_t t1 = ggml_perf_time_us();
- //static int64_t acc = 0;
- //acc += t1 - t0;
- //if (t1 - t0 > 10) {
- // printf("\n");
- // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
- // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
- // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
- // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
- // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
- //}
- }
- static void ggml_compute_forward_out_prod(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- {
- ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ASSERT(false); // todo
- // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_scale
- static void ggml_compute_forward_scale_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // scale factor
- float v;
- memcpy(&v, dst->op_params, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const size_t nb01 = src0->nb[1];
- const size_t nb1 = dst->nb[1];
- for (int i1 = ir0; i1 < ir1; i1++) {
- if (dst->data != src0->data) {
- // src0 is same shape as dst => same indices
- memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
- }
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
- }
- }
- static void ggml_compute_forward_scale(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_set
- static void ggml_compute_forward_set_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- if (params->ith != 0) {
- return;
- }
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
- }
- static void ggml_compute_forward_set(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_cpy
- static void ggml_compute_forward_cpy(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_cont
- static void ggml_compute_forward_cont(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- ggml_compute_forward_dup(params, src0, dst);
- }
- // ggml_compute_forward_reshape
- static void ggml_compute_forward_reshape(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- UNUSED(dst);
- }
- // ggml_compute_forward_view
- static void ggml_compute_forward_view(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_permute
- static void ggml_compute_forward_permute(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_transpose
- static void ggml_compute_forward_transpose(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0) {
- // NOP
- UNUSED(params);
- UNUSED(src0);
- }
- // ggml_compute_forward_get_rows
- static void ggml_compute_forward_get_rows_q(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
- const enum ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == ggml_type_size(type));
- assert(ggml_nrows(dst) == nr);
- // TODO: multi-thread
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- dequantize_row_q(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
- }
- }
- }
- static void ggml_compute_forward_get_rows_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_fp16_t));
- assert(ggml_nrows(dst) == nr);
- // TODO: multi-thread
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- ggml_fp16_to_fp32_row(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
- }
- }
- }
- static void ggml_compute_forward_get_rows_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(float));
- assert(ggml_nrows(dst) == nr);
- // TODO: multi-thread
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
- }
- }
- }
- }
- static void ggml_compute_forward_get_rows(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- {
- ggml_compute_forward_get_rows_q(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_get_rows_back
- static void ggml_compute_forward_get_rows_back_f32_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_is_contiguous(dst));
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
- if (params->type == GGML_TASK_INIT) {
- if (params->ith != 0) {
- return;
- }
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- GGML_ASSERT(ggml_is_contiguous(dst));
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
- if (params->type == GGML_TASK_INIT) {
- if (params->ith != 0) {
- return;
- }
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) src0->data + i*src0->nb[1]));
- }
- }
- static void ggml_compute_forward_get_rows_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_diag
- static void ggml_compute_forward_diag_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(ne00 == ne0);
- GGML_ASSERT(ne00 == ne1);
- GGML_ASSERT(ne01 == 1);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne3);
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = 0; i1 < ne1; i1++) {
- float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
- for (int i0 = 0; i0 < i1; i0++) {
- d[i0] = 0;
- }
- d[i1] = s[i1];
- for (int i0 = i1+1; i0 < ne0; i0++) {
- d[i0] = 0;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_diag_mask_inf
- static void ggml_compute_forward_diag_mask_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const float value) {
- const int ith = params->ith;
- const int nth = params->nth;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const bool inplace = src0->data == dst->data;
- GGML_ASSERT(n_past >= 0);
- if (!inplace && (params->type == GGML_TASK_INIT)) {
- if (ith != 0) {
- return;
- }
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int k = 0; k < nz; k++) {
- for (int j = ith; j < nr; j += nth) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_diag_mask_inf(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- static void ggml_compute_forward_diag_mask_zero(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_soft_max
- static void ggml_compute_forward_soft_max_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- assert(ggml_is_contiguous(dst));
- assert(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float scale = 1.0f;
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t ne11 = src1 ? src1->ne[1] : 1;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
- // broadcast the mask across rows
- float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
- ggml_vec_cpy_f32 (nc, wp, sp);
- ggml_vec_scale_f32(nc, wp, scale);
- if (mp) {
- ggml_vec_acc_f32(nc, wp, mp);
- }
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(wp[i]));
- }
- #endif
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, wp);
- ggml_float sum = 0.0;
- uint16_t scvt;
- for (int i = 0; i < nc; i++) {
- if (wp[i] == -INFINITY) {
- dp[i] = 0.0f;
- } else {
- // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
- ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
- sum += (ggml_float)val;
- dp[i] = val;
- }
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(nc, dp, sum);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dp[i]));
- assert(!isinf(dp[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_soft_max(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_soft_max_back
- static void ggml_compute_forward_soft_max_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src1, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
- float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(dy[i]));
- assert(!isnan(y[i]));
- }
- #endif
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.T*y
- // dx = J * dy
- // dxk = sum_i(Jki * dyi)
- // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*dyk
- // dxk = -yk * sum_i(yi * dyi) + yk*dyk
- // dxk = -yk * dot(y, dy) + yk*dyk
- // dxk = yk * (- dot(y, dy) + dyk)
- // dxk = yk * (dyk - dot(y, dy))
- //
- // post-order:
- // dot_y_dy := dot(y, dy)
- // dx := dy
- // dx := dx - dot_y_dy
- // dx := dx * y
- // linear runtime, no additional memory
- float dot_y_dy = 0;
- ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
- ggml_vec_cpy_f32 (nc, dx, dy);
- ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
- ggml_vec_mul_f32 (nc, dx, dx, y);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dx[i]));
- assert(!isinf(dx[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_soft_max_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_alibi
- static void ggml_compute_forward_alibi_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int64_t ne1 = src0->ne[1]; // seq_len_without_past
- const int64_t ne2 = src0->ne[2]; // n_head -> this is k
- //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
- const int64_t n = ggml_nrows(src0);
- const int64_t ne2_ne3 = n/ne1; // ne2*ne3
- const size_t nb0 = src0->nb[0];
- const size_t nb1 = src0->nb[1];
- const size_t nb2 = src0->nb[2];
- //const int nb3 = src0->nb[3];
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(n_head == ne2);
- // add alibi to src0 (KQ_scaled)
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int64_t i = 0; i < ne0; i++) {
- for (int64_t j = 0; j < ne1; j++) {
- for (int64_t k = 0; k < ne2_ne3; k++) {
- float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
- float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
- // TODO: k*nb2 or k*nb3
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- pdst[0] = i * m_k + src[0];
- }
- }
- }
- }
- static void ggml_compute_forward_alibi_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_head = ((int32_t *) dst->op_params)[1];
- float max_bias;
- memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
- const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
- const int ne1 = src0->ne[1]; // seq_len_without_past
- const int ne2 = src0->ne[2]; // n_head -> this is k
- //const int ne3 = src0->ne[3]; // 1 -> bsz
- const int n = ggml_nrows(src0);
- const int ne2_ne3 = n/ne1; // ne2*ne3
- const int nb0 = src0->nb[0];
- const int nb1 = src0->nb[1];
- const int nb2 = src0->nb[2];
- //const int nb3 = src0->nb[3];
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
- GGML_ASSERT(n_head == ne2);
- // add alibi to src0 (KQ_scaled)
- const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
- for (int i = 0; i < ne0; i++) {
- for (int j = 0; j < ne1; j++) {
- for (int k = 0; k < ne2_ne3; k++) {
- ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
- float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
- // TODO: k*nb2 or k*nb3
- float m_k;
- if (k < n_heads_log2_floor) {
- m_k = powf(m0, k + 1);
- } else {
- m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
- }
- // we return F32
- pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
- }
- }
- }
- }
- static void ggml_compute_forward_alibi(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_alibi_f16(params, src0, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_alibi_f32(params, src0, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_clamp
- static void ggml_compute_forward_clamp_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
- for (int i = 0; i < nc; i++) {
- dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
- }
- }
- }
- static void ggml_compute_forward_clamp(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_clamp_f32(params, src0, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope
- static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
- return 1 - MIN(1, MAX(0, y));
- }
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- static void rope_yarn(
- float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta
- ) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
- }
- // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
- // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
- static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
- return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
- }
- static void ggml_rope_cache_init(
- float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
- float * cache, float sin_sign, float theta_scale
- ) {
- float theta = theta_base;
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- rope_yarn(
- theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
- );
- cache[i0 + 1] *= sin_sign;
- theta *= theta_scale;
- }
- }
- GGML_CALL void ggml_rope_yarn_corr_dims(
- int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
- ) {
- // start and end correction dims
- float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
- float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
- dims[0] = MAX(0, start);
- dims[1] = MIN(n_dims - 1, end);
- }
- static void ggml_compute_forward_rope_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const bool forward) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- // these two only relevant for xPos RoPE:
- float xpos_base;
- bool xpos_down;
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
- memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
- GGML_TENSOR_UNARY_OP_LOCALS
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb00 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.f/n_dims;
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
- const int32_t * pos = (const int32_t *) src1->data;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- const int64_t p = pos[i2];
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
- ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta_base = (float)p;
- if (is_glm) {
- theta_base = MIN(p, n_ctx - 2);
- float block_theta = MAX(p - (n_ctx - 2), 0);
- for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
- const float cos_theta = cosf(theta_base);
- const float sin_theta = sinf(theta_base) * sin_sign;
- const float cos_block_theta = cosf(block_theta);
- const float sin_block_theta = sinf(block_theta) * sin_sign;
- theta_base *= theta_scale;
- block_theta *= theta_scale;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
- const float x2 = src[n_dims];
- const float x3 = src[n_dims/2*3];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
- dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
- }
- } else if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- // zeta scaling for xPos only:
- float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
- if (xpos_down) zeta = 1.0f / zeta;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[1];
- dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
- dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
- }
- } else {
- // TODO: this might be wrong for ne0 != n_dims - need double check
- // it seems we have to rope just the first n_dims elements and do nothing with the rest
- // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
- theta_base *= freq_scale;
- for (int64_t ic = 0; ic < ne0; ic += 2) {
- if (ic < n_dims) {
- const int64_t ib = 0;
- // simplified from `(ib * n_dims + ic) * inv_ndims`
- float cur_rot = inv_ndims * ic - ib;
- float cos_theta, sin_theta;
- rope_yarn(
- theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
- &cos_theta, &sin_theta
- );
- sin_theta *= sin_sign;
- theta_base *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- } else {
- const int64_t i0 = ic;
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const bool forward) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- const float inv_ndims = -1.f/n_dims;
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
- const bool is_neox = mode & 2;
- const bool is_glm = mode & 4;
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
- const int32_t * pos = (const int32_t *) src1->data;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- const int64_t p = pos[i2];
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
- ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- float theta_base = (float)p;
- if (is_glm) {
- theta_base = MIN(p, n_ctx - 2);
- float block_theta = MAX(p - (n_ctx - 2), 0);
- for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
- const float cos_theta = cosf(theta_base);
- const float sin_theta = sinf(theta_base) * sin_sign;
- const float cos_block_theta = cosf(block_theta);
- const float sin_block_theta = sinf(block_theta) * sin_sign;
- theta_base *= theta_scale;
- block_theta *= theta_scale;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
- const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
- const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
- dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
- }
- } else if (!is_neox) {
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[1]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- // TODO: this might be wrong for ne0 != n_dims - need double check
- // it seems we have to rope just the first n_dims elements and do nothing with the rest
- // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
- theta_base *= freq_scale;
- for (int64_t ic = 0; ic < ne0; ic += 2) {
- if (ic < n_dims) {
- const int64_t ib = 0;
- // simplified from `(ib * n_dims + ic) * inv_ndims`
- float cur_rot = inv_ndims * ic - ib;
- float cos_theta, sin_theta;
- rope_yarn(
- theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
- &cos_theta, &sin_theta
- );
- sin_theta *= sin_sign;
- theta_base *= theta_scale;
- const int64_t i0 = ib*n_dims + ic/2;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_FP16_TO_FP32(src[0]);
- const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
- dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- } else {
- const int64_t i0 = ic;
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_rope(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_rope_back
- static void ggml_compute_forward_rope_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_transpose_1d
- static void ggml_compute_forward_conv_transpose_1d_f16_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- if (ith != 0) {
- return;
- }
- memset(params->wdata, 0, params->wsize);
- // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
- // permute source data (src1) from (L x Cin) to (Cin x L)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- // total rows in dst
- const int nr = ne1;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne02, &v, 0,
- (ggml_fp16_t *) wdata_src + i1n, 0,
- (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_transpose_1d_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02;
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- if (ith != 0) {
- return;
- }
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + nk;
- float * dst_data = wdata;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = src[i10];
- }
- }
- }
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- // total rows in dst
- const int nr = ne1;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * const wdata = (float *) params->wdata + 0;
- float * const wdata_src = wdata + nk;
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- float * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f32(ne02, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_transpose_1d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // src0: kernel [OC, IC, KH, KW]
- // src1: image [N, IC, IH, IW]
- // dst: result [N, OH, OW, IC*KH*KW]
- static void ggml_compute_forward_im2col_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- float * const wdata = (float *) dst->data;
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
- // micro kernel
- float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
- }
- // src0: kernel [OC, IC, KH, KW]
- // src1: image [N, IC, IH, IW]
- // dst: result [N, OH, OW, IC*KH*KW]
- static void ggml_compute_forward_im2col_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
- // micro kernel
- ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_im2col(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_im2col_f16(params, src0, src1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_im2col_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_conv_transpose_2d
- static void ggml_compute_forward_conv_transpose_2d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02*ne03;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (params->type == GGML_TASK_INIT) {
- if (ith != 0) {
- return;
- }
- memset(params->wdata, 0, params->wsize);
- // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
- ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
- }
- }
- }
- }
- }
- // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- for (int i12 = 0; i12 < ne12; i12++) {
- for (int i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
- ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
- for (int i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
- }
- }
- }
- }
- memset(dst->data, 0, ggml_nbytes(dst));
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int32_t stride = ggml_get_op_params_i32(dst, 0);
- // total patches in dst
- const int np = ne2;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
- for (int i2 = ip0; i2 < ip1; i2++) { // Cout
- float * dst_data = (float *)((char *) dst->data + i2*nb2);
- ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
- for (int i11 = 0; i11 < ne11; i11++) {
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i11*ne10*ne12 + i10*ne12;
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne03, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
- dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
- }
- }
- }
- }
- }
- }
- // ggml_compute_forward_pool_1d_sk_p0
- static void ggml_compute_forward_pool_1d_sk_p0(
- const struct ggml_compute_params * params,
- const enum ggml_op_pool op,
- const struct ggml_tensor * src,
- const int k,
- struct ggml_tensor * dst) {
- assert(src->type == GGML_TYPE_F32);
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const char * cdata = (const char *)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- float * drow = (float *)dst->data;
- const int64_t rs = dst->ne[0];
- while (cdata < data_end) {
- const float * const srow = (const float *)cdata;
- int j = 0;
- for (int64_t i = 0; i < rs; ++i) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] = 0; break;
- case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- for (int ki = 0; ki < k; ++ki) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
- case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- ++j;
- }
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] /= k; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- cdata += src->nb[1];
- drow += rs;
- }
- }
- // ggml_compute_forward_pool_1d
- static void ggml_compute_forward_pool_1d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int s0 = opts[2];
- const int p0 = opts[3];
- GGML_ASSERT(p0 == 0); // padding not supported
- GGML_ASSERT(k0 == s0); // only s = k supported
- ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
- }
- // ggml_compute_forward_pool_2d
- static void ggml_compute_forward_pool_2d(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src,
- struct ggml_tensor * dst) {
- GGML_ASSERT(src->type == GGML_TYPE_F32);
- GGML_ASSERT(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int32_t * opts = (const int32_t *)dst->op_params;
- enum ggml_op_pool op = opts[0];
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const char * cdata = (const char*)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- const int64_t px = dst->ne[0];
- const int64_t py = dst->ne[1];
- const int64_t pa = px * py;
- float * dplane = (float *)dst->data;
- const int ka = k0 * k1;
- const int offset0 = -p0;
- const int offset1 = -p1;
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- float * const drow = dplane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- float * const out = drow + ox;
- switch (op) {
- case GGML_OP_POOL_AVG: *out = 0; break;
- case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- const int ix = offset0 + ox * s0;
- const int iy = offset1 + oy * s1;
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
- const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= src->ne[0]) continue;
- switch (op) {
- case GGML_OP_POOL_AVG: *out += srow[j]; break;
- case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- }
- switch (op) {
- case GGML_OP_POOL_AVG: *out /= ka; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
- }
- }
- }
- cdata += src->nb[2];
- dplane += pa;
- }
- }
- // ggml_compute_forward_upscale
- static void ggml_compute_forward_upscale_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- const int scale_factor = dst->op_params[0];
- // TODO: optimize
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- const int64_t i03 = i3;
- for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
- const int64_t i02 = i2;
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- const int64_t i01 = i1 / scale_factor;
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- const int64_t i00 = i0 / scale_factor;
- const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
- *y = *x;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_upscale(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_upscale_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_pad
- static void ggml_compute_forward_pad_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float * dst_ptr = (float *) dst->data;
- // TODO: optimize
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- for (int64_t i3 = 0; i3 < ne3; ++i3) {
- const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
- const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- dst_ptr[dst_idx] = *src_ptr;
- } else {
- dst_ptr[dst_idx] = 0;
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_pad(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_pad_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_argsort
- static void ggml_compute_forward_argsort_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(nb0 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t nr = ggml_nrows(src0);
- enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
- for (int64_t i = ith; i < nr; i += nth) {
- int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
- const float * src_data = (float *)((char *) src0->data + i*nb01);
- for (int64_t j = 0; j < ne0; j++) {
- dst_data[j] = j;
- }
- // C doesn't have a functional sort, so we do a bubble sort instead
- for (int64_t j = 0; j < ne0; j++) {
- for (int64_t k = j + 1; k < ne0; k++) {
- if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
- (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
- int32_t tmp = dst_data[j];
- dst_data[j] = dst_data[k];
- dst_data[k] = tmp;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_argsort(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argsort_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_attn
- static void ggml_compute_forward_flash_attn_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2 % nek2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1, 0,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
- }
- // scale
- ggml_vec_scale_f32(masked_begin, S, scale);
- for (int64_t i = masked_begin; i < M; i++) {
- S[i] = -INFINITY;
- }
- // softmax
- // exclude known -INF S[..] values from max and loop
- // dont forget to set their SW values to zero
- {
- float max = -INFINITY;
- ggml_vec_max_f32(masked_begin, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- if (i >= masked_begin) {
- break;
- }
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (i + j >= masked_begin) {
- break;
- } else if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- #ifndef GGML_FLASH_ATTN_EXP_FP16
- const float val = expf(SS[j] - max);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
- #endif
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(masked_begin, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < masked_begin; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- // v indices
- const int iv2 = iq2 % nev2;
- const int iv3 = iq3;
- ggml_vec_dot_f32(masked_begin,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
- (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
- S, 0, 1);
- }
- }
- }
- static void ggml_compute_forward_flash_attn_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- GGML_ASSERT(ne0 == D);
- GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
- for (int64_t ic = 0; ic < nek1; ++ic) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2 % nek2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16(neq0,
- S + i1, 0,
- (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
- }
- } else {
- for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
- // k indices
- const int ik3 = iq3;
- const int ik2 = iq2 % nek2;
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f16_unroll(neq0, nbk1,
- S + i1,
- ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
- (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
- }
- }
- // scale
- ggml_vec_scale_f32(nek1, S, scale);
- if (masked) {
- for (int64_t i = P; i < M; i++) {
- if (i > P + iq1) {
- S[i] = -INFINITY;
- }
- }
- }
- // softmax
- // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
- // dont forget to set their S values to zero
- {
- float max = -INFINITY;
- ggml_vec_max_f32(M, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(S, 1, &max, S, 1, Mup);
- vvexpf(S, S, &Mup);
- ggml_vec_sum_f32(Mup, &sum, S);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL];
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- float * SS = S + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (SS[j] == -INFINITY) {
- SS[j] = 0.0f;
- } else {
- ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
- sump[j] += (ggml_float)val;
- SS[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(M, S, sum);
- #ifndef NDEBUG
- for (int i = 0; i < M; ++i) {
- assert(!isnan(S[i]));
- assert(!isinf(S[i]));
- }
- #endif
- }
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
- if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
- for (int64_t ic = 0; ic < nev1; ++ic) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- // v indices
- const int iv2 = iq2 % nev2;
- const int iv3 = iq3;
- ggml_vec_dot_f16(nev0,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
- (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
- S16, 0, 1);
- }
- } else {
- for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- // v indices
- const int iv2 = iq2 % nev2;
- const int iv3 = iq3;
- ggml_vec_dot_f16_unroll(nev0, nbv1,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
- ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
- S16);
- }
- }
- }
- }
- static void ggml_compute_forward_flash_attn(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const bool masked,
- struct ggml_tensor * dst) {
- switch (q->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_ff
- static void ggml_compute_forward_flash_ff_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a, // F16
- const struct ggml_tensor * b0, // F16 fc_w
- const struct ggml_tensor * b1, // F32 fc_b
- const struct ggml_tensor * c0, // F16 proj_w
- const struct ggml_tensor * c1, // F32 proj_b
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
- GGML_TENSOR_LOCALS(size_t, nba, a, nb)
- GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
- GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
- GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
- GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
- GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
- GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
- GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
- GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = nea0;
- //const int64_t N = nea1;
- const int64_t M = neb01;
- GGML_ASSERT(ne0 == nea0);
- GGML_ASSERT(ne1 == nea1);
- GGML_ASSERT(ne2 == nea2);
- GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbb10 == sizeof(float));
- GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nbc10 == sizeof(float));
- GGML_ASSERT(neb00 == D);
- GGML_ASSERT(neb01 == M);
- GGML_ASSERT(neb10 == M);
- GGML_ASSERT(neb11 == 1);
- GGML_ASSERT(nec00 == M);
- GGML_ASSERT(nec01 == D);
- GGML_ASSERT(nec10 == D);
- GGML_ASSERT(nec11 == 1);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // parallelize by a rows using ggml_vec_dot_f32
- // total rows in a
- const int nr = nea1*nea2*nea3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // a indices
- const int ia3 = ir/(nea2*nea1);
- const int ia2 = (ir - ia3*nea2*nea1)/nea1;
- const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
- float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
- for (int64_t ic = 0; ic < neb01; ++ic) {
- // b0 indices
- const int ib03 = ia3;
- const int ib02 = ia2;
- const int ib01 = ic;
- // S indices
- const int i1 = ib01;
- ggml_vec_dot_f16(nea0,
- S + i1, 0,
- (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
- (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
- }
- ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
- //ggml_vec_gelu_f32(neb01, S, S);
- ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
- for (int64_t i = 0; i < M; i++) {
- S16[i] = GGML_FP32_TO_FP16(S[i]);
- }
- ggml_vec_gelu_f16(neb01, S16, S16);
- {
- // dst indices
- const int i1 = ia1;
- const int i2 = ia2;
- const int i3 = ia3;
- for (int64_t ic = 0; ic < nec01; ++ic) {
- ggml_vec_dot_f16(neb01,
- (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
- (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
- S16, 0, 1);
- }
- ggml_vec_add_f32(nec01,
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
- (float *) c1->data);
- }
- }
- }
- static void ggml_compute_forward_flash_ff(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b0,
- const struct ggml_tensor * b1,
- const struct ggml_tensor * c0,
- const struct ggml_tensor * c1,
- struct ggml_tensor * dst) {
- switch (b0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
- } break;
- case GGML_TYPE_F32:
- {
- GGML_ASSERT(false); // TODO
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_flash_attn_back
- static void ggml_compute_forward_flash_attn_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * d,
- const bool masked,
- struct ggml_tensor * dst) {
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
- GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- const int mxDM = MAX(D, Mup);
- // GGML_ASSERT(ne0 == D);
- // GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned0 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned1 == N);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (params->type == GGML_TASK_INIT) {
- if (ith == 0) {
- memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
- enum ggml_type result_type = dst->type;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
- void * grad_q = (char *) dst->data;
- void * grad_k = (char *) dst->data + offs_k;
- void * grad_v = (char *) dst->data + offs_v;
- const size_t nbgq1 = nb0*neq0;
- const size_t nbgq2 = nb0*neq0*neq1;
- const size_t nbgq3 = nb0*neq0*neq1*neq2;
- const size_t nbgk1 = nb0*nek0;
- const size_t nbgk2 = nb0*nek0*nek1;
- const size_t nbgk3 = nb0*nek0*nek1*neq2;
- const size_t nbgv1 = nb0*nev0;
- const size_t nbgv2 = nb0*nev0*nev1;
- const size_t nbgv3 = nb0*nev0*nev1*neq2;
- // parallelize by k rows using ggml_vec_dot_f32
- // total rows in k
- const int nr = nek2*nek3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- // how often k2 (and v2) is repeated in q2
- int nrep = neq2/nek2;
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int ik3 = ir/(nek2);
- const int ik2 = ir - ik3*nek2;
- const int iq3 = ik3;
- const int id3 = ik3;
- const int iv3 = ik3;
- const int iv2 = ik2;
- for (int irep = 0; irep < nrep; ++irep) {
- const int iq2 = ik2 + irep*nek2;
- const int id2 = iq2;
- // (ik2 + irep*nek2) % nek2 == ik2
- for (int iq1 = 0; iq1 < neq1; ++iq1) {
- const int id1 = iq1;
- // not sure about CACHE_LINE_SIZE_F32..
- // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
- float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
- float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- // k indices
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1, 0,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
- }
- // scale
- ggml_vec_scale_f32(masked_begin, S, scale);
- for (int64_t i = masked_begin; i < M; i++) {
- S[i] = -INFINITY;
- }
- // softmax
- // exclude known -INF S[..] values from max and loop
- // dont forget to set their SM values to zero
- {
- float max = -INFINITY;
- ggml_vec_max_f32(masked_begin, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
- vvexpf(SM, SM, &Mup);
- ggml_vec_sum_f32(Mup, &sum, SM);
- #else
- uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
- ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
- for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
- if (i >= masked_begin) {
- break;
- }
- float * SR = S + i;
- float * SW = SM + i;
- for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
- if (i + j >= masked_begin) {
- break;
- } else if (SR[j] == -INFINITY) {
- SW[j] = 0.0f;
- } else {
- #ifndef GGML_FLASH_ATTN_EXP_FP16
- const float val = expf(SR[j] - max);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
- memcpy(&scvt[j], &s, sizeof(uint16_t));
- const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
- #endif
- sump[j] += (ggml_float)val;
- SW[j] = val;
- }
- }
- }
- for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
- sum += sump[i];
- }
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(masked_begin, SM, sum);
- }
- // step-by-step explanation
- {
- // forward-process shape grads from backward process
- // parallel_for ik2,ik3:
- // for irep:
- // iq2 = ik2 + irep*nek2
- // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
- // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
- // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
- // for iq1:
- // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
- // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
- // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
- // S0 = -Inf [D,1,1,1]
- // ~S1[i] = dot(kcur[:D,i], qcur)
- // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
- // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
- // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
- // ~S5[i] = dot(vcur[:,i], S4)
- // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
- // ~dst[i,iq1,iq2,iq3] = S5[i] ^
- // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
- // dst backward-/ grad[dst] = d
- //
- // output gradients with their dependencies:
- //
- // grad[kcur] = grad[S1].T @ qcur
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S4] = grad[S5] @ vcur
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[qcur] = grad[S1] @ kcur
- // grad[vcur] = grad[S5].T @ S4
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // in post-order:
- //
- // S1 = qcur @ kcur.T
- // S2 = S1 * scale
- // S3 = diag_mask_inf(S2, P)
- // S4 = softmax(S3)
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[qcur] = grad[S1] @ kcur
- // grad[kcur] = grad[S1].T @ qcur
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // using less variables (SM=S4):
- //
- // S = diag_mask_inf(qcur @ kcur.T * scale, P)
- // SM = softmax(S)
- // S = d[:D,iq1,iq2,iq3] @ vcur
- // dot_SM_gradSM = dot(SM, S)
- // S = SM * (S - dot(SM, S))
- // S = diag_mask_zero(S, P) * scale
- //
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- }
- // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // for ic:
- // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
- // exclude known future zero S[..] values from operation
- ggml_vec_set_f32(masked_begin, S, 0);
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- S,
- (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
- }
- // S = SM * (S - dot(SM, S))
- float dot_SM_gradSM = 0;
- ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
- ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
- ggml_vec_mul_f32 (masked_begin, S, S, SM);
- // S = diag_mask_zero(S, P) * scale
- // already done by above ggml_vec_set_f32
- // exclude known zero S[..] values from operation
- ggml_vec_scale_f32(masked_begin, S, scale);
- // S shape [M,1]
- // SM shape [M,1]
- // kcur shape [D,M]
- // qcur shape [D,1]
- // vcur shape [M,D]
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
- // for ic:
- // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
- (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
- S[ic]);
- }
- // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
- // for ic:
- // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
- // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
- S[ic]);
- }
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- // for ic:
- // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
- // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
- // exclude known zero SM[..] values from mad
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
- SM,
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
- }
- }
- }
- }
- }
- static void ggml_compute_forward_flash_attn_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * q,
- const struct ggml_tensor * k,
- const struct ggml_tensor * v,
- const struct ggml_tensor * d,
- const bool masked,
- struct ggml_tensor * dst) {
- switch (q->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_win_part
- static void ggml_compute_forward_win_part_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t w = ((const int32_t *)(dst->op_params))[2];
- assert(ne00 == ne0);
- assert(ne3 == nep0*nep1);
- // TODO: optimize / multi-thread
- for (int py = 0; py < nep1; ++py) {
- for (int px = 0; px < nep0; ++px) {
- const int64_t i3 = py*nep0 + px;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i02 = py*w + i2;
- const int64_t i01 = px*w + i1;
- const int64_t i00 = i0;
- const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
- const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
- if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
- ((float *) dst->data)[i] = 0.0f;
- } else {
- ((float *) dst->data)[i] = ((float *) src0->data)[j];
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_win_part(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_part_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_win_unpart
- static void ggml_compute_forward_win_unpart_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- const int32_t w = ((const int32_t *)(dst->op_params))[0];
- // padding
- const int px = (w - ne1%w)%w;
- //const int py = (w - ne2%w)%w;
- const int npx = (px + ne1)/w;
- //const int npy = (py + ne2)/w;
- assert(ne0 == ne00);
- // TODO: optimize / multi-thread
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int ip2 = i2/w;
- const int ip1 = i1/w;
- const int64_t i02 = i2%w;
- const int64_t i01 = i1%w;
- const int64_t i00 = i0;
- const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
- const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
- ((float *) dst->data)[j] = ((float *) src0->data)[i];
- }
- }
- }
- }
- static void ggml_compute_forward_win_unpart(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_unpart_f32(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- //gmml_compute_forward_unary
- static void ggml_compute_forward_unary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- const enum ggml_unary_op op = ggml_get_unary_op(dst);
- switch (op) {
- case GGML_UNARY_OP_ABS:
- {
- ggml_compute_forward_abs(params, src0, dst);
- } break;
- case GGML_UNARY_OP_SGN:
- {
- ggml_compute_forward_sgn(params, src0, dst);
- } break;
- case GGML_UNARY_OP_NEG:
- {
- ggml_compute_forward_neg(params, src0, dst);
- } break;
- case GGML_UNARY_OP_STEP:
- {
- ggml_compute_forward_step(params, src0, dst);
- } break;
- case GGML_UNARY_OP_TANH:
- {
- ggml_compute_forward_tanh(params, src0, dst);
- } break;
- case GGML_UNARY_OP_ELU:
- {
- ggml_compute_forward_elu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_RELU:
- {
- ggml_compute_forward_relu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_GELU:
- {
- ggml_compute_forward_gelu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- ggml_compute_forward_gelu_quick(params, src0, dst);
- } break;
- case GGML_UNARY_OP_SILU:
- {
- ggml_compute_forward_silu(params, src0, dst);
- } break;
- case GGML_UNARY_OP_HARDSWISH:
- {
- ggml_compute_forward_hardswish(params, src0, dst);
- } break;
- case GGML_UNARY_OP_HARDSIGMOID:
- {
- ggml_compute_forward_hardsigmoid(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_get_rel_pos
- static void ggml_compute_forward_get_rel_pos_f16(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
- GGML_TENSOR_UNARY_OP_LOCALS
- const int64_t w = ne1;
- ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
- ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- const int64_t pos = (w - i1 - 1) + i2;
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
- }
- }
- }
- }
- static void ggml_compute_forward_get_rel_pos(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_add_rel_pos
