1
0

convert_hf_to_gguf.py 255 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. remote_hf_model_id: str | None
  55. # subclasses should define this!
  56. model_arch: gguf.MODEL_ARCH
  57. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  58. use_temp_file: bool = False, eager: bool = False,
  59. metadata_override: Path | None = None, model_name: str | None = None,
  60. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  61. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  62. if type(self) is Model:
  63. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  64. self.dir_model = dir_model
  65. self.ftype = ftype
  66. self.fname_out = fname_out
  67. self.is_big_endian = is_big_endian
  68. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  69. self.use_temp_file = use_temp_file
  70. self.lazy = not eager or (remote_hf_model_id is not None)
  71. self.remote_hf_model_id = remote_hf_model_id
  72. if remote_hf_model_id is not None:
  73. self.is_safetensors = True
  74. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  75. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  76. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  77. self.tensor_names = set(name for name in remote_tensors.keys())
  78. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  79. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  80. self.get_tensors = get_remote_tensors
  81. else:
  82. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  83. self.is_safetensors = len(self.part_names) > 0
  84. if not self.is_safetensors:
  85. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  86. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  87. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  88. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  89. self.tensor_names = None
  90. self.metadata_override = metadata_override
  91. self.model_name = model_name
  92. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  93. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  94. if self.ftype == gguf.LlamaFileType.GUESSED:
  95. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  96. _, first_tensor = next(self.get_tensors())
  97. if first_tensor.dtype == torch.float16:
  98. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  99. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  100. else:
  101. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  102. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  103. # Configure GGUF Writer
  104. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  105. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  106. @classmethod
  107. def __init_subclass__(cls):
  108. # can't use an abstract property, because overriding it without type errors
  109. # would require using decorated functions instead of simply defining the property
  110. if "model_arch" not in cls.__dict__:
  111. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  112. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  113. key = next((k for k in keys if k in self.hparams), None)
  114. if key is not None:
  115. return self.hparams[key]
  116. if optional:
  117. return None
  118. raise KeyError(f"could not find any of: {keys}")
  119. def set_vocab(self):
  120. self._set_vocab_gpt2()
  121. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  122. tensor_names_from_parts: set[str] = set()
  123. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  124. index_name += ".index.json"
  125. index_file = self.dir_model / index_name
  126. if index_file.is_file():
  127. self.tensor_names = set()
  128. logger.info(f"gguf: loading model weight map from '{index_name}'")
  129. with open(index_file, "r", encoding="utf-8") as f:
  130. index: dict[str, Any] = json.load(f)
  131. weight_map = index.get("weight_map")
  132. if weight_map is None or not isinstance(weight_map, dict):
  133. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  134. self.tensor_names.update(weight_map.keys())
  135. else:
  136. self.tensor_names = tensor_names_from_parts
  137. weight_map = {}
  138. for part_name in self.part_names:
  139. logger.info(f"gguf: loading model part '{part_name}'")
  140. ctx: ContextManager[Any]
  141. if self.is_safetensors:
  142. from safetensors import safe_open
  143. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  144. else:
  145. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  146. with ctx as model_part:
  147. tensor_names_from_parts.update(model_part.keys())
  148. for name in model_part.keys():
  149. if self.is_safetensors:
  150. if self.lazy:
  151. data = model_part.get_slice(name)
  152. data = LazyTorchTensor.from_safetensors_slice(data)
  153. else:
  154. data = model_part.get_tensor(name)
  155. else:
  156. data = model_part[name]
  157. if self.lazy:
  158. data = LazyTorchTensor.from_eager(data)
  159. yield name, data
  160. # verify tensor name presence and identify potentially missing files
  161. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  162. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  163. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  164. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  165. if len(extra) == 0 and len(missing_files) > 0:
  166. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  167. f"Missing tensors: {missing}")
  168. else:
  169. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  170. f"Missing tensors: {missing}\n"
  171. f"Extra tensors: {extra}")
  172. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  173. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  174. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  175. name: str = gguf.TENSOR_NAMES[key]
  176. if "{bid}" in name:
  177. assert bid is not None
  178. name = name.format(bid=bid)
  179. return name + suffix
  180. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  181. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  182. return False
  183. key_name: str = gguf.TENSOR_NAMES[key]
  184. if "{bid}" in key_name:
  185. if bid is None:
  186. return False
  187. key_name = key_name.format(bid=bid)
  188. else:
  189. if bid is not None:
  190. return False
  191. return name == (key_name + suffix)
  192. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  193. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  194. if new_name is None:
  195. raise ValueError(f"Can not map tensor {name!r}")
  196. return new_name
  197. def set_gguf_parameters(self):
  198. self.gguf_writer.add_block_count(self.block_count)
  199. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  200. self.gguf_writer.add_context_length(n_ctx)
  201. logger.info(f"gguf: context length = {n_ctx}")
  202. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  203. self.gguf_writer.add_embedding_length(n_embd)
  204. logger.info(f"gguf: embedding length = {n_embd}")
  205. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  206. self.gguf_writer.add_feed_forward_length(n_ff)
  207. logger.info(f"gguf: feed forward length = {n_ff}")
  208. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  209. self.gguf_writer.add_head_count(n_head)
  210. logger.info(f"gguf: head count = {n_head}")
  211. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  212. self.gguf_writer.add_head_count_kv(n_head_kv)
  213. logger.info(f"gguf: key-value head count = {n_head_kv}")
  214. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  215. self.gguf_writer.add_rope_freq_base(rope_theta)
  216. logger.info(f"gguf: rope theta = {rope_theta}")
  217. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  218. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  219. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  220. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  221. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  222. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  223. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  224. self.gguf_writer.add_expert_count(n_experts)
  225. logger.info(f"gguf: expert count = {n_experts}")
  226. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  227. self.gguf_writer.add_expert_used_count(n_experts_used)
  228. logger.info(f"gguf: experts used count = {n_experts_used}")
  229. if (head_dim := self.hparams.get("head_dim")) is not None:
  230. self.gguf_writer.add_key_length(head_dim)
  231. self.gguf_writer.add_value_length(head_dim)
  232. self.gguf_writer.add_file_type(self.ftype)
  233. logger.info(f"gguf: file type = {self.ftype}")
  234. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  235. del bid # unused
  236. return [(self.map_tensor_name(name), data_torch)]
  237. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  238. del name, new_name, bid, n_dims # unused
  239. return False
  240. # some models need extra generated tensors (like rope_freqs)
  241. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  242. return ()
  243. def prepare_tensors(self):
  244. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  245. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  246. # we don't need these
  247. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  248. continue
  249. old_dtype = data_torch.dtype
  250. # convert any unsupported data types to float32
  251. if data_torch.dtype not in (torch.float16, torch.float32):
  252. data_torch = data_torch.to(torch.float32)
  253. # use the first number-like part of the tensor name as the block id
  254. bid = None
  255. for part in name.split("."):
  256. if part.isdecimal():
  257. bid = int(part)
  258. break
  259. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  260. # TODO: why do we squeeze here?
  261. # data = data_torch.squeeze().numpy()
  262. data = data_torch.numpy()
  263. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  264. if len(data.shape) == 0:
  265. data = data_torch.numpy()
  266. n_dims = len(data.shape)
  267. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  268. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  269. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  270. data_qtype = gguf.GGMLQuantizationType.F32
  271. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  272. # Some tensor types are always in float32
  273. if data_qtype is False and (
  274. any(
  275. self.match_model_tensor_name(new_name, key, bid)
  276. for key in (
  277. gguf.MODEL_TENSOR.FFN_GATE_INP,
  278. gguf.MODEL_TENSOR.POS_EMBD,
  279. gguf.MODEL_TENSOR.TOKEN_TYPES,
  280. gguf.MODEL_TENSOR.SSM_CONV1D,
  281. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  282. gguf.MODEL_TENSOR.TIME_MIX_W1,
  283. gguf.MODEL_TENSOR.TIME_MIX_W2,
  284. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  285. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  286. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  287. gguf.MODEL_TENSOR.POSNET_NORM1,
  288. gguf.MODEL_TENSOR.POSNET_NORM2,
  289. )
  290. )
  291. or not new_name.endswith(".weight")
  292. ):
  293. data_qtype = gguf.GGMLQuantizationType.F32
  294. if data_qtype is False and any(
  295. self.match_model_tensor_name(new_name, key, bid)
  296. for key in (
  297. gguf.MODEL_TENSOR.TOKEN_EMBD,
  298. gguf.MODEL_TENSOR.OUTPUT,
  299. )
  300. ):
  301. if self.ftype in (
  302. gguf.LlamaFileType.MOSTLY_TQ1_0,
  303. gguf.LlamaFileType.MOSTLY_TQ2_0,
  304. ):
  305. # TODO: use Q4_K and Q6_K
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  308. if isinstance(data_qtype, bool):
  309. if self.ftype == gguf.LlamaFileType.ALL_F32:
  310. data_qtype = gguf.GGMLQuantizationType.F32
  311. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  312. data_qtype = gguf.GGMLQuantizationType.F16
  313. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  314. data_qtype = gguf.GGMLQuantizationType.BF16
  315. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  316. data_qtype = gguf.GGMLQuantizationType.Q8_0
  317. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  318. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  319. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  320. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  321. else:
  322. raise ValueError(f"Unknown file type: {self.ftype.name}")
  323. try:
  324. data = gguf.quants.quantize(data, data_qtype)
  325. except gguf.QuantError as e:
  326. logger.warning("%s, %s", e, "falling back to F16")
  327. data_qtype = gguf.GGMLQuantizationType.F16
  328. data = gguf.quants.quantize(data, data_qtype)
  329. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  330. # reverse shape to make it similar to the internal ggml dimension order
  331. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  332. # n_dims is implicit in the shape
  333. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  334. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  335. def set_type(self):
  336. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  337. def prepare_metadata(self, vocab_only: bool):
  338. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  339. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  340. # If we are using HF model id, set the metadata name to the model id
  341. if self.remote_hf_model_id:
  342. self.metadata.name = self.remote_hf_model_id
  343. # Fallback to model directory name if metadata name is still missing
  344. if self.metadata.name is None:
  345. self.metadata.name = self.dir_model.name
  346. # Generate parameter weight class (useful for leader boards) if not yet determined
  347. if self.metadata.size_label is None and total_params > 0:
  348. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  349. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  350. output_type: str = self.ftype.name.partition("_")[2]
  351. # Filename Output
  352. if self.fname_out.is_dir():
  353. # Generate default filename based on model specification and available metadata
  354. if not vocab_only:
  355. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  356. else:
  357. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  358. # Use the default filename
  359. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  360. else:
  361. # Output path is a custom defined templated filename
  362. # Note: `not is_dir()` is used because `.is_file()` will not detect
  363. # file template strings as it doesn't actually exist as a file
  364. # Process templated file name with the output ftype, useful with the "auto" ftype
  365. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  366. self.set_type()
  367. logger.info("Set meta model")
  368. self.metadata.set_gguf_meta_model(self.gguf_writer)
  369. logger.info("Set model parameters")
  370. self.set_gguf_parameters()
  371. logger.info("Set model tokenizer")
  372. self.set_vocab()
  373. logger.info("Set model quantization version")
  374. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  375. def write(self):
  376. self.prepare_tensors()
  377. self.prepare_metadata(vocab_only=False)
  378. self.gguf_writer.write_header_to_file(path=self.fname_out)
  379. self.gguf_writer.write_kv_data_to_file()
  380. self.gguf_writer.write_tensors_to_file(progress=True)
  381. self.gguf_writer.close()
  382. def write_vocab(self):
  383. if len(self.gguf_writer.tensors) != 1:
  384. raise ValueError('Splitting the vocabulary is not supported')
  385. self.prepare_metadata(vocab_only=True)
  386. self.gguf_writer.write_header_to_file(path=self.fname_out)
  387. self.gguf_writer.write_kv_data_to_file()
  388. self.gguf_writer.close()
  389. @staticmethod
  390. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  391. part_names: list[str] = []
  392. for filename in os.listdir(dir_model):
  393. if filename.startswith(prefix) and filename.endswith(suffix):
  394. part_names.append(filename)
  395. part_names.sort()
  396. return part_names
  397. @staticmethod
  398. def load_hparams(dir_model: Path):
  399. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  400. return json.load(f)
  401. @classmethod
  402. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  403. assert names
  404. def func(modelcls: AnyModel) -> AnyModel:
  405. for name in names:
  406. cls._model_classes[name] = modelcls
  407. return modelcls
  408. return func
  409. @classmethod
  410. def print_registered_models(cls):
  411. for name in sorted(cls._model_classes.keys()):
  412. logger.error(f"- {name}")
  413. @classmethod
  414. def from_model_architecture(cls, arch: str) -> type[Model]:
  415. try:
  416. return cls._model_classes[arch]
  417. except KeyError:
  418. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  419. def does_token_look_special(self, token: str | bytes) -> bool:
  420. if isinstance(token, (bytes, bytearray)):
  421. token_text = token.decode(encoding="utf-8")
  422. elif isinstance(token, memoryview):
  423. token_text = token.tobytes().decode(encoding="utf-8")
  424. else:
  425. token_text = token
  426. # Some models mark some added tokens which ought to be control tokens as not special.
  427. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  428. seems_special = token_text in (
  429. "<pad>", # deepseek-coder
  430. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  431. )
  432. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  433. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  434. # TODO: should these be marked as UNUSED instead? (maybe not)
  435. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  436. return seems_special
  437. # used for GPT-2 BPE and WordPiece vocabs
  438. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  439. tokens: list[str] = []
  440. toktypes: list[int] = []
  441. from transformers import AutoTokenizer
  442. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  443. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  444. assert max(tokenizer.vocab.values()) < vocab_size
  445. tokpre = self.get_vocab_base_pre(tokenizer)
  446. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  447. added_vocab = tokenizer.get_added_vocab()
  448. added_tokens_decoder = tokenizer.added_tokens_decoder
  449. for i in range(vocab_size):
  450. if i not in reverse_vocab:
  451. tokens.append(f"[PAD{i}]")
  452. toktypes.append(gguf.TokenType.UNUSED)
  453. else:
  454. token: str = reverse_vocab[i]
  455. if token in added_vocab:
  456. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  457. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  458. if not added_tokens_decoder[i].normalized:
  459. previous_token = token
  460. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  461. if previous_token != token:
  462. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  463. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  464. toktypes.append(gguf.TokenType.CONTROL)
  465. else:
  466. # NOTE: this was added for Gemma.
  467. # Encoding and decoding the tokens above isn't sufficient for this case.
  468. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  469. toktypes.append(gguf.TokenType.USER_DEFINED)
  470. else:
  471. toktypes.append(gguf.TokenType.NORMAL)
  472. tokens.append(token)
  473. return tokens, toktypes, tokpre
  474. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  475. # do not modify it manually!
  476. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  477. # Marker: Start get_vocab_base_pre
  478. def get_vocab_base_pre(self, tokenizer) -> str:
  479. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  480. # is specific for the BPE pre-tokenizer used by the model
  481. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  482. # use in llama.cpp to implement the same pre-tokenizer
  483. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  484. chktok = tokenizer.encode(chktxt)
  485. chkhsh = sha256(str(chktok).encode()).hexdigest()
  486. logger.debug(f"chktok: {chktok}")
  487. logger.debug(f"chkhsh: {chkhsh}")
  488. res = None
  489. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  490. # or pull the latest version of the model from Huggingface
  491. # don't edit the hashes manually!
