ggml.c 362 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. inline static void* ggml_aligned_malloc(size_t size) {
  101. void* aligned_memory = NULL;
  102. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  103. if (result != 0) {
  104. // Handle allocation failure
  105. return NULL;
  106. }
  107. return aligned_memory;
  108. }
  109. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  110. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  111. #endif
  112. #define UNUSED(x) (void)(x)
  113. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  114. #define GGML_ASSERT(x) \
  115. do { \
  116. if (!(x)) { \
  117. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  118. abort(); \
  119. } \
  120. } while (0)
  121. #ifdef GGML_USE_ACCELERATE
  122. #include <Accelerate/Accelerate.h>
  123. #elif GGML_USE_OPENBLAS
  124. #include <cblas.h>
  125. #endif
  126. #undef MIN
  127. #undef MAX
  128. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  129. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  130. // floating point type used to accumulate sums
  131. typedef double ggml_float;
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #ifdef __ARM_NEON
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  143. #define GGML_FP16_TO_FP32(x) ((float) (x))
  144. #define GGML_FP32_TO_FP16(x) (x)
  145. #else
  146. #ifdef __wasm_simd128__
  147. #include <wasm_simd128.h>
  148. #else
  149. #ifdef __POWER9_VECTOR__
  150. #include <altivec.h>
  151. #undef bool
  152. #define bool _Bool
  153. #else
  154. #include <immintrin.h>
  155. #endif
  156. #endif
  157. #ifdef __F16C__
  158. #ifdef _MSC_VER
  159. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  160. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  161. #else
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  164. #endif
  165. #elif defined(__POWER9_VECTOR__)
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  168. /* the inline asm below is about 12% faster than the lookup method */
  169. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  170. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  171. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  172. register float f;
  173. register double d;
  174. __asm__(
  175. "mtfprd %0,%2\n"
  176. "xscvhpdp %0,%0\n"
  177. "frsp %1,%0\n" :
  178. /* temp */ "=d"(d),
  179. /* out */ "=f"(f):
  180. /* in */ "r"(h));
  181. return f;
  182. }
  183. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  184. register double d;
  185. register ggml_fp16_t r;
  186. __asm__( /* xscvdphp can work on double or single precision */
  187. "xscvdphp %0,%2\n"
  188. "mffprd %1,%0\n" :
  189. /* temp */ "=d"(d),
  190. /* out */ "=r"(r):
  191. /* in */ "f"(f));
  192. return r;
  193. }
  194. #else
  195. // FP16 <-> FP32
  196. // ref: https://github.com/Maratyszcza/FP16
  197. static inline float fp32_from_bits(uint32_t w) {
  198. union {
  199. uint32_t as_bits;
  200. float as_value;
  201. } fp32;
  202. fp32.as_bits = w;
  203. return fp32.as_value;
  204. }
  205. static inline uint32_t fp32_to_bits(float f) {
  206. union {
  207. float as_value;
  208. uint32_t as_bits;
  209. } fp32;
  210. fp32.as_value = f;
  211. return fp32.as_bits;
  212. }
  213. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  214. const uint32_t w = (uint32_t) h << 16;
  215. const uint32_t sign = w & UINT32_C(0x80000000);
  216. const uint32_t two_w = w + w;
  217. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  218. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  219. const float exp_scale = 0x1.0p-112f;
  220. #else
  221. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  222. #endif
  223. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  224. const uint32_t magic_mask = UINT32_C(126) << 23;
  225. const float magic_bias = 0.5f;
  226. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  227. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  228. const uint32_t result = sign |
  229. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  230. return fp32_from_bits(result);
  231. }
  232. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float scale_to_inf = 0x1.0p+112f;
  235. const float scale_to_zero = 0x1.0p-110f;
  236. #else
  237. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  238. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  239. #endif
  240. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  241. const uint32_t w = fp32_to_bits(f);
  242. const uint32_t shl1_w = w + w;
  243. const uint32_t sign = w & UINT32_C(0x80000000);
  244. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  245. if (bias < UINT32_C(0x71000000)) {
  246. bias = UINT32_C(0x71000000);
  247. }
  248. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  249. const uint32_t bits = fp32_to_bits(base);
  250. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  251. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  252. const uint32_t nonsign = exp_bits + mantissa_bits;
  253. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  254. }
  255. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  256. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  257. #endif // __F16C__
  258. #endif // __ARM_NEON
  259. //
  260. // global data
  261. //
  262. // precomputed gelu table for f16 (128 KB)
  263. static ggml_fp16_t table_gelu_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB)
  269. static float table_f32_f16[1 << 16];
  270. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  271. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  272. // This is also true for POWER9.
  273. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  274. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  275. uint16_t s;
  276. memcpy(&s, &f, sizeof(uint16_t));
  277. return table_f32_f16[s];
  278. }
  279. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  280. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  281. #endif
  282. // note: do not use these inside ggml.c
  283. // these are meant to be used via the ggml.h API
  284. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  285. return (float) GGML_FP16_TO_FP32(x);
  286. }
  287. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. //
  291. // timing
  292. //
  293. #if defined(_MSC_VER) || defined(__MINGW32__)
  294. static int64_t timer_freq;
  295. void ggml_time_init(void) {
  296. LARGE_INTEGER frequency;
  297. QueryPerformanceFrequency(&frequency);
  298. timer_freq = frequency.QuadPart;
  299. }
  300. int64_t ggml_time_ms(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000) / timer_freq;
  304. }
  305. int64_t ggml_time_us(void) {
  306. LARGE_INTEGER t;
  307. QueryPerformanceCounter(&t);
  308. return (t.QuadPart * 1000000) / timer_freq;
  309. }
  310. #else
  311. void ggml_time_init(void) {}
  312. int64_t ggml_time_ms(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  316. }
  317. int64_t ggml_time_us(void) {
  318. struct timespec ts;
  319. clock_gettime(CLOCK_MONOTONIC, &ts);
  320. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  321. }
  322. #endif
  323. int64_t ggml_cycles(void) {
  324. return clock();
  325. }
  326. int64_t ggml_cycles_per_ms(void) {
  327. return CLOCKS_PER_SEC/1000;
  328. }
  329. #ifdef GGML_PERF
  330. #define ggml_perf_time_ms() ggml_time_ms()
  331. #define ggml_perf_time_us() ggml_time_us()
  332. #define ggml_perf_cycles() ggml_cycles()
  333. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  334. #else
  335. #define ggml_perf_time_ms() 0
  336. #define ggml_perf_time_us() 0
  337. #define ggml_perf_cycles() 0
  338. #define ggml_perf_cycles_per_ms() 0
  339. #endif
  340. //
  341. // cache line
  342. //
  343. #if defined(__cpp_lib_hardware_interference_size)
  344. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  345. #else
  346. #if defined(__POWER9_VECTOR__)
  347. #define CACHE_LINE_SIZE 128
  348. #else
  349. #define CACHE_LINE_SIZE 64
  350. #endif
  351. #endif
  352. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  353. //
  354. // quantization
  355. //
  356. // AVX routines provided by GH user Const-me
  357. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  358. #if __AVX2__ || __AVX512F__
  359. // Unpack 32 4-bit fields into 32 bytes
  360. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  361. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  362. {
  363. // Load 16 bytes from memory
  364. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  365. // Expand bytes into uint16_t values
  366. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  367. // Unpack values into individual bytes
  368. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  369. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  370. __m256i low = _mm256_and_si256( lowMask, bytes );
  371. high = _mm256_slli_epi16( high, 4 );
  372. bytes = _mm256_or_si256( low, high );
  373. return bytes;
  374. }
  375. static inline __m128i packNibbles( __m256i bytes )
  376. {
  377. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  378. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  379. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  380. __m256i low = _mm256_and_si256( lowByte, bytes );
  381. high = _mm256_srli_epi16( high, 4 );
  382. bytes = _mm256_or_si256( low, high );
  383. // Compress uint16_t lanes into bytes
  384. __m128i r0 = _mm256_castsi256_si128( bytes );
  385. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  386. return _mm_packus_epi16( r0, r1 );
  387. }
  388. #elif __AVX__
  389. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  390. {
  391. // Load 8 bytes from memory
  392. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  393. // Expand bytes into uint16_t values
  394. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  395. // Unpack values into individual bytes
  396. const __m128i lowMask = _mm_set1_epi8( 0xF );
  397. __m128i high = _mm_andnot_si128( lowMask, bytes );
  398. __m128i low = _mm_and_si128( lowMask, bytes );
  399. high = _mm_slli_epi16( high, 4 );
  400. bytes = _mm_or_si128( low, high );
  401. return bytes;
  402. }
  403. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  404. {
  405. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  406. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  407. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  408. __m128i low = _mm_and_si128( lowByte, bytes1 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes1 = _mm_or_si128( low, high );
  411. high = _mm_andnot_si128( lowByte, bytes2 );
  412. low = _mm_and_si128( lowByte, bytes2 );
  413. high = _mm_srli_epi16( high, 4 );
  414. bytes2 = _mm_or_si128( low, high );
  415. return _mm_packus_epi16( bytes1, bytes2);
  416. }
  417. #endif
  418. #if __ARM_NEON
  419. #if !defined(__aarch64__)
  420. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  421. return
  422. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  423. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  424. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  425. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  426. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  427. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  428. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  429. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  430. }
  431. inline static int32_t vaddvq_s16(int16x8_t v) {
  432. return
  433. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  434. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  435. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  436. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  437. }
  438. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  439. return
  440. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  441. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  442. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  443. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  444. }
  445. inline static int32_t vaddvq_s32(int32x4_t v) {
  446. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  447. }
  448. inline static float vaddvq_f32(float32x4_t v) {
  449. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  450. }
  451. float vminvq_f32(float32x4_t v) {
  452. return
  453. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  454. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  455. }
  456. float vmaxvq_f32(float32x4_t v) {
  457. return
  458. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  459. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  460. }
  461. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  462. return vget_low_s8(vcombine_s8(a, b));
  463. }
  464. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  465. return vget_high_s8(vcombine_s8(a, b));
  466. }
  467. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  468. return vget_low_u8(vcombine_u8(a, b));
  469. }
  470. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  471. return vget_high_u8(vcombine_u8(a, b));
  472. }
  473. #endif
  474. #endif
  475. #define QK4_0 32
  476. typedef struct {
  477. float d; // delta
  478. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  479. } block_q4_0;
  480. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  481. #define QK4_1 32
  482. typedef struct {
  483. float d; // delta
  484. float m; // min
  485. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  486. } block_q4_1;
  487. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
  488. #define QK8_0 32
  489. typedef struct {
  490. float d; // delta
  491. int8_t qs[QK8_0]; // quants
  492. } block_q8_0;
  493. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  494. // reference implementation for deterministic creation of model files
  495. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  496. assert(k % QK4_0 == 0);
  497. const int nb = k / QK4_0;
  498. uint8_t pp[QK4_0/2];
  499. for (int i = 0; i < nb; i++) {
  500. float amax = 0.0f; // absolute max
  501. for (int l = 0; l < QK4_0; l++) {
  502. const float v = x[i*QK4_0 + l];
  503. amax = MAX(amax, fabsf(v));
  504. }
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < QK4_0; l += 2) {
  509. const float v0 = x[i*QK4_0 + l + 0]*id;
  510. const float v1 = x[i*QK4_0 + l + 1]*id;
  511. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  512. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  513. assert(vi0 < 16);
  514. assert(vi1 < 16);
  515. pp[l/2] = vi0 | (vi1 << 4);
  516. }
  517. memcpy(y[i].qs, pp, sizeof(pp));
  518. }
  519. }
  520. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  521. assert(k % QK4_0 == 0);
  522. const int nb = k / QK4_0;
  523. block_q4_0 * restrict y = vy;
  524. #if defined(__POWER9_VECTOR__)
  525. const vector float v85 = vec_splats(8.5f);
  526. for (int i = 0; i < nb; i++) {
  527. float amax = 0.0f; // absolute max
  528. vector float srcv [8];
  529. vector float asrcv[8];
  530. vector float amaxv[8];
  531. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  532. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  533. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  534. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  535. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  536. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  537. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  538. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  539. amax = MAX(
  540. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  541. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  542. const float d = amax / ((1 << 3) - 1);
  543. const float id = d ? 1.0/d : 0.0;
  544. y[i].d = d;
  545. const vector float vid = vec_splats(id);
  546. uint8_t * restrict pb = y[i].qs;
  547. for (int l = 0; l < 8; l++) {
  548. const vector float vf = vec_madd(srcv[l], vid, v85);
  549. const vector signed int vi = vec_signed(vf);
