ggml.c 325 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined _MSC_VER || defined(__MINGW32__)
  25. #if !defined(__MINGW32__)
  26. #include <Windows.h>
  27. #else
  28. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  29. #include <windows.h>
  30. #endif
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  49. if (handle == NULL)
  50. {
  51. return EAGAIN;
  52. }
  53. *out = handle;
  54. return 0;
  55. }
  56. static int pthread_join(pthread_t thread, void* unused) {
  57. return (int) WaitForSingleObject(thread, INFINITE);
  58. }
  59. static int sched_yield (void) {
  60. Sleep (0);
  61. return 0;
  62. }
  63. #else
  64. #include <pthread.h>
  65. #include <stdatomic.h>
  66. typedef void* thread_ret_t;
  67. #endif
  68. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  69. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  70. #ifndef __FMA__
  71. #define __FMA__
  72. #endif
  73. #ifndef __F16C__
  74. #define __F16C__
  75. #endif
  76. #ifndef __SSE3__
  77. #define __SSE3__
  78. #endif
  79. #endif
  80. #ifdef __HAIKU__
  81. #define static_assert(cond, msg) _Static_assert(cond, msg)
  82. #endif
  83. /*#define GGML_PERF*/
  84. #define GGML_DEBUG 0
  85. #define GGML_GELU_FP16
  86. #define GGML_SILU_FP16
  87. #define GGML_SOFT_MAX_UNROLL 4
  88. #define GGML_VEC_DOT_UNROLL 2
  89. #ifdef GGML_USE_ACCELERATE
  90. // uncomment to use vDSP for soft max computation
  91. // note: not sure if it is actually faster
  92. //#define GGML_SOFT_MAX_ACCELERATE
  93. #endif
  94. #if UINTPTR_MAX == 0xFFFFFFFF
  95. #define GGML_MEM_ALIGN 4
  96. #else
  97. #define GGML_MEM_ALIGN 16
  98. #endif
  99. #define UNUSED(x) (void)(x)
  100. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  101. #define GGML_ASSERT(x) \
  102. do { \
  103. if (!(x)) { \
  104. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  105. abort(); \
  106. } \
  107. } while (0)
  108. #ifdef GGML_USE_ACCELERATE
  109. #include <Accelerate/Accelerate.h>
  110. #elif GGML_USE_OPENBLAS
  111. #include <cblas.h>
  112. #endif
  113. #undef MIN
  114. #undef MAX
  115. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  116. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  117. // floating point type used to accumulate sums
  118. typedef double ggml_float;
  119. // 16-bit float
  120. // on Arm, we use __fp16
  121. // on x86, we use uint16_t
  122. #ifdef __ARM_NEON
  123. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  124. //
  125. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  126. //
  127. #include <arm_neon.h>
  128. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  129. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  130. #define GGML_FP16_TO_FP32(x) ((float) (x))
  131. #define GGML_FP32_TO_FP16(x) (x)
  132. #else
  133. #ifdef __wasm_simd128__
  134. #include <wasm_simd128.h>
  135. #else
  136. #ifdef __POWER9_VECTOR__
  137. #include <altivec.h>
  138. #undef bool
  139. #define bool _Bool
  140. #else
  141. #include <immintrin.h>
  142. #endif
  143. #endif
  144. #ifdef __F16C__
  145. #ifdef _MSC_VER
  146. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  147. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  148. #else
  149. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  150. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  151. #endif
  152. #elif defined(__POWER9_VECTOR__)
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  155. /* the inline asm below is about 12% faster than the lookup method */
  156. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  157. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  158. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  159. register float f;
  160. register double d;
  161. __asm__(
  162. "mtfprd %0,%2\n"
  163. "xscvhpdp %0,%0\n"
  164. "frsp %1,%0\n" :
  165. /* temp */ "=d"(d),
  166. /* out */ "=f"(f):
  167. /* in */ "r"(h));
  168. return f;
  169. }
  170. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  171. register double d;
  172. register ggml_fp16_t r;
  173. __asm__( /* xscvdphp can work on double or single precision */
  174. "xscvdphp %0,%2\n"
  175. "mffprd %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=r"(r):
  178. /* in */ "f"(f));
  179. return r;
  180. }
  181. #else
  182. // FP16 <-> FP32
  183. // ref: https://github.com/Maratyszcza/FP16
  184. static inline float fp32_from_bits(uint32_t w) {
  185. union {
  186. uint32_t as_bits;
  187. float as_value;
  188. } fp32;
  189. fp32.as_bits = w;
  190. return fp32.as_value;
  191. }
  192. static inline uint32_t fp32_to_bits(float f) {
  193. union {
  194. float as_value;
  195. uint32_t as_bits;
  196. } fp32;
  197. fp32.as_value = f;
  198. return fp32.as_bits;
  199. }
  200. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  201. const uint32_t w = (uint32_t) h << 16;
  202. const uint32_t sign = w & UINT32_C(0x80000000);
  203. const uint32_t two_w = w + w;
  204. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  205. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  206. const float exp_scale = 0x1.0p-112f;
  207. #else
  208. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  209. #endif
  210. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  211. const uint32_t magic_mask = UINT32_C(126) << 23;
  212. const float magic_bias = 0.5f;
  213. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  214. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  215. const uint32_t result = sign |
  216. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  217. return fp32_from_bits(result);
  218. }
  219. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  220. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  221. const float scale_to_inf = 0x1.0p+112f;
  222. const float scale_to_zero = 0x1.0p-110f;
  223. #else
  224. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  225. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  226. #endif
  227. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  228. const uint32_t w = fp32_to_bits(f);
  229. const uint32_t shl1_w = w + w;
  230. const uint32_t sign = w & UINT32_C(0x80000000);
  231. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  232. if (bias < UINT32_C(0x71000000)) {
  233. bias = UINT32_C(0x71000000);
  234. }
  235. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  236. const uint32_t bits = fp32_to_bits(base);
  237. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  238. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  239. const uint32_t nonsign = exp_bits + mantissa_bits;
  240. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  241. }
  242. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  243. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  244. #endif // __F16C__
  245. #endif // __ARM_NEON
  246. //
  247. // global data
  248. //
  249. // precomputed gelu table for f16 (128 KB)
  250. static ggml_fp16_t table_gelu_f16[1 << 16];
  251. // precomputed silu table for f16 (128 KB)
  252. static ggml_fp16_t table_silu_f16[1 << 16];
  253. // precomputed exp table for f16 (128 KB)
  254. static ggml_fp16_t table_exp_f16[1 << 16];
  255. // precomputed f32 table for f16 (256 KB)
  256. static float table_f32_f16[1 << 16];
  257. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  258. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  259. // This is also true for POWER9.
  260. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  261. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  262. uint16_t s;
  263. memcpy(&s, &f, sizeof(uint16_t));
  264. return table_f32_f16[s];
  265. }
  266. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  267. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  268. #endif
  269. // note: do not use these inside ggml.c
  270. // these are meant to be used via the ggml.h API
  271. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  272. return (float) GGML_FP16_TO_FP32(x);
  273. }
  274. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  275. return GGML_FP32_TO_FP16(x);
  276. }
  277. //
  278. // timing
  279. //
  280. #if defined(_MSC_VER) || defined(__MINGW32__)
  281. static int64_t timer_freq;
  282. void ggml_time_init(void) {
  283. LARGE_INTEGER frequency;
  284. QueryPerformanceFrequency(&frequency);
  285. timer_freq = frequency.QuadPart;
  286. }
  287. int64_t ggml_time_ms(void) {
  288. LARGE_INTEGER t;
  289. QueryPerformanceCounter(&t);
  290. return (t.QuadPart * 1000) / timer_freq;
  291. }
  292. int64_t ggml_time_us(void) {
  293. LARGE_INTEGER t;
  294. QueryPerformanceCounter(&t);
  295. return (t.QuadPart * 1000000) / timer_freq;
  296. }
  297. #else
  298. void ggml_time_init(void) {}
  299. int64_t ggml_time_ms(void) {
  300. struct timespec ts;
  301. clock_gettime(CLOCK_MONOTONIC, &ts);
  302. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  303. }
  304. int64_t ggml_time_us(void) {
  305. struct timespec ts;
  306. clock_gettime(CLOCK_MONOTONIC, &ts);
  307. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  308. }
  309. #endif
  310. int64_t ggml_cycles(void) {
  311. return clock();
  312. }
  313. int64_t ggml_cycles_per_ms(void) {
  314. return CLOCKS_PER_SEC/1000;
  315. }
  316. #ifdef GGML_PERF
  317. #define ggml_perf_time_ms() ggml_time_ms()
  318. #define ggml_perf_time_us() ggml_time_us()
  319. #define ggml_perf_cycles() ggml_cycles()
  320. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  321. #else
  322. #define ggml_perf_time_ms() 0
  323. #define ggml_perf_time_us() 0
  324. #define ggml_perf_cycles() 0
  325. #define ggml_perf_cycles_per_ms() 0
  326. #endif
  327. //
  328. // cache line
  329. //
  330. #if defined(__cpp_lib_hardware_interference_size)
  331. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  332. #else
  333. #if defined(__POWER9_VECTOR__)
  334. #define CACHE_LINE_SIZE 128
  335. #else
  336. #define CACHE_LINE_SIZE 64
  337. #endif
  338. #endif
  339. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  340. //
  341. // quantization
  342. //
  343. #define QK 32
  344. // AVX routines provided by GH user Const-me
  345. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  346. #if __AVX2__ || __AVX512F__
  347. // Unpack 32 4-bit fields into 32 bytes
  348. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  349. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  350. {
  351. // Load 16 bytes from memory
  352. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  353. // Expand bytes into uint16_t values
  354. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  355. // Unpack values into individual bytes
  356. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  357. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  358. __m256i low = _mm256_and_si256( lowMask, bytes );
  359. high = _mm256_slli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. return bytes;
  362. }
  363. static inline __m128i packNibbles( __m256i bytes )
  364. {
  365. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  366. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  367. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  368. __m256i low = _mm256_and_si256( lowByte, bytes );
  369. high = _mm256_srli_epi16( high, 4 );
  370. bytes = _mm256_or_si256( low, high );
  371. // Compress uint16_t lanes into bytes
  372. __m128i r0 = _mm256_castsi256_si128( bytes );
  373. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  374. return _mm_packus_epi16( r0, r1 );
  375. }
  376. #elif __AVX__
  377. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  378. {
  379. // Load 8 bytes from memory
  380. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  381. // Expand bytes into uint16_t values
  382. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  383. // Unpack values into individual bytes
  384. const __m128i lowMask = _mm_set1_epi8( 0xF );
  385. __m128i high = _mm_andnot_si128( lowMask, bytes );
  386. __m128i low = _mm_and_si128( lowMask, bytes );
  387. high = _mm_slli_epi16( high, 4 );
  388. bytes = _mm_or_si128( low, high );
  389. return bytes;
  390. }
  391. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  392. {
  393. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  394. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  395. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  396. __m128i low = _mm_and_si128( lowByte, bytes1 );
  397. high = _mm_srli_epi16( high, 4 );
  398. bytes1 = _mm_or_si128( low, high );
  399. high = _mm_andnot_si128( lowByte, bytes2 );
  400. low = _mm_and_si128( lowByte, bytes2 );
  401. high = _mm_srli_epi16( high, 4 );
  402. bytes2 = _mm_or_si128( low, high );
  403. return _mm_packus_epi16( bytes1, bytes2);
  404. }
  405. #endif
  406. // method 5
  407. // blocks of QK elements
  408. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  409. typedef struct {
  410. float d; // delta
  411. uint8_t qs[QK / 2]; // nibbles / quants
  412. } block_q4_0;
  413. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  414. // method 4
  415. // blocks of QK elements
  416. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  417. typedef struct {
  418. float d;
  419. float m;
  420. uint8_t qs[QK / 2]; // nibbles / quants
  421. } block_q4_1;
  422. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  423. // reference implementation for deterministic creation of model files
  424. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  425. assert(k % QK == 0);
  426. const int nb = k / QK;
  427. uint8_t pp[QK/2];
  428. for (int i = 0; i < nb; i++) {
  429. float amax = 0.0f; // absolute max
  430. for (int l = 0; l < QK; l++) {
  431. const float v = x[i*QK + l];
  432. amax = MAX(amax, fabsf(v));
  433. }
  434. const float d = amax / ((1 << 3) - 1);
  435. const float id = d ? 1.0f/d : 0.0f;
  436. y[i].d = d;
  437. for (int l = 0; l < QK; l += 2) {
  438. const float v0 = x[i*QK + l + 0]*id;
  439. const float v1 = x[i*QK + l + 1]*id;
  440. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  441. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  442. assert(vi0 < 16);
  443. assert(vi1 < 16);
  444. pp[l/2] = vi0 | (vi1 << 4);
  445. }
  446. memcpy(y[i].qs, pp, sizeof(pp));
  447. }
  448. }
  449. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  450. assert(k % QK == 0);
  451. const int nb = k / QK;
  452. block_q4_0 * restrict y = vy;
  453. #if defined(__POWER9_VECTOR__)
  454. const vector float v85 = vec_splats(8.5f);
  455. for (int i = 0; i < nb; i++) {
  456. float amax = 0.0f; // absolute max
  457. vector float srcv [8];
  458. vector float asrcv[8];
  459. vector float amaxv[8];
  460. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  461. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  462. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  463. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  464. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  465. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  466. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  467. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  468. amax = MAX(
  469. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  470. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  471. const float d = amax / ((1 << 3) - 1);
  472. const float id = d ? 1.0/d : 0.0;
  473. y[i].d = d;
  474. const vector float vid = vec_splats(id);
  475. uint8_t * restrict pb = y[i].qs;
  476. for (int l = 0; l < 8; l++) {
  477. const vector float vf = vec_madd(srcv[l], vid, v85);
  478. const vector signed int vi = vec_signed(vf);
  479. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  480. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  481. }
  482. }
  483. #elif __ARM_NEON
  484. for (int i = 0; i < nb; i++) {
  485. float32x4_t srcv [8];
  486. float32x4_t asrcv[8];
  487. float32x4_t amaxv[8];
  488. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  489. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  490. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  491. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  492. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  493. const float amax = vmaxvq_f32(amaxv[0]);
  494. const float d = amax / ((1 << 3) - 1);
  495. const float id = d ? 1.0f/d : 0.0f;
  496. y[i].d = d;
  497. for (int l = 0; l < 8; l++) {
  498. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  499. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  500. const int32x4_t vi = vcvtq_s32_f32(vf);
  501. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  502. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  503. }
  504. }
  505. #elif defined(__AVX2__)
  506. for (int i = 0; i < nb; i++) {
  507. // Load elements into 4 AVX vectors
  508. __m256 v0 = _mm256_loadu_ps( x );
  509. __m256 v1 = _mm256_loadu_ps( x + 8 );
  510. __m256 v2 = _mm256_loadu_ps( x + 16 );
  511. __m256 v3 = _mm256_loadu_ps( x + 24 );
  512. x += 32;
  513. // Compute max(abs(e)) for the block
  514. const __m256 signBit = _mm256_set1_ps( -0.0f );
  515. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  516. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  517. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  518. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  519. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  520. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  521. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  522. const float maxScalar = _mm_cvtss_f32( max4 );
  523. // Quantize these floats
  524. const float d = maxScalar / 7.0f;
  525. y[i].d = d;
  526. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  527. const __m256 mul = _mm256_set1_ps( id );
  528. // Apply the multiplier
  529. v0 = _mm256_mul_ps( v0, mul );
  530. v1 = _mm256_mul_ps( v1, mul );
  531. v2 = _mm256_mul_ps( v2, mul );
  532. v3 = _mm256_mul_ps( v3, mul );
  533. // Round to nearest integer
  534. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  535. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  536. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  537. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  538. // Convert floats to integers
  539. __m256i i0 = _mm256_cvtps_epi32( v0 );
  540. __m256i i1 = _mm256_cvtps_epi32( v1 );
  541. __m256i i2 = _mm256_cvtps_epi32( v2 );
  542. __m256i i3 = _mm256_cvtps_epi32( v3 );
  543. // Convert int32 to int16
  544. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  545. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  546. // Convert int16 to int8
  547. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  548. // We got our precious signed bytes, but the order is now wrong
  549. // These AVX2 pack instructions process 16-byte pieces independently
  550. // The following instruction is fixing the order
  551. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  552. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  553. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  554. const __m256i off = _mm256_set1_epi8( 8 );
  555. i0 = _mm256_add_epi8( i0, off );
  556. // Compress the vector into 4 bit/value, and store
  557. __m128i res = packNibbles( i0 );
  558. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  559. }
  560. #elif defined(__AVX__)
  561. for (int i = 0; i < nb; i++) {
  562. // Load elements into 4 AVX vectors
  563. __m256 v0 = _mm256_loadu_ps( x );
  564. __m256 v1 = _mm256_loadu_ps( x + 8 );
  565. __m256 v2 = _mm256_loadu_ps( x + 16 );
  566. __m256 v3 = _mm256_loadu_ps( x + 24 );
  567. x += 32;
  568. // Compute max(abs(e)) for the block
  569. const __m256 signBit = _mm256_set1_ps( -0.0f );
  570. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  571. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  572. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  573. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  574. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  575. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  576. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  577. const float maxScalar = _mm_cvtss_f32( max4 );
  578. // Quantize these floats
  579. const float d = maxScalar / 7.0f;
  580. y[i].d = d;
  581. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  582. const __m256 mul = _mm256_set1_ps( id );
  583. // Apply the multiplier
  584. v0 = _mm256_mul_ps( v0, mul );
  585. v1 = _mm256_mul_ps( v1, mul );
  586. v2 = _mm256_mul_ps( v2, mul );
  587. v3 = _mm256_mul_ps( v3, mul );
  588. // Round to nearest integer
  589. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  590. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  591. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  592. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  593. // Convert floats to integers
  594. __m256i i0 = _mm256_cvtps_epi32( v0 );
  595. __m256i i1 = _mm256_cvtps_epi32( v1 );
  596. __m256i i2 = _mm256_cvtps_epi32( v2 );
  597. __m256i i3 = _mm256_cvtps_epi32( v3 );
  598. // Since we don't have in AVX some necessary functions,
  599. // we split the registers in half and call AVX2 analogs from SSE
  600. __m128i ni0 = _mm256_castsi256_si128( i0 );
  601. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  602. __m128i ni2 = _mm256_castsi256_si128( i1 );
  603. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  604. __m128i ni4 = _mm256_castsi256_si128( i2 );
  605. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  606. __m128i ni6 = _mm256_castsi256_si128( i3 );
  607. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  608. // Convert int32 to int16
  609. ni0 = _mm_packs_epi32( ni0, ni1 );
  610. ni2 = _mm_packs_epi32( ni2, ni3 );
  611. ni4 = _mm_packs_epi32( ni4, ni5 );
  612. ni6 = _mm_packs_epi32( ni6, ni7 );
  613. // Convert int16 to int8
  614. ni0 = _mm_packs_epi16( ni0, ni2 );
  615. ni4 = _mm_packs_epi16( ni4, ni6 );
  616. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  617. const __m128i off = _mm_set1_epi8( 8);
  618. ni0 = _mm_add_epi8( ni0, off );
  619. ni4 = _mm_add_epi8( ni4, off );
  620. // Compress the vector into 4 bit/value, and store
  621. __m128i res = packNibbles( ni0, ni4 );
  622. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  623. }
  624. #elif defined(__wasm_simd128__)
  625. for (int i = 0; i < nb; i++) {
  626. float amax = 0.0f; // absolute max
  627. v128_t srcv [8];
  628. v128_t asrcv[8];
  629. v128_t amaxv[8];
  630. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  631. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  632. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  633. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  634. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  635. amax = MAX(
  636. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  637. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  638. const float d = amax / ((1 << 3) - 1);
  639. const float id = d ? 1.0/d : 0.0;
  640. y[i].d = d;
  641. for (int l = 0; l < 8; l++) {
  642. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  643. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  644. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  645. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  646. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  647. }
  648. }
  649. #else
  650. // scalar
  651. quantize_row_q4_0_reference(x, y, k);
  652. #endif
  653. }
  654. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  655. assert(k % QK == 0);
  656. const int nb = k / QK;
  657. block_q4_1 * restrict y = vy;
  658. uint8_t pp[QK/2];
  659. for (int i = 0; i < nb; i++) {
  660. float min = FLT_MAX;
  661. float max = -FLT_MAX;
  662. for (int l = 0; l < QK; l++) {
  663. const float v = x[i*QK + l];
  664. if (v < min) min = v;
  665. if (v > max) max = v;
  666. }
  667. const float d = (max - min) / ((1 << 4) - 1);
  668. const float id = d ? 1.0f/d : 0.0f;
  669. y[i].d = d;
  670. y[i].m = min;
  671. for (int l = 0; l < QK; l += 2) {
  672. const float v0 = (x[i*QK + l + 0] - min)*id;
  673. const float v1 = (x[i*QK + l + 1] - min)*id;
  674. const uint8_t vi0 = roundf(v0);
  675. const uint8_t vi1 = roundf(v1);
  676. assert(vi0 < 16);
  677. assert(vi1 < 16);
  678. pp[l/2] = vi0 | (vi1 << 4);
  679. }
  680. memcpy(y[i].qs, pp, sizeof(pp));
  681. }
  682. }
  683. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  684. assert(k % QK == 0);
  685. const int nb = k / QK;
  686. block_q4_1 * restrict y = vy;
  687. #if defined(__AVX2__)
  688. for (int i = 0; i < nb; i++) {
  689. // Load elements into 4 AVX vectors
  690. __m256 v0 = _mm256_loadu_ps( x );
  691. __m256 v1 = _mm256_loadu_ps( x + 8 );
  692. __m256 v2 = _mm256_loadu_ps( x + 16 );
  693. __m256 v3 = _mm256_loadu_ps( x + 24 );
  694. x += 32;
  695. // Compute max for the block
  696. __m256 vmax;
  697. vmax = _mm256_max_ps( v0, v1 );
  698. vmax = _mm256_max_ps( vmax, v2 );
  699. vmax = _mm256_max_ps( vmax, v3 );
  700. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  701. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  702. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  703. const float maxScalar = _mm_cvtss_f32( max4 );
  704. // Compute min for the block
  705. __m256 vmin;
  706. vmin = _mm256_min_ps( v0, v1 );
  707. vmin = _mm256_min_ps( vmin, v2 );
  708. vmin = _mm256_min_ps( vmin, v3 );
  709. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  710. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  711. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  712. const float minScalar = _mm_cvtss_f32( min4 );
  713. // Quantize these floats
  714. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  715. const float id = d ? 1.0f/d : 0.0f;
  716. y[i].m = minScalar;
  717. y[i].d = d;
  718. // x = (x-min)*id
  719. const __m256 mul = _mm256_set1_ps( id );
  720. const __m256 off = _mm256_set1_ps( minScalar );
  721. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  722. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  723. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  724. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  725. // Round to nearest integer
  726. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  727. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  728. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  729. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  730. // Convert floats to integers
  731. __m256i i0 = _mm256_cvtps_epi32( v0 );
  732. __m256i i1 = _mm256_cvtps_epi32( v1 );
  733. __m256i i2 = _mm256_cvtps_epi32( v2 );
  734. __m256i i3 = _mm256_cvtps_epi32( v3 );
  735. // Convert int32 to int16
  736. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  737. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  738. // Convert int16 to int8
  739. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  740. // We got our precious signed bytes, but the order is now wrong
  741. // These AVX2 pack instructions process 16-byte pieces independently
  742. // The following instruction is fixing the order
  743. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  744. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  745. // Compress the vector into 4 bit/value, and store
  746. __m128i res = packNibbles( i0 );
  747. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  748. }
  749. #elif __ARM_NEON
  750. for (int i = 0; i < nb; i++) {
  751. float32x4_t srcv[8];
  752. float32x4_t minv[8];
  753. float32x4_t maxv[8];
  754. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  755. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  756. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  757. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  758. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  759. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  760. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  761. const float min = vminvq_f32(minv[0]);
  762. const float max = vmaxvq_f32(maxv[0]);
  763. const float d = (max - min) / ((1 << 4) - 1);
  764. const float id = d ? 1.0f/d : 0.0f;
  765. y[i].d = d;
  766. y[i].m = min;
  767. const float32x4_t minv0 = vdupq_n_f32(min);
  768. for (int l = 0; l < 8; l++) {
  769. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  770. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  771. const int32x4_t vi = vcvtq_s32_f32(vf);
  772. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  773. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  774. }
  775. }
  776. #else
  777. // scalar
  778. quantize_row_q4_1_reference(x, vy, k);
  779. #endif
  780. }
  781. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  782. assert(k % QK == 0);
  783. const int nb = k / QK;
  784. const block_q4_0 * restrict x = vx;
  785. #if defined(__AVX2__)
  786. for (int i = 0; i < nb; i++) {
  787. // scale factor
  788. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  789. const uint8_t * restrict pp = x[i].qs;
  790. for (int l = 0; l < QK; l += 32) {
  791. // Load 32x4-bit integers into 32x8-bit integers
  792. __m256i vx8 = bytesFromNibbles(pp+l/2);
  793. // Subtract 8 from the integers
  794. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  795. // Convert to 16-bit int
  796. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  797. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  798. // Convert to 32-bit int -> float 32
  799. const __m256 vf[4] = {
  800. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  801. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  802. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  803. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  804. };
  805. // Scale and store
  806. for (int j = 0; j < 4; j++) {
  807. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  808. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  809. }
  810. }
  811. }
  812. #elif defined(__ARM_NEON)
  813. for (int i = 0; i < nb; i++) {
  814. const float32x4_t vd = vdupq_n_f32(x[i].d);
  815. const uint8_t * restrict pp = x[i].qs;
  816. for (int l = 0; l < QK; l += 16) {
  817. // Load 16x4-bit integers into 8x8-bit integers
  818. const uint8x8_t v8 = vld1_u8(pp + l/2);
  819. // Expand 4-bit qs to 8-bit bytes
  820. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  821. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  822. // Convert to signed 8-bit integers
  823. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  824. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  825. // Subtract 8 from each byte
  826. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  827. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  828. // Interleave and combine
  829. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  830. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  831. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  832. // convert to 2x int16x8_t
  833. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  834. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  835. // convert to 4x float32x4_t
  836. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  837. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  838. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  839. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  840. // Multiply by d
  841. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  842. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  843. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  844. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  845. // Store
  846. vst1q_f32(y + i*QK + l + 0, r0);
  847. vst1q_f32(y + i*QK + l + 4, r1);
  848. vst1q_f32(y + i*QK + l + 8, r2);
  849. vst1q_f32(y + i*QK + l + 12, r3);
  850. }
  851. }
  852. #else
  853. // scalar
  854. for (int i = 0; i < nb; i++) {
  855. const float d = x[i].d;
  856. const uint8_t * restrict pp = x[i].qs;
  857. for (int l = 0; l < QK; l += 2) {
  858. const uint8_t vi = pp[l/2];
  859. const int8_t vi0 = vi & 0xf;
  860. const int8_t vi1 = vi >> 4;
  861. const float v0 = (vi0 - 8)*d;
  862. const float v1 = (vi1 - 8)*d;
  863. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  864. y[i*QK + l + 0] = v0;
  865. y[i*QK + l + 1] = v1;
  866. assert(!isnan(y[i*QK + l + 0]));
  867. assert(!isnan(y[i*QK + l + 1]));
  868. }
  869. }
  870. #endif
  871. }
  872. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  873. assert(k % QK == 0);
  874. const int nb = k / QK;
  875. const block_q4_1 * restrict x = vx;
  876. #if defined(__AVX2__)
  877. for (int i = 0; i < nb; i++) {
  878. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  879. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  880. const uint8_t * restrict pp = x[i].qs;
  881. for (int l = 0; l < QK; l += 32) {
  882. // Load 32x4-bit integers into 32x8-bit integers
  883. __m256i vx8 = bytesFromNibbles(pp+l/2);
  884. // Convert to 16-bit int
  885. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  886. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  887. // Convert to 32-bit int -> float 32
  888. const __m256 vf[4] = {
  889. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  890. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  891. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  892. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  893. };
  894. // Scale, add m and store
  895. for (int j = 0; j < 4; j++) {
  896. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  897. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  898. }
  899. }
  900. }
  901. #elif defined(__ARM_NEON)
  902. for (int i = 0; i < nb; i++) {
  903. const float32x4_t vd = vdupq_n_f32(x[i].d);
  904. const float32x4_t vm = vdupq_n_f32(x[i].m);
  905. const uint8_t * restrict pp = x[i].qs;
  906. for (int l = 0; l < QK; l += 16) {
  907. // Load 16x4-bit integers into 8x8-bit integers
  908. const uint8x8_t v8 = vld1_u8(pp + l/2);
  909. // Expand 4-bit qs to 8-bit bytes
  910. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  911. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  912. // Interleave and combine
  913. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  914. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  915. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  916. // convert to 2x uint16x8_t
  917. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  918. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  919. // convert to 4x float32x4_t
  920. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  921. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  922. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  923. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  924. // multiply by d and add m
  925. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  926. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  927. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  928. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  929. // Store
  930. vst1q_f32(y + i*QK + l + 0, r0);
  931. vst1q_f32(y + i*QK + l + 4, r1);
  932. vst1q_f32(y + i*QK + l + 8, r2);
  933. vst1q_f32(y + i*QK + l + 12, r3);
  934. }
  935. }
  936. #else
  937. for (int i = 0; i < nb; i++) {
  938. const float d = x[i].d;
  939. const float m = x[i].m;
  940. const uint8_t * restrict pp = x[i].qs;
  941. for (int l = 0; l < QK; l += 2) {
  942. const uint8_t vi = pp[l/2];
  943. const int8_t vi0 = vi & 0xf;
  944. const int8_t vi1 = vi >> 4;
  945. const float v0 = vi0*d + m;
  946. const float v1 = vi1*d + m;
  947. y[i*QK + l + 0] = v0;
  948. y[i*QK + l + 1] = v1;
  949. assert(!isnan(y[i*QK + l + 0]));
  950. assert(!isnan(y[i*QK + l + 1]));
  951. }
  952. }
  953. #endif
  954. }
  955. //
  956. // simd mappings
  957. //
  958. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  959. // we then implement the fundamental computation operations below using only these macros
  960. // adding support for new architectures requires to define the corresponding SIMD macros
  961. //
  962. // GGML_F32_STEP / GGML_F16_STEP
  963. // number of elements to process in a single step
  964. //
  965. // GGML_F32_EPR / GGML_F16_EPR
  966. // number of elements to fit in a single register
  967. //
  968. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  969. #define GGML_SIMD
  970. // F32 NEON
  971. #define GGML_F32_STEP 16
  972. #define GGML_F32_EPR 4
  973. #define GGML_F32x4 float32x4_t
  974. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  975. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  976. #define GGML_F32x4_LOAD vld1q_f32
  977. #define GGML_F32x4_STORE vst1q_f32
  978. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  979. #define GGML_F32x4_ADD vaddq_f32
  980. #define GGML_F32x4_MUL vmulq_f32
  981. #if defined(__ARM_FEATURE_QRDMX)
  982. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  983. #else
  984. #define GGML_F32x4_REDUCE_ONE(x) \
  985. (vgetq_lane_f32(x, 0) + \
  986. vgetq_lane_f32(x, 1) + \
  987. vgetq_lane_f32(x, 2) + \
  988. vgetq_lane_f32(x, 3))
  989. #endif
  990. #define GGML_F32x4_REDUCE(res, x) \
  991. { \
  992. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  993. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  994. } \
  995. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  996. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  997. } \
  998. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  999. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1000. } \
  1001. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1002. }
  1003. #define GGML_F32_VEC GGML_F32x4
  1004. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1005. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1006. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1007. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1008. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1009. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1010. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1011. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1012. // F16 NEON
  1013. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1014. #define GGML_F16_STEP 32
  1015. #define GGML_F16_EPR 8
  1016. #define GGML_F16x8 float16x8_t
  1017. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1018. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1019. #define GGML_F16x8_LOAD vld1q_f16
  1020. #define GGML_F16x8_STORE vst1q_f16
  1021. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1022. #define GGML_F16x8_ADD vaddq_f16
  1023. #define GGML_F16x8_MUL vmulq_f16
  1024. #define GGML_F16x8_REDUCE(res, x) \
  1025. { \
  1026. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1027. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1028. } \
  1029. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1030. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1031. } \
  1032. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1033. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1034. } \
  1035. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1036. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1037. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1038. }
  1039. #define GGML_F16_VEC GGML_F16x8
  1040. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1041. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1042. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1043. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1044. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1045. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1046. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1047. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1048. #else
  1049. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1050. // and take advantage of the vcvt_ functions to convert to/from FP16
  1051. #define GGML_F16_STEP 16
  1052. #define GGML_F16_EPR 4
  1053. #define GGML_F32Cx4 float32x4_t
  1054. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1055. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1056. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1057. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1058. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1059. #define GGML_F32Cx4_ADD vaddq_f32
  1060. #define GGML_F32Cx4_MUL vmulq_f32
  1061. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1062. #define GGML_F16_VEC GGML_F32Cx4
  1063. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1064. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1065. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1066. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1067. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1068. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1069. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1070. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1071. #endif
  1072. #elif defined(__AVX__)
  1073. #define GGML_SIMD
  1074. // F32 AVX
  1075. #define GGML_F32_STEP 32
  1076. #define GGML_F32_EPR 8
  1077. #define GGML_F32x8 __m256
  1078. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1079. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1080. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1081. #define GGML_F32x8_STORE _mm256_storeu_ps
  1082. #if defined(__FMA__)
  1083. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1084. #else
  1085. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1086. #endif
  1087. #define GGML_F32x8_ADD _mm256_add_ps
  1088. #define GGML_F32x8_MUL _mm256_mul_ps
  1089. #define GGML_F32x8_REDUCE(res, x) \
  1090. { \
  1091. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1092. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1093. } \
  1094. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1095. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1096. } \
  1097. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1098. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1099. } \
  1100. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1101. _mm256_extractf128_ps(x[0], 1)); \
  1102. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1103. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1104. }
  1105. // TODO: is this optimal ?