  492. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  493. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  494. res = "llama-bpe"
  495. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  496. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  497. res = "deepseek-llm"
  498. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  499. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  500. res = "deepseek-coder"
  501. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  502. # ref: https://huggingface.co/tiiuae/falcon-7b
  503. res = "falcon"
  504. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  505. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  506. res = "falcon3"
  507. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  508. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  509. res = "bert-bge"
  510. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  511. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  512. res = "bert-bge-large"
  513. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  514. # ref: https://huggingface.co/mosaicml/mpt-7b
  515. res = "mpt"
  516. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  517. # ref: https://huggingface.co/bigcode/starcoder2-3b
  518. res = "starcoder"
  519. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  520. # ref: https://huggingface.co/openai-community/gpt2
  521. res = "gpt-2"
  522. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  523. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  524. res = "stablelm2"
  525. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  526. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  527. res = "refact"
  528. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  529. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  530. res = "command-r"
  531. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  532. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  533. res = "qwen2"
  534. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  535. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  536. res = "olmo"
  537. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  538. # ref: https://huggingface.co/databricks/dbrx-base
  539. res = "dbrx"
  540. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  541. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  542. res = "jina-v1-en"
  543. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  544. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  545. res = "jina-v2-en"
  546. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  547. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  548. res = "jina-v2-es"
  549. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  550. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  551. res = "jina-v2-de"
  552. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  553. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  554. res = "smaug-bpe"
  555. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  556. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  557. res = "poro-chat"
  558. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  559. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  560. res = "jina-v2-code"
  561. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  562. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  563. res = "chatglm-bpe"
  564. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  565. # ref: https://huggingface.co/LumiOpen/Viking-7B
  566. res = "viking"
  567. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  568. # ref: https://huggingface.co/core42/jais-13b
  569. res = "jais"
  570. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  571. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  572. res = "codeshell"
  573. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  574. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  575. res = "tekken"
  576. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  577. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  578. res = "smollm"
  579. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  580. # ref: https://huggingface.co/bigscience/bloom
  581. res = "bloom"
  582. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  583. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  584. res = "gpt3-finnish"
  585. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  586. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  587. res = "exaone"
  588. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  589. # ref: https://huggingface.co/microsoft/phi-2
  590. res = "phi-2"
  591. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  592. # ref: https://huggingface.co/facebook/chameleon-7b
  593. res = "chameleon"
  594. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  595. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  596. res = "minerva-7b"
  597. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  598. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  599. res = "roberta-bpe"
  600. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  601. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  602. res = "gigachat"
  603. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  604. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  605. res = "megrez"
  606. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  607. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  608. res = "deepseek-v3"
  609. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  610. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  611. res = "deepseek-r1-qwen"
  612. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  613. # ref: https://huggingface.co/Xenova/gpt-4o
  614. res = "gpt-4o"
  615. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  616. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  617. res = "superbpe"
  618. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  619. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  620. res = "trillion"
  621. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  622. # ref: https://huggingface.co/inclusionAI/Ling-lite
  623. res = "bailingmoe"
  624. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  625. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  626. res = "llama4"
  627. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  628. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  629. res = "glm4"
  630. if res is None:
  631. logger.warning("\n")
  632. logger.warning("**************************************************************************************")
  633. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  634. logger.warning("** There are 2 possible reasons for this:")
  635. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  636. logger.warning("** - the pre-tokenization config has changed upstream")
  637. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  638. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  639. logger.warning("**")
  640. logger.warning(f"** chkhsh: {chkhsh}")
  641. logger.warning("**************************************************************************************")
  642. logger.warning("\n")
  643. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  644. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  645. logger.debug(f"chkhsh: {chkhsh}")
  646. return res
  647. # Marker: End get_vocab_base_pre
  648. def _set_vocab_none(self) -> None:
  649. self.gguf_writer.add_tokenizer_model("none")
  650. def _set_vocab_gpt2(self) -> None:
  651. tokens, toktypes, tokpre = self.get_vocab_base()
  652. self.gguf_writer.add_tokenizer_model("gpt2")
  653. self.gguf_writer.add_tokenizer_pre(tokpre)
  654. self.gguf_writer.add_token_list(tokens)
  655. self.gguf_writer.add_token_types(toktypes)
  656. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  657. special_vocab.add_to_gguf(self.gguf_writer)
  658. def _set_vocab_qwen(self):
  659. dir_model = self.dir_model
  660. hparams = self.hparams
  661. tokens: list[str] = []
  662. toktypes: list[int] = []
  663. from transformers import AutoTokenizer
  664. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  665. vocab_size = hparams["vocab_size"]
  666. assert max(tokenizer.get_vocab().values()) < vocab_size
  667. tokpre = self.get_vocab_base_pre(tokenizer)
  668. merges = []
  669. vocab = {}
  670. mergeable_ranks = tokenizer.mergeable_ranks
  671. for token, rank in mergeable_ranks.items():
  672. vocab[QwenModel.token_bytes_to_string(token)] = rank
  673. if len(token) == 1:
  674. continue
  675. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  676. assert len(merged) == 2
  677. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  678. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  679. added_vocab = tokenizer.special_tokens
  680. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  681. for i in range(vocab_size):
  682. if i not in reverse_vocab:
  683. tokens.append(f"[PAD{i}]")
  684. toktypes.append(gguf.TokenType.UNUSED)
  685. elif reverse_vocab[i] in added_vocab:
  686. tokens.append(reverse_vocab[i])
  687. toktypes.append(gguf.TokenType.CONTROL)
  688. else:
  689. tokens.append(reverse_vocab[i])
  690. toktypes.append(gguf.TokenType.NORMAL)
  691. self.gguf_writer.add_tokenizer_model("gpt2")
  692. self.gguf_writer.add_tokenizer_pre(tokpre)
  693. self.gguf_writer.add_token_list(tokens)
  694. self.gguf_writer.add_token_types(toktypes)
  695. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  696. special_vocab.merges = merges
  697. # only add special tokens when they were not already loaded from config.json
  698. if len(special_vocab.special_token_ids) == 0:
  699. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  700. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  701. # this one is usually not in config.json anyway
  702. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  703. special_vocab.add_to_gguf(self.gguf_writer)
  704. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  705. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  706. self.gguf_writer.add_tokenizer_model("llama")
  707. self.gguf_writer.add_tokenizer_pre("default")
  708. self.gguf_writer.add_token_list(tokens)
  709. self.gguf_writer.add_token_scores(scores)
  710. self.gguf_writer.add_token_types(toktypes)
  711. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  712. special_vocab.add_to_gguf(self.gguf_writer)
  713. def _create_vocab_sentencepiece(self):
  714. from sentencepiece import SentencePieceProcessor
  715. tokenizer_path = self.dir_model / 'tokenizer.model'
  716. if not tokenizer_path.is_file():
  717. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  718. tokenizer = SentencePieceProcessor()
  719. tokenizer.LoadFromFile(str(tokenizer_path))
  720. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  721. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  722. scores: list[float] = [-10000.0] * vocab_size
  723. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  724. for token_id in range(tokenizer.vocab_size()):
  725. piece = tokenizer.IdToPiece(token_id)
  726. text = piece.encode("utf-8")
  727. score = tokenizer.GetScore(token_id)
  728. toktype = SentencePieceTokenTypes.NORMAL
  729. if tokenizer.IsUnknown(token_id):
  730. toktype = SentencePieceTokenTypes.UNKNOWN
  731. elif tokenizer.IsControl(token_id):
  732. toktype = SentencePieceTokenTypes.CONTROL
  733. elif tokenizer.IsUnused(token_id):
  734. toktype = SentencePieceTokenTypes.UNUSED
  735. elif tokenizer.IsByte(token_id):
  736. toktype = SentencePieceTokenTypes.BYTE
  737. tokens[token_id] = text
  738. scores[token_id] = score
  739. toktypes[token_id] = toktype
  740. added_tokens_file = self.dir_model / 'added_tokens.json'
  741. if added_tokens_file.is_file():
  742. with open(added_tokens_file, "r", encoding="utf-8") as f:
  743. added_tokens_json = json.load(f)
  744. for key in added_tokens_json:
  745. token_id = added_tokens_json[key]
  746. if token_id >= vocab_size:
  747. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  748. continue
  749. tokens[token_id] = key.encode("utf-8")
  750. scores[token_id] = -1000.0
  751. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  752. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  753. if tokenizer_config_file.is_file():
  754. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  755. tokenizer_config_json = json.load(f)
  756. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  757. for token_id, token_data in added_tokens_decoder.items():
  758. token_id = int(token_id)
  759. token: str = token_data["content"]
  760. if token_id >= vocab_size:
  761. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  762. continue
  763. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  764. if tokens[token_id] != token.encode("utf-8"):
  765. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  766. if token_data.get("special") or self.does_token_look_special(token):
  767. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  768. else:
  769. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  770. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  771. scores[token_id] = -1000.0
  772. tokens[token_id] = token.encode("utf-8")
  773. if vocab_size > len(tokens):
  774. pad_count = vocab_size - len(tokens)
  775. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  776. for i in range(1, pad_count + 1):
  777. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  778. scores.append(-1000.0)
  779. toktypes.append(SentencePieceTokenTypes.UNUSED)
  780. return tokens, scores, toktypes
  781. def _set_vocab_llama_hf(self):
  782. vocab = gguf.LlamaHfVocab(self.dir_model)
  783. tokens = []
  784. scores = []
  785. toktypes = []
  786. for text, score, toktype in vocab.all_tokens():
  787. tokens.append(text)
  788. scores.append(score)
  789. toktypes.append(toktype)
  790. assert len(tokens) == vocab.vocab_size
  791. self.gguf_writer.add_tokenizer_model("llama")
  792. self.gguf_writer.add_tokenizer_pre("default")
  793. self.gguf_writer.add_token_list(tokens)
  794. self.gguf_writer.add_token_scores(scores)
  795. self.gguf_writer.add_token_types(toktypes)
  796. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  797. special_vocab.add_to_gguf(self.gguf_writer)
  798. def _set_vocab_rwkv_world(self):
  799. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  800. vocab_size = self.hparams.get("vocab_size", 65536)
  801. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  802. toktypes: list[int] = [gguf.TokenType.CONTROL]
  803. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  804. lines = f.readlines()
  805. for line in lines:
  806. parts = line.split(' ')
  807. assert len(parts) >= 3
  808. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  809. token = token.encode("utf-8") if isinstance(token, str) else token
  810. assert isinstance(token, bytes)
  811. assert len(token) == token_len
  812. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  813. tokens.append(token_text.encode("utf-8"))
  814. toktypes.append(gguf.TokenType.NORMAL)
  815. remainder = vocab_size - len(tokens)
  816. assert remainder >= 0
  817. for i in range(len(tokens), vocab_size):
  818. tokens.append(f"[PAD{i}]".encode("utf-8"))
  819. toktypes.append(gguf.TokenType.UNUSED)
  820. self.gguf_writer.add_tokenizer_model("rwkv")
  821. self.gguf_writer.add_token_list(tokens)
  822. self.gguf_writer.add_token_types(toktypes)
  823. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  824. special_vocab.chat_template = "rwkv-world"
  825. # hack: Add '\n\n' as the EOT token to make it chat normally
  826. special_vocab._set_special_token("eot", 261)
  827. special_vocab.add_to_gguf(self.gguf_writer)
  828. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  829. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  830. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  831. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  832. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  833. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  834. assert field # tokenizer model
  835. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  836. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  837. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  838. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  839. assert field # token list
  840. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  841. if model_name == "llama-spm":
  842. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  843. assert field # token scores
  844. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  845. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  846. assert field # token types
  847. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  848. if model_name != "llama-spm":
  849. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  850. assert field # token merges
  851. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  852. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  853. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  854. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  855. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  856. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  857. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  858. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  859. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  860. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  861. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  862. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  863. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  864. @Model.register("GPTNeoXForCausalLM")
  865. class GPTNeoXModel(Model):
  866. model_arch = gguf.MODEL_ARCH.GPTNEOX
  867. def set_gguf_parameters(self):
  868. block_count = self.hparams["num_hidden_layers"]
  869. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  870. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  871. self.gguf_writer.add_block_count(block_count)
  872. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  873. self.gguf_writer.add_rope_dimension_count(
  874. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  875. )
  876. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  877. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  878. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  879. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  880. del bid # unused
  881. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  882. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  883. tensors: list[tuple[str, Tensor]] = []
  884. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  885. # Map bloom-style qkv_linear to gpt-style qkv_linear
  886. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  887. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  888. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  889. data_torch = torch.cat(
  890. (
  891. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  892. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  893. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  894. ),
  895. dim=0,
  896. )
  897. logger.info("re-format attention.linear_qkv.weight")
  898. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  899. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  900. data_torch = torch.cat(
  901. (
  902. qkv_bias[:, 0, :].reshape((n_embed,)),
  903. qkv_bias[:, 1, :].reshape((n_embed,)),
  904. qkv_bias[:, 2, :].reshape((n_embed,)),
  905. ),
  906. dim=0,
  907. )
  908. logger.info("re-format attention.linear_qkv.bias")
  909. tensors.append((self.map_tensor_name(name), data_torch))
  910. return tensors
  911. @Model.register("BloomForCausalLM", "BloomModel")
  912. class BloomModel(Model):
  913. model_arch = gguf.MODEL_ARCH.BLOOM
  914. def set_gguf_parameters(self):
  915. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  916. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  917. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  918. self.gguf_writer.add_embedding_length(n_embed)
  919. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  920. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  921. self.gguf_writer.add_head_count(n_head)
  922. self.gguf_writer.add_head_count_kv(n_head)
  923. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  924. self.gguf_writer.add_file_type(self.ftype)
  925. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  926. del bid # unused
  927. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  928. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  929. name = re.sub(r'transformer\.', '', name)
  930. tensors: list[tuple[str, Tensor]] = []
  931. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  932. # Map bloom-style qkv_linear to gpt-style qkv_linear
  933. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  934. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  935. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  936. data_torch = torch.cat(
  937. (
  938. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  939. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  940. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  941. ),
  942. dim=0,
  943. )
  944. logger.info("re-format attention.linear_qkv.weight")
  945. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  946. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  947. data_torch = torch.cat(
  948. (
  949. qkv_bias[:, 0, :].reshape((n_embed,)),
  950. qkv_bias[:, 1, :].reshape((n_embed,)),
  951. qkv_bias[:, 2, :].reshape((n_embed,)),
  952. ),
  953. dim=0,
  954. )
  955. logger.info("re-format attention.linear_qkv.bias")
  956. tensors.append((self.map_tensor_name(name), data_torch))
  957. return tensors
  958. @Model.register("MPTForCausalLM")
  959. class MPTModel(Model):
  960. model_arch = gguf.MODEL_ARCH.MPT
  961. def set_vocab(self):
  962. try:
  963. self._set_vocab_gpt2()
  964. except Exception:
  965. # Fallback for SEA-LION model
  966. self._set_vocab_sentencepiece()
  967. self.gguf_writer.add_add_bos_token(False)
  968. self.gguf_writer.add_pad_token_id(3)
  969. self.gguf_writer.add_eos_token_id(1)
  970. self.gguf_writer.add_unk_token_id(0)
  971. def set_gguf_parameters(self):
  972. block_count = self.hparams["n_layers"]
  973. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  974. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  975. self.gguf_writer.add_block_count(block_count)
  976. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  977. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  978. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  979. self.gguf_writer.add_head_count_kv(kv_n_heads)
  980. self.gguf_writer.add_layer_norm_eps(1e-5)
  981. if self.hparams["attn_config"]["clip_qkv"] is not None:
  982. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  983. if self.hparams["attn_config"]["alibi"]:
  984. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  985. else:
  986. self.gguf_writer.add_max_alibi_bias(0.0)
  987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  988. del bid # unused
  989. if "scales" in name:
  990. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  991. new_name = new_name.replace("scales", "act.scales")
  992. else:
  993. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  994. return [(new_name, data_torch)]
  995. @Model.register("OrionForCausalLM")
  996. class OrionModel(Model):
  997. model_arch = gguf.MODEL_ARCH.ORION
  998. def set_vocab(self):
  999. self._set_vocab_sentencepiece()
  1000. def set_gguf_parameters(self):
  1001. block_count = self.hparams["num_hidden_layers"]
  1002. head_count = self.hparams["num_attention_heads"]
  1003. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1004. ctx_length = 0
  1005. if "max_sequence_length" in self.hparams:
  1006. ctx_length = self.hparams["max_sequence_length"]
  1007. elif "max_position_embeddings" in self.hparams:
  1008. ctx_length = self.hparams["max_position_embeddings"]
  1009. elif "model_max_length" in self.hparams:
  1010. ctx_length = self.hparams["model_max_length"]
  1011. else:
  1012. raise ValueError("gguf: can not find ctx length parameter.")
  1013. self.gguf_writer.add_file_type(self.ftype)
  1014. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1015. self.gguf_writer.add_context_length(ctx_length)
  1016. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1017. self.gguf_writer.add_block_count(block_count)
  1018. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1019. self.gguf_writer.add_head_count(head_count)
  1020. self.gguf_writer.add_head_count_kv(head_count_kv)
  1021. # note: config provides rms norm but it is actually layer norm
  1022. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1023. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1024. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1025. class BaichuanModel(Model):
  1026. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1027. def set_vocab(self):
  1028. self._set_vocab_sentencepiece()
  1029. def set_gguf_parameters(self):
  1030. block_count = self.hparams["num_hidden_layers"]
  1031. head_count = self.hparams["num_attention_heads"]
  1032. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1033. ctx_length = 0
  1034. if "max_sequence_length" in self.hparams:
  1035. ctx_length = self.hparams["max_sequence_length"]
  1036. elif "max_position_embeddings" in self.hparams:
  1037. ctx_length = self.hparams["max_position_embeddings"]
  1038. elif "model_max_length" in self.hparams:
  1039. ctx_length = self.hparams["model_max_length"]
  1040. else:
  1041. raise ValueError("gguf: can not find ctx length parameter.")
  1042. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1043. self.gguf_writer.add_context_length(ctx_length)
  1044. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1045. self.gguf_writer.add_block_count(block_count)
  1046. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1047. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1048. self.gguf_writer.add_head_count(head_count)
  1049. self.gguf_writer.add_head_count_kv(head_count_kv)
  1050. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1051. self.gguf_writer.add_file_type(self.ftype)
  1052. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1053. if self.hparams["rope_scaling"].get("type") == "linear":
  1054. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1055. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1056. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1057. head_count = self.hparams["num_attention_heads"]
  1058. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1059. tensors: list[tuple[str, Tensor]] = []
  1060. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1061. logger.info(f"Unpacking and permuting layer {bid}")
  1062. tensors = [
  1063. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1064. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1065. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1066. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1067. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1068. self._reverse_hf_part(data_torch, 2)),
  1069. ]
  1070. else:
  1071. tensors = [(self.map_tensor_name(name), data_torch)]
  1072. return tensors
  1073. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1074. if n_kv_head is not None and n_head != n_kv_head:
  1075. n_head //= n_kv_head
  1076. return (
  1077. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1078. .swapaxes(1, 2)
  1079. .reshape(weights.shape)
  1080. )
  1081. def _reverse_hf_permute_part(
  1082. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1083. ) -> Tensor:
  1084. r = weights.shape[0] // 3
  1085. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1086. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1087. r = weights.shape[0] // 3
  1088. return weights[r * n_part:r * n_part + r, ...]
  1089. @Model.register("XverseForCausalLM")
  1090. class XverseModel(Model):
  1091. model_arch = gguf.MODEL_ARCH.XVERSE
  1092. def set_vocab(self):
  1093. assert (self.dir_model / "tokenizer.json").is_file()
  1094. dir_model = self.dir_model
  1095. hparams = self.hparams
  1096. tokens: list[bytes] = []
  1097. toktypes: list[int] = []
  1098. from transformers import AutoTokenizer
  1099. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1100. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1101. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1102. # because vocab_size is the count of items, and indexes start at 0.
  1103. max_vocab_index = max(tokenizer.get_vocab().values())
  1104. if max_vocab_index >= vocab_size:
  1105. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1106. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1107. added_vocab = tokenizer.get_added_vocab()
  1108. for token_id in range(vocab_size):
  1109. token_text = reverse_vocab[token_id].encode('utf-8')
  1110. # replace "\x00" to string with length > 0
  1111. if token_text == b"\x00":
  1112. toktype = gguf.TokenType.BYTE # special
  1113. token_text = f"<{token_text}>".encode('utf-8')
  1114. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1115. toktype = gguf.TokenType.BYTE # special
  1116. elif reverse_vocab[token_id] in added_vocab:
  1117. if tokenizer.added_tokens_decoder[token_id].special:
  1118. toktype = gguf.TokenType.CONTROL
  1119. else:
  1120. toktype = gguf.TokenType.USER_DEFINED
  1121. else:
  1122. toktype = gguf.TokenType.NORMAL
  1123. tokens.append(token_text)
  1124. toktypes.append(toktype)
  1125. self.gguf_writer.add_tokenizer_model("llama")
  1126. self.gguf_writer.add_tokenizer_pre("default")
  1127. self.gguf_writer.add_token_list(tokens)
  1128. self.gguf_writer.add_token_types(toktypes)
  1129. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1130. special_vocab.add_to_gguf(self.gguf_writer)
  1131. def set_gguf_parameters(self):
  1132. block_count = self.hparams["num_hidden_layers"]
  1133. head_count = self.hparams["num_attention_heads"]
  1134. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1135. ctx_length = 0
  1136. if "max_sequence_length" in self.hparams:
  1137. ctx_length = self.hparams["max_sequence_length"]
  1138. elif "max_position_embeddings" in self.hparams:
  1139. ctx_length = self.hparams["max_position_embeddings"]
  1140. elif "model_max_length" in self.hparams:
  1141. ctx_length = self.hparams["model_max_length"]
  1142. else:
  1143. raise ValueError("gguf: can not find ctx length parameter.")
  1144. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1145. self.gguf_writer.add_context_length(ctx_length)
  1146. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1147. self.gguf_writer.add_block_count(block_count)
  1148. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1149. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1150. self.gguf_writer.add_head_count(head_count)
  1151. self.gguf_writer.add_head_count_kv(head_count_kv)
  1152. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1153. self.gguf_writer.add_file_type(self.ftype)
  1154. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1155. if self.hparams["rope_scaling"].get("type") == "linear":
  1156. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1157. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1158. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1159. del bid # unused
  1160. head_count = self.hparams["num_attention_heads"]
  1161. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1162. # HF models permute some of the tensors, so we need to undo that
  1163. if name.endswith("q_proj.weight"):
  1164. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1165. if name.endswith("k_proj.weight"):
  1166. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1167. return [(self.map_tensor_name(name), data_torch)]
  1168. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1169. if n_kv_head is not None and n_head != n_kv_head:
  1170. n_head //= n_kv_head
  1171. return (
  1172. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1173. .swapaxes(1, 2)
  1174. .reshape(weights.shape)
  1175. )
  1176. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1177. class FalconModel(Model):
  1178. model_arch = gguf.MODEL_ARCH.FALCON
  1179. def set_gguf_parameters(self):
  1180. block_count = self.hparams.get("num_hidden_layers")
  1181. if block_count is None:
  1182. block_count = self.hparams["n_layer"] # old name
  1183. n_head = self.hparams.get("num_attention_heads")
  1184. if n_head is None:
  1185. n_head = self.hparams["n_head"] # old name
  1186. n_head_kv = self.hparams.get("num_kv_heads")
  1187. if n_head_kv is None:
  1188. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1189. self.gguf_writer.add_context_length(2048) # not in config.json
  1190. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1191. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1192. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1193. self.gguf_writer.add_block_count(block_count)
  1194. self.gguf_writer.add_head_count(n_head)
  1195. self.gguf_writer.add_head_count_kv(n_head_kv)
  1196. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1197. self.gguf_writer.add_file_type(self.ftype)
  1198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1199. del bid # unused
  1200. # QKV tensor transform
  1201. # The original query_key_value tensor contains n_head_kv "kv groups",
  1202. # each consisting of n_head/n_head_kv query weights followed by one key
  1203. # and one value weight (shared by all query heads in the kv group).
  1204. # This layout makes it a big pain to work with in GGML.
  1205. # So we rearrange them here,, so that we have n_head query weights
  1206. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1207. # in contiguous fashion.
  1208. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1209. if "query_key_value" in name:
  1210. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1211. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1212. head_dim = self.hparams["hidden_size"] // n_head
  1213. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1214. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1215. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1216. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1217. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1218. return [(self.map_tensor_name(name), data_torch)]
  1219. @Model.register("GPTBigCodeForCausalLM")
  1220. class StarCoderModel(Model):
  1221. model_arch = gguf.MODEL_ARCH.STARCODER
  1222. def set_gguf_parameters(self):
  1223. block_count = self.hparams["n_layer"]
  1224. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1225. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1226. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1227. self.gguf_writer.add_block_count(block_count)
  1228. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1229. self.gguf_writer.add_head_count_kv(1)
  1230. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1231. self.gguf_writer.add_file_type(self.ftype)
  1232. @Model.register("GPTRefactForCausalLM")
  1233. class RefactModel(Model):
  1234. model_arch = gguf.MODEL_ARCH.REFACT
  1235. def set_vocab(self):
  1236. super().set_vocab()
  1237. # TODO: how to determine special FIM tokens automatically?