  550. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  551. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  552. }
  553. }
  554. #elif __ARM_NEON
  555. for (int i = 0; i < nb; i++) {
  556. float32x4_t srcv [8];
  557. float32x4_t asrcv[8];
  558. float32x4_t amaxv[8];
  559. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  560. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  561. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  562. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  563. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  564. const float amax = vmaxvq_f32(amaxv[0]);
  565. const float d = amax / ((1 << 3) - 1);
  566. const float id = d ? 1.0f/d : 0.0f;
  567. y[i].d = d;
  568. for (int l = 0; l < 8; l++) {
  569. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  570. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  571. const int32x4_t vi = vcvtq_s32_f32(vf);
  572. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  573. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  574. }
  575. }
  576. #elif defined(__AVX2__)
  577. for (int i = 0; i < nb; i++) {
  578. // Load elements into 4 AVX vectors
  579. __m256 v0 = _mm256_loadu_ps( x );
  580. __m256 v1 = _mm256_loadu_ps( x + 8 );
  581. __m256 v2 = _mm256_loadu_ps( x + 16 );
  582. __m256 v3 = _mm256_loadu_ps( x + 24 );
  583. x += 32;
  584. // Compute max(abs(e)) for the block
  585. const __m256 signBit = _mm256_set1_ps( -0.0f );
  586. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  587. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  588. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  589. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  590. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  591. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  592. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  593. const float maxScalar = _mm_cvtss_f32( max4 );
  594. // Quantize these floats
  595. const float d = maxScalar / 7.0f;
  596. y[i].d = d;
  597. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  598. const __m256 mul = _mm256_set1_ps( id );
  599. // Apply the multiplier
  600. v0 = _mm256_mul_ps( v0, mul );
  601. v1 = _mm256_mul_ps( v1, mul );
  602. v2 = _mm256_mul_ps( v2, mul );
  603. v3 = _mm256_mul_ps( v3, mul );
  604. // Round to nearest integer
  605. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  606. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  607. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  608. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  609. // Convert floats to integers
  610. __m256i i0 = _mm256_cvtps_epi32( v0 );
  611. __m256i i1 = _mm256_cvtps_epi32( v1 );
  612. __m256i i2 = _mm256_cvtps_epi32( v2 );
  613. __m256i i3 = _mm256_cvtps_epi32( v3 );
  614. // Convert int32 to int16
  615. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  616. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  617. // Convert int16 to int8
  618. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  619. // We got our precious signed bytes, but the order is now wrong
  620. // These AVX2 pack instructions process 16-byte pieces independently
  621. // The following instruction is fixing the order
  622. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  623. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  624. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  625. const __m256i off = _mm256_set1_epi8( 8 );
  626. i0 = _mm256_add_epi8( i0, off );
  627. // Compress the vector into 4 bit/value, and store
  628. __m128i res = packNibbles( i0 );
  629. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  630. }
  631. #elif defined(__AVX__)
  632. for (int i = 0; i < nb; i++) {
  633. // Load elements into 4 AVX vectors
  634. __m256 v0 = _mm256_loadu_ps( x );
  635. __m256 v1 = _mm256_loadu_ps( x + 8 );
  636. __m256 v2 = _mm256_loadu_ps( x + 16 );
  637. __m256 v3 = _mm256_loadu_ps( x + 24 );
  638. x += 32;
  639. // Compute max(abs(e)) for the block
  640. const __m256 signBit = _mm256_set1_ps( -0.0f );
  641. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  642. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  643. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  644. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  645. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  646. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  647. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  648. const float maxScalar = _mm_cvtss_f32( max4 );
  649. // Quantize these floats
  650. const float d = maxScalar / 7.0f;
  651. y[i].d = d;
  652. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  653. const __m256 mul = _mm256_set1_ps( id );
  654. // Apply the multiplier
  655. v0 = _mm256_mul_ps( v0, mul );
  656. v1 = _mm256_mul_ps( v1, mul );
  657. v2 = _mm256_mul_ps( v2, mul );
  658. v3 = _mm256_mul_ps( v3, mul );
  659. // Round to nearest integer
  660. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  661. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  662. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  663. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  664. // Convert floats to integers
  665. __m256i i0 = _mm256_cvtps_epi32( v0 );
  666. __m256i i1 = _mm256_cvtps_epi32( v1 );
  667. __m256i i2 = _mm256_cvtps_epi32( v2 );
  668. __m256i i3 = _mm256_cvtps_epi32( v3 );
  669. // Since we don't have in AVX some necessary functions,
  670. // we split the registers in half and call AVX2 analogs from SSE
  671. __m128i ni0 = _mm256_castsi256_si128( i0 );
  672. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  673. __m128i ni2 = _mm256_castsi256_si128( i1 );
  674. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  675. __m128i ni4 = _mm256_castsi256_si128( i2 );
  676. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  677. __m128i ni6 = _mm256_castsi256_si128( i3 );
  678. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  679. // Convert int32 to int16
  680. ni0 = _mm_packs_epi32( ni0, ni1 );
  681. ni2 = _mm_packs_epi32( ni2, ni3 );
  682. ni4 = _mm_packs_epi32( ni4, ni5 );
  683. ni6 = _mm_packs_epi32( ni6, ni7 );
  684. // Convert int16 to int8
  685. ni0 = _mm_packs_epi16( ni0, ni2 );
  686. ni4 = _mm_packs_epi16( ni4, ni6 );
  687. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  688. const __m128i off = _mm_set1_epi8( 8);
  689. ni0 = _mm_add_epi8( ni0, off );
  690. ni4 = _mm_add_epi8( ni4, off );
  691. // Compress the vector into 4 bit/value, and store
  692. __m128i res = packNibbles( ni0, ni4 );
  693. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  694. }
  695. #elif defined(__wasm_simd128__)
  696. for (int i = 0; i < nb; i++) {
  697. float amax = 0.0f; // absolute max
  698. v128_t srcv [8];
  699. v128_t asrcv[8];
  700. v128_t amaxv[8];
  701. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  702. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  703. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  704. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  705. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  706. amax = MAX(
  707. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  708. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  709. const float d = amax / ((1 << 3) - 1);
  710. const float id = d ? 1.0/d : 0.0;
  711. y[i].d = d;
  712. for (int l = 0; l < 8; l++) {
  713. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  714. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  715. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  716. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  717. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  718. }
  719. }
  720. #else
  721. // scalar
  722. quantize_row_q4_0_reference(x, y, k);
  723. #endif
  724. }
  725. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  726. assert(k % QK4_1 == 0);
  727. const int nb = k / QK4_1;
  728. block_q4_1 * restrict y = vy;
  729. uint8_t pp[QK4_1/2];
  730. for (int i = 0; i < nb; i++) {
  731. float min = FLT_MAX;
  732. float max = -FLT_MAX;
  733. for (int l = 0; l < QK4_1; l++) {
  734. const float v = x[i*QK4_1 + l];
  735. if (v < min) min = v;
  736. if (v > max) max = v;
  737. }
  738. const float d = (max - min) / ((1 << 4) - 1);
  739. const float id = d ? 1.0f/d : 0.0f;
  740. y[i].d = d;
  741. y[i].m = min;
  742. for (int l = 0; l < QK4_1; l += 2) {
  743. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  744. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  745. const uint8_t vi0 = roundf(v0);
  746. const uint8_t vi1 = roundf(v1);
  747. assert(vi0 < 16);
  748. assert(vi1 < 16);
  749. pp[l/2] = vi0 | (vi1 << 4);
  750. }
  751. memcpy(y[i].qs, pp, sizeof(pp));
  752. }
  753. }
  754. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  755. assert(k % QK4_1 == 0);
  756. const int nb = k / QK4_1;
  757. block_q4_1 * restrict y = vy;
  758. #if defined(__AVX2__)
  759. for (int i = 0; i < nb; i++) {
  760. // Load elements into 4 AVX vectors
  761. __m256 v0 = _mm256_loadu_ps( x );
  762. __m256 v1 = _mm256_loadu_ps( x + 8 );
  763. __m256 v2 = _mm256_loadu_ps( x + 16 );
  764. __m256 v3 = _mm256_loadu_ps( x + 24 );
  765. x += 32;
  766. // Compute max for the block
  767. __m256 vmax;
  768. vmax = _mm256_max_ps( v0, v1 );
  769. vmax = _mm256_max_ps( vmax, v2 );
  770. vmax = _mm256_max_ps( vmax, v3 );
  771. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  772. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  773. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  774. const float maxScalar = _mm_cvtss_f32( max4 );
  775. // Compute min for the block
  776. __m256 vmin;
  777. vmin = _mm256_min_ps( v0, v1 );
  778. vmin = _mm256_min_ps( vmin, v2 );
  779. vmin = _mm256_min_ps( vmin, v3 );
  780. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  781. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  782. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  783. const float minScalar = _mm_cvtss_f32( min4 );
  784. // Quantize these floats
  785. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].m = minScalar;
  788. y[i].d = d;
  789. // x = (x-min)*id
  790. const __m256 mul = _mm256_set1_ps( id );
  791. const __m256 off = _mm256_set1_ps( minScalar );
  792. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  793. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  794. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  795. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  796. // Round to nearest integer
  797. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  798. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  799. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  800. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  801. // Convert floats to integers
  802. __m256i i0 = _mm256_cvtps_epi32( v0 );
  803. __m256i i1 = _mm256_cvtps_epi32( v1 );
  804. __m256i i2 = _mm256_cvtps_epi32( v2 );
  805. __m256i i3 = _mm256_cvtps_epi32( v3 );
  806. // Convert int32 to int16
  807. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  808. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  809. // Convert int16 to int8
  810. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  811. // We got our precious signed bytes, but the order is now wrong
  812. // These AVX2 pack instructions process 16-byte pieces independently
  813. // The following instruction is fixing the order
  814. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  815. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  816. // Compress the vector into 4 bit/value, and store
  817. __m128i res = packNibbles( i0 );
  818. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  819. }
  820. #elif __ARM_NEON
  821. for (int i = 0; i < nb; i++) {
  822. float32x4_t srcv[8];
  823. float32x4_t minv[8];
  824. float32x4_t maxv[8];
  825. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  826. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  827. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  828. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  829. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  830. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  831. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  832. const float min = vminvq_f32(minv[0]);
  833. const float max = vmaxvq_f32(maxv[0]);
  834. const float d = (max - min) / ((1 << 4) - 1);
  835. const float id = d ? 1.0f/d : 0.0f;
  836. y[i].d = d;
  837. y[i].m = min;
  838. const float32x4_t minv0 = vdupq_n_f32(min);
  839. for (int l = 0; l < 8; l++) {
  840. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  841. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  842. const int32x4_t vi = vcvtq_s32_f32(vf);
  843. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  844. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  845. }
  846. }
  847. #else
  848. // scalar
  849. quantize_row_q4_1_reference(x, vy, k);
  850. #endif
  851. }
  852. // reference implementation for deterministic creation of model files
  853. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  854. assert(k % QK8_0 == 0);
  855. const int nb = k / QK8_0;
  856. for (int i = 0; i < nb; i++) {
  857. float amax = 0.0f; // absolute max
  858. for (int l = 0; l < QK8_0; l++) {
  859. const float v = x[i*QK8_0 + l];
  860. amax = MAX(amax, fabsf(v));
  861. }
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = d;
  865. for (int l = 0; l < QK8_0; ++l) {
  866. const float v = x[i*QK8_0 + l]*id;
  867. y[i].qs[l] = roundf(v);
  868. }
  869. }
  870. }
  871. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  872. assert(k % QK8_0 == 0);
  873. const int nb = k / QK8_0;
  874. block_q8_0 * restrict y = vy;
  875. #if defined(__ARM_NEON)
  876. for (int i = 0; i < nb; i++) {
  877. float32x4_t srcv [8];
  878. float32x4_t asrcv[8];
  879. float32x4_t amaxv[8];
  880. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  881. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  882. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  883. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  884. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  885. const float amax = vmaxvq_f32(amaxv[0]);
  886. const float d = amax / ((1 << 7) - 1);
  887. const float id = d ? 1.0f/d : 0.0f;
  888. y[i].d = d;
  889. for (int l = 0; l < 8; l++) {
  890. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  891. const int32x4_t vi = vcvtnq_s32_f32(v);
  892. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  893. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  894. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  895. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  896. }
  897. }
  898. #elif defined(__AVX2__) || defined(__AVX__)
  899. for (int i = 0; i < nb; i++) {
  900. // Load elements into 4 AVX vectors
  901. __m256 v0 = _mm256_loadu_ps( x );
  902. __m256 v1 = _mm256_loadu_ps( x + 8 );
  903. __m256 v2 = _mm256_loadu_ps( x + 16 );
  904. __m256 v3 = _mm256_loadu_ps( x + 24 );
  905. x += 32;
  906. // Compute max(abs(e)) for the block
  907. const __m256 signBit = _mm256_set1_ps( -0.0f );
  908. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  909. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  910. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  911. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  912. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  913. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  914. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  915. const float maxScalar = _mm_cvtss_f32( max4 );
  916. // Quantize these floats
  917. const float d = maxScalar / 127.f;
  918. y[i].d = d;
  919. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  920. const __m256 mul = _mm256_set1_ps( id );
  921. // Apply the multiplier
  922. v0 = _mm256_mul_ps( v0, mul );
  923. v1 = _mm256_mul_ps( v1, mul );
  924. v2 = _mm256_mul_ps( v2, mul );
  925. v3 = _mm256_mul_ps( v3, mul );