- static void ggml_compute_forward_add_rel_pos_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * src2,
- struct ggml_tensor * dst) {
- const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
- if (!inplace && params->type == GGML_TASK_INIT) {
- if (params->ith != 0) {
- return;
- }
- memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
- return;
- }
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- int64_t t0 = ggml_perf_time_us();
- UNUSED(t0);
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
- float * src1_data = (float *) src1->data;
- float * src2_data = (float *) src2->data;
- float * dst_data = (float *) dst->data;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int ith = params->ith;
- const int nth = params->nth;
- // total patches in dst
- const int np = ne13;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- for (int64_t i13 = ip0; i13 < ip1; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t jp0 = jp1 + i10;
- const float src1_e = src1_data[jp0];
- const float src2_e = src2_data[jp0];
- const int64_t jdh = jp0 * ne10;
- const int64_t jdw = jdh - (ne10 - 1) * i10;
- for (int64_t j = 0; j < ne10; ++j) {
- dst_data[jdh + j ] += src2_e;
- dst_data[jdw + j*ne10] += src1_e;
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_add_rel_pos(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * src2,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_unary
- static void ggml_compute_forward_map_unary_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])));
- }
- }
- static void ggml_compute_forward_map_unary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- struct ggml_tensor * dst,
- const ggml_unary_op_f32_t fun) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_binary
- static void ggml_compute_forward_map_binary_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
- assert(params->ith == 0);
- assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- assert( dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- assert(src1->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- fun(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])),
- (float *) ((char *) src1->data + i*(src1->nb[1])));
- }
- }
- static void ggml_compute_forward_map_binary(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst,
- const ggml_binary_op_f32_t fun) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_map_custom1
- static void ggml_compute_forward_map_custom1_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- struct ggml_tensor * dst,
- const ggml_custom1_op_f32_t fun) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- fun(dst, a);
- }
- // ggml_compute_forward_map_custom2
- static void ggml_compute_forward_map_custom2_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- struct ggml_tensor * dst,
- const ggml_custom2_op_f32_t fun) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- fun(dst, a, b);
- }
- // ggml_compute_forward_map_custom3
- static void ggml_compute_forward_map_custom3_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- const struct ggml_tensor * c,
- struct ggml_tensor * dst,
- const ggml_custom3_op_f32_t fun) {
- assert(params->ith == 0);
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- fun(dst, a, b, c);
- }
- // ggml_compute_forward_map_custom1
- static void ggml_compute_forward_map_custom1(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
- p->fun(dst, a, params->ith, params->nth, p->userdata);
- }
- // ggml_compute_forward_map_custom2
- static void ggml_compute_forward_map_custom2(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
- p->fun(dst, a, b, params->ith, params->nth, p->userdata);
- }
- // ggml_compute_forward_map_custom3
- static void ggml_compute_forward_map_custom3(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * a,
- const struct ggml_tensor * b,
- const struct ggml_tensor * c,
- struct ggml_tensor * dst) {
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
- p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
- }
- // ggml_compute_forward_cross_entropy_loss
- static void ggml_compute_forward_cross_entropy_loss_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- const int ith = params->ith;
- const int nth = params->nth;
- float * sums = (float *) params->wdata;
- // TODO: handle transposed/permuted matrices
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
- if (params->type == GGML_TASK_INIT) {
- if (ith == 0) {
- memset(sums, 0, sizeof(float) * (nth + nth * nc));
- }
- return;
- }
- if (params->type == GGML_TASK_FINALIZE) {
- if (ith == 0) {
- float * dp = (float *) dst->data;
- ggml_vec_sum_f32(nth, dp, sums);
- dp[0] *= -1.0f / (float) nr;
- }
- return;
- }
- const double eps = 1e-9;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
- float * st = ((float *) params->wdata) + nth + ith*nc;
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
- #endif
- // soft_max
- ggml_float sum = 0.0;
- {
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- uint16_t scvt; UNUSED(scvt);
- for (int i = 0; i < nc; i++) {
- if (s0[i] == -INFINITY) {
- st[i] = 0.0f;
- } else {
- #ifndef GGML_CROSS_ENTROPY_EXP_FP16
- const float s = s0[i] - max;
- const float val = expf(s);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
- #endif
- sum += (ggml_float)val;
- st[i] = val;
- }
- }
- assert(sum > 0.0);
- // sum = 1.0/sum;
- }
- // avoid log(0) by rescaling from [0..1] to [eps..1]
- sum = (1.0 - eps) / sum;
- ggml_vec_scale_f32(nc, st, sum);
- ggml_vec_add1_f32(nc, st, st, eps);
- ggml_vec_log_f32(nc, st, st);
- ggml_vec_mul_f32(nc, st, st, s1);
- float st_sum = 0;
- ggml_vec_sum_f32(nc, &st_sum, st);
- sums[ith] += st_sum;
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(st[i]));
- assert(!isinf(st[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_cross_entropy_loss(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- // ggml_compute_forward_cross_entropy_loss_back
- static void ggml_compute_forward_cross_entropy_loss_back_f32(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(opt0));
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- const int64_t ith = params->ith;
- const int64_t nth = params->nth;
- if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
- return;
- }
- const double eps = 1e-9;
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0->ne[0];
- const int64_t nr = ggml_nrows(src0);
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- float * d = (float *) opt0->data;
- for (int64_t i1 = ir0; i1 < ir1; i1++) {
- float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
- float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
- float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
- #endif
- // soft_max
- ggml_float sum = 0.0;
- {
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- uint16_t scvt; UNUSED(scvt);
- for (int i = 0; i < nc; i++) {
- if (s0[i] == -INFINITY) {
- ds0[i] = 0.0f;
- } else {
- #ifndef GGML_CROSS_ENTROPY_EXP_FP16
- const float s = s0[i] - max;
- const float val = expf(s);
- #else
- ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
- memcpy(&scvt, &s, sizeof(scvt));
- const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
- #endif
- sum += (ggml_float)val;
- ds0[i] = val;
- }
- }
- assert(sum > 0.0);
- sum = (1.0 - eps)/sum;
- }
- // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
- ggml_vec_scale_f32(nc, ds0, sum);
- ggml_vec_add1_f32(nc, ds0, ds0, eps);
- ggml_vec_sub_f32(nc, ds0, ds0, s1);
- ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(ds0[i]));
- assert(!isinf(ds0[i]));
- }
- #endif
- }
- }
- static void ggml_compute_forward_cross_entropy_loss_back(
- const struct ggml_compute_params * params,
- const struct ggml_tensor * src0,
- const struct ggml_tensor * src1,
- const struct ggml_tensor * opt0,
- struct ggml_tensor * dst) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
- } break;
- default:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- /////////////////////////////////
- static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
- GGML_ASSERT(params);
- if (tensor->op == GGML_OP_NONE) {
- return;
- }
- #ifdef GGML_USE_CUBLAS
- bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
- if (skip_cpu) {
- return;
- }
- GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
- GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
- #elif defined(GGML_USE_VULKAN)
- const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
- #ifdef GGML_VULKAN_CHECK_RESULTS
- if (skip_cpu) {
- ggml_vk_check_results_1_cpu_assist(params, tensor);
- }
- #endif
- if (skip_cpu) {
- return;
- }
- GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
- GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
- #endif // GGML_USE_CUBLAS
- #ifdef GGML_USE_SYCL
- bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
- if (skip_cpu) {
- return;
- }
- #endif // GGML_USE_SYCL
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- ggml_compute_forward_dup(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ADD:
- {
- ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ADD1:
- {
- ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ACC:
- {
- ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SUB:
- {
- ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_MUL:
- {
- ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_DIV:
- {
- ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SQR:
- {
- ggml_compute_forward_sqr(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SQRT:
- {
- ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_LOG:
- {
- ggml_compute_forward_log(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SUM:
- {
- ggml_compute_forward_sum(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SUM_ROWS:
- {
- ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_MEAN:
- {
- ggml_compute_forward_mean(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ARGMAX:
- {
- ggml_compute_forward_argmax(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_REPEAT:
- {
- ggml_compute_forward_repeat(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CONCAT:
- {
- ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SILU_BACK:
- {
- ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_NORM:
- {
- ggml_compute_forward_norm(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_RMS_NORM:
- {
- ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_GROUP_NORM:
- {
- ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_MUL_MAT:
- {
- ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_OUT_PROD:
- {
- ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SCALE:
- {
- ggml_compute_forward_scale(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SET:
- {
- ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CPY:
- {
- ggml_compute_forward_cpy(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CONT:
- {
- ggml_compute_forward_cont(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_RESHAPE:
- {
- ggml_compute_forward_reshape(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_VIEW:
- {
- ggml_compute_forward_view(params, tensor->src[0]);
- } break;
- case GGML_OP_PERMUTE:
- {
- ggml_compute_forward_permute(params, tensor->src[0]);
- } break;
- case GGML_OP_TRANSPOSE:
- {
- ggml_compute_forward_transpose(params, tensor->src[0]);
- } break;
- case GGML_OP_GET_ROWS:
- {
- ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_DIAG:
- {
- ggml_compute_forward_diag(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_SOFT_MAX:
- {
- ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ROPE:
- {
- ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ROPE_BACK:
- {
- ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_ALIBI:
- {
- ggml_compute_forward_alibi(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CLAMP:
- {
- ggml_compute_forward_clamp(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_IM2COL:
- {
- ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
- } break;
- case GGML_OP_POOL_1D:
- {
- ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_POOL_2D:
- {
- ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_UPSCALE:
- {
- ggml_compute_forward_upscale(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_PAD:
- {
- ggml_compute_forward_pad(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ARGSORT:
- {
- ggml_compute_forward_argsort(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_LEAKY_RELU:
- {
- ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- const int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- const bool masked = t != 0;
- ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
- } break;
- case GGML_OP_FLASH_FF:
- {
- ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
- } break;
- case GGML_OP_WIN_PART:
- {
- ggml_compute_forward_win_part(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_WIN_UNPART:
- {
- ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_UNARY:
- {
- ggml_compute_forward_unary(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_GET_REL_POS:
- {
- ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
- } break;
- case GGML_OP_ADD_REL_POS:
- {
- ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- } break;
- case GGML_OP_MAP_UNARY:
- {
- ggml_unary_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
- }
- break;
- case GGML_OP_MAP_BINARY:
- {
- ggml_binary_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM1_F32:
- {
- ggml_custom1_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM2_F32:
- {
- ggml_custom2_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM3_F32:
- {
- ggml_custom3_op_f32_t fun;
- memcpy(&fun, tensor->op_params, sizeof(fun));
- ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
- }
- break;
- case GGML_OP_MAP_CUSTOM1:
- {
- ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM2:
- {
- ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
- }
- break;
- case GGML_OP_MAP_CUSTOM3:
- {
- ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
- }
- break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
- }
- break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- }
- ////////////////////////////////////////////////////////////////////////////////
- static size_t ggml_hash_size(size_t min_sz) {
- // next primes after powers of two
- static const size_t primes[] = {
- 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
- 2053, 4099, 8209, 16411, 32771, 65537, 131101,
- 262147, 524309, 1048583, 2097169, 4194319, 8388617,
- 16777259, 33554467, 67108879, 134217757, 268435459,
- 536870923, 1073741827, 2147483659
- };
- static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
- // find the smallest prime that is larger or equal to min_sz
- size_t l = 0;
- size_t r = n_primes;
- while (l < r) {
- size_t m = (l + r)/2;
- if (primes[m] < min_sz) {
- l = m + 1;
- } else {
- r = m;
- }
- }
- size_t sz = l < n_primes ? primes[l] : min_sz | 1;
- return sz;
- }
- static size_t ggml_hash(const void * p) {
- return (size_t)p;
- }
- size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t h = ggml_hash(key) % hash_set.size;
- // linear probing
- size_t i = h;
- while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
- i = (i + 1) % hash_set.size;
- if (i == h) {
- // visited all hash table entries -> not found
- return GGML_HASHTABLE_FULL;
- }
- }
- return i;
- }
- bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
- return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
- }
- size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
- GGML_ASSERT(i != GGML_HASHTABLE_FULL);
- if (hash_set.keys[i] == key) {
- return GGML_HASHTABLE_ALREADY_EXISTS;
- }
- // insert
- GGML_ASSERT(hash_set.keys[i] == NULL);
- hash_set.keys[i] = key;
- return i;
- }
- size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
- size_t i = ggml_hash_find(hash_set, key);
- GGML_ASSERT(i != GGML_HASHTABLE_FULL);
- hash_set.keys[i] = key;
- return i;
- }
- struct ggml_hash_set ggml_hash_set_new(size_t size) {
- size = ggml_hash_size(size);
- struct ggml_hash_set result;
- result.size = size;
- result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
- memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
- return result;
- }
- static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
- GGML_FREE(hash_set.keys);
- }
- struct hash_map {
- struct ggml_hash_set set;
- struct ggml_tensor ** vals;
- };
- static struct hash_map * ggml_new_hash_map(size_t size) {
- struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
- result->set = ggml_hash_set_new(size);
- result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
- memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
- return result;
- }
- static void ggml_hash_map_free(struct hash_map * map) {
- ggml_hash_set_free(map->set);
- GGML_FREE(map->vals);
- GGML_FREE(map);
- }
- // gradient checkpointing
- static struct ggml_tensor * ggml_recompute_graph_node(
- struct ggml_context * ctx,
- struct ggml_cgraph * graph,
- struct hash_map * replacements,
- struct ggml_tensor * node) {
- if (node == NULL) {
- return NULL;
- }
- if (node->is_param) {
- return node;
- }
- if (!ggml_hash_contains(graph->visited_hash_table, node)) {
- return node;
- }
- int count_children = 0;
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- if (node->src[k]) {
- ++count_children;
- }
- }
- if (count_children == 0) {
- return node;
- }
- size_t i = ggml_hash_find(replacements->set, node);
- GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
- if (replacements->set.keys[i] == node) {
- return replacements->vals[i];
- }
- struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
- // insert clone into replacements
- GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
- replacements->set.keys[i] = node;
- replacements->vals[i] = clone;
- clone->op = node->op;
- clone->grad = node->grad;
- clone->is_param = node->is_param;
- clone->extra = node->extra;
- for (int k = 0; k < GGML_MAX_DIMS; ++k) {
- clone->nb[k] = node->nb[k];
- }
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
- }
- if (node->view_src != NULL) {
- clone->data = (node->view_src->data == NULL)
- ? NULL // view_src not yet allocated
- : (char *) node->view_src->data // view_src already allocated
- + node->view_offs;
- clone->view_src = node->view_src;
- clone->view_offs = node->view_offs;
- }
- GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
- GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
- memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
- ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
- return clone;
- }
- void ggml_build_backward_gradient_checkpointing(
- struct ggml_context * ctx,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- struct ggml_cgraph * gb_tmp,
- struct ggml_tensor * * checkpoints,
- int n_checkpoints) {
- ggml_graph_cpy(gf, gb_tmp);
- ggml_build_backward_expand(ctx, gf, gb_tmp, true);
- if (n_checkpoints <= 0) {
- ggml_graph_cpy(gb_tmp, gb);
- return;
- }
- struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
- // insert checkpoints in replacements
- for (int i = 0; i < n_checkpoints; ++i) {
- size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
- GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
- GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
- replacements->set.keys[k] = checkpoints[i];
- replacements->vals[k] = checkpoints[i];
- }
- ggml_graph_cpy(gf, gb);
- // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
- // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
- // by recomputing them from checkpoints
- for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
- struct ggml_tensor * node = gb_tmp->nodes[i];
- for (int k = 0; k < GGML_MAX_SRC; ++k) {
- // insert new tensors recomputing src, reusing already made replacements,
- // remember replacements: remember new tensors with mapping from corresponding gf nodes
- // recurse for input tensors,
- // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
- node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
- }
- // insert rewritten backward node with replacements made into resulting backward graph gb
- ggml_build_forward_expand(gb, node);
- }
- ggml_hash_map_free(replacements);
- }
- // functions to change gradients considering the case that input a might be initial gradient with zero value
- static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- return b;
- } else {
- return ggml_add_impl(ctx, a, b, false);
- }
- }
- static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
- return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
- } else {
- return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
- }
- }
- static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- return ggml_repeat(ctx, b, a);
- } else {
- return ggml_add1_impl(ctx, a, b, false);
- }
- }
- static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
- if (ggml_hash_contains(zero_table, a)) {
- return ggml_neg(ctx, b);
- } else {
- return ggml_sub_impl(ctx, a, b, false);
- }
- }
- static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
- struct ggml_tensor * src0 = tensor->src[0];
- struct ggml_tensor * src1 = tensor->src[1];
- switch (tensor->op) {
- case GGML_OP_DUP:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_ADD:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_ADD1:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- src1->grad = ggml_add_or_set(ctx,
- src1->grad,
- ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
- zero_table);
- }
- } break;
- case GGML_OP_ACC:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
- struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- zero_table);
- }
- } break;
- case GGML_OP_SUB:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_MUL:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_mul(ctx, src1, tensor->grad),
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad,
- ggml_mul(ctx, src0, tensor->grad),
- zero_table);
- }
- } break;
- case GGML_OP_DIV:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_div(ctx, tensor->grad, src1),
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_sub_or_set(ctx,
- src1->grad,
- ggml_mul(ctx,
- tensor->grad,
- ggml_div(ctx, tensor, src1)),
- zero_table);
- }
- } break;