  1238. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1239. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1240. special_vocab._set_special_token("prefix", 1)
  1241. special_vocab._set_special_token("suffix", 3)
  1242. special_vocab._set_special_token("middle", 2)
  1243. special_vocab.chat_template = None # do not add it twice
  1244. special_vocab.add_to_gguf(self.gguf_writer)
  1245. def set_gguf_parameters(self):
  1246. hidden_dim = self.hparams["n_embd"]
  1247. inner_dim = 4 * hidden_dim
  1248. hidden_dim = int(2 * inner_dim / 3)
  1249. multiple_of = 256
  1250. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1251. block_count = self.hparams["n_layer"]
  1252. # refact uses Alibi. So this is from config.json which might be used by training.
  1253. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1254. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1255. self.gguf_writer.add_feed_forward_length(ff_dim)
  1256. self.gguf_writer.add_block_count(block_count)
  1257. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1258. self.gguf_writer.add_head_count_kv(1)
  1259. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1260. self.gguf_writer.add_file_type(self.ftype)
  1261. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1262. hidden_dim = self.hparams["n_embd"]
  1263. inner_dim = 4 * hidden_dim
  1264. hidden_dim = int(2 * inner_dim / 3)
  1265. multiple_of = 256
  1266. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1267. n_head = self.hparams["n_head"]
  1268. n_head_kv = 1
  1269. head_dim = self.hparams["n_embd"] // n_head
  1270. tensors: list[tuple[str, Tensor]] = []
  1271. if bid is not None:
  1272. if name == f"transformer.h.{bid}.attn.kv.weight":
  1273. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1274. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1275. elif name == f"transformer.h.{bid}.attn.q.weight":
  1276. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1277. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1278. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1279. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1280. if len(tensors) == 0:
  1281. tensors.append((self.map_tensor_name(name), data_torch))
  1282. return tensors
  1283. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1284. class StableLMModel(Model):
  1285. model_arch = gguf.MODEL_ARCH.STABLELM
  1286. def set_vocab(self):
  1287. if (self.dir_model / "tokenizer.json").is_file():
  1288. self._set_vocab_gpt2()
  1289. else:
  1290. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1291. self._set_vocab_qwen()
  1292. def set_gguf_parameters(self):
  1293. hparams = self.hparams
  1294. block_count = hparams["num_hidden_layers"]
  1295. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1296. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1297. self.gguf_writer.add_block_count(block_count)
  1298. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1299. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1300. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1301. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1302. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1303. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1304. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1305. self.gguf_writer.add_file_type(self.ftype)
  1306. _q_norms: list[dict[str, Tensor]] | None = None
  1307. _k_norms: list[dict[str, Tensor]] | None = None
  1308. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1309. n_head = self.hparams["num_attention_heads"]
  1310. n_kv_head = self.hparams["num_key_value_heads"]
  1311. if name.find("q_layernorm.norms") != -1:
  1312. assert bid is not None
  1313. if self._q_norms is None:
  1314. self._q_norms = [{} for _ in range(self.block_count)]
  1315. self._q_norms[bid][name] = data_torch
  1316. if len(self._q_norms[bid]) >= n_head:
  1317. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1318. else:
  1319. return []
  1320. if name.find("k_layernorm.norms") != -1:
  1321. assert bid is not None
  1322. if self._k_norms is None:
  1323. self._k_norms = [{} for _ in range(self.block_count)]
  1324. self._k_norms[bid][name] = data_torch
  1325. if len(self._k_norms[bid]) >= n_kv_head:
  1326. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1327. else:
  1328. return []
  1329. return [(self.map_tensor_name(name), data_torch)]
  1330. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1331. datas: list[Tensor] = []
  1332. # extract the norms in order
  1333. for xid in range(n_head):
  1334. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1335. datas.append(norms[ename])
  1336. del norms[ename]
  1337. data_torch = torch.stack(datas, dim=0)
  1338. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1339. new_name = self.map_tensor_name(merged_name)
  1340. return [(new_name, data_torch)]
  1341. def prepare_tensors(self):
  1342. super().prepare_tensors()
  1343. if self._q_norms is not None or self._k_norms is not None:
  1344. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1345. norms = (
  1346. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1347. ) + (
  1348. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1349. )
  1350. if len(norms) > 0:
  1351. raise ValueError(f"Unprocessed norms: {norms}")
  1352. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1353. class LlamaModel(Model):
  1354. model_arch = gguf.MODEL_ARCH.LLAMA
  1355. undo_permute = True
  1356. def set_vocab(self):
  1357. try:
  1358. self._set_vocab_sentencepiece()
  1359. except FileNotFoundError:
  1360. try:
  1361. self._set_vocab_llama_hf()
  1362. except (FileNotFoundError, TypeError):
  1363. # Llama 3
  1364. self._set_vocab_gpt2()
  1365. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1366. if self.hparams.get("vocab_size", 32000) == 32016:
  1367. special_vocab = gguf.SpecialVocab(
  1368. self.dir_model, load_merges=False,
  1369. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1370. )
  1371. special_vocab._set_special_token("prefix", 32007)
  1372. special_vocab._set_special_token("suffix", 32008)
  1373. special_vocab._set_special_token("middle", 32009)
  1374. special_vocab._set_special_token("eot", 32010)
  1375. special_vocab.add_to_gguf(self.gguf_writer)
  1376. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1377. if tokenizer_config_file.is_file():
  1378. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1379. tokenizer_config_json = json.load(f)
  1380. if "add_prefix_space" in tokenizer_config_json:
  1381. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1382. # Apply to granite small models only
  1383. if self.hparams.get("vocab_size", 32000) == 49152:
  1384. self.gguf_writer.add_add_bos_token(False)
  1385. def set_gguf_parameters(self):
  1386. super().set_gguf_parameters()
  1387. hparams = self.hparams
  1388. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1389. if "head_dim" in hparams:
  1390. rope_dim = hparams["head_dim"]
  1391. else:
  1392. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1393. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1394. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1395. if self.hparams["rope_scaling"].get("type") == "linear":
  1396. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1397. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1398. @staticmethod
  1399. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1400. if n_head_kv is not None and n_head != n_head_kv:
  1401. n_head = n_head_kv
  1402. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1403. .swapaxes(1, 2)
  1404. .reshape(weights.shape))
  1405. _experts: list[dict[str, Tensor]] | None = None
  1406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1407. n_head = self.hparams["num_attention_heads"]
  1408. n_kv_head = self.hparams.get("num_key_value_heads")
  1409. if self.undo_permute:
  1410. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1411. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1412. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1413. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1414. # process the experts separately
  1415. if name.find("block_sparse_moe.experts") != -1:
  1416. n_experts = self.hparams["num_local_experts"]
  1417. assert bid is not None
  1418. if self._experts is None:
  1419. self._experts = [{} for _ in range(self.block_count)]
  1420. self._experts[bid][name] = data_torch
  1421. if len(self._experts[bid]) >= n_experts * 3:
  1422. tensors: list[tuple[str, Tensor]] = []
  1423. # merge the experts into a single 3d tensor
  1424. for wid in ["w1", "w2", "w3"]:
  1425. datas: list[Tensor] = []
  1426. for xid in range(n_experts):
  1427. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1428. datas.append(self._experts[bid][ename])
  1429. del self._experts[bid][ename]
  1430. data_torch = torch.stack(datas, dim=0)
  1431. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1432. new_name = self.map_tensor_name(merged_name)
  1433. tensors.append((new_name, data_torch))
  1434. return tensors
  1435. else:
  1436. return []
  1437. return [(self.map_tensor_name(name), data_torch)]
  1438. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1439. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1440. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1441. base = self.hparams.get("rope_theta", 10000.0)
  1442. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1443. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1444. factor = rope_scaling.get("factor", 8.0)
  1445. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1446. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1447. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1448. low_freq_wavelen = old_context_len / low_freq_factor
  1449. high_freq_wavelen = old_context_len / high_freq_factor
  1450. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1451. rope_factors = []
  1452. for freq in freqs:
  1453. wavelen = 2 * math.pi / freq
  1454. if wavelen < high_freq_wavelen:
  1455. rope_factors.append(1)
  1456. elif wavelen > low_freq_wavelen:
  1457. rope_factors.append(factor)
  1458. else:
  1459. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1460. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1461. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1462. def prepare_tensors(self):
  1463. super().prepare_tensors()
  1464. if self._experts is not None:
  1465. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1466. experts = [k for d in self._experts for k in d.keys()]
  1467. if len(experts) > 0:
  1468. raise ValueError(f"Unprocessed experts: {experts}")
  1469. @Model.register("Llama4ForConditionalGeneration")
  1470. class Llama4Model(LlamaModel):
  1471. model_arch = gguf.MODEL_ARCH.LLAMA4
  1472. has_vision: bool = False
  1473. undo_permute = False
  1474. # TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
  1475. # same with llama, but we need to merge the text_config into the root level of hparams
  1476. def __init__(self, *args, **kwargs):
  1477. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  1478. if "text_config" in hparams:
  1479. hparams = {**hparams, **hparams["text_config"]}
  1480. kwargs["hparams"] = hparams
  1481. super().__init__(*args, **kwargs)
  1482. if "vision_config" in hparams:
  1483. logger.info("Has vision encoder, but it will be ignored")
  1484. self.has_vision = True
  1485. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1486. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1487. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1488. def set_vocab(self):
  1489. self._set_vocab_gpt2()
  1490. self.gguf_writer.add_add_bos_token(True)
  1491. def set_gguf_parameters(self):
  1492. super().set_gguf_parameters()
  1493. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1494. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1496. # split the gate_up into gate and up
  1497. if "gate_up_proj" in name:
  1498. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1499. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1500. dim_half = data_torch.shape[-1] // 2
  1501. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1502. return [
  1503. (self.map_tensor_name(name_gate), gate_proj_weight),
  1504. (self.map_tensor_name(name_up), up_proj_weight)
  1505. ]
  1506. if name.endswith("down_proj"):
  1507. name += ".weight"
  1508. data_torch = data_torch.transpose(-1, -2)
  1509. if "multi_modal_projector" in name or "vision_model" in name:
  1510. return []
  1511. return super().modify_tensors(data_torch, name, bid)
  1512. @Model.register("Mistral3ForConditionalGeneration")
  1513. class Mistral3Model(LlamaModel):
  1514. model_arch = gguf.MODEL_ARCH.LLAMA
  1515. # we need to merge the text_config into the root level of hparams
  1516. def __init__(self, *args, **kwargs):
  1517. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  1518. if "text_config" in hparams:
  1519. hparams = {**hparams, **hparams["text_config"]}
  1520. kwargs["hparams"] = hparams
  1521. super().__init__(*args, **kwargs)
  1522. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1523. name = name.replace("language_model.", "")
  1524. if "multi_modal_projector" in name or "vision_tower" in name:
  1525. return []
  1526. return super().modify_tensors(data_torch, name, bid)
  1527. @Model.register("DeciLMForCausalLM")
  1528. class DeciModel(Model):
  1529. model_arch = gguf.MODEL_ARCH.DECI
  1530. @staticmethod
  1531. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1532. # DeciLM-specific code
  1533. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1534. return DeciModel._find_multiple(intermediate_size, 256)
  1535. @staticmethod
  1536. def _find_multiple(n: int, k: int) -> int:
  1537. # DeciLM-specific code
  1538. if n % k == 0:
  1539. return n
  1540. return n + k - (n % k)
  1541. def __init__(self, *args, **kwargs):
  1542. super().__init__(*args, **kwargs)
  1543. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1544. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1545. assert self.block_count == len(_block_configs)
  1546. self._num_kv_heads = list()
  1547. self._num_heads = list()
  1548. _ffn_multipliers = list()
  1549. # ***linear attention layer***
  1550. # if n_heads_in_group is None and replace_with_linear is True
  1551. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1552. # ***attention-free layer***
  1553. # if n_heads_in_group is None and replace_with_linear is False
  1554. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1555. # ***normal attention-layer***
  1556. # if n_heads_in_group is not None, then
  1557. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1558. # _num_heads[il] is num_attention_head
  1559. for il in range(len(_block_configs)):
  1560. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1561. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1562. self._num_kv_heads.append(0)
  1563. self._num_heads.append(self.hparams["num_attention_heads"])
  1564. else:
  1565. self._num_kv_heads.append(0)
  1566. self._num_heads.append(0)
  1567. else:
  1568. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1569. self._num_heads.append(self.hparams["num_attention_heads"])
  1570. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1571. assert self.block_count == len(self._num_kv_heads)
  1572. assert self.block_count == len(self._num_heads)
  1573. assert self.block_count == len(_ffn_multipliers)
  1574. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1575. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1576. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1577. self._ffn_dims: list[int] = [
  1578. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1579. for multiplier in _ffn_multipliers
  1580. ]
  1581. def set_vocab(self):
  1582. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1583. # eos_token from '|eot_id|' to '|end_of_text|'
  1584. if self.hparams.get("vocab_size", 128256) == 128256:
  1585. tokens, toktypes, tokpre = self.get_vocab_base()
  1586. self.gguf_writer.add_tokenizer_model("gpt2")
  1587. self.gguf_writer.add_tokenizer_pre(tokpre)
  1588. self.gguf_writer.add_token_list(tokens)
  1589. self.gguf_writer.add_token_types(toktypes)
  1590. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1591. special_vocab.add_to_gguf(self.gguf_writer)
  1592. else:
  1593. # DeciLM-7B
  1594. self._set_vocab_llama_hf()
  1595. def set_gguf_parameters(self):
  1596. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1597. assert self.block_count == len(self._num_kv_heads)
  1598. assert self.block_count == len(self._num_heads)
  1599. assert self.block_count == len(self._ffn_dims)
  1600. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1601. self.gguf_writer.add_rope_freq_base(rope_theta)
  1602. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1603. self.gguf_writer.add_head_count(self._num_heads)
  1604. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1605. self.gguf_writer.add_block_count(self.block_count)
  1606. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1607. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1608. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1609. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1610. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1611. self.gguf_writer.add_file_type(self.ftype)
  1612. else: # DeciLM-7B
  1613. super().set_gguf_parameters()
  1614. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1615. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1616. assert self.block_count == len(self._num_kv_heads)
  1617. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1618. hparams = self.hparams
  1619. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1620. if "head_dim" in hparams:
  1621. rope_dim = hparams["head_dim"]
  1622. else:
  1623. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1624. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1625. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1626. if self.hparams["rope_scaling"].get("type") == "linear":
  1627. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1628. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1629. @staticmethod
  1630. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1631. if n_head_kv is not None and n_head != n_head_kv:
  1632. n_head = n_head_kv
  1633. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1634. .swapaxes(1, 2)
  1635. .reshape(weights.shape))
  1636. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1637. n_head = self.hparams["num_attention_heads"]
  1638. if bid is not None:
  1639. if "num_key_value_heads_per_layer" in self.hparams:
  1640. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1641. elif "block_configs" in self.hparams:
  1642. n_kv_head = self._num_kv_heads[bid]
  1643. n_head = self._num_heads[bid]
  1644. else:
  1645. n_kv_head = self.hparams.get("num_key_value_heads")
  1646. else:
  1647. n_kv_head = self.hparams.get("num_key_value_heads")
  1648. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1649. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1650. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1651. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1652. return [(self.map_tensor_name(name), data_torch)]
  1653. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1654. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1655. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1656. base = self.hparams.get("rope_theta", 10000.0)
  1657. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1658. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1659. factor = rope_scaling.get("factor", 8.0)
  1660. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1661. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1662. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1663. low_freq_wavelen = old_context_len / low_freq_factor
  1664. high_freq_wavelen = old_context_len / high_freq_factor
  1665. assert low_freq_wavelen != high_freq_wavelen
  1666. rope_factors = []
  1667. for freq in freqs:
  1668. wavelen = 2 * math.pi / freq
  1669. if wavelen < high_freq_wavelen:
  1670. rope_factors.append(1)
  1671. elif wavelen > low_freq_wavelen:
  1672. rope_factors.append(factor)
  1673. else:
  1674. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1675. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1676. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1677. def prepare_tensors(self):
  1678. super().prepare_tensors()
  1679. @Model.register("BitnetForCausalLM")
  1680. class BitnetModel(Model):
  1681. model_arch = gguf.MODEL_ARCH.BITNET
  1682. def set_vocab(self):
  1683. self._set_vocab_sentencepiece()
  1684. def set_gguf_parameters(self):
  1685. super().set_gguf_parameters()
  1686. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1687. self.gguf_writer.add_rope_scaling_factor(1.0)
  1688. def weight_quant(self, weight: Tensor) -> Tensor:
  1689. dtype = weight.dtype
  1690. weight = weight.float()
  1691. scale = weight.abs().mean().clamp(min=1e-5)
  1692. iscale = 1 / scale
  1693. # TODO: multiply by the scale directly instead of inverting it twice
  1694. # (this is also unnecessarily doubly inverted upstream)
  1695. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1696. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1697. return result.type(dtype)
  1698. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1699. new_name = self.map_tensor_name(name)
  1700. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1701. gguf.MODEL_TENSOR.ATTN_Q,
  1702. gguf.MODEL_TENSOR.ATTN_K,
  1703. gguf.MODEL_TENSOR.ATTN_V,
  1704. gguf.MODEL_TENSOR.ATTN_OUT,
  1705. gguf.MODEL_TENSOR.FFN_UP,
  1706. gguf.MODEL_TENSOR.FFN_DOWN,
  1707. gguf.MODEL_TENSOR.FFN_GATE,
  1708. ]):
  1709. # transform weight into 1/0/-1 (in fp32)
  1710. data_torch = self.weight_quant(data_torch)
  1711. yield (new_name, data_torch)
  1712. @Model.register("GrokForCausalLM")
  1713. class GrokModel(Model):
  1714. model_arch = gguf.MODEL_ARCH.GROK
  1715. def set_vocab(self):
  1716. self._set_vocab_sentencepiece()
  1717. def __init__(self, *args, **kwargs):
  1718. super().__init__(*args, **kwargs)
  1719. def set_gguf_parameters(self):
  1720. super().set_gguf_parameters()
  1721. _experts: list[dict[str, Tensor]] | None = None
  1722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1723. # process the experts separately
  1724. if name.find(".moe.") != -1:
  1725. n_experts = self.hparams["num_local_experts"]
  1726. assert bid is not None
  1727. if self._experts is None:
  1728. self._experts = [{} for _ in range(self.block_count)]
  1729. self._experts[bid][name] = data_torch
  1730. if len(self._experts[bid]) >= n_experts * 3:
  1731. tensors: list[tuple[str, Tensor]] = []
  1732. # merge the experts into a single 3d tensor
  1733. for wid in ["linear", "linear_1", "linear_v"]:
  1734. datas: list[Tensor] = []
  1735. for xid in range(n_experts):
  1736. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1737. datas.append(self._experts[bid][ename])
  1738. del self._experts[bid][ename]
  1739. data_torch = torch.stack(datas, dim=0)
  1740. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1741. new_name = self.map_tensor_name(merged_name)
  1742. tensors.append((new_name, data_torch))
  1743. return tensors
  1744. else:
  1745. return []
  1746. return [(self.map_tensor_name(name), data_torch)]
  1747. @Model.register("DbrxForCausalLM")
  1748. class DbrxModel(Model):
  1749. model_arch = gguf.MODEL_ARCH.DBRX
  1750. def set_gguf_parameters(self):
  1751. ffn_config = self.hparams["ffn_config"]
  1752. attn_config = self.hparams["attn_config"]
  1753. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1754. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1755. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1756. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1757. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1758. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1759. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1760. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1761. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1762. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1763. self.gguf_writer.add_layer_norm_eps(1e-5)
  1764. self.gguf_writer.add_file_type(self.ftype)
  1765. logger.info(f"gguf: file type = {self.ftype}")
  1766. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1767. del bid # unused
  1768. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1769. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1770. n_embd = self.hparams["d_model"]
  1771. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1772. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1773. # But llama.cpp moe graph works differently
  1774. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1775. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1776. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1777. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1778. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1779. experts = False
  1780. for exp_tensor_name in exp_tensor_names.keys():
  1781. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1782. experts = True
  1783. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1784. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1785. data_torch = data_torch.permute(*permute_tensor)
  1786. break
  1787. # map tensor names
  1788. # In MoE models the ffn tensors are typically most of the model weights,
  1789. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1790. # Every other model has the weight names ending in .weight,
  1791. # let's assume that is the convention which is not the case for dbrx:
  1792. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1793. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1794. return [(new_name, data_torch)]
  1795. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1796. del name, new_name, bid # unused
  1797. return n_dims > 1
  1798. @Model.register("MiniCPMForCausalLM")
  1799. class MiniCPMModel(Model):
  1800. model_arch = gguf.MODEL_ARCH.MINICPM
  1801. def set_gguf_parameters(self):
  1802. super().set_gguf_parameters()
  1803. embedding_scale = float(self.hparams["scale_emb"])