  926. // Round to nearest integer
  927. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  928. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  929. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  930. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  931. // Convert floats to integers
  932. __m256i i0 = _mm256_cvtps_epi32( v0 );
  933. __m256i i1 = _mm256_cvtps_epi32( v1 );
  934. __m256i i2 = _mm256_cvtps_epi32( v2 );
  935. __m256i i3 = _mm256_cvtps_epi32( v3 );
  936. #if defined(__AVX2__)
  937. // Convert int32 to int16
  938. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  939. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  940. // Convert int16 to int8
  941. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  942. // We got our precious signed bytes, but the order is now wrong
  943. // These AVX2 pack instructions process 16-byte pieces independently
  944. // The following instruction is fixing the order
  945. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  946. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  947. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  948. #else
  949. // Since we don't have in AVX some necessary functions,
  950. // we split the registers in half and call AVX2 analogs from SSE
  951. __m128i ni0 = _mm256_castsi256_si128( i0 );
  952. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  953. __m128i ni2 = _mm256_castsi256_si128( i1 );
  954. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  955. __m128i ni4 = _mm256_castsi256_si128( i2 );
  956. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  957. __m128i ni6 = _mm256_castsi256_si128( i3 );
  958. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  959. // Convert int32 to int16
  960. ni0 = _mm_packs_epi32( ni0, ni1 );
  961. ni2 = _mm_packs_epi32( ni2, ni3 );
  962. ni4 = _mm_packs_epi32( ni4, ni5 );
  963. ni6 = _mm_packs_epi32( ni6, ni7 );
  964. // Convert int16 to int8
  965. ni0 = _mm_packs_epi16( ni0, ni2 );
  966. ni4 = _mm_packs_epi16( ni4, ni6 );
  967. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  968. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  969. #endif
  970. }
  971. #else
  972. // scalar
  973. quantize_row_q8_0_reference(x, y, k);
  974. #endif
  975. }
  976. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  977. assert(k % QK4_0 == 0);
  978. const int nb = k / QK4_0;
  979. const block_q4_0 * restrict x = vx;
  980. #if defined(__AVX2__)
  981. for (int i = 0; i < nb; i++) {
  982. // scale factor
  983. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  984. const uint8_t * restrict pp = x[i].qs;
  985. for (int l = 0; l < QK4_0; l += 32) {
  986. // Load 32x4-bit integers into 32x8-bit integers
  987. __m256i vx8 = bytesFromNibbles(pp+l/2);
  988. // Subtract 8 from the integers
  989. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  990. // Convert to 16-bit int
  991. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  992. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  993. // Convert to 32-bit int -> float 32
  994. const __m256 vf[4] = {
  995. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  996. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  997. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  998. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  999. };
  1000. // Scale and store
  1001. for (int j = 0; j < 4; j++) {
  1002. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1003. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1004. }
  1005. }
  1006. }
  1007. #elif defined(__ARM_NEON)
  1008. for (int i = 0; i < nb; i++) {
  1009. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1010. const uint8_t * restrict pp = x[i].qs;
  1011. for (int l = 0; l < QK4_0; l += 16) {
  1012. // Load 16x4-bit integers into 8x8-bit integers
  1013. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1014. // Expand 4-bit qs to 8-bit bytes
  1015. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1016. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1017. // Convert to signed 8-bit integers
  1018. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1019. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1020. // Subtract 8 from each byte
  1021. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1022. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1023. // Interleave and combine
  1024. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1025. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1026. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1027. // convert to 2x int16x8_t
  1028. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1029. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1030. // convert to 4x float32x4_t
  1031. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1032. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1033. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1034. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1035. // Multiply by d
  1036. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1037. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1038. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1039. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1040. // Store
  1041. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1042. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1043. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1044. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1045. }
  1046. }
  1047. #else
  1048. // scalar
  1049. for (int i = 0; i < nb; i++) {
  1050. const float d = x[i].d;
  1051. const uint8_t * restrict pp = x[i].qs;
  1052. for (int l = 0; l < QK4_0; l += 2) {
  1053. const uint8_t vi = pp[l/2];
  1054. const int8_t vi0 = vi & 0xf;
  1055. const int8_t vi1 = vi >> 4;
  1056. const float v0 = (vi0 - 8)*d;
  1057. const float v1 = (vi1 - 8)*d;
  1058. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1059. y[i*QK4_0 + l + 0] = v0;
  1060. y[i*QK4_0 + l + 1] = v1;
  1061. assert(!isnan(y[i*QK4_0 + l + 0]));
  1062. assert(!isnan(y[i*QK4_0 + l + 1]));
  1063. }
  1064. }
  1065. #endif
  1066. }
  1067. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1068. assert(k % QK4_1 == 0);
  1069. const int nb = k / QK4_1;
  1070. const block_q4_1 * restrict x = vx;
  1071. #if defined(__AVX2__)
  1072. for (int i = 0; i < nb; i++) {
  1073. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1074. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1075. const uint8_t * restrict pp = x[i].qs;
  1076. for (int l = 0; l < QK4_1; l += 32) {
  1077. // Load 32x4-bit integers into 32x8-bit integers
  1078. __m256i vx8 = bytesFromNibbles(pp+l/2);
  1079. // Convert to 16-bit int
  1080. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1081. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1082. // Convert to 32-bit int -> float 32
  1083. const __m256 vf[4] = {
  1084. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1085. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1086. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1087. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1088. };
  1089. // Scale, add m and store
  1090. for (int j = 0; j < 4; j++) {
  1091. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1092. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1093. }
  1094. }
  1095. }
  1096. #elif defined(__ARM_NEON)
  1097. for (int i = 0; i < nb; i++) {
  1098. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1099. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1100. const uint8_t * restrict pp = x[i].qs;
  1101. for (int l = 0; l < QK4_1; l += 16) {
  1102. // Load 16x4-bit integers into 8x8-bit integers
  1103. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1104. // Expand 4-bit qs to 8-bit bytes
  1105. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1106. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1107. // Interleave and combine
  1108. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1109. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1110. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1111. // convert to 2x uint16x8_t
  1112. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1113. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1114. // convert to 4x float32x4_t
  1115. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1116. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1117. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1118. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1119. // multiply by d and add m
  1120. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1121. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1122. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1123. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1124. // Store
  1125. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1126. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1127. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1128. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1129. }
  1130. }
  1131. #else
  1132. for (int i = 0; i < nb; i++) {
  1133. const float d = x[i].d;
  1134. const float m = x[i].m;
  1135. const uint8_t * restrict pp = x[i].qs;
  1136. for (int l = 0; l < QK4_1; l += 2) {
  1137. const uint8_t vi = pp[l/2];
  1138. const int8_t vi0 = vi & 0xf;
  1139. const int8_t vi1 = vi >> 4;
  1140. const float v0 = vi0*d + m;
  1141. const float v1 = vi1*d + m;
  1142. y[i*QK4_1 + l + 0] = v0;
  1143. y[i*QK4_1 + l + 1] = v1;
  1144. assert(!isnan(y[i*QK4_1 + l + 0]));
  1145. assert(!isnan(y[i*QK4_1 + l + 1]));
  1146. }
  1147. }
  1148. #endif
  1149. }
  1150. //
  1151. // simd mappings
  1152. //
  1153. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1154. // we then implement the fundamental computation operations below using only these macros
  1155. // adding support for new architectures requires to define the corresponding SIMD macros
  1156. //
  1157. // GGML_F32_STEP / GGML_F16_STEP
  1158. // number of elements to process in a single step
  1159. //
  1160. // GGML_F32_EPR / GGML_F16_EPR
  1161. // number of elements to fit in a single register
  1162. //
  1163. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1164. #define GGML_SIMD
  1165. // F32 NEON
  1166. #define GGML_F32_STEP 16
  1167. #define GGML_F32_EPR 4
  1168. #define GGML_F32x4 float32x4_t
  1169. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1170. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1171. #define GGML_F32x4_LOAD vld1q_f32
  1172. #define GGML_F32x4_STORE vst1q_f32
  1173. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1174. #define GGML_F32x4_ADD vaddq_f32
  1175. #define GGML_F32x4_MUL vmulq_f32
  1176. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1177. #define GGML_F32x4_REDUCE(res, x) \
  1178. { \
  1179. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1180. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1181. } \
  1182. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1183. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1184. } \
  1185. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1186. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1187. } \
  1188. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1189. }
  1190. #define GGML_F32_VEC GGML_F32x4
  1191. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1192. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1193. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1194. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1195. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1196. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1197. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1198. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1199. // F16 NEON
  1200. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1201. #define GGML_F16_STEP 32
  1202. #define GGML_F16_EPR 8
  1203. #define GGML_F16x8 float16x8_t
  1204. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1205. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1206. #define GGML_F16x8_LOAD vld1q_f16
  1207. #define GGML_F16x8_STORE vst1q_f16
  1208. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1209. #define GGML_F16x8_ADD vaddq_f16
  1210. #define GGML_F16x8_MUL vmulq_f16
  1211. #define GGML_F16x8_REDUCE(res, x) \
  1212. { \
  1213. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1214. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1215. } \
  1216. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1217. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1218. } \
  1219. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1220. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1221. } \
  1222. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1223. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1224. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1225. }
  1226. #define GGML_F16_VEC GGML_F16x8
  1227. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1228. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1229. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1230. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1231. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1232. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1233. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1234. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1235. #else
  1236. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1237. // and take advantage of the vcvt_ functions to convert to/from FP16
  1238. #define GGML_F16_STEP 16
  1239. #define GGML_F16_EPR 4
  1240. #define GGML_F32Cx4 float32x4_t
  1241. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1242. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1243. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1244. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1245. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1246. #define GGML_F32Cx4_ADD vaddq_f32
  1247. #define GGML_F32Cx4_MUL vmulq_f32
  1248. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1249. #define GGML_F16_VEC GGML_F32Cx4
  1250. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1251. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1252. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1253. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1254. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1255. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1256. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1257. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1258. #endif
  1259. #elif defined(__AVX__)
  1260. #define GGML_SIMD
  1261. // F32 AVX
  1262. #define GGML_F32_STEP 32
  1263. #define GGML_F32_EPR 8
  1264. #define GGML_F32x8 __m256
  1265. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1266. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1267. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1268. #define GGML_F32x8_STORE _mm256_storeu_ps
  1269. #if defined(__FMA__)
  1270. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1271. #else
  1272. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1273. #endif
  1274. #define GGML_F32x8_ADD _mm256_add_ps
  1275. #define GGML_F32x8_MUL _mm256_mul_ps
  1276. #define GGML_F32x8_REDUCE(res, x) \
  1277. { \
  1278. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1279. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1280. } \
  1281. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1282. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1283. } \
  1284. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1285. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1286. } \
  1287. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1288. _mm256_extractf128_ps(x[0], 1)); \
  1289. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1290. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1291. }
  1292. // TODO: is this optimal ?