- case GGML_OP_SQR:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_mul(ctx, src0, tensor->grad),
- 2.0f),
- zero_table);
- }
- } break;
- case GGML_OP_SQRT:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_scale(ctx,
- ggml_div(ctx,
- tensor->grad,
- tensor),
- 0.5f),
- zero_table);
- }
- } break;
- case GGML_OP_LOG:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_div(ctx,
- tensor->grad,
- src0),
- zero_table);
- }
- } break;
- case GGML_OP_SUM:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add1_or_set(ctx,
- src0->grad,
- tensor->grad,
- zero_table);
- }
- } break;
- case GGML_OP_SUM_ROWS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_repeat(ctx,
- tensor->grad,
- src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_REPEAT:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_repeat_back(ctx, tensor->grad, src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_REPEAT_BACK:
- {
- if (src0->grad) {
- // TODO: test this
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_repeat(ctx, tensor->grad, src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_CONCAT:
- {
- GGML_ASSERT(false); // TODO: implement
- } break;
- case GGML_OP_SILU_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_RMS_NORM:
- {
- // necessary for llama
- if (src0->grad) {
- float eps;
- memcpy(&eps, tensor->op_params, sizeof(float));
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
- zero_table);
- }
- } break;
- case GGML_OP_RMS_NORM_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_GROUP_NORM:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_MUL_MAT:
- {
- // https://cs231n.github.io/optimization-2/#staged
- // # forward pass
- // s0 = np.random.randn(5, 10)
- // s1 = np.random.randn(10, 3)
- // t = s0.dot(s1)
- // # now suppose we had the gradient on t from above in the circuit
- // dt = np.random.randn(*t.shape) # same shape as t
- // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
- // ds1 = t.T.dot(dt)
- // tensor.shape [m,p,qq,rr]
- // src0.shape [n,m,q1,r1]
- // src1.shape [n,p,qq,rr]
- // necessary for llama
- if (src0->grad) {
- struct ggml_tensor * s1_tg =
- ggml_out_prod(ctx, // [n,m,qq,rr]
- src1, // [n,p,qq,rr]
- tensor->grad); // [m,p,qq,rr]
- const int64_t qq = s1_tg->ne[2];
- const int64_t rr = s1_tg->ne[3];
- const int64_t q1 = src0->ne[2];
- const int64_t r1 = src0->ne[3];
- const bool ne2_broadcasted = qq > q1;
- const bool ne3_broadcasted = rr > r1;
- if (ne2_broadcasted || ne3_broadcasted) {
- // sum broadcast repetitions of s1_tg into shape of src0
- s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
- }
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad, // [n,m,q1,r1]
- s1_tg, // [n,m,q1,r1]
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad, // [n,p,qq,rr]
- // ggml_mul_mat(ctx, // [n,p,qq,rr]
- // ggml_cont(ctx, // [m,n,q1,r1]
- // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
- // tensor->grad), // [m,p,qq,rr]
- // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
- // // avoid transpose of src0, rather transpose smaller tensor->grad
- // // and then use ggml_out_prod
- ggml_out_prod(ctx, // [n,p,qq,rr]
- src0, // [n,m,q1,r1]
- ggml_transpose(ctx, // [p,m,qq,rr]
- tensor->grad)), // [m,p,qq,rr]
- zero_table);
- }
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_OUT_PROD:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_SCALE:
- {
- // necessary for llama
- if (src0->grad) {
- float s;
- memcpy(&s, tensor->op_params, sizeof(float));
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_scale_impl(ctx, tensor->grad, s, false),
- zero_table);
- }
- } break;
- case GGML_OP_SET:
- {
- const size_t nb1 = ((int32_t *) tensor->op_params)[0];
- const size_t nb2 = ((int32_t *) tensor->op_params)[1];
- const size_t nb3 = ((int32_t *) tensor->op_params)[2];
- const size_t offset = ((int32_t *) tensor->op_params)[3];
- struct ggml_tensor * tensor_grad_view = NULL;
- if (src0->grad || src1->grad) {
- GGML_ASSERT(src0->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == tensor->type);
- GGML_ASSERT(tensor->grad->type == src1->grad->type);
- tensor_grad_view = ggml_view_4d(ctx,
- tensor->grad,
- src1->grad->ne[0],
- src1->grad->ne[1],
- src1->grad->ne[2],
- src1->grad->ne[3],
- nb1, nb2, nb3, offset);
- }
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_acc_impl(ctx,
- tensor->grad,
- ggml_neg(ctx, tensor_grad_view),
- nb1, nb2, nb3, offset, false),
- zero_table);
- }
- if (src1->grad) {
- src1->grad =
- ggml_add_or_set(ctx,
- src1->grad,
- ggml_reshape(ctx,
- ggml_cont(ctx, tensor_grad_view),
- src1->grad),
- zero_table);
- }
- } break;
- case GGML_OP_CPY:
- {
- // necessary for llama
- // cpy overwrites value of src1 by src0 and returns view(src1)
- // the overwriting is mathematically equivalent to:
- // tensor = src0 * 1 + src1 * 0
- if (src0->grad) {
- // dsrc0 = dtensor * 1
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- if (src1->grad) {
- // dsrc1 = dtensor * 0 -> noop
- }
- } break;
- case GGML_OP_CONT:
- {
- // same as cpy
- if (src0->grad) {
- GGML_ASSERT(ggml_is_contiguous(src0->grad));
- GGML_ASSERT(ggml_is_contiguous(tensor->grad));
- src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_OP_RESHAPE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_reshape(ctx,
- ggml_is_contiguous(tensor->grad)
- ? tensor->grad
- : ggml_cont(ctx, tensor->grad),
- src0->grad),
- zero_table);
- }
- } break;
- case GGML_OP_VIEW:
- {
- // necessary for llama
- if (src0->grad) {
- size_t offset;
- memcpy(&offset, tensor->op_params, sizeof(offset));
- size_t nb1 = tensor->nb[1];
- size_t nb2 = tensor->nb[2];
- size_t nb3 = tensor->nb[3];
- if (src0->type != src0->grad->type) {
- // gradient is typically F32, but src0 could be other type
- size_t ng = ggml_element_size(src0->grad);
- size_t n0 = ggml_element_size(src0);
- GGML_ASSERT(offset % n0 == 0);
- GGML_ASSERT(nb1 % n0 == 0);
- GGML_ASSERT(nb2 % n0 == 0);
- GGML_ASSERT(nb3 % n0 == 0);
- offset = (offset / n0) * ng;
- nb1 = (nb1 / n0) * ng;
- nb2 = (nb2 / n0) * ng;
- nb3 = (nb3 / n0) * ng;
- }
- src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
- }
- } break;
- case GGML_OP_PERMUTE:
- {
- // necessary for llama
- if (src0->grad) {
- int32_t * axes = (int32_t *) tensor->op_params;
- int axis0 = axes[0] & 0x3;
- int axis1 = axes[1] & 0x3;
- int axis2 = axes[2] & 0x3;
- int axis3 = axes[3] & 0x3;
- int axes_backward[4] = {0,0,0,0};
- axes_backward[axis0] = 0;
- axes_backward[axis1] = 1;
- axes_backward[axis2] = 2;
- axes_backward[axis3] = 3;
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_permute(ctx,
- tensor->grad,
- axes_backward[0],
- axes_backward[1],
- axes_backward[2],
- axes_backward[3]),
- zero_table);
- }
- } break;
- case GGML_OP_TRANSPOSE:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_transpose(ctx, tensor->grad),
- zero_table);
- }
- } break;
- case GGML_OP_GET_ROWS:
- {
- // necessary for llama (only for tokenizer)
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- // last ggml_get_rows_back argument src0->grad is only
- // necessary to setup correct output shape
- ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
- zero_table);
- }
- if (src1->grad) {
- // noop
- }
- } break;
- case GGML_OP_GET_ROWS_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_DIAG_MASK_INF:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- /* ggml_diag_mask_inf_impl() shouldn't be here */
- /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- zero_table);
- }
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- {
- // necessary for llama
- if (src0->grad) {
- const int n_past = ((int32_t *) tensor->op_params)[0];
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
- zero_table);
- }
- } break;
- case GGML_OP_SOFT_MAX:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx, src0->grad,
- ggml_soft_max_back(ctx, tensor->grad, tensor),
- zero_table);
- }
- } break;
- case GGML_OP_SOFT_MAX_BACK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ROPE:
- {
- // necessary for llama
- if (src0->grad) {
- //const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- const int n_ctx = ((int32_t *) tensor->op_params)[3];
- const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
- memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
- memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
- memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_rope_back(ctx,
- tensor->grad,
- src1,
- n_dims,
- mode,
- n_ctx,
- n_orig_ctx,
- freq_base,
- freq_scale,
- ext_factor,
- attn_factor,
- beta_fast,
- beta_slow,
- xpos_base,
- xpos_down),
- zero_table);
- }
- } break;
- case GGML_OP_ROPE_BACK:
- {
- if (src0->grad) {
- //const int n_past = ((int32_t *) tensor->op_params)[0];
- const int n_dims = ((int32_t *) tensor->op_params)[1];
- const int mode = ((int32_t *) tensor->op_params)[2];
- const int n_ctx = ((int32_t *) tensor->op_params)[3];
- const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
- memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
- memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
- memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_rope_impl(ctx,
- tensor->grad,
- src1,
- n_dims,
- mode,
- n_ctx,
- n_orig_ctx,
- freq_base,
- freq_scale,
- ext_factor,
- attn_factor,
- beta_fast,
- beta_slow,
- xpos_base,
- xpos_down,
- false),
- zero_table);
- }
- } break;
- case GGML_OP_ALIBI:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CLAMP:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_IM2COL:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_POOL_1D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_POOL_2D:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_UPSCALE:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_PAD:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_ARGSORT:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_LEAKY_RELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- struct ggml_tensor * flash_grad = NULL;
- if (src0->grad || src1->grad || tensor->src[2]->grad) {
- int32_t t = ggml_get_op_params_i32(tensor, 0);
- GGML_ASSERT(t == 0 || t == 1);
- bool masked = t != 0;
- flash_grad =
- ggml_flash_attn_back(ctx,
- src0,
- src1,
- tensor->src[2],
- tensor->grad,
- masked);
- }
- struct ggml_tensor * src2 = tensor->src[2];
- const int64_t elem_q = ggml_nelements(src0);
- const int64_t elem_k = ggml_nelements(src1);
- const int64_t elem_v = ggml_nelements(src2);
- enum ggml_type result_type = flash_grad->type;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
- if (src0->grad) {
- struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
- struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- grad_q,
- zero_table);
- }
- if (src1->grad) {
- struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
- struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
- src1->grad = ggml_add_or_set(ctx,
- src1->grad,
- grad_k,
- zero_table);
- }
- if (src2->grad) {
- struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
- struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
- src2->grad = ggml_add_or_set(ctx,
- src2->grad,
- grad_v,
- zero_table);
- }
- } break;
- case GGML_OP_FLASH_FF:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_UNARY:
- {
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_ABS:
- {
- if (src0->grad) {
- src0->grad =
- ggml_add_or_set(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_sgn(ctx, src0),
- tensor->grad),
- zero_table);
- }
- } break;
- case GGML_UNARY_OP_SGN:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_UNARY_OP_NEG:
- {
- if (src0->grad) {
- src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
- }
- } break;
- case GGML_UNARY_OP_STEP:
- {
- if (src0->grad) {
- // noop
- }
- } break;
- case GGML_UNARY_OP_TANH:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_ELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_RELU:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_mul(ctx,
- ggml_step(ctx, src0),
- tensor->grad),
- zero_table);
- }
- } break;
- case GGML_UNARY_OP_GELU:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- GGML_ASSERT(false); // TODO: not implemented
- } break;
- case GGML_UNARY_OP_SILU:
- {
- // necessary for llama
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_silu_back(ctx, src0, tensor->grad),
- zero_table);
- }
- } break;
- default:
- GGML_ASSERT(false);
- }
- } break;
- case GGML_OP_GET_REL_POS:
- case GGML_OP_ADD_REL_POS:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1_F32:
- case GGML_OP_MAP_CUSTOM2_F32:
- case GGML_OP_MAP_CUSTOM3_F32:
- case GGML_OP_MAP_CUSTOM1:
- case GGML_OP_MAP_CUSTOM2:
- case GGML_OP_MAP_CUSTOM3:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- if (src0->grad) {
- src0->grad = ggml_add_or_set(ctx,
- src0->grad,
- ggml_cross_entropy_loss_back(ctx,
- src0,
- src1,
- tensor->grad),
- zero_table);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- GGML_ASSERT(false); // not supported
- } break;
- case GGML_OP_NONE:
- {
- // nop
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- }
- for (int i = 0; i < GGML_MAX_SRC; ++i) {
- if (tensor->src[i] && tensor->src[i]->grad) {
- GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
- }
- }
- }
- static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
- if (node->grad == NULL) {
- // this usually happens when we generate intermediate nodes from constants in the backward pass
- // it can also happen during forward pass, if the user performs computations with constants
- if (node->op != GGML_OP_NONE) {
- //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
- }
- }
- // check if already visited
- if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
- return;
- }
- for (int i = 0; i < GGML_MAX_SRC; ++i) {
- const int k =
- (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
- (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
- /* unknown order, just fall back to using i*/ i;
- if (node->src[k]) {
- ggml_visit_parents(cgraph, node->src[k]);
- }
- }
- if (node->op == GGML_OP_NONE && node->grad == NULL) {
- // reached a leaf node, not part of the gradient graph (e.g. a constant)
- GGML_ASSERT(cgraph->n_leafs < cgraph->size);
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
- }
- cgraph->leafs[cgraph->n_leafs] = node;
- cgraph->n_leafs++;
- } else {
- GGML_ASSERT(cgraph->n_nodes < cgraph->size);
- if (strlen(node->name) == 0) {
- ggml_format_name(node, "node_%d", cgraph->n_nodes);
- }
- cgraph->nodes[cgraph->n_nodes] = node;
- if (cgraph->grads) {
- cgraph->grads[cgraph->n_nodes] = node->grad;
- }
- cgraph->n_nodes++;
- }
- }
- static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
- if (!expand) {
- // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
- ggml_graph_clear(cgraph);
- }
- const int n0 = cgraph->n_nodes;
- UNUSED(n0);
- ggml_visit_parents(cgraph, tensor);
- const int n_new = cgraph->n_nodes - n0;
- GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
- if (n_new > 0) {
- // the last added node should always be starting point
- GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
- }
- }
- void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
- ggml_build_forward_impl(cgraph, tensor, true);
- }
- void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
- GGML_ASSERT(gf->n_nodes > 0);
- // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
- if (keep) {
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->grad) {
- node->grad = ggml_dup_tensor(ctx, node);
- gf->grads[i] = node->grad;
- }
- }
- }
- // remember original gradients which start with zero values
- struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
- for (int i = 0; i < gf->n_nodes; i++) {
- if (gf->grads[i]) {
- ggml_hash_insert(zero_table, gf->grads[i]);
- }
- }
- for (int i = gf->n_nodes - 1; i >= 0; i--) {
- struct ggml_tensor * node = gf->nodes[i];
- // inplace operations to add gradients are not created by ggml_compute_backward
- // use allocator to automatically make inplace operations
- if (node->grad) {
- ggml_compute_backward(ctx, node, zero_table);
- }
- }
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (node->is_param) {
- GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
- ggml_build_forward_expand(gb, node->grad);
- }
- }
- ggml_hash_set_free(zero_table);
- }
- static size_t ggml_graph_nbytes(size_t size, bool grads) {
- size_t nbytes = sizeof(struct ggml_cgraph);
- nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
- if (grads) {
- nbytes += size * sizeof(struct ggml_tensor *); // grads
- }
- nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
- return nbytes;
- }
- size_t ggml_graph_overhead_custom(size_t size, bool grads) {
- return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
- }
- size_t ggml_graph_overhead(void) {
- return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
- }
- struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
- const size_t obj_size = ggml_graph_nbytes(size, grads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
- struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
- struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
- size_t hash_size = ggml_hash_size(size * 2);
- struct ggml_tensor ** nodes_ptr = data_start;
- struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
- struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
- struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
- // check that we allocated the correct amount of memory
- assert(obj_size == (size_t) (
- (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
- memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
- *cgraph = (struct ggml_cgraph) {
- /*.size =*/ size,
- /*.n_nodes =*/ 0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ nodes_ptr,
- /*.grads =*/ grads_ptr,
- /*.leafs =*/ leafs_ptr,
- /*.hash_table =*/ { hash_size, hash_keys_ptr },
- /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
- return cgraph;
- }
- struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
- return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
- }
- struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
- struct ggml_cgraph cgraph = {
- /*.size =*/ 0,
- /*.n_nodes =*/ i1 - i0,
- /*.n_leafs =*/ 0,
- /*.nodes =*/ cgraph0->nodes + i0,
- /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
- /*.leafs =*/ NULL,
- /*.hash_table =*/ { 0, NULL },
- /*.order =*/ cgraph0->order,
- /*.perf_runs =*/ 0,
- /*.perf_cycles =*/ 0,
- /*.perf_time_us =*/ 0,
- };
- return cgraph;
- }
- void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
- GGML_ASSERT(dst->size >= src->n_leafs);
- GGML_ASSERT(dst->size >= src->n_nodes);
- GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
- dst->n_leafs = src->n_leafs;
- dst->n_nodes = src->n_nodes;
- dst->order = src->order;
- for (int i = 0; i < src->n_leafs; ++i) {
- dst->leafs[i] = src->leafs[i];
- }
- for (int i = 0; i < src->n_nodes; ++i) {
- dst->nodes[i] = src->nodes[i];
- }
- if (src->grads) {
- GGML_ASSERT(dst->grads != NULL);
- for (int i = 0; i < src->n_nodes; ++i) {
- dst->grads[i] = src->grads[i];
- }
- }
- for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
- if (src->visited_hash_table.keys[i]) {
- ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
- }
- }
- }
- struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
- struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
- ggml_graph_cpy(cgraph, result);
- return result;
- }
- void ggml_graph_reset(struct ggml_cgraph * cgraph) {
- GGML_ASSERT(cgraph->grads != NULL);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * grad = cgraph->grads[i];
- if (grad) {
- ggml_set_zero(grad);
- }
- }
- }
- void ggml_graph_clear(struct ggml_cgraph * cgraph) {
- cgraph->n_leafs = 0;
- cgraph->n_nodes = 0;
- memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
- }
- //
- // thread data
- //
- // synchronization is done via busy loops
- // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
- //
- #ifdef __APPLE__
- //#include <os/lock.h>
- //
- //typedef os_unfair_lock ggml_lock_t;
- //
- //#define ggml_lock_init(x) UNUSED(x)
- //#define ggml_lock_destroy(x) UNUSED(x)
- //#define ggml_lock_lock os_unfair_lock_lock
- //#define ggml_lock_unlock os_unfair_lock_unlock
- //
- //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #define ggml_lock_lock(x) UNUSED(x)
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #else
- //typedef pthread_spinlock_t ggml_lock_t;
- //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
- //#define ggml_lock_destroy pthread_spin_destroy
- //#define ggml_lock_lock pthread_spin_lock
- //#define ggml_lock_unlock pthread_spin_unlock
- typedef int ggml_lock_t;
- #define ggml_lock_init(x) UNUSED(x)
- #define ggml_lock_destroy(x) UNUSED(x)
- #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
- #define ggml_lock_lock(x) _mm_pause()
- #else
- #define ggml_lock_lock(x) UNUSED(x)
- #endif
- #define ggml_lock_unlock(x) UNUSED(x)
- #define GGML_LOCK_INITIALIZER 0
- typedef pthread_t ggml_thread_t;
- #define ggml_thread_create pthread_create
- #define ggml_thread_join pthread_join
- #endif
- // Android's libc implementation "bionic" does not support setting affinity
- #if defined(__linux__) && !defined(__BIONIC__)
- static void set_numa_thread_affinity(int thread_n, int n_threads) {
- if (!ggml_is_numa()) {
- return;
- }
- // run thread on node_num thread_n / (threads per node)
- const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
- struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (size_t i = 0; i < node->n_cpus; ++i) {
- CPU_SET_S(node->cpus[i], setsize, cpus);
- }
- int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
- strerror(rv));
- }
- CPU_FREE(cpus);
- }
- static void clear_numa_thread_affinity(void) {
- if (!ggml_is_numa()) {
- return;
- }
- size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
- cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
- CPU_ZERO_S(setsize, cpus);
- for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
- CPU_SET_S(i, setsize, cpus);
- }
- int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
- if (rv) {
- fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
- strerror(rv));
- }
- CPU_FREE(cpus);
- }
- #else
- // TODO: Windows etc.