  1804. self.gguf_writer.add_embedding_scale(embedding_scale)
  1805. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1806. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1807. self.gguf_writer.add_residual_scale(residual_scale)
  1808. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1809. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1810. self.gguf_writer.add_logit_scale(logit_scale)
  1811. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1812. if self.hparams.get("rope_scaling") is not None:
  1813. if self.hparams["rope_scaling"].get("type") == "longrope":
  1814. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1815. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1816. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1817. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1818. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1819. if rope_scaling is not None:
  1820. long_factors = rope_scaling.get('long_factor', None)
  1821. short_factors = rope_scaling.get('short_factor', None)
  1822. if long_factors is None or short_factors is None:
  1823. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1824. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1825. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1826. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1827. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1828. def set_vocab(self):
  1829. self._set_vocab_sentencepiece()
  1830. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1831. del bid # unused
  1832. n_head = self.hparams["num_attention_heads"]
  1833. n_kv_head = self.hparams.get("num_key_value_heads")
  1834. # HF models permute some of the tensors, so we need to undo that
  1835. if name.endswith(("q_proj.weight")):
  1836. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1837. if name.endswith(("k_proj.weight")):
  1838. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1839. return [(self.map_tensor_name(name), data_torch)]
  1840. @Model.register("MiniCPM3ForCausalLM")
  1841. class MiniCPM3Model(Model):
  1842. model_arch = gguf.MODEL_ARCH.MINICPM3
  1843. def set_gguf_parameters(self):
  1844. hparams = self.hparams
  1845. self.gguf_writer.add_file_type(self.ftype)
  1846. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1847. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1848. self.gguf_writer.add_block_count(self.block_count)
  1849. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1850. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1851. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1852. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1853. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1854. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1855. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1856. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1857. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1858. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1859. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1860. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1861. if rope_scaling is not None:
  1862. rope_dims = self.hparams["qk_rope_head_dim"]
  1863. long_factors = rope_scaling.get('long_factor', None)
  1864. short_factors = rope_scaling.get('short_factor', None)
  1865. if long_factors is None or short_factors is None:
  1866. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1867. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1868. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1869. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1870. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1871. def set_vocab(self):
  1872. self._set_vocab_sentencepiece()
  1873. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1874. if n_kv_head is not None and n_head != n_kv_head:
  1875. n_head //= n_kv_head
  1876. return (
  1877. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1878. .swapaxes(1, 2)
  1879. .reshape(weights.shape)
  1880. )
  1881. @Model.register("QWenLMHeadModel")
  1882. class QwenModel(Model):
  1883. model_arch = gguf.MODEL_ARCH.QWEN
  1884. @staticmethod
  1885. def token_bytes_to_string(b):
  1886. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1887. byte_encoder = bytes_to_unicode()
  1888. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1889. @staticmethod
  1890. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1891. parts = [bytes([b]) for b in token]
  1892. while True:
  1893. min_idx = None
  1894. min_rank = None
  1895. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1896. rank = mergeable_ranks.get(pair[0] + pair[1])
  1897. if rank is not None and (min_rank is None or rank < min_rank):
  1898. min_idx = i
  1899. min_rank = rank
  1900. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1901. break
  1902. assert min_idx is not None
  1903. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1904. return parts
  1905. def set_vocab(self):
  1906. self._set_vocab_qwen()
  1907. def set_gguf_parameters(self):
  1908. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1909. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1910. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1911. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1912. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1913. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1914. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1915. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1916. self.gguf_writer.add_file_type(self.ftype)
  1917. @Model.register("Qwen2ForCausalLM")
  1918. class Qwen2Model(Model):
  1919. model_arch = gguf.MODEL_ARCH.QWEN2
  1920. def set_vocab(self):
  1921. try:
  1922. self._set_vocab_sentencepiece()
  1923. except FileNotFoundError:
  1924. self._set_vocab_gpt2()
  1925. def set_gguf_parameters(self):
  1926. super().set_gguf_parameters()
  1927. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1928. if self.hparams["rope_scaling"].get("type") == "yarn":
  1929. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1930. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1931. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1932. @Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  1933. class Qwen2VLModel(Model):
  1934. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1935. def set_gguf_parameters(self):
  1936. super().set_gguf_parameters()
  1937. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1938. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1939. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1940. def set_vocab(self):
  1941. try:
  1942. self._set_vocab_sentencepiece()
  1943. except FileNotFoundError:
  1944. self._set_vocab_gpt2()
  1945. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1946. for name, data in super().get_tensors():
  1947. if name.startswith("visual."):
  1948. continue
  1949. yield name, data
  1950. @Model.register("WavTokenizerDec")
  1951. class WavTokenizerDecModel(Model):
  1952. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1953. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1954. del bid # unused
  1955. if \
  1956. name.endswith("codebook.cluster_size") or \
  1957. name.endswith("codebook.embed_avg") or \
  1958. name.endswith("codebook.inited"):
  1959. logger.debug(f"Skipping {name!r}")
  1960. return []
  1961. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1962. return [(self.map_tensor_name(name), data_torch)]
  1963. def set_vocab(self):
  1964. self._set_vocab_none()
  1965. def set_gguf_parameters(self):
  1966. super().set_gguf_parameters()
  1967. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1968. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1969. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1970. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1971. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1972. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1973. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1974. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1975. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1976. self.gguf_writer.add_causal_attention(False)
  1977. @Model.register("Qwen2MoeForCausalLM")
  1978. class Qwen2MoeModel(Model):
  1979. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1980. def set_gguf_parameters(self):
  1981. super().set_gguf_parameters()
  1982. if (n_experts := self.hparams.get("num_experts")) is not None:
  1983. self.gguf_writer.add_expert_count(n_experts)
  1984. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1985. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1986. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1987. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1988. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1989. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1990. _experts: list[dict[str, Tensor]] | None = None
  1991. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1992. # process the experts separately
  1993. if name.find("experts") != -1:
  1994. n_experts = self.hparams["num_experts"]
  1995. assert bid is not None
  1996. if self._experts is None:
  1997. self._experts = [{} for _ in range(self.block_count)]
  1998. self._experts[bid][name] = data_torch
  1999. if len(self._experts[bid]) >= n_experts * 3:
  2000. tensors: list[tuple[str, Tensor]] = []
  2001. # merge the experts into a single 3d tensor
  2002. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2003. datas: list[Tensor] = []
  2004. for xid in range(n_experts):
  2005. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2006. datas.append(self._experts[bid][ename])
  2007. del self._experts[bid][ename]
  2008. data_torch = torch.stack(datas, dim=0)
  2009. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2010. new_name = self.map_tensor_name(merged_name)
  2011. tensors.append((new_name, data_torch))
  2012. return tensors
  2013. else:
  2014. return []
  2015. return [(self.map_tensor_name(name), data_torch)]
  2016. def prepare_tensors(self):
  2017. super().prepare_tensors()
  2018. if self._experts is not None:
  2019. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2020. experts = [k for d in self._experts for k in d.keys()]
  2021. if len(experts) > 0:
  2022. raise ValueError(f"Unprocessed experts: {experts}")
  2023. @Model.register("Qwen3ForCausalLM")
  2024. class Qwen3Model(Qwen2Model):
  2025. model_arch = gguf.MODEL_ARCH.QWEN3
  2026. @Model.register("Qwen3MoeForCausalLM")
  2027. class Qwen3MoeModel(Qwen2MoeModel):
  2028. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2029. @Model.register("GPT2LMHeadModel")
  2030. class GPT2Model(Model):
  2031. model_arch = gguf.MODEL_ARCH.GPT2
  2032. def set_gguf_parameters(self):
  2033. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2034. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2035. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2036. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2037. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2038. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2039. self.gguf_writer.add_file_type(self.ftype)
  2040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2041. del bid # unused
  2042. tensors: list[tuple[str, Tensor]] = []
  2043. # we don't need these
  2044. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2045. return tensors
  2046. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2047. data_torch = data_torch.transpose(1, 0)
  2048. new_name = self.map_tensor_name(name)
  2049. tensors.append((new_name, data_torch))
  2050. return tensors
  2051. @Model.register("PhiForCausalLM")
  2052. class Phi2Model(Model):
  2053. model_arch = gguf.MODEL_ARCH.PHI2
  2054. def set_gguf_parameters(self):
  2055. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2056. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2057. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2058. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2059. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2060. self.gguf_writer.add_embedding_length(n_embd)
  2061. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2062. self.gguf_writer.add_block_count(block_count)
  2063. self.gguf_writer.add_head_count(n_head)
  2064. self.gguf_writer.add_head_count_kv(n_head)
  2065. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2066. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2067. self.gguf_writer.add_file_type(self.ftype)
  2068. self.gguf_writer.add_add_bos_token(False)
  2069. @Model.register("Phi3ForCausalLM")
  2070. class Phi3MiniModel(Model):
  2071. model_arch = gguf.MODEL_ARCH.PHI3
  2072. def set_vocab(self):
  2073. # Phi-4 model uses GPT2Tokenizer
  2074. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2075. if tokenizer_config_file.is_file():
  2076. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2077. tokenizer_config_json = json.load(f)
  2078. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2079. if tokenizer_class == 'GPT2Tokenizer':
  2080. return self._set_vocab_gpt2()
  2081. from sentencepiece import SentencePieceProcessor
  2082. tokenizer_path = self.dir_model / 'tokenizer.model'
  2083. if not tokenizer_path.is_file():
  2084. raise ValueError(f'Error: Missing {tokenizer_path}')
  2085. tokenizer = SentencePieceProcessor()
  2086. tokenizer.LoadFromFile(str(tokenizer_path))
  2087. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2088. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2089. scores: list[float] = [-10000.0] * vocab_size
  2090. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2091. for token_id in range(tokenizer.vocab_size()):
  2092. piece = tokenizer.IdToPiece(token_id)
  2093. text = piece.encode("utf-8")
  2094. score = tokenizer.GetScore(token_id)
  2095. toktype = SentencePieceTokenTypes.NORMAL
  2096. if tokenizer.IsUnknown(token_id):
  2097. toktype = SentencePieceTokenTypes.UNKNOWN
  2098. elif tokenizer.IsControl(token_id):
  2099. toktype = SentencePieceTokenTypes.CONTROL
  2100. elif tokenizer.IsUnused(token_id):
  2101. toktype = SentencePieceTokenTypes.UNUSED
  2102. elif tokenizer.IsByte(token_id):
  2103. toktype = SentencePieceTokenTypes.BYTE
  2104. tokens[token_id] = text
  2105. scores[token_id] = score
  2106. toktypes[token_id] = toktype
  2107. added_tokens_file = self.dir_model / 'added_tokens.json'
  2108. if added_tokens_file.is_file():
  2109. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2110. added_tokens_json = json.load(f)
  2111. for key in added_tokens_json:
  2112. token_id = added_tokens_json[key]
  2113. if token_id >= vocab_size:
  2114. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2115. continue
  2116. tokens[token_id] = key.encode("utf-8")
  2117. scores[token_id] = -1000.0
  2118. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2119. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2120. if tokenizer_config_file.is_file():
  2121. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2122. tokenizer_config_json = json.load(f)
  2123. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2124. for token_id, foken_data in added_tokens_decoder.items():
  2125. token_id = int(token_id)
  2126. token = foken_data["content"].encode("utf-8")
  2127. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2128. if tokens[token_id] != token:
  2129. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2130. tokens[token_id] = token
  2131. scores[token_id] = -1000.0
  2132. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2133. if foken_data.get("special"):
  2134. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2135. tokenizer_file = self.dir_model / 'tokenizer.json'
  2136. if tokenizer_file.is_file():
  2137. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2138. tokenizer_json = json.load(f)
  2139. added_tokens = tokenizer_json.get("added_tokens", [])
  2140. for foken_data in added_tokens:
  2141. token_id = int(foken_data["id"])
  2142. token = foken_data["content"].encode("utf-8")
  2143. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2144. if tokens[token_id] != token:
  2145. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2146. tokens[token_id] = token
  2147. scores[token_id] = -1000.0
  2148. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2149. if foken_data.get("special"):
  2150. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2151. self.gguf_writer.add_tokenizer_model("llama")
  2152. self.gguf_writer.add_tokenizer_pre("default")
  2153. self.gguf_writer.add_token_list(tokens)
  2154. self.gguf_writer.add_token_scores(scores)
  2155. self.gguf_writer.add_token_types(toktypes)
  2156. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2157. special_vocab.add_to_gguf(self.gguf_writer)
  2158. def set_gguf_parameters(self):
  2159. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2160. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2161. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2162. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2163. rms_eps = self.find_hparam(["rms_norm_eps"])
  2164. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2165. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2166. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2167. rope_dims = int(rot_pct * n_embd) // n_head
  2168. self.gguf_writer.add_context_length(max_pos_embds)
  2169. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2170. self.gguf_writer.add_embedding_length(n_embd)
  2171. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2172. self.gguf_writer.add_block_count(block_count)
  2173. self.gguf_writer.add_head_count(n_head)
  2174. self.gguf_writer.add_head_count_kv(n_head_kv)
  2175. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2176. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2177. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2178. self.gguf_writer.add_file_type(self.ftype)
  2179. sliding_window = self.hparams.get("sliding_window")
  2180. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2181. if sliding_window is None:
  2182. sliding_window = 0
  2183. self.gguf_writer.add_sliding_window(sliding_window)
  2184. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2185. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2186. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2187. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2188. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2189. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2190. rope_dims = int(rot_pct * n_embd) // n_head
  2191. # write rope scaling for long context (128k) model
  2192. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2193. if rope_scaling is None:
  2194. return
  2195. scale = max_pos_embds / orig_max_pos_embds
  2196. rope_scaling_type = rope_scaling.get('type', '').lower()
  2197. if len(rope_scaling_type) == 0:
  2198. raise KeyError('Missing the required key rope_scaling.type')
  2199. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2200. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2201. elif rope_scaling_type == 'yarn':
  2202. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2203. else:
  2204. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2205. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2206. long_factors = rope_scaling.get('long_factor', None)
  2207. short_factors = rope_scaling.get('short_factor', None)
  2208. if long_factors is None or short_factors is None:
  2209. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2210. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2211. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2212. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2213. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2214. @Model.register("PhiMoEForCausalLM")
  2215. class PhiMoeModel(Phi3MiniModel):
  2216. model_arch = gguf.MODEL_ARCH.PHIMOE
  2217. _experts: list[dict[str, Tensor]] | None = None
  2218. def set_gguf_parameters(self):
  2219. super().set_gguf_parameters()
  2220. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2221. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2223. # process the experts separately
  2224. if name.find("block_sparse_moe.experts") != -1:
  2225. n_experts = self.hparams["num_local_experts"]
  2226. assert bid is not None
  2227. if self._experts is None:
  2228. self._experts = [{} for _ in range(self.block_count)]
  2229. self._experts[bid][name] = data_torch
  2230. if len(self._experts[bid]) >= n_experts * 3:
  2231. tensors: list[tuple[str, Tensor]] = []
  2232. # merge the experts into a single 3d tensor
  2233. for w_name in ["w1", "w2", "w3"]:
  2234. datas: list[Tensor] = []
  2235. for xid in range(n_experts):
  2236. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2237. datas.append(self._experts[bid][ename])
  2238. del self._experts[bid][ename]
  2239. data_torch = torch.stack(datas, dim=0)
  2240. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2241. new_name = self.map_tensor_name(merged_name)
  2242. tensors.append((new_name, data_torch))
  2243. return tensors
  2244. else:
  2245. return []
  2246. return [(self.map_tensor_name(name), data_torch)]
  2247. def prepare_tensors(self):
  2248. super().prepare_tensors()
  2249. if self._experts is not None:
  2250. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2251. experts = [k for d in self._experts for k in d.keys()]
  2252. if len(experts) > 0:
  2253. raise ValueError(f"Unprocessed experts: {experts}")
  2254. @Model.register("PlamoForCausalLM")
  2255. class PlamoModel(Model):
  2256. model_arch = gguf.MODEL_ARCH.PLAMO
  2257. def set_vocab(self):
  2258. self._set_vocab_sentencepiece()
  2259. def set_gguf_parameters(self):
  2260. hparams = self.hparams
  2261. block_count = hparams["num_hidden_layers"]
  2262. self.gguf_writer.add_context_length(4096) # not in config.json
  2263. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2264. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2265. self.gguf_writer.add_block_count(block_count)
  2266. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2267. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2268. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2269. self.gguf_writer.add_file_type(self.ftype)
  2270. def shuffle_attn_q_weight(self, data_torch):
  2271. assert data_torch.size() == (5120, 5120)
  2272. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2273. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2274. data_torch = torch.reshape(data_torch, (5120, 5120))
  2275. return data_torch
  2276. def shuffle_attn_output_weight(self, data_torch):
  2277. assert data_torch.size() == (5120, 5120)
  2278. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2279. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2280. data_torch = torch.reshape(data_torch, (5120, 5120))
  2281. return data_torch
  2282. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2283. del bid # unused
  2284. new_name = self.map_tensor_name(name)
  2285. # shuffle for broadcasting of gqa in ggml_mul_mat
  2286. if new_name.endswith("attn_q.weight"):
  2287. data_torch = self.shuffle_attn_q_weight(data_torch)
  2288. elif new_name.endswith("attn_output.weight"):
  2289. data_torch = self.shuffle_attn_output_weight(data_torch)
  2290. return [(new_name, data_torch)]
  2291. @Model.register("CodeShellForCausalLM")
  2292. class CodeShellModel(Model):
  2293. model_arch = gguf.MODEL_ARCH.CODESHELL
  2294. def set_gguf_parameters(self):
  2295. block_count = self.hparams["n_layer"]
  2296. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2297. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2298. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2299. self.gguf_writer.add_block_count(block_count)
  2300. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2301. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2302. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2303. self.gguf_writer.add_file_type(self.ftype)
  2304. self.gguf_writer.add_rope_freq_base(10000.0)
  2305. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2306. self.gguf_writer.add_rope_scaling_factor(1.0)
  2307. _has_tok_embd = False
  2308. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2309. del bid # unused
  2310. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2311. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2312. new_name = self.map_tensor_name(name)
  2313. # assuming token_embd.weight is seen before output.weight
  2314. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2315. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2316. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2317. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2318. self.tensor_names.remove("transformer.wte.weight")
  2319. elif new_name == tok_embd_name:
  2320. self._has_tok_embd = True
  2321. return [(new_name, data_torch)]
  2322. @Model.register("InternLM2ForCausalLM")
  2323. class InternLM2Model(Model):
  2324. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2325. def set_vocab(self):
  2326. # (TODO): Is there a better way?
  2327. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2328. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2329. # recognized as an empty string in C++.
  2330. from sentencepiece import SentencePieceProcessor
  2331. from sentencepiece import sentencepiece_model_pb2 as model
  2332. tokenizer_path = self.dir_model / 'tokenizer.model'
  2333. tokens: list[bytes] = []
  2334. scores: list[float] = []
  2335. toktypes: list[int] = []
  2336. if not tokenizer_path.is_file():
  2337. logger.error(f'Error: Missing {tokenizer_path}')
  2338. sys.exit(1)
  2339. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2340. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2341. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2342. tokenizer = SentencePieceProcessor()
  2343. tokenizer.LoadFromFile(str(tokenizer_path))
  2344. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2345. for token_id in range(vocab_size):
  2346. piece = tokenizer.IdToPiece(token_id)
  2347. text = piece.encode("utf-8")
  2348. score = tokenizer.GetScore(token_id)
  2349. if text == b"\x00":
  2350. # (TODO): fixme
  2351. # Hack here and replace the \x00 characters.