  1293. #define GGML_F32_VEC GGML_F32x8
  1294. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1295. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1296. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1297. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1298. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1299. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1300. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1301. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1302. // F16 AVX
  1303. #define GGML_F16_STEP 32
  1304. #define GGML_F16_EPR 8
  1305. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1306. #define GGML_F32Cx8 __m256
  1307. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1308. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1309. #if defined(__F16C__)
  1310. // the _mm256_cvt intrinsics require F16C
  1311. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1312. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1313. #else
  1314. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1315. float tmp[8];
  1316. for (int i = 0; i < 8; i++)
  1317. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1318. return _mm256_loadu_ps(tmp);
  1319. }
  1320. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1321. float arr[8];
  1322. _mm256_storeu_ps(arr, y);
  1323. for (int i = 0; i < 8; i++)
  1324. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1325. }
  1326. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1327. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1328. #endif
  1329. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1330. #define GGML_F32Cx8_ADD _mm256_add_ps
  1331. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1332. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1333. #define GGML_F16_VEC GGML_F32Cx8
  1334. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1335. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1336. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1337. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1338. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1339. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1340. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1341. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1342. #elif defined(__POWER9_VECTOR__)
  1343. #define GGML_SIMD
  1344. // F32 POWER9
  1345. #define GGML_F32_STEP 32
  1346. #define GGML_F32_EPR 4
  1347. #define GGML_F32x4 vector float
  1348. #define GGML_F32x4_ZERO 0.0f
  1349. #define GGML_F32x4_SET1 vec_splats
  1350. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1351. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1352. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1353. #define GGML_F32x4_ADD vec_add
  1354. #define GGML_F32x4_MUL vec_mul
  1355. #define GGML_F32x4_REDUCE(res, x) \
  1356. { \
  1357. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1358. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1359. } \
  1360. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1361. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1362. } \
  1363. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1364. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1365. } \
  1366. res = vec_extract(x[0], 0) + \
  1367. vec_extract(x[0], 1) + \
  1368. vec_extract(x[0], 2) + \
  1369. vec_extract(x[0], 3); \
  1370. }
  1371. #define GGML_F32_VEC GGML_F32x4
  1372. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1373. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1374. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1375. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1376. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1377. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1378. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1379. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1380. // F16 POWER9
  1381. #define GGML_F16_STEP GGML_F32_STEP
  1382. #define GGML_F16_EPR GGML_F32_EPR
  1383. #define GGML_F16_VEC GGML_F32x4
  1384. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1385. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1386. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1387. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1388. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1389. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1390. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1391. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1392. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1393. #define GGML_F16_VEC_STORE(p, r, i) \
  1394. if (i & 0x1) \
  1395. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1396. r[i - GGML_ENDIAN_BYTE(0)]), \
  1397. 0, p - GGML_F16_EPR)
  1398. #elif defined(__wasm_simd128__)
  1399. #define GGML_SIMD
  1400. // F32 WASM
  1401. #define GGML_F32_STEP 16
  1402. #define GGML_F32_EPR 4
  1403. #define GGML_F32x4 v128_t
  1404. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1405. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1406. #define GGML_F32x4_LOAD wasm_v128_load
  1407. #define GGML_F32x4_STORE wasm_v128_store
  1408. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1409. #define GGML_F32x4_ADD wasm_f32x4_add
  1410. #define GGML_F32x4_MUL wasm_f32x4_mul
  1411. #define GGML_F32x4_REDUCE(res, x) \
  1412. { \
  1413. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1414. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1415. } \
  1416. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1417. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1418. } \
  1419. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1420. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1421. } \
  1422. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1423. wasm_f32x4_extract_lane(x[0], 1) + \
  1424. wasm_f32x4_extract_lane(x[0], 2) + \
  1425. wasm_f32x4_extract_lane(x[0], 3); \
  1426. }
  1427. #define GGML_F32_VEC GGML_F32x4
  1428. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1429. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1430. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1431. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1432. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1433. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1434. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1435. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1436. // F16 WASM
  1437. #define GGML_F16_STEP 16
  1438. #define GGML_F16_EPR 4
  1439. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1440. float tmp[4];
  1441. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1442. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1443. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1444. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1445. return wasm_v128_load(tmp);
  1446. }
  1447. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1448. float tmp[4];
  1449. wasm_v128_store(tmp, x);
  1450. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1451. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1452. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1453. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1454. }
  1455. #define GGML_F16x4 v128_t
  1456. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1457. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1458. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1459. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1460. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1461. #define GGML_F16x4_ADD wasm_f32x4_add
  1462. #define GGML_F16x4_MUL wasm_f32x4_mul
  1463. #define GGML_F16x4_REDUCE(res, x) \
  1464. { \
  1465. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1466. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1467. } \
  1468. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1469. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1470. } \
  1471. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1472. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1473. } \
  1474. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1475. wasm_f32x4_extract_lane(x[0], 1) + \
  1476. wasm_f32x4_extract_lane(x[0], 2) + \
  1477. wasm_f32x4_extract_lane(x[0], 3); \
  1478. }
  1479. #define GGML_F16_VEC GGML_F16x4
  1480. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1481. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1482. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1483. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1484. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1485. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1486. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1487. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1488. #elif defined(__SSE3__)
  1489. #define GGML_SIMD
  1490. // F32 SSE
  1491. #define GGML_F32_STEP 32
  1492. #define GGML_F32_EPR 4
  1493. #define GGML_F32x4 __m128
  1494. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1495. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1496. #define GGML_F32x4_LOAD _mm_loadu_ps
  1497. #define GGML_F32x4_STORE _mm_storeu_ps
  1498. #if defined(__FMA__)
  1499. // TODO: Does this work?
  1500. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1501. #else
  1502. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1503. #endif
  1504. #define GGML_F32x4_ADD _mm_add_ps
  1505. #define GGML_F32x4_MUL _mm_mul_ps
  1506. #define GGML_F32x4_REDUCE(res, x) \
  1507. { \
  1508. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1509. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1510. } \
  1511. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1512. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1513. } \
  1514. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1515. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1516. } \
  1517. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1518. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1519. }
  1520. // TODO: is this optimal ?
  1521. #define GGML_F32_VEC GGML_F32x4
  1522. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1523. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1524. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1525. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1526. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1527. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1528. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1529. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1530. // F16 SSE
  1531. #define GGML_F16_STEP 32
  1532. #define GGML_F16_EPR 4
  1533. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1534. float tmp[4];
  1535. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1536. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1537. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1538. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1539. return _mm_loadu_ps(tmp);
  1540. }
  1541. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1542. float arr[4];
  1543. _mm_storeu_ps(arr, y);
  1544. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1545. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1546. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1547. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1548. }
  1549. #define GGML_F32Cx4 __m128
  1550. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1551. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1552. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1553. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1554. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1555. #define GGML_F32Cx4_ADD _mm_add_ps
  1556. #define GGML_F32Cx4_MUL _mm_mul_ps
  1557. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1558. #define GGML_F16_VEC GGML_F32Cx4
  1559. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1560. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1561. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1562. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1563. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1564. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1565. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1566. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1567. #endif
  1568. // GGML_F32_ARR / GGML_F16_ARR
  1569. // number of registers to use per step
  1570. #ifdef GGML_SIMD
  1571. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1572. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1573. #endif
  1574. //
  1575. // fundamental operations
  1576. //
  1577. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1578. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1579. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1580. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1581. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1582. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1583. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1584. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1585. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1586. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1587. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1588. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1589. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1590. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1591. #ifdef GGML_SIMD
  1592. float sumf = 0.0f;
  1593. const int np = (n & ~(GGML_F32_STEP - 1));
  1594. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1595. GGML_F32_VEC ax[GGML_F32_ARR];
  1596. GGML_F32_VEC ay[GGML_F32_ARR];
  1597. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1598. for (int j = 0; j < GGML_F32_ARR; j++) {
  1599. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1600. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1601. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1602. }
  1603. }
  1604. // reduce sum0..sum3 to sum0
  1605. GGML_F32_VEC_REDUCE(sumf, sum);
  1606. // leftovers
  1607. for (int i = np; i < n; ++i) {
  1608. sumf += x[i]*y[i];
  1609. }
  1610. #else
  1611. // scalar
  1612. ggml_float sumf = 0.0;
  1613. for (int i = 0; i < n; ++i) {
  1614. sumf += (ggml_float)(x[i]*y[i]);
  1615. }
  1616. #endif
  1617. *s = sumf;
  1618. }
  1619. #if __AVX512F__ && QK4_0 == 32
  1620. static inline __m512i bytes_from_q4_0_twoblocks_avx512( const __m512i blocks ) {
  1621. // The 64 bytes of `blocks` contain two consecutive Q4_0 blocks loaded from memory:
  1622. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1623. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1624. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1625. // | :. =_ () [] <> () Zz Yy|
  1626. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1627. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1628. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1629. // |Xx Ww Vv Uu Tt Ss Rr Qq Pp Oo Nn Mm Ll Kk Jj Ii Hh Gg Ff Ee Dd Cc Bb Aa |
  1630. // +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  1631. //
  1632. // Bytes 04..19 (block #0) and 24..39 (block #1) both contain 32 nibbles (4-bit unsigned integers).
  1633. // We have exactly 64 nibbles, so we want to place each nibble into a separate byte.
  1634. // Bytes 00..03 and 20..23 contain scales, which are irrelevant to this function.
  1635. // Bytes 40..63 are masked when loading the data, so they are zeroed out.
  1636. #ifdef __AVX512VBMI__
  1637. const __m512i byte_perm = _mm512_set_epi8(
  1638. 39, 38, 39, 38, 37, 36, 37, 36, 35, 34, 35, 34, 33, 32, 33, 32,
  1639. 31, 30, 31, 30, 29, 28, 29, 28, 27, 26, 27, 26, 25, 24, 25, 24,
  1640. 19, 18, 19, 18, 17, 16, 17, 16, 15, 14, 15, 14, 13, 12, 13, 12,
  1641. 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 4
  1642. );
  1643. const __m512i permuted = _mm512_permutexvar_epi8( byte_perm, blocks );
  1644. // After applying VPERMB, `permuted` looks like this:
  1645. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1646. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1647. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1648. // |:. =_ :. =_ () [] () [] <> () <> () Zz Yy Zz Yy Xx Ww Xx Ww Vv Uu Vv Uu Tt Ss Tt Ss Rr Qq Rr Qq|
  1649. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1650. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1651. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1652. // |Pp Oo Pp Oo Nn Mm Nn Mm Ll Kk Ll Kk Jj Ii Jj Ii Hh Gg Hh Gg Ff Ee Ff Ee Dd Cc Dd Cc Bb Aa Bb Aa|
  1653. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1654. #else
  1655. const __m512i word_perm = _mm512_set_epi16(
  1656. 19, 19, 18, 18, 17, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12,
  1657. 9, 9, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2
  1658. );
  1659. const __m512i permuted = _mm512_permutexvar_epi16( word_perm, blocks );
  1660. // This is the fallback path for CPUs that don't support VPERMB. Since we permute 16-bit groups only,
  1661. // VPERMB can be replaced with VPERMW. We could always use VPERMW, but at least on Tiger Lake and
  1662. // Ice Lake VPERMW followed by a right shift is quite noticeably slower than VPERMB.
  1663. #endif
  1664. // Shift every odd-numbered 16-bit group to the right by 4 bits.
  1665. const __mmask32 shift_mask = 0xaaaaaaaa;
  1666. const __m512i shifted = _mm512_mask_srai_epi16( permuted, shift_mask, permuted, 4 );
  1667. // After applying VPSRAW, `shifted` looks like this (the "empty" nibbles are filled with zeroes):
  1668. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1669. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
  1670. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1671. // | : .= :. =_ ( )[ () [] < >( <> () Z zY Zz Yy X xW Xx Ww V vU Vv Uu T tS Tt Ss R rQ Rr Qq
  1672. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1673. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1674. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1675. // | P pO Pp Oo N nM Nn Mm L lK Ll Kk J jI Jj Ii H hG Hh Gg F fE Ff Ee D dC Dd Cc B bA Bb Aa|
  1676. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1677. // Now we just need to zero out the higher nibble in each byte, and we're done.