  1106. #define GGML_F32_VEC GGML_F32x8
  1107. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1108. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1109. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1110. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1111. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1112. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1113. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1114. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1115. // F16 AVX
  1116. #define GGML_F16_STEP 32
  1117. #define GGML_F16_EPR 8
  1118. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1119. #define GGML_F32Cx8 __m256
  1120. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1121. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1122. #if defined(__F16C__)
  1123. // the _mm256_cvt intrinsics require F16C
  1124. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1125. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1126. #else
  1127. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1128. float tmp[8];
  1129. for (int i = 0; i < 8; i++)
  1130. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1131. return _mm256_loadu_ps(tmp);
  1132. }
  1133. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1134. float arr[8];
  1135. _mm256_storeu_ps(arr, y);
  1136. for (int i = 0; i < 8; i++)
  1137. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1138. }
  1139. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1140. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1141. #endif
  1142. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1143. #define GGML_F32Cx8_ADD _mm256_add_ps
  1144. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1145. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1146. #define GGML_F16_VEC GGML_F32Cx8
  1147. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1148. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1149. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1150. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1151. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1152. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1153. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1154. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1155. #elif defined(__POWER9_VECTOR__)
  1156. #define GGML_SIMD
  1157. // F32 POWER9
  1158. #define GGML_F32_STEP 32
  1159. #define GGML_F32_EPR 4
  1160. #define GGML_F32x4 vector float
  1161. #define GGML_F32x4_ZERO 0.0f
  1162. #define GGML_F32x4_SET1 vec_splats
  1163. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1164. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1165. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1166. #define GGML_F32x4_ADD vec_add
  1167. #define GGML_F32x4_MUL vec_mul
  1168. #define GGML_F32x4_REDUCE(res, x) \
  1169. { \
  1170. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1171. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1172. } \
  1173. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1174. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1175. } \
  1176. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1177. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1178. } \
  1179. res = vec_extract(x[0], 0) + \
  1180. vec_extract(x[0], 1) + \
  1181. vec_extract(x[0], 2) + \
  1182. vec_extract(x[0], 3); \
  1183. }
  1184. #define GGML_F32_VEC GGML_F32x4
  1185. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1186. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1187. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1188. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1189. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1190. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1191. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1192. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1193. // F16 POWER9
  1194. #define GGML_F16_STEP GGML_F32_STEP
  1195. #define GGML_F16_EPR GGML_F32_EPR
  1196. #define GGML_F16_VEC GGML_F32x4
  1197. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1198. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1199. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1200. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1201. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1202. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1203. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1204. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1205. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1206. #define GGML_F16_VEC_STORE(p, r, i) \
  1207. if (i & 0x1) \
  1208. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1209. r[i - GGML_ENDIAN_BYTE(0)]), \
  1210. 0, p - GGML_F16_EPR)
  1211. #elif defined(__wasm_simd128__)
  1212. #define GGML_SIMD
  1213. // F32 WASM
  1214. #define GGML_F32_STEP 16
  1215. #define GGML_F32_EPR 4
  1216. #define GGML_F32x4 v128_t
  1217. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1218. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1219. #define GGML_F32x4_LOAD wasm_v128_load
  1220. #define GGML_F32x4_STORE wasm_v128_store
  1221. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1222. #define GGML_F32x4_ADD wasm_f32x4_add
  1223. #define GGML_F32x4_MUL wasm_f32x4_mul
  1224. #define GGML_F32x4_REDUCE(res, x) \
  1225. { \
  1226. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1227. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1228. } \
  1229. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1230. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1231. } \
  1232. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1233. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1234. } \
  1235. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1236. wasm_f32x4_extract_lane(x[0], 1) + \
  1237. wasm_f32x4_extract_lane(x[0], 2) + \
  1238. wasm_f32x4_extract_lane(x[0], 3); \
  1239. }
  1240. #define GGML_F32_VEC GGML_F32x4
  1241. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1242. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1243. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1244. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1245. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1246. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1247. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1248. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1249. // F16 WASM
  1250. #define GGML_F16_STEP 16
  1251. #define GGML_F16_EPR 4
  1252. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1253. float tmp[4];
  1254. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1255. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1256. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1257. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1258. return wasm_v128_load(tmp);
  1259. }
  1260. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1261. float tmp[4];
  1262. wasm_v128_store(tmp, x);
  1263. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1264. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1265. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1266. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1267. }
  1268. #define GGML_F16x4 v128_t
  1269. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1270. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1271. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1272. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1273. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1274. #define GGML_F16x4_ADD wasm_f32x4_add
  1275. #define GGML_F16x4_MUL wasm_f32x4_mul
  1276. #define GGML_F16x4_REDUCE(res, x) \
  1277. { \
  1278. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1279. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1280. } \
  1281. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1282. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1283. } \
  1284. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1285. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1286. } \
  1287. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1288. wasm_f32x4_extract_lane(x[0], 1) + \
  1289. wasm_f32x4_extract_lane(x[0], 2) + \
  1290. wasm_f32x4_extract_lane(x[0], 3); \
  1291. }
  1292. #define GGML_F16_VEC GGML_F16x4
  1293. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1301. #elif defined(__SSE3__)
  1302. #define GGML_SIMD
  1303. // F32 SSE
  1304. #define GGML_F32_STEP 32
  1305. #define GGML_F32_EPR 4
  1306. #define GGML_F32x4 __m128
  1307. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1308. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1309. #define GGML_F32x4_LOAD _mm_loadu_ps
  1310. #define GGML_F32x4_STORE _mm_storeu_ps
  1311. #if defined(__FMA__)
  1312. // TODO: Does this work?
  1313. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1314. #else
  1315. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1316. #endif
  1317. #define GGML_F32x4_ADD _mm_add_ps
  1318. #define GGML_F32x4_MUL _mm_mul_ps
  1319. #define GGML_F32x4_REDUCE(res, x) \
  1320. { \
  1321. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1322. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1323. } \
  1324. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1325. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1326. } \
  1327. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1328. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1329. } \
  1330. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1331. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1332. }
  1333. // TODO: is this optimal ?
  1334. #define GGML_F32_VEC GGML_F32x4
  1335. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1336. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1337. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1338. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1339. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1340. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1341. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1342. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1343. // F16 SSE
  1344. #define GGML_F16_STEP 32
  1345. #define GGML_F16_EPR 4
  1346. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1347. float tmp[4];
  1348. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1349. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1350. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1351. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1352. return _mm_loadu_ps(tmp);
  1353. }
  1354. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1355. float arr[4];
  1356. _mm_storeu_ps(arr, y);
  1357. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1358. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1359. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1360. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1361. }
  1362. #define GGML_F32Cx4 __m128
  1363. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1364. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1365. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1366. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1367. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1368. #define GGML_F32Cx4_ADD _mm_add_ps
  1369. #define GGML_F32Cx4_MUL _mm_mul_ps
  1370. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1371. #define GGML_F16_VEC GGML_F32Cx4
  1372. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1373. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1374. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1375. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1376. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1377. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1378. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1379. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1380. #endif
  1381. // GGML_F32_ARR / GGML_F16_ARR
  1382. // number of registers to use per step
  1383. #ifdef GGML_SIMD
  1384. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1385. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1386. #endif
  1387. //
  1388. // fundamental operations
  1389. //
  1390. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1391. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1392. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1393. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1394. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1395. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1396. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1397. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1398. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1399. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1400. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1401. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1402. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1403. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1404. #ifdef GGML_SIMD
  1405. float sumf = 0.0f;
  1406. const int np = (n & ~(GGML_F32_STEP - 1));
  1407. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1408. GGML_F32_VEC ax[GGML_F32_ARR];
  1409. GGML_F32_VEC ay[GGML_F32_ARR];
  1410. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1411. for (int j = 0; j < GGML_F32_ARR; j++) {
  1412. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1413. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1414. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1415. }
  1416. }
  1417. // reduce sum0..sum3 to sum0
  1418. GGML_F32_VEC_REDUCE(sumf, sum);
  1419. // leftovers
  1420. for (int i = np; i < n; ++i) {
  1421. sumf += x[i]*y[i];
  1422. }
  1423. #else
  1424. // scalar
  1425. ggml_float sumf = 0.0;
  1426. for (int i = 0; i < n; ++i) {
  1427. sumf += (ggml_float)(x[i]*y[i]);
  1428. }
  1429. #endif
  1430. *s = sumf;
  1431. }
  1432. #if __AVX512F__ && QK == 32
  1433. static inline __m512 dot_q4_0_oneblock_avx512(
  1434. __m512 acc,
  1435. const block_q4_0 * restrict x,
  1436. const block_q4_0 * restrict y,
  1437. int i
  1438. ) {
  1439. // Compute combined scale for the block
  1440. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1441. __m256i bx = bytesFromNibbles( x[i].qs );
  1442. __m256i by = bytesFromNibbles( y[i].qs );
  1443. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1444. const __m256i off = _mm256_set1_epi8( 8 );
  1445. bx = _mm256_sub_epi8( bx, off );
  1446. by = _mm256_sub_epi8( by, off );
  1447. // Sign-extend 16 signed bytes into int16_t
  1448. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1449. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1450. // Compute products of int16_t integers, add pairwise
  1451. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1452. // Convert int32_t to float
  1453. __m512 p = _mm512_cvtepi32_ps( i64 );
  1454. // Apply the scale, and accumulate
  1455. return _mm512_fmadd_ps( d, p, acc );
  1456. }
  1457. #endif
  1458. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1459. ggml_float sumf = 0.0;
  1460. #if defined(GGML_SIMD)
  1461. const int np = (n & ~(GGML_F16_STEP - 1));
  1462. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1463. GGML_F16_VEC ax[GGML_F16_ARR];
  1464. GGML_F16_VEC ay[GGML_F16_ARR];
  1465. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1466. for (int j = 0; j < GGML_F16_ARR; j++) {
  1467. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1468. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1469. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1470. }
  1471. }
  1472. // reduce sum0..sum3 to sum0
  1473. GGML_F16_VEC_REDUCE(sumf, sum);
  1474. // leftovers
  1475. for (int i = np; i < n; ++i) {
  1476. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1477. }
  1478. #else
  1479. for (int i = 0; i < n; ++i) {
  1480. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1481. }
  1482. #endif
  1483. *s = sumf;
  1484. }
  1485. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1486. const int nb = n / QK;
  1487. assert(n % QK == 0);
  1488. assert(nb % 2 == 0);
  1489. const block_q4_0 * restrict x = vx;
  1490. const block_q4_0 * restrict y = vy;
  1491. float sumf = 0.0;
  1492. #if defined(__ARM_NEON)
  1493. float sum0 = 0.0f;
  1494. float sum1 = 0.0f;
  1495. for (int i = 0; i < nb; i += 2) {
  1496. const block_q4_0 * restrict x0 = &x[i + 0];
  1497. const block_q4_0 * restrict y0 = &y[i + 0];
  1498. const block_q4_0 * restrict x1 = &x[i + 1];
  1499. const block_q4_0 * restrict y1 = &y[i + 1];
  1500. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1501. const int8x16_t s8b = vdupq_n_s8(0x8);
  1502. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1503. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1504. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1505. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1506. // 4-bit -> 8-bit
  1507. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1508. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1509. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1510. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1511. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1512. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1513. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1514. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1515. // sub 8
  1516. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1517. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1518. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1519. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1520. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1521. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1522. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1523. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1524. #if defined(__ARM_FEATURE_DOTPROD)
  1525. // dot product into int16x8_t
  1526. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1527. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1528. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1529. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1530. // scalar
  1531. #if defined(__ARM_FEATURE_QRDMX)
  1532. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1533. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1534. #else
  1535. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1536. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1537. #endif
  1538. #else
  1539. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1540. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1541. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1542. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1543. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1544. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1545. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1546. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1547. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1548. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1549. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1550. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1551. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1552. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1553. // scalar
  1554. #if defined(__ARM_FEATURE_QRDMX)
  1555. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1556. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1557. #else
  1558. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1559. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1560. #endif
  1561. #endif
  1562. }
  1563. sumf = sum0 + sum1;
  1564. #elif defined(__AVX512F__)
  1565. // Initialize accumulator with zeros
  1566. __m512 acc0 = _mm512_setzero_ps();
  1567. __m512 acc1 = _mm512_setzero_ps();
  1568. const int superblock_size = 8;
  1569. const int superblock_count = nb / superblock_size;
  1570. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1571. int i = superblock_ix * superblock_size;
  1572. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1573. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1574. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1575. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1576. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1577. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1578. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1579. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1580. }
  1581. // Remainders
  1582. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1583. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1584. }
  1585. // Horizontal sum of all lanes of the accumulator
  1586. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1587. #elif defined(__AVX2__)
  1588. // Initialize accumulator with zeros
  1589. __m256 acc = _mm256_setzero_ps();
  1590. /* Prepare the constants we will need during execution */
  1591. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1592. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1593. #define UNROLL_COUNT 8
  1594. // make sure we only unroll multiples of the block count
  1595. assert(nb % UNROLL_COUNT == 0);
  1596. // Main loop
  1597. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1598. // This loop will be unrolled by the compiler
  1599. for (int u=0;u<UNROLL_COUNT;u++) {
  1600. /* Compute combined scale for the block */
  1601. const __m256 scale = _mm256_mul_ps(
  1602. _mm256_broadcast_ss( &x[i+u].d ),
  1603. _mm256_broadcast_ss( &y[i+u].d ) );
  1604. /* get input from x
  1605. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1606. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1607. /* Load 16 bytes from memory */
  1608. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1609. /* Expand bytes into uint16_t values */
  1610. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1611. /* Unpack values into individual bytes */
  1612. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1613. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1614. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1615. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1616. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1617. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1618. /* get input from y
  1619. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1620. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1621. /* Load 16 bytes from memory */
  1622. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1623. /* Expand bytes into uint16_t values */
  1624. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1625. /* Unpack values into individual bytes */
  1626. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1627. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1628. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1629. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1630. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1631. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1632. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1633. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1634. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1635. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1636. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1637. /* Convert to vectore of 8 int32_t to 8 floats */
  1638. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1639. /* Multiply q with scale and accumulate */
  1640. acc = _mm256_fmadd_ps( scale, q, acc );
  1641. }
  1642. }
  1643. // Return horizontal sum of the acc vector
  1644. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1645. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1646. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1647. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1648. sumf = _mm_cvtss_f32( res );
  1649. #elif defined(__AVX__)
  1650. // Initialize accumulator with zeros
  1651. __m256 acc = _mm256_setzero_ps();
  1652. // Main loop
  1653. for (int i = 0; i < nb; ++i) {
  1654. // Compute combined scale for the block
  1655. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1656. __m128i i32[2];
  1657. for (int j = 0; j < 2; ++j) {
  1658. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1659. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1660. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1661. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1662. const __m128i off = _mm_set1_epi8( 8 );
  1663. bx = _mm_sub_epi8( bx, off );
  1664. by = _mm_sub_epi8( by, off );
  1665. // Get absolute values of x vectors
  1666. const __m128i ax = _mm_sign_epi8(bx, bx);
  1667. // Sign the values of the y vectors
  1668. const __m128i sy = _mm_sign_epi8(by, bx);
  1669. // Perform multiplication and create 16-bit values
  1670. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1671. const __m128i ones = _mm_set1_epi16(1);
  1672. i32[j] = _mm_madd_epi16(ones, dot);
  1673. }
  1674. // Convert int32_t to float
  1675. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1676. // Apply the scale, and accumulate
  1677. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1678. }
  1679. // Return horizontal sum of the acc vector
  1680. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1681. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1682. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1683. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1684. sumf = _mm_cvtss_f32( res );
  1685. #elif defined(__wasm_simd128__)
  1686. // wasm simd
  1687. float sum0 = 0.0f;
  1688. float sum1 = 0.0f;
  1689. for (int i = 0; i < nb; i += 2) {
  1690. const block_q4_0 * restrict x0 = &px[i + 0];
  1691. const block_q4_0 * restrict y0 = &py[i + 0];
  1692. const block_q4_0 * restrict x1 = &px[i + 1];
  1693. const block_q4_0 * restrict y1 = &py[i + 1];
  1694. const v128_t m4b = wasm_u8x16_splat(0xf);
  1695. const v128_t s8b = wasm_i8x16_splat(0x8);
  1696. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1697. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1698. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1699. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1700. // 4-bit -> 8-bit
  1701. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1702. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1703. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1704. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1705. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1706. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1707. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1708. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1709. // sub 8
  1710. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1711. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1712. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1713. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1714. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1715. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1716. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1717. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1718. // dot product into int16x8_t
  1719. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1720. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1721. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1722. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1723. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1724. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1725. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1726. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1727. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1728. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1729. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1730. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1731. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1732. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1733. sum0 += x0->d * y0->d * (
  1734. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1735. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1736. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1737. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1738. sum1 += x1->d * y1->d * (
  1739. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1740. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1741. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1742. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1743. }
  1744. sumf = sum0 + sum1;
  1745. #else
  1746. // scalar
  1747. for (int i = 0; i < nb; i++) {
  1748. const float d0 = x[i].d;
  1749. const float d1 = y[i].d;
  1750. const uint8_t * restrict p0 = x[i].qs;
  1751. const uint8_t * restrict p1 = y[i].qs;
  1752. for (int j = 0; j < QK/2; j++) {
  1753. const uint8_t v0 = p0[j];
  1754. const uint8_t v1 = p1[j];
  1755. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1756. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1757. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1758. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1759. sumf += f0*f2 + f1*f3;
  1760. }
  1761. }
  1762. #endif
  1763. *s = sumf;
  1764. }
  1765. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1766. const int nb = n / QK;
  1767. const block_q4_1 * restrict x = vx;
  1768. const block_q4_1 * restrict y = vy;
  1769. float sumf = 0.0;
  1770. #if defined(__AVX2__)
  1771. // Initialize accumulator with zeros
  1772. __m256 acc = _mm256_setzero_ps();
  1773. // Accumulator for constant offsets
  1774. float acc_offset = 0.0f;
  1775. // Main loop
  1776. for (int i = 0; i < nb; ++i) {
  1777. const float * d0 = &x[i].d;
  1778. const float * d1 = &y[i].d;
  1779. const float * m0 = &x[i].m;
  1780. const float * m1 = &y[i].m;
  1781. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1782. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1783. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1784. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1785. // Compute combined scale for the block
  1786. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1787. // Compute cross scales for the block
  1788. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1789. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1790. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1791. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1792. __m256i bx = bytesFromNibbles( x[i].qs );
  1793. __m256i by = bytesFromNibbles( y[i].qs );
  1794. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1795. // Sign-extend first 16 signed bytes into int16_t
  1796. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1797. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1798. // Compute products of int16_t integers, add pairwise
  1799. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1800. // Sign-extend last 16 signed bytes into int16_t vectors
  1801. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1802. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1803. // Accumulate products of int16_t integers
  1804. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1805. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1806. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1807. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1808. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1809. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1810. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1811. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1812. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1813. // Convert int32_t to float
  1814. __m256 p = _mm256_cvtepi32_ps( i32 );
  1815. // Apply the scale, and accumulate
  1816. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1817. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1818. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1819. // acc_offset += m0*m1 (for each entry in the block)
  1820. acc_offset += (*m0)*(*m1);
  1821. }
  1822. // Return horizontal sum of the acc vector
  1823. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1824. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1825. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1826. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1827. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1828. #elif defined(__ARM_NEON)
  1829. float sum00 = 0.0f;
  1830. float sum01 = 0.0f;
  1831. float sum10 = 0.0f;
  1832. float sum11 = 0.0f;
  1833. for (int i = 0; i < nb; ++i) {
  1834. const block_q4_1 * restrict x0 = &x[i + 0];
  1835. const block_q4_1 * restrict y0 = &y[i + 0];
  1836. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1837. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1838. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1839. // and with 0xf
  1840. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1841. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1842. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1843. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1844. // dot product into uint16x8_t
  1845. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1846. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1847. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1848. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1849. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1850. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1851. sum00 += x0->m*y0->m;
  1852. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1853. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1854. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1855. }
  1856. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1857. #else
  1858. // scalar
  1859. for (int i = 0; i < nb; i++) {
  1860. const float d0 = x[i].d;
  1861. const float d1 = y[i].d;
  1862. const float m0 = x[i].m;
  1863. const float m1 = y[i].m;
  1864. const uint8_t * restrict p0 = x[i].qs;
  1865. const uint8_t * restrict p1 = y[i].qs;
  1866. for (int j = 0; j < QK/2; j++) {
  1867. const uint8_t v0 = p0[j];
  1868. const uint8_t v1 = p1[j];
  1869. const float f0 = d0*(v0 & 0xf) + m0;
  1870. const float f1 = d0*(v0 >> 4) + m0;
  1871. const float f2 = d1*(v1 & 0xf) + m1;
  1872. const float f3 = d1*(v1 >> 4) + m1;
  1873. sumf += f0*f2 + f1*f3;
  1874. }
  1875. }
  1876. #endif
  1877. *s = sumf;
  1878. }
  1879. // compute GGML_VEC_DOT_UNROLL dot products at once
  1880. // xs - x row stride in bytes
  1881. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1882. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1883. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1884. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1885. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1886. }
  1887. #if defined(GGML_SIMD)
  1888. const int np = (n & ~(GGML_F16_STEP - 1));
  1889. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1890. GGML_F16_VEC ax[GGML_F16_ARR];
  1891. GGML_F16_VEC ay[GGML_F16_ARR];
  1892. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1893. for (int j = 0; j < GGML_F16_ARR; j++) {
  1894. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1895. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1896. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1897. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1898. }
  1899. }
  1900. }
  1901. // reduce sum0..sum3 to sum0
  1902. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1903. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1904. }
  1905. // leftovers
  1906. for (int i = np; i < n; ++i) {
  1907. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1908. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1909. }
  1910. }
  1911. #else
  1912. for (int i = 0; i < n; ++i) {
  1913. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1914. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1915. }
  1916. }
  1917. #endif
  1918. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1919. s[i] = sumf[i];
  1920. }
  1921. }
  1922. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1923. #if defined(GGML_SIMD)
  1924. const int np = (n & ~(GGML_F32_STEP - 1));
  1925. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1926. GGML_F32_VEC ax[GGML_F32_ARR];
  1927. GGML_F32_VEC ay[GGML_F32_ARR];
  1928. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1929. for (int j = 0; j < GGML_F32_ARR; j++) {
  1930. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1931. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1932. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1933. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1934. }
  1935. }
  1936. // leftovers
  1937. for (int i = np; i < n; ++i) {
  1938. y[i] += x[i]*v;
  1939. }
  1940. #else
  1941. // scalar
  1942. for (int i = 0; i < n; ++i) {
  1943. y[i] += x[i]*v;
  1944. }
  1945. #endif
  1946. }
  1947. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1948. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1949. #if defined(GGML_SIMD)
  1950. const int np = (n & ~(GGML_F32_STEP - 1));
  1951. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1952. GGML_F32_VEC ay[GGML_F32_ARR];
  1953. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1954. for (int j = 0; j < GGML_F32_ARR; j++) {
  1955. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1956. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1957. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1958. }
  1959. }
  1960. // leftovers
  1961. for (int i = np; i < n; ++i) {
  1962. y[i] *= v;
  1963. }
  1964. #else
  1965. // scalar
  1966. for (int i = 0; i < n; ++i) {
  1967. y[i] *= v;
  1968. }
  1969. #endif
  1970. }
  1971. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1972. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1973. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1974. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1975. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1976. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1977. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1978. static const float GELU_COEF_A = 0.044715f;
  1979. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1980. inline static float ggml_gelu_f32(float x) {
  1981. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1982. }
  1983. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1984. const uint16_t * i16 = (const uint16_t *) x;
  1985. for (int i = 0; i < n; ++i) {
  1986. y[i] = table_gelu_f16[i16[i]];
  1987. }
  1988. }
  1989. #ifdef GGML_GELU_FP16
  1990. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1991. uint16_t t;
  1992. for (int i = 0; i < n; ++i) {
  1993. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1994. memcpy(&t, &fp16, sizeof(uint16_t));
  1995. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1996. }
  1997. }
  1998. #else
  1999. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2000. for (int i = 0; i < n; ++i) {
  2001. y[i] = ggml_gelu_f32(x[i]);
  2002. }
  2003. }
  2004. #endif
  2005. // Sigmoid Linear Unit (SiLU) function
  2006. inline static float ggml_silu_f32(float x) {
  2007. return x/(1.0f + expf(-x));
  2008. }
  2009. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2010. const uint16_t * i16 = (const uint16_t *) x;
  2011. for (int i = 0; i < n; ++i) {
  2012. y[i] = table_silu_f16[i16[i]];
  2013. }
  2014. }
  2015. #ifdef GGML_SILU_FP16
  2016. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2017. uint16_t t;
  2018. for (int i = 0; i < n; ++i) {
  2019. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2020. memcpy(&t, &fp16, sizeof(uint16_t));
  2021. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2022. }
  2023. }
  2024. #else
  2025. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2026. for (int i = 0; i < n; ++i) {
  2027. y[i] = ggml_silu_f32(x[i]);
  2028. }
  2029. }
  2030. #endif
  2031. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2032. #ifndef GGML_USE_ACCELERATE
  2033. ggml_float sum = 0.0;
  2034. for (int i = 0; i < n; ++i) {
  2035. sum += (ggml_float)x[i];
  2036. }
  2037. *s = sum;
  2038. #else
  2039. vDSP_sve(x, 1, s, n);
  2040. #endif
  2041. }
  2042. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2043. #ifndef GGML_USE_ACCELERATE
  2044. float max = -INFINITY;
  2045. for (int i = 0; i < n; ++i) {
  2046. max = MAX(max, x[i]);
  2047. }
  2048. *s = max;
  2049. #else
  2050. vDSP_maxv(x, 1, s, n);
  2051. #endif
  2052. }
  2053. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2054. ggml_vec_norm_f32(n, s, x);
  2055. *s = 1.f/(*s);
  2056. }
  2057. //
  2058. // logging
  2059. //
  2060. #if (GGML_DEBUG >= 1)
  2061. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2062. #else
  2063. #define GGML_PRINT_DEBUG(...)
  2064. #endif
  2065. #if (GGML_DEBUG >= 5)
  2066. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2067. #else
  2068. #define GGML_PRINT_DEBUG_5(...)
  2069. #endif
  2070. #if (GGML_DEBUG >= 10)
  2071. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2072. #else
  2073. #define GGML_PRINT_DEBUG_10(...)