  2352. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2353. text = "🐉".encode("utf-8")
  2354. toktype = SentencePieceTokenTypes.NORMAL
  2355. if tokenizer.IsUnknown(token_id):
  2356. toktype = SentencePieceTokenTypes.UNKNOWN
  2357. elif tokenizer.IsControl(token_id):
  2358. toktype = SentencePieceTokenTypes.CONTROL
  2359. elif tokenizer.IsUnused(token_id):
  2360. toktype = SentencePieceTokenTypes.UNUSED
  2361. elif tokenizer.IsByte(token_id):
  2362. toktype = SentencePieceTokenTypes.BYTE
  2363. # take care of ununsed raw token
  2364. if piece.startswith('[UNUSED'):
  2365. toktype = SentencePieceTokenTypes.UNUSED
  2366. tokens.append(text)
  2367. scores.append(score)
  2368. toktypes.append(toktype)
  2369. added_tokens_file = self.dir_model / 'added_tokens.json'
  2370. if added_tokens_file.is_file():
  2371. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2372. added_tokens_json = json.load(f)
  2373. for key in added_tokens_json:
  2374. tokens.append(key.encode("utf-8"))
  2375. scores.append(-1000.0)
  2376. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2377. chat_eos_token = '<|im_end|>'
  2378. chat_eos_token_id = None
  2379. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2380. if tokenizer_config_file.is_file():
  2381. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2382. tokenizer_config_json = json.load(f)
  2383. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2384. for token_id, foken_data in added_tokens_decoder.items():
  2385. token_id = int(token_id)
  2386. token = foken_data["content"]
  2387. if token == chat_eos_token:
  2388. chat_eos_token_id = token_id
  2389. token = token.encode("utf-8")
  2390. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2391. if tokens[token_id] != token:
  2392. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2393. tokens[token_id] = token
  2394. scores[token_id] = -1000.0
  2395. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2396. if foken_data.get("special"):
  2397. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2398. tokenizer_file = self.dir_model / 'tokenizer.json'
  2399. if tokenizer_file.is_file():
  2400. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2401. tokenizer_json = json.load(f)
  2402. added_tokens = tokenizer_json.get("added_tokens", [])
  2403. for foken_data in added_tokens:
  2404. token_id = int(foken_data["id"])
  2405. token = foken_data["content"]
  2406. if token == chat_eos_token:
  2407. chat_eos_token_id = token_id
  2408. token = token.encode("utf-8")
  2409. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2410. if tokens[token_id] != token:
  2411. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2412. tokens[token_id] = token
  2413. scores[token_id] = -1000.0
  2414. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2415. if foken_data.get("special"):
  2416. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2417. self.gguf_writer.add_tokenizer_model("llama")
  2418. self.gguf_writer.add_tokenizer_pre("default")
  2419. self.gguf_writer.add_token_list(tokens)
  2420. self.gguf_writer.add_token_scores(scores)
  2421. self.gguf_writer.add_token_types(toktypes)
  2422. self.gguf_writer.add_add_space_prefix(add_prefix)
  2423. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2424. old_eos = special_vocab.special_token_ids["eos"]
  2425. if chat_eos_token_id is not None:
  2426. # For the chat model, we replace the eos with '<|im_end|>'.
  2427. # TODO: this is a hack, should be fixed
  2428. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2429. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2430. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2431. " in chat mode so that the conversation can end normally.")
  2432. special_vocab.add_to_gguf(self.gguf_writer)
  2433. def set_gguf_parameters(self):
  2434. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2435. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2436. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2437. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2438. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2439. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2440. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2441. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2442. self.gguf_writer.add_file_type(self.ftype)
  2443. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2444. if self.hparams["rope_scaling"].get("type") == "linear":
  2445. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2446. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2447. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2448. num_heads = self.hparams["num_attention_heads"]
  2449. num_kv_heads = self.hparams["num_key_value_heads"]
  2450. n_embd = self.hparams["hidden_size"]
  2451. q_per_kv = num_heads // num_kv_heads
  2452. head_dim = n_embd // num_heads
  2453. num_groups = num_heads // q_per_kv
  2454. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2455. qkv = data_torch
  2456. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2457. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2458. # The model weights of q and k equire additional reshape.
  2459. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2460. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2461. v = v.reshape((-1, v.shape[-1]))
  2462. return [
  2463. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2464. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2465. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2466. ]
  2467. else:
  2468. return [(self.map_tensor_name(name), data_torch)]
  2469. @Model.register("InternLM3ForCausalLM")
  2470. class InternLM3Model(Model):
  2471. model_arch = gguf.MODEL_ARCH.LLAMA
  2472. def set_vocab(self):
  2473. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2474. self.gguf_writer.add_tokenizer_model("llama")
  2475. self.gguf_writer.add_tokenizer_pre("default")
  2476. self.gguf_writer.add_token_list(tokens)
  2477. self.gguf_writer.add_token_scores(scores)
  2478. self.gguf_writer.add_token_types(toktypes)
  2479. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2480. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2481. if tokenizer_config_file.is_file():
  2482. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2483. tokenizer_config_json = json.load(f)
  2484. if "add_prefix_space" in tokenizer_config_json:
  2485. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2486. if "added_tokens_decoder" in tokenizer_config_json:
  2487. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2488. if token_data.get("special"):
  2489. token_id = int(token_id)
  2490. token = token_data["content"]
  2491. special_vocab._set_special_token(token, token_id)
  2492. # update eos token
  2493. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2494. special_vocab.special_token_ids["eos"] = token_id
  2495. special_vocab.add_to_gguf(self.gguf_writer)
  2496. def set_gguf_parameters(self):
  2497. super().set_gguf_parameters()
  2498. hparams = self.hparams
  2499. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2500. if "head_dim" in hparams:
  2501. rope_dim = hparams["head_dim"]
  2502. else:
  2503. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2504. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2505. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2506. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2507. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2508. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2510. n_head = self.hparams["num_attention_heads"]
  2511. n_kv_head = self.hparams.get("num_key_value_heads")
  2512. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2513. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2514. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2515. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2516. return [(self.map_tensor_name(name), data_torch)]
  2517. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2518. class BertModel(Model):
  2519. model_arch = gguf.MODEL_ARCH.BERT
  2520. def __init__(self, *args, **kwargs):
  2521. super().__init__(*args, **kwargs)
  2522. self.vocab_size = None
  2523. def set_gguf_parameters(self):
  2524. super().set_gguf_parameters()
  2525. self.gguf_writer.add_causal_attention(False)
  2526. # get pooling path
  2527. pooling_path = None
  2528. module_path = self.dir_model / "modules.json"
  2529. if module_path.is_file():
  2530. with open(module_path, encoding="utf-8") as f:
  2531. modules = json.load(f)
  2532. for mod in modules:
  2533. if mod["type"] == "sentence_transformers.models.Pooling":
  2534. pooling_path = mod["path"]
  2535. break
  2536. # get pooling type
  2537. if pooling_path is not None:
  2538. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2539. pooling = json.load(f)
  2540. if pooling["pooling_mode_mean_tokens"]:
  2541. pooling_type = gguf.PoolingType.MEAN
  2542. elif pooling["pooling_mode_cls_token"]:
  2543. pooling_type = gguf.PoolingType.CLS
  2544. else:
  2545. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2546. self.gguf_writer.add_pooling_type(pooling_type)
  2547. def set_vocab(self):
  2548. tokens, toktypes, tokpre = self.get_vocab_base()
  2549. self.vocab_size = len(tokens)
  2550. # we need this to validate the size of the token_type embeddings
  2551. # though currently we are passing all zeros to the token_type embeddings
  2552. # "Sequence A" or "Sequence B"
  2553. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2554. # convert to phantom space vocab
  2555. def phantom(tok):
  2556. if tok.startswith("[") and tok.endswith("]"):
  2557. return tok
  2558. if tok.startswith("##"):
  2559. return tok[2:]
  2560. return "\u2581" + tok
  2561. tokens = list(map(phantom, tokens))
  2562. # add vocab to gguf
  2563. self.gguf_writer.add_tokenizer_model("bert")
  2564. self.gguf_writer.add_tokenizer_pre(tokpre)
  2565. self.gguf_writer.add_token_list(tokens)
  2566. self.gguf_writer.add_token_types(toktypes)
  2567. # handle special tokens
  2568. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2569. special_vocab.add_to_gguf(self.gguf_writer)
  2570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2571. del bid # unused
  2572. if name.startswith("bert."):
  2573. name = name[5:]
  2574. if name.endswith(".gamma"):
  2575. name = name[:-6] + ".weight"
  2576. if name.endswith(".beta"):
  2577. name = name[:-5] + ".bias"
  2578. # we are only using BERT for embeddings so we don't need the pooling layer
  2579. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2580. return [] # we don't need these
  2581. if name.startswith("cls.predictions"):
  2582. return []
  2583. if name.startswith("cls.seq_relationship"):
  2584. return []
  2585. return [(self.map_tensor_name(name), data_torch)]
  2586. @Model.register("RobertaModel")
  2587. class RobertaModel(BertModel):
  2588. model_arch = gguf.MODEL_ARCH.BERT
  2589. def __init__(self, *args, **kwargs):
  2590. super().__init__(*args, **kwargs)
  2591. # we need the pad_token_id to know how to chop down position_embd matrix
  2592. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2593. self._position_offset = 1 + pad_token_id
  2594. if "max_position_embeddings" in self.hparams:
  2595. self.hparams["max_position_embeddings"] -= self._position_offset
  2596. else:
  2597. self._position_offset = None
  2598. def set_vocab(self):
  2599. """Support BPE tokenizers for roberta models"""
  2600. bpe_tok_path = self.dir_model / "tokenizer.json"
  2601. if bpe_tok_path.exists():
  2602. self._set_vocab_gpt2()
  2603. self.gguf_writer.add_add_bos_token(True)
  2604. self.gguf_writer.add_add_eos_token(True)
  2605. # we need this to validate the size of the token_type embeddings
  2606. # though currently we are passing all zeros to the token_type embeddings
  2607. # "Sequence A" or "Sequence B"
  2608. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2609. else:
  2610. return super().set_vocab()
  2611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2612. # if name starts with "roberta.", remove the prefix
  2613. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2614. if name.startswith("roberta."):
  2615. name = name[8:]
  2616. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2617. if name == "embeddings.position_embeddings.weight":
  2618. if self._position_offset is not None:
  2619. data_torch = data_torch[self._position_offset:,:]
  2620. return super().modify_tensors(data_torch, name, bid)
  2621. @Model.register("NomicBertModel")
  2622. class NomicBertModel(BertModel):
  2623. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2624. def __init__(self, *args, **kwargs):
  2625. super().__init__(*args, **kwargs)
  2626. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2627. self.hparams["n_ctx"] = 2048
  2628. # SwigLU activation
  2629. assert self.hparams["activation_function"] == "swiglu"
  2630. # this doesn't do anything in the HF version
  2631. assert self.hparams["causal"] is False
  2632. # no bias tensors
  2633. assert self.hparams["qkv_proj_bias"] is False
  2634. assert self.hparams["mlp_fc1_bias"] is False
  2635. assert self.hparams["mlp_fc2_bias"] is False
  2636. # norm at end of layer
  2637. assert self.hparams["prenorm"] is False
  2638. # standard RoPE
  2639. assert self.hparams["rotary_emb_fraction"] == 1.0
  2640. assert self.hparams["rotary_emb_interleaved"] is False
  2641. assert self.hparams["rotary_emb_scale_base"] is None
  2642. def set_gguf_parameters(self):
  2643. super().set_gguf_parameters()
  2644. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2645. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2646. class XLMRobertaModel(BertModel):
  2647. model_arch = gguf.MODEL_ARCH.BERT
  2648. def __init__(self, *args, **kwargs):
  2649. super().__init__(*args, **kwargs)
  2650. # we need the pad_token_id to know how to chop down position_embd matrix
  2651. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2652. self._position_offset = 1 + pad_token_id
  2653. if "max_position_embeddings" in self.hparams:
  2654. self.hparams["max_position_embeddings"] -= self._position_offset
  2655. else:
  2656. self._position_offset = None
  2657. def set_vocab(self):
  2658. # to avoid TypeError: Descriptors cannot be created directly
  2659. # exception when importing sentencepiece_model_pb2
  2660. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2661. from sentencepiece import SentencePieceProcessor
  2662. from sentencepiece import sentencepiece_model_pb2 as model
  2663. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2664. if not tokenizer_path.is_file():
  2665. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2666. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2667. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2668. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2669. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2670. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2671. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2672. tokenizer = SentencePieceProcessor()
  2673. tokenizer.LoadFromFile(str(tokenizer_path))
  2674. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2675. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2676. scores: list[float] = [-10000.0] * vocab_size
  2677. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2678. for token_id in range(tokenizer.vocab_size()):
  2679. piece = tokenizer.IdToPiece(token_id)
  2680. text = piece.encode("utf-8")
  2681. score = tokenizer.GetScore(token_id)
  2682. toktype = SentencePieceTokenTypes.NORMAL
  2683. if tokenizer.IsUnknown(token_id):
  2684. toktype = SentencePieceTokenTypes.UNKNOWN
  2685. elif tokenizer.IsControl(token_id):
  2686. toktype = SentencePieceTokenTypes.CONTROL
  2687. elif tokenizer.IsUnused(token_id):
  2688. toktype = SentencePieceTokenTypes.UNUSED
  2689. elif tokenizer.IsByte(token_id):
  2690. toktype = SentencePieceTokenTypes.BYTE
  2691. tokens[token_id] = text
  2692. scores[token_id] = score
  2693. toktypes[token_id] = toktype
  2694. if vocab_size > len(tokens):
  2695. pad_count = vocab_size - len(tokens)
  2696. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2697. for i in range(1, pad_count + 1):
  2698. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2699. scores.append(-1000.0)
  2700. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2701. # realign tokens (see HF tokenizer code)
  2702. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2703. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2704. toktypes = [
  2705. SentencePieceTokenTypes.CONTROL,
  2706. SentencePieceTokenTypes.CONTROL,
  2707. SentencePieceTokenTypes.CONTROL,
  2708. SentencePieceTokenTypes.UNKNOWN,
  2709. ] + toktypes[3:-1]
  2710. self.gguf_writer.add_tokenizer_model("t5")
  2711. self.gguf_writer.add_tokenizer_pre("default")
  2712. self.gguf_writer.add_token_list(tokens)
  2713. self.gguf_writer.add_token_scores(scores)
  2714. self.gguf_writer.add_token_types(toktypes)
  2715. self.gguf_writer.add_add_space_prefix(add_prefix)
  2716. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2717. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2718. if precompiled_charsmap:
  2719. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2720. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2721. special_vocab.add_to_gguf(self.gguf_writer)
  2722. self.gguf_writer.add_add_bos_token(True)
  2723. self.gguf_writer.add_add_eos_token(True)
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. # if name starts with "roberta.", remove the prefix
  2726. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2727. if name.startswith("roberta."):
  2728. name = name[8:]
  2729. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2730. if name == "embeddings.position_embeddings.weight":
  2731. if self._position_offset is not None:
  2732. data_torch = data_torch[self._position_offset:,:]
  2733. return super().modify_tensors(data_torch, name, bid)
  2734. @Model.register("GemmaForCausalLM")
  2735. class GemmaModel(Model):
  2736. model_arch = gguf.MODEL_ARCH.GEMMA
  2737. def set_vocab(self):
  2738. self._set_vocab_sentencepiece()
  2739. # TODO: these special tokens should be exported only for the CodeGemma family
  2740. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2741. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2742. special_vocab._set_special_token("prefix", 67)
  2743. special_vocab._set_special_token("suffix", 69)
  2744. special_vocab._set_special_token("middle", 68)
  2745. special_vocab._set_special_token("fsep", 70)
  2746. special_vocab._set_special_token("eot", 107)
  2747. special_vocab.chat_template = None # do not add it twice
  2748. special_vocab.add_to_gguf(self.gguf_writer)
  2749. self.gguf_writer.add_add_space_prefix(False)
  2750. def set_gguf_parameters(self):
  2751. hparams = self.hparams
  2752. block_count = hparams["num_hidden_layers"]
  2753. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2754. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2755. self.gguf_writer.add_block_count(block_count)
  2756. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2757. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2758. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2759. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2760. self.gguf_writer.add_key_length(hparams["head_dim"])
  2761. self.gguf_writer.add_value_length(hparams["head_dim"])
  2762. self.gguf_writer.add_file_type(self.ftype)
  2763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2764. del bid # unused
  2765. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2766. # To prevent errors, skip loading lm_head.weight.
  2767. if name == "lm_head.weight":
  2768. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2769. return []
  2770. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2771. if name.endswith("norm.weight"):
  2772. data_torch = data_torch + 1
  2773. return [(self.map_tensor_name(name), data_torch)]
  2774. @Model.register("Gemma2ForCausalLM")
  2775. class Gemma2Model(Model):
  2776. model_arch = gguf.MODEL_ARCH.GEMMA2
  2777. def set_vocab(self):
  2778. self._set_vocab_sentencepiece()
  2779. self.gguf_writer.add_add_space_prefix(False)
  2780. def set_gguf_parameters(self):
  2781. hparams = self.hparams
  2782. block_count = hparams["num_hidden_layers"]
  2783. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2784. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2785. self.gguf_writer.add_block_count(block_count)
  2786. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2787. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2788. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2789. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2790. self.gguf_writer.add_key_length(hparams["head_dim"])
  2791. self.gguf_writer.add_value_length(hparams["head_dim"])
  2792. self.gguf_writer.add_file_type(self.ftype)
  2793. self.gguf_writer.add_attn_logit_softcapping(
  2794. self.hparams["attn_logit_softcapping"]
  2795. )
  2796. self.gguf_writer.add_final_logit_softcapping(
  2797. self.hparams["final_logit_softcapping"]
  2798. )
  2799. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2801. del bid # unused
  2802. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2803. # To prevent errors, skip loading lm_head.weight.