  1678. const __m512i low_nibble_mask = _mm512_set1_epi8( 0xf );
  1679. return _mm512_and_si512( low_nibble_mask, shifted );
  1680. // The final result looks like this:
  1681. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1682. // |63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32|
  1683. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1684. // | : = . _ ( [ ) ] < ( > ) Z Y z y X W x w V U v u T S t s R Q r q|
  1685. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1686. // |31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00|
  1687. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1688. // | P O p o N M n m L K l k J I j i H G h g F E f e D C d c B A b a|
  1689. // +-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+
  1690. }
  1691. static inline __m512 dot_q4_0_twoblocks_avx512(
  1692. __m512 acc,
  1693. const block_q4_0 * restrict x,
  1694. const block_q4_0 * restrict y,
  1695. int i
  1696. ) {
  1697. // A pair of Q4_0 blocks spans 40 bytes, while an AVX-512 register has 64. The remaining 24 bytes
  1698. // can potentially be unaddressable, so we make sure to mask them out before the load, even though
  1699. // we don't use them at all. This might hurt the performance slightly, since the compiler is forced
  1700. // to use e.g. `VMOVDQU64 REG, MASK, [ADDR] + VPERMB ..., REG` instead of just `VPERMB ..., [ADDR]`.
  1701. const __mmask8 load_mask = 0x1f;
  1702. const __m512i blocks_0 = _mm512_maskz_loadu_epi64( load_mask, &x[i] );
  1703. const __m512i blocks_1 = _mm512_maskz_loadu_epi64( load_mask, &y[i] );
  1704. // We want to multiply the scales, so we interpret both registers as 16 32-bit floats:
  1705. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1706. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1707. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1708. // blocks_0_float
  1709. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1710. // | | | | | | | xx | xx | xx | xx | B | xx | xx | xx | xx | A |
  1711. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1712. // blocks_1_float
  1713. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1714. // | | | | | | | xx | xx | xx | xx | D | xx | xx | xx | xx | C |
  1715. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1716. const __m512 blocks_0_float = _mm512_castsi512_ps( blocks_0 );
  1717. const __m512 blocks_1_float = _mm512_castsi512_ps( blocks_1 );
  1718. // We absolutely shouldn't touch the floats marked with `xx`: they contain some
  1719. // random data, which might very well underflow. At least on Intel, this leads
  1720. // to a huge penalty that can't be ignored (easily 100x or more) unless you
  1721. // compile your code with something like `-ffast-math` to enable FTZ/DAZ flags.
  1722. // (and ggml can't assume that you do)...
  1723. const __mmask16 scale_mul_mask = 0x21;
  1724. #ifdef __clang__
  1725. // ...however, clang decides to optimize the multiplication mask away:
  1726. // https://godbolt.org/z/P8PqdsfvW
  1727. // gcc and MSVC do the sane thing. This horrible workaround forces clang to emit the mask.
  1728. __m512i scales;
  1729. __asm__(
  1730. "vmulps %1, %2, %0%{%3%}"
  1731. : "=v" ( scales )
  1732. : "vm" ( blocks_0_float ), "v" ( blocks_1_float ), "Yk" ( scale_mul_mask )
  1733. );
  1734. #else
  1735. const __m512 scales = _mm512_maskz_mul_ps( scale_mul_mask, blocks_0_float, blocks_1_float );
  1736. #endif
  1737. const __m512i scale_perm = _mm512_set_epi32(
  1738. 5, 5, 5, 5, 5, 5, 5, 5,
  1739. 0, 0, 0, 0, 0, 0, 0, 0
  1740. );
  1741. const __m512 permuted_scales = _mm512_permutexvar_ps( scale_perm, scales );
  1742. // After VMULPS and VPERMPS, `permuted_scales` looks like this:
  1743. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1744. // | 15 | 14 | 13 | 12 | 11 | 10 | 09 | 08 | 07 | 06 | 05 | 04 | 03 | 02 | 01 | 00 |
  1745. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1746. // | B*D| B*D| B*D| B*D| B*D| B*D| B*D| B*D| A*C| A*C| A*C| A*C| A*C| A*C| A*C| A*C|
  1747. // +----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+
  1748. const __m512i bytes_0 = bytes_from_q4_0_twoblocks_avx512( blocks_0 );
  1749. const __m512i bytes_1 = bytes_from_q4_0_twoblocks_avx512( blocks_1 );
  1750. // Now we want to compute dot products of 4-element byte vectors and store them in
  1751. // 32-bit integers. That is (only one 4-element vector is shown for clarity):
  1752. // +----+----+----+----+
  1753. // ... | 03 | 02 | 01 | 00 |
  1754. // +----+----+----+----+
  1755. // bytes_0
  1756. // +----+----+----+----+
  1757. // ... | D | C | B | A |
  1758. // +----+----+----+----+
  1759. // bytes_1
  1760. // +----+----+----+----+
  1761. // ... | H | G | F | E |
  1762. // +----+----+----+----+
  1763. // final_res_int
  1764. // +----+----+----+----+
  1765. // ... | A*E+B*F+C*G+D*H |
  1766. // +----+----+----+----+
  1767. const __m512i plus_8 = _mm512_set1_epi8( 8 );
  1768. const __m512i bytes_1_minus_8 = _mm512_sub_epi8( bytes_1, plus_8 );
  1769. #ifdef __AVX512VNNI__
  1770. // We have VPDPBUSDS in AVX512-VNNI, which does exactly what we want, but with a catch:
  1771. // the *left* operand is supposed to be unsigned, while Q4_0 quantization subtracts 8
  1772. // from each nibble, so they can be negative. So, instead of `(bytes_0 - 8) * (bytes_1 - 8)`,
  1773. // we compute `bytes_0 * (bytes_1 - 8) + bytes_1 * (-8) + 64`. VPDPBUSDS uses an accumulator,
  1774. // which means we only need 2 instructions.
  1775. const __m512i dot_init = _mm512_set1_epi32( 4 * 64 );
  1776. const __m512i minus_8 = _mm512_set1_epi8( -8 );
  1777. const __m512i prod_0 = _mm512_dpbusds_epi32( dot_init, bytes_1, minus_8 );
  1778. const __m512i final_res_int = _mm512_dpbusds_epi32( prod_0, bytes_0, bytes_1_minus_8 );
  1779. #else
  1780. // As a fallback, we have VPMADDUBSW in AVX512-BW, which uses 16-bit products instead of 32-bit ones.
  1781. // It has the same catch as VPDPBUSDS: the left operand should be unsigned.
  1782. // This is essentially the AVX-512 version of the AVX-2 trick used by GH user Const-me
  1783. // ref: https://gist.github.com/Const-me/4d30e1fc767ab314596e16e90f53b6f4#file-matmultest-cpp-L119
  1784. const __m512i one = _mm512_set1_epi16( 1 );
  1785. const __m512i prod_0 = _mm512_maddubs_epi16( bytes_0, bytes_1_minus_8 );
  1786. const __m512i prod_1 = _mm512_maddubs_epi16( plus_8, bytes_1_minus_8 );
  1787. const __m512i diff = _mm512_sub_epi16( prod_0, prod_1 );
  1788. const __m512i final_res_int = _mm512_madd_epi16( diff, one );
  1789. #endif
  1790. // Finally, we multiply the permuted scales and the 32-bit dot products, then accumulate.
  1791. const __m512 final_res_float = _mm512_cvtepi32_ps( final_res_int );
  1792. return _mm512_fmadd_ps( permuted_scales, final_res_float, acc );
  1793. }
  1794. #endif
  1795. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1796. ggml_float sumf = 0.0;
  1797. #if defined(GGML_SIMD)
  1798. const int np = (n & ~(GGML_F16_STEP - 1));
  1799. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1800. GGML_F16_VEC ax[GGML_F16_ARR];
  1801. GGML_F16_VEC ay[GGML_F16_ARR];
  1802. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1803. for (int j = 0; j < GGML_F16_ARR; j++) {
  1804. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1805. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1806. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1807. }
  1808. }
  1809. // reduce sum0..sum3 to sum0
  1810. GGML_F16_VEC_REDUCE(sumf, sum);
  1811. // leftovers
  1812. for (int i = np; i < n; ++i) {
  1813. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1814. }
  1815. #else
  1816. for (int i = 0; i < n; ++i) {
  1817. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1818. }
  1819. #endif
  1820. *s = sumf;
  1821. }
  1822. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1823. const int nb = n / QK4_0;
  1824. assert(n % QK4_0 == 0);
  1825. assert(nb % 2 == 0);
  1826. const block_q4_0 * restrict x = vx;
  1827. const block_q4_0 * restrict y = vy;
  1828. float sumf = 0.0;
  1829. #if defined(__ARM_NEON)
  1830. float sum0 = 0.0f;
  1831. float sum1 = 0.0f;
  1832. for (int i = 0; i < nb; i += 2) {
  1833. const block_q4_0 * restrict x0 = &x[i + 0];
  1834. const block_q4_0 * restrict y0 = &y[i + 0];
  1835. const block_q4_0 * restrict x1 = &x[i + 1];
  1836. const block_q4_0 * restrict y1 = &y[i + 1];
  1837. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1838. const int8x16_t s8b = vdupq_n_s8(0x8);
  1839. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1840. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1841. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1842. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1843. // 4-bit -> 8-bit
  1844. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1845. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1846. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1847. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1848. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1849. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1850. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1851. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1852. // sub 8
  1853. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1854. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1855. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1856. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1857. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1858. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1859. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1860. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1861. #if defined(__ARM_FEATURE_DOTPROD)
  1862. // dot product into int32x4_t
  1863. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1864. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1865. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1866. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1867. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  1868. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  1869. #else
  1870. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1871. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1872. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1873. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1874. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1875. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1876. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1877. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1878. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1879. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1880. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1881. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1882. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1883. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1884. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  1885. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  1886. #endif
  1887. }
  1888. sumf = sum0 + sum1;
  1889. #elif defined(__AVX512F__)
  1890. // Initialize accumulator with zeros
  1891. __m512 acc0 = _mm512_setzero_ps();
  1892. __m512 acc1 = _mm512_setzero_ps();
  1893. const int superblock_size = 16;
  1894. const int superblock_count = nb / superblock_size;
  1895. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1896. int i = superblock_ix * superblock_size;
  1897. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+0 );
  1898. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+2 );
  1899. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+4 );
  1900. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+6 );
  1901. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+8 );
  1902. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+10 );
  1903. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i+12 );
  1904. acc1 = dot_q4_0_twoblocks_avx512( acc1, x, y, i+14 );
  1905. }
  1906. // Remainders
  1907. for (int i = superblock_count * superblock_size; i < nb; i += 2) {
  1908. acc0 = dot_q4_0_twoblocks_avx512( acc0, x, y, i );
  1909. }
  1910. // Horizontal sum of all lanes of the accumulator
  1911. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1912. #elif defined(__AVX2__)
  1913. // Initialize accumulator with zeros
  1914. __m256 acc = _mm256_setzero_ps();
  1915. /* Prepare the constants we will need during execution */
  1916. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1917. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1918. #define UNROLL_COUNT 8
  1919. // make sure we only unroll multiples of the block count
  1920. assert(nb % UNROLL_COUNT == 0);
  1921. // Main loop
  1922. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1923. // This loop will be unrolled by the compiler
  1924. for (int u=0;u<UNROLL_COUNT;u++) {
  1925. /* Compute combined scale for the block */
  1926. const __m256 scale = _mm256_mul_ps(
  1927. _mm256_broadcast_ss( &x[i+u].d ),
  1928. _mm256_broadcast_ss( &y[i+u].d ) );
  1929. /* get input from x
  1930. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1931. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1932. /* Load 16 bytes from memory */
  1933. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1934. /* Expand bytes into uint16_t values */
  1935. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1936. /* Unpack values into individual bytes */
  1937. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1938. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1939. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1940. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1941. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1942. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1943. /* get input from y