  2074. #endif
  2075. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2076. //
  2077. // data types
  2078. //
  2079. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2080. QK,
  2081. QK,
  2082. 1,
  2083. 1,
  2084. 1,
  2085. 1,
  2086. 1,
  2087. };
  2088. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2089. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2090. sizeof(block_q4_0),
  2091. sizeof(block_q4_1),
  2092. sizeof(int8_t ),
  2093. sizeof(int16_t),
  2094. sizeof(int32_t),
  2095. sizeof(ggml_fp16_t),
  2096. sizeof(float ),
  2097. };
  2098. // don't forget to update the array above when adding new types
  2099. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2100. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2101. "NONE",
  2102. "DUP",
  2103. "ADD",
  2104. "SUB",
  2105. "MUL",
  2106. "DIV",
  2107. "SQR",
  2108. "SQRT",
  2109. "SUM",
  2110. "MEAN",
  2111. "REPEAT",
  2112. "ABS",
  2113. "SGN",
  2114. "NEG",
  2115. "STEP",
  2116. "RELU",
  2117. "GELU",
  2118. "SILU",
  2119. "NORM",
  2120. "RMS_NORM",
  2121. "MUL_MAT",
  2122. "SCALE",
  2123. "CPY",
  2124. "RESHAPE",
  2125. "VIEW",
  2126. "PERMUTE",
  2127. "TRANSPOSE",
  2128. "GET_ROWS",
  2129. "DIAG_MASK_INF",
  2130. "SOFT_MAX",
  2131. "ROPE",
  2132. "CONV_1D_1S",
  2133. "CONV_1D_2S",
  2134. "FLASH_ATTN",
  2135. "FLASH_FF",
  2136. };
  2137. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2138. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2139. "none",
  2140. "x",
  2141. "x+y",
  2142. "x-y",
  2143. "x*y",
  2144. "x/y",
  2145. "x^2",
  2146. "√x",
  2147. "Σx",
  2148. "Σx/n",
  2149. "repeat(x)",
  2150. "abs(x)",
  2151. "sgn(x)",
  2152. "-x",
  2153. "step(x)",
  2154. "relu(x)",
  2155. "gelu(x)",
  2156. "silu(x)",
  2157. "norm(x)",
  2158. "rms_norm(x)",
  2159. "X*Y",
  2160. "x*v",
  2161. "x-\\>y",
  2162. "reshape(x)",
  2163. "view(x)",
  2164. "permute(x)",
  2165. "transpose(x)",
  2166. "get_rows(x)",
  2167. "diag_mask_inf(x)",
  2168. "soft_max(x)",
  2169. "rope(x)",
  2170. "conv_1d_1s(x)",
  2171. "conv_1d_2s(x)",
  2172. "flash_attn(x)",
  2173. "flash_ff(x)",
  2174. };
  2175. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2176. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2177. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2178. //
  2179. // ggml context
  2180. //
  2181. struct ggml_context {
  2182. size_t mem_size;
  2183. void * mem_buffer;
  2184. bool mem_buffer_owned;
  2185. bool no_alloc;
  2186. int n_objects;
  2187. struct ggml_object * objects_begin;
  2188. struct ggml_object * objects_end;
  2189. struct ggml_scratch scratch;
  2190. struct ggml_scratch scratch_save;
  2191. };
  2192. struct ggml_context_container {
  2193. bool used;
  2194. struct ggml_context context;
  2195. };
  2196. //
  2197. // compute types
  2198. //
  2199. enum ggml_task_type {
  2200. GGML_TASK_INIT = 0,
  2201. GGML_TASK_COMPUTE,
  2202. GGML_TASK_FINALIZE,
  2203. };
  2204. struct ggml_compute_params {
  2205. enum ggml_task_type type;
  2206. int ith, nth;
  2207. // work buffer for all threads
  2208. size_t wsize;
  2209. void * wdata;
  2210. };
  2211. //
  2212. // ggml state
  2213. //
  2214. struct ggml_state {
  2215. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2216. };
  2217. // global state
  2218. static struct ggml_state g_state;
  2219. static atomic_int g_state_barrier = 0;
  2220. // barrier via spin lock
  2221. inline static void ggml_critical_section_start(void) {
  2222. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2223. while (processing > 0) {
  2224. // wait for other threads to finish
  2225. atomic_fetch_sub(&g_state_barrier, 1);
  2226. sched_yield(); // TODO: reconsider this
  2227. processing = atomic_fetch_add(&g_state_barrier, 1);
  2228. }
  2229. }
  2230. // TODO: make this somehow automatically executed
  2231. // some sort of "sentry" mechanism
  2232. inline static void ggml_critical_section_end(void) {
  2233. atomic_fetch_sub(&g_state_barrier, 1);
  2234. }
  2235. ////////////////////////////////////////////////////////////////////////////////
  2236. void ggml_print_object(const struct ggml_object * obj) {
  2237. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2238. obj->offs, obj->size, (const void *) obj->next);
  2239. }
  2240. void ggml_print_objects(const struct ggml_context * ctx) {
  2241. struct ggml_object * obj = ctx->objects_begin;
  2242. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2243. while (obj != NULL) {
  2244. ggml_print_object(obj);
  2245. obj = obj->next;
  2246. }
  2247. GGML_PRINT("%s: --- end ---\n", __func__);
  2248. }
  2249. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2252. }
  2253. int ggml_nrows(const struct ggml_tensor * tensor) {
  2254. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2255. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2256. }
  2257. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2258. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2259. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2260. }
  2261. int ggml_blck_size(enum ggml_type type) {
  2262. return GGML_BLCK_SIZE[type];
  2263. }
  2264. size_t ggml_type_size(enum ggml_type type) {
  2265. return GGML_TYPE_SIZE[type];
  2266. }
  2267. float ggml_type_sizef(enum ggml_type type) {
  2268. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2269. }
  2270. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2271. return GGML_TYPE_SIZE[tensor->type];
  2272. }
  2273. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2274. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2275. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2276. }
  2277. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2278. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2279. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2280. }
  2281. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2282. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2283. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2284. }
  2285. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2286. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2287. return
  2288. (t0->ne[0] == t1->ne[0]) &&
  2289. (t0->ne[2] == t1->ne[2]) &&
  2290. (t0->ne[3] == t1->ne[3]);
  2291. }
  2292. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2293. return tensor->nb[0] > tensor->nb[1];
  2294. }
  2295. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2296. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2297. return
  2298. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2299. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2300. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2301. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2302. }
  2303. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2304. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2305. return
  2306. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2307. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2308. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2309. }
  2310. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2311. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2312. return
  2313. (t0->ne[0] == t1->ne[0] ) &&
  2314. (t0->ne[1] == t1->ne[1] ) &&
  2315. (t0->ne[2] == t1->ne[2] ) &&
  2316. (t0->ne[3] == t1->ne[3] );
  2317. }
  2318. // check if t1 can be represented as a repeatition of t0
  2319. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2320. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2321. return
  2322. (t1->ne[0]%t0->ne[0] == 0) &&
  2323. (t1->ne[1]%t0->ne[1] == 0) &&
  2324. (t1->ne[2]%t0->ne[2] == 0) &&
  2325. (t1->ne[3]%t0->ne[3] == 0);
  2326. }
  2327. static inline int ggml_up32(int n) {
  2328. return (n + 31) & ~31;
  2329. }
  2330. static inline int ggml_up64(int n) {
  2331. return (n + 63) & ~63;
  2332. }
  2333. static inline int ggml_up(int n, int m) {
  2334. // assert m is a power of 2
  2335. GGML_ASSERT((m & (m - 1)) == 0);
  2336. return (n + m - 1) & ~(m - 1);
  2337. }
  2338. // assert that pointer is aligned to GGML_MEM_ALIGN
  2339. #define ggml_assert_aligned(ptr) \
  2340. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2341. ////////////////////////////////////////////////////////////////////////////////
  2342. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2343. // make this function thread safe
  2344. ggml_critical_section_start();
  2345. static bool is_first_call = true;
  2346. if (is_first_call) {
  2347. // initialize time system (required on Windows)
  2348. ggml_time_init();
  2349. // initialize GELU, SILU and EXP F32 tables
  2350. {
  2351. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2352. ggml_fp16_t ii;
  2353. for (int i = 0; i < (1 << 16); ++i) {
  2354. uint16_t ui = i;
  2355. memcpy(&ii, &ui, sizeof(ii));
  2356. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2357. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2358. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2359. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2360. }
  2361. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2362. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2363. }
  2364. // initialize g_state
  2365. {
  2366. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2367. g_state = (struct ggml_state) {
  2368. /*.contexts =*/ { { 0 } },
  2369. };
  2370. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2371. g_state.contexts[i].used = false;
  2372. }
  2373. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2374. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2375. }
  2376. is_first_call = false;
  2377. }
  2378. // find non-used context in g_state
  2379. struct ggml_context * ctx = NULL;
  2380. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2381. if (!g_state.contexts[i].used) {
  2382. g_state.contexts[i].used = true;
  2383. ctx = &g_state.contexts[i].context;
  2384. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2385. break;
  2386. }
  2387. }
  2388. if (ctx == NULL) {
  2389. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2390. ggml_critical_section_end();
  2391. return NULL;
  2392. }
  2393. *ctx = (struct ggml_context) {
  2394. /*.mem_size =*/ params.mem_size,
  2395. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2396. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2397. /*.no_alloc =*/ params.no_alloc,
  2398. /*.n_objects =*/ 0,
  2399. /*.objects_begin =*/ NULL,
  2400. /*.objects_end =*/ NULL,
  2401. /*.scratch =*/ { 0, 0, NULL, },
  2402. /*.scratch_save =*/ { 0, 0, NULL, },
  2403. };
  2404. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2405. ggml_assert_aligned(ctx->mem_buffer);
  2406. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2407. ggml_critical_section_end();
  2408. return ctx;
  2409. }
  2410. void ggml_free(struct ggml_context * ctx) {
  2411. // make this function thread safe
  2412. ggml_critical_section_start();
  2413. bool found = false;
  2414. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2415. if (&g_state.contexts[i].context == ctx) {
  2416. g_state.contexts[i].used = false;
  2417. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2418. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2419. if (ctx->mem_buffer_owned) {
  2420. free(ctx->mem_buffer);
  2421. }
  2422. found = true;
  2423. break;
  2424. }
  2425. }
  2426. if (!found) {
  2427. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2428. }
  2429. ggml_critical_section_end();
  2430. }
  2431. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2432. return ctx->objects_end->offs + ctx->objects_end->size;
  2433. }
  2434. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2435. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2436. ctx->scratch = scratch;
  2437. return result;
  2438. }
  2439. ////////////////////////////////////////////////////////////////////////////////
  2440. struct ggml_tensor * ggml_new_tensor_impl(
  2441. struct ggml_context * ctx,
  2442. enum ggml_type type,
  2443. int n_dims,
  2444. const int64_t* ne,
  2445. void* data) {
  2446. // always insert objects at the end of the context's memory pool
  2447. struct ggml_object * obj_cur = ctx->objects_end;
  2448. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2449. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2450. const size_t cur_end = cur_offs + cur_size;
  2451. size_t size_needed = 0;
  2452. if (data == NULL && !ctx->no_alloc) {
  2453. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2454. for (int i = 1; i < n_dims; i++) {
  2455. size_needed *= ne[i];
  2456. }
  2457. // align to GGML_MEM_ALIGN
  2458. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2459. }
  2460. char * const mem_buffer = ctx->mem_buffer;
  2461. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2462. if (ctx->scratch.data == NULL || data != NULL) {
  2463. size_needed += sizeof(struct ggml_tensor);
  2464. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2465. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2466. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2467. assert(false);
  2468. return NULL;
  2469. }
  2470. *obj_new = (struct ggml_object) {
  2471. .offs = cur_end + GGML_OBJECT_SIZE,
  2472. .size = size_needed,
  2473. .next = NULL,
  2474. };
  2475. } else {
  2476. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2477. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2478. assert(false);
  2479. return NULL;
  2480. }
  2481. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2482. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2483. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2484. assert(false);
  2485. return NULL;
  2486. }
  2487. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2488. *obj_new = (struct ggml_object) {
  2489. .offs = cur_end + GGML_OBJECT_SIZE,
  2490. .size = sizeof(struct ggml_tensor),
  2491. .next = NULL,
  2492. };
  2493. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2494. ctx->scratch.offs += size_needed;
  2495. }
  2496. if (obj_cur != NULL) {
  2497. obj_cur->next = obj_new;
  2498. } else {
  2499. // this is the first object in this context
  2500. ctx->objects_begin = obj_new;
  2501. }
  2502. ctx->objects_end = obj_new;
  2503. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2504. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2505. ggml_assert_aligned(result);
  2506. *result = (struct ggml_tensor) {
  2507. /*.type =*/ type,
  2508. /*.n_dims =*/ n_dims,
  2509. /*.ne =*/ { 1, 1, 1, 1 },
  2510. /*.nb =*/ { 0, 0, 0, 0 },
  2511. /*.op =*/ GGML_OP_NONE,
  2512. /*.is_param =*/ false,
  2513. /*.grad =*/ NULL,
  2514. /*.src0 =*/ NULL,
  2515. /*.src1 =*/ NULL,
  2516. /*.opt =*/ { NULL },
  2517. /*.n_tasks =*/ 0,
  2518. /*.perf_runs =*/ 0,
  2519. /*.perf_cycles =*/ 0,
  2520. /*.perf_time_us =*/ 0,
  2521. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2522. /*.pad =*/ { 0 },
  2523. };
  2524. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2525. //ggml_assert_aligned(result->data);
  2526. for (int i = 0; i < n_dims; i++) {
  2527. result->ne[i] = ne[i];
  2528. }
  2529. result->nb[0] = GGML_TYPE_SIZE[type];
  2530. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2531. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2532. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2533. }
  2534. ctx->n_objects++;
  2535. return result;
  2536. }
  2537. struct ggml_tensor * ggml_new_tensor(
  2538. struct ggml_context * ctx,
  2539. enum ggml_type type,
  2540. int n_dims,
  2541. const int64_t * ne) {
  2542. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2543. }
  2544. struct ggml_tensor * ggml_new_tensor_1d(
  2545. struct ggml_context * ctx,
  2546. enum ggml_type type,
  2547. int64_t ne0) {
  2548. return ggml_new_tensor(ctx, type, 1, &ne0);
  2549. }
  2550. struct ggml_tensor * ggml_new_tensor_2d(
  2551. struct ggml_context * ctx,
  2552. enum ggml_type type,
  2553. int64_t ne0,
  2554. int64_t ne1) {
  2555. const int64_t ne[2] = { ne0, ne1 };
  2556. return ggml_new_tensor(ctx, type, 2, ne);
  2557. }
  2558. struct ggml_tensor * ggml_new_tensor_3d(
  2559. struct ggml_context * ctx,
  2560. enum ggml_type type,
  2561. int64_t ne0,
  2562. int64_t ne1,
  2563. int64_t ne2) {
  2564. const int64_t ne[3] = { ne0, ne1, ne2 };
  2565. return ggml_new_tensor(ctx, type, 3, ne);
  2566. }
  2567. struct ggml_tensor * ggml_new_tensor_4d(
  2568. struct ggml_context * ctx,
  2569. enum ggml_type type,
  2570. int64_t ne0,
  2571. int64_t ne1,
  2572. int64_t ne2,
  2573. int64_t ne3) {
  2574. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2575. return ggml_new_tensor(ctx, type, 4, ne);
  2576. }
  2577. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2578. ctx->scratch_save = ctx->scratch;
  2579. ctx->scratch.data = NULL;
  2580. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2581. ctx->scratch = ctx->scratch_save;
  2582. ggml_set_i32(result, value);
  2583. return result;
  2584. }
  2585. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2586. ctx->scratch_save = ctx->scratch;
  2587. ctx->scratch.data = NULL;
  2588. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2589. ctx->scratch = ctx->scratch_save;
  2590. ggml_set_f32(result, value);
  2591. return result;
  2592. }
  2593. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2594. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2595. }
  2596. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2597. memset(tensor->data, 0, ggml_nbytes(tensor));
  2598. return tensor;
  2599. }
  2600. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2601. const int n = ggml_nrows(tensor);
  2602. const int nc = tensor->ne[0];
  2603. const size_t n1 = tensor->nb[1];
  2604. char * const data = tensor->data;
  2605. switch (tensor->type) {
  2606. case GGML_TYPE_Q4_0:
  2607. {
  2608. GGML_ASSERT(false);
  2609. } break;
  2610. case GGML_TYPE_Q4_1:
  2611. {
  2612. GGML_ASSERT(false);
  2613. } break;
  2614. case GGML_TYPE_I8:
  2615. {
  2616. assert(tensor->nb[0] == sizeof(int8_t));
  2617. for (int i = 0; i < n; i++) {
  2618. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2619. }
  2620. } break;
  2621. case GGML_TYPE_I16:
  2622. {
  2623. assert(tensor->nb[0] == sizeof(int16_t));
  2624. for (int i = 0; i < n; i++) {
  2625. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2626. }
  2627. } break;
  2628. case GGML_TYPE_I32:
  2629. {
  2630. assert(tensor->nb[0] == sizeof(int32_t));
  2631. for (int i = 0; i < n; i++) {
  2632. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2633. }
  2634. } break;
  2635. case GGML_TYPE_F16:
  2636. {
  2637. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2638. for (int i = 0; i < n; i++) {
  2639. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2640. }
  2641. } break;
  2642. case GGML_TYPE_F32:
  2643. {
  2644. assert(tensor->nb[0] == sizeof(float));
  2645. for (int i = 0; i < n; i++) {
  2646. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2647. }
  2648. } break;
  2649. case GGML_TYPE_COUNT:
  2650. {
  2651. GGML_ASSERT(false);
  2652. } break;
  2653. }
  2654. return tensor;
  2655. }
  2656. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2657. const int n = ggml_nrows(tensor);
  2658. const int nc = tensor->ne[0];
  2659. const size_t n1 = tensor->nb[1];
  2660. char * const data = tensor->data;
  2661. switch (tensor->type) {
  2662. case GGML_TYPE_Q4_0:
  2663. {
  2664. GGML_ASSERT(false);
  2665. } break;
  2666. case GGML_TYPE_Q4_1:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. case GGML_TYPE_I8:
  2671. {
  2672. assert(tensor->nb[0] == sizeof(int8_t));
  2673. for (int i = 0; i < n; i++) {
  2674. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2675. }
  2676. } break;
  2677. case GGML_TYPE_I16:
  2678. {
  2679. assert(tensor->nb[0] == sizeof(int16_t));
  2680. for (int i = 0; i < n; i++) {
  2681. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2682. }
  2683. } break;
  2684. case GGML_TYPE_I32:
  2685. {
  2686. assert(tensor->nb[0] == sizeof(int32_t));
  2687. for (int i = 0; i < n; i++) {
  2688. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2689. }
  2690. } break;
  2691. case GGML_TYPE_F16:
  2692. {
  2693. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2694. for (int i = 0; i < n; i++) {
  2695. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2696. }
  2697. } break;
  2698. case GGML_TYPE_F32:
  2699. {
  2700. assert(tensor->nb[0] == sizeof(float));
  2701. for (int i = 0; i < n; i++) {
  2702. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2703. }
  2704. } break;
  2705. case GGML_TYPE_COUNT:
  2706. {
  2707. GGML_ASSERT(false);
  2708. } break;
  2709. }
  2710. return tensor;
  2711. }
  2712. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2713. switch (tensor->type) {
  2714. case GGML_TYPE_Q4_0:
  2715. {
  2716. GGML_ASSERT(false);
  2717. } break;
  2718. case GGML_TYPE_Q4_1:
  2719. {
  2720. GGML_ASSERT(false);
  2721. } break;
  2722. case GGML_TYPE_I8:
  2723. {
  2724. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2725. return ((int8_t *)(tensor->data))[i];
  2726. } break;
  2727. case GGML_TYPE_I16:
  2728. {
  2729. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2730. return ((int16_t *)(tensor->data))[i];
  2731. } break;
  2732. case GGML_TYPE_I32:
  2733. {
  2734. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2735. return ((int32_t *)(tensor->data))[i];
  2736. } break;
  2737. case GGML_TYPE_F16:
  2738. {
  2739. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2740. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2741. } break;
  2742. case GGML_TYPE_F32:
  2743. {
  2744. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2745. return ((float *)(tensor->data))[i];
  2746. } break;
  2747. case GGML_TYPE_COUNT:
  2748. {
  2749. GGML_ASSERT(false);
  2750. } break;
  2751. }
  2752. return 0.0f;
  2753. }
  2754. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2755. switch (tensor->type) {
  2756. case GGML_TYPE_Q4_0:
  2757. {
  2758. GGML_ASSERT(false);
  2759. } break;
  2760. case GGML_TYPE_Q4_1:
  2761. {
  2762. GGML_ASSERT(false);
  2763. } break;
  2764. case GGML_TYPE_I8:
  2765. {
  2766. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2767. ((int8_t *)(tensor->data))[i] = value;
  2768. } break;
  2769. case GGML_TYPE_I16:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2772. ((int16_t *)(tensor->data))[i] = value;
  2773. } break;
  2774. case GGML_TYPE_I32:
  2775. {
  2776. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2777. ((int32_t *)(tensor->data))[i] = value;
  2778. } break;
  2779. case GGML_TYPE_F16:
  2780. {
  2781. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2782. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2783. } break;
  2784. case GGML_TYPE_F32:
  2785. {
  2786. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2787. ((float *)(tensor->data))[i] = value;
  2788. } break;
  2789. case GGML_TYPE_COUNT:
  2790. {
  2791. GGML_ASSERT(false);
  2792. } break;
  2793. }
  2794. }
  2795. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2796. switch (tensor->type) {
  2797. case GGML_TYPE_Q4_0:
  2798. {
  2799. GGML_ASSERT(false);
  2800. } break;
  2801. case GGML_TYPE_Q4_1:
  2802. {
  2803. GGML_ASSERT(false);
  2804. } break;
  2805. case GGML_TYPE_I8:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2808. return ((int8_t *)(tensor->data))[i];
  2809. } break;
  2810. case GGML_TYPE_I16:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2813. return ((int16_t *)(tensor->data))[i];
  2814. } break;
  2815. case GGML_TYPE_I32:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2818. return ((int32_t *)(tensor->data))[i];
  2819. } break;
  2820. case GGML_TYPE_F16:
  2821. {
  2822. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2823. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2824. } break;
  2825. case GGML_TYPE_F32:
  2826. {
  2827. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2828. return ((float *)(tensor->data))[i];
  2829. } break;
  2830. case GGML_TYPE_COUNT:
  2831. {
  2832. GGML_ASSERT(false);
  2833. } break;
  2834. }
  2835. return 0.0f;
  2836. }
  2837. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2838. switch (tensor->type) {
  2839. case GGML_TYPE_Q4_0:
  2840. {
  2841. GGML_ASSERT(false);
  2842. } break;
  2843. case GGML_TYPE_Q4_1:
  2844. {
  2845. GGML_ASSERT(false);
  2846. } break;
  2847. case GGML_TYPE_I8:
  2848. {
  2849. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2850. ((int8_t *)(tensor->data))[i] = value;
  2851. } break;
  2852. case GGML_TYPE_I16:
  2853. {
  2854. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2855. ((int16_t *)(tensor->data))[i] = value;
  2856. } break;
  2857. case GGML_TYPE_I32:
  2858. {
  2859. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2860. ((int32_t *)(tensor->data))[i] = value;
  2861. } break;
  2862. case GGML_TYPE_F16:
  2863. {
  2864. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2865. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2866. } break;
  2867. case GGML_TYPE_F32:
  2868. {
  2869. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2870. ((float *)(tensor->data))[i] = value;
  2871. } break;
  2872. case GGML_TYPE_COUNT:
  2873. {
  2874. GGML_ASSERT(false);
  2875. } break;
  2876. }
  2877. }
  2878. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2879. return tensor->data;
  2880. }
  2881. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2882. assert(tensor->type == GGML_TYPE_F32);
  2883. return (float *)(tensor->data);
  2884. }
  2885. struct ggml_tensor * ggml_view_tensor(
  2886. struct ggml_context * ctx,
  2887. const struct ggml_tensor * src) {
  2888. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2889. result->nb[0] = src->nb[0];
  2890. result->nb[1] = src->nb[1];
  2891. result->nb[2] = src->nb[2];
  2892. result->nb[3] = src->nb[3];
  2893. return result;
  2894. }
  2895. ////////////////////////////////////////////////////////////////////////////////
  2896. // ggml_dup
  2897. struct ggml_tensor * ggml_dup_impl(
  2898. struct ggml_context * ctx,
  2899. struct ggml_tensor * a,
  2900. bool inplace) {
  2901. bool is_node = false;
  2902. if (!inplace && (a->grad)) {
  2903. is_node = true;
  2904. }
  2905. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2906. result->op = GGML_OP_DUP;
  2907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2908. result->src0 = a;
  2909. result->src1 = NULL;
  2910. return result;
  2911. }
  2912. struct ggml_tensor * ggml_dup(
  2913. struct ggml_context * ctx,
  2914. struct ggml_tensor * a) {
  2915. return ggml_dup_impl(ctx, a, false);
  2916. }
  2917. struct ggml_tensor * ggml_dup_inplace(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a) {
  2920. return ggml_dup_impl(ctx, a, true);
  2921. }
  2922. // ggml_add
  2923. struct ggml_tensor * ggml_add_impl(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a,
  2926. struct ggml_tensor * b,
  2927. bool inplace) {
  2928. GGML_ASSERT(ggml_are_same_shape(a, b));
  2929. bool is_node = false;
  2930. if (!inplace && (a->grad || b->grad)) {
  2931. is_node = true;
  2932. }
  2933. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2934. result->op = GGML_OP_ADD;
  2935. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2936. result->src0 = a;
  2937. result->src1 = b;
  2938. return result;
  2939. }
  2940. struct ggml_tensor * ggml_add(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a,
  2943. struct ggml_tensor * b) {
  2944. return ggml_add_impl(ctx, a, b, false);
  2945. }
  2946. struct ggml_tensor * ggml_add_inplace(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a,
  2949. struct ggml_tensor * b) {
  2950. return ggml_add_impl(ctx, a, b, true);
  2951. }
  2952. // ggml_sub
  2953. struct ggml_tensor * ggml_sub_impl(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a,
  2956. struct ggml_tensor * b,
  2957. bool inplace) {
  2958. GGML_ASSERT(ggml_are_same_shape(a, b));
  2959. bool is_node = false;
  2960. if (!inplace && (a->grad || b->grad)) {
  2961. is_node = true;
  2962. }
  2963. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2964. result->op = GGML_OP_SUB;
  2965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2966. result->src0 = a;
  2967. result->src1 = b;
  2968. return result;
  2969. }
  2970. struct ggml_tensor * ggml_sub(
  2971. struct ggml_context * ctx,
  2972. struct ggml_tensor * a,
  2973. struct ggml_tensor * b) {
  2974. return ggml_sub_impl(ctx, a, b, false);
  2975. }
  2976. struct ggml_tensor * ggml_sub_inplace(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a,
  2979. struct ggml_tensor * b) {
  2980. return ggml_sub_impl(ctx, a, b, true);
  2981. }
  2982. // ggml_mul
  2983. struct ggml_tensor * ggml_mul_impl(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. struct ggml_tensor * b,
  2987. bool inplace) {
  2988. GGML_ASSERT(ggml_are_same_shape(a, b));
  2989. bool is_node = false;
  2990. if (!inplace && (a->grad || b->grad)) {
  2991. is_node = true;
  2992. }
  2993. if (inplace) {
  2994. GGML_ASSERT(is_node == false);
  2995. }
  2996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2997. result->op = GGML_OP_MUL;
  2998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2999. result->src0 = a;
  3000. result->src1 = b;
  3001. return result;
  3002. }
  3003. struct ggml_tensor * ggml_mul(
  3004. struct ggml_context * ctx,
  3005. struct ggml_tensor * a,
  3006. struct ggml_tensor * b) {
  3007. return ggml_mul_impl(ctx, a, b, false);
  3008. }
  3009. struct ggml_tensor * ggml_mul_inplace(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a,
  3012. struct ggml_tensor * b) {
  3013. return ggml_mul_impl(ctx, a, b, true);
  3014. }
  3015. // ggml_div
  3016. struct ggml_tensor * ggml_div_impl(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a,
  3019. struct ggml_tensor * b,
  3020. bool inplace) {
  3021. GGML_ASSERT(ggml_are_same_shape(a, b));
  3022. bool is_node = false;
  3023. if (!inplace && (a->grad || b->grad)) {
  3024. is_node = true;
  3025. }
  3026. if (inplace) {
  3027. GGML_ASSERT(is_node == false);
  3028. }
  3029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3030. result->op = GGML_OP_DIV;
  3031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3032. result->src0 = a;
  3033. result->src1 = b;
  3034. return result;
  3035. }
  3036. struct ggml_tensor * ggml_div(
  3037. struct ggml_context * ctx,
  3038. struct ggml_tensor * a,
  3039. struct ggml_tensor * b) {
  3040. return ggml_div_impl(ctx, a, b, false);
  3041. }
  3042. struct ggml_tensor * ggml_div_inplace(
  3043. struct ggml_context * ctx,
  3044. struct ggml_tensor * a,
  3045. struct ggml_tensor * b) {
  3046. return ggml_div_impl(ctx, a, b, true);
  3047. }
  3048. // ggml_sqr
  3049. struct ggml_tensor * ggml_sqr_impl(
  3050. struct ggml_context * ctx,
  3051. struct ggml_tensor * a,
  3052. bool inplace) {
  3053. bool is_node = false;
  3054. if (!inplace && (a->grad)) {
  3055. is_node = true;
  3056. }
  3057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3058. result->op = GGML_OP_SQR;
  3059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3060. result->src0 = a;
  3061. result->src1 = NULL;
  3062. return result;
  3063. }
  3064. struct ggml_tensor * ggml_sqr(
  3065. struct ggml_context * ctx,
  3066. struct ggml_tensor * a) {
  3067. return ggml_sqr_impl(ctx, a, false);
  3068. }
  3069. struct ggml_tensor * ggml_sqr_inplace(
  3070. struct ggml_context * ctx,
  3071. struct ggml_tensor * a) {
  3072. return ggml_sqr_impl(ctx, a, true);
  3073. }
  3074. // ggml_sqrt
  3075. struct ggml_tensor * ggml_sqrt_impl(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a,
  3078. bool inplace) {
  3079. bool is_node = false;
  3080. if (!inplace && (a->grad)) {
  3081. is_node = true;
  3082. }
  3083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3084. result->op = GGML_OP_SQRT;
  3085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3086. result->src0 = a;
  3087. result->src1 = NULL;
  3088. return result;
  3089. }
  3090. struct ggml_tensor * ggml_sqrt(
  3091. struct ggml_context * ctx,
  3092. struct ggml_tensor * a) {
  3093. return ggml_sqrt_impl(ctx, a, false);
  3094. }
  3095. struct ggml_tensor * ggml_sqrt_inplace(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_sqrt_impl(ctx, a, true);
  3099. }
  3100. // ggml_sum
  3101. struct ggml_tensor * ggml_sum(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a) {
  3104. bool is_node = false;
  3105. if (a->grad) {
  3106. is_node = true;
  3107. }
  3108. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3109. result->op = GGML_OP_SUM;
  3110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3111. result->src0 = a;
  3112. result->src1 = NULL;
  3113. return result;
  3114. }
  3115. // ggml_mean
  3116. struct ggml_tensor * ggml_mean(
  3117. struct ggml_context * ctx,
  3118. struct ggml_tensor * a) {
  3119. bool is_node = false;
  3120. if (a->grad) {
  3121. GGML_ASSERT(false); // TODO: implement
  3122. is_node = true;
  3123. }
  3124. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3125. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3126. result->op = GGML_OP_MEAN;
  3127. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3128. result->src0 = a;
  3129. result->src1 = NULL;
  3130. return result;
  3131. }
  3132. // ggml_repeat
  3133. struct ggml_tensor * ggml_repeat(
  3134. struct ggml_context * ctx,
  3135. struct ggml_tensor * a,
  3136. struct ggml_tensor * b) {
  3137. GGML_ASSERT(ggml_can_repeat(a, b));
  3138. bool is_node = false;
  3139. if (a->grad) {
  3140. is_node = true;
  3141. }
  3142. if (ggml_are_same_shape(a, b) && !is_node) {
  3143. return a;
  3144. }
  3145. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3146. result->op = GGML_OP_REPEAT;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src0 = a;
  3149. result->src1 = b;
  3150. return result;
  3151. }
  3152. // ggml_abs
  3153. struct ggml_tensor * ggml_abs_impl(
  3154. struct ggml_context * ctx,
  3155. struct ggml_tensor * a,
  3156. bool inplace) {
  3157. bool is_node = false;
  3158. if (!inplace && (a->grad)) {
  3159. is_node = true;
  3160. }
  3161. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3162. result->op = GGML_OP_ABS;
  3163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3164. result->src0 = a;
  3165. result->src1 = NULL;
  3166. return result;
  3167. }
  3168. struct ggml_tensor * ggml_abs(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_abs_impl(ctx, a, false);
  3172. }
  3173. struct ggml_tensor * ggml_abs_inplace(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_abs_impl(ctx, a, true);
  3177. }
  3178. // ggml_sgn
  3179. struct ggml_tensor * ggml_sgn_impl(
  3180. struct ggml_context * ctx,
  3181. struct ggml_tensor * a,
  3182. bool inplace) {
  3183. bool is_node = false;
  3184. if (!inplace && (a->grad)) {
  3185. is_node = true;
  3186. }
  3187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3188. result->op = GGML_OP_SGN;
  3189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3190. result->src0 = a;
  3191. result->src1 = NULL;
  3192. return result;
  3193. }
  3194. struct ggml_tensor * ggml_sgn(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a) {
  3197. return ggml_sgn_impl(ctx, a, false);
  3198. }
  3199. struct ggml_tensor * ggml_sgn_inplace(
  3200. struct ggml_context * ctx,
  3201. struct ggml_tensor * a) {
  3202. return ggml_sgn_impl(ctx, a, true);
  3203. }
  3204. // ggml_neg
  3205. struct ggml_tensor * ggml_neg_impl(
  3206. struct ggml_context * ctx,
  3207. struct ggml_tensor * a,
  3208. bool inplace) {
  3209. bool is_node = false;
  3210. if (!inplace && (a->grad)) {
  3211. is_node = true;
  3212. }
  3213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3214. result->op = GGML_OP_NEG;
  3215. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3216. result->src0 = a;
  3217. result->src1 = NULL;
  3218. return result;
  3219. }
  3220. struct ggml_tensor * ggml_neg(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_neg_impl(ctx, a, false);
  3224. }
  3225. struct ggml_tensor * ggml_neg_inplace(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a) {
  3228. return ggml_neg_impl(ctx, a, true);
  3229. }
  3230. // ggml_step
  3231. struct ggml_tensor * ggml_step_impl(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a,
  3234. bool inplace) {
  3235. bool is_node = false;
  3236. if (!inplace && (a->grad)) {
  3237. is_node = true;
  3238. }
  3239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3240. result->op = GGML_OP_STEP;
  3241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3242. result->src0 = a;
  3243. result->src1 = NULL;
  3244. return result;
  3245. }
  3246. struct ggml_tensor * ggml_step(
  3247. struct ggml_context * ctx,
  3248. struct ggml_tensor * a) {
  3249. return ggml_step_impl(ctx, a, false);
  3250. }
  3251. struct ggml_tensor * ggml_step_inplace(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_step_impl(ctx, a, true);
  3255. }
  3256. // ggml_relu
  3257. struct ggml_tensor * ggml_relu_impl(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a,
  3260. bool inplace) {
  3261. bool is_node = false;
  3262. if (!inplace && (a->grad)) {
  3263. is_node = true;
  3264. }
  3265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3266. result->op = GGML_OP_RELU;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src0 = a;
  3269. result->src1 = NULL;
  3270. return result;
  3271. }
  3272. struct ggml_tensor * ggml_relu(
  3273. struct ggml_context * ctx,
  3274. struct ggml_tensor * a) {
  3275. return ggml_relu_impl(ctx, a, false);
  3276. }
  3277. struct ggml_tensor * ggml_relu_inplace(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a) {
  3280. return ggml_relu_impl(ctx, a, true);
  3281. }
  3282. // ggml_gelu
  3283. struct ggml_tensor * ggml_gelu_impl(
  3284. struct ggml_context * ctx,
  3285. struct ggml_tensor * a,
  3286. bool inplace) {
  3287. bool is_node = false;
  3288. if (!inplace && (a->grad)) {
  3289. is_node = true;
  3290. }
  3291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3292. result->op = GGML_OP_GELU;
  3293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3294. result->src0 = a;
  3295. result->src1 = NULL;
  3296. return result;
  3297. }
  3298. struct ggml_tensor * ggml_gelu(
  3299. struct ggml_context * ctx,
  3300. struct ggml_tensor * a) {
  3301. return ggml_gelu_impl(ctx, a, false);
  3302. }
  3303. struct ggml_tensor * ggml_gelu_inplace(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a) {
  3306. return ggml_gelu_impl(ctx, a, true);
  3307. }
  3308. // ggml_silu
  3309. struct ggml_tensor * ggml_silu_impl(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. bool inplace) {
  3313. bool is_node = false;
  3314. if (!inplace && (a->grad)) {
  3315. is_node = true;
  3316. }
  3317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3318. result->op = GGML_OP_SILU;
  3319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3320. result->src0 = a;
  3321. result->src1 = NULL;
  3322. return result;
  3323. }
  3324. struct ggml_tensor * ggml_silu(
  3325. struct ggml_context * ctx,
  3326. struct ggml_tensor * a) {
  3327. return ggml_silu_impl(ctx, a, false);
  3328. }
  3329. struct ggml_tensor * ggml_silu_inplace(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a) {
  3332. return ggml_silu_impl(ctx, a, true);
  3333. }
  3334. // ggml_norm
  3335. struct ggml_tensor * ggml_norm_impl(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. bool inplace) {
  3339. bool is_node = false;
  3340. if (!inplace && (a->grad)) {
  3341. GGML_ASSERT(false); // TODO: implement backward
  3342. is_node = true;
  3343. }
  3344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3345. result->op = GGML_OP_NORM;
  3346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3347. result->src0 = a;
  3348. result->src1 = NULL; // TODO: maybe store epsilon here?
  3349. return result;
  3350. }
  3351. struct ggml_tensor * ggml_norm(
  3352. struct ggml_context * ctx,
  3353. struct ggml_tensor * a) {
  3354. return ggml_norm_impl(ctx, a, false);
  3355. }
  3356. struct ggml_tensor * ggml_norm_inplace(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a) {
  3359. return ggml_norm_impl(ctx, a, true);
  3360. }
  3361. struct ggml_tensor * ggml_rms_norm_impl(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a,
  3364. bool inplace) {
  3365. bool is_node = false;
  3366. if (!inplace && (a->grad)) {
  3367. GGML_ASSERT(false); // TODO: implement backward
  3368. is_node = true;
  3369. }
  3370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3371. result->op = GGML_OP_RMS_NORM;
  3372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3373. result->src0 = a;
  3374. result->src1 = NULL; // TODO: maybe store epsilon here?
  3375. return result;
  3376. }
  3377. struct ggml_tensor * ggml_rms_norm(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_rms_norm_impl(ctx, a, false);
  3381. }
  3382. struct ggml_tensor * ggml_rms_norm_inplace(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. return ggml_rms_norm_impl(ctx, a, true);
  3386. }
  3387. // ggml_mul_mat
  3388. struct ggml_tensor * ggml_mul_mat(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a,
  3391. struct ggml_tensor * b) {
  3392. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3393. GGML_ASSERT(!ggml_is_transposed(a));
  3394. bool is_node = false;
  3395. if (a->grad || b->grad) {
  3396. is_node = true;
  3397. }
  3398. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3399. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3400. result->op = GGML_OP_MUL_MAT;
  3401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3402. result->src0 = a;
  3403. result->src1 = b;
  3404. return result;
  3405. }
  3406. // ggml_scale
  3407. struct ggml_tensor * ggml_scale_impl(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. struct ggml_tensor * b,
  3411. bool inplace) {
  3412. GGML_ASSERT(ggml_is_scalar(b));
  3413. GGML_ASSERT(ggml_is_padded_1d(a));
  3414. bool is_node = false;
  3415. if (!inplace && (a->grad || b->grad)) {
  3416. GGML_ASSERT(false); // TODO: implement backward
  3417. is_node = true;
  3418. }
  3419. // TODO: when implement backward, fix this:
  3420. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3421. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3422. result->op = GGML_OP_SCALE;
  3423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3424. result->src0 = a;
  3425. result->src1 = b;
  3426. return result;
  3427. }
  3428. struct ggml_tensor * ggml_scale(
  3429. struct ggml_context * ctx,
  3430. struct ggml_tensor * a,
  3431. struct ggml_tensor * b) {
  3432. return ggml_scale_impl(ctx, a, b, false);
  3433. }
  3434. struct ggml_tensor * ggml_scale_inplace(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a,
  3437. struct ggml_tensor * b) {
  3438. return ggml_scale_impl(ctx, a, b, true);
  3439. }
  3440. // ggml_cpy
  3441. struct ggml_tensor * ggml_cpy_impl(
  3442. struct ggml_context * ctx,
  3443. struct ggml_tensor * a,
  3444. struct ggml_tensor * b,
  3445. bool inplace) {
  3446. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3447. bool is_node = false;
  3448. if (!inplace && (a->grad || b->grad)) {
  3449. GGML_ASSERT(false); // TODO: implement backward
  3450. is_node = true;
  3451. }
  3452. // make a view of the destination
  3453. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3454. result->op = GGML_OP_CPY;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src0 = a;
  3457. result->src1 = b;
  3458. return result;
  3459. }
  3460. struct ggml_tensor * ggml_cpy(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. struct ggml_tensor * b) {
  3464. return ggml_cpy_impl(ctx, a, b, false);
  3465. }
  3466. struct ggml_tensor * ggml_cpy_inplace(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. struct ggml_tensor * b) {
  3470. return ggml_cpy_impl(ctx, a, b, true);
  3471. }
  3472. // ggml_reshape
  3473. struct ggml_tensor * ggml_reshape(
  3474. struct ggml_context * ctx,
  3475. struct ggml_tensor * a,
  3476. struct ggml_tensor * b) {
  3477. GGML_ASSERT(ggml_is_contiguous(a));
  3478. GGML_ASSERT(ggml_is_contiguous(b));
  3479. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3480. bool is_node = false;
  3481. if (a->grad || b->grad) {
  3482. GGML_ASSERT(false); // TODO: implement backward
  3483. is_node = true;
  3484. }
  3485. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3486. result->op = GGML_OP_RESHAPE;
  3487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3488. result->src0 = a;
  3489. result->src1 = NULL;
  3490. return result;
  3491. }
  3492. struct ggml_tensor * ggml_reshape_2d(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a,
  3495. int64_t ne0,
  3496. int64_t ne1) {
  3497. GGML_ASSERT(ggml_is_contiguous(a));
  3498. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3499. bool is_node = false;
  3500. if (a->grad) {
  3501. GGML_ASSERT(false); // TODO: implement backward
  3502. is_node = true;
  3503. }
  3504. const int64_t ne[2] = { ne0, ne1 };
  3505. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3506. result->op = GGML_OP_RESHAPE;
  3507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3508. result->src0 = a;
  3509. result->src1 = NULL;
  3510. return result;
  3511. }
  3512. struct ggml_tensor * ggml_reshape_3d(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. int64_t ne0,
  3516. int64_t ne1,
  3517. int64_t ne2) {
  3518. GGML_ASSERT(ggml_is_contiguous(a));
  3519. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3520. bool is_node = false;
  3521. if (a->grad) {
  3522. GGML_ASSERT(false); // TODO: implement backward
  3523. is_node = true;
  3524. }
  3525. const int64_t ne[3] = { ne0, ne1, ne2 };
  3526. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3527. result->op = GGML_OP_RESHAPE;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src0 = a;
  3530. result->src1 = NULL;
  3531. return result;
  3532. }
  3533. // ggml_view_1d
  3534. struct ggml_tensor * ggml_view_1d(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. int64_t ne0,
  3538. size_t offset) {
  3539. if (a->grad) {
  3540. GGML_ASSERT(false); // gradient propagation is not supported
  3541. }
  3542. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3543. result->op = GGML_OP_VIEW;
  3544. result->grad = NULL;
  3545. result->src0 = a;
  3546. result->src1 = NULL; // TODO: maybe store the offset here?
  3547. return result;
  3548. }
  3549. // ggml_view_2d
  3550. struct ggml_tensor * ggml_view_2d(
  3551. struct ggml_context * ctx,
  3552. struct ggml_tensor * a,
  3553. int64_t ne0,
  3554. int64_t ne1,
  3555. size_t nb1,
  3556. size_t offset) {
  3557. if (a->grad) {
  3558. GGML_ASSERT(false); // gradient propagation is not supported
  3559. }
  3560. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3561. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3562. result->nb[1] = nb1;
  3563. result->nb[2] = result->nb[1]*ne1;
  3564. result->nb[3] = result->nb[2];
  3565. result->op = GGML_OP_VIEW;
  3566. result->grad = NULL;
  3567. result->src0 = a;
  3568. result->src1 = NULL; // TODO: maybe store the offset here?
  3569. return result;
  3570. }
  3571. // ggml_view_3d
  3572. struct ggml_tensor * ggml_view_3d(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a,
  3575. int64_t ne0,
  3576. int64_t ne1,
  3577. int64_t ne2,
  3578. size_t nb1,
  3579. size_t nb2,
  3580. size_t offset) {
  3581. if (a->grad) {
  3582. GGML_ASSERT(false); // gradient propagation is not supported
  3583. }
  3584. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3585. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3586. result->nb[1] = nb1;
  3587. result->nb[2] = nb2;
  3588. result->nb[3] = result->nb[2]*ne2;
  3589. result->op = GGML_OP_VIEW;
  3590. result->grad = NULL;
  3591. result->src0 = a;
  3592. result->src1 = NULL; // TODO: maybe store the offset here?