- // (the linux implementation may also work on BSD, someone should test)
- static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
- static void clear_numa_thread_affinity(void) {}
- #endif
- struct ggml_compute_state_shared {
- const struct ggml_cgraph * cgraph;
- const struct ggml_cplan * cplan;
- int64_t perf_node_start_cycles;
- int64_t perf_node_start_time_us;
- const int n_threads;
- // synchronization primitives
- atomic_int n_active; // num active threads
- atomic_int node_n; // active graph node
- atomic_int node_task; // active graph node task phase
- ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
- void * abort_callback_data;
- };
- struct ggml_compute_state {
- ggml_thread_t thrd;
- int ith;
- struct ggml_compute_state_shared * shared;
- };
- static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
- int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
- int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
- node->perf_runs++;
- node->perf_cycles += cycles_cur;
- node->perf_time_us += time_us_cur;
- }
- static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
- int n_tasks = 0;
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- case GGML_OP_ACC:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_SUB:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_SUM:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_MEAN:
- case GGML_OP_ARGMAX:
- case GGML_OP_REPEAT:
- case GGML_OP_REPEAT_BACK:
- case GGML_OP_LEAKY_RELU:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(node)) {
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SGN:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_ELU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
- case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
- {
- n_tasks = 1;
- } break;
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- {
- n_tasks = n_threads;
- } break;
- default:
- GGML_ASSERT(false);
- }
- break;
- case GGML_OP_SILU_BACK:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- case GGML_OP_RMS_NORM_BACK:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_CONCAT:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_MUL_MAT:
- {
- n_tasks = n_threads;
- // TODO: use different scheduling for different matrix sizes
- //const int nr0 = ggml_nrows(node->src[0]);
- //const int nr1 = ggml_nrows(node->src[1]);
- //n_tasks = MIN(n_threads, MAX(1, nr0/128));
- //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_OUT_PROD:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_SCALE:
- case GGML_OP_SET:
- case GGML_OP_CONT:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_GET_ROWS:
- case GGML_OP_GET_ROWS_BACK:
- case GGML_OP_DIAG:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_DIAG_MASK_ZERO:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX_BACK:
- case GGML_OP_ROPE:
- case GGML_OP_ROPE_BACK:
- case GGML_OP_ADD_REL_POS:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_ALIBI:
- {
- n_tasks = 1; //TODO
- } break;
- case GGML_OP_CLAMP:
- {
- n_tasks = 1; //TODO
- } break;
- case GGML_OP_SOFT_MAX:
- {
- n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_IM2COL:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_POOL_1D:
- case GGML_OP_POOL_2D:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_UPSCALE:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_PAD:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_ARGSORT:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_FLASH_FF:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_WIN_PART:
- case GGML_OP_WIN_UNPART:
- case GGML_OP_GET_REL_POS:
- case GGML_OP_MAP_UNARY:
- case GGML_OP_MAP_BINARY:
- case GGML_OP_MAP_CUSTOM1_F32:
- case GGML_OP_MAP_CUSTOM2_F32:
- case GGML_OP_MAP_CUSTOM3_F32:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_MAP_CUSTOM1:
- {
- struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
- if (p->n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p->n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM2:
- {
- struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
- if (p->n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p->n_tasks, n_threads);
- }
- } break;
- case GGML_OP_MAP_CUSTOM3:
- {
- struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
- if (p->n_tasks == GGML_N_TASKS_MAX) {
- n_tasks = n_threads;
- } else {
- n_tasks = MIN(p->n_tasks, n_threads);
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
- {
- n_tasks = n_threads;
- } break;
- case GGML_OP_NONE:
- {
- n_tasks = 1;
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- default:
- {
- fprintf(stderr, "%s: op not implemented: ", __func__);
- if (node->op < GGML_OP_COUNT) {
- fprintf(stderr, "%s\n", ggml_op_name(node->op));
- } else {
- fprintf(stderr, "%d\n", node->op);
- }
- GGML_ASSERT(false);
- } break;
- }
- assert(n_tasks > 0);
- return n_tasks;
- }
- static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
- // wait for other threads to finish
- const int last_node_n = * node_n;
- while (true) {
- if (do_yield) {
- sched_yield();
- }
- * node_n = atomic_load(&state->shared->node_n);
- if (* node_n != last_node_n) break;
- }
- }
- static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
- // wait for other threads to finish
- const int last_task_phase = * task_phase;
- while (true) {
- if (do_yield) {
- sched_yield();
- }
- * task_phase = atomic_load(&state->shared->node_task);
- if (* task_phase != last_task_phase) break;
- }
- }
- static thread_ret_t ggml_graph_compute_thread(void * data) {
- struct ggml_compute_state * state = (struct ggml_compute_state *) data;
- const struct ggml_cgraph * cgraph = state->shared->cgraph;
- const struct ggml_cplan * cplan = state->shared->cplan;
- const int n_threads = state->shared->n_threads;
- set_numa_thread_affinity(state->ith, n_threads);
- int node_n = -1;
- int task_phase = GGML_TASK_FINALIZE;
- while (true) {
- if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
- state->shared->node_n += 1;
- return (thread_ret_t) GGML_EXIT_ABORTED;
- }
- if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
- // all other threads are finished and spinning
- // do finalize and init here so we don't have synchronize again
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_FINALIZE,
- /*.ith =*/ 0,
- /*.nth =*/ 0,
- /*.wsize =*/ cplan->work_size,
- /*.wdata =*/ cplan->work_data,
- };
- if (node_n != -1) {
- /* FINALIZE */
- struct ggml_tensor * node = cgraph->nodes[node_n];
- if (GGML_OP_HAS_FINALIZE[node->op]) {
- params.nth = ggml_get_n_tasks(node, n_threads);
- ggml_compute_forward(¶ms, node);
- }
- ggml_graph_compute_perf_stats_node(node, state->shared);
- }
- // distribute new work or execute it direct if 1T
- while (++node_n < cgraph->n_nodes) {
- GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
- struct ggml_tensor * node = cgraph->nodes[node_n];
- const int n_tasks = ggml_get_n_tasks(node, n_threads);
- state->shared->perf_node_start_cycles = ggml_perf_cycles();
- state->shared->perf_node_start_time_us = ggml_perf_time_us();
- params.nth = n_tasks;
- if (n_tasks == 1) {
- /* INIT */
- if (GGML_OP_HAS_INIT[node->op]) {
- params.type = GGML_TASK_INIT;
- ggml_compute_forward(¶ms, node);
- }
- // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
- // they do something more efficient than spinning (?)
- params.type = GGML_TASK_COMPUTE;
- ggml_compute_forward(¶ms, node);
- if (GGML_OP_HAS_FINALIZE[node->op]) {
- params.type = GGML_TASK_FINALIZE;
- ggml_compute_forward(¶ms, node);
- }
- ggml_graph_compute_perf_stats_node(node, state->shared);
- } else {
- break;
- }
- if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
- break;
- }
- }
- task_phase = GGML_TASK_INIT;
- atomic_store(&state->shared->n_active, n_threads);
- atomic_store(&state->shared->node_n, node_n);
- atomic_store(&state->shared->node_task, task_phase);
- } else {
- ggml_graph_compute_thread_sync_node(&node_n, state, false);
- ggml_graph_compute_thread_sync_task(&task_phase, state, false);
- }
- // check if we should stop
- if (node_n >= cgraph->n_nodes) break;
- /* INIT & COMPUTE */
- struct ggml_tensor * node = cgraph->nodes[node_n];
- const int n_tasks = ggml_get_n_tasks(node, n_threads);
- struct ggml_compute_params params = {
- /*.type =*/ GGML_TASK_INIT,
- /*.ith =*/ state->ith,
- /*.nth =*/ n_tasks,
- /*.wsize =*/ cplan->work_size,
- /*.wdata =*/ cplan->work_data,
- };
- if (state->ith < n_tasks) {
- if (GGML_OP_HAS_INIT[node->op]) {
- ggml_compute_forward(¶ms, node);
- }
- }
- if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
- task_phase = GGML_TASK_COMPUTE;
- atomic_store(&state->shared->n_active, n_threads);
- atomic_store(&state->shared->node_task, task_phase);
- }
- else {
- // TODO: this sched_yield can have significant impact on the performance - either positive or negative
- // depending on the workload and the operating system.
- // since it is not clear what is the best approach, it should potentially become user-configurable
- // ref: https://github.com/ggerganov/ggml/issues/291
- // UPD: adding the do_yield flag seems to resolve the issue universally
- const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
- ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
- }
- if (state->ith < n_tasks) {
- params.type = GGML_TASK_COMPUTE;
- ggml_compute_forward(¶ms, node);
- }
- if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
- task_phase = GGML_TASK_FINALIZE;
- atomic_store(&state->shared->n_active, n_threads);
- atomic_store(&state->shared->node_task, task_phase);
- }
- else {
- ggml_graph_compute_thread_sync_task(&task_phase, state, false);
- }
- }
- return GGML_EXIT_SUCCESS;
- }
- struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
- if (n_threads <= 0) {
- n_threads = GGML_DEFAULT_N_THREADS;
- }
- size_t work_size = 0;
- struct ggml_cplan cplan;
- memset(&cplan, 0, sizeof(struct ggml_cplan));
- int max_tasks = 1;
- // thread scheduling for the different operations + work buffer size estimation
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- const int n_tasks = ggml_get_n_tasks(node, n_threads);
- max_tasks = MAX(max_tasks, n_tasks);
- size_t cur = 0;
- switch (node->op) {
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- {
- if (ggml_is_quantized(node->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_ACC:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_MUL_MAT:
- {
- const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
- #if defined(GGML_USE_CLBLAST)
- if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
- cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
- } else
- #endif
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
- if (ggml_compute_forward_mul_mat_use_blas(node)) {
- if (node->src[0]->type != GGML_TYPE_F32) {
- // here we need memory for fully dequantized matrix from src0
- // take into account that src0 can be broadcasted into src1[2,3]
- cur = ggml_type_size(GGML_TYPE_F32)
- * node->src[0]->ne[0]*node->src[0]->ne[1]
- * node->src[1]->ne[2]*node->src[1]->ne[3];
- }
- } else
- #endif
- if (node->src[1]->type != vec_dot_type) {
- cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
- }
- } break;
- case GGML_OP_MUL_MAT_ID:
- {
- cur = 0;
- const struct ggml_tensor * src0 = node->src[2];
- const struct ggml_tensor * src1 = node->src[1];
- const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
- if (src1->type != vec_dot_type) {
- cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
- }
- const int n_as = ggml_get_op_params_i32(node, 1);
- cur += GGML_PAD(cur, sizeof(int64_t)); // align
- cur += n_as * sizeof(int64_t); // matrix_row_counts
- cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
- } break;
- case GGML_OP_OUT_PROD:
- {
- if (ggml_is_quantized(node->src[0]->type)) {
- cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
- }
- } break;
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- {
- cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
- } break;
- case GGML_OP_CONV_TRANSPOSE_1D:
- {
- GGML_ASSERT(node->src[0]->ne[3] == 1);
- GGML_ASSERT(node->src[1]->ne[2] == 1);
- GGML_ASSERT(node->src[1]->ne[3] == 1);
- const int64_t ne00 = node->src[0]->ne[0]; // K
- const int64_t ne01 = node->src[0]->ne[1]; // Cout
- const int64_t ne02 = node->src[0]->ne[2]; // Cin
- const int64_t ne10 = node->src[1]->ne[0]; // L
- const int64_t ne11 = node->src[1]->ne[1]; // Cin
- if (node->src[0]->type == GGML_TYPE_F16 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
- cur += sizeof(ggml_fp16_t)*ne10*ne11;
- } else if (node->src[0]->type == GGML_TYPE_F32 &&
- node->src[1]->type == GGML_TYPE_F32) {
- cur += sizeof(float)*ne00*ne01*ne02;
- cur += sizeof(float)*ne10*ne11;
- } else {
- GGML_ASSERT(false);
- }
- } break;
- case GGML_OP_CONV_TRANSPOSE_2D:
- {
- const int64_t ne00 = node->src[0]->ne[0]; // W
- const int64_t ne01 = node->src[0]->ne[1]; // H
- const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
- const int64_t ne03 = node->src[0]->ne[3]; // Channels In
- const int64_t ne10 = node->src[1]->ne[0]; // W
- const int64_t ne11 = node->src[1]->ne[1]; // H
- const int64_t ne12 = node->src[1]->ne[2]; // Channels In
- cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
- cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
- } break;
- case GGML_OP_FLASH_ATTN:
- {
- const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
- }
- } break;
- case GGML_OP_FLASH_FF:
- {
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
- }
- } break;
- case GGML_OP_FLASH_ATTN_BACK:
- {
- const int64_t D = node->src[0]->ne[0];
- const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
- const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
- if (node->src[1]->type == GGML_TYPE_F32) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- } else if (node->src[1]->type == GGML_TYPE_F16) {
- cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
- cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
- }
- } break;
- case GGML_OP_CROSS_ENTROPY_LOSS:
- {
- cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
- } break;
- case GGML_OP_COUNT:
- {
- GGML_ASSERT(false);
- } break;
- default:
- break;
- }
- work_size = MAX(work_size, cur);
- }
- if (work_size > 0) {
- work_size += CACHE_LINE_SIZE*(n_threads - 1);
- }
- cplan.n_threads = MIN(max_tasks, n_threads);
- cplan.work_size = work_size;
- cplan.work_data = NULL;
- return cplan;
- }
- int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
- {
- GGML_ASSERT(cplan);
- GGML_ASSERT(cplan->n_threads > 0);
- if (cplan->work_size > 0) {
- GGML_ASSERT(cplan->work_data);
- }
- }
- #ifdef GGML_USE_VULKAN
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
- }
- ggml_vk_preallocate_buffers_cpu_assist();
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
- }
- #endif
- const int n_threads = cplan->n_threads;
- struct ggml_compute_state_shared state_shared = {
- /*.cgraph =*/ cgraph,
- /*.cgraph_plan =*/ cplan,
- /*.perf_node_start_cycles =*/ 0,
- /*.perf_node_start_time_us =*/ 0,
- /*.n_threads =*/ n_threads,
- /*.n_active =*/ n_threads,
- /*.node_n =*/ -1,
- /*.node_task =*/ GGML_TASK_FINALIZE,
- /*.abort_callback =*/ NULL,
- /*.abort_callback_data =*/ NULL,
- };
- struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
- // create thread pool
- if (n_threads > 1) {
- for (int j = 1; j < n_threads; ++j) {
- workers[j] = (struct ggml_compute_state) {
- .thrd = 0,
- .ith = j,
- .shared = &state_shared,
- };
- const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
- GGML_ASSERT(rc == 0);
- UNUSED(rc);
- }
- }
- workers[0].ith = 0;
- workers[0].shared = &state_shared;
- const int64_t perf_start_cycles = ggml_perf_cycles();
- const int64_t perf_start_time_us = ggml_perf_time_us();
- // this is a work thread too
- int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
- // don't leave affinity set on the main thread
- clear_numa_thread_affinity();
- // join or kill thread pool
- if (n_threads > 1) {
- for (int j = 1; j < n_threads; j++) {
- const int rc = ggml_thread_join(workers[j].thrd, NULL);
- GGML_ASSERT(rc == 0);
- }
- }
- #ifdef GGML_USE_VULKAN
- ggml_vk_graph_cleanup_cpu_assist();
- #endif
- // performance stats (graph)
- {
- int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
- int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
- cgraph->perf_runs++;
- cgraph->perf_cycles += perf_cycles_cur;
- cgraph->perf_time_us += perf_time_us_cur;
- GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
- __func__, cgraph->perf_runs,
- (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
- (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
- (double) perf_time_us_cur / 1000.0,
- (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
- }
- return compute_status;
- }
- void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
- ggml_graph_compute(cgraph, &cplan);
- }
- struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * leaf = cgraph->leafs[i];
- if (strcmp(leaf->name, name) == 0) {
- return leaf;
- }
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- if (strcmp(node->name, name) == 0) {
- return node;
- }
- }
- return NULL;
- }
- static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
- const int64_t * ne = tensor->ne;
- const size_t * nb = tensor->nb;
- fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
- ggml_type_name(tensor->type),
- ggml_op_name (tensor->op),
- ggml_n_dims(tensor),
- ne[0], ne[1], ne[2], ne[3],
- nb[0], nb[1], nb[2], nb[3],
- tensor->data,
- tensor->name);
- }
- static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
- const int64_t * ne = tensor->ne;
- const size_t * nb = tensor->nb;
- fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
- arg,
- ggml_type_name(tensor->type),
- ggml_op_name (tensor->op),
- ggml_n_dims(tensor),
- ne[0], ne[1], ne[2], ne[3],
- nb[0], nb[1], nb[2], nb[3],
- tensor->data,
- tensor->name);
- }
- void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
- uint64_t size_eval = 0;
- // compute size of intermediate results
- // TODO: does not take into account scratch buffers !!!!