  1944. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1945. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1946. /* Load 16 bytes from memory */
  1947. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1948. /* Expand bytes into uint16_t values */
  1949. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1950. /* Unpack values into individual bytes */
  1951. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1952. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1953. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1954. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1955. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1956. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1957. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1958. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1959. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1960. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1961. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1962. /* Convert to vectore of 8 int32_t to 8 floats */
  1963. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1964. /* Multiply q with scale and accumulate */
  1965. acc = _mm256_fmadd_ps( scale, q, acc );
  1966. }
  1967. }
  1968. // Return horizontal sum of the acc vector
  1969. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1970. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1971. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1972. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1973. sumf = _mm_cvtss_f32( res );
  1974. #elif defined(__AVX__)
  1975. // Initialize accumulator with zeros
  1976. __m256 acc = _mm256_setzero_ps();
  1977. // Main loop
  1978. for (int i = 0; i < nb; ++i) {
  1979. // Compute combined scale for the block
  1980. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1981. __m128i i32[2];
  1982. for (int j = 0; j < 2; ++j) {
  1983. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1984. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1985. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1986. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1987. const __m128i off = _mm_set1_epi8( 8 );
  1988. bx = _mm_sub_epi8( bx, off );
  1989. by = _mm_sub_epi8( by, off );
  1990. // Get absolute values of x vectors
  1991. const __m128i ax = _mm_sign_epi8(bx, bx);
  1992. // Sign the values of the y vectors
  1993. const __m128i sy = _mm_sign_epi8(by, bx);
  1994. // Perform multiplication and create 16-bit values
  1995. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1996. const __m128i ones = _mm_set1_epi16(1);
  1997. i32[j] = _mm_madd_epi16(ones, dot);
  1998. }
  1999. // Convert int32_t to float
  2000. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2001. // Apply the scale, and accumulate
  2002. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2003. }
  2004. // Return horizontal sum of the acc vector
  2005. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2006. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2007. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2008. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2009. sumf = _mm_cvtss_f32( res );
  2010. #elif defined(__wasm_simd128__)
  2011. // wasm simd
  2012. float sum0 = 0.0f;
  2013. float sum1 = 0.0f;
  2014. for (int i = 0; i < nb; i += 2) {
  2015. const block_q4_0 * restrict x0 = &x[i + 0];
  2016. const block_q4_0 * restrict y0 = &y[i + 0];
  2017. const block_q4_0 * restrict x1 = &x[i + 1];
  2018. const block_q4_0 * restrict y1 = &y[i + 1];
  2019. const v128_t m4b = wasm_u8x16_splat(0xf);
  2020. const v128_t s8b = wasm_i8x16_splat(0x8);
  2021. const v128_t v0_0 = wasm_v128_load(x0->qs);
  2022. const v128_t v0_1 = wasm_v128_load(y0->qs);
  2023. const v128_t v1_0 = wasm_v128_load(x1->qs);
  2024. const v128_t v1_1 = wasm_v128_load(y1->qs);
  2025. // 4-bit -> 8-bit
  2026. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  2027. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  2028. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  2029. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  2030. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  2031. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  2032. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  2033. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  2034. // sub 8
  2035. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  2036. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  2037. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  2038. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  2039. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  2040. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  2041. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  2042. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  2043. // dot product into int16x8_t
  2044. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  2045. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  2046. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  2047. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  2048. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  2049. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  2050. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  2051. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  2052. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  2053. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  2054. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  2055. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  2056. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  2057. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  2058. sum0 += x0->d * y0->d * (
  2059. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  2060. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  2061. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  2062. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  2063. sum1 += x1->d * y1->d * (
  2064. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  2065. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  2066. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  2067. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  2068. }
  2069. sumf = sum0 + sum1;
  2070. #else
  2071. // scalar
  2072. for (int i = 0; i < nb; i++) {
  2073. const float d0 = x[i].d;
  2074. const float d1 = y[i].d;
  2075. const uint8_t * restrict p0 = x[i].qs;
  2076. const uint8_t * restrict p1 = y[i].qs;
  2077. int sumi = 0;
  2078. for (int j = 0; j < QK4_0/2; j++) {
  2079. const uint8_t v0 = p0[j];
  2080. const uint8_t v1 = p1[j];
  2081. const int i0 = (v0 & 0xf) - 8;
  2082. const int i1 = (v0 >> 4) - 8;
  2083. const int i2 = (v1 & 0xf) - 8;
  2084. const int i3 = (v1 >> 4) - 8;
  2085. sumi += i0*i2 + i1*i3;
  2086. }
  2087. sumf += d0 * d1 * sumi;
  2088. }
  2089. #endif
  2090. *s = sumf;
  2091. }
  2092. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2093. const int nb = n / QK4_1;
  2094. const block_q4_1 * restrict x = vx;
  2095. const block_q4_1 * restrict y = vy;
  2096. float sumf = 0.0;
  2097. #if defined(__AVX2__)
  2098. // Initialize accumulator with zeros
  2099. __m256 acc = _mm256_setzero_ps();
  2100. // Accumulator for constant offsets
  2101. float acc_offset = 0.0f;
  2102. // Main loop
  2103. for (int i = 0; i < nb; ++i) {
  2104. const float * d0 = &x[i].d;
  2105. const float * d1 = &y[i].d;
  2106. const float * m0 = &x[i].m;
  2107. const float * m1 = &y[i].m;
  2108. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2109. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2110. const __m256 m0v = _mm256_broadcast_ss( m0 );
  2111. const __m256 m1v = _mm256_broadcast_ss( m1 );
  2112. // Compute combined scale for the block
  2113. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  2114. // Compute cross scales for the block
  2115. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  2116. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  2117. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  2118. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2119. __m256i bx = bytesFromNibbles( x[i].qs );
  2120. __m256i by = bytesFromNibbles( y[i].qs );
  2121. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  2122. // Sign-extend first 16 signed bytes into int16_t
  2123. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  2124. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  2125. // Compute products of int16_t integers, add pairwise
  2126. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  2127. // Sign-extend last 16 signed bytes into int16_t vectors
  2128. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  2129. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  2130. // Accumulate products of int16_t integers
  2131. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  2132. // compute sums of unsigned bytes in bx, by in blocks of 8.
  2133. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  2134. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  2135. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  2136. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  2137. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  2138. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  2139. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  2140. // Convert int32_t to float
  2141. __m256 p = _mm256_cvtepi32_ps( i32 );
  2142. // Apply the scale, and accumulate
  2143. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  2144. acc = _mm256_fmadd_ps( scale_01, p, acc );
  2145. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  2146. // acc_offset += m0*m1 (for each entry in the block)
  2147. acc_offset += (*m0)*(*m1);
  2148. }
  2149. // Return horizontal sum of the acc vector
  2150. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2151. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2152. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2153. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2154. sumf = _mm_cvtss_f32( res ) + acc_offset * QK4_1;
  2155. #elif defined(__ARM_NEON)
  2156. float sum00 = 0.0f;
  2157. float sum01 = 0.0f;
  2158. float sum10 = 0.0f;
  2159. float sum11 = 0.0f;
  2160. for (int i = 0; i < nb; i += 2) {
  2161. const block_q4_1 * restrict x0 = &x[i + 0];
  2162. const block_q4_1 * restrict y0 = &y[i + 0];
  2163. const block_q4_1 * restrict x1 = &x[i + 1];
  2164. const block_q4_1 * restrict y1 = &y[i + 1];
  2165. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2166. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2167. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  2168. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2169. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  2170. // 4-bit -> 8-bit
  2171. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  2172. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  2173. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  2174. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  2175. const uint8x16_t v0_1l = vandq_u8(v0_1, m4b);
  2176. const uint8x16_t v1_1l = vandq_u8(v1_1, m4b);
  2177. const uint8x16_t v0_1h = vshrq_n_u8(v0_1, 4);
  2178. const uint8x16_t v1_1h = vshrq_n_u8(v1_1, 4);
  2179. sum00 += x0->m*y0->m;
  2180. sum01 += y0->m*x0->d*((uint16_t)vaddvq_u8(v0_0l) + (uint16_t)vaddvq_u8(v0_0h));
  2181. sum10 += x0->m*y0->d*((uint16_t)vaddvq_u8(v1_0l) + (uint16_t)vaddvq_u8(v1_0h));
  2182. sum00 += x1->m*y1->m;
  2183. sum01 += y1->m*x1->d*((uint16_t)vaddvq_u8(v0_1l) + (uint16_t)vaddvq_u8(v0_1h));
  2184. sum10 += x1->m*y1->d*((uint16_t)vaddvq_u8(v1_1l) + (uint16_t)vaddvq_u8(v1_1h));
  2185. #if defined(__ARM_FEATURE_DOTPROD)
  2186. // dot product into int32x4_t
  2187. uint32x4_t p_0 = vdotq_u32(vdupq_n_u32(0), v0_0l, v1_0l);
  2188. uint32x4_t p_1 = vdotq_u32(vdupq_n_u32(0), v0_1l, v1_1l);
  2189. p_0 = vdotq_u32(p_0, v0_0h, v1_0h);
  2190. p_1 = vdotq_u32(p_1, v0_1h, v1_1h);
  2191. sum11 += x0->d*y0->d*vaddvq_u32(p_0);
  2192. sum11 += x1->d*y1->d*vaddvq_u32(p_1);
  2193. #else
  2194. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  2195. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  2196. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  2197. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  2198. const uint16x8_t pl1l = vmull_u8(vget_low_u8 (v0_1l), vget_low_u8 (v1_1l));
  2199. const uint16x8_t pl1h = vmull_u8(vget_high_u8(v0_1l), vget_high_u8(v1_1l));
  2200. const uint16x8_t ph1l = vmull_u8(vget_low_u8 (v0_1h), vget_low_u8 (v1_1h));
  2201. const uint16x8_t ph1h = vmull_u8(vget_high_u8(v0_1h), vget_high_u8(v1_1h));
  2202. const uint16x8_t pl_0 = vaddq_u16(pl0l, pl0h);
  2203. const uint16x8_t ph_0 = vaddq_u16(ph0l, ph0h);
  2204. const uint16x8_t pl_1 = vaddq_u16(pl1l, pl1h);
  2205. const uint16x8_t ph_1 = vaddq_u16(ph1l, ph1h);
  2206. const uint16x8_t p_0 = vaddq_u16(pl_0, ph_0);
  2207. const uint16x8_t p_1 = vaddq_u16(pl_1, ph_1);
  2208. sum11 += x0->d*y0->d*vaddvq_u16(p_0);
  2209. sum11 += x1->d*y1->d*vaddvq_u16(p_1);
  2210. #endif
  2211. }
  2212. sumf = QK4_1*sum00 + sum01 + sum10 + sum11;
  2213. #else
  2214. // scalar
  2215. for (int i = 0; i < nb; i++) {
  2216. const float d0 = x[i].d;
  2217. const float d1 = y[i].d;
  2218. const float m0 = x[i].m;
  2219. const float m1 = y[i].m;
  2220. const uint8_t * restrict p0 = x[i].qs;
  2221. const uint8_t * restrict p1 = y[i].qs;
  2222. for (int j = 0; j < QK4_1/2; j++) {
  2223. const uint8_t v0 = p0[j];
  2224. const uint8_t v1 = p1[j];
  2225. const float f0 = d0*(v0 & 0xf) + m0;
  2226. const float f1 = d0*(v0 >> 4) + m0;
  2227. const float f2 = d1*(v1 & 0xf) + m1;