  2804. if name == "lm_head.weight":
  2805. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2806. return []
  2807. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2808. if name.endswith("norm.weight"):
  2809. data_torch = data_torch + 1
  2810. return [(self.map_tensor_name(name), data_torch)]
  2811. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2812. class Gemma3Model(Model):
  2813. model_arch = gguf.MODEL_ARCH.GEMMA3
  2814. has_vision: bool = False
  2815. # we need to merge the text_config into the root level of hparams
  2816. def __init__(self, *args, **kwargs):
  2817. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  2818. if "text_config" in hparams:
  2819. hparams = {**hparams, **hparams["text_config"]}
  2820. kwargs["hparams"] = hparams
  2821. super().__init__(*args, **kwargs)
  2822. if "vision_config" in hparams:
  2823. logger.info("Has vision encoder, but it will be ignored")
  2824. self.has_vision = True
  2825. def write(self):
  2826. super().write()
  2827. if self.has_vision:
  2828. logger.info("NOTE: this script only convert the language model to GGUF")
  2829. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2830. def set_vocab(self):
  2831. self._set_vocab_sentencepiece()
  2832. self.gguf_writer.add_add_space_prefix(False)
  2833. def set_gguf_parameters(self):
  2834. hparams = self.hparams
  2835. block_count = hparams["num_hidden_layers"]
  2836. # some default values are not specified in the hparams
  2837. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2838. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2839. self.gguf_writer.add_block_count(block_count)
  2840. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2841. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2842. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2843. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2844. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2845. self.gguf_writer.add_file_type(self.ftype)
  2846. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2847. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2848. assert hparams.get("attn_logit_softcapping") is None
  2849. assert hparams.get("final_logit_softcapping") is None
  2850. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2851. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2852. if hparams.get("rope_scaling") is not None:
  2853. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2854. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2855. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2856. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2858. del bid # unused
  2859. if name.startswith("language_model."):
  2860. name = name.replace("language_model.", "")
  2861. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2862. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2863. # ignore vision tensors
  2864. return []
  2865. # remove OOV (out-of-vocabulary) rows in token_embd
  2866. if "embed_tokens.weight" in name:
  2867. vocab = self._create_vocab_sentencepiece()
  2868. tokens = vocab[0]
  2869. data_torch = data_torch[:len(tokens)]
  2870. # ref code in Gemma3RMSNorm
  2871. # output = output * (1.0 + self.weight.float())
  2872. if name.endswith("norm.weight"):
  2873. data_torch = data_torch + 1
  2874. return [(self.map_tensor_name(name), data_torch)]
  2875. @Model.register("Starcoder2ForCausalLM")
  2876. class StarCoder2Model(Model):
  2877. model_arch = gguf.MODEL_ARCH.STARCODER2
  2878. @Model.register("Rwkv6ForCausalLM")
  2879. class Rwkv6Model(Model):
  2880. model_arch = gguf.MODEL_ARCH.RWKV6
  2881. def set_vocab(self):
  2882. self._set_vocab_rwkv_world()
  2883. def set_gguf_parameters(self):
  2884. block_count = self.hparams["num_hidden_layers"]
  2885. head_size = self.hparams["head_size"]
  2886. hidden_size = self.hparams["hidden_size"]
  2887. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2888. rescale_every_n_layers = self.hparams["rescale_every"]
  2889. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2890. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2891. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2892. # RWKV isn't context limited
  2893. self.gguf_writer.add_context_length(1048576)
  2894. self.gguf_writer.add_embedding_length(hidden_size)
  2895. self.gguf_writer.add_block_count(block_count)
  2896. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2897. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2898. self.gguf_writer.add_wkv_head_size(head_size)
  2899. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2900. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2901. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2902. self.gguf_writer.add_file_type(self.ftype)
  2903. # required by llama.cpp, unused
  2904. self.gguf_writer.add_head_count(0)
  2905. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2906. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2907. new_name = self.map_tensor_name(name)
  2908. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2909. new_name += ".weight"
  2910. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2911. data_torch = data_torch.transpose(0, 1)
  2912. if new_name.endswith("time_mix_w2.weight"):
  2913. data_torch = data_torch.permute(0, 2, 1)
  2914. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2915. data_torch = data_torch.squeeze()
  2916. try:
  2917. rescale_every_n_layers = self.hparams["rescale_every"]
  2918. if rescale_every_n_layers > 0:
  2919. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2920. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2921. except KeyError:
  2922. pass
  2923. # concat time_mix_lerp weights to reduce some cpu overhead
  2924. # also reduces the number of tensors in the model
  2925. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2926. try:
  2927. self.lerp_weights[bid][new_name] = data_torch
  2928. except KeyError:
  2929. self.lerp_weights[bid] = {new_name: data_torch}
  2930. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2931. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2932. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2933. yield (new_name, data)
  2934. return
  2935. yield (new_name, data_torch)
  2936. @Model.register("RWKV6Qwen2ForCausalLM")
  2937. class RWKV6Qwen2Model(Rwkv6Model):
  2938. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2939. def set_vocab(self):
  2940. try:
  2941. self._set_vocab_sentencepiece()
  2942. except FileNotFoundError:
  2943. self._set_vocab_gpt2()
  2944. def set_gguf_parameters(self):
  2945. block_count = self.hparams["num_hidden_layers"]
  2946. num_attention_heads = self.hparams["num_attention_heads"]
  2947. num_key_value_heads = self.hparams["num_key_value_heads"]
  2948. hidden_size = self.hparams["hidden_size"]
  2949. head_size = hidden_size // num_attention_heads
  2950. rms_norm_eps = self.hparams["rms_norm_eps"]
  2951. intermediate_size = self.hparams["intermediate_size"]
  2952. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  2953. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  2954. # RWKV isn't context limited
  2955. self.gguf_writer.add_context_length(1048576)
  2956. self.gguf_writer.add_embedding_length(hidden_size)
  2957. self.gguf_writer.add_block_count(block_count)
  2958. self.gguf_writer.add_wkv_head_size(head_size)
  2959. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2960. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2961. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2962. self.gguf_writer.add_file_type(self.ftype)
  2963. # special parameters for time_mixing in RWKV6QWEN2
  2964. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2965. self.gguf_writer.add_token_shift_count(1)
  2966. # RWKV6QWEN2 use grouped key/value like GQA
  2967. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2968. # required by llama.cpp, unused
  2969. self.gguf_writer.add_head_count(0)
  2970. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2971. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2972. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2973. data = data.view(5, -1, data.shape[-1])
  2974. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2975. # permute them here to avoid code changes
  2976. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2977. if "w2" in new_name:
  2978. data = data.view(5, -1, data.shape[-1])
  2979. yield (new_name, data)
  2980. continue
  2981. yield (new_name, data)
  2982. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2983. class Rwkv7Model(Model):
  2984. model_arch = gguf.MODEL_ARCH.RWKV7
  2985. def set_vocab(self):
  2986. self._set_vocab_rwkv_world()
  2987. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2988. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2989. def set_gguf_parameters(self):
  2990. block_count = self.hparams["num_hidden_layers"]
  2991. try:
  2992. head_size = self.hparams["head_size"]
  2993. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2994. except KeyError:
  2995. head_size = self.hparams["head_dim"]
  2996. layer_norm_eps = self.hparams["norm_eps"]
  2997. hidden_size = self.hparams["hidden_size"]
  2998. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2999. # ICLR: In-Context-Learning-Rate
  3000. try:
  3001. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3002. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3003. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3004. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3005. except KeyError:
  3006. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3007. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3008. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3009. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3010. # RWKV isn't context limited
  3011. self.gguf_writer.add_context_length(1048576)
  3012. self.gguf_writer.add_embedding_length(hidden_size)
  3013. self.gguf_writer.add_block_count(block_count)
  3014. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3015. self.gguf_writer.add_wkv_head_size(head_size)
  3016. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3017. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3018. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3019. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3020. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3021. self.gguf_writer.add_file_type(self.ftype)
  3022. # required by llama.cpp, unused
  3023. self.gguf_writer.add_head_count(0)
  3024. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3025. lora_needs_transpose: bool = True
  3026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3027. # unify tensor names here to make life easier
  3028. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3029. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3030. name = name.replace("time_mixer.", "")
  3031. # lora layer names in fla-hub's impl
  3032. if "_lora.lora" in name:
  3033. self.lora_needs_transpose = False
  3034. name = name.replace("_lora.lora.0.weight", "1.weight")
  3035. name = name.replace("_lora.lora.2.weight", "2.weight")
  3036. name = name.replace("_lora.lora.2.bias", "0.weight")
  3037. name = name.replace("feed_forward_norm", "ln2")
  3038. name = name.replace("g_norm", "ln_x")
  3039. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3040. # some models have dummy v0/v1/v2 on first layer while others don't
  3041. # ignore them all since they are not used
  3042. return
  3043. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3044. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3045. if bid is not None and "attention.x_" in name:
  3046. if "attention.x_x" in name:
  3047. # already concatenated
  3048. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3049. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3050. yield (new_name, data)
  3051. else:
  3052. try:
  3053. self.lerp_weights[bid][name] = data_torch
  3054. except KeyError:
  3055. self.lerp_weights[bid] = {name: data_torch}
  3056. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3057. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3058. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3059. yield (new_name, data)
  3060. return
  3061. else:
  3062. data_torch = data_torch.squeeze()
  3063. new_name = self.map_tensor_name(name)
  3064. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3065. new_name += ".weight"
  3066. if self.lora_needs_transpose and any(
  3067. new_name.endswith(t) for t in [
  3068. "time_mix_w1.weight", "time_mix_w2.weight",
  3069. "time_mix_a1.weight", "time_mix_a2.weight",
  3070. "time_mix_v1.weight", "time_mix_v2.weight",
  3071. "time_mix_g1.weight", "time_mix_g2.weight",
  3072. ]
  3073. ):
  3074. data_torch = data_torch.transpose(0, 1)
  3075. if 'r_k' in new_name:
  3076. data_torch = data_torch.flatten()
  3077. if bid == 0 and "time_mix_a" in new_name:
  3078. # dummy v0/v1/v2 on first layer
  3079. # easist way to make llama happy
  3080. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3081. yield (new_name, data_torch)
  3082. @Model.register("RwkvHybridForCausalLM")
  3083. class ARwkv7Model(Rwkv7Model):
  3084. model_arch = gguf.MODEL_ARCH.ARWKV7
  3085. def set_vocab(self):
  3086. try:
  3087. self._set_vocab_sentencepiece()
  3088. except FileNotFoundError:
  3089. self._set_vocab_gpt2()
  3090. def set_gguf_parameters(self):
  3091. block_count = self.hparams["num_hidden_layers"]
  3092. hidden_size = self.hparams["hidden_size"]
  3093. head_size = self.hparams["head_size"]
  3094. rms_norm_eps = self.hparams["rms_norm_eps"]
  3095. intermediate_size = self.hparams["intermediate_size"]
  3096. wkv_has_gate = self.hparams["wkv_has_gate"]
  3097. assert self.hparams["wkv_version"] == 7
  3098. # ICLR: In-Context-Learning-Rate
  3099. lora_rank_decay = 64
  3100. lora_rank_iclr = 64
  3101. lora_rank_value_residual_mix = 32
  3102. lora_rank_gate = 128 if wkv_has_gate else 0
  3103. # RWKV isn't context limited
  3104. self.gguf_writer.add_context_length(1048576)
  3105. self.gguf_writer.add_embedding_length(hidden_size)
  3106. self.gguf_writer.add_block_count(block_count)
  3107. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3108. self.gguf_writer.add_wkv_head_size(head_size)
  3109. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3110. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3111. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3112. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3113. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3114. self.gguf_writer.add_file_type(self.ftype)
  3115. self.gguf_writer.add_token_shift_count(1)
  3116. # required by llama.cpp, unused
  3117. self.gguf_writer.add_head_count(0)
  3118. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3119. class MambaModel(Model):
  3120. model_arch = gguf.MODEL_ARCH.MAMBA
  3121. def set_vocab(self):
  3122. vocab_size = self.hparams["vocab_size"]
  3123. # Round vocab size to next multiple of 8
  3124. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3125. # pad using ceiling division
  3126. # ref: https://stackoverflow.com/a/17511341/22827863
  3127. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3128. self.hparams["vocab_size"] = vocab_size
  3129. if (self.dir_model / "tokenizer.json").is_file():
  3130. self._set_vocab_gpt2()
  3131. elif (self.dir_model / "tokenizer.model").is_file():
  3132. self._set_vocab_sentencepiece()
  3133. else:
  3134. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3135. self._set_vocab_builtin("gpt-neox", vocab_size)
  3136. def set_gguf_parameters(self):
  3137. d_model = self.find_hparam(["hidden_size", "d_model"])
  3138. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3139. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3140. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3141. # ceiling division
  3142. # ref: https://stackoverflow.com/a/17511341/22827863
  3143. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3144. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3145. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3146. use_dt_b_c_norm = False
  3147. # For falconmamba we do apply RMS norm on B / DT and C layers
  3148. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3149. use_dt_b_c_norm = True
  3150. # Fail early for models which don't have a block expansion factor of 2
  3151. assert d_inner == 2 * d_model
  3152. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3153. self.gguf_writer.add_embedding_length(d_model)
  3154. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3155. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3156. self.gguf_writer.add_block_count(self.block_count)
  3157. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3158. self.gguf_writer.add_ssm_inner_size(d_inner)
  3159. self.gguf_writer.add_ssm_state_size(d_state)
  3160. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3161. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3162. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3163. self.gguf_writer.add_file_type(self.ftype)
  3164. _tok_embd = None
  3165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3166. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3167. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3168. new_name = self.map_tensor_name(name)
  3169. if name.endswith(".A_log"):
  3170. logger.debug("A_log --> A ==> " + new_name)
  3171. data_torch = -torch.exp(data_torch)
  3172. # [4 1 8192 1] -> [4 8192 1 1]
  3173. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3174. data_torch = data_torch.squeeze()
  3175. # assuming token_embd.weight is seen before output.weight
  3176. if self._tok_embd is not None and new_name == output_name:
  3177. if torch.equal(self._tok_embd, data_torch):
  3178. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3179. return []
  3180. elif new_name == tok_embd_name:
  3181. self._tok_embd = data_torch
  3182. return [(new_name, data_torch)]
  3183. @Model.register("CohereForCausalLM")
  3184. class CommandR2Model(Model):
  3185. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3186. def __init__(self, *args, **kwargs):
  3187. super().__init__(*args, **kwargs)
  3188. # max_position_embeddings = 8192 in config.json but model was actually
  3189. # trained on 128k context length
  3190. # aya-23 models don't have model_max_length specified
  3191. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3192. def set_gguf_parameters(self):
  3193. super().set_gguf_parameters()
  3194. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3195. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3196. @Model.register("Cohere2ForCausalLM")
  3197. class Cohere2Model(Model):
  3198. model_arch = gguf.MODEL_ARCH.COHERE2
  3199. def set_gguf_parameters(self):
  3200. super().set_gguf_parameters()
  3201. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3202. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3203. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3204. rotary_pct = self.hparams["rotary_pct"]
  3205. hidden_size = self.hparams["hidden_size"]
  3206. num_attention_heads = self.hparams["num_attention_heads"]
  3207. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3208. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3209. @Model.register("OlmoForCausalLM")
  3210. @Model.register("OLMoForCausalLM")
  3211. class OlmoModel(Model):
  3212. model_arch = gguf.MODEL_ARCH.OLMO
  3213. def set_gguf_parameters(self):
  3214. super().set_gguf_parameters()
  3215. self.gguf_writer.add_layer_norm_eps(1e-5)
  3216. clip_qkv = self.hparams.get("clip_qkv")
  3217. if clip_qkv is not None:
  3218. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3219. # Same as super class, but permuting q_proj, k_proj
  3220. # Copied from: LlamaModel
  3221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3222. del bid # unused
  3223. n_head = self.hparams["num_attention_heads"]
  3224. n_kv_head = self.hparams.get("num_key_value_heads")
  3225. if name.endswith("q_proj.weight"):
  3226. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3227. if name.endswith("k_proj.weight"):
  3228. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3229. return [(self.map_tensor_name(name), data_torch)]
  3230. @Model.register("Olmo2ForCausalLM")
  3231. class Olmo2Model(Model):
  3232. model_arch = gguf.MODEL_ARCH.OLMO2
  3233. @Model.register("OlmoeForCausalLM")
  3234. class OlmoeModel(Model):
  3235. model_arch = gguf.MODEL_ARCH.OLMOE
  3236. def set_gguf_parameters(self):
  3237. super().set_gguf_parameters()
  3238. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3239. if (n_experts := self.hparams.get("num_experts")) is not None:
  3240. self.gguf_writer.add_expert_count(n_experts)
  3241. _experts: list[dict[str, Tensor]] | None = None
  3242. # Copied from: Qwen2MoeModel
  3243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3244. # process the experts separately
  3245. if name.find("experts") != -1:
  3246. n_experts = self.hparams["num_experts"]
  3247. assert bid is not None
  3248. if self._experts is None:
  3249. self._experts = [{} for _ in range(self.block_count)]
  3250. self._experts[bid][name] = data_torch
  3251. if len(self._experts[bid]) >= n_experts * 3:
  3252. tensors: list[tuple[str, Tensor]] = []
  3253. # merge the experts into a single 3d tensor
  3254. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3255. datas: list[Tensor] = []
  3256. for xid in range(n_experts):
  3257. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3258. datas.append(self._experts[bid][ename])
  3259. del self._experts[bid][ename]
  3260. data_torch = torch.stack(datas, dim=0)
  3261. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3262. new_name = self.map_tensor_name(merged_name)
  3263. tensors.append((new_name, data_torch))
  3264. return tensors
  3265. else:
  3266. return []
  3267. return [(self.map_tensor_name(name), data_torch)]
  3268. # Copied from: Qwen2MoeModel
  3269. def prepare_tensors(self):
  3270. super().prepare_tensors()
  3271. if self._experts is not None:
  3272. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3273. experts = [k for d in self._experts for k in d.keys()]
  3274. if len(experts) > 0:
  3275. raise ValueError(f"Unprocessed experts: {experts}")
  3276. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3277. class JinaBertV2Model(BertModel):
  3278. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3279. def __init__(self, *args, **kwargs):
  3280. super().__init__(*args, **kwargs)
  3281. self.intermediate_size = self.hparams["intermediate_size"]
  3282. def get_tensors(self):
  3283. for name, data in super().get_tensors():
  3284. if 'gated_layer' in name:
  3285. d1 = data[:self.intermediate_size, :]
  3286. name1 = name.replace('gated_layers', 'gated_layers_w')
  3287. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3288. d2 = data[self.intermediate_size:, :]
  3289. name2 = name.replace('gated_layers', 'gated_layers_v')
  3290. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3291. yield name1, d1
  3292. yield name2, d2
  3293. continue
  3294. yield name, data
  3295. def set_vocab(self):
  3296. tokenizer_class = 'BertTokenizer'
  3297. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3298. tokenizer_class = json.load(f)['tokenizer_class']
  3299. if tokenizer_class == 'BertTokenizer':
  3300. super().set_vocab()
  3301. elif tokenizer_class == 'RobertaTokenizer':
  3302. self._set_vocab_gpt2()
  3303. self.gguf_writer.add_token_type_count(2)
  3304. else:
  3305. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3306. self.gguf_writer.add_add_bos_token(True)
  3307. self.gguf_writer.add_add_eos_token(True)
  3308. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3309. # if name starts with "bert.", remove the prefix
  3310. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3311. if name.startswith("bert."):
  3312. name = name[5:]
  3313. return super().modify_tensors(data_torch, name, bid)
  3314. @Model.register("OpenELMForCausalLM")
  3315. class OpenELMModel(Model):
  3316. model_arch = gguf.MODEL_ARCH.OPENELM
  3317. @staticmethod
  3318. def _make_divisible(v: float | int, divisor: int) -> int:
  3319. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3320. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3321. # Make sure that round down does not go down by more than 10%.
  3322. if new_v < 0.9 * v:
  3323. new_v += divisor
  3324. return new_v
  3325. def __init__(self, *args, **kwargs):
  3326. super().__init__(*args, **kwargs)
  3327. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3328. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3329. self._n_embd: int = self.hparams["model_dim"]
  3330. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3331. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3332. self._ffn_dims: list[int] = [
  3333. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3334. for multiplier in ffn_multipliers
  3335. ]
  3336. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3337. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3338. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3339. def set_vocab(self):
  3340. try:
  3341. self._set_vocab_sentencepiece()
  3342. except FileNotFoundError:
  3343. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3344. def set_gguf_parameters(self):
  3345. n_embd = self._n_embd
  3346. head_dim = self.hparams["head_dim"]
  3347. rot_pct = 1.0
  3348. assert self.block_count == len(self._num_kv_heads)
  3349. assert self.block_count == len(self._num_query_heads)
  3350. assert self.block_count == len(self._ffn_dims)
  3351. self.gguf_writer.add_block_count(self.block_count)
  3352. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3353. self.gguf_writer.add_embedding_length(n_embd)
  3354. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3355. self.gguf_writer.add_head_count(self._num_query_heads)
  3356. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3357. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3358. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3359. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3360. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3361. self.gguf_writer.add_key_length(head_dim)
  3362. self.gguf_writer.add_value_length(head_dim)
  3363. self.gguf_writer.add_file_type(self.ftype)
  3364. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3365. if "n_layers" in keys:
  3366. return self.hparams["num_transformer_layers"]
  3367. return super().find_hparam(keys, optional)
  3368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3369. # split ff
  3370. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3371. ff_dim = self._ffn_dims[bid]
  3372. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3373. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3374. return
  3375. yield (self.map_tensor_name(name), data_torch)
  3376. @Model.register("ArcticForCausalLM")
  3377. class ArcticModel(Model):
  3378. model_arch = gguf.MODEL_ARCH.ARCTIC
  3379. def set_vocab(self):
  3380. # The reason for using a custom implementation here is that the
  3381. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3382. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3383. from sentencepiece import SentencePieceProcessor
  3384. tokenizer_path = self.dir_model / 'tokenizer.model'
  3385. if not tokenizer_path.is_file():
  3386. logger.error(f'Error: Missing {tokenizer_path}')
  3387. sys.exit(1)
  3388. # Read the whole vocabulary from the tokenizer.model file
  3389. tokenizer = SentencePieceProcessor()
  3390. tokenizer.LoadFromFile(str(tokenizer_path))
  3391. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3392. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3393. scores: list[float] = [-10000.0] * vocab_size
  3394. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3395. for token_id in range(tokenizer.vocab_size()):
  3396. piece = tokenizer.IdToPiece(token_id)
  3397. text = piece.encode("utf-8")
  3398. score = tokenizer.GetScore(token_id)
  3399. toktype = SentencePieceTokenTypes.NORMAL
  3400. if tokenizer.IsUnknown(token_id):
  3401. toktype = SentencePieceTokenTypes.UNKNOWN
  3402. elif tokenizer.IsControl(token_id):
  3403. toktype = SentencePieceTokenTypes.CONTROL
  3404. elif tokenizer.IsUnused(token_id):
  3405. toktype = SentencePieceTokenTypes.UNUSED
  3406. elif tokenizer.IsByte(token_id):
  3407. toktype = SentencePieceTokenTypes.BYTE
  3408. tokens[token_id] = text
  3409. scores[token_id] = score
  3410. toktypes[token_id] = toktype
  3411. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3412. # of information about added/redefined tokens and modify them accordingly.