  3593. return result;
  3594. }
  3595. // ggml_permute
  3596. struct ggml_tensor * ggml_permute(
  3597. struct ggml_context * ctx,
  3598. struct ggml_tensor * a,
  3599. int axis0,
  3600. int axis1,
  3601. int axis2,
  3602. int axis3) {
  3603. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3604. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3605. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3606. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3607. GGML_ASSERT(axis0 != axis1);
  3608. GGML_ASSERT(axis0 != axis2);
  3609. GGML_ASSERT(axis0 != axis3);
  3610. GGML_ASSERT(axis1 != axis2);
  3611. GGML_ASSERT(axis1 != axis3);
  3612. GGML_ASSERT(axis2 != axis3);
  3613. bool is_node = false;
  3614. if (a->grad) {
  3615. GGML_ASSERT(false); // TODO: implement backward
  3616. is_node = true;
  3617. }
  3618. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3619. int ne[GGML_MAX_DIMS];
  3620. int nb[GGML_MAX_DIMS];
  3621. ne[axis0] = a->ne[0];
  3622. ne[axis1] = a->ne[1];
  3623. ne[axis2] = a->ne[2];
  3624. ne[axis3] = a->ne[3];
  3625. nb[axis0] = a->nb[0];
  3626. nb[axis1] = a->nb[1];
  3627. nb[axis2] = a->nb[2];
  3628. nb[axis3] = a->nb[3];
  3629. result->ne[0] = ne[0];
  3630. result->ne[1] = ne[1];
  3631. result->ne[2] = ne[2];
  3632. result->ne[3] = ne[3];
  3633. result->nb[0] = nb[0];
  3634. result->nb[1] = nb[1];
  3635. result->nb[2] = nb[2];
  3636. result->nb[3] = nb[3];
  3637. result->op = GGML_OP_PERMUTE;
  3638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3639. result->src0 = a;
  3640. result->src1 = NULL; // TODO: maybe store the permutation here?
  3641. return result;
  3642. }
  3643. // ggml_transpose
  3644. struct ggml_tensor * ggml_transpose(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. bool is_node = false;
  3648. if (a->grad) {
  3649. GGML_ASSERT(false); // TODO: implement backward
  3650. is_node = true;
  3651. }
  3652. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3653. result->ne[0] = a->ne[1];
  3654. result->ne[1] = a->ne[0];
  3655. result->nb[0] = a->nb[1];
  3656. result->nb[1] = a->nb[0];
  3657. result->op = GGML_OP_TRANSPOSE;
  3658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3659. result->src0 = a;
  3660. result->src1 = NULL;
  3661. return result;
  3662. }
  3663. // ggml_get_rows
  3664. struct ggml_tensor * ggml_get_rows(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a,
  3667. struct ggml_tensor * b) {
  3668. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3669. bool is_node = false;
  3670. if (a->grad || b->grad) {
  3671. GGML_ASSERT(false); // TODO: implement backward
  3672. is_node = true;
  3673. }
  3674. // TODO: implement non F32 return
  3675. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3676. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3677. result->op = GGML_OP_GET_ROWS;
  3678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3679. result->src0 = a;
  3680. result->src1 = b;
  3681. return result;
  3682. }
  3683. // ggml_diag_mask_inf
  3684. struct ggml_tensor * ggml_diag_mask_inf(
  3685. struct ggml_context * ctx,
  3686. struct ggml_tensor * a,
  3687. int n_past) {
  3688. bool is_node = false;
  3689. if (a->grad) {
  3690. GGML_ASSERT(false); // TODO: implement backward
  3691. is_node = true;
  3692. }
  3693. // TODO: when implement backward, fix this:
  3694. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3695. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3696. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3697. result->op = GGML_OP_DIAG_MASK_INF;
  3698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3699. result->src0 = a;
  3700. result->src1 = b;
  3701. return result;
  3702. }
  3703. // ggml_soft_max
  3704. struct ggml_tensor * ggml_soft_max(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a) {
  3707. bool is_node = false;
  3708. if (a->grad) {
  3709. GGML_ASSERT(false); // TODO: implement backward
  3710. is_node = true;
  3711. }
  3712. // TODO: when implement backward, fix this:
  3713. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3714. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3715. result->op = GGML_OP_SOFT_MAX;
  3716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3717. result->src0 = a;
  3718. result->src1 = NULL;
  3719. return result;
  3720. }
  3721. // ggml_rope
  3722. struct ggml_tensor * ggml_rope(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. int n_past,
  3726. int n_dims,
  3727. int mode) {
  3728. GGML_ASSERT(n_past >= 0);
  3729. bool is_node = false;
  3730. if (a->grad) {
  3731. GGML_ASSERT(false); // TODO: implement backward
  3732. is_node = true;
  3733. }
  3734. // TODO: when implement backward, fix this:
  3735. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3736. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3737. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3738. ((int32_t *) b->data)[0] = n_past;
  3739. ((int32_t *) b->data)[1] = n_dims;
  3740. ((int32_t *) b->data)[2] = mode;
  3741. result->op = GGML_OP_ROPE;
  3742. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3743. result->src0 = a;
  3744. result->src1 = b;
  3745. return result;
  3746. }
  3747. // ggml_conv_1d_1s
  3748. struct ggml_tensor * ggml_conv_1d_1s(
  3749. struct ggml_context * ctx,
  3750. struct ggml_tensor * a,
  3751. struct ggml_tensor * b) {
  3752. GGML_ASSERT(ggml_is_matrix(b));
  3753. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3754. GGML_ASSERT(a->ne[3] == 1);
  3755. bool is_node = false;
  3756. if (a->grad || b->grad) {
  3757. GGML_ASSERT(false); // TODO: implement backward
  3758. is_node = true;
  3759. }
  3760. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3761. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3762. result->op = GGML_OP_CONV_1D_1S;
  3763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3764. result->src0 = a;
  3765. result->src1 = b;
  3766. return result;
  3767. }
  3768. // ggml_conv_1d_2s
  3769. struct ggml_tensor * ggml_conv_1d_2s(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. struct ggml_tensor * b) {
  3773. GGML_ASSERT(ggml_is_matrix(b));
  3774. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3775. GGML_ASSERT(a->ne[3] == 1);
  3776. bool is_node = false;
  3777. if (a->grad || b->grad) {
  3778. GGML_ASSERT(false); // TODO: implement backward
  3779. is_node = true;
  3780. }
  3781. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3782. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3783. result->op = GGML_OP_CONV_1D_2S;
  3784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3785. result->src0 = a;
  3786. result->src1 = b;
  3787. return result;
  3788. }
  3789. // ggml_flash_attn
  3790. struct ggml_tensor * ggml_flash_attn(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * q,
  3793. struct ggml_tensor * k,
  3794. struct ggml_tensor * v,
  3795. bool masked) {
  3796. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3797. // TODO: check if vT can be multiplied by (k*qT)
  3798. bool is_node = false;
  3799. if (q->grad || k->grad || v->grad) {
  3800. GGML_ASSERT(false); // TODO: implement backward
  3801. is_node = true;
  3802. }
  3803. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3804. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3805. result->op = GGML_OP_FLASH_ATTN;
  3806. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3807. result->src0 = q;
  3808. result->src1 = k;
  3809. result->opt[0] = v;
  3810. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3811. return result;
  3812. }
  3813. // ggml_flash_ff
  3814. struct ggml_tensor * ggml_flash_ff(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. struct ggml_tensor * b0,
  3818. struct ggml_tensor * b1,
  3819. struct ggml_tensor * c0,
  3820. struct ggml_tensor * c1) {
  3821. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3822. // TODO: more checks
  3823. bool is_node = false;
  3824. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3825. GGML_ASSERT(false); // TODO: implement backward
  3826. is_node = true;
  3827. }
  3828. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3829. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3830. result->op = GGML_OP_FLASH_FF;
  3831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3832. result->src0 = a;
  3833. result->src1 = b0;
  3834. result->opt[0] = b1;
  3835. result->opt[1] = c0;
  3836. result->opt[2] = c1;
  3837. return result;
  3838. }
  3839. ////////////////////////////////////////////////////////////////////////////////
  3840. void ggml_set_param(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * tensor) {
  3843. tensor->is_param = true;
  3844. GGML_ASSERT(tensor->grad == NULL);
  3845. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3846. }
  3847. // ggml_compute_forward_dup
  3848. static void ggml_compute_forward_dup_f16(
  3849. const struct ggml_compute_params * params,
  3850. const struct ggml_tensor * src0,
  3851. struct ggml_tensor * dst) {
  3852. GGML_ASSERT(params->ith == 0);
  3853. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3855. return;
  3856. }
  3857. const int64_t ne00 = src0->ne[0];
  3858. const int64_t ne01 = src0->ne[1];
  3859. const int64_t ne02 = src0->ne[2];
  3860. const int64_t ne03 = src0->ne[3];
  3861. const size_t nb00 = src0->nb[0];
  3862. const size_t nb01 = src0->nb[1];
  3863. const size_t nb02 = src0->nb[2];
  3864. const size_t nb03 = src0->nb[3];
  3865. const size_t nb0 = dst->nb[0];
  3866. const size_t nb1 = dst->nb[1];
  3867. const size_t nb2 = dst->nb[2];
  3868. const size_t nb3 = dst->nb[3];
  3869. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3870. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3871. return;
  3872. }
  3873. if (src0->type == dst->type &&
  3874. src0->ne[0] == dst->ne[0] &&
  3875. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3876. // copy by rows
  3877. const size_t rs = ne00*nb00;
  3878. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3879. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3880. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3881. memcpy(
  3882. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3883. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3884. rs);
  3885. }
  3886. }
  3887. }
  3888. return;
  3889. }
  3890. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3891. // dst counters
  3892. int64_t i10 = 0;
  3893. int64_t i11 = 0;
  3894. int64_t i12 = 0;
  3895. int64_t i13 = 0;
  3896. if (dst->type == GGML_TYPE_F16) {
  3897. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3898. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3899. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3900. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3901. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3902. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3903. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  3904. if (++i10 == ne00) {
  3905. i10 = 0;
  3906. if (++i11 == ne01) {
  3907. i11 = 0;
  3908. if (++i12 == ne02) {
  3909. i12 = 0;
  3910. if (++i13 == ne03) {
  3911. i13 = 0;
  3912. }
  3913. }
  3914. }
  3915. }
  3916. }
  3917. }
  3918. }
  3919. }
  3920. } else if (dst->type == GGML_TYPE_F32) {
  3921. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3922. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3923. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3924. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3925. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3926. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3927. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  3928. if (++i10 == ne00) {
  3929. i10 = 0;
  3930. if (++i11 == ne01) {
  3931. i11 = 0;
  3932. if (++i12 == ne02) {
  3933. i12 = 0;
  3934. if (++i13 == ne03) {
  3935. i13 = 0;
  3936. }
  3937. }
  3938. }
  3939. }
  3940. }
  3941. }
  3942. }
  3943. }
  3944. } else {
  3945. GGML_ASSERT(false); // TODO: implement
  3946. }
  3947. }
  3948. static void ggml_compute_forward_dup_f32(
  3949. const struct ggml_compute_params * params,
  3950. const struct ggml_tensor * src0,
  3951. struct ggml_tensor * dst) {
  3952. GGML_ASSERT(params->ith == 0);
  3953. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3955. return;
  3956. }
  3957. const int64_t ne00 = src0->ne[0];
  3958. const int64_t ne01 = src0->ne[1];
  3959. const int64_t ne02 = src0->ne[2];
  3960. const int64_t ne03 = src0->ne[3];
  3961. const size_t nb00 = src0->nb[0];
  3962. const size_t nb01 = src0->nb[1];
  3963. const size_t nb02 = src0->nb[2];
  3964. const size_t nb03 = src0->nb[3];
  3965. const size_t nb0 = dst->nb[0];
  3966. const size_t nb1 = dst->nb[1];
  3967. const size_t nb2 = dst->nb[2];
  3968. const size_t nb3 = dst->nb[3];
  3969. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3970. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3971. return;
  3972. }
  3973. // dst counters
  3974. int64_t i10 = 0;
  3975. int64_t i11 = 0;
  3976. int64_t i12 = 0;
  3977. int64_t i13 = 0;
  3978. if (dst->type == GGML_TYPE_F32) {
  3979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3981. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3982. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3983. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3984. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  3985. memcpy(dst_ptr, src0_ptr, sizeof(float));
  3986. if (++i10 == dst->ne[0]) {
  3987. i10 = 0;
  3988. if (++i11 == dst->ne[1]) {
  3989. i11 = 0;
  3990. if (++i12 == dst->ne[2]) {
  3991. i12 = 0;
  3992. if (++i13 == dst->ne[3]) {
  3993. i13 = 0;
  3994. }
  3995. }
  3996. }
  3997. }
  3998. }
  3999. }
  4000. }
  4001. }
  4002. } else if (dst->type == GGML_TYPE_F16) {
  4003. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4004. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4005. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4006. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4007. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4008. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4009. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4010. if (++i10 == dst->ne[0]) {
  4011. i10 = 0;
  4012. if (++i11 == dst->ne[1]) {
  4013. i11 = 0;
  4014. if (++i12 == dst->ne[2]) {
  4015. i12 = 0;
  4016. if (++i13 == dst->ne[3]) {
  4017. i13 = 0;
  4018. }
  4019. }
  4020. }
  4021. }
  4022. }
  4023. }
  4024. }
  4025. }
  4026. } else {
  4027. GGML_ASSERT(false); // TODO: implement
  4028. }
  4029. }
  4030. static void ggml_compute_forward_dup(
  4031. const struct ggml_compute_params * params,
  4032. const struct ggml_tensor * src0,
  4033. struct ggml_tensor * dst) {
  4034. switch (src0->type) {
  4035. case GGML_TYPE_F16:
  4036. {
  4037. ggml_compute_forward_dup_f16(params, src0, dst);
  4038. } break;
  4039. case GGML_TYPE_F32:
  4040. {
  4041. ggml_compute_forward_dup_f32(params, src0, dst);
  4042. } break;
  4043. case GGML_TYPE_Q4_0:
  4044. case GGML_TYPE_Q4_1:
  4045. case GGML_TYPE_I8:
  4046. case GGML_TYPE_I16:
  4047. case GGML_TYPE_I32:
  4048. case GGML_TYPE_COUNT:
  4049. {
  4050. GGML_ASSERT(false);
  4051. } break;
  4052. }
  4053. }
  4054. // ggml_compute_forward_add
  4055. static void ggml_compute_forward_add_f32(
  4056. const struct ggml_compute_params * params,
  4057. const struct ggml_tensor * src0,
  4058. const struct ggml_tensor * src1,
  4059. struct ggml_tensor * dst) {
  4060. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4062. return;
  4063. }
  4064. const int ith = params->ith;
  4065. const int nth = params->nth;
  4066. const int n = ggml_nrows(src0);
  4067. const int nc = src0->ne[0];
  4068. const size_t nb00 = src0->nb[0];
  4069. const size_t nb01 = src0->nb[1];
  4070. const size_t nb10 = src1->nb[0];
  4071. const size_t nb11 = src1->nb[1];
  4072. const size_t nb0 = dst->nb[0];
  4073. const size_t nb1 = dst->nb[1];
  4074. GGML_ASSERT( nb0 == sizeof(float));
  4075. GGML_ASSERT(nb00 == sizeof(float));
  4076. if (nb10 == sizeof(float)) {
  4077. const int j0 = (n/nth)*ith;
  4078. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4079. for (int j = j0; j < j1; j++) {
  4080. ggml_vec_add_f32(nc,
  4081. (float *) ((char *) dst->data + j*nb1),
  4082. (float *) ((char *) src0->data + j*nb01),
  4083. (float *) ((char *) src1->data + j*nb11));
  4084. }
  4085. } else {
  4086. // src1 is not contiguous
  4087. for (int j = ith; j < n; j += nth) {
  4088. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4089. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4090. for (int i = 0; i < nc; i++) {
  4091. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4092. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4093. }
  4094. }
  4095. }
  4096. }
  4097. static void ggml_compute_forward_add(
  4098. const struct ggml_compute_params * params,
  4099. const struct ggml_tensor * src0,
  4100. const struct ggml_tensor * src1,
  4101. struct ggml_tensor * dst) {
  4102. switch (src0->type) {
  4103. case GGML_TYPE_F32:
  4104. {
  4105. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4106. } break;
  4107. case GGML_TYPE_Q4_0:
  4108. case GGML_TYPE_Q4_1:
  4109. case GGML_TYPE_I8:
  4110. case GGML_TYPE_I16:
  4111. case GGML_TYPE_I32:
  4112. case GGML_TYPE_F16:
  4113. case GGML_TYPE_COUNT:
  4114. {
  4115. GGML_ASSERT(false);
  4116. } break;
  4117. }
  4118. }
  4119. // ggml_compute_forward_sub
  4120. static void ggml_compute_forward_sub_f32(
  4121. const struct ggml_compute_params * params,
  4122. const struct ggml_tensor * src0,
  4123. const struct ggml_tensor * src1,
  4124. struct ggml_tensor * dst) {
  4125. assert(params->ith == 0);
  4126. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4128. return;
  4129. }
  4130. const int n = ggml_nrows(src0);
  4131. const int nc = src0->ne[0];
  4132. assert( dst->nb[0] == sizeof(float));
  4133. assert(src0->nb[0] == sizeof(float));
  4134. assert(src1->nb[0] == sizeof(float));
  4135. for (int i = 0; i < n; i++) {
  4136. ggml_vec_sub_f32(nc,
  4137. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4138. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4139. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4140. }
  4141. }
  4142. static void ggml_compute_forward_sub(
  4143. const struct ggml_compute_params * params,
  4144. const struct ggml_tensor * src0,
  4145. const struct ggml_tensor * src1,
  4146. struct ggml_tensor * dst) {
  4147. switch (src0->type) {
  4148. case GGML_TYPE_F32:
  4149. {
  4150. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4151. } break;
  4152. case GGML_TYPE_Q4_0:
  4153. case GGML_TYPE_Q4_1:
  4154. case GGML_TYPE_I8:
  4155. case GGML_TYPE_I16:
  4156. case GGML_TYPE_I32:
  4157. case GGML_TYPE_F16:
  4158. case GGML_TYPE_COUNT:
  4159. {
  4160. GGML_ASSERT(false);
  4161. } break;
  4162. }
  4163. }
  4164. // ggml_compute_forward_mul
  4165. static void ggml_compute_forward_mul_f32(
  4166. const struct ggml_compute_params * params,
  4167. const struct ggml_tensor * src0,
  4168. const struct ggml_tensor * src1,
  4169. struct ggml_tensor * dst) {
  4170. assert(params->ith == 0);
  4171. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4172. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4173. return;
  4174. }
  4175. const int n = ggml_nrows(src0);
  4176. const int nc = src0->ne[0];
  4177. assert( dst->nb[0] == sizeof(float));
  4178. assert(src0->nb[0] == sizeof(float));
  4179. assert(src1->nb[0] == sizeof(float));
  4180. for (int i = 0; i < n; i++) {
  4181. ggml_vec_mul_f32(nc,
  4182. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4183. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4184. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4185. }
  4186. }
  4187. static void ggml_compute_forward_mul(
  4188. const struct ggml_compute_params * params,
  4189. const struct ggml_tensor * src0,
  4190. const struct ggml_tensor * src1,
  4191. struct ggml_tensor * dst) {
  4192. switch (src0->type) {
  4193. case GGML_TYPE_F32:
  4194. {
  4195. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4196. } break;
  4197. case GGML_TYPE_Q4_0:
  4198. case GGML_TYPE_Q4_1:
  4199. case GGML_TYPE_I8:
  4200. case GGML_TYPE_I16:
  4201. case GGML_TYPE_I32:
  4202. case GGML_TYPE_F16:
  4203. case GGML_TYPE_COUNT:
  4204. {
  4205. GGML_ASSERT(false);
  4206. } break;
  4207. }
  4208. }
  4209. // ggml_compute_forward_div
  4210. static void ggml_compute_forward_div_f32(
  4211. const struct ggml_compute_params * params,
  4212. const struct ggml_tensor * src0,
  4213. const struct ggml_tensor * src1,
  4214. struct ggml_tensor * dst) {
  4215. assert(params->ith == 0);
  4216. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4218. return;
  4219. }
  4220. const int n = ggml_nrows(src0);
  4221. const int nc = src0->ne[0];
  4222. assert( dst->nb[0] == sizeof(float));
  4223. assert(src0->nb[0] == sizeof(float));
  4224. assert(src1->nb[0] == sizeof(float));
  4225. for (int i = 0; i < n; i++) {
  4226. ggml_vec_div_f32(nc,
  4227. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4228. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4229. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4230. }
  4231. }
  4232. static void ggml_compute_forward_div(
  4233. const struct ggml_compute_params * params,
  4234. const struct ggml_tensor * src0,
  4235. const struct ggml_tensor * src1,
  4236. struct ggml_tensor * dst) {
  4237. switch (src0->type) {
  4238. case GGML_TYPE_F32:
  4239. {
  4240. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4241. } break;
  4242. case GGML_TYPE_Q4_0:
  4243. case GGML_TYPE_Q4_1:
  4244. case GGML_TYPE_I8:
  4245. case GGML_TYPE_I16:
  4246. case GGML_TYPE_I32:
  4247. case GGML_TYPE_F16:
  4248. case GGML_TYPE_COUNT:
  4249. {
  4250. GGML_ASSERT(false);
  4251. } break;
  4252. }
  4253. }
  4254. // ggml_compute_forward_sqr
  4255. static void ggml_compute_forward_sqr_f32(
  4256. const struct ggml_compute_params * params,
  4257. const struct ggml_tensor * src0,
  4258. struct ggml_tensor * dst) {
  4259. assert(params->ith == 0);
  4260. assert(ggml_are_same_shape(src0, dst));
  4261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4262. return;
  4263. }
  4264. const int n = ggml_nrows(src0);
  4265. const int nc = src0->ne[0];
  4266. assert( dst->nb[0] == sizeof(float));
  4267. assert(src0->nb[0] == sizeof(float));
  4268. for (int i = 0; i < n; i++) {
  4269. ggml_vec_sqr_f32(nc,
  4270. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4271. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4272. }
  4273. }
  4274. static void ggml_compute_forward_sqr(
  4275. const struct ggml_compute_params * params,
  4276. const struct ggml_tensor * src0,
  4277. struct ggml_tensor * dst) {
  4278. switch (src0->type) {
  4279. case GGML_TYPE_F32:
  4280. {
  4281. ggml_compute_forward_sqr_f32(params, src0, dst);
  4282. } break;
  4283. case GGML_TYPE_Q4_0:
  4284. case GGML_TYPE_Q4_1:
  4285. case GGML_TYPE_I8:
  4286. case GGML_TYPE_I16:
  4287. case GGML_TYPE_I32:
  4288. case GGML_TYPE_F16:
  4289. case GGML_TYPE_COUNT:
  4290. {
  4291. GGML_ASSERT(false);
  4292. } break;
  4293. }
  4294. }
  4295. // ggml_compute_forward_sqrt
  4296. static void ggml_compute_forward_sqrt_f32(
  4297. const struct ggml_compute_params * params,
  4298. const struct ggml_tensor * src0,
  4299. struct ggml_tensor * dst) {
  4300. assert(params->ith == 0);
  4301. assert(ggml_are_same_shape(src0, dst));
  4302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4303. return;
  4304. }
  4305. const int n = ggml_nrows(src0);
  4306. const int nc = src0->ne[0];
  4307. assert( dst->nb[0] == sizeof(float));
  4308. assert(src0->nb[0] == sizeof(float));
  4309. for (int i = 0; i < n; i++) {
  4310. ggml_vec_sqrt_f32(nc,
  4311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4313. }
  4314. }
  4315. static void ggml_compute_forward_sqrt(
  4316. const struct ggml_compute_params * params,
  4317. const struct ggml_tensor * src0,
  4318. struct ggml_tensor * dst) {
  4319. switch (src0->type) {
  4320. case GGML_TYPE_F32:
  4321. {
  4322. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4323. } break;
  4324. case GGML_TYPE_Q4_0:
  4325. case GGML_TYPE_Q4_1:
  4326. case GGML_TYPE_I8:
  4327. case GGML_TYPE_I16:
  4328. case GGML_TYPE_I32:
  4329. case GGML_TYPE_F16:
  4330. case GGML_TYPE_COUNT:
  4331. {
  4332. GGML_ASSERT(false);
  4333. } break;
  4334. }
  4335. }
  4336. // ggml_compute_forward_sum
  4337. static void ggml_compute_forward_sum_f32(
  4338. const struct ggml_compute_params * params,
  4339. const struct ggml_tensor * src0,
  4340. struct ggml_tensor * dst) {
  4341. assert(params->ith == 0);
  4342. assert(ggml_is_scalar(dst));
  4343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4344. return;
  4345. }
  4346. assert(ggml_is_scalar(dst));
  4347. assert(src0->nb[0] == sizeof(float));
  4348. const int64_t ne00 = src0->ne[0];
  4349. const int64_t ne01 = src0->ne[1];
  4350. const int64_t ne02 = src0->ne[2];
  4351. const int64_t ne03 = src0->ne[3];
  4352. const size_t nb01 = src0->nb[1];
  4353. const size_t nb02 = src0->nb[2];
  4354. const size_t nb03 = src0->nb[3];
  4355. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4356. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4357. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4358. ggml_vec_sum_f32(ne00,
  4359. (float *) (dst->data),
  4360. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4361. }
  4362. }
  4363. }
  4364. }
  4365. static void ggml_compute_forward_sum(
  4366. const struct ggml_compute_params * params,
  4367. const struct ggml_tensor * src0,
  4368. struct ggml_tensor * dst) {
  4369. switch (src0->type) {
  4370. case GGML_TYPE_F32:
  4371. {
  4372. ggml_compute_forward_sum_f32(params, src0, dst);
  4373. } break;
  4374. case GGML_TYPE_Q4_0:
  4375. case GGML_TYPE_Q4_1:
  4376. case GGML_TYPE_I8:
  4377. case GGML_TYPE_I16:
  4378. case GGML_TYPE_I32:
  4379. case GGML_TYPE_F16:
  4380. case GGML_TYPE_COUNT:
  4381. {
  4382. GGML_ASSERT(false);
  4383. } break;
  4384. }
  4385. }
  4386. // ggml_compute_forward_mean
  4387. static void ggml_compute_forward_mean_f32(
  4388. const struct ggml_compute_params * params,
  4389. const struct ggml_tensor * src0,
  4390. struct ggml_tensor * dst) {
  4391. assert(params->ith == 0);
  4392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4393. return;
  4394. }
  4395. assert(src0->nb[0] == sizeof(float));
  4396. const int64_t ne00 = src0->ne[0];
  4397. const int64_t ne01 = src0->ne[1];
  4398. const int64_t ne02 = src0->ne[2];
  4399. const int64_t ne03 = src0->ne[3];
  4400. const size_t nb01 = src0->nb[1];
  4401. const size_t nb02 = src0->nb[2];
  4402. const size_t nb03 = src0->nb[3];
  4403. const int64_t ne0 = dst->ne[0];
  4404. const int64_t ne1 = dst->ne[1];
  4405. const int64_t ne2 = dst->ne[2];
  4406. const int64_t ne3 = dst->ne[3];
  4407. assert(ne0 == 1);
  4408. assert(ne1 == ne01);
  4409. assert(ne2 == ne02);
  4410. assert(ne3 == ne03);
  4411. UNUSED(ne0);
  4412. UNUSED(ne1);
  4413. UNUSED(ne2);
  4414. UNUSED(ne3);
  4415. const size_t nb1 = dst->nb[1];
  4416. const size_t nb2 = dst->nb[2];
  4417. const size_t nb3 = dst->nb[3];
  4418. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4419. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4420. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4421. ggml_vec_sum_f32(ne00,
  4422. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4423. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4424. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4425. }
  4426. }
  4427. }
  4428. }
  4429. static void ggml_compute_forward_mean(
  4430. const struct ggml_compute_params * params,
  4431. const struct ggml_tensor * src0,
  4432. struct ggml_tensor * dst) {
  4433. switch (src0->type) {
  4434. case GGML_TYPE_F32:
  4435. {
  4436. ggml_compute_forward_mean_f32(params, src0, dst);
  4437. } break;
  4438. case GGML_TYPE_Q4_0:
  4439. case GGML_TYPE_Q4_1:
  4440. case GGML_TYPE_I8:
  4441. case GGML_TYPE_I16:
  4442. case GGML_TYPE_I32:
  4443. case GGML_TYPE_F16:
  4444. case GGML_TYPE_COUNT:
  4445. {
  4446. GGML_ASSERT(false);
  4447. } break;
  4448. }
  4449. }
  4450. // ggml_compute_forward_repeat
  4451. static void ggml_compute_forward_repeat_f32(
  4452. const struct ggml_compute_params * params,
  4453. const struct ggml_tensor * src0,
  4454. struct ggml_tensor * dst) {
  4455. assert(params->ith == 0);
  4456. assert(ggml_can_repeat(src0, dst));
  4457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4458. return;
  4459. }
  4460. // TODO: implement support for rank > 2 tensors
  4461. assert(src0->ne[2] == 1);
  4462. assert(src0->ne[3] == 1);
  4463. assert( dst->ne[2] == 1);
  4464. assert( dst->ne[3] == 1);
  4465. const int nc = dst->ne[0];
  4466. const int nr = dst->ne[1];
  4467. const int nc0 = src0->ne[0];
  4468. const int nr0 = src0->ne[1];
  4469. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4470. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4471. // TODO: support for transposed / permuted tensors
  4472. assert( dst->nb[0] == sizeof(float));
  4473. assert(src0->nb[0] == sizeof(float));
  4474. // TODO: maybe this is not optimal?