  2228. const float f3 = d1*(v1 >> 4) + m1;
  2229. sumf += f0*f2 + f1*f3;
  2230. }
  2231. }
  2232. #endif
  2233. *s = sumf;
  2234. }
  2235. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2236. const int nb = n / QK8_0;
  2237. assert(n % QK8_0 == 0);
  2238. assert(nb % 2 == 0);
  2239. const block_q4_0 * restrict x = vx;
  2240. const block_q8_0 * restrict y = vy;
  2241. float sumf = 0.0;
  2242. #if defined(__ARM_NEON)
  2243. float sum0 = 0.0f;
  2244. float sum1 = 0.0f;
  2245. for (int i = 0; i < nb; i += 2) {
  2246. const block_q4_0 * restrict x0 = &x[i + 0];
  2247. const block_q4_0 * restrict x1 = &x[i + 1];
  2248. const block_q8_0 * restrict y0 = &y[i + 0];
  2249. const block_q8_0 * restrict y1 = &y[i + 1];
  2250. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2251. const int8x16_t s8b = vdupq_n_s8(0x8);
  2252. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2253. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2254. // 4-bit -> 8-bit
  2255. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2256. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2257. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2258. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2259. // sub 8
  2260. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2261. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2262. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2263. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2264. // load y
  2265. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2266. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2267. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2268. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2269. // interleave
  2270. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2271. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2272. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2273. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2274. #if defined(__ARM_FEATURE_DOTPROD)
  2275. // dot product into int32x4_t
  2276. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  2277. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  2278. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  2279. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  2280. sum0 += x0->d*y0->d*vaddvq_s32(p_0);
  2281. sum1 += x1->d*y1->d*vaddvq_s32(p_1);
  2282. #else
  2283. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  2284. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  2285. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  2286. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  2287. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  2288. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  2289. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  2290. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  2291. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  2292. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  2293. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  2294. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  2295. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  2296. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  2297. sum0 += x0->d*y0->d*vaddvq_s16(p_0);
  2298. sum1 += x1->d*y1->d*vaddvq_s16(p_1);
  2299. #endif
  2300. }
  2301. sumf = sum0 + sum1;
  2302. #elif defined(__AVX2__)
  2303. // Initialize accumulator with zeros
  2304. __m256 acc = _mm256_setzero_ps();
  2305. // Main loop
  2306. for (int i = 0; i < nb; ++i) {
  2307. /* Compute combined scale for the block */
  2308. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2309. __m256i bx = bytesFromNibbles(x[i].qs);
  2310. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2311. const __m256i off = _mm256_set1_epi8( 8 );
  2312. bx = _mm256_sub_epi8( bx, off );
  2313. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2314. // Get absolute values of x vectors
  2315. const __m256i ax = _mm256_sign_epi8(bx, bx);
  2316. // Sign the values of the y vectors
  2317. const __m256i sy = _mm256_sign_epi8(by, bx);
  2318. // Perform multiplication and create 16-bit values
  2319. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  2320. const __m256i ones = _mm256_set1_epi16(1);
  2321. __m256i xy_q = _mm256_madd_epi16(ones, dot);
  2322. /* Convert to vectore of 8 int32_t to 8 floats */
  2323. __m256 q = _mm256_cvtepi32_ps( xy_q );
  2324. /* Multiply q with scale and accumulate */
  2325. acc = _mm256_fmadd_ps( d, q, acc );
  2326. }
  2327. // Return horizontal sum of the acc vector
  2328. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2329. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2330. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2331. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2332. sumf = _mm_cvtss_f32( res );
  2333. #elif defined(__AVX__)
  2334. // Initialize accumulator with zeros
  2335. __m256 acc = _mm256_setzero_ps();
  2336. // Main loop
  2337. for (int i = 0; i < nb; ++i) {
  2338. // Compute combined scale for the block
  2339. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2340. __m128i i32[2];
  2341. for (int j = 0; j < 2; ++j) {
  2342. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2343. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  2344. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2345. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2346. const __m128i off = _mm_set1_epi8( 8 );
  2347. bx = _mm_sub_epi8( bx, off );
  2348. // Get absolute values of x vectors
  2349. const __m128i ax = _mm_sign_epi8(bx, bx);
  2350. // Sign the values of the y vectors
  2351. const __m128i sy = _mm_sign_epi8(by, bx);
  2352. // Perform multiplication and create 16-bit values
  2353. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2354. const __m128i ones = _mm_set1_epi16(1);
  2355. i32[j] = _mm_madd_epi16(ones, dot);
  2356. }
  2357. // Convert int32_t to float
  2358. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2359. // Apply the scale, and accumulate
  2360. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2361. }
  2362. // Return horizontal sum of the acc vector
  2363. __m128 res = _mm256_extractf128_ps( acc, 1 );
  2364. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  2365. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  2366. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  2367. sumf = _mm_cvtss_f32( res );
  2368. #else
  2369. // scalar
  2370. for (int i = 0; i < nb; i++) {
  2371. const float d0 = x[i].d;
  2372. const float d1 = y[i].d;
  2373. const uint8_t * restrict p0 = x[i].qs;
  2374. const int8_t * restrict p1 = y[i].qs;
  2375. int sumi = 0;
  2376. for (int j = 0; j < QK8_0/2; j++) {
  2377. const uint8_t v0 = p0[j];
  2378. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2379. const int i1 = (int8_t) (v0 >> 4) - 8;
  2380. const int i2 = p1[2*j + 0];
  2381. const int i3 = p1[2*j + 1];
  2382. sumi += i0*i2 + i1*i3;
  2383. }
  2384. sumf += d0*d1*sumi;
  2385. }
  2386. #endif
  2387. *s = sumf;
  2388. }
  2389. // compute GGML_VEC_DOT_UNROLL dot products at once
  2390. // xs - x row stride in bytes
  2391. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2392. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2393. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2394. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2395. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2396. }
  2397. #if defined(GGML_SIMD)
  2398. const int np = (n & ~(GGML_F16_STEP - 1));
  2399. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2400. GGML_F16_VEC ax[GGML_F16_ARR];
  2401. GGML_F16_VEC ay[GGML_F16_ARR];
  2402. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2403. for (int j = 0; j < GGML_F16_ARR; j++) {
  2404. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2405. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2406. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2407. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2408. }
  2409. }
  2410. }
  2411. // reduce sum0..sum3 to sum0
  2412. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2413. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2414. }
  2415. // leftovers
  2416. for (int i = np; i < n; ++i) {
  2417. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2418. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2419. }
  2420. }
  2421. #else
  2422. for (int i = 0; i < n; ++i) {
  2423. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2424. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2425. }
  2426. }
  2427. #endif
  2428. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2429. s[i] = sumf[i];
  2430. }
  2431. }
  2432. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2433. #if defined(GGML_SIMD)
  2434. const int np = (n & ~(GGML_F32_STEP - 1));
  2435. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2436. GGML_F32_VEC ax[GGML_F32_ARR];
  2437. GGML_F32_VEC ay[GGML_F32_ARR];
  2438. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2439. for (int j = 0; j < GGML_F32_ARR; j++) {
  2440. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2441. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2442. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2443. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2444. }
  2445. }
  2446. // leftovers
  2447. for (int i = np; i < n; ++i) {
  2448. y[i] += x[i]*v;
  2449. }
  2450. #else
  2451. // scalar
  2452. for (int i = 0; i < n; ++i) {
  2453. y[i] += x[i]*v;
  2454. }
  2455. #endif
  2456. }
  2457. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2458. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2459. #if defined(GGML_SIMD)
  2460. const int np = (n & ~(GGML_F32_STEP - 1));
  2461. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2462. GGML_F32_VEC ay[GGML_F32_ARR];
  2463. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2464. for (int j = 0; j < GGML_F32_ARR; j++) {
  2465. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2466. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2467. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2468. }
  2469. }
  2470. // leftovers
  2471. for (int i = np; i < n; ++i) {
  2472. y[i] *= v;
  2473. }
  2474. #else
  2475. // scalar
  2476. for (int i = 0; i < n; ++i) {
  2477. y[i] *= v;
  2478. }
  2479. #endif
  2480. }
  2481. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2482. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2483. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2484. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2485. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2486. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2487. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2488. static const float GELU_COEF_A = 0.044715f;
  2489. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2490. inline static float ggml_gelu_f32(float x) {
  2491. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2492. }
  2493. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2494. const uint16_t * i16 = (const uint16_t *) x;
  2495. for (int i = 0; i < n; ++i) {
  2496. y[i] = table_gelu_f16[i16[i]];
  2497. }
  2498. }
  2499. #ifdef GGML_GELU_FP16
  2500. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2501. uint16_t t;
  2502. for (int i = 0; i < n; ++i) {
  2503. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2504. memcpy(&t, &fp16, sizeof(uint16_t));
  2505. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2506. }
  2507. }
  2508. #else
  2509. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2510. for (int i = 0; i < n; ++i) {
  2511. y[i] = ggml_gelu_f32(x[i]);
  2512. }
  2513. }
  2514. #endif
  2515. // Sigmoid Linear Unit (SiLU) function
  2516. inline static float ggml_silu_f32(float x) {
  2517. return x/(1.0f + expf(-x));
  2518. }
  2519. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2520. const uint16_t * i16 = (const uint16_t *) x;
  2521. for (int i = 0; i < n; ++i) {
  2522. y[i] = table_silu_f16[i16[i]];
  2523. }
  2524. }
  2525. #ifdef GGML_SILU_FP16
  2526. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2527. uint16_t t;
  2528. for (int i = 0; i < n; ++i) {
  2529. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2530. memcpy(&t, &fp16, sizeof(uint16_t));
  2531. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2532. }
  2533. }
  2534. #else
  2535. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2536. for (int i = 0; i < n; ++i) {
  2537. y[i] = ggml_silu_f32(x[i]);
  2538. }
  2539. }
  2540. #endif
  2541. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2542. #ifndef GGML_USE_ACCELERATE
  2543. ggml_float sum = 0.0;
  2544. for (int i = 0; i < n; ++i) {
  2545. sum += (ggml_float)x[i];
  2546. }
  2547. *s = sum;
  2548. #else
  2549. vDSP_sve(x, 1, s, n);
  2550. #endif
  2551. }
  2552. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2553. #ifndef GGML_USE_ACCELERATE
  2554. float max = -INFINITY;
  2555. for (int i = 0; i < n; ++i) {
  2556. max = MAX(max, x[i]);
  2557. }
  2558. *s = max;
  2559. #else
  2560. vDSP_maxv(x, 1, s, n);
  2561. #endif
  2562. }
  2563. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2564. ggml_vec_norm_f32(n, s, x);
  2565. *s = 1.f/(*s);
  2566. }
  2567. //
  2568. // logging
  2569. //
  2570. #if (GGML_DEBUG >= 1)
  2571. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2572. #else
  2573. #define GGML_PRINT_DEBUG(...)
  2574. #endif
  2575. #if (GGML_DEBUG >= 5)
  2576. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2577. #else
  2578. #define GGML_PRINT_DEBUG_5(...)
  2579. #endif
  2580. #if (GGML_DEBUG >= 10)
  2581. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2582. #else
  2583. #define GGML_PRINT_DEBUG_10(...)