  3413. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3414. if tokenizer_config_file.is_file():
  3415. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3416. tokenizer_config_json = json.load(f)
  3417. if "added_tokens_decoder" in tokenizer_config_json:
  3418. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3419. for token_id, token_json in added_tokens_decoder.items():
  3420. token_id = int(token_id)
  3421. if token_id >= vocab_size:
  3422. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3423. continue
  3424. token_content = token_json["content"]
  3425. token_type = SentencePieceTokenTypes.USER_DEFINED
  3426. token_score = -10000.0
  3427. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3428. # Set the score to 0.0 as in the original tokenizer.model
  3429. if ("special" in token_json) and token_json["special"]:
  3430. if token_content == tokenizer_config_json["unk_token"]:
  3431. token_type = SentencePieceTokenTypes.UNKNOWN
  3432. else:
  3433. token_type = SentencePieceTokenTypes.CONTROL
  3434. token_score = 0.0
  3435. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3436. tokens[token_id] = token_content.encode("utf-8")
  3437. toktypes[token_id] = token_type
  3438. scores[token_id] = token_score
  3439. self.gguf_writer.add_tokenizer_model("llama")
  3440. self.gguf_writer.add_tokenizer_pre("default")
  3441. self.gguf_writer.add_token_list(tokens)
  3442. self.gguf_writer.add_token_scores(scores)
  3443. self.gguf_writer.add_token_types(toktypes)
  3444. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3445. special_vocab.add_to_gguf(self.gguf_writer)
  3446. def set_gguf_parameters(self):
  3447. super().set_gguf_parameters()
  3448. hparams = self.hparams
  3449. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3450. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3451. _experts: list[dict[str, Tensor]] | None = None
  3452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3453. n_head = self.hparams["num_attention_heads"]
  3454. n_kv_head = self.hparams.get("num_key_value_heads")
  3455. if name.endswith("q_proj.weight"):
  3456. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3457. if name.endswith("k_proj.weight"):
  3458. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3459. # process the experts separately
  3460. if name.find("block_sparse_moe.experts") != -1:
  3461. n_experts = self.hparams["num_local_experts"]
  3462. assert bid is not None
  3463. if self._experts is None:
  3464. self._experts = [{} for _ in range(self.block_count)]
  3465. self._experts[bid][name] = data_torch
  3466. if len(self._experts[bid]) >= n_experts * 3:
  3467. tensors: list[tuple[str, Tensor]] = []
  3468. # merge the experts into a single 3d tensor
  3469. for wid in ["w1", "w2", "w3"]:
  3470. datas: list[Tensor] = []
  3471. for xid in range(n_experts):
  3472. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3473. datas.append(self._experts[bid][ename])
  3474. del self._experts[bid][ename]
  3475. data_torch = torch.stack(datas, dim=0)
  3476. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3477. new_name = self.map_tensor_name(merged_name)
  3478. tensors.append((new_name, data_torch))
  3479. return tensors
  3480. else:
  3481. return []
  3482. return [(self.map_tensor_name(name), data_torch)]
  3483. def prepare_tensors(self):
  3484. super().prepare_tensors()
  3485. if self._experts is not None:
  3486. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3487. experts = [k for d in self._experts for k in d.keys()]
  3488. if len(experts) > 0:
  3489. raise ValueError(f"Unprocessed experts: {experts}")
  3490. @Model.register("DeepseekForCausalLM")
  3491. class DeepseekModel(Model):
  3492. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3493. def set_vocab(self):
  3494. try:
  3495. self._set_vocab_sentencepiece()
  3496. except FileNotFoundError:
  3497. self._set_vocab_gpt2()
  3498. def set_gguf_parameters(self):
  3499. super().set_gguf_parameters()
  3500. hparams = self.hparams
  3501. if "head_dim" in hparams:
  3502. rope_dim = hparams["head_dim"]
  3503. else:
  3504. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3505. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3506. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3507. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3508. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3509. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3510. self.gguf_writer.add_expert_weights_scale(1.0)
  3511. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3512. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3513. _experts: list[dict[str, Tensor]] | None = None
  3514. @staticmethod
  3515. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3516. if n_head_kv is not None and n_head != n_head_kv:
  3517. n_head = n_head_kv
  3518. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3519. .swapaxes(1, 2)
  3520. .reshape(weights.shape))
  3521. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3522. n_head = self.hparams["num_attention_heads"]
  3523. n_kv_head = self.hparams.get("num_key_value_heads")
  3524. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3525. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3526. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3527. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3528. # process the experts separately
  3529. if name.find("mlp.experts") != -1:
  3530. n_experts = self.hparams["n_routed_experts"]
  3531. assert bid is not None
  3532. if self._experts is None:
  3533. self._experts = [{} for _ in range(self.block_count)]
  3534. self._experts[bid][name] = data_torch
  3535. if len(self._experts[bid]) >= n_experts * 3:
  3536. tensors: list[tuple[str, Tensor]] = []
  3537. # merge the experts into a single 3d tensor
  3538. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3539. datas: list[Tensor] = []
  3540. for xid in range(n_experts):
  3541. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3542. datas.append(self._experts[bid][ename])
  3543. del self._experts[bid][ename]
  3544. data_torch = torch.stack(datas, dim=0)
  3545. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3546. new_name = self.map_tensor_name(merged_name)
  3547. tensors.append((new_name, data_torch))
  3548. return tensors
  3549. else:
  3550. return []
  3551. return [(self.map_tensor_name(name), data_torch)]
  3552. def prepare_tensors(self):
  3553. super().prepare_tensors()
  3554. if self._experts is not None:
  3555. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3556. experts = [k for d in self._experts for k in d.keys()]
  3557. if len(experts) > 0:
  3558. raise ValueError(f"Unprocessed experts: {experts}")
  3559. @Model.register("DeepseekV2ForCausalLM")
  3560. @Model.register("DeepseekV3ForCausalLM")
  3561. class DeepseekV2Model(Model):
  3562. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3563. def set_vocab(self):
  3564. self._set_vocab_gpt2()
  3565. def set_gguf_parameters(self):
  3566. super().set_gguf_parameters()
  3567. hparams = self.hparams
  3568. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3569. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3570. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3571. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3572. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3573. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3574. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3575. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3576. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3577. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3578. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3579. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3580. if hparams["scoring_func"] == "sigmoid":
  3581. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3582. elif hparams["scoring_func"] == "softmax":
  3583. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3584. else:
  3585. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3586. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3587. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3588. if self.hparams["rope_scaling"].get("type") == "yarn":
  3589. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3590. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3591. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3592. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3593. _experts: list[dict[str, Tensor]] | None = None
  3594. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3595. # rename e_score_correction_bias tensors
  3596. if name.endswith("e_score_correction_bias"):
  3597. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3598. # skip Multi-Token Prediction (MTP) layers
  3599. block_count = self.hparams["num_hidden_layers"]
  3600. match = re.match(r"model.layers.(\d+)", name)
  3601. if match and int(match.group(1)) >= block_count:
  3602. return []
  3603. # process the experts separately
  3604. if name.find("mlp.experts") != -1:
  3605. n_experts = self.hparams["n_routed_experts"]
  3606. assert bid is not None
  3607. if self._experts is None:
  3608. self._experts = [{} for _ in range(self.block_count)]
  3609. self._experts[bid][name] = data_torch
  3610. if len(self._experts[bid]) >= n_experts * 3:
  3611. tensors: list[tuple[str, Tensor]] = []
  3612. # merge the experts into a single 3d tensor
  3613. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3614. datas: list[Tensor] = []
  3615. for xid in range(n_experts):
  3616. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3617. datas.append(self._experts[bid][ename])
  3618. del self._experts[bid][ename]
  3619. data_torch = torch.stack(datas, dim=0)
  3620. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3621. new_name = self.map_tensor_name(merged_name)
  3622. tensors.append((new_name, data_torch))
  3623. return tensors
  3624. else:
  3625. return []
  3626. return [(self.map_tensor_name(name), data_torch)]
  3627. def prepare_tensors(self):
  3628. super().prepare_tensors()
  3629. if self._experts is not None:
  3630. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3631. experts = [k for d in self._experts for k in d.keys()]
  3632. if len(experts) > 0:
  3633. raise ValueError(f"Unprocessed experts: {experts}")
  3634. @Model.register("PLMForCausalLM")
  3635. class PLMModel(Model):
  3636. model_arch = gguf.MODEL_ARCH.PLM
  3637. def set_vocab(self):
  3638. self._set_vocab_gpt2()
  3639. def set_gguf_parameters(self):
  3640. super().set_gguf_parameters()
  3641. hparams = self.hparams
  3642. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3643. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3644. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3645. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3646. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3648. return [(self.map_tensor_name(name), data_torch)]
  3649. def prepare_tensors(self):
  3650. super().prepare_tensors()
  3651. @Model.register("T5WithLMHeadModel")
  3652. @Model.register("T5ForConditionalGeneration")
  3653. @Model.register("MT5ForConditionalGeneration")
  3654. @Model.register("UMT5ForConditionalGeneration")
  3655. class T5Model(Model):
  3656. model_arch = gguf.MODEL_ARCH.T5
  3657. def __init__(self, *args, **kwargs):
  3658. super().__init__(*args, **kwargs)
  3659. self.shared_token_embeddings_found = False
  3660. def set_vocab(self):
  3661. # to avoid TypeError: Descriptors cannot be created directly
  3662. # exception when importing sentencepiece_model_pb2
  3663. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3664. from sentencepiece import SentencePieceProcessor
  3665. from sentencepiece import sentencepiece_model_pb2 as model
  3666. tokenizer_path = self.dir_model / 'tokenizer.model'
  3667. # many older models use spiece.model tokenizer model filename
  3668. if not tokenizer_path.is_file():
  3669. tokenizer_path = self.dir_model / 'spiece.model'
  3670. if not tokenizer_path.is_file():
  3671. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3672. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3673. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3674. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3675. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3676. # assure the tokenizer model file name is correct
  3677. assert tokenizer_path.name == 'tokenizer.model'
  3678. return self._set_vocab_sentencepiece()
  3679. else:
  3680. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3681. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3682. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3683. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3684. tokenizer = SentencePieceProcessor()
  3685. tokenizer.LoadFromFile(str(tokenizer_path))
  3686. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3687. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3688. scores: list[float] = [-10000.0] * vocab_size
  3689. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3690. for token_id in range(tokenizer.vocab_size()):
  3691. piece = tokenizer.IdToPiece(token_id)
  3692. text = piece.encode("utf-8")
  3693. score = tokenizer.GetScore(token_id)
  3694. toktype = SentencePieceTokenTypes.NORMAL
  3695. if tokenizer.IsUnknown(token_id):
  3696. toktype = SentencePieceTokenTypes.UNKNOWN
  3697. elif tokenizer.IsControl(token_id):
  3698. toktype = SentencePieceTokenTypes.CONTROL
  3699. elif tokenizer.IsUnused(token_id):
  3700. toktype = SentencePieceTokenTypes.UNUSED
  3701. elif tokenizer.IsByte(token_id):
  3702. toktype = SentencePieceTokenTypes.BYTE
  3703. tokens[token_id] = text
  3704. scores[token_id] = score
  3705. toktypes[token_id] = toktype
  3706. added_tokens_file = self.dir_model / 'added_tokens.json'
  3707. if added_tokens_file.is_file():
  3708. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3709. added_tokens_json = json.load(f)
  3710. for key in added_tokens_json:
  3711. token_id = added_tokens_json[key]
  3712. if token_id >= vocab_size:
  3713. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3714. continue
  3715. tokens[token_id] = key.encode("utf-8")
  3716. scores[token_id] = -1000.0
  3717. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3718. if vocab_size > len(tokens):
  3719. pad_count = vocab_size - len(tokens)
  3720. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3721. for i in range(1, pad_count + 1):
  3722. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3723. scores.append(-1000.0)
  3724. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3725. self.gguf_writer.add_tokenizer_model("t5")
  3726. self.gguf_writer.add_tokenizer_pre("default")
  3727. self.gguf_writer.add_token_list(tokens)
  3728. self.gguf_writer.add_token_scores(scores)
  3729. self.gguf_writer.add_token_types(toktypes)
  3730. self.gguf_writer.add_add_space_prefix(add_prefix)
  3731. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3732. if precompiled_charsmap:
  3733. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3734. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3735. special_vocab.add_to_gguf(self.gguf_writer)
  3736. self.gguf_writer.add_add_bos_token(False)
  3737. self.gguf_writer.add_add_eos_token(True)
  3738. def set_gguf_parameters(self):
  3739. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3740. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3741. n_ctx = 512
  3742. self.gguf_writer.add_context_length(n_ctx)
  3743. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3744. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3745. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3746. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3747. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3748. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3749. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3750. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3751. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3752. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3753. self.gguf_writer.add_file_type(self.ftype)
  3754. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3755. del bid # unused
  3756. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3757. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3758. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3759. # and decoder and ignore the remaining ones.
  3760. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3761. if not self.shared_token_embeddings_found:
  3762. name = "shared.weight"
  3763. self.shared_token_embeddings_found = True
  3764. else:
  3765. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3766. return []
  3767. return [(self.map_tensor_name(name), data_torch)]
  3768. @Model.register("T5EncoderModel")
  3769. class T5EncoderModel(Model):
  3770. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3771. def __init__(self, *args, **kwargs):
  3772. super().__init__(*args, **kwargs)
  3773. self.shared_token_embeddings_found = False
  3774. def set_vocab(self):
  3775. # to avoid TypeError: Descriptors cannot be created directly
  3776. # exception when importing sentencepiece_model_pb2
  3777. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3778. from sentencepiece import SentencePieceProcessor
  3779. from sentencepiece import sentencepiece_model_pb2 as model
  3780. tokenizer_path = self.dir_model / 'tokenizer.model'
  3781. # many older models use spiece.model tokenizer model filename
  3782. if not tokenizer_path.is_file():
  3783. tokenizer_path = self.dir_model / 'spiece.model'
  3784. if not tokenizer_path.is_file():
  3785. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3786. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3787. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3788. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3789. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3790. # assure the tokenizer model file name is correct
  3791. assert tokenizer_path.name == 'tokenizer.model'
  3792. return self._set_vocab_sentencepiece()
  3793. else:
  3794. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3795. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3796. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3797. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3798. tokenizer = SentencePieceProcessor()
  3799. tokenizer.LoadFromFile(str(tokenizer_path))
  3800. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3801. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3802. scores: list[float] = [-10000.0] * vocab_size
  3803. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3804. for token_id in range(tokenizer.vocab_size()):
  3805. piece = tokenizer.IdToPiece(token_id)
  3806. text = piece.encode("utf-8")
  3807. score = tokenizer.GetScore(token_id)
  3808. toktype = SentencePieceTokenTypes.NORMAL
  3809. if tokenizer.IsUnknown(token_id):
  3810. toktype = SentencePieceTokenTypes.UNKNOWN
  3811. elif tokenizer.IsControl(token_id):
  3812. toktype = SentencePieceTokenTypes.CONTROL
  3813. elif tokenizer.IsUnused(token_id):
  3814. toktype = SentencePieceTokenTypes.UNUSED
  3815. elif tokenizer.IsByte(token_id):
  3816. toktype = SentencePieceTokenTypes.BYTE
  3817. tokens[token_id] = text
  3818. scores[token_id] = score
  3819. toktypes[token_id] = toktype
  3820. added_tokens_file = self.dir_model / 'added_tokens.json'
  3821. if added_tokens_file.is_file():
  3822. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3823. added_tokens_json = json.load(f)
  3824. for key in added_tokens_json:
  3825. token_id = added_tokens_json[key]
  3826. if token_id >= vocab_size:
  3827. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3828. continue
  3829. tokens[token_id] = key.encode("utf-8")
  3830. scores[token_id] = -1000.0
  3831. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3832. if vocab_size > len(tokens):
  3833. pad_count = vocab_size - len(tokens)
  3834. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3835. for i in range(1, pad_count + 1):
  3836. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3837. scores.append(-1000.0)
  3838. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3839. self.gguf_writer.add_tokenizer_model("t5")
  3840. self.gguf_writer.add_tokenizer_pre("default")
  3841. self.gguf_writer.add_token_list(tokens)
  3842. self.gguf_writer.add_token_scores(scores)
  3843. self.gguf_writer.add_token_types(toktypes)
  3844. self.gguf_writer.add_add_space_prefix(add_prefix)
  3845. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3846. if precompiled_charsmap:
  3847. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3848. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3849. special_vocab.add_to_gguf(self.gguf_writer)
  3850. self.gguf_writer.add_add_bos_token(False)
  3851. self.gguf_writer.add_add_eos_token(True)
  3852. def set_gguf_parameters(self):
  3853. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3854. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3855. n_ctx = 512
  3856. self.gguf_writer.add_context_length(n_ctx)
  3857. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3858. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3859. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3860. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3861. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3862. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3863. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3864. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3865. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3866. self.gguf_writer.add_file_type(self.ftype)
  3867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3868. del bid # unused
  3869. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3870. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3871. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3872. # and decoder and ignore the remaining ones.