  4475. for (int i = 0; i < nrr; i++) {
  4476. for (int j = 0; j < ncr; j++) {
  4477. for (int k = 0; k < nr0; k++) {
  4478. ggml_vec_cpy_f32(nc0,
  4479. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4480. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4481. }
  4482. }
  4483. }
  4484. }
  4485. static void ggml_compute_forward_repeat(
  4486. const struct ggml_compute_params * params,
  4487. const struct ggml_tensor * src0,
  4488. struct ggml_tensor * dst) {
  4489. switch (src0->type) {
  4490. case GGML_TYPE_F32:
  4491. {
  4492. ggml_compute_forward_repeat_f32(params, src0, dst);
  4493. } break;
  4494. case GGML_TYPE_Q4_0:
  4495. case GGML_TYPE_Q4_1:
  4496. case GGML_TYPE_I8:
  4497. case GGML_TYPE_I16:
  4498. case GGML_TYPE_I32:
  4499. case GGML_TYPE_F16:
  4500. case GGML_TYPE_COUNT:
  4501. {
  4502. GGML_ASSERT(false);
  4503. } break;
  4504. }
  4505. }
  4506. // ggml_compute_forward_abs
  4507. static void ggml_compute_forward_abs_f32(
  4508. const struct ggml_compute_params * params,
  4509. const struct ggml_tensor * src0,
  4510. struct ggml_tensor * dst) {
  4511. assert(params->ith == 0);
  4512. assert(ggml_are_same_shape(src0, dst));
  4513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4514. return;
  4515. }
  4516. const int n = ggml_nrows(src0);
  4517. const int nc = src0->ne[0];
  4518. assert(dst->nb[0] == sizeof(float));
  4519. assert(src0->nb[0] == sizeof(float));
  4520. for (int i = 0; i < n; i++) {
  4521. ggml_vec_abs_f32(nc,
  4522. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4523. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4524. }
  4525. }
  4526. static void ggml_compute_forward_abs(
  4527. const struct ggml_compute_params * params,
  4528. const struct ggml_tensor * src0,
  4529. struct ggml_tensor * dst) {
  4530. switch (src0->type) {
  4531. case GGML_TYPE_F32:
  4532. {
  4533. ggml_compute_forward_abs_f32(params, src0, dst);
  4534. } break;
  4535. case GGML_TYPE_Q4_0:
  4536. case GGML_TYPE_Q4_1:
  4537. case GGML_TYPE_I8:
  4538. case GGML_TYPE_I16:
  4539. case GGML_TYPE_I32:
  4540. case GGML_TYPE_F16:
  4541. case GGML_TYPE_COUNT:
  4542. {
  4543. GGML_ASSERT(false);
  4544. } break;
  4545. }
  4546. }
  4547. // ggml_compute_forward_sgn
  4548. static void ggml_compute_forward_sgn_f32(
  4549. const struct ggml_compute_params * params,
  4550. const struct ggml_tensor * src0,
  4551. struct ggml_tensor * dst) {
  4552. assert(params->ith == 0);
  4553. assert(ggml_are_same_shape(src0, dst));
  4554. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4555. return;
  4556. }
  4557. const int n = ggml_nrows(src0);
  4558. const int nc = src0->ne[0];
  4559. assert(dst->nb[0] == sizeof(float));
  4560. assert(src0->nb[0] == sizeof(float));
  4561. for (int i = 0; i < n; i++) {
  4562. ggml_vec_sgn_f32(nc,
  4563. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4564. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4565. }
  4566. }
  4567. static void ggml_compute_forward_sgn(
  4568. const struct ggml_compute_params * params,
  4569. const struct ggml_tensor * src0,
  4570. struct ggml_tensor * dst) {
  4571. switch (src0->type) {
  4572. case GGML_TYPE_F32:
  4573. {
  4574. ggml_compute_forward_sgn_f32(params, src0, dst);
  4575. } break;
  4576. case GGML_TYPE_Q4_0:
  4577. case GGML_TYPE_Q4_1:
  4578. case GGML_TYPE_I8:
  4579. case GGML_TYPE_I16:
  4580. case GGML_TYPE_I32:
  4581. case GGML_TYPE_F16:
  4582. case GGML_TYPE_COUNT:
  4583. {
  4584. GGML_ASSERT(false);
  4585. } break;
  4586. }
  4587. }
  4588. // ggml_compute_forward_neg
  4589. static void ggml_compute_forward_neg_f32(
  4590. const struct ggml_compute_params * params,
  4591. const struct ggml_tensor * src0,
  4592. struct ggml_tensor * dst) {
  4593. assert(params->ith == 0);
  4594. assert(ggml_are_same_shape(src0, dst));
  4595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4596. return;
  4597. }
  4598. const int n = ggml_nrows(src0);
  4599. const int nc = src0->ne[0];
  4600. assert(dst->nb[0] == sizeof(float));
  4601. assert(src0->nb[0] == sizeof(float));
  4602. for (int i = 0; i < n; i++) {
  4603. ggml_vec_neg_f32(nc,
  4604. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4605. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4606. }
  4607. }
  4608. static void ggml_compute_forward_neg(
  4609. const struct ggml_compute_params * params,
  4610. const struct ggml_tensor * src0,
  4611. struct ggml_tensor * dst) {
  4612. switch (src0->type) {
  4613. case GGML_TYPE_F32:
  4614. {
  4615. ggml_compute_forward_neg_f32(params, src0, dst);
  4616. } break;
  4617. case GGML_TYPE_Q4_0:
  4618. case GGML_TYPE_Q4_1:
  4619. case GGML_TYPE_I8:
  4620. case GGML_TYPE_I16:
  4621. case GGML_TYPE_I32:
  4622. case GGML_TYPE_F16:
  4623. case GGML_TYPE_COUNT:
  4624. {
  4625. GGML_ASSERT(false);
  4626. } break;
  4627. }
  4628. }
  4629. // ggml_compute_forward_step
  4630. static void ggml_compute_forward_step_f32(
  4631. const struct ggml_compute_params * params,
  4632. const struct ggml_tensor * src0,
  4633. struct ggml_tensor * dst) {
  4634. assert(params->ith == 0);
  4635. assert(ggml_are_same_shape(src0, dst));
  4636. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4637. return;
  4638. }
  4639. const int n = ggml_nrows(src0);
  4640. const int nc = src0->ne[0];
  4641. assert(dst->nb[0] == sizeof(float));
  4642. assert(src0->nb[0] == sizeof(float));
  4643. for (int i = 0; i < n; i++) {
  4644. ggml_vec_step_f32(nc,
  4645. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4646. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4647. }
  4648. }
  4649. static void ggml_compute_forward_step(
  4650. const struct ggml_compute_params * params,
  4651. const struct ggml_tensor * src0,
  4652. struct ggml_tensor * dst) {
  4653. switch (src0->type) {
  4654. case GGML_TYPE_F32:
  4655. {
  4656. ggml_compute_forward_step_f32(params, src0, dst);
  4657. } break;
  4658. case GGML_TYPE_Q4_0:
  4659. case GGML_TYPE_Q4_1:
  4660. case GGML_TYPE_I8:
  4661. case GGML_TYPE_I16:
  4662. case GGML_TYPE_I32:
  4663. case GGML_TYPE_F16:
  4664. case GGML_TYPE_COUNT:
  4665. {
  4666. GGML_ASSERT(false);
  4667. } break;
  4668. }
  4669. }
  4670. // ggml_compute_forward_relu
  4671. static void ggml_compute_forward_relu_f32(
  4672. const struct ggml_compute_params * params,
  4673. const struct ggml_tensor * src0,
  4674. struct ggml_tensor * dst) {
  4675. assert(params->ith == 0);
  4676. assert(ggml_are_same_shape(src0, dst));
  4677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4678. return;
  4679. }
  4680. const int n = ggml_nrows(src0);
  4681. const int nc = src0->ne[0];
  4682. assert(dst->nb[0] == sizeof(float));
  4683. assert(src0->nb[0] == sizeof(float));
  4684. for (int i = 0; i < n; i++) {
  4685. ggml_vec_relu_f32(nc,
  4686. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4687. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4688. }
  4689. }
  4690. static void ggml_compute_forward_relu(
  4691. const struct ggml_compute_params * params,
  4692. const struct ggml_tensor * src0,
  4693. struct ggml_tensor * dst) {
  4694. switch (src0->type) {
  4695. case GGML_TYPE_F32:
  4696. {
  4697. ggml_compute_forward_relu_f32(params, src0, dst);
  4698. } break;
  4699. case GGML_TYPE_Q4_0:
  4700. case GGML_TYPE_Q4_1:
  4701. case GGML_TYPE_I8:
  4702. case GGML_TYPE_I16:
  4703. case GGML_TYPE_I32:
  4704. case GGML_TYPE_F16:
  4705. case GGML_TYPE_COUNT:
  4706. {
  4707. GGML_ASSERT(false);
  4708. } break;
  4709. }
  4710. }
  4711. // ggml_compute_forward_gelu
  4712. static void ggml_compute_forward_gelu_f32(
  4713. const struct ggml_compute_params * params,
  4714. const struct ggml_tensor * src0,
  4715. struct ggml_tensor * dst) {
  4716. GGML_ASSERT(ggml_is_contiguous(src0));
  4717. GGML_ASSERT(ggml_is_contiguous(dst));
  4718. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4719. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4720. return;
  4721. }
  4722. const int ith = params->ith;
  4723. const int nth = params->nth;
  4724. const int nc = src0->ne[0];
  4725. const int nr = ggml_nrows(src0);
  4726. // rows per thread
  4727. const int dr = (nr + nth - 1)/nth;
  4728. // row range for this thread
  4729. const int ir0 = dr*ith;
  4730. const int ir1 = MIN(ir0 + dr, nr);
  4731. for (int i1 = ir0; i1 < ir1; i1++) {
  4732. ggml_vec_gelu_f32(nc,
  4733. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4734. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4735. #ifndef NDEBUG
  4736. for (int k = 0; k < nc; k++) {
  4737. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4738. UNUSED(x);
  4739. assert(!isnan(x));
  4740. assert(!isinf(x));
  4741. }
  4742. #endif
  4743. }
  4744. }
  4745. static void ggml_compute_forward_gelu(
  4746. const struct ggml_compute_params * params,
  4747. const struct ggml_tensor * src0,
  4748. struct ggml_tensor * dst) {
  4749. switch (src0->type) {
  4750. case GGML_TYPE_F32:
  4751. {
  4752. ggml_compute_forward_gelu_f32(params, src0, dst);
  4753. } break;
  4754. case GGML_TYPE_Q4_0:
  4755. case GGML_TYPE_Q4_1:
  4756. case GGML_TYPE_I8:
  4757. case GGML_TYPE_I16:
  4758. case GGML_TYPE_I32:
  4759. case GGML_TYPE_F16:
  4760. case GGML_TYPE_COUNT:
  4761. {
  4762. GGML_ASSERT(false);
  4763. } break;
  4764. }
  4765. //printf("XXXXXXXX gelu\n");
  4766. }
  4767. // ggml_compute_forward_silu
  4768. static void ggml_compute_forward_silu_f32(
  4769. const struct ggml_compute_params * params,
  4770. const struct ggml_tensor * src0,
  4771. struct ggml_tensor * dst) {
  4772. GGML_ASSERT(ggml_is_contiguous(src0));
  4773. GGML_ASSERT(ggml_is_contiguous(dst));
  4774. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4775. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4776. return;
  4777. }
  4778. const int ith = params->ith;
  4779. const int nth = params->nth;
  4780. const int nc = src0->ne[0];
  4781. const int nr = ggml_nrows(src0);
  4782. // rows per thread
  4783. const int dr = (nr + nth - 1)/nth;
  4784. // row range for this thread
  4785. const int ir0 = dr*ith;
  4786. const int ir1 = MIN(ir0 + dr, nr);
  4787. for (int i1 = ir0; i1 < ir1; i1++) {
  4788. ggml_vec_silu_f32(nc,
  4789. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4790. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4791. #ifndef NDEBUG
  4792. for (int k = 0; k < nc; k++) {
  4793. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4794. UNUSED(x);
  4795. assert(!isnan(x));
  4796. assert(!isinf(x));
  4797. }
  4798. #endif
  4799. }
  4800. }
  4801. static void ggml_compute_forward_silu(
  4802. const struct ggml_compute_params * params,
  4803. const struct ggml_tensor * src0,
  4804. struct ggml_tensor * dst) {
  4805. switch (src0->type) {
  4806. case GGML_TYPE_F32:
  4807. {
  4808. ggml_compute_forward_silu_f32(params, src0, dst);
  4809. } break;
  4810. case GGML_TYPE_Q4_0:
  4811. case GGML_TYPE_Q4_1:
  4812. case GGML_TYPE_I8:
  4813. case GGML_TYPE_I16:
  4814. case GGML_TYPE_I32:
  4815. case GGML_TYPE_F16:
  4816. case GGML_TYPE_COUNT:
  4817. {
  4818. GGML_ASSERT(false);
  4819. } break;
  4820. }
  4821. }
  4822. // ggml_compute_forward_norm
  4823. static void ggml_compute_forward_norm_f32(
  4824. const struct ggml_compute_params * params,
  4825. const struct ggml_tensor * src0,
  4826. struct ggml_tensor * dst) {
  4827. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4829. return;
  4830. }
  4831. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4832. const int ith = params->ith;
  4833. const int nth = params->nth;
  4834. const int64_t ne00 = src0->ne[0];
  4835. const int64_t ne01 = src0->ne[1];
  4836. const int64_t ne02 = src0->ne[2];
  4837. const int64_t ne03 = src0->ne[3];
  4838. const size_t nb01 = src0->nb[1];
  4839. const size_t nb02 = src0->nb[2];
  4840. const size_t nb03 = src0->nb[3];
  4841. const size_t nb1 = dst->nb[1];
  4842. const size_t nb2 = dst->nb[2];
  4843. const size_t nb3 = dst->nb[3];
  4844. const float eps = 1e-5f; // TODO: make this a parameter
  4845. // TODO: optimize
  4846. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4847. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4848. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4849. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4850. ggml_float sum = 0.0;
  4851. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4852. sum += (ggml_float)x[i00];
  4853. }
  4854. float mean = sum/ne00;
  4855. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4856. ggml_float sum2 = 0.0;
  4857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4858. float v = x[i00] - mean;
  4859. y[i00] = v;
  4860. sum2 += (ggml_float)(v*v);
  4861. }
  4862. float variance = sum2/ne00;
  4863. const float scale = 1.0f/sqrtf(variance + eps);
  4864. ggml_vec_scale_f32(ne00, y, scale);
  4865. }
  4866. }
  4867. }
  4868. }
  4869. static void ggml_compute_forward_norm(
  4870. const struct ggml_compute_params * params,
  4871. const struct ggml_tensor * src0,
  4872. struct ggml_tensor * dst) {
  4873. switch (src0->type) {
  4874. case GGML_TYPE_F32:
  4875. {
  4876. ggml_compute_forward_norm_f32(params, src0, dst);
  4877. } break;
  4878. case GGML_TYPE_Q4_0:
  4879. case GGML_TYPE_Q4_1:
  4880. case GGML_TYPE_I8:
  4881. case GGML_TYPE_I16:
  4882. case GGML_TYPE_I32:
  4883. case GGML_TYPE_F16:
  4884. case GGML_TYPE_COUNT:
  4885. {
  4886. GGML_ASSERT(false);
  4887. } break;
  4888. }
  4889. }
  4890. static void ggml_compute_forward_rms_norm_f32(
  4891. const struct ggml_compute_params * params,
  4892. const struct ggml_tensor * src0,
  4893. struct ggml_tensor * dst) {
  4894. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4896. return;
  4897. }
  4898. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4899. const int ith = params->ith;
  4900. const int nth = params->nth;
  4901. const int64_t ne00 = src0->ne[0];
  4902. const int64_t ne01 = src0->ne[1];
  4903. const int64_t ne02 = src0->ne[2];
  4904. const int64_t ne03 = src0->ne[3];
  4905. const size_t nb01 = src0->nb[1];
  4906. const size_t nb02 = src0->nb[2];
  4907. const size_t nb03 = src0->nb[3];
  4908. const size_t nb1 = dst->nb[1];
  4909. const size_t nb2 = dst->nb[2];
  4910. const size_t nb3 = dst->nb[3];
  4911. const float eps = 1e-6f; // TODO: make this a parameter
  4912. // TODO: optimize
  4913. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4914. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4915. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4916. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4917. ggml_float sum = 0.0;
  4918. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4919. sum += (ggml_float)(x[i00] * x[i00]);
  4920. }
  4921. float mean = sum/ne00;
  4922. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4923. memcpy(y, x, ne00 * sizeof(float));
  4924. // for (int i00 = 0; i00 < ne00; i00++) {
  4925. // y[i00] = x[i00];
  4926. // }
  4927. const float scale = 1.0f/sqrtf(mean + eps);
  4928. ggml_vec_scale_f32(ne00, y, scale);
  4929. }
  4930. }
  4931. }
  4932. }
  4933. static void ggml_compute_forward_rms_norm(
  4934. const struct ggml_compute_params * params,
  4935. const struct ggml_tensor * src0,
  4936. struct ggml_tensor * dst) {
  4937. switch (src0->type) {
  4938. case GGML_TYPE_F32:
  4939. {
  4940. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4941. } break;
  4942. case GGML_TYPE_Q4_0:
  4943. case GGML_TYPE_Q4_1:
  4944. case GGML_TYPE_I8:
  4945. case GGML_TYPE_I16:
  4946. case GGML_TYPE_I32:
  4947. case GGML_TYPE_F16:
  4948. case GGML_TYPE_COUNT:
  4949. {
  4950. GGML_ASSERT(false);
  4951. } break;
  4952. }
  4953. }
  4954. // ggml_compute_forward_mul_mat
  4955. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4956. // helper function to determine if it is better to use BLAS or not
  4957. // for large matrices, BLAS is faster
  4958. static bool ggml_compute_forward_mul_mat_use_blas(
  4959. const struct ggml_tensor * src0,
  4960. const struct ggml_tensor * src1,
  4961. struct ggml_tensor * dst) {
  4962. //const int64_t ne00 = src0->ne[0];
  4963. //const int64_t ne01 = src0->ne[1];
  4964. const int64_t ne10 = src1->ne[0];
  4965. const int64_t ne0 = dst->ne[0];
  4966. const int64_t ne1 = dst->ne[1];
  4967. // TODO: find the optimal values for these
  4968. if (ggml_is_contiguous(src0) &&
  4969. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4970. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4971. return true;
  4972. }
  4973. return false;
  4974. }
  4975. #endif
  4976. static void ggml_compute_forward_mul_mat_f32(
  4977. const struct ggml_compute_params * params,
  4978. const struct ggml_tensor * src0,
  4979. const struct ggml_tensor * src1,
  4980. struct ggml_tensor * dst) {
  4981. int64_t t0 = ggml_perf_time_us();
  4982. UNUSED(t0);
  4983. const int64_t ne00 = src0->ne[0];
  4984. const int64_t ne01 = src0->ne[1];
  4985. const int64_t ne02 = src0->ne[2];
  4986. const int64_t ne03 = src0->ne[3];
  4987. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4988. const int64_t ne10 = src1->ne[0];
  4989. #endif
  4990. const int64_t ne11 = src1->ne[1];
  4991. #ifndef NDEBUG
  4992. const int64_t ne12 = src1->ne[2];
  4993. const int64_t ne13 = src1->ne[3];
  4994. const int64_t ne0 = dst->ne[0];
  4995. const int64_t ne1 = dst->ne[1];
  4996. const int64_t ne2 = dst->ne[2];
  4997. const int64_t ne3 = dst->ne[3];
  4998. const int nb00 = src0->nb[0];
  4999. #endif
  5000. const int nb01 = src0->nb[1];
  5001. const int nb02 = src0->nb[2];
  5002. const int nb03 = src0->nb[3];
  5003. #ifndef NDEBUG
  5004. const int nb10 = src1->nb[0];
  5005. #endif
  5006. const int nb11 = src1->nb[1];
  5007. const int nb12 = src1->nb[2];
  5008. const int nb13 = src1->nb[3];
  5009. const int nb0 = dst->nb[0];
  5010. const int nb1 = dst->nb[1];
  5011. const int nb2 = dst->nb[2];
  5012. const int nb3 = dst->nb[3];
  5013. const int ith = params->ith;
  5014. const int nth = params->nth;
  5015. assert(ne02 == ne12);
  5016. assert(ne03 == ne13);
  5017. assert(ne2 == ne12);
  5018. assert(ne3 == ne13);
  5019. // we don't support permuted src0 or src1
  5020. assert(nb00 == sizeof(float));
  5021. assert(nb10 == sizeof(float));
  5022. // dst cannot be transposed or permuted
  5023. assert(nb0 == sizeof(float));
  5024. assert(nb0 <= nb1);
  5025. assert(nb1 <= nb2);
  5026. assert(nb2 <= nb3);
  5027. assert(ne0 == ne01);
  5028. assert(ne1 == ne11);
  5029. assert(ne2 == ne02);
  5030. assert(ne3 == ne03);
  5031. // nb01 >= nb00 - src0 is not transposed
  5032. // compute by src0 rows
  5033. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5034. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5035. if (params->ith != 0) {
  5036. return;
  5037. }
  5038. if (params->type == GGML_TASK_INIT) {
  5039. return;
  5040. }
  5041. if (params->type == GGML_TASK_FINALIZE) {
  5042. return;
  5043. }
  5044. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5045. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5046. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5047. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5048. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5049. // zT = y * xT
  5050. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5051. ne11, ne01, ne10,
  5052. 1.0f, y, ne10,
  5053. x, ne10,
  5054. 0.0f, d, ne01);
  5055. }
  5056. }
  5057. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5058. return;
  5059. }
  5060. #endif
  5061. if (params->type == GGML_TASK_INIT) {
  5062. return;
  5063. }
  5064. if (params->type == GGML_TASK_FINALIZE) {
  5065. return;
  5066. }
  5067. // parallelize by src0 rows using ggml_vec_dot_f32
  5068. // total rows in src0
  5069. const int nr = ne01*ne02*ne03;
  5070. // rows per thread
  5071. const int dr = (nr + nth - 1)/nth;
  5072. // row range for this thread
  5073. const int ir0 = dr*ith;
  5074. const int ir1 = MIN(ir0 + dr, nr);
  5075. for (int ir = ir0; ir < ir1; ++ir) {
  5076. // src0 indices
  5077. const int i03 = ir/(ne02*ne01);
  5078. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5079. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5080. for (int64_t ic = 0; ic < ne11; ++ic) {
  5081. // src1 indices
  5082. const int i13 = i03;
  5083. const int i12 = i02;
  5084. const int i11 = ic;
  5085. // dst indices
  5086. const int i0 = i01;
  5087. const int i1 = i11;
  5088. const int i2 = i02;
  5089. const int i3 = i03;
  5090. ggml_vec_dot_f32(ne00,
  5091. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5092. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5093. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5094. }
  5095. }
  5096. //int64_t t1 = ggml_perf_time_us();
  5097. //static int64_t acc = 0;
  5098. //acc += t1 - t0;
  5099. //if (t1 - t0 > 10) {
  5100. // printf("\n");
  5101. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5102. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5103. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5104. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5105. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5106. //}
  5107. }
  5108. static void ggml_compute_forward_mul_mat_f16_f32(
  5109. const struct ggml_compute_params * params,
  5110. const struct ggml_tensor * src0,
  5111. const struct ggml_tensor * src1,
  5112. struct ggml_tensor * dst) {
  5113. int64_t t0 = ggml_perf_time_us();
  5114. UNUSED(t0);
  5115. const int64_t ne00 = src0->ne[0];
  5116. const int64_t ne01 = src0->ne[1];
  5117. const int64_t ne02 = src0->ne[2];
  5118. const int64_t ne03 = src0->ne[3];
  5119. const int64_t ne10 = src1->ne[0];
  5120. const int64_t ne11 = src1->ne[1];
  5121. const int64_t ne12 = src1->ne[2];
  5122. const int64_t ne13 = src1->ne[3];
  5123. const int64_t ne0 = dst->ne[0];
  5124. const int64_t ne1 = dst->ne[1];
  5125. const int64_t ne2 = dst->ne[2];
  5126. const int64_t ne3 = dst->ne[3];
  5127. //const int64_t ne = ne0*ne1*ne2*ne3;
  5128. const int nb00 = src0->nb[0];
  5129. const int nb01 = src0->nb[1];
  5130. const int nb02 = src0->nb[2];
  5131. const int nb03 = src0->nb[3];
  5132. const int nb10 = src1->nb[0];
  5133. const int nb11 = src1->nb[1];
  5134. const int nb12 = src1->nb[2];
  5135. const int nb13 = src1->nb[3];
  5136. const int nb0 = dst->nb[0];
  5137. const int nb1 = dst->nb[1];
  5138. const int nb2 = dst->nb[2];
  5139. const int nb3 = dst->nb[3];
  5140. const int ith = params->ith;
  5141. const int nth = params->nth;
  5142. GGML_ASSERT(ne02 == ne12);
  5143. GGML_ASSERT(ne03 == ne13);
  5144. GGML_ASSERT(ne2 == ne12);
  5145. GGML_ASSERT(ne3 == ne13);
  5146. // TODO: we don't support permuted src0
  5147. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5148. // dst cannot be transposed or permuted
  5149. GGML_ASSERT(nb0 == sizeof(float));
  5150. GGML_ASSERT(nb0 <= nb1);
  5151. GGML_ASSERT(nb1 <= nb2);
  5152. GGML_ASSERT(nb2 <= nb3);
  5153. GGML_ASSERT(ne0 == ne01);
  5154. GGML_ASSERT(ne1 == ne11);
  5155. GGML_ASSERT(ne2 == ne02);
  5156. GGML_ASSERT(ne3 == ne03);
  5157. // nb01 >= nb00 - src0 is not transposed
  5158. // compute by src0 rows
  5159. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5160. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5161. GGML_ASSERT(nb10 == sizeof(float));
  5162. if (params->ith != 0) {
  5163. return;
  5164. }
  5165. if (params->type == GGML_TASK_INIT) {
  5166. return;
  5167. }
  5168. if (params->type == GGML_TASK_FINALIZE) {
  5169. return;
  5170. }
  5171. float * const wdata = params->wdata;
  5172. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5173. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5174. {
  5175. size_t id = 0;
  5176. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5177. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5178. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5179. }
  5180. }
  5181. }
  5182. const float * x = wdata;
  5183. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5184. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5185. // zT = y * xT
  5186. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5187. ne11, ne01, ne10,
  5188. 1.0f, y, ne10,
  5189. x, ne10,
  5190. 0.0f, d, ne01);
  5191. }
  5192. }
  5193. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5194. return;
  5195. }
  5196. #endif
  5197. if (params->type == GGML_TASK_INIT) {
  5198. ggml_fp16_t * const wdata = params->wdata;
  5199. size_t id = 0;
  5200. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5201. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5202. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5203. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5204. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5205. }
  5206. }
  5207. }
  5208. }
  5209. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5210. return;
  5211. }
  5212. if (params->type == GGML_TASK_FINALIZE) {
  5213. return;
  5214. }
  5215. // fp16 -> half the size, so divide by 2
  5216. // TODO: do not support transposed src1
  5217. assert(nb10/2 == sizeof(ggml_fp16_t));
  5218. // parallelize by src0 rows using ggml_vec_dot_f16
  5219. // total rows in src0
  5220. const int nr = ne01*ne02*ne03;
  5221. // rows per thread
  5222. const int dr = (nr + nth - 1)/nth;
  5223. // row range for this thread
  5224. const int ir0 = dr*ith;
  5225. const int ir1 = MIN(ir0 + dr, nr);
  5226. ggml_fp16_t * wdata = params->wdata;
  5227. for (int ir = ir0; ir < ir1; ++ir) {
  5228. // src0 indices
  5229. const int i03 = ir/(ne02*ne01);
  5230. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5231. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5232. const int i13 = i03;
  5233. const int i12 = i02;
  5234. const int i0 = i01;
  5235. const int i2 = i02;
  5236. const int i3 = i03;
  5237. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5238. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5239. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5240. for (int64_t ic = 0; ic < ne11; ++ic) {
  5241. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5242. }
  5243. }
  5244. //int64_t t1 = ggml_time_us();
  5245. //static int64_t acc = 0;
  5246. //acc += t1 - t0;
  5247. //if (t1 - t0 > 10) {
  5248. // printf("\n");
  5249. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5250. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5251. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5252. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5253. //}
  5254. }
  5255. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5256. [GGML_TYPE_Q4_0] = {
  5257. .dequantize_row_q = dequantize_row_q4_0,
  5258. .quantize_row_q = quantize_row_q4_0,
  5259. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5260. .vec_dot_q = ggml_vec_dot_q4_0,
  5261. },
  5262. [GGML_TYPE_Q4_1] = {
  5263. .dequantize_row_q = dequantize_row_q4_1,
  5264. .quantize_row_q = quantize_row_q4_1,
  5265. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5266. .vec_dot_q = ggml_vec_dot_q4_1,
  5267. },
  5268. };
  5269. // For internal test use
  5270. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5271. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5272. return quantize_fns[i];
  5273. }
  5274. static void ggml_compute_forward_mul_mat_q_f32(
  5275. const struct ggml_compute_params * params,
  5276. const struct ggml_tensor * src0,
  5277. const struct ggml_tensor * src1,
  5278. struct ggml_tensor * dst) {
  5279. int64_t t0 = ggml_perf_time_us();
  5280. UNUSED(t0);
  5281. const int64_t ne00 = src0->ne[0];
  5282. const int64_t ne01 = src0->ne[1];
  5283. const int64_t ne02 = src0->ne[2];
  5284. const int64_t ne03 = src0->ne[3];
  5285. const int64_t ne10 = src1->ne[0];
  5286. const int64_t ne11 = src1->ne[1];
  5287. const int64_t ne12 = src1->ne[2];
  5288. const int64_t ne13 = src1->ne[3];
  5289. const int64_t ne0 = dst->ne[0];
  5290. const int64_t ne1 = dst->ne[1];
  5291. const int64_t ne2 = dst->ne[2];
  5292. const int64_t ne3 = dst->ne[3];
  5293. const int nb00 = src0->nb[0];
  5294. const int nb01 = src0->nb[1];
  5295. const int nb02 = src0->nb[2];
  5296. const int nb03 = src0->nb[3];
  5297. const int nb10 = src1->nb[0];
  5298. const int nb11 = src1->nb[1];
  5299. const int nb12 = src1->nb[2];
  5300. const int nb13 = src1->nb[3];
  5301. const int nb0 = dst->nb[0];
  5302. const int nb1 = dst->nb[1];
  5303. const int nb2 = dst->nb[2];
  5304. const int nb3 = dst->nb[3];
  5305. const int ith = params->ith;
  5306. const int nth = params->nth;
  5307. GGML_ASSERT(ne02 == ne12);
  5308. GGML_ASSERT(ne03 == ne13);
  5309. GGML_ASSERT(ne2 == ne12);
  5310. GGML_ASSERT(ne3 == ne13);
  5311. const enum ggml_type type = src0->type;
  5312. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5313. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5314. // we don't support permuted src0 or src1
  5315. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5316. GGML_ASSERT(nb10 == sizeof(float));
  5317. // dst cannot be transposed or permuted
  5318. GGML_ASSERT(nb0 == sizeof(float));
  5319. GGML_ASSERT(nb0 <= nb1);
  5320. GGML_ASSERT(nb1 <= nb2);
  5321. GGML_ASSERT(nb2 <= nb3);
  5322. GGML_ASSERT(ne0 == ne01);
  5323. GGML_ASSERT(ne1 == ne11);
  5324. GGML_ASSERT(ne2 == ne02);
  5325. GGML_ASSERT(ne3 == ne03);
  5326. // nb01 >= nb00 - src0 is not transposed
  5327. // compute by src0 rows
  5328. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5329. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5330. if (params->ith != 0) {
  5331. return;
  5332. }
  5333. if (params->type == GGML_TASK_INIT) {
  5334. return;
  5335. }
  5336. if (params->type == GGML_TASK_FINALIZE) {
  5337. return;
  5338. }
  5339. float * const wdata = params->wdata;
  5340. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5341. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5342. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5343. {
  5344. size_t id = 0;
  5345. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5346. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5347. id += ne00;
  5348. }
  5349. }
  5350. const float * x = wdata;
  5351. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5352. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5353. // zT = y * xT
  5354. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5355. ne11, ne01, ne10,
  5356. 1.0f, y, ne10,
  5357. x, ne10,
  5358. 0.0f, d, ne01);
  5359. }
  5360. }
  5361. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5362. return;
  5363. }
  5364. #endif
  5365. if (params->type == GGML_TASK_INIT) {
  5366. char * wdata = params->wdata;
  5367. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5368. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5369. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5370. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5371. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5372. wdata += row_size;
  5373. }
  5374. }
  5375. }
  5376. return;
  5377. }
  5378. if (params->type == GGML_TASK_FINALIZE) {
  5379. return;
  5380. }
  5381. // parallelize by src0 rows using ggml_vec_dot_q
  5382. // total rows in src0
  5383. const int nr = ne01*ne02*ne03;
  5384. // rows per thread
  5385. const int dr = (nr + nth - 1)/nth;
  5386. // row range for this thread
  5387. const int ir0 = dr*ith;
  5388. const int ir1 = MIN(ir0 + dr, nr);
  5389. void * wdata = params->wdata;
  5390. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5391. for (int ir = ir0; ir < ir1; ++ir) {
  5392. // src0 indices
  5393. const int i03 = ir/(ne02*ne01);
  5394. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5395. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5396. const int i13 = i03;
  5397. const int i12 = i02;
  5398. const int i0 = i01;
  5399. const int i2 = i02;
  5400. const int i3 = i03;
  5401. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5402. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5403. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5404. assert(ne00 % 32 == 0);
  5405. for (int64_t ic = 0; ic < ne11; ++ic) {
  5406. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5407. }
  5408. }
  5409. //int64_t t1 = ggml_time_us();
  5410. //static int64_t acc = 0;
  5411. //acc += t1 - t0;
  5412. //if (t1 - t0 > 10) {
  5413. // printf("\n");
  5414. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5415. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5416. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5417. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5418. //}
  5419. }
  5420. static void ggml_compute_forward_mul_mat(
  5421. const struct ggml_compute_params * params,
  5422. const struct ggml_tensor * src0,
  5423. const struct ggml_tensor * src1,
  5424. struct ggml_tensor * dst) {
  5425. switch (src0->type) {
  5426. case GGML_TYPE_Q4_0:
  5427. case GGML_TYPE_Q4_1:
  5428. {
  5429. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5430. } break;
  5431. case GGML_TYPE_F16:
  5432. {
  5433. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5434. } break;
  5435. case GGML_TYPE_F32:
  5436. {
  5437. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5438. } break;
  5439. case GGML_TYPE_I8:
  5440. case GGML_TYPE_I16:
  5441. case GGML_TYPE_I32:
  5442. case GGML_TYPE_COUNT:
  5443. {
  5444. GGML_ASSERT(false);
  5445. } break;
  5446. }
  5447. #if 0
  5448. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5449. static int first = 8;
  5450. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5451. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5452. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5453. if (first) {
  5454. --first;
  5455. } else {
  5456. for (int k = 0; k < dst->ne[1]; ++k) {
  5457. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5458. for (int i = 0; i < 16; ++i) {
  5459. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5460. }
  5461. printf("\n");
  5462. }
  5463. printf("\n");
  5464. }
  5465. printf("\n");
  5466. exit(0);
  5467. }
  5468. } else {
  5469. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5470. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5471. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5472. }
  5473. #endif
  5474. }
  5475. // ggml_compute_forward_scale
  5476. static void ggml_compute_forward_scale_f32(
  5477. const struct ggml_compute_params * params,
  5478. const struct ggml_tensor * src0,
  5479. const struct ggml_tensor * src1,
  5480. struct ggml_tensor * dst) {
  5481. GGML_ASSERT(ggml_is_contiguous(src0));
  5482. GGML_ASSERT(ggml_is_contiguous(dst));
  5483. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5484. GGML_ASSERT(ggml_is_scalar(src1));
  5485. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5486. return;
  5487. }
  5488. // scale factor
  5489. const float v = *(float *) src1->data;
  5490. const int ith = params->ith;
  5491. const int nth = params->nth;
  5492. const int nc = src0->ne[0];
  5493. const int nr = ggml_nrows(src0);
  5494. // rows per thread
  5495. const int dr = (nr + nth - 1)/nth;
  5496. // row range for this thread
  5497. const int ir0 = dr*ith;
  5498. const int ir1 = MIN(ir0 + dr, nr);
  5499. for (int i1 = ir0; i1 < ir1; i1++) {
  5500. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5501. }
  5502. }
  5503. static void ggml_compute_forward_scale(
  5504. const struct ggml_compute_params * params,
  5505. const struct ggml_tensor * src0,