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
- }
- // print
- {
- FILE * fout = stdout;
- fprintf(fout, "\n");
- fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
- fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
- fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
- fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
- fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
- // header
- fprintf(fout, "\n");
- fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
- "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
- for (int i = 0; i < cgraph->n_leafs; ++i) {
- ggml_graph_export_leaf(cgraph->leafs[i], fout);
- GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
- GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
- GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
- }
- // header
- fprintf(fout, "\n");
- fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
- "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (cgraph->nodes[i]->src[j]) {
- ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
- }
- }
- fprintf(fout, "\n");
- }
- fprintf(fout, "\n");
- }
- // write binary data
- {
- FILE * fout = fopen(fname, "wb");
- if (!fout) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
- return;
- }
- // header
- {
- const uint32_t magic = GGML_FILE_MAGIC;
- const uint32_t version = GGML_FILE_VERSION;
- const uint32_t n_leafs = cgraph->n_leafs;
- const uint32_t n_nodes = cgraph->n_nodes;
- fwrite(&magic, sizeof(uint32_t), 1, fout);
- fwrite(&version, sizeof(uint32_t), 1, fout);
- fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
- fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
- fwrite(&size_eval, sizeof(uint64_t), 1, fout);
- }
- // leafs
- {
- for (int i = 0; i < cgraph->n_leafs; ++i) {
- const struct ggml_tensor * tensor = cgraph->leafs[i];
- const uint32_t type = tensor->type;
- const uint32_t op = tensor->op;
- fwrite(&type, sizeof(uint32_t), 1, fout);
- fwrite(&op, sizeof(uint32_t), 1, fout);
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- const uint64_t ne = tensor->ne[j];
- const uint64_t nb = tensor->nb[j];
- fwrite(&ne, sizeof(uint64_t), 1, fout);
- fwrite(&nb, sizeof(uint64_t), 1, fout);
- }
- fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
- fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
- // dump the data
- // TODO: pad this to 32 byte boundary
- {
- const size_t size = ggml_nbytes(tensor);
- fwrite(tensor->data, sizeof(char), size, fout);
- }
- }
- }
- // nodes
- {
- for (int i = 0; i < cgraph->n_nodes; ++i) {
- const struct ggml_tensor * tensor = cgraph->nodes[i];
- const uint32_t type = tensor->type;
- const uint32_t op = tensor->op;
- fwrite(&type, sizeof(uint32_t), 1, fout);
- fwrite(&op, sizeof(uint32_t), 1, fout);
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- const uint64_t ne = tensor->ne[j];
- const uint64_t nb = tensor->nb[j];
- fwrite(&ne, sizeof(uint64_t), 1, fout);
- fwrite(&nb, sizeof(uint64_t), 1, fout);
- }
- fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
- fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
- // output the op arguments
- {
- struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- args[j] = tensor->src[j];
- }
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- if (args[j]) {
- int32_t idx = -1;
- // check if leaf
- {
- for (int k = 0; k < cgraph->n_leafs; ++k) {
- if (args[j] == cgraph->leafs[k]) {
- idx = k;
- break;
- }
- }
- }
- // check if node
- if (idx == -1) {
- for (int k = 0; k < cgraph->n_nodes; ++k) {
- if (args[j] == cgraph->nodes[k]) {
- idx = cgraph->n_leafs + k;
- break;
- }
- }
- }
- if (idx == -1) {
- fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
- fclose(fout);
- return;
- }
- fwrite(&idx, sizeof(int32_t), 1, fout);
- } else {
- const int32_t nul = -1;
- fwrite(&nul, sizeof(int32_t), 1, fout);
- }
- }
- }
- }
- }
- fclose(fout);
- }
- }
- struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
- assert(*ctx_data == NULL);
- assert(*ctx_eval == NULL);
- struct ggml_cgraph * result = NULL;
- struct ggml_tensor * data = NULL;
- // read file into data
- {
- FILE * fin = fopen(fname, "rb");
- if (!fin) {
- fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
- return result;
- }
- size_t fsize = 0;
- fseek(fin, 0, SEEK_END);
- fsize = ftell(fin);
- fseek(fin, 0, SEEK_SET);
- // create the data context
- {
- const size_t overhead = 1*ggml_tensor_overhead();
- struct ggml_init_params params = {
- .mem_size = fsize + overhead,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
- *ctx_data = ggml_init(params);
- if (!*ctx_data) {
- fprintf(stderr, "%s: failed to create ggml context\n", __func__);
- fclose(fin);
- return result;
- }
- }
- data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
- {
- const size_t ret = fread(data->data, sizeof(char), fsize, fin);
- if (ret != fsize) {
- fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
- fclose(fin);
- return result;
- }
- }
- fclose(fin);
- }
- // populate result
- {
- char * ptr = (char *) data->data;
- const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
- if (magic != GGML_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
- return result;
- }
- const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
- if (version != GGML_FILE_VERSION) {
- fprintf(stderr, "%s: invalid version number\n", __func__);
- return result;
- }
- const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
- const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
- const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
- const int graph_size = MAX(n_leafs, n_nodes);
- // create the data context
- {
- const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
- struct ggml_init_params params = {
- .mem_size = size_eval + overhead,
- .mem_buffer = NULL,
- .no_alloc = true,
- };
- *ctx_eval = ggml_init(params);
- if (!*ctx_eval) {
- fprintf(stderr, "%s: failed to create ggml context\n", __func__);
- return result;
- }
- }
- result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
- result->n_leafs = n_leafs;
- result->n_nodes = n_nodes;
- // leafs
- {
- uint32_t type;
- uint32_t op;
- for (uint32_t i = 0; i < n_leafs; ++i) {
- type = *(const uint32_t *) ptr; ptr += sizeof(type);
- op = *(const uint32_t *) ptr; ptr += sizeof(op);
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- uint64_t ne_cur;
- uint64_t nb_cur;
- ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
- nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
- ne[j] = ne_cur;
- nb[j] = nb_cur;
- }
- struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
- tensor->op = (enum ggml_op) op;
- memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
- memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
- tensor->data = (void *) ptr;
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- tensor->nb[j] = nb[j];
- }
- result->leafs[i] = tensor;
- ptr += ggml_nbytes(tensor);
- fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
- }
- }
- ggml_set_no_alloc(*ctx_eval, false);
- // nodes
- {
- uint32_t type;
- uint32_t op;
- for (uint32_t i = 0; i < n_nodes; ++i) {
- type = *(const uint32_t *) ptr; ptr += sizeof(type);
- op = *(const uint32_t *) ptr; ptr += sizeof(op);
- enum ggml_op eop = (enum ggml_op) op;
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- uint64_t ne_cur;
- uint64_t nb_cur;
- ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
- nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
- ne[j] = ne_cur;
- nb[j] = nb_cur;
- }
- const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
- const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
- const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
- struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
- // parse args
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- const int32_t arg_idx = ptr_arg_idx[j];
- if (arg_idx == -1) {
- continue;
- }
- if (arg_idx < result->n_leafs) {
- args[j] = result->leafs[arg_idx];
- } else {
- args[j] = result->nodes[arg_idx - result->n_leafs];
- }
- }
- // create the tensor
- // "view" operations are handled differently
- // TODO: handle inplace ops - currently a copy is always made
- struct ggml_tensor * tensor = NULL;
- switch (eop) {
- // TODO: implement other view ops
- case GGML_OP_RESHAPE:
- {
- tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
- } break;
- case GGML_OP_VIEW:
- {
- tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
- size_t offs;
- memcpy(&offs, ptr_op_params, sizeof(offs));
- tensor->data = ((char *) tensor->data) + offs;
- } break;
- case GGML_OP_TRANSPOSE:
- {
- tensor = ggml_transpose(*ctx_eval, args[0]);
- } break;
- case GGML_OP_PERMUTE:
- {
- tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
- } break;
- default:
- {
- tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
- tensor->op = eop;
- } break;
- }
- memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
- memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- tensor->nb[j] = nb[j];
- }
- for (int j = 0; j < GGML_MAX_SRC; ++j) {
- tensor->src[j] = args[j];
- }
- result->nodes[i] = tensor;
- fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
- }
- }
- }
- return result;
- }
- void ggml_graph_print(const struct ggml_cgraph * cgraph) {
- int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
- GGML_PRINT("=== GRAPH ===\n");
- GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * node = cgraph->nodes[i];
- perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
- i,
- node->ne[0], node->ne[1], node->ne[2],
- ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
- (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
- (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
- (double) node->perf_time_us / 1000.0,
- (double) node->perf_time_us / 1000.0 / node->perf_runs);
- }
- GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
- for (int i = 0; i < cgraph->n_leafs; i++) {
- struct ggml_tensor * node = cgraph->leafs[i];
- GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
- i,
- node->ne[0], node->ne[1],
- ggml_op_name(node->op),
- ggml_get_name(node));
- }
- for (int i = 0; i < GGML_OP_COUNT; i++) {
- if (perf_total_per_op_us[i] == 0) {
- continue;
- }
- GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
- }
- GGML_PRINT("========================================\n");
- }
- // check if node is part of the graph
- static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- if (cgraph == NULL) {
- return true;
- }
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (cgraph->nodes[i] == node) {
- return true;
- }
- }
- return false;
- }
- static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- struct ggml_tensor * parent = cgraph->nodes[i];
- if (parent->grad == node) {
- return parent;
- }
- }
- return NULL;
- }
- static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
- struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
- gparent0 ? (void *) gparent0 : (void *) parent,
- gparent0 ? "g" : "x",
- gparent ? (void *) gparent : (void *) node,
- gparent ? "g" : "x",
- gparent ? "empty" : "vee",
- gparent ? "dashed" : "solid",
- label);
- }
- static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
- fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
- (void *) parent, "x",
- (void *) node, "x",
- label);
- }
- void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
- char color[16];
- FILE * fp = fopen(filename, "w");
- GGML_ASSERT(fp);
- fprintf(fp, "digraph G {\n");
- fprintf(fp, " newrank = true;\n");
- fprintf(fp, " rankdir = LR;\n");
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- if (ggml_graph_get_parent(gb, node) != NULL) {
- continue;
- }
- if (node->is_param) {
- snprintf(color, sizeof(color), "yellow");
- } else if (node->grad) {
- if (ggml_graph_find(gf, node)) {
- snprintf(color, sizeof(color), "green");
- } else {
- snprintf(color, sizeof(color), "lightblue");
- }
- } else {
- snprintf(color, sizeof(color), "white");
- }
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
- if (ggml_is_matrix(node)) {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
- } else {
- fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
- }
- if (node->grad) {
- fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
- } else {
- fprintf(fp, "\"; ]\n");
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- snprintf(color, sizeof(color), "pink");
- fprintf(fp, " \"%p\" [ "
- "style = filled; fillcolor = %s; shape = record; "
- "label=\"<x>",
- (void *) node, color);
- if (strlen(node->name) > 0) {
- fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
- } else {
- fprintf(fp, "(%s)|", ggml_type_name(node->type));
- }
- fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
- if (ggml_nelements(node) < 5) {
- fprintf(fp, " | (");
- for (int j = 0; j < ggml_nelements(node); j++) {
- if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
- fprintf(fp, "%d", ggml_get_i32_1d(node, j));
- }
- else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
- fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
- }
- else {
- fprintf(fp, "#");
- }
- if (j < ggml_nelements(node) - 1) {
- fprintf(fp, ", ");
- }
- }
- fprintf(fp, ")");
- }
- fprintf(fp, "\"; ]\n");
- }
- for (int i = 0; i < gb->n_nodes; i++) {
- struct ggml_tensor * node = gb->nodes[i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
- }
- }
- }
- for (int i = 0; i < gb->n_leafs; i++) {
- struct ggml_tensor * node = gb->leafs[i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j]) {
- char label[16];
- snprintf(label, sizeof(label), "src %d", j);
- ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
- }
- }
- }
- fprintf(fp, "}\n");
- fclose(fp);
- GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
- }
- ////////////////////////////////////////////////////////////////////////////////
- static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to set tensor from array
- for (int64_t j = 0; j < ne; ++j) {
- ggml_set_f32_1d(ps[p], j, x[i++]);
- }
- }
- }
- static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
- int i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- x[i++] = ggml_get_f32_1d(ps[p], j);
- }
- }
- }
- static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
- }
- }
- }
- static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]) ;
- // TODO: add function to get all elements at once
- for (int64_t j = 0; j < ne; ++j) {
- g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
- }
- }
- }
- //
- // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
- //
- // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
- //
- static enum ggml_opt_result ggml_opt_adam(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- GGML_ASSERT(ggml_is_scalar(f));
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int64_t nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
- int iter = opt->iter;
- ggml_opt_init(opt->ctx, opt, params, nx);
- opt->iter = iter;
- }
- // constants
- float sched = params.adam.sched;
- const float alpha = params.adam.alpha;
- const float decay = params.adam.decay * alpha;
- const float beta1 = params.adam.beta1;
- const float beta2 = params.adam.beta2;
- const float eps = params.adam.eps;
- const float gclip = params.adam.gclip;
- const int decay_min_ndim = params.adam.decay_min_ndim;
- const int n_accum = MAX(1, params.n_gradient_accumulation);
- const float accum_norm = 1.0f / (float) n_accum;
- float * g = opt->adam.g->data; // gradients
- float * m = opt->adam.m->data; // first moment
- float * v = opt->adam.v->data; // second moment
- float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
- struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
- bool cancel = false;
- // compute the function value
- float fx = 0;
- ggml_set_zero(opt->adam.g);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- callback(callback_data, accum_step, &sched, &cancel);
- if (cancel) {
- return GGML_OPT_CANCEL;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- fx += ggml_get_f32_1d(f, 0);
- }
- fx *= accum_norm;
- opt->adam.fx_prev = fx;
- opt->adam.fx_best = opt->adam.fx_prev;
- if (pf) {
- pf[opt->iter % params.past] = opt->adam.fx_prev;
- }
- opt->loss_before = opt->adam.fx_prev;
- opt->loss_after = opt->adam.fx_prev;
- // initialize
- if (opt->just_initialized) {
- opt->adam.n_no_improvement = 0;
- opt->just_initialized = false;
- }
- float * fx_best = &opt->adam.fx_best;
- float * fx_prev = &opt->adam.fx_prev;
- int * n_no_improvement = &opt->adam.n_no_improvement;
- int iter0 = opt->iter;
- // run the optimizer
- for (int t = 0; t < params.adam.n_iter; ++t) {
- opt->iter = iter0 + t + 1;
- GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
- GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
- GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
- for (int i = 0; i < np; ++i) {
- GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
- ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
- }
- const int64_t t_start_wall = ggml_time_us();
- const int64_t t_start_cpu = ggml_cycles();
- UNUSED(t_start_wall);
- UNUSED(t_start_cpu);
- {
- float gnorm = 1.0f;
- if (gclip > 0.0f) {
- // gradient clipping
- ggml_float sum = 0.0;
- for (int64_t i = 0; i < nx; ++i) {
- sum += (ggml_float)(g[i]*g[i]);
- }
- ggml_float norm = sqrt(sum);
- if (norm > (ggml_float) gclip) {
- gnorm = (float) ((ggml_float) gclip / norm);
- }
- }
- const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
- const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
- int64_t i = 0;
- for (int p = 0; p < np; ++p) {
- const int64_t ne = ggml_nelements(ps[p]);
- const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
- for (int64_t j = 0; j < ne; ++j) {
- float x = ggml_get_f32_1d(ps[p], j);
- float g_ = g[i]*gnorm;
- m[i] = m[i]*beta1 + g_*(1.0f - beta1);
- v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
- float mh = m[i]*beta1h;
- float vh = v[i]*beta2h;
- vh = sqrtf(vh) + eps;
- x = x*(1.0f - p_decay) - mh/vh;
- ggml_set_f32_1d(ps[p], j, x);
- ++i;
- }
- }
- }
- fx = 0;
- ggml_set_zero(opt->adam.g);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- callback(callback_data, accum_step, &sched, &cancel);
- if (cancel) {
- return GGML_OPT_CANCEL;;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- fx += ggml_get_f32_1d(f, 0);
- }
- fx *= accum_norm;
- opt->loss_after = fx;
- // check convergence
- if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
- GGML_PRINT_DEBUG("converged\n");
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= iter0 + t) {
- const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[(iter0 + t)%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx_best[0] > fx) {
- fx_best[0] = fx;
- n_no_improvement[0] = 0;
- } else {
- ++n_no_improvement[0];
- if (n_no_improvement[0] >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- fx_prev[0] = fx;
- {
- const int64_t t_end_cpu = ggml_cycles();
- GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
- UNUSED(t_end_cpu);
- const int64_t t_end_wall = ggml_time_us();
- GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
- UNUSED(t_end_wall);
- }
- }
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- //
- // L-BFGS
- //
- // the L-BFGS implementation below is based on the following implementation:
- //
- // https://github.com/chokkan/liblbfgs
- //
- struct ggml_lbfgs_iteration_data {
- float alpha;
- float ys;
- float * s;
- float * y;
- };
- static enum ggml_opt_result linesearch_backtracking(
- const struct ggml_opt_params * params,
- int nx,
- float * x,
- float * fx,
- float * g,
- float * d,
- float * step,
- const float * xp,
- struct ggml_tensor * f,
- struct ggml_cgraph * gb,
- struct ggml_cplan * cplan,
- const int np,
- struct ggml_tensor * ps[],
- bool * cancel,
- ggml_opt_callback callback,
- void * callback_data) {
- int count = 0;
- float width = 0.0f;
- float dg = 0.0f;
- float finit = 0.0f;
- float dginit = 0.0f;
- float dgtest = 0.0f;
- const float dec = 0.5f;
- const float inc = 2.1f;
- const int n_accum = MAX(1, params->n_gradient_accumulation);
- const float accum_norm = 1.0f / (float) n_accum;
- if (*step <= 0.f) {
- return GGML_LINESEARCH_INVALID_PARAMETERS;
- }
- // compute the initial gradient in the search direction
- ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
- // make sure that d points to a descent direction
- if (0 < dginit) {
- return GGML_LINESEARCH_FAIL;
- }
- // initialize local variables
- finit = *fx;
- dgtest = params->lbfgs.ftol*dginit;
- while (true) {
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_mad_f32(nx, x, d, *step);
- // evaluate the function and gradient values
- {
- ggml_opt_set_params(np, ps, x);
- *fx = 0;
- memset(g, 0, sizeof(float)*nx);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- // LBFG-S does not support learning rate -> ignore learning schedule
- float sched = 0;
- callback(callback_data, accum_step, &sched, cancel);
- if (*cancel) {
- return GGML_OPT_CANCEL;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- *fx += ggml_get_f32_1d(f, 0);
- }
- *fx *= accum_norm;
- }
- ++count;
- if (*fx > finit + (*step)*dgtest) {
- width = dec;
- } else {
- // Armijo condition is satisfied
- if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
- return count;
- }
- ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
- // check the Wolfe condition
- if (dg < params->lbfgs.wolfe * dginit) {
- width = inc;
- } else {
- if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
- // regular Wolfe conditions
- return count;
- }
- if(dg > -params->lbfgs.wolfe*dginit) {
- width = dec;
- } else {
- // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
- return count;
- }
- }
- }
- if (*step < params->lbfgs.min_step) {
- return GGML_LINESEARCH_MINIMUM_STEP;
- }
- if (*step > params->lbfgs.max_step) {
- return GGML_LINESEARCH_MAXIMUM_STEP;
- }
- if (params->lbfgs.max_linesearch <= count) {
- return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
- }
- (*step) *= width;
- }
- GGML_UNREACHABLE();
- }
- static enum ggml_opt_result ggml_opt_lbfgs(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
- params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
- if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
- return GGML_OPT_INVALID_WOLFE;
- }
- }
- const int m = params.lbfgs.m;
- // these will store the parameters we want to optimize
- struct ggml_tensor * ps[GGML_MAX_PARAMS];
- int np = 0;
- int nx = 0;
- for (int i = 0; i < gf->n_nodes; ++i) {
- if (gf->nodes[i]->is_param) {
- GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
- GGML_ASSERT(np < GGML_MAX_PARAMS);
- ps[np++] = gf->nodes[i];
- nx += ggml_nelements(gf->nodes[i]);
- }
- }
- if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
- int iter = opt->iter;
- ggml_opt_init(ctx, opt, params, nx);
- opt->iter = iter;
- }
- struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
- struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
- cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
- float * x = opt->lbfgs.x->data; // current parameters
- float * xp = opt->lbfgs.xp->data; // previous parameters
- float * g = opt->lbfgs.g->data; // current gradient
- float * gp = opt->lbfgs.gp->data; // previous gradient
- float * d = opt->lbfgs.d->data; // search direction
- float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
- const int n_accum = MAX(1, params.n_gradient_accumulation);
- const float accum_norm = 1.0f / (float) n_accum;
- float fx = 0.0f; // cost function value
- float xnorm = 0.0f; // ||x||
- float gnorm = 0.0f; // ||g||
- // initialize x from the graph nodes
- ggml_opt_get_params(np, ps, x);
- // the L-BFGS memory
- float * lm_alpha = opt->lbfgs.lmal->data;
- float * lm_ys = opt->lbfgs.lmys->data;
- float * lm_s = opt->lbfgs.lms->data;
- float * lm_y = opt->lbfgs.lmy->data;
- bool cancel = false;
- // evaluate the function value and its gradient
- {
- ggml_opt_set_params(np, ps, x);
- fx = 0;
- memset(g, 0, sizeof(float)*nx);
- for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
- if (callback) {
- // LBFG-S does not support learning rate -> ignore learning schedule
- float sched = 0;
- callback(callback_data, accum_step, &sched, &cancel);
- if (cancel) {
- return GGML_OPT_CANCEL;
- }
- }
- // ggml_graph_reset (gf);
- ggml_set_f32 (f->grad, 1.0f);
- ggml_graph_compute(gb, &cplan);
- ggml_opt_acc_grad(np, ps, g, accum_norm);
- fx += ggml_get_f32_1d(f, 0);
- }
- fx *= accum_norm;
- opt->loss_before = fx;
- opt->loss_after = fx;
- }
- // search direction = -gradient
- ggml_vec_neg_f32(nx, d, g);
- // ||x||, ||g||
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- // already optimized
- if (gnorm/xnorm <= params.lbfgs.eps) {
- return GGML_OPT_OK;
- }
- if (opt->just_initialized) {
- if (pf) {
- pf[0] = fx;
- }
- opt->lbfgs.fx_best = fx;
- // initial step
- ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
- opt->lbfgs.j = 0;
- opt->lbfgs.k = 1;
- opt->lbfgs.end = 0;
- opt->lbfgs.n_no_improvement = 0;
- opt->just_initialized = false;
- }
- float * fx_best = &opt->lbfgs.fx_best;
- float * step = &opt->lbfgs.step;
- int * j = &opt->lbfgs.j;
- int * k = &opt->lbfgs.k;
- int * end = &opt->lbfgs.end;
- int * n_no_improvement = &opt->lbfgs.n_no_improvement;
- int ls = 0;
- int bound = 0;
- float ys = 0.0f;
- float yy = 0.0f;
- float beta = 0.0f;
- int it = 0;
- while (true) {
- // store the current position and gradient vectors
- ggml_vec_cpy_f32(nx, xp, x);
- ggml_vec_cpy_f32(nx, gp, g);
- // TODO: instead of passing &cancel here, use the return code of the linesearch
- // to determine if the optimization should be cancelled
- // this is a simple change, but not doing this atm, since I don't have a nice
- // way to test and don't want to break something with so many changes lined up
- ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
- if (cancel) {
- return GGML_OPT_CANCEL;
- }
- if (ls < 0) {
- // linesearch failed - go back to the previous point and return
- ggml_vec_cpy_f32(nx, x, xp);
- ggml_vec_cpy_f32(nx, g, gp);
- return ls;
- }
- opt->loss_after = fx;
- ggml_vec_norm_f32(nx, &xnorm, x);
- ggml_vec_norm_f32(nx, &gnorm, g);
- GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
- if (xnorm < 1.0f) {
- xnorm = 1.0f;
- }
- if (gnorm/xnorm <= params.lbfgs.eps) {
- // converged
- return GGML_OPT_OK;
- }
- // delta-based convergence test
- if (pf != NULL) {
- // need at least params.past iterations to start checking for convergence
- if (params.past <= k[0]) {
- const float rate = (pf[k[0]%params.past] - fx)/fx;
- if (fabsf(rate) < params.delta) {
- return GGML_OPT_OK;
- }
- }
- pf[k[0]%params.past] = fx;
- }
- // check for improvement
- if (params.max_no_improvement > 0) {
- if (fx < fx_best[0]) {
- fx_best[0] = fx;
- n_no_improvement[0] = 0;
- } else {
- n_no_improvement[0]++;
- if (n_no_improvement[0] >= params.max_no_improvement) {
- return GGML_OPT_OK;
- }
- }
- }
- if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
- // reached the maximum number of iterations
- return GGML_OPT_DID_NOT_CONVERGE;
- }
- // update vectors s and y:
- // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
- // y_{k+1} = g_{k+1} - g_{k}.