  3873. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3874. if not self.shared_token_embeddings_found:
  3875. name = "shared.weight"
  3876. self.shared_token_embeddings_found = True
  3877. else:
  3878. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3879. return []
  3880. return [(self.map_tensor_name(name), data_torch)]
  3881. @Model.register("JAISLMHeadModel")
  3882. class JaisModel(Model):
  3883. model_arch = gguf.MODEL_ARCH.JAIS
  3884. def __init__(self, *args, **kwargs):
  3885. super().__init__(*args, **kwargs)
  3886. # SwigLU activation
  3887. assert self.hparams["activation_function"] == "swiglu"
  3888. # ALiBi position embedding
  3889. assert self.hparams["position_embedding_type"] == "alibi"
  3890. # Embeddings scale
  3891. self.embeddings_scale = 1.0
  3892. if 'mup_embeddings_scale' in self.hparams:
  3893. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3894. elif 'embeddings_scale' in self.hparams:
  3895. self.embeddings_scale = self.hparams['embeddings_scale']
  3896. else:
  3897. assert False
  3898. self.width_scale = 1.0
  3899. if 'mup_output_alpha' in self.hparams:
  3900. assert 'mup_width_scale' in self.hparams
  3901. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3902. elif 'width_scale' in self.hparams:
  3903. self.width_scale = self.hparams['width_scale']
  3904. else:
  3905. assert False
  3906. self.max_alibi_bias = 8.0
  3907. def set_vocab(self):
  3908. self._set_vocab_gpt2()
  3909. def set_gguf_parameters(self):
  3910. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3911. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3912. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3913. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3914. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3915. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3916. self.gguf_writer.add_file_type(self.ftype)
  3917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3918. del bid # unused
  3919. tensors: list[tuple[str, Tensor]] = []
  3920. # we don't need these
  3921. if name.endswith((".attn.bias")):
  3922. return tensors
  3923. if name.endswith(("relative_pe.slopes")):
  3924. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3925. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3926. # but Jais's PyTorch model simply precalculates the slope values and places them
  3927. # in relative_pes.slopes
  3928. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3929. first_val = float(data_torch[0].item())
  3930. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3931. return tensors
  3932. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3933. data_torch = data_torch.transpose(1, 0)
  3934. new_name = self.map_tensor_name(name)
  3935. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3936. tensors.append((new_name, data_torch * self.embeddings_scale))
  3937. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3938. tensors.append((new_name, data_torch * self.width_scale))
  3939. else:
  3940. tensors.append((new_name, data_torch))
  3941. return tensors
  3942. def prepare_tensors(self):
  3943. super().prepare_tensors()
  3944. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3945. @Model.register("Glm4ForCausalLM")
  3946. class Glm4Model(Model):
  3947. model_arch = gguf.MODEL_ARCH.GLM4
  3948. def set_vocab(self):
  3949. self._set_vocab_gpt2()
  3950. def set_gguf_parameters(self):
  3951. super().set_gguf_parameters()
  3952. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3953. if self.hparams["rope_scaling"].get("type") == "yarn":
  3954. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3955. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3956. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3957. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3958. class ChatGLMModel(Model):
  3959. model_arch = gguf.MODEL_ARCH.CHATGLM
  3960. def set_vocab_chatglm3(self):
  3961. dir_model = self.dir_model
  3962. hparams = self.hparams
  3963. tokens: list[bytes] = []
  3964. toktypes: list[int] = []
  3965. scores: list[float] = []
  3966. from transformers import AutoTokenizer
  3967. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3968. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3969. assert max(tokenizer.get_vocab().values()) < vocab_size
  3970. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3971. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3972. for token_id in range(vocab_size):
  3973. piece = tokenizer._convert_id_to_token(token_id)
  3974. if token_id == 0:
  3975. piece = "<unk>"
  3976. elif token_id == 1:
  3977. piece = "<bos>"
  3978. elif token_id == 2:
  3979. piece = "<eos>"
  3980. text = piece.encode("utf-8")
  3981. score = 0.0
  3982. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3983. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3984. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3985. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3986. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3987. if piece in special_tokens:
  3988. toktype = SentencePieceTokenTypes.CONTROL
  3989. elif len(piece) == 0:
  3990. text = f"[PAD{token_id}]".encode("utf-8")
  3991. toktype = SentencePieceTokenTypes.UNUSED
  3992. else:
  3993. toktype = SentencePieceTokenTypes.USER_DEFINED
  3994. tokens.append(text)
  3995. scores.append(score)
  3996. toktypes.append(toktype)
  3997. continue
  3998. toktype = SentencePieceTokenTypes.NORMAL
  3999. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4000. toktype = SentencePieceTokenTypes.UNKNOWN
  4001. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4002. toktype = SentencePieceTokenTypes.CONTROL
  4003. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4004. toktype = SentencePieceTokenTypes.UNUSED
  4005. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4006. toktype = SentencePieceTokenTypes.BYTE
  4007. tokens.append(text)
  4008. scores.append(score)
  4009. toktypes.append(toktype)
  4010. self.gguf_writer.add_tokenizer_model("llama")
  4011. # glm3 needs prefix and suffix formatted as:
  4012. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4013. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4014. self.gguf_writer.add_token_list(tokens)
  4015. self.gguf_writer.add_token_scores(scores)
  4016. self.gguf_writer.add_token_types(toktypes)
  4017. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4018. special_vocab.add_to_gguf(self.gguf_writer)
  4019. @staticmethod
  4020. def token_bytes_to_string(b):
  4021. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4022. byte_encoder = bytes_to_unicode()
  4023. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4024. @staticmethod
  4025. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4026. parts = [bytes([b]) for b in token]
  4027. while True:
  4028. min_idx = None
  4029. min_rank = None
  4030. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4031. rank = mergeable_ranks.get(pair[0] + pair[1])
  4032. if rank is not None and (min_rank is None or rank < min_rank):
  4033. min_idx = i
  4034. min_rank = rank
  4035. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4036. break
  4037. assert min_idx is not None
  4038. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4039. return parts
  4040. def set_vocab(self):
  4041. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4042. self.set_vocab_chatglm3()
  4043. return
  4044. dir_model = self.dir_model
  4045. hparams = self.hparams
  4046. tokens: list[str] = []
  4047. toktypes: list[int] = []
  4048. from transformers import AutoTokenizer
  4049. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4050. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4051. assert max(tokenizer.get_vocab().values()) < vocab_size
  4052. tokens, toktypes, tokpre = self.get_vocab_base()
  4053. self.gguf_writer.add_tokenizer_model("gpt2")
  4054. self.gguf_writer.add_tokenizer_pre(tokpre)
  4055. self.gguf_writer.add_token_list(tokens)
  4056. self.gguf_writer.add_token_types(toktypes)
  4057. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4058. # only add special tokens when they were not already loaded from config.json
  4059. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4060. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4061. # this one is usually not in config.json anyway
  4062. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4063. special_vocab.add_to_gguf(self.gguf_writer)
  4064. def set_gguf_parameters(self):
  4065. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4066. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4067. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4068. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4069. self.gguf_writer.add_embedding_length(n_embed)
  4070. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4071. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4072. self.gguf_writer.add_head_count(n_head)
  4073. self.gguf_writer.add_head_count_kv(n_head_kv)
  4074. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4075. self.gguf_writer.add_file_type(self.ftype)
  4076. if "attention_dim" in self.hparams:
  4077. rope_dim = self.hparams["attention_dim"]
  4078. else:
  4079. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4080. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4081. self.gguf_writer.add_add_bos_token(False)
  4082. rope_freq = 10000
  4083. if "rope_ratio" in self.hparams:
  4084. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4085. self.gguf_writer.add_rope_freq_base(rope_freq)
  4086. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4087. del bid # unused
  4088. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4089. return []
  4090. name = name.removeprefix("transformer.")
  4091. return [(self.map_tensor_name(name), data_torch)]
  4092. @Model.register("NemotronForCausalLM")
  4093. class NemotronModel(Model):
  4094. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4095. def set_vocab(self):
  4096. self._set_vocab_sentencepiece()
  4097. self.gguf_writer.add_pad_token_id(0)
  4098. self.gguf_writer.add_unk_token_id(1)
  4099. def set_gguf_parameters(self):
  4100. super().set_gguf_parameters()
  4101. hparams = self.hparams
  4102. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4103. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4104. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4105. # * Partial RoPE
  4106. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4107. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4108. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4109. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4110. # * RopeScaling for Nemotron
  4111. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4112. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4113. else:
  4114. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4115. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4117. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4118. # model.layers.{l}.input_layernorm.weight
  4119. # model.layers.{l}.post_attention_layernorm.weight
  4120. # model.norm.weight
  4121. if name.endswith("norm.weight"):
  4122. data_torch = data_torch + 1
  4123. return [(self.map_tensor_name(name), data_torch)]
  4124. @Model.register("ExaoneForCausalLM")
  4125. class ExaoneModel(Model):
  4126. model_arch = gguf.MODEL_ARCH.EXAONE
  4127. def set_gguf_parameters(self):
  4128. hparams = self.hparams
  4129. assert (hparams["activation_function"] == "silu")
  4130. max_position_embeddings = hparams["max_position_embeddings"]
  4131. embed_dim = hparams["hidden_size"]
  4132. num_heads = hparams["num_attention_heads"]
  4133. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4134. layer_norm_eps = hparams["layer_norm_epsilon"]
  4135. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4136. num_layers = hparams["num_layers"]
  4137. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4138. # attention_dropout_rate = hparams["attention_dropout"]
  4139. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4140. # embed_dropout_rate = hparams["embed_dropout"]
  4141. self.gguf_writer.add_embedding_length(embed_dim)
  4142. self.gguf_writer.add_head_count(num_heads)
  4143. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4144. self.gguf_writer.add_context_length(max_position_embeddings)
  4145. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4146. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4147. self.gguf_writer.add_block_count(num_layers)
  4148. self.gguf_writer.add_file_type(self.ftype)
  4149. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4150. self.gguf_writer.add_rope_freq_base(rope_theta)
  4151. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4152. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4153. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4154. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4155. if hparams["rope_scaling"].get("type") == "linear":
  4156. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4157. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4158. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4159. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4160. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4161. base = self.hparams.get("rope_theta", 10000.0)
  4162. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4163. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4164. factor = rope_scaling.get("factor", 8.0)
  4165. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4166. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4167. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4168. low_freq_wavelen = old_context_len / low_freq_factor
  4169. high_freq_wavelen = old_context_len / high_freq_factor
  4170. assert low_freq_wavelen != high_freq_wavelen
  4171. rope_factors = []
  4172. for freq in freqs:
  4173. wavelen = 2 * math.pi / freq
  4174. if wavelen < high_freq_wavelen:
  4175. rope_factors.append(1)
  4176. elif wavelen > low_freq_wavelen:
  4177. rope_factors.append(factor)
  4178. else:
  4179. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4180. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4181. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4182. @Model.register("GraniteForCausalLM")
  4183. class GraniteModel(LlamaModel):
  4184. """Conversion for IBM's GraniteForCausalLM"""
  4185. model_arch = gguf.MODEL_ARCH.GRANITE
  4186. def set_gguf_parameters(self):
  4187. """Granite uses standard llama parameters with the following differences:
  4188. - No head_dim support
  4189. - New multiplier params:
  4190. - attention_scale
  4191. - embedding_scale
  4192. - residual_scale
  4193. - logits_scaling
  4194. """
  4195. if head_dim := self.hparams.pop("head_dim", None):
  4196. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4197. super().set_gguf_parameters()
  4198. # NOTE: Convert _multiplier params to _scale params for naming
  4199. # consistency
  4200. if attention_scale := self.hparams.get("attention_multiplier"):
  4201. self.gguf_writer.add_attention_scale(attention_scale)
  4202. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4203. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4204. self.gguf_writer.add_embedding_scale(embedding_scale)
  4205. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4206. if residual_scale := self.hparams.get("residual_multiplier"):
  4207. self.gguf_writer.add_residual_scale(residual_scale)
  4208. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4209. if logits_scale := self.hparams.get("logits_scaling"):
  4210. self.gguf_writer.add_logit_scale(logits_scale)
  4211. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4212. @Model.register("GraniteMoeForCausalLM")
  4213. class GraniteMoeModel(GraniteModel):
  4214. """Conversion for IBM's GraniteMoeForCausalLM"""
  4215. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4216. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4217. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4218. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4219. the hidden size that is then split during forward. To keep compatibility
  4220. with existing mixtral support, we pull them apart here.
  4221. """
  4222. if name.endswith("block_sparse_moe.input_linear.weight"):
  4223. ffn_dim = self.hparams["intermediate_size"]
  4224. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4225. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4226. return [
  4227. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4228. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4229. ]
  4230. return super().modify_tensors(data_torch, name, bid)
  4231. @Model.register("BailingMoeForCausalLM")
  4232. class BailingMoeModel(Model):
  4233. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4234. def set_vocab(self):
  4235. self._set_vocab_gpt2()
  4236. def set_gguf_parameters(self):
  4237. super().set_gguf_parameters()
  4238. hparams = self.hparams
  4239. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4240. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4241. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4242. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4243. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4244. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4245. self.gguf_writer.add_expert_weights_scale(1.0)
  4246. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4247. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4248. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4249. _experts: list[dict[str, Tensor]] | None = None
  4250. @staticmethod
  4251. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4252. if n_head_kv is not None and n_head != n_head_kv:
  4253. n_head = n_head_kv
  4254. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4255. .swapaxes(1, 2)
  4256. .reshape(weights.shape))
  4257. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4258. n_head = self.hparams["num_attention_heads"]
  4259. n_kv_head = self.hparams.get("num_key_value_heads")
  4260. n_embd = self.hparams["hidden_size"]
  4261. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4262. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4263. if name.endswith("attention.dense.weight"):
  4264. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4265. elif name.endswith("query_key_value.weight"):
  4266. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4267. return [
  4268. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4269. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4270. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4271. ]
  4272. elif name.find("mlp.experts") != -1:
  4273. n_experts = self.hparams["num_experts"]
  4274. assert bid is not None
  4275. tensors: list[tuple[str, Tensor]] = []
  4276. if self._experts is None:
  4277. self._experts = [{} for _ in range(self.block_count)]
  4278. self._experts[bid][name] = data_torch
  4279. if len(self._experts[bid]) >= n_experts * 3:
  4280. # merge the experts into a single 3d tensor
  4281. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4282. datas: list[Tensor] = []
  4283. for xid in range(n_experts):
  4284. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4285. datas.append(self._experts[bid][ename])
  4286. del self._experts[bid][ename]
  4287. data_torch = torch.stack(datas, dim=0)
  4288. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4289. new_name = self.map_tensor_name(merged_name)
  4290. tensors.append((new_name, data_torch))
  4291. return tensors
  4292. new_name = self.map_tensor_name(name)
  4293. if new_name == output_name and self.hparams.get("norm_head"):
  4294. data_torch = data_torch.float()
  4295. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4296. return [(new_name, data_torch)]
  4297. def prepare_tensors(self):
  4298. super().prepare_tensors()
  4299. if self._experts is not None:
  4300. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4301. experts = [k for d in self._experts for k in d.keys()]
  4302. if len(experts) > 0:
  4303. raise ValueError(f"Unprocessed experts: {experts}")
  4304. @Model.register("ChameleonForConditionalGeneration")
  4305. @Model.register("ChameleonForCausalLM") # obsolete
  4306. class ChameleonModel(Model):
  4307. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4308. def set_gguf_parameters(self):
  4309. super().set_gguf_parameters()
  4310. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4311. def set_vocab(self):
  4312. self._set_vocab_gpt2()
  4313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4314. # ignore image tokenizer for now
  4315. # TODO: remove this once image support is implemented for Chameleon
  4316. if name.startswith("model.vqmodel"):
  4317. return []
  4318. n_head = self.hparams["num_attention_heads"]
  4319. n_kv_head = self.hparams.get("num_key_value_heads")
  4320. hidden_dim = self.hparams.get("hidden_size")
  4321. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4322. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4323. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4324. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4325. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4326. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4327. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4328. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4329. return [(self.map_tensor_name(name), data_torch)]
  4330. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4331. @staticmethod
  4332. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4333. head_dim = hidden_dim // n_heads
  4334. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4335. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4336. return data_torch
  4337. ###### CONVERSION LOGIC ######
  4338. # tree of lazy tensors
  4339. class LazyTorchTensor(gguf.LazyBase):
  4340. _tensor_type = torch.Tensor
  4341. # to keep the type-checker happy
  4342. dtype: torch.dtype
  4343. shape: torch.Size
  4344. # only used when converting a torch.Tensor to a np.ndarray
  4345. _dtype_map: dict[torch.dtype, type] = {
  4346. torch.float16: np.float16,
  4347. torch.float32: np.float32,
  4348. }
  4349. # used for safetensors slices
  4350. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4351. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4352. _dtype_str_map: dict[str, torch.dtype] = {
  4353. "F64": torch.float64,
  4354. "F32": torch.float32,
  4355. "BF16": torch.bfloat16,
  4356. "F16": torch.float16,
  4357. # "U64": torch.uint64,
  4358. "I64": torch.int64,
  4359. # "U32": torch.uint32,
  4360. "I32": torch.int32,
  4361. # "U16": torch.uint16,
  4362. "I16": torch.int16,
  4363. "U8": torch.uint8,
  4364. "I8": torch.int8,
  4365. "BOOL": torch.bool,
  4366. "F8_E4M3": torch.float8_e4m3fn,
  4367. "F8_E5M2": torch.float8_e5m2,
  4368. }
  4369. def numpy(self) -> gguf.LazyNumpyTensor:
  4370. dtype = self._dtype_map[self.dtype]
  4371. return gguf.LazyNumpyTensor(
  4372. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4373. args=(self,),
  4374. func=(lambda s: s.numpy())
  4375. )
  4376. @classmethod
  4377. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4378. return torch.empty(size=shape, dtype=dtype, device="meta")
  4379. @classmethod
  4380. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4381. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4382. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4383. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4384. return cast(torch.Tensor, lazy)
  4385. @classmethod
  4386. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4387. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4388. shape = remote_tensor.shape
  4389. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4390. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4391. return cast(torch.Tensor, lazy)
  4392. @classmethod
  4393. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4394. del types # unused
  4395. if kwargs is None:
  4396. kwargs = {}
  4397. if func is torch.Tensor.numpy:
  4398. return args[0].numpy()
  4399. return cls._wrap_fn(func)(*args, **kwargs)
  4400. def parse_args() -> argparse.Namespace:
  4401. parser = argparse.ArgumentParser(
  4402. description="Convert a huggingface model to a GGML compatible file")
  4403. parser.add_argument(
  4404. "--vocab-only", action="store_true",
  4405. help="extract only the vocab",
  4406. )
  4407. parser.add_argument(
  4408. "--outfile", type=Path,
  4409. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4410. )
  4411. parser.add_argument(
  4412. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4413. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4414. )
  4415. parser.add_argument(
  4416. "--bigendian", action="store_true",
  4417. help="model is executed on big endian machine",
  4418. )
  4419. parser.add_argument(
  4420. "model", type=Path,
  4421. help="directory containing model file",
  4422. nargs="?",
  4423. )
  4424. parser.add_argument(
  4425. "--use-temp-file", action="store_true",
  4426. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4427. )
  4428. parser.add_argument(
  4429. "--no-lazy", action="store_true",
  4430. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4431. )
  4432. parser.add_argument(
  4433. "--model-name", type=str, default=None,
  4434. help="name of the model",
  4435. )
  4436. parser.add_argument(
  4437. "--verbose", action="store_true",
  4438. help="increase output verbosity",
  4439. )
  4440. parser.add_argument(
  4441. "--split-max-tensors", type=int, default=0,
  4442. help="max tensors in each split",
  4443. )
  4444. parser.add_argument(
  4445. "--split-max-size", type=str, default="0",
  4446. help="max size per split N(M|G)",
  4447. )
  4448. parser.add_argument(
  4449. "--dry-run", action="store_true",
  4450. help="only print out a split plan and exit, without writing any new files",
  4451. )
  4452. parser.add_argument(
  4453. "--no-tensor-first-split", action="store_true",
  4454. help="do not add tensors to the first split (disabled by default)"
  4455. )
  4456. parser.add_argument(
  4457. "--metadata", type=Path,
  4458. help="Specify the path for an authorship metadata override file"
  4459. )
  4460. parser.add_argument(
  4461. "--print-supported-models", action="store_true",
  4462. help="Print the supported models"
  4463. )
  4464. parser.add_argument(
  4465. "--remote", action="store_true",
  4466. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4467. )
  4468. args = parser.parse_args()
  4469. if not args.print_supported_models and args.model is None:
  4470. parser.error("the following arguments are required: model")
  4471. return args
  4472. def split_str_to_n_bytes(split_str: str) -> int:
  4473. if split_str.endswith("K"):
  4474. n = int(split_str[:-1]) * 1000
  4475. elif split_str.endswith("M"):
  4476. n = int(split_str[:-1]) * 1000 * 1000
  4477. elif split_str.endswith("G"):
  4478. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4479. elif split_str.isnumeric():
  4480. n = int(split_str)
  4481. else:
  4482. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4483. if n < 0:
  4484. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4485. return n
  4486. def main() -> None:
  4487. args = parse_args()
  4488. if args.print_supported_models:
  4489. logger.error("Supported models:")
  4490. Model.print_registered_models()
  4491. sys.exit(0)
  4492. if args.verbose:
  4493. logging.basicConfig(level=logging.DEBUG)
  4494. else:
  4495. logging.basicConfig(level=logging.INFO)
  4496. dir_model = args.model
  4497. if args.remote:
  4498. from huggingface_hub import snapshot_download
  4499. local_dir = snapshot_download(
  4500. repo_id=str(dir_model),
  4501. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4502. dir_model = Path(local_dir)
  4503. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4504. if not dir_model.is_dir():
  4505. logger.error(f'Error: {args.model} is not a directory')
  4506. sys.exit(1)
  4507. ftype_map: dict[str, gguf.LlamaFileType] = {
  4508. "f32": gguf.LlamaFileType.ALL_F32,
  4509. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4510. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4511. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4512. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4513. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4514. "auto": gguf.LlamaFileType.GUESSED,
  4515. }
  4516. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4517. if args.use_temp_file and is_split:
  4518. logger.error("Error: Cannot use temp file when splitting")
  4519. sys.exit(1)
  4520. if args.outfile is not None:
  4521. fname_out = args.outfile
  4522. elif args.remote:
  4523. # if remote, use the model ID as the output file name
  4524. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4525. else:
  4526. fname_out = dir_model
  4527. logger.info(f"Loading model: {dir_model.name}")
  4528. hparams = Model.load_hparams(dir_model)
  4529. with torch.inference_mode():
  4530. output_type = ftype_map[args.outtype]
  4531. model_architecture = hparams["architectures"][0]
  4532. try:
  4533. model_class = Model.from_model_architecture(model_architecture)
  4534. except NotImplementedError:
  4535. logger.error(f"Model {model_architecture} is not supported")
  4536. sys.exit(1)
  4537. model_instance = model_class(dir_model, output_type, fname_out,
  4538. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4539. eager=args.no_lazy,
  4540. metadata_override=args.metadata, model_name=args.model_name,
  4541. split_max_tensors=args.split_max_tensors,
  4542. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4543. small_first_shard=args.no_tensor_first_split,
  4544. remote_hf_model_id=str(args.model) if args.remote else None)
  4545. if args.vocab_only:
  4546. logger.info("Exporting model vocab...")
  4547. model_instance.write_vocab()
  4548. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4549. else:
  4550. logger.info("Exporting model...")
  4551. model_instance.write()
  4552. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4553. logger.info(f"Model successfully exported to {out_path}")
  4554. if __name__ == '__main__':
  4555. main()