  5506. const struct ggml_tensor * src1,
  5507. struct ggml_tensor * dst) {
  5508. switch (src0->type) {
  5509. case GGML_TYPE_F32:
  5510. {
  5511. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5512. } break;
  5513. case GGML_TYPE_Q4_0:
  5514. case GGML_TYPE_Q4_1:
  5515. case GGML_TYPE_I8:
  5516. case GGML_TYPE_I16:
  5517. case GGML_TYPE_I32:
  5518. case GGML_TYPE_F16:
  5519. case GGML_TYPE_COUNT:
  5520. {
  5521. GGML_ASSERT(false);
  5522. } break;
  5523. }
  5524. }
  5525. // ggml_compute_forward_cpy
  5526. static void ggml_compute_forward_cpy(
  5527. const struct ggml_compute_params * params,
  5528. const struct ggml_tensor * src0,
  5529. struct ggml_tensor * dst) {
  5530. ggml_compute_forward_dup(params, src0, dst);
  5531. }
  5532. // ggml_compute_forward_reshape
  5533. static void ggml_compute_forward_reshape(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. struct ggml_tensor * dst) {
  5537. // NOP
  5538. UNUSED(params);
  5539. UNUSED(src0);
  5540. UNUSED(dst);
  5541. }
  5542. // ggml_compute_forward_view
  5543. static void ggml_compute_forward_view(
  5544. const struct ggml_compute_params * params,
  5545. const struct ggml_tensor * src0) {
  5546. // NOP
  5547. UNUSED(params);
  5548. UNUSED(src0);
  5549. }
  5550. // ggml_compute_forward_permute
  5551. static void ggml_compute_forward_permute(
  5552. const struct ggml_compute_params * params,
  5553. const struct ggml_tensor * src0) {
  5554. // NOP
  5555. UNUSED(params);
  5556. UNUSED(src0);
  5557. }
  5558. // ggml_compute_forward_transpose
  5559. static void ggml_compute_forward_transpose(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0) {
  5562. // NOP
  5563. UNUSED(params);
  5564. UNUSED(src0);
  5565. }
  5566. // ggml_compute_forward_get_rows
  5567. static void ggml_compute_forward_get_rows_q(
  5568. const struct ggml_compute_params * params,
  5569. const struct ggml_tensor * src0,
  5570. const struct ggml_tensor * src1,
  5571. struct ggml_tensor * dst) {
  5572. assert(params->ith == 0);
  5573. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5574. return;
  5575. }
  5576. const int nc = src0->ne[0];
  5577. const int nr = ggml_nelements(src1);
  5578. const enum ggml_type type = src0->type;
  5579. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5580. assert( dst->ne[0] == nc);
  5581. assert( dst->ne[1] == nr);
  5582. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5583. for (int i = 0; i < nr; ++i) {
  5584. const int r = ((int32_t *) src1->data)[i];
  5585. dequantize_row_q(
  5586. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5587. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5588. }
  5589. }
  5590. static void ggml_compute_forward_get_rows_f16(
  5591. const struct ggml_compute_params * params,
  5592. const struct ggml_tensor * src0,
  5593. const struct ggml_tensor * src1,
  5594. struct ggml_tensor * dst) {
  5595. assert(params->ith == 0);
  5596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5597. return;
  5598. }
  5599. const int nc = src0->ne[0];
  5600. const int nr = ggml_nelements(src1);
  5601. assert( dst->ne[0] == nc);
  5602. assert( dst->ne[1] == nr);
  5603. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5604. for (int i = 0; i < nr; ++i) {
  5605. const int r = ((int32_t *) src1->data)[i];
  5606. for (int j = 0; j < nc; ++j) {
  5607. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5608. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5609. }
  5610. }
  5611. }
  5612. static void ggml_compute_forward_get_rows_f32(
  5613. const struct ggml_compute_params * params,
  5614. const struct ggml_tensor * src0,
  5615. const struct ggml_tensor * src1,
  5616. struct ggml_tensor * dst) {
  5617. assert(params->ith == 0);
  5618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5619. return;
  5620. }
  5621. const int nc = src0->ne[0];
  5622. const int nr = ggml_nelements(src1);
  5623. assert( dst->ne[0] == nc);
  5624. assert( dst->ne[1] == nr);
  5625. assert(src0->nb[0] == sizeof(float));
  5626. for (int i = 0; i < nr; ++i) {
  5627. const int r = ((int32_t *) src1->data)[i];
  5628. ggml_vec_cpy_f32(nc,
  5629. (float *) ((char *) dst->data + i*dst->nb[1]),
  5630. (float *) ((char *) src0->data + r*src0->nb[1]));
  5631. }
  5632. }
  5633. static void ggml_compute_forward_get_rows(
  5634. const struct ggml_compute_params * params,
  5635. const struct ggml_tensor * src0,
  5636. const struct ggml_tensor * src1,
  5637. struct ggml_tensor * dst) {
  5638. switch (src0->type) {
  5639. case GGML_TYPE_Q4_0:
  5640. case GGML_TYPE_Q4_1:
  5641. {
  5642. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5643. } break;
  5644. case GGML_TYPE_F16:
  5645. {
  5646. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5647. } break;
  5648. case GGML_TYPE_F32:
  5649. {
  5650. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5651. } break;
  5652. case GGML_TYPE_I8:
  5653. case GGML_TYPE_I16:
  5654. case GGML_TYPE_I32:
  5655. case GGML_TYPE_COUNT:
  5656. {
  5657. GGML_ASSERT(false);
  5658. } break;
  5659. }
  5660. //static bool first = true;
  5661. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5662. //if (first) {
  5663. // first = false;
  5664. //} else {
  5665. // for (int k = 0; k < dst->ne[1]; ++k) {
  5666. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5667. // for (int i = 0; i < 16; ++i) {
  5668. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5669. // }
  5670. // printf("\n");
  5671. // }
  5672. // printf("\n");
  5673. // }
  5674. // printf("\n");
  5675. // exit(0);
  5676. //}
  5677. }
  5678. // ggml_compute_forward_diag_mask_inf
  5679. static void ggml_compute_forward_diag_mask_inf_f32(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. const struct ggml_tensor * src1,
  5683. struct ggml_tensor * dst) {
  5684. assert(params->ith == 0);
  5685. assert(src1->type == GGML_TYPE_I32);
  5686. assert(ggml_nelements(src1) == 1);
  5687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5688. return;
  5689. }
  5690. const int n_past = ((int32_t *) src1->data)[0];
  5691. // TODO: handle transposed/permuted matrices
  5692. const int n = ggml_nrows(src0);
  5693. const int nc = src0->ne[0];
  5694. const int nr = src0->ne[1];
  5695. const int nz = n/nr;
  5696. assert( dst->nb[0] == sizeof(float));
  5697. assert(src0->nb[0] == sizeof(float));
  5698. for (int k = 0; k < nz; k++) {
  5699. for (int j = 0; j < nr; j++) {
  5700. for (int i = n_past; i < nc; i++) {
  5701. if (i > n_past + j) {
  5702. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5703. }
  5704. }
  5705. }
  5706. }
  5707. }
  5708. static void ggml_compute_forward_diag_mask_inf(
  5709. const struct ggml_compute_params * params,
  5710. const struct ggml_tensor * src0,
  5711. const struct ggml_tensor * src1,
  5712. struct ggml_tensor * dst) {
  5713. switch (src0->type) {
  5714. case GGML_TYPE_F32:
  5715. {
  5716. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5717. } break;
  5718. case GGML_TYPE_Q4_0:
  5719. case GGML_TYPE_Q4_1:
  5720. case GGML_TYPE_I8:
  5721. case GGML_TYPE_I16:
  5722. case GGML_TYPE_I32:
  5723. case GGML_TYPE_F16:
  5724. case GGML_TYPE_COUNT:
  5725. {
  5726. GGML_ASSERT(false);
  5727. } break;
  5728. }
  5729. }
  5730. // ggml_compute_forward_soft_max
  5731. static void ggml_compute_forward_soft_max_f32(
  5732. const struct ggml_compute_params * params,
  5733. const struct ggml_tensor * src0,
  5734. struct ggml_tensor * dst) {
  5735. GGML_ASSERT(ggml_is_contiguous(src0));
  5736. GGML_ASSERT(ggml_is_contiguous(dst));
  5737. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5738. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5739. return;
  5740. }
  5741. // TODO: handle transposed/permuted matrices
  5742. const int ith = params->ith;
  5743. const int nth = params->nth;
  5744. const int nc = src0->ne[0];
  5745. const int nr = ggml_nrows(src0);
  5746. // rows per thread
  5747. const int dr = (nr + nth - 1)/nth;
  5748. // row range for this thread
  5749. const int ir0 = dr*ith;
  5750. const int ir1 = MIN(ir0 + dr, nr);
  5751. for (int i1 = ir0; i1 < ir1; i1++) {
  5752. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5753. #ifndef NDEBUG
  5754. for (int i = 0; i < nc; ++i) {
  5755. //printf("p[%d] = %f\n", i, p[i]);
  5756. assert(!isnan(p[i]));
  5757. }
  5758. #endif
  5759. float max = -INFINITY;
  5760. ggml_vec_max_f32(nc, &max, p);
  5761. ggml_float sum = 0.0;
  5762. uint16_t scvt;
  5763. for (int i = 0; i < nc; i++) {
  5764. if (p[i] == -INFINITY) {
  5765. p[i] = 0.0f;
  5766. } else {
  5767. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5768. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5769. memcpy(&scvt, &s, sizeof(scvt));
  5770. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5771. sum += (ggml_float)val;
  5772. p[i] = val;
  5773. }
  5774. }
  5775. assert(sum > 0.0);
  5776. sum = 1.0/sum;
  5777. ggml_vec_scale_f32(nc, p, sum);
  5778. #ifndef NDEBUG
  5779. for (int i = 0; i < nc; ++i) {
  5780. assert(!isnan(p[i]));
  5781. assert(!isinf(p[i]));
  5782. }
  5783. #endif
  5784. }
  5785. }
  5786. static void ggml_compute_forward_soft_max(
  5787. const struct ggml_compute_params * params,
  5788. const struct ggml_tensor * src0,
  5789. struct ggml_tensor * dst) {
  5790. switch (src0->type) {
  5791. case GGML_TYPE_F32:
  5792. {
  5793. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5794. } break;
  5795. case GGML_TYPE_Q4_0:
  5796. case GGML_TYPE_Q4_1:
  5797. case GGML_TYPE_I8:
  5798. case GGML_TYPE_I16:
  5799. case GGML_TYPE_I32:
  5800. case GGML_TYPE_F16:
  5801. case GGML_TYPE_COUNT:
  5802. {
  5803. GGML_ASSERT(false);
  5804. } break;
  5805. }
  5806. }
  5807. // ggml_compute_forward_rope
  5808. static void ggml_compute_forward_rope_f32(
  5809. const struct ggml_compute_params * params,
  5810. const struct ggml_tensor * src0,
  5811. const struct ggml_tensor * src1,
  5812. struct ggml_tensor * dst) {
  5813. assert(src1->type == GGML_TYPE_I32);
  5814. assert(ggml_nelements(src1) == 3);
  5815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5816. return;
  5817. }
  5818. const int n_past = ((int32_t *) src1->data)[0];
  5819. const int n_dims = ((int32_t *) src1->data)[1];
  5820. const int mode = ((int32_t *) src1->data)[2];
  5821. //const int64_t ne0 = src0->ne[0];
  5822. const int64_t ne1 = src0->ne[1];
  5823. const int64_t ne2 = src0->ne[2];
  5824. const int64_t ne3 = src0->ne[3];
  5825. const int nb0 = src0->nb[0];
  5826. const int nb1 = src0->nb[1];
  5827. const int nb2 = src0->nb[2];
  5828. const int nb3 = src0->nb[3];
  5829. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5830. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5831. assert(nb0 == sizeof(float));
  5832. const int ith = params->ith;
  5833. const int nth = params->nth;
  5834. const int nr = ggml_nrows(src0);
  5835. // rows per thread
  5836. const int dr = (nr + nth - 1)/nth;
  5837. // row range for this thread
  5838. const int ir0 = dr*ith;
  5839. const int ir1 = MIN(ir0 + dr, nr);
  5840. // row index used to determine which thread to use
  5841. int ir = 0;
  5842. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5843. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5844. const int p = (mode == 0 ? n_past + i2 : i2);
  5845. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5846. if (ir++ < ir0) continue;
  5847. if (ir > ir1) break;
  5848. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5849. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5850. const float cos_theta = cosf(p*theta);
  5851. const float sin_theta = sinf(p*theta);
  5852. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5853. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5854. const float x0 = src[0];
  5855. const float x1 = src[1];
  5856. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5857. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5858. }
  5859. }
  5860. }
  5861. }
  5862. }
  5863. static void ggml_compute_forward_rope_f16(
  5864. const struct ggml_compute_params * params,
  5865. const struct ggml_tensor * src0,
  5866. const struct ggml_tensor * src1,
  5867. struct ggml_tensor * dst) {
  5868. assert(src1->type == GGML_TYPE_I32);
  5869. assert(ggml_nelements(src1) == 3);
  5870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5871. return;
  5872. }
  5873. const int n_past = ((int32_t *) src1->data)[0];
  5874. const int n_dims = ((int32_t *) src1->data)[1];
  5875. const int mode = ((int32_t *) src1->data)[2];
  5876. //const int64_t ne0 = src0->ne[0];
  5877. const int64_t ne1 = src0->ne[1];
  5878. const int64_t ne2 = src0->ne[2];
  5879. const int64_t ne3 = src0->ne[3];
  5880. const int nb0 = src0->nb[0];
  5881. const int nb1 = src0->nb[1];
  5882. const int nb2 = src0->nb[2];
  5883. const int nb3 = src0->nb[3];
  5884. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5885. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5886. assert(nb0 == sizeof(ggml_fp16_t));
  5887. const int ith = params->ith;
  5888. const int nth = params->nth;
  5889. const int nr = ggml_nrows(src0);
  5890. // rows per thread
  5891. const int dr = (nr + nth - 1)/nth;
  5892. // row range for this thread
  5893. const int ir0 = dr*ith;
  5894. const int ir1 = MIN(ir0 + dr, nr);
  5895. // row index used to determine which thread to use
  5896. int ir = 0;
  5897. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5898. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5899. const int p = (mode == 0 ? n_past + i2 : i2);
  5900. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5901. if (ir++ < ir0) continue;
  5902. if (ir > ir1) break;
  5903. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5904. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5905. const float cos_theta = cosf(p*theta);
  5906. const float sin_theta = sinf(p*theta);
  5907. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5908. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5909. const float x0 = ggml_fp16_to_fp32(src[0]);
  5910. const float x1 = ggml_fp16_to_fp32(src[1]);
  5911. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5912. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5913. }
  5914. }
  5915. }
  5916. }
  5917. }
  5918. static void ggml_compute_forward_rope(
  5919. const struct ggml_compute_params * params,
  5920. const struct ggml_tensor * src0,
  5921. const struct ggml_tensor * src1,
  5922. struct ggml_tensor * dst) {
  5923. switch (src0->type) {
  5924. case GGML_TYPE_F16:
  5925. {
  5926. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5927. } break;
  5928. case GGML_TYPE_F32:
  5929. {
  5930. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5931. } break;
  5932. case GGML_TYPE_Q4_0:
  5933. case GGML_TYPE_Q4_1:
  5934. case GGML_TYPE_I8:
  5935. case GGML_TYPE_I16:
  5936. case GGML_TYPE_I32:
  5937. case GGML_TYPE_COUNT:
  5938. {
  5939. GGML_ASSERT(false);
  5940. } break;
  5941. }
  5942. }
  5943. // ggml_compute_forward_conv_1d_1s
  5944. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5945. const struct ggml_compute_params * params,
  5946. const struct ggml_tensor * src0,
  5947. const struct ggml_tensor * src1,
  5948. struct ggml_tensor * dst) {
  5949. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5950. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5951. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5952. int64_t t0 = ggml_perf_time_us();
  5953. UNUSED(t0);
  5954. const int64_t ne00 = src0->ne[0];
  5955. const int64_t ne01 = src0->ne[1];
  5956. const int64_t ne02 = src0->ne[2];
  5957. //const int64_t ne03 = src0->ne[3];
  5958. const int64_t ne10 = src1->ne[0];
  5959. const int64_t ne11 = src1->ne[1];
  5960. //const int64_t ne12 = src1->ne[2];
  5961. //const int64_t ne13 = src1->ne[3];
  5962. //const int64_t ne0 = dst->ne[0];
  5963. //const int64_t ne1 = dst->ne[1];
  5964. //const int64_t ne2 = dst->ne[2];
  5965. //const int64_t ne3 = dst->ne[3];
  5966. //const int64_t ne = ne0*ne1*ne2*ne3;
  5967. const int nb00 = src0->nb[0];
  5968. const int nb01 = src0->nb[1];
  5969. const int nb02 = src0->nb[2];
  5970. //const int nb03 = src0->nb[3];
  5971. const int nb10 = src1->nb[0];
  5972. const int nb11 = src1->nb[1];
  5973. //const int nb12 = src1->nb[2];
  5974. //const int nb13 = src1->nb[3];
  5975. //const int nb0 = dst->nb[0];
  5976. const int nb1 = dst->nb[1];
  5977. //const int nb2 = dst->nb[2];
  5978. //const int nb3 = dst->nb[3];
  5979. const int ith = params->ith;
  5980. const int nth = params->nth;
  5981. const int nk = ne00;
  5982. const int nh = nk/2;
  5983. const int ew0 = ggml_up32(ne01);
  5984. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5985. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5986. GGML_ASSERT(nb10 == sizeof(float));
  5987. if (params->type == GGML_TASK_INIT) {
  5988. // TODO: fix this memset (wsize is overestimated)
  5989. memset(params->wdata, 0, params->wsize);
  5990. // prepare kernel data (src0)
  5991. {
  5992. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5993. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5994. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5995. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5996. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5997. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5998. dst_data[i00*ew0 + i01] = src[i00];
  5999. }
  6000. }
  6001. }
  6002. }
  6003. // prepare source data (src1)
  6004. {
  6005. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6006. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6007. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6008. ggml_fp16_t * dst_data = wdata;
  6009. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6010. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6011. }
  6012. }
  6013. }
  6014. return;
  6015. }
  6016. if (params->type == GGML_TASK_FINALIZE) {
  6017. return;
  6018. }
  6019. // total rows in dst
  6020. const int nr = ne02;
  6021. // rows per thread
  6022. const int dr = (nr + nth - 1)/nth;
  6023. // row range for this thread
  6024. const int ir0 = dr*ith;
  6025. const int ir1 = MIN(ir0 + dr, nr);
  6026. for (int i1 = ir0; i1 < ir1; i1++) {
  6027. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6028. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6029. dst_data[i0] = 0;
  6030. for (int k = -nh; k <= nh; k++) {
  6031. float v = 0.0f;
  6032. ggml_vec_dot_f16(ew0, &v,
  6033. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6034. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6035. dst_data[i0] += v;
  6036. }
  6037. }
  6038. }
  6039. }
  6040. static void ggml_compute_forward_conv_1d_1s_f32(
  6041. const struct ggml_compute_params * params,
  6042. const struct ggml_tensor * src0,
  6043. const struct ggml_tensor * src1,
  6044. struct ggml_tensor * dst) {
  6045. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6046. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6047. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6048. int64_t t0 = ggml_perf_time_us();
  6049. UNUSED(t0);
  6050. const int64_t ne00 = src0->ne[0];
  6051. const int64_t ne01 = src0->ne[1];
  6052. const int64_t ne02 = src0->ne[2];
  6053. //const int64_t ne03 = src0->ne[3];
  6054. const int64_t ne10 = src1->ne[0];
  6055. const int64_t ne11 = src1->ne[1];
  6056. //const int64_t ne12 = src1->ne[2];
  6057. //const int64_t ne13 = src1->ne[3];
  6058. //const int64_t ne0 = dst->ne[0];
  6059. //const int64_t ne1 = dst->ne[1];
  6060. //const int64_t ne2 = dst->ne[2];
  6061. //const int64_t ne3 = dst->ne[3];
  6062. //const int64_t ne = ne0*ne1*ne2*ne3;
  6063. const int nb00 = src0->nb[0];
  6064. const int nb01 = src0->nb[1];
  6065. const int nb02 = src0->nb[2];
  6066. //const int nb03 = src0->nb[3];
  6067. const int nb10 = src1->nb[0];
  6068. const int nb11 = src1->nb[1];
  6069. //const int nb12 = src1->nb[2];
  6070. //const int nb13 = src1->nb[3];
  6071. //const int nb0 = dst->nb[0];
  6072. const int nb1 = dst->nb[1];
  6073. //const int nb2 = dst->nb[2];
  6074. //const int nb3 = dst->nb[3];
  6075. const int ith = params->ith;
  6076. const int nth = params->nth;
  6077. const int nk = ne00;
  6078. const int nh = nk/2;
  6079. const int ew0 = ggml_up32(ne01);
  6080. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6081. GGML_ASSERT(nb00 == sizeof(float));
  6082. GGML_ASSERT(nb10 == sizeof(float));
  6083. if (params->type == GGML_TASK_INIT) {
  6084. // TODO: fix this memset (wsize is overestimated)
  6085. memset(params->wdata, 0, params->wsize);
  6086. // prepare kernel data (src0)
  6087. {
  6088. float * const wdata = (float *) params->wdata + 0;
  6089. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6090. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6091. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6092. float * dst_data = wdata + i02*ew0*ne00;
  6093. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6094. dst_data[i00*ew0 + i01] = src[i00];
  6095. }
  6096. }
  6097. }
  6098. }
  6099. // prepare source data (src1)
  6100. {
  6101. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6102. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6103. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6104. float * dst_data = wdata;
  6105. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6106. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6107. }
  6108. }
  6109. }
  6110. return;
  6111. }
  6112. if (params->type == GGML_TASK_FINALIZE) {
  6113. return;
  6114. }
  6115. // total rows in dst
  6116. const int nr = ne02;
  6117. // rows per thread
  6118. const int dr = (nr + nth - 1)/nth;
  6119. // row range for this thread
  6120. const int ir0 = dr*ith;
  6121. const int ir1 = MIN(ir0 + dr, nr);
  6122. for (int i1 = ir0; i1 < ir1; i1++) {
  6123. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6124. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6125. dst_data[i0] = 0;
  6126. for (int k = -nh; k <= nh; k++) {
  6127. float v = 0.0f;
  6128. ggml_vec_dot_f32(ew0, &v,
  6129. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6130. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6131. dst_data[i0] += v;
  6132. }
  6133. }
  6134. }
  6135. }
  6136. static void ggml_compute_forward_conv_1d_1s(
  6137. const struct ggml_compute_params * params,
  6138. const struct ggml_tensor * src0,
  6139. const struct ggml_tensor * src1,
  6140. struct ggml_tensor * dst) {
  6141. switch (src0->type) {
  6142. case GGML_TYPE_F16:
  6143. {
  6144. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6145. } break;
  6146. case GGML_TYPE_F32:
  6147. {
  6148. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6149. } break;
  6150. case GGML_TYPE_Q4_0:
  6151. case GGML_TYPE_Q4_1:
  6152. case GGML_TYPE_I8:
  6153. case GGML_TYPE_I16:
  6154. case GGML_TYPE_I32:
  6155. case GGML_TYPE_COUNT:
  6156. {
  6157. GGML_ASSERT(false);
  6158. } break;
  6159. }
  6160. }
  6161. // ggml_compute_forward_conv_1d_2s
  6162. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6163. const struct ggml_compute_params * params,
  6164. const struct ggml_tensor * src0,
  6165. const struct ggml_tensor * src1,
  6166. struct ggml_tensor * dst) {
  6167. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6168. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6169. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6170. int64_t t0 = ggml_perf_time_us();
  6171. UNUSED(t0);
  6172. const int64_t ne00 = src0->ne[0];
  6173. const int64_t ne01 = src0->ne[1];
  6174. const int64_t ne02 = src0->ne[2];
  6175. //const int64_t ne03 = src0->ne[3];
  6176. const int64_t ne10 = src1->ne[0];
  6177. const int64_t ne11 = src1->ne[1];
  6178. //const int64_t ne12 = src1->ne[2];
  6179. //const int64_t ne13 = src1->ne[3];
  6180. //const int64_t ne0 = dst->ne[0];
  6181. //const int64_t ne1 = dst->ne[1];
  6182. //const int64_t ne2 = dst->ne[2];
  6183. //const int64_t ne3 = dst->ne[3];
  6184. //const int64_t ne = ne0*ne1*ne2*ne3;
  6185. const int nb00 = src0->nb[0];
  6186. const int nb01 = src0->nb[1];
  6187. const int nb02 = src0->nb[2];
  6188. //const int nb03 = src0->nb[3];
  6189. const int nb10 = src1->nb[0];
  6190. const int nb11 = src1->nb[1];
  6191. //const int nb12 = src1->nb[2];
  6192. //const int nb13 = src1->nb[3];
  6193. //const int nb0 = dst->nb[0];
  6194. const int nb1 = dst->nb[1];
  6195. //const int nb2 = dst->nb[2];
  6196. //const int nb3 = dst->nb[3];
  6197. const int ith = params->ith;
  6198. const int nth = params->nth;
  6199. const int nk = ne00;
  6200. const int nh = nk/2;
  6201. const int ew0 = ggml_up32(ne01);
  6202. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6203. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6204. GGML_ASSERT(nb10 == sizeof(float));
  6205. if (params->type == GGML_TASK_INIT) {
  6206. // TODO: fix this memset (wsize is overestimated)
  6207. memset(params->wdata, 0, params->wsize);
  6208. // prepare kernel data (src0)
  6209. {
  6210. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6211. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6212. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6213. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6214. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6215. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6216. dst_data[i00*ew0 + i01] = src[i00];
  6217. }
  6218. }
  6219. }
  6220. }
  6221. // prepare source data (src1)
  6222. {
  6223. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6224. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6225. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6226. ggml_fp16_t * dst_data = wdata;
  6227. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6228. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6229. }
  6230. }
  6231. }
  6232. return;
  6233. }
  6234. if (params->type == GGML_TASK_FINALIZE) {
  6235. return;
  6236. }
  6237. // total rows in dst
  6238. const int nr = ne02;
  6239. // rows per thread
  6240. const int dr = (nr + nth - 1)/nth;
  6241. // row range for this thread
  6242. const int ir0 = dr*ith;
  6243. const int ir1 = MIN(ir0 + dr, nr);
  6244. for (int i1 = ir0; i1 < ir1; i1++) {
  6245. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6246. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6247. dst_data[i0/2] = 0;
  6248. for (int k = -nh; k <= nh; k++) {
  6249. float v = 0.0f;
  6250. ggml_vec_dot_f16(ew0, &v,
  6251. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6252. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6253. dst_data[i0/2] += v;
  6254. }
  6255. }
  6256. }
  6257. }
  6258. static void ggml_compute_forward_conv_1d_2s_f32(
  6259. const struct ggml_compute_params * params,
  6260. const struct ggml_tensor * src0,
  6261. const struct ggml_tensor * src1,
  6262. struct ggml_tensor * dst) {
  6263. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6264. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6265. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6266. int64_t t0 = ggml_perf_time_us();
  6267. UNUSED(t0);
  6268. const int64_t ne00 = src0->ne[0];
  6269. const int64_t ne01 = src0->ne[1];
  6270. const int64_t ne02 = src0->ne[2];
  6271. //const int64_t ne03 = src0->ne[3];
  6272. const int64_t ne10 = src1->ne[0];
  6273. const int64_t ne11 = src1->ne[1];
  6274. //const int64_t ne12 = src1->ne[2];
  6275. //const int64_t ne13 = src1->ne[3];
  6276. //const int64_t ne0 = dst->ne[0];
  6277. //const int64_t ne1 = dst->ne[1];
  6278. //const int64_t ne2 = dst->ne[2];
  6279. //const int64_t ne3 = dst->ne[3];
  6280. //const int64_t ne = ne0*ne1*ne2*ne3;
  6281. const int nb00 = src0->nb[0];
  6282. const int nb01 = src0->nb[1];
  6283. const int nb02 = src0->nb[2];
  6284. //const int nb03 = src0->nb[3];
  6285. const int nb10 = src1->nb[0];
  6286. const int nb11 = src1->nb[1];
  6287. //const int nb12 = src1->nb[2];
  6288. //const int nb13 = src1->nb[3];
  6289. //const int nb0 = dst->nb[0];
  6290. const int nb1 = dst->nb[1];
  6291. //const int nb2 = dst->nb[2];
  6292. //const int nb3 = dst->nb[3];
  6293. const int ith = params->ith;
  6294. const int nth = params->nth;
  6295. const int nk = ne00;
  6296. const int nh = nk/2;
  6297. const int ew0 = ggml_up32(ne01);
  6298. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6299. GGML_ASSERT(nb00 == sizeof(float));
  6300. GGML_ASSERT(nb10 == sizeof(float));
  6301. if (params->type == GGML_TASK_INIT) {
  6302. // TODO: fix this memset (wsize is overestimated)
  6303. memset(params->wdata, 0, params->wsize);
  6304. // prepare kernel data (src0)
  6305. {
  6306. float * const wdata = (float *) params->wdata + 0;
  6307. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6308. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6309. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6310. float * dst_data = wdata + i02*ew0*ne00;
  6311. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6312. dst_data[i00*ew0 + i01] = src[i00];
  6313. }
  6314. }
  6315. }
  6316. }
  6317. // prepare source data (src1)
  6318. {
  6319. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6320. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6321. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6322. float * dst_data = wdata;
  6323. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6324. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6325. }
  6326. }
  6327. }
  6328. return;
  6329. }
  6330. if (params->type == GGML_TASK_FINALIZE) {
  6331. return;
  6332. }
  6333. // total rows in dst
  6334. const int nr = ne02;
  6335. // rows per thread
  6336. const int dr = (nr + nth - 1)/nth;
  6337. // row range for this thread
  6338. const int ir0 = dr*ith;
  6339. const int ir1 = MIN(ir0 + dr, nr);
  6340. for (int i1 = ir0; i1 < ir1; i1++) {
  6341. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6342. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6343. dst_data[i0/2] = 0;
  6344. for (int k = -nh; k <= nh; k++) {
  6345. float v = 0.0f;
  6346. ggml_vec_dot_f32(ew0, &v,
  6347. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6348. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6349. dst_data[i0/2] += v;
  6350. }
  6351. }
  6352. }
  6353. }
  6354. static void ggml_compute_forward_conv_1d_2s(
  6355. const struct ggml_compute_params * params,
  6356. const struct ggml_tensor * src0,
  6357. const struct ggml_tensor * src1,
  6358. struct ggml_tensor * dst) {
  6359. switch (src0->type) {
  6360. case GGML_TYPE_F16:
  6361. {
  6362. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6363. } break;
  6364. case GGML_TYPE_F32:
  6365. {
  6366. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6367. } break;
  6368. case GGML_TYPE_Q4_0:
  6369. case GGML_TYPE_Q4_1:
  6370. case GGML_TYPE_I8:
  6371. case GGML_TYPE_I16:
  6372. case GGML_TYPE_I32:
  6373. case GGML_TYPE_COUNT:
  6374. {
  6375. GGML_ASSERT(false);
  6376. } break;
  6377. }
  6378. }
  6379. // ggml_compute_forward_flash_attn
  6380. static void ggml_compute_forward_flash_attn_f32(
  6381. const struct ggml_compute_params * params,
  6382. const struct ggml_tensor * q,
  6383. const struct ggml_tensor * k,
  6384. const struct ggml_tensor * v,
  6385. const bool masked,
  6386. struct ggml_tensor * dst) {
  6387. int64_t t0 = ggml_perf_time_us();
  6388. UNUSED(t0);
  6389. const int64_t neq0 = q->ne[0];
  6390. const int64_t neq1 = q->ne[1];
  6391. const int64_t neq2 = q->ne[2];
  6392. const int64_t neq3 = q->ne[3];
  6393. const int64_t nek0 = k->ne[0];
  6394. const int64_t nek1 = k->ne[1];
  6395. //const int64_t nek2 = k->ne[2];
  6396. //const int64_t nek3 = k->ne[3];
  6397. //const int64_t nev0 = v->ne[0];
  6398. const int64_t nev1 = v->ne[1];
  6399. //const int64_t nev2 = v->ne[2];
  6400. //const int64_t nev3 = v->ne[3];
  6401. const int64_t ne0 = dst->ne[0];
  6402. const int64_t ne1 = dst->ne[1];
  6403. //const int64_t ne2 = dst->ne[2];
  6404. //const int64_t ne3 = dst->ne[3];
  6405. const int nbk0 = k->nb[0];
  6406. const int nbk1 = k->nb[1];
  6407. const int nbk2 = k->nb[2];
  6408. const int nbk3 = k->nb[3];
  6409. const int nbq0 = q->nb[0];
  6410. const int nbq1 = q->nb[1];
  6411. const int nbq2 = q->nb[2];
  6412. const int nbq3 = q->nb[3];
  6413. const int nbv0 = v->nb[0];
  6414. const int nbv1 = v->nb[1];
  6415. const int nbv2 = v->nb[2];
  6416. const int nbv3 = v->nb[3];
  6417. const int nb0 = dst->nb[0];
  6418. const int nb1 = dst->nb[1];
  6419. const int nb2 = dst->nb[2];
  6420. const int nb3 = dst->nb[3];
  6421. const int ith = params->ith;
  6422. const int nth = params->nth;
  6423. const int64_t D = neq0;
  6424. const int64_t N = neq1;
  6425. const int64_t P = nek1 - N;
  6426. const int64_t M = P + N;
  6427. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6428. GGML_ASSERT(ne0 == D);
  6429. GGML_ASSERT(ne1 == N);
  6430. GGML_ASSERT(P >= 0);
  6431. GGML_ASSERT(nbq0 == sizeof(float));
  6432. GGML_ASSERT(nbk0 == sizeof(float));
  6433. GGML_ASSERT(nbv0 == sizeof(float));
  6434. GGML_ASSERT(neq0 == D);
  6435. GGML_ASSERT(nek0 == D);
  6436. GGML_ASSERT(nev1 == D);
  6437. GGML_ASSERT(neq1 == N);
  6438. GGML_ASSERT(nek1 == N + P);
  6439. GGML_ASSERT(nev1 == D);
  6440. // dst cannot be transposed or permuted
  6441. GGML_ASSERT(nb0 == sizeof(float));
  6442. GGML_ASSERT(nb0 <= nb1);
  6443. GGML_ASSERT(nb1 <= nb2);
  6444. GGML_ASSERT(nb2 <= nb3);
  6445. if (params->type == GGML_TASK_INIT) {
  6446. return;
  6447. }
  6448. if (params->type == GGML_TASK_FINALIZE) {
  6449. return;
  6450. }
  6451. // parallelize by q rows using ggml_vec_dot_f32
  6452. // total rows in q
  6453. const int nr = neq1*neq2*neq3;
  6454. // rows per thread
  6455. const int dr = (nr + nth - 1)/nth;
  6456. // row range for this thread
  6457. const int ir0 = dr*ith;
  6458. const int ir1 = MIN(ir0 + dr, nr);
  6459. const float scale = 1.0f/sqrtf(D);
  6460. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6461. for (int ir = ir0; ir < ir1; ++ir) {
  6462. // q indices
  6463. const int iq3 = ir/(neq2*neq1);
  6464. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6465. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6466. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6467. for (int i = M; i < Mup; ++i) {
  6468. S[i] = -INFINITY;
  6469. }
  6470. for (int64_t ic = 0; ic < nek1; ++ic) {
  6471. // k indices
  6472. const int ik3 = iq3;
  6473. const int ik2 = iq2;
  6474. const int ik1 = ic;
  6475. // S indices
  6476. const int i1 = ik1;
  6477. ggml_vec_dot_f32(neq0,
  6478. S + i1,
  6479. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6480. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6481. }
  6482. // scale
  6483. ggml_vec_scale_f32(nek1, S, scale);
  6484. if (masked) {
  6485. for (int64_t i = P; i < M; i++) {
  6486. if (i > P + iq1) {
  6487. S[i] = -INFINITY;
  6488. }
  6489. }
  6490. }
  6491. // softmax
  6492. {
  6493. float max = -INFINITY;
  6494. ggml_vec_max_f32(M, &max, S);
  6495. ggml_float sum = 0.0;
  6496. {
  6497. #ifdef GGML_SOFT_MAX_ACCELERATE
  6498. max = -max;
  6499. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6500. vvexpf(S, S, &Mup);
  6501. ggml_vec_sum_f32(Mup, &sum, S);
  6502. #else
  6503. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6504. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6505. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6506. float * SS = S + i;