- //
- ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
- ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
- // compute scalars ys and yy:
- // ys = y^t \cdot s -> 1 / \rho.
- // yy = y^t \cdot y.
- //
- ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
- ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
- lm_ys[end[0]] = ys;
- // find new search direction
- // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
- bound = (m <= k[0]) ? m : k[0];
- k[0]++;
- it++;
- end[0] = (end[0] + 1)%m;
- // initialize search direction with -g
- ggml_vec_neg_f32(nx, d, g);
- j[0] = end[0];
- for (int i = 0; i < bound; ++i) {
- j[0] = (j[0] + m - 1) % m;
- // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
- ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
- lm_alpha[j[0]] /= lm_ys[j[0]];
- // q_{i} = q_{i+1} - \alpha_{i} y_{i}
- ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
- }
- ggml_vec_scale_f32(nx, d, ys/yy);
- for (int i = 0; i < bound; ++i) {
- // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
- ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
- beta /= lm_ys[j[0]];
- // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
- ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
- j[0] = (j[0] + 1)%m;
- }
- step[0] = 1.0;
- }
- GGML_UNREACHABLE();
- }
- struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
- struct ggml_opt_params result;
- switch (type) {
- case GGML_OPT_ADAM:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_ADAM,
- .graph_size = GGML_DEFAULT_GRAPH_SIZE,
- .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 100,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .n_gradient_accumulation = 1,
- .adam = {
- .n_iter = 10000,
- .sched = 1.000f,
- .decay = 0.0f,
- .decay_min_ndim = 2,
- .alpha = 0.001f,
- .beta1 = 0.9f,
- .beta2 = 0.999f,
- .eps = 1e-8f,
- .eps_f = 1e-5f,
- .eps_g = 1e-3f,
- .gclip = 0.0f,
- },
- };
- } break;
- case GGML_OPT_LBFGS:
- {
- result = (struct ggml_opt_params) {
- .type = GGML_OPT_LBFGS,
- .graph_size = GGML_DEFAULT_GRAPH_SIZE,
- .n_threads = 1,
- .past = 0,
- .delta = 1e-5f,
- .max_no_improvement = 0,
- .print_forward_graph = true,
- .print_backward_graph = true,
- .n_gradient_accumulation = 1,
- .lbfgs = {
- .m = 6,
- .n_iter = 100,
- .max_linesearch = 20,
- .eps = 1e-5f,
- .ftol = 1e-4f,
- .wolfe = 0.9f,
- .min_step = 1e-20f,
- .max_step = 1e+20f,
- .linesearch = GGML_LINESEARCH_DEFAULT,
- },
- };
- } break;
- }
- return result;
- }
- GGML_API void ggml_opt_init(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_opt_params params,
- int64_t nx) {
- opt->ctx = ctx;
- opt->params = params;
- opt->iter = 0;
- opt->nx = nx;
- opt->just_initialized = true;
- if (opt->ctx == NULL) {
- struct ggml_init_params ctx_opt_params;
- if (opt->params.type == GGML_OPT_ADAM) {
- ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
- if (opt->params.past > 0) {
- ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
- }
- } else if (opt->params.type == GGML_OPT_LBFGS) {
- ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
- if (opt->params.past > 0) {
- ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
- }
- }
- ctx_opt_params.mem_buffer = NULL;
- ctx_opt_params.no_alloc = false;
- opt->ctx = ggml_init(ctx_opt_params);
- }
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->adam.pf = params.past > 0
- ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
- : NULL;
- ggml_set_zero(opt->adam.m);
- ggml_set_zero(opt->adam.v);
- if (opt->adam.pf) {
- ggml_set_zero(opt->adam.pf);
- }
- } break;
- case GGML_OPT_LBFGS:
- {
- opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
- opt->lbfgs.pf = params.past > 0
- ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
- : NULL;
- opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
- opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
- opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
- opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
- ggml_set_zero(opt->lbfgs.x);
- ggml_set_zero(opt->lbfgs.xp);
- ggml_set_zero(opt->lbfgs.g);
- ggml_set_zero(opt->lbfgs.gp);
- ggml_set_zero(opt->lbfgs.d);
- if (opt->lbfgs.pf) {
- ggml_set_zero(opt->lbfgs.pf);
- }
- ggml_set_zero(opt->lbfgs.lmal);
- ggml_set_zero(opt->lbfgs.lmys);
- ggml_set_zero(opt->lbfgs.lms);
- ggml_set_zero(opt->lbfgs.lmy);
- } break;
- }
- }
- enum ggml_opt_result ggml_opt(
- struct ggml_context * ctx,
- struct ggml_opt_params params,
- struct ggml_tensor * f) {
- bool free_ctx = false;
- if (ctx == NULL) {
- struct ggml_init_params params_ctx = {
- .mem_size = 16*1024*1024,
- .mem_buffer = NULL,
- .no_alloc = false,
- };
- ctx = ggml_init(params_ctx);
- if (ctx == NULL) {
- return GGML_OPT_NO_CONTEXT;
- }
- free_ctx = true;
- }
- enum ggml_opt_result result = GGML_OPT_OK;
- struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
- ggml_opt_init(ctx, opt, params, 0);
- result = ggml_opt_resume(ctx, opt, f);
- if (free_ctx) {
- ggml_free(ctx);
- }
- return result;
- }
- enum ggml_opt_result ggml_opt_resume(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f) {
- // build forward + backward compute graphs
- struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
- ggml_build_forward_expand(gf, f);
- struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
- ggml_build_backward_expand(ctx, gf, gb, true);
- return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
- }
- enum ggml_opt_result ggml_opt_resume_g(
- struct ggml_context * ctx,
- struct ggml_opt_context * opt,
- struct ggml_tensor * f,
- struct ggml_cgraph * gf,
- struct ggml_cgraph * gb,
- ggml_opt_callback callback,
- void * callback_data) {
- // build forward + backward compute graphs
- enum ggml_opt_result result = GGML_OPT_OK;
- switch (opt->params.type) {
- case GGML_OPT_ADAM:
- {
- result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
- } break;
- case GGML_OPT_LBFGS:
- {
- result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
- } break;
- }
- if (opt->params.print_forward_graph) {
- ggml_graph_print (gf);
- ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
- }
- if (opt->params.print_backward_graph) {
- ggml_graph_print (gb);
- ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- void ggml_quantize_init(enum ggml_type type) {
- ggml_critical_section_start();
- switch (type) {
- case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
- case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
- case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
- default: // nothing
- break;
- }
- ggml_critical_section_end();
- }
- void ggml_quantize_free(void) {
- ggml_critical_section_start();
- iq2xs_free_impl(256);
- iq2xs_free_impl(512);
- ggml_critical_section_end();
- }
- size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_0 == 0);
- const int nb = k / QK4_0;
- for (int b = 0; b < n; b += k) {
- block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
- quantize_row_q4_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK4_0; j += 2) {
- const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[j/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK4_0*sizeof(block_q4_0));
- }
- size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK4_1 == 0);
- const int nb = k / QK4_1;
- for (int b = 0; b < n; b += k) {
- block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
- quantize_row_q4_1_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK4_1; j += 2) {
- const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
- const uint8_t vi1 = y[i].qs[j/2] >> 4;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK4_1*sizeof(block_q4_1));
- }
- size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK5_0 == 0);
- const int nb = k / QK5_0;
- for (int b = 0; b < n; b += k) {
- block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
- quantize_row_q5_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, &y[i].qh, sizeof(qh));
- for (int j = 0; j < QK5_0; j += 2) {
- const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
- const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
- // cast to 16 bins
- const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
- const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK5_0*sizeof(block_q5_0));
- }
- size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK5_1 == 0);
- const int nb = k / QK5_1;
- for (int b = 0; b < n; b += k) {
- block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
- quantize_row_q5_1_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- uint32_t qh;
- memcpy(&qh, &y[i].qh, sizeof(qh));
- for (int j = 0; j < QK5_1; j += 2) {
- const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
- const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
- // cast to 16 bins
- const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
- const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
- hist[vi0]++;
- hist[vi1]++;
- }
- }
- }
- return (n/QK5_1*sizeof(block_q5_1));
- }
- size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- for (int b = 0; b < n; b += k) {
- block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
- quantize_row_q8_0_reference(src + b, y, k);
- for (int i = 0; i < nb; i++) {
- for (int j = 0; j < QK8_0; ++j) {
- const int8_t vi = y[i].qs[j];
- hist[vi/16 + 8]++;
- }
- }
- }
- return (n/QK8_0*sizeof(block_q8_0));
- }
- bool ggml_quantize_requires_imatrix(enum ggml_type type) {
- return
- type == GGML_TYPE_IQ2_XXS ||
- type == GGML_TYPE_IQ2_XS;
- }
- size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
- int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
- ggml_quantize_init(type); // this is noop if already initialized
- size_t result = 0;
- int n = nrows * n_per_row;
- switch (type) {
- case GGML_TYPE_Q4_0:
- {
- GGML_ASSERT(start % QK4_0 == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q4_1:
- {
- GGML_ASSERT(start % QK4_1 == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q5_0:
- {
- GGML_ASSERT(start % QK5_0 == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q5_1:
- {
- GGML_ASSERT(start % QK5_1 == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q8_0:
- {
- GGML_ASSERT(start % QK8_0 == 0);
- block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
- result = ggml_quantize_q8_0(src + start, block, n, n, hist);
- } break;
- case GGML_TYPE_Q2_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q3_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q4_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q5_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_Q6_K:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_IQ2_XXS:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- GGML_ASSERT(imatrix);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_IQ2_XS:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- GGML_ASSERT(imatrix);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_IQ3_XXS:
- {
- GGML_ASSERT(start % QK_K == 0);
- GGML_ASSERT(start % n_per_row == 0);
- size_t start_row = start / n_per_row;
- size_t row_size = ggml_row_size(type, n_per_row);
- result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
- GGML_ASSERT(result == row_size * nrows);
- } break;
- case GGML_TYPE_F16:
- {
- size_t elemsize = sizeof(ggml_fp16_t);
- ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
- result = n * elemsize;
- } break;
- case GGML_TYPE_F32:
- {
- size_t elemsize = sizeof(float);
- result = n * elemsize;
- memcpy((uint8_t *)dst + start * elemsize, src + start, result);
- } break;
- default:
- assert(false);
- }
- return result;
- }
- ////////////////////////////////////////////////////////////////////////////////
- struct gguf_str {
- uint64_t n; // GGUFv2
- char * data;
- };
- static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = sizeof(uint8_t),
- [GGUF_TYPE_INT8] = sizeof(int8_t),
- [GGUF_TYPE_UINT16] = sizeof(uint16_t),
- [GGUF_TYPE_INT16] = sizeof(int16_t),
- [GGUF_TYPE_UINT32] = sizeof(uint32_t),
- [GGUF_TYPE_INT32] = sizeof(int32_t),
- [GGUF_TYPE_FLOAT32] = sizeof(float),
- [GGUF_TYPE_BOOL] = sizeof(bool),
- [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
- [GGUF_TYPE_UINT64] = sizeof(uint64_t),
- [GGUF_TYPE_INT64] = sizeof(int64_t),
- [GGUF_TYPE_FLOAT64] = sizeof(double),
- [GGUF_TYPE_ARRAY] = 0, // undefined
- };
- static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
- static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
- [GGUF_TYPE_UINT8] = "u8",
- [GGUF_TYPE_INT8] = "i8",
- [GGUF_TYPE_UINT16] = "u16",
- [GGUF_TYPE_INT16] = "i16",
- [GGUF_TYPE_UINT32] = "u32",
- [GGUF_TYPE_INT32] = "i32",
- [GGUF_TYPE_FLOAT32] = "f32",
- [GGUF_TYPE_BOOL] = "bool",
- [GGUF_TYPE_STRING] = "str",
- [GGUF_TYPE_ARRAY] = "arr",
- [GGUF_TYPE_UINT64] = "u64",
- [GGUF_TYPE_INT64] = "i64",
- [GGUF_TYPE_FLOAT64] = "f64",
- };
- static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
- union gguf_value {
- uint8_t uint8;
- int8_t int8;
- uint16_t uint16;
- int16_t int16;
- uint32_t uint32;
- int32_t int32;
- float float32;
- uint64_t uint64;
- int64_t int64;
- double float64;
- bool bool_;
- struct gguf_str str;
- struct {
- enum gguf_type type;
- uint64_t n; // GGUFv2
- void * data;
- } arr;
- };
- struct gguf_kv {
- struct gguf_str key;
- enum gguf_type type;
- union gguf_value value;
- };
- struct gguf_header {
- char magic[4];
- uint32_t version;
- uint64_t n_tensors; // GGUFv2
- uint64_t n_kv; // GGUFv2
- };
- struct gguf_tensor_info {
- struct gguf_str name;
- uint32_t n_dims;
- uint64_t ne[GGML_MAX_DIMS];
- enum ggml_type type;
- uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
- // for writing API
- const void * data;
- size_t size;
- };
- struct gguf_context {
- struct gguf_header header;
- struct gguf_kv * kv;
- struct gguf_tensor_info * infos;
- size_t alignment;
- size_t offset; // offset of `data` from beginning of file
- size_t size; // size of `data` in bytes
- //uint8_t * padding;
- void * data;
- };
- static size_t gguf_type_size(enum gguf_type type) {
- GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
- return GGUF_TYPE_SIZE[type];
- }
- static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
- GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
- GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
- for (uint32_t i = 0; i < info->n_dims; ++i) {
- GGML_ASSERT(info->ne[i] > 0);
- }
- // prevent overflow for total number of elements
- GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
- GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
- GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
- }
- static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
- const size_t n = fread(dst, 1, size, file);
- *offset += n;
- return n == size;
- }
- static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
- p->n = 0;
- p->data = NULL;
- bool ok = true;
- ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
- // early exit if string length is invalid, prevents from integer overflow
- if (p->n == SIZE_MAX) {
- fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
- return false;
- }
- p->data = GGML_CALLOC(p->n + 1, 1);
- ok = ok && gguf_fread_el(file, p->data, p->n, offset);
- return ok;
- }
- struct gguf_context * gguf_init_empty(void) {
- struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
- memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
- ctx->header.version = GGUF_VERSION;
- ctx->header.n_tensors = 0;
- ctx->header.n_kv = 0;
- ctx->kv = NULL;
- ctx->infos = NULL;
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
- ctx->offset = 0;
- ctx->size = 0;
- ctx->data = NULL;
- return ctx;
- }
- struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
- FILE * file = fopen(fname, "rb");
- if (!file) {
- return NULL;
- }
- // offset from start of file
- size_t offset = 0;
- char magic[4];
- // check the magic before making allocations
- {
- gguf_fread_el(file, &magic, sizeof(magic), &offset);
- for (uint32_t i = 0; i < sizeof(magic); i++) {
- if (magic[i] != GGUF_MAGIC[i]) {
- fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
- fclose(file);
- return NULL;
- }
- }
- }
- bool ok = true;
- struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
- // read the header
- {
- strncpy(ctx->header.magic, magic, 4);
- ctx->kv = NULL;
- ctx->infos = NULL;
- ctx->data = NULL;
- ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
- ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
- if (ctx->header.version == 1) {
- fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- // sanity-checks to prevent from integer/buffer overflows
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
- ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
- ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
- if (!ok) {
- fprintf(stderr, "%s: failed to read header\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- // read the kv pairs
- {
- ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
- for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
- //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
- ok = ok && gguf_fread_str(file, &kv->key, &offset);
- ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
- //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
- switch (kv->type) {
- case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
- case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
- case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
- case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
- case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
- case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
- case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
- case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
- case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
- case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
- case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
- case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
- case GGUF_TYPE_ARRAY:
- {
- ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
- ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- // prevent from integer overflow in the malloc below
- if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
- ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
- } break;
- case GGUF_TYPE_STRING:
- {
- // prevent from integer overflow in the malloc below
- if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
- fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
- ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- default: GGML_ASSERT(false && "invalid type"); break;
- }
- } break;
- default: GGML_ASSERT(false && "invalid type");
- }
- if (!ok) {
- break;
- }
- }
- if (!ok) {
- fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- // read the tensor infos
- {
- ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- for (int j = 0; j < GGML_MAX_DIMS; ++j) {
- info->ne[j] = 1;
- }
- ok = ok && gguf_fread_str(file, &info->name, &offset);
- ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
- ok = ok && (info->n_dims <= GGML_MAX_DIMS);
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
- }
- ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
- ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
- gguf_tensor_info_sanitize(info);
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor info\n", __func__);
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- }
- }
- ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
- int alignment_idx = gguf_find_key(ctx, "general.alignment");
- if (alignment_idx != -1) {
- ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
- }
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset_pad = offset % ctx->alignment;
- if (offset_pad != 0) {
- offset += ctx->alignment - offset_pad;
- fseek(file, offset, SEEK_SET);
- }
- }
- // store the current file offset - this is where the data section starts
- ctx->offset = offset;
- // compute the total size of the data section, taking into account the alignment
- {
- ctx->size = 0;
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- const int64_t ne =
- (int64_t) info->ne[0] *
- (int64_t) info->ne[1] *
- (int64_t) info->ne[2] *
- (int64_t) info->ne[3];
- if (ne % ggml_blck_size(info->type) != 0) {
- fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
- __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
- fclose(file);
- gguf_free(ctx);
- return NULL;
- }
- const size_t size_cur = ggml_row_size(info->type, ne);
- ctx->size += GGML_PAD(size_cur, ctx->alignment);
- }
- }
- // load the tensor data only if requested
- if (params.ctx != NULL) {
- // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
- // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
- // the ggml_tensor structs to the appropriate locations in the binary blob
- // compute the exact size needed for the new ggml_context
- const size_t mem_size =
- params.no_alloc ?