  6507. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6508. if (SS[j] == -INFINITY) {
  6509. SS[j] = 0.0f;
  6510. } else {
  6511. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6512. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6513. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6514. sump[j] += (ggml_float)val;
  6515. SS[j] = val;
  6516. }
  6517. }
  6518. }
  6519. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6520. sum += sump[i];
  6521. }
  6522. #endif
  6523. }
  6524. assert(sum > 0.0);
  6525. sum = 1.0/sum;
  6526. ggml_vec_scale_f32(M, S, sum);
  6527. #ifndef NDEBUG
  6528. for (int i = 0; i < M; ++i) {
  6529. assert(!isnan(S[i]));
  6530. assert(!isinf(S[i]));
  6531. }
  6532. #endif
  6533. }
  6534. for (int64_t ic = 0; ic < nev1; ++ic) {
  6535. // dst indices
  6536. const int i1 = iq1;
  6537. const int i2 = iq2;
  6538. const int i3 = iq3;
  6539. ggml_vec_dot_f32(nek1,
  6540. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6541. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6542. S);
  6543. }
  6544. }
  6545. }
  6546. static void ggml_compute_forward_flash_attn_f16(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * q,
  6549. const struct ggml_tensor * k,
  6550. const struct ggml_tensor * v,
  6551. const bool masked,
  6552. struct ggml_tensor * dst) {
  6553. int64_t t0 = ggml_perf_time_us();
  6554. UNUSED(t0);
  6555. const int64_t neq0 = q->ne[0];
  6556. const int64_t neq1 = q->ne[1];
  6557. const int64_t neq2 = q->ne[2];
  6558. const int64_t neq3 = q->ne[3];
  6559. const int64_t nek0 = k->ne[0];
  6560. const int64_t nek1 = k->ne[1];
  6561. //const int64_t nek2 = k->ne[2];
  6562. //const int64_t nek3 = k->ne[3];
  6563. //const int64_t nev0 = v->ne[0];
  6564. const int64_t nev1 = v->ne[1];
  6565. //const int64_t nev2 = v->ne[2];
  6566. //const int64_t nev3 = v->ne[3];
  6567. const int64_t ne0 = dst->ne[0];
  6568. const int64_t ne1 = dst->ne[1];
  6569. //const int64_t ne2 = dst->ne[2];
  6570. //const int64_t ne3 = dst->ne[3];
  6571. const int nbk0 = k->nb[0];
  6572. const int nbk1 = k->nb[1];
  6573. const int nbk2 = k->nb[2];
  6574. const int nbk3 = k->nb[3];
  6575. const int nbq0 = q->nb[0];
  6576. const int nbq1 = q->nb[1];
  6577. const int nbq2 = q->nb[2];
  6578. const int nbq3 = q->nb[3];
  6579. const int nbv0 = v->nb[0];
  6580. const int nbv1 = v->nb[1];
  6581. const int nbv2 = v->nb[2];
  6582. const int nbv3 = v->nb[3];
  6583. const int nb0 = dst->nb[0];
  6584. const int nb1 = dst->nb[1];
  6585. const int nb2 = dst->nb[2];
  6586. const int nb3 = dst->nb[3];
  6587. const int ith = params->ith;
  6588. const int nth = params->nth;
  6589. const int64_t D = neq0;
  6590. const int64_t N = neq1;
  6591. const int64_t P = nek1 - N;
  6592. const int64_t M = P + N;
  6593. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6594. GGML_ASSERT(ne0 == D);
  6595. GGML_ASSERT(ne1 == N);
  6596. GGML_ASSERT(P >= 0);
  6597. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6598. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6599. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6600. GGML_ASSERT(neq0 == D);
  6601. GGML_ASSERT(nek0 == D);
  6602. GGML_ASSERT(nev1 == D);
  6603. GGML_ASSERT(neq1 == N);
  6604. GGML_ASSERT(nek1 == N + P);
  6605. GGML_ASSERT(nev1 == D);
  6606. // dst cannot be transposed or permuted
  6607. GGML_ASSERT(nb0 == sizeof(float));
  6608. GGML_ASSERT(nb0 <= nb1);
  6609. GGML_ASSERT(nb1 <= nb2);
  6610. GGML_ASSERT(nb2 <= nb3);
  6611. if (params->type == GGML_TASK_INIT) {
  6612. return;
  6613. }
  6614. if (params->type == GGML_TASK_FINALIZE) {
  6615. return;
  6616. }
  6617. // parallelize by q rows using ggml_vec_dot_f32
  6618. // total rows in q
  6619. const int nr = neq1*neq2*neq3;
  6620. // rows per thread
  6621. const int dr = (nr + nth - 1)/nth;
  6622. // row range for this thread
  6623. const int ir0 = dr*ith;
  6624. const int ir1 = MIN(ir0 + dr, nr);
  6625. const float scale = 1.0f/sqrtf(D);
  6626. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6627. for (int ir = ir0; ir < ir1; ++ir) {
  6628. // q indices
  6629. const int iq3 = ir/(neq2*neq1);
  6630. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6631. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6632. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6633. for (int i = M; i < Mup; ++i) {
  6634. S[i] = -INFINITY;
  6635. }
  6636. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6637. for (int64_t ic = 0; ic < nek1; ++ic) {
  6638. // k indices
  6639. const int ik3 = iq3;
  6640. const int ik2 = iq2;
  6641. const int ik1 = ic;
  6642. // S indices
  6643. const int i1 = ik1;
  6644. ggml_vec_dot_f16(neq0,
  6645. S + i1,
  6646. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6647. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6648. }
  6649. } else {
  6650. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6651. // k indices
  6652. const int ik3 = iq3;
  6653. const int ik2 = iq2;
  6654. const int ik1 = ic;
  6655. // S indices
  6656. const int i1 = ik1;
  6657. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6658. S + i1,
  6659. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6660. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6661. }
  6662. }
  6663. // scale
  6664. ggml_vec_scale_f32(nek1, S, scale);
  6665. if (masked) {
  6666. for (int64_t i = P; i < M; i++) {
  6667. if (i > P + iq1) {
  6668. S[i] = -INFINITY;
  6669. }
  6670. }
  6671. }
  6672. // softmax
  6673. {
  6674. float max = -INFINITY;
  6675. ggml_vec_max_f32(M, &max, S);
  6676. ggml_float sum = 0.0;
  6677. {
  6678. #ifdef GGML_SOFT_MAX_ACCELERATE
  6679. max = -max;
  6680. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6681. vvexpf(S, S, &Mup);
  6682. ggml_vec_sum_f32(Mup, &sum, S);
  6683. #else
  6684. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6685. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6686. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6687. float * SS = S + i;
  6688. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6689. if (SS[j] == -INFINITY) {
  6690. SS[j] = 0.0f;
  6691. } else {
  6692. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6693. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6694. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6695. sump[j] += (ggml_float)val;
  6696. SS[j] = val;
  6697. }
  6698. }
  6699. }
  6700. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6701. sum += sump[i];
  6702. }
  6703. #endif
  6704. }
  6705. assert(sum > 0.0);
  6706. sum = 1.0/sum;
  6707. ggml_vec_scale_f32(M, S, sum);
  6708. #ifndef NDEBUG
  6709. for (int i = 0; i < M; ++i) {
  6710. assert(!isnan(S[i]));
  6711. assert(!isinf(S[i]));
  6712. }
  6713. #endif
  6714. }
  6715. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6716. for (int64_t i = 0; i < M; i++) {
  6717. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6718. }
  6719. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6720. for (int64_t ic = 0; ic < nev1; ++ic) {
  6721. // dst indices
  6722. const int i1 = iq1;
  6723. const int i2 = iq2;
  6724. const int i3 = iq3;
  6725. ggml_vec_dot_f16(nek1,
  6726. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6727. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6728. S16);
  6729. }
  6730. } else {
  6731. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6732. // dst indices
  6733. const int i1 = iq1;
  6734. const int i2 = iq2;
  6735. const int i3 = iq3;
  6736. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6737. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6738. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6739. S16);
  6740. }
  6741. }
  6742. }
  6743. }
  6744. static void ggml_compute_forward_flash_attn(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * q,
  6747. const struct ggml_tensor * k,
  6748. const struct ggml_tensor * v,
  6749. const bool masked,
  6750. struct ggml_tensor * dst) {
  6751. switch (q->type) {
  6752. case GGML_TYPE_F16:
  6753. {
  6754. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6755. } break;
  6756. case GGML_TYPE_F32:
  6757. {
  6758. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6759. } break;
  6760. case GGML_TYPE_Q4_0:
  6761. case GGML_TYPE_Q4_1:
  6762. case GGML_TYPE_I8:
  6763. case GGML_TYPE_I16:
  6764. case GGML_TYPE_I32:
  6765. case GGML_TYPE_COUNT:
  6766. {
  6767. GGML_ASSERT(false);
  6768. } break;
  6769. }
  6770. }
  6771. // ggml_compute_forward_flash_ff
  6772. static void ggml_compute_forward_flash_ff_f16(
  6773. const struct ggml_compute_params * params,
  6774. const struct ggml_tensor * a, // F16
  6775. const struct ggml_tensor * b0, // F16 fc_w
  6776. const struct ggml_tensor * b1, // F32 fc_b
  6777. const struct ggml_tensor * c0, // F16 proj_w
  6778. const struct ggml_tensor * c1, // F32 proj_b
  6779. struct ggml_tensor * dst) {
  6780. int64_t t0 = ggml_perf_time_us();
  6781. UNUSED(t0);
  6782. const int64_t nea0 = a->ne[0];
  6783. const int64_t nea1 = a->ne[1];
  6784. const int64_t nea2 = a->ne[2];
  6785. const int64_t nea3 = a->ne[3];
  6786. const int64_t neb00 = b0->ne[0];
  6787. const int64_t neb01 = b0->ne[1];
  6788. //const int64_t neb02 = b0->ne[2];
  6789. //const int64_t neb03 = b0->ne[3];
  6790. const int64_t neb10 = b1->ne[0];
  6791. const int64_t neb11 = b1->ne[1];
  6792. //const int64_t neb12 = b1->ne[2];
  6793. //const int64_t neb13 = b1->ne[3];
  6794. const int64_t nec00 = c0->ne[0];
  6795. const int64_t nec01 = c0->ne[1];
  6796. //const int64_t nec02 = c0->ne[2];
  6797. //const int64_t nec03 = c0->ne[3];
  6798. const int64_t nec10 = c1->ne[0];
  6799. const int64_t nec11 = c1->ne[1];
  6800. //const int64_t nec12 = c1->ne[2];
  6801. //const int64_t nec13 = c1->ne[3];
  6802. const int64_t ne0 = dst->ne[0];
  6803. const int64_t ne1 = dst->ne[1];
  6804. const int64_t ne2 = dst->ne[2];
  6805. //const int64_t ne3 = dst->ne[3];
  6806. const int nba0 = a->nb[0];
  6807. const int nba1 = a->nb[1];
  6808. const int nba2 = a->nb[2];
  6809. const int nba3 = a->nb[3];
  6810. const int nbb00 = b0->nb[0];
  6811. const int nbb01 = b0->nb[1];
  6812. const int nbb02 = b0->nb[2];
  6813. const int nbb03 = b0->nb[3];
  6814. const int nbb10 = b1->nb[0];
  6815. //const int nbb11 = b1->nb[1];
  6816. //const int nbb12 = b1->nb[2];
  6817. //const int nbb13 = b1->nb[3];
  6818. const int nbc00 = c0->nb[0];
  6819. const int nbc01 = c0->nb[1];
  6820. const int nbc02 = c0->nb[2];
  6821. const int nbc03 = c0->nb[3];
  6822. const int nbc10 = c1->nb[0];
  6823. //const int nbc11 = c1->nb[1];
  6824. //const int nbc12 = c1->nb[2];
  6825. //const int nbc13 = c1->nb[3];
  6826. const int nb0 = dst->nb[0];
  6827. const int nb1 = dst->nb[1];
  6828. const int nb2 = dst->nb[2];
  6829. const int nb3 = dst->nb[3];
  6830. const int ith = params->ith;
  6831. const int nth = params->nth;
  6832. const int64_t D = nea0;
  6833. //const int64_t N = nea1;
  6834. const int64_t M = neb01;
  6835. GGML_ASSERT(ne0 == nea0);
  6836. GGML_ASSERT(ne1 == nea1);
  6837. GGML_ASSERT(ne2 == nea2);
  6838. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6839. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6840. GGML_ASSERT(nbb10 == sizeof(float));
  6841. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6842. GGML_ASSERT(nbc10 == sizeof(float));
  6843. GGML_ASSERT(neb00 == D);
  6844. GGML_ASSERT(neb01 == M);
  6845. GGML_ASSERT(neb10 == M);
  6846. GGML_ASSERT(neb11 == 1);
  6847. GGML_ASSERT(nec00 == M);
  6848. GGML_ASSERT(nec01 == D);
  6849. GGML_ASSERT(nec10 == D);
  6850. GGML_ASSERT(nec11 == 1);
  6851. // dst cannot be transposed or permuted
  6852. GGML_ASSERT(nb0 == sizeof(float));
  6853. GGML_ASSERT(nb0 <= nb1);
  6854. GGML_ASSERT(nb1 <= nb2);
  6855. GGML_ASSERT(nb2 <= nb3);
  6856. if (params->type == GGML_TASK_INIT) {
  6857. return;
  6858. }
  6859. if (params->type == GGML_TASK_FINALIZE) {
  6860. return;
  6861. }
  6862. // parallelize by a rows using ggml_vec_dot_f32
  6863. // total rows in a
  6864. const int nr = nea1*nea2*nea3;
  6865. // rows per thread
  6866. const int dr = (nr + nth - 1)/nth;
  6867. // row range for this thread
  6868. const int ir0 = dr*ith;
  6869. const int ir1 = MIN(ir0 + dr, nr);
  6870. for (int ir = ir0; ir < ir1; ++ir) {
  6871. // a indices
  6872. const int ia3 = ir/(nea2*nea1);
  6873. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6874. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6875. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6876. for (int64_t ic = 0; ic < neb01; ++ic) {
  6877. // b0 indices
  6878. const int ib03 = ia3;
  6879. const int ib02 = ia2;
  6880. const int ib01 = ic;
  6881. // S indices
  6882. const int i1 = ib01;
  6883. ggml_vec_dot_f16(nea0,
  6884. S + i1,
  6885. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6886. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6887. }
  6888. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6889. //ggml_vec_gelu_f32(neb01, S, S);
  6890. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6891. for (int64_t i = 0; i < M; i++) {
  6892. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6893. }
  6894. ggml_vec_gelu_f16(neb01, S16, S16);
  6895. {
  6896. // dst indices
  6897. const int i1 = ia1;
  6898. const int i2 = ia2;
  6899. const int i3 = ia3;
  6900. for (int64_t ic = 0; ic < nec01; ++ic) {
  6901. ggml_vec_dot_f16(neb01,
  6902. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6903. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6904. S16);
  6905. }
  6906. ggml_vec_add_f32(nec01,
  6907. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6908. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6909. (float *) c1->data);
  6910. }
  6911. }
  6912. }
  6913. static void ggml_compute_forward_flash_ff(
  6914. const struct ggml_compute_params * params,
  6915. const struct ggml_tensor * a,
  6916. const struct ggml_tensor * b0,
  6917. const struct ggml_tensor * b1,
  6918. const struct ggml_tensor * c0,
  6919. const struct ggml_tensor * c1,
  6920. struct ggml_tensor * dst) {
  6921. switch (b0->type) {
  6922. case GGML_TYPE_F16:
  6923. {
  6924. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6925. } break;
  6926. case GGML_TYPE_F32:
  6927. {
  6928. GGML_ASSERT(false); // TODO
  6929. } break;
  6930. case GGML_TYPE_Q4_0:
  6931. case GGML_TYPE_Q4_1:
  6932. case GGML_TYPE_I8:
  6933. case GGML_TYPE_I16:
  6934. case GGML_TYPE_I32:
  6935. case GGML_TYPE_COUNT:
  6936. {
  6937. GGML_ASSERT(false);
  6938. } break;
  6939. }
  6940. }
  6941. /////////////////////////////////
  6942. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6943. GGML_ASSERT(params);
  6944. switch (tensor->op) {
  6945. case GGML_OP_DUP:
  6946. {
  6947. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6948. } break;
  6949. case GGML_OP_ADD:
  6950. {
  6951. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6952. } break;
  6953. case GGML_OP_SUB:
  6954. {
  6955. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6956. } break;
  6957. case GGML_OP_MUL:
  6958. {
  6959. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6960. } break;
  6961. case GGML_OP_DIV:
  6962. {
  6963. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6964. } break;
  6965. case GGML_OP_SQR:
  6966. {
  6967. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6968. } break;
  6969. case GGML_OP_SQRT:
  6970. {
  6971. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6972. } break;
  6973. case GGML_OP_SUM:
  6974. {
  6975. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6976. } break;
  6977. case GGML_OP_MEAN:
  6978. {
  6979. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6980. } break;
  6981. case GGML_OP_REPEAT:
  6982. {
  6983. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6984. } break;
  6985. case GGML_OP_ABS:
  6986. {
  6987. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6988. } break;
  6989. case GGML_OP_SGN:
  6990. {
  6991. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6992. } break;
  6993. case GGML_OP_NEG:
  6994. {
  6995. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6996. } break;
  6997. case GGML_OP_STEP:
  6998. {
  6999. ggml_compute_forward_step(params, tensor->src0, tensor);
  7000. } break;
  7001. case GGML_OP_RELU:
  7002. {
  7003. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7004. } break;
  7005. case GGML_OP_GELU:
  7006. {
  7007. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7008. } break;
  7009. case GGML_OP_SILU:
  7010. {
  7011. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7012. } break;
  7013. case GGML_OP_NORM:
  7014. {
  7015. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7016. } break;
  7017. case GGML_OP_RMS_NORM:
  7018. {
  7019. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7020. } break;
  7021. case GGML_OP_MUL_MAT:
  7022. {
  7023. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7024. } break;
  7025. case GGML_OP_SCALE:
  7026. {
  7027. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7028. } break;
  7029. case GGML_OP_CPY:
  7030. {
  7031. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7032. } break;
  7033. case GGML_OP_RESHAPE:
  7034. {
  7035. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7036. } break;
  7037. case GGML_OP_VIEW:
  7038. {
  7039. ggml_compute_forward_view(params, tensor->src0);
  7040. } break;
  7041. case GGML_OP_PERMUTE:
  7042. {
  7043. ggml_compute_forward_permute(params, tensor->src0);
  7044. } break;
  7045. case GGML_OP_TRANSPOSE:
  7046. {
  7047. ggml_compute_forward_transpose(params, tensor->src0);
  7048. } break;
  7049. case GGML_OP_GET_ROWS:
  7050. {
  7051. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7052. } break;
  7053. case GGML_OP_DIAG_MASK_INF:
  7054. {
  7055. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7056. } break;
  7057. case GGML_OP_SOFT_MAX:
  7058. {
  7059. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7060. } break;
  7061. case GGML_OP_ROPE:
  7062. {
  7063. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7064. } break;
  7065. case GGML_OP_CONV_1D_1S:
  7066. {
  7067. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7068. } break;
  7069. case GGML_OP_CONV_1D_2S:
  7070. {
  7071. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7072. } break;
  7073. case GGML_OP_FLASH_ATTN:
  7074. {
  7075. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7076. GGML_ASSERT(t == 0 || t == 1);
  7077. bool masked = t != 0;
  7078. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7079. } break;
  7080. case GGML_OP_FLASH_FF:
  7081. {
  7082. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7083. } break;
  7084. case GGML_OP_NONE:
  7085. {
  7086. // nop
  7087. } break;
  7088. case GGML_OP_COUNT:
  7089. {
  7090. GGML_ASSERT(false);
  7091. } break;
  7092. }
  7093. }
  7094. ////////////////////////////////////////////////////////////////////////////////
  7095. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7096. struct ggml_tensor * src0 = tensor->src0;
  7097. struct ggml_tensor * src1 = tensor->src1;
  7098. switch (tensor->op) {
  7099. case GGML_OP_DUP:
  7100. {
  7101. if (src0->grad) {
  7102. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7103. }
  7104. } break;
  7105. case GGML_OP_ADD:
  7106. {
  7107. if (src0->grad) {
  7108. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7109. }
  7110. if (src1->grad) {
  7111. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7112. }
  7113. } break;
  7114. case GGML_OP_SUB:
  7115. {
  7116. if (src0->grad) {
  7117. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7118. }
  7119. if (src1->grad) {
  7120. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7121. }
  7122. } break;
  7123. case GGML_OP_MUL:
  7124. {
  7125. if (src0->grad) {
  7126. src0->grad =
  7127. ggml_add_impl(ctx,
  7128. src0->grad,
  7129. ggml_mul(ctx, src1, tensor->grad),
  7130. inplace);
  7131. }
  7132. if (src1->grad) {
  7133. src1->grad =
  7134. ggml_add_impl(ctx,
  7135. src1->grad,
  7136. ggml_mul(ctx, src0, tensor->grad),
  7137. inplace);
  7138. }
  7139. } break;
  7140. case GGML_OP_DIV:
  7141. {
  7142. if (src0->grad) {
  7143. src0->grad =
  7144. ggml_add_impl(ctx,
  7145. src0->grad,
  7146. ggml_div(ctx, tensor->grad, src1),
  7147. inplace);
  7148. }
  7149. if (src1->grad) {
  7150. src1->grad =
  7151. ggml_sub_impl(ctx,
  7152. src1->grad,
  7153. ggml_mul(ctx,
  7154. tensor->grad,
  7155. ggml_div(ctx, tensor, src1)),
  7156. inplace);
  7157. }
  7158. } break;
  7159. case GGML_OP_SQR:
  7160. {
  7161. if (src0->grad) {
  7162. src0->grad =
  7163. ggml_add_impl(ctx,
  7164. src0->grad,
  7165. ggml_mul(ctx,
  7166. ggml_mul(ctx, src0, tensor->grad),
  7167. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7168. inplace);
  7169. }
  7170. } break;
  7171. case GGML_OP_SQRT:
  7172. {
  7173. if (src0->grad) {
  7174. src0->grad =
  7175. ggml_add_impl(ctx,
  7176. src0->grad,
  7177. ggml_div(ctx,
  7178. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7179. tensor),
  7180. inplace);
  7181. }
  7182. } break;
  7183. case GGML_OP_SUM:
  7184. {
  7185. if (src0->grad) {
  7186. src0->grad =
  7187. ggml_add_impl(ctx,
  7188. src0->grad,
  7189. ggml_repeat(ctx, tensor->grad, src0->grad),
  7190. inplace);
  7191. }
  7192. } break;
  7193. case GGML_OP_MEAN:
  7194. {
  7195. GGML_ASSERT(false); // TODO: implement
  7196. } break;
  7197. case GGML_OP_REPEAT:
  7198. {
  7199. if (src0->grad) {
  7200. src0->grad =
  7201. ggml_add_impl(ctx,
  7202. src0->grad,
  7203. ggml_sum(ctx, tensor->grad),
  7204. inplace);
  7205. }
  7206. } break;
  7207. case GGML_OP_ABS:
  7208. {
  7209. if (src0->grad) {
  7210. src0->grad =
  7211. ggml_add_impl(ctx,
  7212. src0->grad,
  7213. ggml_mul(ctx,
  7214. ggml_sgn(ctx, src0),
  7215. tensor->grad),
  7216. inplace);
  7217. }
  7218. } break;
  7219. case GGML_OP_SGN:
  7220. {
  7221. if (src0->grad) {
  7222. // noop
  7223. }
  7224. } break;
  7225. case GGML_OP_NEG:
  7226. {
  7227. if (src0->grad) {
  7228. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7229. }
  7230. } break;
  7231. case GGML_OP_STEP:
  7232. {
  7233. if (src0->grad) {
  7234. // noop
  7235. }
  7236. } break;
  7237. case GGML_OP_RELU:
  7238. {
  7239. if (src0->grad) {
  7240. src0->grad = ggml_sub_impl(ctx,
  7241. src0->grad,
  7242. ggml_mul(ctx,
  7243. ggml_step(ctx, src0),
  7244. tensor->grad),
  7245. inplace);
  7246. }
  7247. } break;
  7248. case GGML_OP_GELU:
  7249. {
  7250. GGML_ASSERT(false); // TODO: not implemented
  7251. } break;
  7252. case GGML_OP_SILU:
  7253. {
  7254. GGML_ASSERT(false); // TODO: not implemented
  7255. } break;
  7256. case GGML_OP_NORM:
  7257. {
  7258. GGML_ASSERT(false); // TODO: not implemented
  7259. } break;
  7260. case GGML_OP_RMS_NORM:
  7261. {
  7262. GGML_ASSERT(false); // TODO: not implemented
  7263. } break;
  7264. case GGML_OP_MUL_MAT:
  7265. {
  7266. if (src0->grad) {
  7267. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7268. GGML_ASSERT(false);
  7269. }
  7270. if (src1->grad) {
  7271. src1->grad =
  7272. ggml_add_impl(ctx,
  7273. src1->grad,
  7274. // TODO: fix transpose, the node will break the graph connections
  7275. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7276. inplace);
  7277. }
  7278. } break;
  7279. case GGML_OP_SCALE:
  7280. {
  7281. GGML_ASSERT(false); // TODO: not implemented
  7282. } break;
  7283. case GGML_OP_CPY:
  7284. {
  7285. GGML_ASSERT(false); // TODO: not implemented
  7286. } break;
  7287. case GGML_OP_RESHAPE:
  7288. {
  7289. GGML_ASSERT(false); // TODO: not implemented
  7290. } break;
  7291. case GGML_OP_VIEW:
  7292. {
  7293. GGML_ASSERT(false); // not supported
  7294. } break;
  7295. case GGML_OP_PERMUTE:
  7296. {
  7297. GGML_ASSERT(false); // TODO: not implemented
  7298. } break;
  7299. case GGML_OP_TRANSPOSE:
  7300. {
  7301. GGML_ASSERT(false); // TODO: not implemented
  7302. } break;
  7303. case GGML_OP_GET_ROWS:
  7304. {
  7305. GGML_ASSERT(false); // TODO: not implemented
  7306. } break;
  7307. case GGML_OP_DIAG_MASK_INF:
  7308. {
  7309. GGML_ASSERT(false); // TODO: not implemented
  7310. } break;
  7311. case GGML_OP_SOFT_MAX:
  7312. {
  7313. GGML_ASSERT(false); // TODO: not implemented
  7314. } break;
  7315. case GGML_OP_ROPE:
  7316. {
  7317. GGML_ASSERT(false); // TODO: not implemented
  7318. } break;
  7319. case GGML_OP_CONV_1D_1S:
  7320. {
  7321. GGML_ASSERT(false); // TODO: not implemented
  7322. } break;
  7323. case GGML_OP_CONV_1D_2S:
  7324. {
  7325. GGML_ASSERT(false); // TODO: not implemented
  7326. } break;
  7327. case GGML_OP_FLASH_ATTN:
  7328. {
  7329. GGML_ASSERT(false); // not supported
  7330. } break;
  7331. case GGML_OP_FLASH_FF:
  7332. {
  7333. GGML_ASSERT(false); // not supported
  7334. } break;
  7335. case GGML_OP_NONE:
  7336. {
  7337. // nop
  7338. } break;
  7339. case GGML_OP_COUNT:
  7340. {
  7341. GGML_ASSERT(false);
  7342. } break;
  7343. }
  7344. }
  7345. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7346. if (node->grad == NULL) {
  7347. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7348. // it can also happen during forward pass, if the user performs computations with constants
  7349. if (node->op != GGML_OP_NONE) {
  7350. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7351. }
  7352. }
  7353. // check if already visited
  7354. for (int i = 0; i < cgraph->n_nodes; i++) {
  7355. if (cgraph->nodes[i] == node) {
  7356. return;
  7357. }
  7358. }
  7359. for (int i = 0; i < cgraph->n_leafs; i++) {
  7360. if (cgraph->leafs[i] == node) {
  7361. return;
  7362. }
  7363. }
  7364. if (node->src0) {
  7365. ggml_visit_parents(cgraph, node->src0);
  7366. }
  7367. if (node->src1) {
  7368. ggml_visit_parents(cgraph, node->src1);
  7369. }
  7370. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7371. if (node->opt[i]) {
  7372. ggml_visit_parents(cgraph, node->opt[i]);
  7373. }
  7374. }
  7375. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7376. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7377. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7378. cgraph->leafs[cgraph->n_leafs] = node;
  7379. cgraph->n_leafs++;
  7380. } else {
  7381. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7382. cgraph->nodes[cgraph->n_nodes] = node;
  7383. cgraph->grads[cgraph->n_nodes] = node->grad;
  7384. cgraph->n_nodes++;
  7385. }
  7386. }
  7387. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7388. if (!expand) {
  7389. cgraph->n_nodes = 0;
  7390. cgraph->n_leafs = 0;
  7391. }
  7392. const int n0 = cgraph->n_nodes;
  7393. UNUSED(n0);
  7394. ggml_visit_parents(cgraph, tensor);
  7395. const int n_new = cgraph->n_nodes - n0;
  7396. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7397. if (n_new > 0) {
  7398. // the last added node should always be starting point
  7399. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7400. }
  7401. }
  7402. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7403. ggml_build_forward_impl(cgraph, tensor, true);
  7404. }
  7405. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7406. struct ggml_cgraph result = {
  7407. /*.n_nodes =*/ 0,
  7408. /*.n_leafs =*/ 0,
  7409. /*.n_threads =*/ 0,
  7410. /*.work_size =*/ 0,
  7411. /*.work =*/ NULL,
  7412. /*.nodes =*/ { NULL },
  7413. /*.grads =*/ { NULL },
  7414. /*.leafs =*/ { NULL },
  7415. /*.perf_runs =*/ 0,
  7416. /*.perf_cycles =*/ 0,
  7417. /*.perf_time_us =*/ 0,
  7418. };
  7419. ggml_build_forward_impl(&result, tensor, false);
  7420. return result;
  7421. }
  7422. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7423. struct ggml_cgraph result = *gf;
  7424. GGML_ASSERT(gf->n_nodes > 0);
  7425. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7426. if (keep) {
  7427. for (int i = 0; i < gf->n_nodes; i++) {
  7428. struct ggml_tensor * node = gf->nodes[i];
  7429. if (node->grad) {
  7430. node->grad = ggml_dup_tensor(ctx, node);
  7431. gf->grads[i] = node->grad;
  7432. }
  7433. }
  7434. }
  7435. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7436. struct ggml_tensor * node = gf->nodes[i];
  7437. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7438. if (node->grad) {
  7439. ggml_compute_backward(ctx, node, keep);
  7440. }
  7441. }
  7442. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7443. struct ggml_tensor * node = gf->nodes[i];
  7444. if (node->is_param) {
  7445. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7446. ggml_build_forward_impl(&result, node->grad, true);
  7447. }
  7448. }
  7449. return result;
  7450. }
  7451. //
  7452. // thread data
  7453. //
  7454. // synchronization is done via busy loops
  7455. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7456. //
  7457. #ifdef __APPLE__
  7458. //#include <os/lock.h>
  7459. //
  7460. //typedef os_unfair_lock ggml_lock_t;
  7461. //
  7462. //#define ggml_lock_init(x) UNUSED(x)
  7463. //#define ggml_lock_destroy(x) UNUSED(x)
  7464. //#define ggml_lock_lock os_unfair_lock_lock
  7465. //#define ggml_lock_unlock os_unfair_lock_unlock
  7466. //
  7467. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7468. typedef int ggml_lock_t;
  7469. #define ggml_lock_init(x) UNUSED(x)
  7470. #define ggml_lock_destroy(x) UNUSED(x)
  7471. #define ggml_lock_lock(x) UNUSED(x)
  7472. #define ggml_lock_unlock(x) UNUSED(x)
  7473. #define GGML_LOCK_INITIALIZER 0
  7474. typedef pthread_t ggml_thread_t;
  7475. #define ggml_thread_create pthread_create
  7476. #define ggml_thread_join pthread_join
  7477. #else
  7478. //typedef pthread_spinlock_t ggml_lock_t;
  7479. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7480. //#define ggml_lock_destroy pthread_spin_destroy
  7481. //#define ggml_lock_lock pthread_spin_lock
  7482. //#define ggml_lock_unlock pthread_spin_unlock
  7483. typedef int ggml_lock_t;
  7484. #define ggml_lock_init(x) UNUSED(x)
  7485. #define ggml_lock_destroy(x) UNUSED(x)
  7486. #define ggml_lock_lock(x) UNUSED(x)
  7487. #define ggml_lock_unlock(x) UNUSED(x)
  7488. #define GGML_LOCK_INITIALIZER 0
  7489. typedef pthread_t ggml_thread_t;
  7490. #define ggml_thread_create pthread_create
  7491. #define ggml_thread_join pthread_join
  7492. #endif
  7493. struct ggml_compute_state_shared {
  7494. ggml_lock_t spin;
  7495. int n_threads;
  7496. // synchronization primitives
  7497. atomic_int n_ready;
  7498. atomic_bool has_work;
  7499. atomic_bool stop; // stop all threads
  7500. };
  7501. struct ggml_compute_state {
  7502. ggml_thread_t thrd;
  7503. struct ggml_compute_params params;
  7504. struct ggml_tensor * node;
  7505. struct ggml_compute_state_shared * shared;
  7506. };
  7507. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7508. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7509. const int n_threads = state->shared->n_threads;
  7510. while (true) {
  7511. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7512. atomic_store(&state->shared->has_work, false);
  7513. } else {
  7514. while (atomic_load(&state->shared->has_work)) {
  7515. if (atomic_load(&state->shared->stop)) {
  7516. return 0;
  7517. }
  7518. ggml_lock_lock (&state->shared->spin);
  7519. ggml_lock_unlock(&state->shared->spin);
  7520. }
  7521. }
  7522. atomic_fetch_sub(&state->shared->n_ready, 1);
  7523. // wait for work
  7524. while (!atomic_load(&state->shared->has_work)) {
  7525. if (atomic_load(&state->shared->stop)) {
  7526. return 0;
  7527. }
  7528. ggml_lock_lock (&state->shared->spin);
  7529. ggml_lock_unlock(&state->shared->spin);
  7530. }
  7531. // check if we should stop
  7532. if (atomic_load(&state->shared->stop)) {
  7533. break;
  7534. }
  7535. if (state->node) {
  7536. if (state->params.ith < state->params.nth) {
  7537. ggml_compute_forward(&state->params, state->node);
  7538. }
  7539. state->node = NULL;
  7540. } else {
  7541. break;
  7542. }
  7543. }
  7544. return 0;
  7545. }
  7546. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7547. const int n_threads = cgraph->n_threads;
  7548. struct ggml_compute_state_shared state_shared = {
  7549. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7550. /*.n_threads =*/ n_threads,
  7551. /*.n_ready =*/ 0,
  7552. /*.has_work =*/ false,
  7553. /*.stop =*/ false,
  7554. };
  7555. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7556. // create thread pool
  7557. if (n_threads > 1) {
  7558. ggml_lock_init(&state_shared.spin);
  7559. atomic_store(&state_shared.has_work, true);
  7560. for (int j = 0; j < n_threads - 1; j++) {
  7561. workers[j] = (struct ggml_compute_state) {
  7562. .thrd = 0,
  7563. .params = {
  7564. .type = GGML_TASK_COMPUTE,
  7565. .ith = j + 1,
  7566. .nth = n_threads,
  7567. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7568. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7569. },
  7570. .node = NULL,
  7571. .shared = &state_shared,
  7572. };
  7573. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7574. GGML_ASSERT(rc == 0);
  7575. UNUSED(rc);
  7576. }
  7577. }
  7578. // initialize tasks + work buffer
  7579. {
  7580. size_t work_size = 0;
  7581. // thread scheduling for the different operations
  7582. for (int i = 0; i < cgraph->n_nodes; i++) {
  7583. struct ggml_tensor * node = cgraph->nodes[i];
  7584. switch (node->op) {
  7585. case GGML_OP_DUP:
  7586. {
  7587. node->n_tasks = 1;
  7588. } break;
  7589. case GGML_OP_ADD:
  7590. {
  7591. node->n_tasks = n_threads;
  7592. } break;
  7593. case GGML_OP_SUB:
  7594. case GGML_OP_MUL:
  7595. case GGML_OP_DIV:
  7596. case GGML_OP_SQR:
  7597. case GGML_OP_SQRT:
  7598. case GGML_OP_SUM:
  7599. case GGML_OP_MEAN:
  7600. case GGML_OP_REPEAT:
  7601. case GGML_OP_ABS:
  7602. case GGML_OP_SGN:
  7603. case GGML_OP_NEG:
  7604. case GGML_OP_STEP:
  7605. case GGML_OP_RELU:
  7606. {
  7607. node->n_tasks = 1;
  7608. } break;
  7609. case GGML_OP_GELU:
  7610. {
  7611. node->n_tasks = n_threads;
  7612. } break;
  7613. case GGML_OP_SILU:
  7614. {
  7615. node->n_tasks = n_threads;
  7616. } break;
  7617. case GGML_OP_NORM:
  7618. case GGML_OP_RMS_NORM:
  7619. {
  7620. node->n_tasks = n_threads;
  7621. } break;
  7622. case GGML_OP_MUL_MAT:
  7623. {
  7624. node->n_tasks = n_threads;
  7625. // TODO: use different scheduling for different matrix sizes
  7626. //const int nr0 = ggml_nrows(node->src0);
  7627. //const int nr1 = ggml_nrows(node->src1);
  7628. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7629. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7630. size_t cur = 0;
  7631. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7632. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7633. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7634. node->n_tasks = 1; // TODO: this actually is doing nothing
  7635. // the threads are still spinning
  7636. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7637. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7638. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7639. //printf("cur = %zu\n", cur);
  7640. } else {
  7641. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7642. }
  7643. #else
  7644. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7645. #endif
  7646. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7647. cur = 0;
  7648. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7649. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7650. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7651. node->n_tasks = 1;