- (ctx->header.n_tensors )*ggml_tensor_overhead() :
- (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
- struct ggml_init_params pdata = {
- .mem_size = mem_size,
- .mem_buffer = NULL,
- .no_alloc = params.no_alloc,
- };
- *params.ctx = ggml_init(pdata);
- struct ggml_context * ctx_data = *params.ctx;
- struct ggml_tensor * data = NULL;
- if (!params.no_alloc) {
- data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
- ok = ok && data != NULL;
- // read the binary blob with the tensor data
- ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
- if (!ok) {
- fprintf(stderr, "%s: failed to read tensor data\n", __func__);
- fclose(file);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
- ctx->data = data->data;
- }
- ggml_set_no_alloc(ctx_data, true);
- // create the tensors
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- const int64_t ne[GGML_MAX_DIMS] = {
- ctx->infos[i].ne[0],
- ctx->infos[i].ne[1],
- ctx->infos[i].ne[2],
- ctx->infos[i].ne[3],
- };
- struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
- ok = ok && cur != NULL;
- ggml_set_name(cur, ctx->infos[i].name.data);
- if (!ok) {
- break;
- }
- // point the data member to the appropriate location in the binary blob using the tensor infos
- if (!params.no_alloc) {
- //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
- cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
- }
- }
- if (!ok) {
- fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
- fclose(file);
- ggml_free(ctx_data);
- gguf_free(ctx);
- return NULL;
- }
- ggml_set_no_alloc(ctx_data, params.no_alloc);
- }
- fclose(file);
- return ctx;
- }
- void gguf_free(struct gguf_context * ctx) {
- if (ctx == NULL) {
- return;
- }
- if (ctx->kv) {
- // free string memory - not great..
- for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
- if (kv->key.data) {
- GGML_FREE(kv->key.data);
- }
- if (kv->type == GGUF_TYPE_STRING) {
- if (kv->value.str.data) {
- GGML_FREE(kv->value.str.data);
- }
- }
- if (kv->type == GGUF_TYPE_ARRAY) {
- if (kv->value.arr.data) {
- if (kv->value.arr.type == GGUF_TYPE_STRING) {
- for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
- if (str->data) {
- GGML_FREE(str->data);
- }
- }
- }
- GGML_FREE(kv->value.arr.data);
- }
- }
- }
- GGML_FREE(ctx->kv);
- }
- if (ctx->infos) {
- for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- if (info->name.data) {
- GGML_FREE(info->name.data);
- }
- }
- GGML_FREE(ctx->infos);
- }
- GGML_ALIGNED_FREE(ctx);
- }
- const char * gguf_type_name(enum gguf_type type) {
- return GGUF_TYPE_NAME[type];
- }
- int gguf_get_version(const struct gguf_context * ctx) {
- return ctx->header.version;
- }
- size_t gguf_get_alignment(const struct gguf_context * ctx) {
- return ctx->alignment;
- }
- size_t gguf_get_data_offset(const struct gguf_context * ctx) {
- return ctx->offset;
- }
- void * gguf_get_data(const struct gguf_context * ctx) {
- return ctx->data;
- }
- int gguf_get_n_kv(const struct gguf_context * ctx) {
- return ctx->header.n_kv;
- }
- int gguf_find_key(const struct gguf_context * ctx, const char * key) {
- // return -1 if key not found
- int keyfound = -1;
- const int n_kv = gguf_get_n_kv(ctx);
- for (int i = 0; i < n_kv; ++i) {
- if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
- keyfound = i;
- break;
- }
- }
- return keyfound;
- }
- const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- return ctx->kv[key_id].key.data;
- }
- enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- return ctx->kv[key_id].type;
- }
- enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.type;
- }
- const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.data;
- }
- const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- struct gguf_kv * kv = &ctx->kv[key_id];
- struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
- return str->data;
- }
- int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
- return ctx->kv[key_id].value.arr.n;
- }
- uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
- return ctx->kv[key_id].value.uint8;
- }
- int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
- return ctx->kv[key_id].value.int8;
- }
- uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
- return ctx->kv[key_id].value.uint16;
- }
- int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
- return ctx->kv[key_id].value.int16;
- }
- uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
- return ctx->kv[key_id].value.uint32;
- }
- int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
- return ctx->kv[key_id].value.int32;
- }
- float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
- return ctx->kv[key_id].value.float32;
- }
- uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
- return ctx->kv[key_id].value.uint64;
- }
- int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
- return ctx->kv[key_id].value.int64;
- }
- double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
- return ctx->kv[key_id].value.float64;
- }
- bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
- return ctx->kv[key_id].value.bool_;
- }
- const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
- return ctx->kv[key_id].value.str.data;
- }
- const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
- GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
- GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
- return &ctx->kv[key_id].value;
- }
- int gguf_get_n_tensors(const struct gguf_context * ctx) {
- return ctx->header.n_tensors;
- }
- int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
- // return -1 if tensor not found
- int tensorfound = -1;
- const int n_tensors = gguf_get_n_tensors(ctx);
- for (int i = 0; i < n_tensors; ++i) {
- if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
- tensorfound = i;
- break;
- }
- }
- return tensorfound;
- }
- size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].offset;
- }
- char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].name.data;
- }
- enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
- return ctx->infos[i].type;
- }
- // returns the index
- static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
- const int idx = gguf_find_key(ctx, key);
- if (idx >= 0) {
- return idx;
- }
- const int n_kv = gguf_get_n_kv(ctx);
- ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
- ctx->kv[n_kv].key.n = strlen(key);
- ctx->kv[n_kv].key.data = strdup(key);
- ctx->header.n_kv++;
- return n_kv;
- }
- void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT8;
- ctx->kv[idx].value.uint8 = val;
- }
- void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT8;
- ctx->kv[idx].value.int8 = val;
- }
- void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT16;
- ctx->kv[idx].value.uint16 = val;
- }
- void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT16;
- ctx->kv[idx].value.int16 = val;
- }
- void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT32;
- ctx->kv[idx].value.uint32 = val;
- }
- void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT32;
- ctx->kv[idx].value.int32 = val;
- }
- void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
- ctx->kv[idx].value.float32 = val;
- }
- void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_UINT64;
- ctx->kv[idx].value.uint64 = val;
- }
- void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_INT64;
- ctx->kv[idx].value.int64 = val;
- }
- void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
- ctx->kv[idx].value.float64 = val;
- }
- void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_BOOL;
- ctx->kv[idx].value.bool_ = val;
- }
- void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.str.n = strlen(val);
- ctx->kv[idx].value.str.data = strdup(val);
- }
- void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = type;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
- memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
- }
- void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
- const int idx = gguf_get_or_add_key(ctx, key);
- ctx->kv[idx].type = GGUF_TYPE_ARRAY;
- ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
- ctx->kv[idx].value.arr.n = n;
- ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
- for (int i = 0; i < n; i++) {
- struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
- str->n = strlen(data[i]);
- str->data = strdup(data[i]);
- }
- }
- // set or add KV pairs from another context
- void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
- for (uint32_t i = 0; i < src->header.n_kv; i++) {
- switch (src->kv[i].type) {
- case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
- case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
- case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
- case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
- case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
- case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
- case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
- case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
- case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
- case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
- case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
- case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
- case GGUF_TYPE_ARRAY:
- {
- if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
- const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
- for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
- data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
- }
- gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
- GGML_FREE((void *)data);
- } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
- GGML_ASSERT(false && "nested arrays not supported");
- } else {
- gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
- }
- } break;
- default: GGML_ASSERT(false && "invalid type"); break;
- }
- }
- }
- void gguf_add_tensor(
- struct gguf_context * ctx,
- const struct ggml_tensor * tensor) {
- const int idx = ctx->header.n_tensors;
- ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
- ctx->infos[idx].name.n = strlen(tensor->name);
- ctx->infos[idx].name.data = strdup(tensor->name);
- for (int i = 0; i < GGML_MAX_DIMS; ++i) {
- ctx->infos[idx].ne[i] = 1;
- }
- ctx->infos[idx].n_dims = ggml_n_dims(tensor);
- for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
- ctx->infos[idx].ne[i] = tensor->ne[i];
- }
- ctx->infos[idx].type = tensor->type;
- ctx->infos[idx].offset = 0;
- ctx->infos[idx].data = tensor->data;
- ctx->infos[idx].size = ggml_nbytes(tensor);
- if (ctx->header.n_tensors > 0) {
- ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
- }
- ctx->header.n_tensors++;
- }
- void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ASSERT(false && "tensor not found");
- }
- ctx->infos[idx].type = type;
- }
- void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
- const int idx = gguf_find_tensor(ctx, name);
- if (idx < 0) {
- GGML_ASSERT(false && "tensor not found");
- }
- ctx->infos[idx].data = data;
- ctx->infos[idx].size = size;
- // update offsets
- for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
- ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
- }
- }
- //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
- // fwrite(&val->n, sizeof(val->n), 1, file);
- // fwrite(val->data, sizeof(char), val->n, file);
- //}
- //
- //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
- // fwrite(val, sizeof(char), size, file);
- //}
- struct gguf_buf {
- void * data;
- size_t size;
- size_t offset;
- };
- static struct gguf_buf gguf_buf_init(size_t size) {
- struct gguf_buf buf = {
- /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
- /*buf.size =*/ size,
- /*buf.offset =*/ 0,
- };
- return buf;
- }
- static void gguf_buf_free(struct gguf_buf buf) {
- if (buf.data) {
- GGML_FREE(buf.data);
- }
- }
- static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
- if (buf->offset + size > buf->size) {
- buf->size = 1.5*(buf->offset + size);
- if (buf->data) {
- buf->data = realloc(buf->data, buf->size);
- }
- }
- }
- static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
- gguf_buf_grow(buf, sizeof(val->n) + val->n);
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
- }
- buf->offset += sizeof(val->n);
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val->data, val->n);
- }
- buf->offset += val->n;
- }
- static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
- gguf_buf_grow(buf, el_size);
- if (buf->data) {
- memcpy((char *) buf->data + buf->offset, val, el_size);
- }
- buf->offset += el_size;
- }
- static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
- // write header
- gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
- gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
- gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
- gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
- // write key-value pairs
- for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
- struct gguf_kv * kv = &ctx->kv[i];
- gguf_bwrite_str(buf, &kv->key);
- gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
- switch (kv->type) {
- case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
- case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
- case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
- case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
- case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
- case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
- case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
- case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
- case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
- case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
- case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
- case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
- case GGUF_TYPE_ARRAY:
- {
- gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
- gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
- switch (kv->value.arr.type) {
- case GGUF_TYPE_UINT8:
- case GGUF_TYPE_INT8:
- case GGUF_TYPE_UINT16:
- case GGUF_TYPE_INT16:
- case GGUF_TYPE_UINT32:
- case GGUF_TYPE_INT32:
- case GGUF_TYPE_FLOAT32:
- case GGUF_TYPE_UINT64:
- case GGUF_TYPE_INT64:
- case GGUF_TYPE_FLOAT64:
- case GGUF_TYPE_BOOL:
- {
- gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
- } break;
- case GGUF_TYPE_STRING:
- {
- for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
- gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
- }
- } break;
- case GGUF_TYPE_ARRAY:
- default: GGML_ASSERT(false && "invalid type"); break;
- }
- } break;
- default: GGML_ASSERT(false && "invalid type");
- }
- }
- // write tensor infos
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- gguf_bwrite_str(buf, &info->name);
- gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
- for (uint32_t j = 0; j < info->n_dims; ++j) {
- gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
- }
- gguf_bwrite_el(buf, &info->type, sizeof(info->type));
- gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
- }
- // we require the data section to be aligned, so take into account any padding
- {
- const size_t offset = buf->offset;
- const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
- if (offset_pad != offset) {
- uint8_t pad = 0;
- for (size_t i = 0; i < offset_pad - offset; ++i) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
- }
- if (only_meta) {
- return;
- }
- size_t offset = 0;
- // write tensor data
- for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
- struct gguf_tensor_info * info = &ctx->infos[i];
- const size_t size = info->size;
- const size_t size_pad = GGML_PAD(size, ctx->alignment);
- gguf_bwrite_el(buf, info->data, size);
- if (size_pad != size) {
- uint8_t pad = 0;
- for (size_t j = 0; j < size_pad - size; ++j) {
- gguf_bwrite_el(buf, &pad, sizeof(pad));
- }
- }
- GGML_ASSERT(offset == info->offset);
- offset += size_pad;
- }
- }
- void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
- FILE * file = fopen(fname, "wb");
- if (!file) {
- GGML_ASSERT(false && "failed to open file for writing");
- }
- struct gguf_buf buf = gguf_buf_init(16*1024);
- gguf_write_to_buf(ctx, &buf, only_meta);
- fwrite(buf.data, 1, buf.offset, file);
- gguf_buf_free(buf);
- fclose(file);
- }
- size_t gguf_get_meta_size(const struct gguf_context * ctx) {
- // no allocs - only compute size
- struct gguf_buf buf = gguf_buf_init(0);
- gguf_write_to_buf(ctx, &buf, true);
- return buf.offset;
- }
- void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
- struct gguf_buf buf = gguf_buf_init(16*1024);
- gguf_write_to_buf(ctx, &buf, true);
- memcpy(data, buf.data, buf.offset);
- gguf_buf_free(buf);
- }
- ////////////////////////////////////////////////////////////////////////////////
- int ggml_cpu_has_avx(void) {
- #if defined(__AVX__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx_vnni(void) {
- #if defined(__AVXVNNI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx2(void) {
- #if defined(__AVX2__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512(void) {
- #if defined(__AVX512F__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vbmi(void) {
- #if defined(__AVX512VBMI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_avx512_vnni(void) {
- #if defined(__AVX512VNNI__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fma(void) {
- #if defined(__FMA__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_neon(void) {
- #if defined(__ARM_NEON)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_arm_fma(void) {
- #if defined(__ARM_FEATURE_FMA)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_metal(void) {
- #if defined(GGML_USE_METAL)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_f16c(void) {
- #if defined(__F16C__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_fp16_va(void) {
- #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_wasm_simd(void) {
- #if defined(__wasm_simd128__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_blas(void) {
- #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_cublas(void) {
- #if defined(GGML_USE_CUBLAS)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_clblast(void) {
- #if defined(GGML_USE_CLBLAST)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vulkan(void) {
- #if defined(GGML_USE_VULKAN)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_kompute(void) {
- #if defined(GGML_USE_KOMPUTE)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_sycl(void) {
- #if defined(GGML_USE_SYCL)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_gpublas(void) {
- return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
- ggml_cpu_has_sycl();
- }
- int ggml_cpu_has_sse3(void) {
- #if defined(__SSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_ssse3(void) {
- #if defined(__SSSE3__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_vsx(void) {
- #if defined(__POWER9_VECTOR__)
- return 1;
- #else
- return 0;
- #endif
- }
- int ggml_cpu_has_matmul_int8(void) {
- #if defined(__ARM_FEATURE_MATMUL_INT8)
- return 1;
- #else
- return 0;
- #endif
- }
- ////////////////////////////////////////////////////////////////////////////////
|