  7652. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7653. } else
  7654. #endif
  7655. {
  7656. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7657. }
  7658. } else {
  7659. GGML_ASSERT(false);
  7660. }
  7661. work_size = MAX(work_size, cur);
  7662. } break;
  7663. case GGML_OP_SCALE:
  7664. {
  7665. node->n_tasks = n_threads;
  7666. } break;
  7667. case GGML_OP_CPY:
  7668. case GGML_OP_RESHAPE:
  7669. case GGML_OP_VIEW:
  7670. case GGML_OP_PERMUTE:
  7671. case GGML_OP_TRANSPOSE:
  7672. case GGML_OP_GET_ROWS:
  7673. case GGML_OP_DIAG_MASK_INF:
  7674. {
  7675. node->n_tasks = 1;
  7676. } break;
  7677. case GGML_OP_SOFT_MAX:
  7678. {
  7679. node->n_tasks = n_threads;
  7680. } break;
  7681. case GGML_OP_ROPE:
  7682. {
  7683. node->n_tasks = n_threads;
  7684. } break;
  7685. case GGML_OP_CONV_1D_1S:
  7686. case GGML_OP_CONV_1D_2S:
  7687. {
  7688. node->n_tasks = n_threads;
  7689. GGML_ASSERT(node->src0->ne[3] == 1);
  7690. GGML_ASSERT(node->src1->ne[2] == 1);
  7691. GGML_ASSERT(node->src1->ne[3] == 1);
  7692. size_t cur = 0;
  7693. const int nk = node->src0->ne[0];
  7694. if (node->src0->type == GGML_TYPE_F16 &&
  7695. node->src1->type == GGML_TYPE_F32) {
  7696. cur = sizeof(ggml_fp16_t)*(
  7697. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7698. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7699. );
  7700. } else if (node->src0->type == GGML_TYPE_F32 &&
  7701. node->src1->type == GGML_TYPE_F32) {
  7702. cur = sizeof(float)*(
  7703. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7704. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7705. );
  7706. } else {
  7707. GGML_ASSERT(false);
  7708. }
  7709. work_size = MAX(work_size, cur);
  7710. } break;
  7711. case GGML_OP_FLASH_ATTN:
  7712. {
  7713. node->n_tasks = n_threads;
  7714. size_t cur = 0;
  7715. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7716. if (node->src1->type == GGML_TYPE_F32) {
  7717. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7718. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7719. }
  7720. if (node->src1->type == GGML_TYPE_F16) {
  7721. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7722. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7723. }
  7724. work_size = MAX(work_size, cur);
  7725. } break;
  7726. case GGML_OP_FLASH_FF:
  7727. {
  7728. node->n_tasks = n_threads;
  7729. size_t cur = 0;
  7730. if (node->src1->type == GGML_TYPE_F32) {
  7731. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7732. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7733. }
  7734. if (node->src1->type == GGML_TYPE_F16) {
  7735. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7736. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7737. }
  7738. work_size = MAX(work_size, cur);
  7739. } break;
  7740. case GGML_OP_NONE:
  7741. {
  7742. node->n_tasks = 1;
  7743. } break;
  7744. case GGML_OP_COUNT:
  7745. {
  7746. GGML_ASSERT(false);
  7747. } break;
  7748. }
  7749. }
  7750. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7751. GGML_ASSERT(false); // TODO: better handling
  7752. }
  7753. if (work_size > 0 && cgraph->work == NULL) {
  7754. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7755. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7756. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7757. }
  7758. }
  7759. const int64_t perf_start_cycles = ggml_perf_cycles();
  7760. const int64_t perf_start_time_us = ggml_perf_time_us();
  7761. for (int i = 0; i < cgraph->n_nodes; i++) {
  7762. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7763. struct ggml_tensor * node = cgraph->nodes[i];
  7764. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7765. //if (node->grad == NULL && node->perf_runs > 0) {
  7766. // continue;
  7767. //}
  7768. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7769. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7770. // INIT
  7771. struct ggml_compute_params params = {
  7772. /*.type =*/ GGML_TASK_INIT,
  7773. /*.ith =*/ 0,
  7774. /*.nth =*/ node->n_tasks,
  7775. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7776. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7777. };
  7778. ggml_compute_forward(&params, node);
  7779. // COMPUTE
  7780. if (node->n_tasks > 1) {
  7781. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7782. atomic_store(&state_shared.has_work, false);
  7783. }
  7784. while (atomic_load(&state_shared.has_work)) {
  7785. ggml_lock_lock (&state_shared.spin);
  7786. ggml_lock_unlock(&state_shared.spin);
  7787. }
  7788. // launch thread pool
  7789. for (int j = 0; j < n_threads - 1; j++) {
  7790. workers[j].params = (struct ggml_compute_params) {
  7791. .type = GGML_TASK_COMPUTE,
  7792. .ith = j + 1,
  7793. .nth = node->n_tasks,
  7794. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7795. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7796. };
  7797. workers[j].node = node;
  7798. }
  7799. atomic_fetch_sub(&state_shared.n_ready, 1);
  7800. while (atomic_load(&state_shared.n_ready) > 0) {
  7801. ggml_lock_lock (&state_shared.spin);
  7802. ggml_lock_unlock(&state_shared.spin);
  7803. }
  7804. atomic_store(&state_shared.has_work, true);
  7805. }
  7806. params.type = GGML_TASK_COMPUTE;
  7807. ggml_compute_forward(&params, node);
  7808. // wait for thread pool
  7809. if (node->n_tasks > 1) {
  7810. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7811. atomic_store(&state_shared.has_work, false);
  7812. }
  7813. while (atomic_load(&state_shared.has_work)) {
  7814. ggml_lock_lock (&state_shared.spin);
  7815. ggml_lock_unlock(&state_shared.spin);
  7816. }
  7817. atomic_fetch_sub(&state_shared.n_ready, 1);
  7818. while (atomic_load(&state_shared.n_ready) != 0) {
  7819. ggml_lock_lock (&state_shared.spin);
  7820. ggml_lock_unlock(&state_shared.spin);
  7821. }
  7822. }
  7823. // FINALIZE
  7824. if (node->n_tasks > 1) {
  7825. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7826. atomic_store(&state_shared.has_work, false);
  7827. }
  7828. while (atomic_load(&state_shared.has_work)) {
  7829. ggml_lock_lock (&state_shared.spin);
  7830. ggml_lock_unlock(&state_shared.spin);
  7831. }
  7832. // launch thread pool
  7833. for (int j = 0; j < n_threads - 1; j++) {
  7834. workers[j].params = (struct ggml_compute_params) {
  7835. .type = GGML_TASK_FINALIZE,
  7836. .ith = j + 1,
  7837. .nth = node->n_tasks,
  7838. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7839. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7840. };
  7841. workers[j].node = node;
  7842. }
  7843. atomic_fetch_sub(&state_shared.n_ready, 1);
  7844. while (atomic_load(&state_shared.n_ready) > 0) {
  7845. ggml_lock_lock (&state_shared.spin);
  7846. ggml_lock_unlock(&state_shared.spin);
  7847. }
  7848. atomic_store(&state_shared.has_work, true);
  7849. }
  7850. params.type = GGML_TASK_FINALIZE;
  7851. ggml_compute_forward(&params, node);
  7852. // wait for thread pool
  7853. if (node->n_tasks > 1) {
  7854. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7855. atomic_store(&state_shared.has_work, false);
  7856. }
  7857. while (atomic_load(&state_shared.has_work)) {
  7858. ggml_lock_lock (&state_shared.spin);
  7859. ggml_lock_unlock(&state_shared.spin);
  7860. }
  7861. atomic_fetch_sub(&state_shared.n_ready, 1);
  7862. while (atomic_load(&state_shared.n_ready) != 0) {
  7863. ggml_lock_lock (&state_shared.spin);
  7864. ggml_lock_unlock(&state_shared.spin);
  7865. }
  7866. }
  7867. // performance stats (node)
  7868. {
  7869. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7870. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7871. node->perf_runs++;
  7872. node->perf_cycles += perf_cycles_cur;
  7873. node->perf_time_us += perf_time_us_cur;
  7874. }
  7875. }
  7876. // join thread pool
  7877. if (n_threads > 1) {
  7878. atomic_store(&state_shared.stop, true);
  7879. atomic_store(&state_shared.has_work, true);
  7880. for (int j = 0; j < n_threads - 1; j++) {
  7881. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7882. GGML_ASSERT(rc == 0);
  7883. UNUSED(rc);
  7884. }
  7885. ggml_lock_destroy(&state_shared.spin);
  7886. }
  7887. // performance stats (graph)
  7888. {
  7889. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7890. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7891. cgraph->perf_runs++;
  7892. cgraph->perf_cycles += perf_cycles_cur;
  7893. cgraph->perf_time_us += perf_time_us_cur;
  7894. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7895. __func__, cgraph->perf_runs,
  7896. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7897. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7898. (double) perf_time_us_cur / 1000.0,
  7899. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7900. }
  7901. }
  7902. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7903. for (int i = 0; i < cgraph->n_nodes; i++) {
  7904. struct ggml_tensor * grad = cgraph->grads[i];
  7905. if (grad) {
  7906. ggml_set_zero(grad);
  7907. }
  7908. }
  7909. }
  7910. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7911. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7912. GGML_PRINT("=== GRAPH ===\n");
  7913. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7914. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7915. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7916. for (int i = 0; i < cgraph->n_nodes; i++) {
  7917. struct ggml_tensor * node = cgraph->nodes[i];
  7918. perf_total_per_op_us[node->op] += node->perf_time_us;
  7919. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7920. i,
  7921. node->ne[0], node->ne[1], node->ne[2],
  7922. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7923. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7924. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7925. (double) node->perf_time_us / 1000.0,
  7926. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7927. }
  7928. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7929. for (int i = 0; i < cgraph->n_leafs; i++) {
  7930. struct ggml_tensor * node = cgraph->leafs[i];
  7931. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  7932. i,
  7933. node->ne[0], node->ne[1],
  7934. GGML_OP_LABEL[node->op]);
  7935. }
  7936. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7937. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7938. }
  7939. GGML_PRINT("========================================\n");
  7940. }
  7941. // check if node is part of the graph
  7942. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7943. if (cgraph == NULL) {
  7944. return true;
  7945. }
  7946. for (int i = 0; i < cgraph->n_nodes; i++) {
  7947. if (cgraph->nodes[i] == node) {
  7948. return true;
  7949. }
  7950. }
  7951. return false;
  7952. }
  7953. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7954. for (int i = 0; i < cgraph->n_nodes; i++) {
  7955. struct ggml_tensor * parent = cgraph->nodes[i];
  7956. if (parent->grad == node) {
  7957. return parent;
  7958. }
  7959. }
  7960. return NULL;
  7961. }
  7962. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7963. char color[16];
  7964. FILE * fp = fopen(filename, "w");
  7965. GGML_ASSERT(fp);
  7966. fprintf(fp, "digraph G {\n");
  7967. fprintf(fp, " newrank = true;\n");
  7968. fprintf(fp, " rankdir = LR;\n");
  7969. for (int i = 0; i < gb->n_nodes; i++) {
  7970. struct ggml_tensor * node = gb->nodes[i];
  7971. if (ggml_graph_get_parent(gb, node) != NULL) {
  7972. continue;
  7973. }
  7974. if (node->is_param) {
  7975. snprintf(color, sizeof(color), "yellow");
  7976. } else if (node->grad) {
  7977. if (ggml_graph_find(gf, node)) {
  7978. snprintf(color, sizeof(color), "green");
  7979. } else {
  7980. snprintf(color, sizeof(color), "lightblue");
  7981. }
  7982. } else {
  7983. snprintf(color, sizeof(color), "white");
  7984. }
  7985. fprintf(fp, " \"%p\" [ \
  7986. style = filled; fillcolor = %s; shape = record; \
  7987. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  7988. (void *) node, color,
  7989. i, node->ne[0], node->ne[1],
  7990. GGML_OP_SYMBOL[node->op]);
  7991. if (node->grad) {
  7992. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7993. } else {
  7994. fprintf(fp, "\"; ]\n");
  7995. }
  7996. }
  7997. for (int i = 0; i < gb->n_leafs; i++) {
  7998. struct ggml_tensor * node = gb->leafs[i];
  7999. snprintf(color, sizeof(color), "pink");
  8000. if (ggml_nelements(node) == 1) {
  8001. fprintf(fp, " \"%p\" [ \
  8002. style = filled; fillcolor = %s; shape = record; \
  8003. label=\"<x>%.1e\"; ]\n",
  8004. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8005. } else {
  8006. fprintf(fp, " \"%p\" [ \
  8007. style = filled; fillcolor = %s; shape = record; \
  8008. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8009. (void *) node, color,
  8010. i, node->ne[0], node->ne[1]);
  8011. }
  8012. }
  8013. for (int i = 0; i < gb->n_nodes; i++) {
  8014. struct ggml_tensor * node = gb->nodes[i];
  8015. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8016. if (node->src0) {
  8017. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8018. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8019. parent0 ? (void *) parent0 : (void *) node->src0,
  8020. parent0 ? "g" : "x",
  8021. parent ? (void *) parent : (void *) node,
  8022. parent ? "g" : "x",
  8023. parent ? "empty" : "vee",
  8024. parent ? "dashed" : "solid");
  8025. }
  8026. if (node->src1) {
  8027. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8028. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8029. parent1 ? (void *) parent1 : (void *) node->src1,
  8030. parent1 ? "g" : "x",
  8031. parent ? (void *) parent : (void *) node,
  8032. parent ? "g" : "x",
  8033. parent ? "empty" : "vee",
  8034. parent ? "dashed" : "solid");
  8035. }
  8036. }
  8037. for (int i = 0; i < gb->n_leafs; i++) {
  8038. struct ggml_tensor * node = gb->leafs[i];
  8039. if (node->src0) {
  8040. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8041. (void *) node->src0, "x",
  8042. (void *) node, "x");
  8043. }
  8044. if (node->src1) {
  8045. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8046. (void *) node->src1, "x",
  8047. (void *) node, "x");
  8048. }
  8049. }
  8050. fprintf(fp, "}\n");
  8051. fclose(fp);
  8052. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8053. }
  8054. ////////////////////////////////////////////////////////////////////////////////
  8055. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8056. int i = 0;
  8057. for (int p = 0; p < np; ++p) {
  8058. const int64_t ne = ggml_nelements(ps[p]) ;
  8059. // TODO: add function to set tensor from array
  8060. for (int64_t j = 0; j < ne; ++j) {
  8061. ggml_set_f32_1d(ps[p], j, x[i++]);
  8062. }
  8063. }
  8064. }
  8065. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8066. int i = 0;
  8067. for (int p = 0; p < np; ++p) {
  8068. const int64_t ne = ggml_nelements(ps[p]) ;
  8069. // TODO: add function to get all elements at once
  8070. for (int64_t j = 0; j < ne; ++j) {
  8071. x[i++] = ggml_get_f32_1d(ps[p], j);
  8072. }
  8073. }
  8074. }
  8075. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8076. int i = 0;
  8077. for (int p = 0; p < np; ++p) {
  8078. const int64_t ne = ggml_nelements(ps[p]) ;
  8079. // TODO: add function to get all elements at once
  8080. for (int64_t j = 0; j < ne; ++j) {
  8081. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8082. }
  8083. }
  8084. }
  8085. //
  8086. // ADAM
  8087. //
  8088. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8089. //
  8090. static enum ggml_opt_result ggml_opt_adam(
  8091. struct ggml_context * ctx,
  8092. struct ggml_opt_params params,
  8093. struct ggml_tensor * f,
  8094. struct ggml_cgraph * gf,
  8095. struct ggml_cgraph * gb) {
  8096. GGML_ASSERT(ggml_is_scalar(f));
  8097. gf->n_threads = params.n_threads;
  8098. gb->n_threads = params.n_threads;
  8099. // these will store the parameters we want to optimize
  8100. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8101. int np = 0;
  8102. int nx = 0;
  8103. for (int i = 0; i < gf->n_nodes; ++i) {
  8104. if (gf->nodes[i]->is_param) {
  8105. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8106. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8107. ps[np++] = gf->nodes[i];
  8108. nx += ggml_nelements(gf->nodes[i]);
  8109. }
  8110. }
  8111. // constants
  8112. const float alpha = params.adam.alpha;
  8113. const float beta1 = params.adam.beta1;
  8114. const float beta2 = params.adam.beta2;
  8115. const float eps = params.adam.eps;
  8116. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8117. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8118. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8119. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8120. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8121. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8122. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8123. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8124. // initialize
  8125. ggml_vec_set_f32(nx, m, 0.0f);
  8126. ggml_vec_set_f32(nx, v, 0.0f);
  8127. // update view
  8128. ggml_opt_get_params(np, ps, x);
  8129. // compute the function value
  8130. ggml_graph_reset (gf);
  8131. ggml_set_f32 (f->grad, 1.0f);
  8132. ggml_graph_compute(ctx, gb);
  8133. float fx_prev = ggml_get_f32_1d(f, 0);
  8134. if (pf) {
  8135. pf[0] = fx_prev;
  8136. }
  8137. int n_no_improvement = 0;
  8138. float fx_best = fx_prev;
  8139. // run the optimizer
  8140. for (int t = 0; t < params.adam.n_iter; ++t) {
  8141. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8142. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8143. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8144. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8145. for (int i = 0; i < np; ++i) {
  8146. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8147. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8148. }
  8149. const int64_t t_start_wall = ggml_time_us();
  8150. const int64_t t_start_cpu = ggml_cycles();
  8151. UNUSED(t_start_wall);
  8152. UNUSED(t_start_cpu);
  8153. {
  8154. // update the gradient
  8155. ggml_opt_get_grad(np, ps, g1);
  8156. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8157. ggml_vec_scale_f32(nx, m, beta1);
  8158. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8159. // g2 = g1^2
  8160. ggml_vec_sqr_f32 (nx, g2, g1);
  8161. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8162. ggml_vec_scale_f32(nx, v, beta2);
  8163. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8164. // m^hat = m_t / (1 - beta1^t)
  8165. // v^hat = v_t / (1 - beta2^t)
  8166. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8167. ggml_vec_cpy_f32 (nx, mh, m);
  8168. ggml_vec_cpy_f32 (nx, vh, v);
  8169. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8170. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8171. ggml_vec_sqrt_f32 (nx, vh, vh);
  8172. ggml_vec_acc1_f32 (nx, vh, eps);
  8173. ggml_vec_div_f32 (nx, mh, mh, vh);
  8174. ggml_vec_sub_f32 (nx, x, x, mh);
  8175. // update the parameters
  8176. ggml_opt_set_params(np, ps, x);
  8177. }
  8178. ggml_graph_reset (gf);
  8179. ggml_set_f32 (f->grad, 1.0f);
  8180. ggml_graph_compute(ctx, gb);
  8181. const float fx = ggml_get_f32_1d(f, 0);
  8182. // check convergence
  8183. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8184. GGML_PRINT_DEBUG("converged\n");
  8185. return GGML_OPT_OK;
  8186. }
  8187. // delta-based convergence test
  8188. if (pf != NULL) {
  8189. // need at least params.past iterations to start checking for convergence
  8190. if (params.past <= t) {
  8191. const float rate = (pf[t%params.past] - fx)/fx;
  8192. if (fabsf(rate) < params.delta) {
  8193. return GGML_OPT_OK;
  8194. }
  8195. }
  8196. pf[t%params.past] = fx;
  8197. }
  8198. // check for improvement
  8199. if (params.max_no_improvement > 0) {
  8200. if (fx_best > fx) {
  8201. fx_best = fx;
  8202. n_no_improvement = 0;
  8203. } else {
  8204. ++n_no_improvement;
  8205. if (n_no_improvement >= params.max_no_improvement) {
  8206. return GGML_OPT_OK;
  8207. }
  8208. }
  8209. }
  8210. fx_prev = fx;
  8211. {
  8212. const int64_t t_end_cpu = ggml_cycles();
  8213. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8214. UNUSED(t_end_cpu);
  8215. const int64_t t_end_wall = ggml_time_us();
  8216. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8217. UNUSED(t_end_wall);
  8218. }
  8219. }
  8220. return GGML_OPT_DID_NOT_CONVERGE;
  8221. }
  8222. //
  8223. // L-BFGS
  8224. //
  8225. // the L-BFGS implementation below is based on the following implementation:
  8226. //
  8227. // https://github.com/chokkan/liblbfgs
  8228. //
  8229. struct ggml_lbfgs_iteration_data {
  8230. float alpha;
  8231. float ys;
  8232. float * s;
  8233. float * y;
  8234. };
  8235. static enum ggml_opt_result linesearch_backtracking(
  8236. struct ggml_context * ctx,
  8237. const struct ggml_opt_params * params,
  8238. int nx,
  8239. float * x,
  8240. float * fx,
  8241. float * g,
  8242. float * d,
  8243. float * step,
  8244. const float * xp,
  8245. struct ggml_tensor * f,
  8246. struct ggml_cgraph * gf,
  8247. struct ggml_cgraph * gb,
  8248. const int np,
  8249. struct ggml_tensor * ps[]) {
  8250. int count = 0;
  8251. float width = 0.0f;
  8252. float dg = 0.0f;
  8253. float finit = 0.0f;
  8254. float dginit = 0.0f;
  8255. float dgtest = 0.0f;
  8256. const float dec = 0.5f;
  8257. const float inc = 2.1f;
  8258. if (*step <= 0.f) {
  8259. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8260. }
  8261. // compute the initial gradient in the search direction
  8262. ggml_vec_dot_f32(nx, &dginit, g, d);
  8263. // make sure that d points to a descent direction
  8264. if (0 < dginit) {
  8265. return GGML_LINESEARCH_FAIL;
  8266. }
  8267. // initialize local variables
  8268. finit = *fx;
  8269. dgtest = params->lbfgs.ftol*dginit;
  8270. while (true) {
  8271. ggml_vec_cpy_f32(nx, x, xp);
  8272. ggml_vec_mad_f32(nx, x, d, *step);
  8273. // evaluate the function and gradient values
  8274. {
  8275. ggml_opt_set_params(np, ps, x);
  8276. ggml_graph_reset (gf);
  8277. ggml_set_f32 (f->grad, 1.0f);
  8278. ggml_graph_compute(ctx, gb);
  8279. ggml_opt_get_grad(np, ps, g);
  8280. *fx = ggml_get_f32_1d(f, 0);
  8281. }
  8282. ++count;
  8283. if (*fx > finit + (*step)*dgtest) {
  8284. width = dec;
  8285. } else {
  8286. // Armijo condition is satisfied
  8287. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8288. return count;
  8289. }
  8290. ggml_vec_dot_f32(nx, &dg, g, d);
  8291. // check the Wolfe condition
  8292. if (dg < params->lbfgs.wolfe * dginit) {
  8293. width = inc;
  8294. } else {
  8295. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8296. // regular Wolfe conditions
  8297. return count;
  8298. }
  8299. if(dg > -params->lbfgs.wolfe*dginit) {
  8300. width = dec;
  8301. } else {
  8302. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8303. return count;
  8304. }
  8305. return count;
  8306. }
  8307. }
  8308. if (*step < params->lbfgs.min_step) {
  8309. return GGML_LINESEARCH_MINIMUM_STEP;
  8310. }
  8311. if (*step > params->lbfgs.max_step) {
  8312. return GGML_LINESEARCH_MAXIMUM_STEP;
  8313. }
  8314. if (params->lbfgs.max_linesearch <= count) {
  8315. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8316. }
  8317. (*step) *= width;
  8318. }
  8319. return GGML_LINESEARCH_FAIL;
  8320. }
  8321. static enum ggml_opt_result ggml_opt_lbfgs(
  8322. struct ggml_context * ctx,
  8323. struct ggml_opt_params params,
  8324. struct ggml_tensor * f,
  8325. struct ggml_cgraph * gf,
  8326. struct ggml_cgraph * gb) {
  8327. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8328. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8329. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8330. return GGML_OPT_INVALID_WOLFE;
  8331. }
  8332. }
  8333. gf->n_threads = params.n_threads;
  8334. gb->n_threads = params.n_threads;
  8335. const int m = params.lbfgs.m;
  8336. // these will store the parameters we want to optimize
  8337. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8338. int np = 0;
  8339. int nx = 0;
  8340. for (int i = 0; i < gf->n_nodes; ++i) {
  8341. if (gf->nodes[i]->is_param) {
  8342. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8343. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8344. ps[np++] = gf->nodes[i];
  8345. nx += ggml_nelements(gf->nodes[i]);
  8346. }
  8347. }
  8348. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8349. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8350. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8351. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8352. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8353. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8354. float fx = 0.0f; // cost function value
  8355. float xnorm = 0.0f; // ||x||
  8356. float gnorm = 0.0f; // ||g||
  8357. float step = 0.0f;
  8358. // initialize x from the graph nodes
  8359. ggml_opt_get_params(np, ps, x);
  8360. // the L-BFGS memory
  8361. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8362. for (int i = 0; i < m; ++i) {
  8363. lm[i].alpha = 0.0f;
  8364. lm[i].ys = 0.0f;
  8365. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8366. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8367. }
  8368. // evaluate the function value and its gradient
  8369. {
  8370. ggml_opt_set_params(np, ps, x);
  8371. ggml_graph_reset (gf);
  8372. ggml_set_f32 (f->grad, 1.0f);
  8373. ggml_graph_compute(ctx, gb);
  8374. ggml_opt_get_grad(np, ps, g);
  8375. fx = ggml_get_f32_1d(f, 0);
  8376. }
  8377. if (pf) {
  8378. pf[0] = fx;
  8379. }
  8380. float fx_best = fx;
  8381. // search direction = -gradient
  8382. ggml_vec_neg_f32(nx, d, g);
  8383. // ||x||, ||g||
  8384. ggml_vec_norm_f32(nx, &xnorm, x);
  8385. ggml_vec_norm_f32(nx, &gnorm, g);
  8386. if (xnorm < 1.0f) {
  8387. xnorm = 1.0f;
  8388. }
  8389. // already optimized
  8390. if (gnorm/xnorm <= params.lbfgs.eps) {
  8391. return GGML_OPT_OK;
  8392. }
  8393. // initial step
  8394. ggml_vec_norm_inv_f32(nx, &step, d);
  8395. int j = 0;
  8396. int k = 1;
  8397. int ls = 0;
  8398. int end = 0;
  8399. int bound = 0;
  8400. int n_no_improvement = 0;
  8401. float ys = 0.0f;
  8402. float yy = 0.0f;
  8403. float beta = 0.0f;
  8404. while (true) {
  8405. // store the current position and gradient vectors
  8406. ggml_vec_cpy_f32(nx, xp, x);
  8407. ggml_vec_cpy_f32(nx, gp, g);
  8408. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8409. if (ls < 0) {
  8410. // linesearch failed - go back to the previous point and return
  8411. ggml_vec_cpy_f32(nx, x, xp);
  8412. ggml_vec_cpy_f32(nx, g, gp);
  8413. return ls;
  8414. }
  8415. ggml_vec_norm_f32(nx, &xnorm, x);
  8416. ggml_vec_norm_f32(nx, &gnorm, g);
  8417. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8418. if (xnorm < 1.0f) {
  8419. xnorm = 1.0f;
  8420. }
  8421. if (gnorm/xnorm <= params.lbfgs.eps) {
  8422. // converged
  8423. return GGML_OPT_OK;
  8424. }
  8425. // delta-based convergence test
  8426. if (pf != NULL) {
  8427. // need at least params.past iterations to start checking for convergence
  8428. if (params.past <= k) {
  8429. const float rate = (pf[k%params.past] - fx)/fx;
  8430. if (fabsf(rate) < params.delta) {
  8431. return GGML_OPT_OK;
  8432. }
  8433. }
  8434. pf[k%params.past] = fx;
  8435. }
  8436. // check for improvement
  8437. if (params.max_no_improvement > 0) {
  8438. if (fx < fx_best) {
  8439. fx_best = fx;
  8440. n_no_improvement = 0;
  8441. } else {
  8442. n_no_improvement++;
  8443. if (n_no_improvement >= params.max_no_improvement) {
  8444. return GGML_OPT_OK;
  8445. }
  8446. }
  8447. }
  8448. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8449. // reached the maximum number of iterations
  8450. return GGML_OPT_DID_NOT_CONVERGE;
  8451. }
  8452. // update vectors s and y:
  8453. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8454. // y_{k+1} = g_{k+1} - g_{k}.
  8455. //
  8456. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8457. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8458. // compute scalars ys and yy:
  8459. // ys = y^t \cdot s -> 1 / \rho.
  8460. // yy = y^t \cdot y.
  8461. //
  8462. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8463. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8464. lm[end].ys = ys;
  8465. // find new search direction
  8466. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8467. bound = (m <= k) ? m : k;
  8468. k++;
  8469. end = (end + 1)%m;
  8470. // initialize search direction with -g
  8471. ggml_vec_neg_f32(nx, d, g);
  8472. j = end;
  8473. for (int i = 0; i < bound; ++i) {
  8474. j = (j + m - 1) % m;
  8475. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8476. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8477. lm[j].alpha /= lm[j].ys;
  8478. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8479. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8480. }
  8481. ggml_vec_scale_f32(nx, d, ys/yy);
  8482. for (int i = 0; i < bound; ++i) {
  8483. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8484. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8485. beta /= lm[j].ys;
  8486. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8487. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8488. j = (j + 1)%m;
  8489. }
  8490. step = 1.0;
  8491. }
  8492. return GGML_OPT_DID_NOT_CONVERGE;
  8493. }
  8494. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8495. struct ggml_opt_params result;
  8496. switch (type) {
  8497. case GGML_OPT_ADAM:
  8498. {
  8499. result = (struct ggml_opt_params) {
  8500. .type = GGML_OPT_ADAM,
  8501. .n_threads = 1,
  8502. .past = 0,
  8503. .delta = 1e-5f,
  8504. .max_no_improvement = 100,
  8505. .print_forward_graph = true,
  8506. .print_backward_graph = true,
  8507. .adam = {
  8508. .n_iter = 10000,
  8509. .alpha = 0.001f,
  8510. .beta1 = 0.9f,
  8511. .beta2 = 0.999f,
  8512. .eps = 1e-8f,
  8513. .eps_f = 1e-5f,
  8514. .eps_g = 1e-3f,
  8515. },
  8516. };
  8517. } break;
  8518. case GGML_OPT_LBFGS:
  8519. {
  8520. result = (struct ggml_opt_params) {
  8521. .type = GGML_OPT_LBFGS,
  8522. .n_threads = 1,
  8523. .past = 0,
  8524. .delta = 1e-5f,
  8525. .max_no_improvement = 0,
  8526. .print_forward_graph = true,
  8527. .print_backward_graph = true,
  8528. .lbfgs = {
  8529. .m = 6,
  8530. .n_iter = 100,
  8531. .max_linesearch = 20,
  8532. .eps = 1e-5f,
  8533. .ftol = 1e-4f,
  8534. .wolfe = 0.9f,
  8535. .min_step = 1e-20f,
  8536. .max_step = 1e+20f,
  8537. .linesearch = GGML_LINESEARCH_DEFAULT,
  8538. },
  8539. };
  8540. } break;
  8541. }
  8542. return result;
  8543. }
  8544. enum ggml_opt_result ggml_opt(
  8545. struct ggml_context * ctx,
  8546. struct ggml_opt_params params,
  8547. struct ggml_tensor * f) {
  8548. bool free_ctx = false;
  8549. if (ctx == NULL) {
  8550. struct ggml_init_params params_ctx = {
  8551. .mem_size = 16*1024*1024,
  8552. .mem_buffer = NULL,
  8553. .no_alloc = false,
  8554. };
  8555. ctx = ggml_init(params_ctx);
  8556. if (ctx == NULL) {
  8557. return GGML_OPT_NO_CONTEXT;
  8558. }
  8559. free_ctx = true;
  8560. }
  8561. enum ggml_opt_result result = GGML_OPT_OK;
  8562. // build forward + backward compute graphs
  8563. struct ggml_cgraph gf = ggml_build_forward (f);
  8564. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8565. switch (params.type) {
  8566. case GGML_OPT_ADAM:
  8567. {
  8568. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8569. } break;
  8570. case GGML_OPT_LBFGS:
  8571. {
  8572. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8573. } break;
  8574. }
  8575. if (params.print_forward_graph) {
  8576. ggml_graph_print (&gf);
  8577. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8578. }
  8579. if (params.print_backward_graph) {
  8580. ggml_graph_print (&gb);
  8581. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8582. }
  8583. if (free_ctx) {
  8584. ggml_free(ctx);
  8585. }
  8586. return result;
  8587. }
  8588. ////////////////////////////////////////////////////////////////////////////////
  8589. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8590. assert(k % QK == 0);
  8591. const int nb = k / QK;
  8592. for (int j = 0; j < n; j += k) {
  8593. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8594. quantize_row_q4_0_reference(src + j, y, k);
  8595. for (int i = 0; i < nb; i++) {
  8596. for (int l = 0; l < QK; l += 2) {
  8597. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8598. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8599. hist[vi0]++;
  8600. hist[vi1]++;
  8601. }
  8602. }
  8603. }
  8604. return (n/QK*sizeof(block_q4_0));
  8605. }
  8606. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8607. assert(k % QK == 0);
  8608. const int nb = k / QK;
  8609. for (int j = 0; j < n; j += k) {
  8610. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8611. quantize_row_q4_1_reference(src + j, y, k);
  8612. for (int i = 0; i < nb; i++) {
  8613. for (int l = 0; l < QK; l += 2) {
  8614. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8615. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8616. hist[vi0]++;
  8617. hist[vi1]++;
  8618. }
  8619. }
  8620. }
  8621. return (n/QK*sizeof(block_q4_1));
  8622. }
  8623. ////////////////////////////////////////////////////////////////////////////////
  8624. int ggml_cpu_has_avx(void) {
  8625. #if defined(__AVX__)
  8626. return 1;
  8627. #else
  8628. return 0;
  8629. #endif
  8630. }
  8631. int ggml_cpu_has_avx2(void) {
  8632. #if defined(__AVX2__)
  8633. return 1;
  8634. #else
  8635. return 0;
  8636. #endif
  8637. }
  8638. int ggml_cpu_has_avx512(void) {
  8639. #if defined(__AVX512F__)
  8640. return 1;
  8641. #else
  8642. return 0;
  8643. #endif
  8644. }
  8645. int ggml_cpu_has_fma(void) {
  8646. #if defined(__FMA__)
  8647. return 1;
  8648. #else
  8649. return 0;
  8650. #endif
  8651. }
  8652. int ggml_cpu_has_neon(void) {
  8653. #if defined(__ARM_NEON)
  8654. return 1;
  8655. #else
  8656. return 0;
  8657. #endif
  8658. }
  8659. int ggml_cpu_has_arm_fma(void) {
  8660. #if defined(__ARM_FEATURE_FMA)
  8661. return 1;
  8662. #else
  8663. return 0;
  8664. #endif
  8665. }
  8666. int ggml_cpu_has_f16c(void) {
  8667. #if defined(__F16C__)
  8668. return 1;
  8669. #else
  8670. return 0;
  8671. #endif
  8672. }
  8673. int ggml_cpu_has_fp16_va(void) {
  8674. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8675. return 1;
  8676. #else
  8677. return 0;
  8678. #endif
  8679. }
  8680. int ggml_cpu_has_wasm_simd(void) {
  8681. #if defined(__wasm_simd128__)
  8682. return 1;
  8683. #else
  8684. return 0;
  8685. #endif
  8686. }
  8687. int ggml_cpu_has_blas(void) {
  8688. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8689. return 1;
  8690. #else
  8691. return 0;
  8692. #endif
  8693. }
  8694. int ggml_cpu_has_sse3(void) {
  8695. #if defined(__SSE3__)
  8696. return 1;
  8697. #else
  8698. return 0;
  8699. #endif
  8700. }
  8701. int ggml_cpu_has_vsx(void) {
  8702. #if defined(__POWER9_VECTOR__)
  8703. return 1;
  8704. #else
  8705. return 0;
  8706. #endif
  8707. }
  8708. ////////////////////////////////////////////////////////////////////////////////