  2584. #endif
  2585. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2586. //
  2587. // data types
  2588. //
  2589. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2590. [GGML_TYPE_F32] = 1,
  2591. [GGML_TYPE_F16] = 1,
  2592. [GGML_TYPE_Q4_0] = QK4_0,
  2593. [GGML_TYPE_Q4_1] = QK4_1,
  2594. [GGML_TYPE_Q8_0] = QK8_0,
  2595. [GGML_TYPE_I8] = 1,
  2596. [GGML_TYPE_I16] = 1,
  2597. [GGML_TYPE_I32] = 1,
  2598. };
  2599. static_assert(GGML_TYPE_COUNT == 8, "GGML_BLCK_SIZE is outdated");
  2600. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2601. [GGML_TYPE_F32] = sizeof(float),
  2602. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2603. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2604. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2605. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2606. [GGML_TYPE_I8] = sizeof(int8_t),
  2607. [GGML_TYPE_I16] = sizeof(int16_t),
  2608. [GGML_TYPE_I32] = sizeof(int32_t),
  2609. };
  2610. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_SIZE is outdated");
  2611. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2612. [GGML_TYPE_F32] = "f32",
  2613. [GGML_TYPE_F16] = "f16",
  2614. [GGML_TYPE_Q4_0] = "q4_0",
  2615. [GGML_TYPE_Q4_1] = "q4_1",
  2616. [GGML_TYPE_Q8_0] = "q8_0",
  2617. [GGML_TYPE_I8] = "i8",
  2618. [GGML_TYPE_I16] = "i16",
  2619. [GGML_TYPE_I32] = "i32",
  2620. };
  2621. static_assert(GGML_TYPE_COUNT == 8, "GGML_TYPE_NAME is outdated");
  2622. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2623. "NONE",
  2624. "DUP",
  2625. "ADD",
  2626. "SUB",
  2627. "MUL",
  2628. "DIV",
  2629. "SQR",
  2630. "SQRT",
  2631. "SUM",
  2632. "MEAN",
  2633. "REPEAT",
  2634. "ABS",
  2635. "SGN",
  2636. "NEG",
  2637. "STEP",
  2638. "RELU",
  2639. "GELU",
  2640. "SILU",
  2641. "NORM",
  2642. "RMS_NORM",
  2643. "MUL_MAT",
  2644. "SCALE",
  2645. "CPY",
  2646. "CONT",
  2647. "RESHAPE",
  2648. "VIEW",
  2649. "PERMUTE",
  2650. "TRANSPOSE",
  2651. "GET_ROWS",
  2652. "DIAG_MASK_INF",
  2653. "SOFT_MAX",
  2654. "ROPE",
  2655. "CONV_1D_1S",
  2656. "CONV_1D_2S",
  2657. "FLASH_ATTN",
  2658. "FLASH_FF",
  2659. "MAP_UNARY",
  2660. "MAP_BINARY",
  2661. };
  2662. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2663. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2664. "none",
  2665. "x",
  2666. "x+y",
  2667. "x-y",
  2668. "x*y",
  2669. "x/y",
  2670. "x^2",
  2671. "√x",
  2672. "Σx",
  2673. "Σx/n",
  2674. "repeat(x)",
  2675. "abs(x)",
  2676. "sgn(x)",
  2677. "-x",
  2678. "step(x)",
  2679. "relu(x)",
  2680. "gelu(x)",
  2681. "silu(x)",
  2682. "norm(x)",
  2683. "rms_norm(x)",
  2684. "X*Y",
  2685. "x*v",
  2686. "x-\\>y",
  2687. "cont(x)",
  2688. "reshape(x)",
  2689. "view(x)",
  2690. "permute(x)",
  2691. "transpose(x)",
  2692. "get_rows(x)",
  2693. "diag_mask_inf(x)",
  2694. "soft_max(x)",
  2695. "rope(x)",
  2696. "conv_1d_1s(x)",
  2697. "conv_1d_2s(x)",
  2698. "flash_attn(x)",
  2699. "flash_ff(x)",
  2700. "f(x)",
  2701. "f(x,y)",
  2702. };
  2703. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2704. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2705. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2706. //
  2707. // ggml context
  2708. //
  2709. struct ggml_context {
  2710. size_t mem_size;
  2711. void * mem_buffer;
  2712. bool mem_buffer_owned;
  2713. bool no_alloc;
  2714. int n_objects;
  2715. struct ggml_object * objects_begin;
  2716. struct ggml_object * objects_end;
  2717. struct ggml_scratch scratch;
  2718. struct ggml_scratch scratch_save;
  2719. };
  2720. struct ggml_context_container {
  2721. bool used;
  2722. struct ggml_context context;
  2723. };
  2724. //
  2725. // compute types
  2726. //
  2727. enum ggml_task_type {
  2728. GGML_TASK_INIT = 0,
  2729. GGML_TASK_COMPUTE,
  2730. GGML_TASK_FINALIZE,
  2731. };
  2732. struct ggml_compute_params {
  2733. enum ggml_task_type type;
  2734. int ith, nth;
  2735. // work buffer for all threads
  2736. size_t wsize;
  2737. void * wdata;
  2738. };
  2739. //
  2740. // ggml state
  2741. //
  2742. struct ggml_state {
  2743. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2744. };
  2745. // global state
  2746. static struct ggml_state g_state;
  2747. static atomic_int g_state_barrier = 0;
  2748. // barrier via spin lock
  2749. inline static void ggml_critical_section_start(void) {
  2750. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2751. while (processing > 0) {
  2752. // wait for other threads to finish
  2753. atomic_fetch_sub(&g_state_barrier, 1);
  2754. sched_yield(); // TODO: reconsider this
  2755. processing = atomic_fetch_add(&g_state_barrier, 1);
  2756. }
  2757. }
  2758. // TODO: make this somehow automatically executed
  2759. // some sort of "sentry" mechanism
  2760. inline static void ggml_critical_section_end(void) {
  2761. atomic_fetch_sub(&g_state_barrier, 1);
  2762. }
  2763. ////////////////////////////////////////////////////////////////////////////////
  2764. void ggml_print_object(const struct ggml_object * obj) {
  2765. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2766. obj->offs, obj->size, (const void *) obj->next);
  2767. }
  2768. void ggml_print_objects(const struct ggml_context * ctx) {
  2769. struct ggml_object * obj = ctx->objects_begin;
  2770. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2771. while (obj != NULL) {
  2772. ggml_print_object(obj);
  2773. obj = obj->next;
  2774. }
  2775. GGML_PRINT("%s: --- end ---\n", __func__);
  2776. }
  2777. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2778. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2779. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2780. }
  2781. int ggml_nrows(const struct ggml_tensor * tensor) {
  2782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2783. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2784. }
  2785. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2786. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2787. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2788. }
  2789. int ggml_blck_size(enum ggml_type type) {
  2790. return GGML_BLCK_SIZE[type];
  2791. }
  2792. size_t ggml_type_size(enum ggml_type type) {
  2793. return GGML_TYPE_SIZE[type];
  2794. }
  2795. float ggml_type_sizef(enum ggml_type type) {
  2796. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2797. }
  2798. const char * ggml_type_name(enum ggml_type type) {
  2799. return GGML_TYPE_NAME[type];
  2800. }
  2801. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2802. return GGML_TYPE_SIZE[tensor->type];
  2803. }
  2804. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2806. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2807. }
  2808. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2809. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2810. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2811. }
  2812. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2813. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2814. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2815. }
  2816. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2817. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2818. return
  2819. (t0->ne[0] == t1->ne[0]) &&
  2820. (t0->ne[2] == t1->ne[2]) &&
  2821. (t0->ne[3] == t1->ne[3]);
  2822. }
  2823. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2824. return tensor->nb[0] > tensor->nb[1];
  2825. }
  2826. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2827. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2828. return
  2829. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2830. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2831. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2832. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2833. }
  2834. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2835. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2836. return
  2837. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2838. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2839. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2840. }
  2841. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2842. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2843. return
  2844. (t0->ne[0] == t1->ne[0] ) &&
  2845. (t0->ne[1] == t1->ne[1] ) &&
  2846. (t0->ne[2] == t1->ne[2] ) &&
  2847. (t0->ne[3] == t1->ne[3] );
  2848. }
  2849. // check if t1 can be represented as a repeatition of t0
  2850. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2851. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2852. return
  2853. (t1->ne[0]%t0->ne[0] == 0) &&
  2854. (t1->ne[1]%t0->ne[1] == 0) &&
  2855. (t1->ne[2]%t0->ne[2] == 0) &&
  2856. (t1->ne[3]%t0->ne[3] == 0);
  2857. }
  2858. static inline int ggml_up32(int n) {
  2859. return (n + 31) & ~31;
  2860. }
  2861. static inline int ggml_up64(int n) {
  2862. return (n + 63) & ~63;
  2863. }
  2864. static inline int ggml_up(int n, int m) {
  2865. // assert m is a power of 2
  2866. GGML_ASSERT((m & (m - 1)) == 0);
  2867. return (n + m - 1) & ~(m - 1);
  2868. }
  2869. // assert that pointer is aligned to GGML_MEM_ALIGN
  2870. #define ggml_assert_aligned(ptr) \
  2871. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2872. ////////////////////////////////////////////////////////////////////////////////
  2873. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2874. // make this function thread safe
  2875. ggml_critical_section_start();
  2876. static bool is_first_call = true;
  2877. if (is_first_call) {
  2878. // initialize time system (required on Windows)
  2879. ggml_time_init();
  2880. // initialize GELU, SILU and EXP F32 tables
  2881. {
  2882. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2883. ggml_fp16_t ii;
  2884. for (int i = 0; i < (1 << 16); ++i) {
  2885. uint16_t ui = i;
  2886. memcpy(&ii, &ui, sizeof(ii));
  2887. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2888. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2889. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2890. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2891. }
  2892. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2893. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2894. }
  2895. // initialize g_state
  2896. {
  2897. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2898. g_state = (struct ggml_state) {
  2899. /*.contexts =*/ { { 0 } },
  2900. };
  2901. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2902. g_state.contexts[i].used = false;
  2903. }
  2904. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2905. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2906. }
  2907. is_first_call = false;
  2908. }
  2909. // find non-used context in g_state
  2910. struct ggml_context * ctx = NULL;
  2911. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2912. if (!g_state.contexts[i].used) {
  2913. g_state.contexts[i].used = true;
  2914. ctx = &g_state.contexts[i].context;
  2915. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2916. break;
  2917. }
  2918. }
  2919. if (ctx == NULL) {
  2920. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2921. ggml_critical_section_end();
  2922. return NULL;
  2923. }
  2924. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  2925. *ctx = (struct ggml_context) {
  2926. /*.mem_size =*/ mem_size,
  2927. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2928. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2929. /*.no_alloc =*/ params.no_alloc,
  2930. /*.n_objects =*/ 0,
  2931. /*.objects_begin =*/ NULL,
  2932. /*.objects_end =*/ NULL,
  2933. /*.scratch =*/ { 0, 0, NULL, },
  2934. /*.scratch_save =*/ { 0, 0, NULL, },
  2935. };
  2936. GGML_ASSERT(ctx->mem_buffer != NULL);
  2937. ggml_assert_aligned(ctx->mem_buffer);
  2938. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2939. ggml_critical_section_end();
  2940. return ctx;
  2941. }
  2942. void ggml_free(struct ggml_context * ctx) {
  2943. // make this function thread safe
  2944. ggml_critical_section_start();
  2945. bool found = false;
  2946. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2947. if (&g_state.contexts[i].context == ctx) {
  2948. g_state.contexts[i].used = false;
  2949. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2950. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2951. if (ctx->mem_buffer_owned) {
  2952. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2953. }
  2954. found = true;
  2955. break;
  2956. }
  2957. }
  2958. if (!found) {
  2959. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2960. }
  2961. ggml_critical_section_end();
  2962. }
  2963. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2964. return ctx->objects_end->offs + ctx->objects_end->size;
  2965. }
  2966. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2967. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2968. ctx->scratch = scratch;
  2969. return result;
  2970. }
  2971. ////////////////////////////////////////////////////////////////////////////////
  2972. struct ggml_tensor * ggml_new_tensor_impl(
  2973. struct ggml_context * ctx,
  2974. enum ggml_type type,
  2975. int n_dims,
  2976. const int64_t* ne,
  2977. void* data) {
  2978. // always insert objects at the end of the context's memory pool
  2979. struct ggml_object * obj_cur = ctx->objects_end;
  2980. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2981. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2982. const size_t cur_end = cur_offs + cur_size;
  2983. size_t size_needed = 0;
  2984. if (data == NULL && !ctx->no_alloc) {
  2985. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2986. for (int i = 1; i < n_dims; i++) {
  2987. size_needed *= ne[i];
  2988. }
  2989. // align to GGML_MEM_ALIGN
  2990. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2991. }
  2992. char * const mem_buffer = ctx->mem_buffer;
  2993. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2994. if (ctx->scratch.data == NULL || data != NULL) {
  2995. size_needed += sizeof(struct ggml_tensor);
  2996. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2997. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2998. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2999. assert(false);
  3000. return NULL;
  3001. }
  3002. *obj_new = (struct ggml_object) {
  3003. .offs = cur_end + GGML_OBJECT_SIZE,
  3004. .size = size_needed,
  3005. .next = NULL,
  3006. };
  3007. } else {
  3008. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3009. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3010. assert(false);
  3011. return NULL;
  3012. }
  3013. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3014. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3015. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3016. assert(false);
  3017. return NULL;
  3018. }
  3019. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3020. *obj_new = (struct ggml_object) {
  3021. .offs = cur_end + GGML_OBJECT_SIZE,
  3022. .size = sizeof(struct ggml_tensor),
  3023. .next = NULL,
  3024. };
  3025. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3026. ctx->scratch.offs += size_needed;
  3027. }
  3028. if (obj_cur != NULL) {
  3029. obj_cur->next = obj_new;
  3030. } else {
  3031. // this is the first object in this context
  3032. ctx->objects_begin = obj_new;
  3033. }
  3034. ctx->objects_end = obj_new;
  3035. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3036. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3037. ggml_assert_aligned(result);
  3038. *result = (struct ggml_tensor) {
  3039. /*.type =*/ type,
  3040. /*.n_dims =*/ n_dims,
  3041. /*.ne =*/ { 1, 1, 1, 1 },
  3042. /*.nb =*/ { 0, 0, 0, 0 },
  3043. /*.op =*/ GGML_OP_NONE,
  3044. /*.is_param =*/ false,
  3045. /*.grad =*/ NULL,
  3046. /*.src0 =*/ NULL,
  3047. /*.src1 =*/ NULL,
  3048. /*.opt =*/ { NULL },
  3049. /*.n_tasks =*/ 0,
  3050. /*.perf_runs =*/ 0,
  3051. /*.perf_cycles =*/ 0,
  3052. /*.perf_time_us =*/ 0,
  3053. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3054. /*.pad =*/ { 0 },
  3055. };
  3056. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3057. //ggml_assert_aligned(result->data);
  3058. for (int i = 0; i < n_dims; i++) {
  3059. result->ne[i] = ne[i];
  3060. }
  3061. result->nb[0] = GGML_TYPE_SIZE[type];
  3062. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3063. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3064. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3065. }
  3066. ctx->n_objects++;
  3067. return result;
  3068. }
  3069. struct ggml_tensor * ggml_new_tensor(
  3070. struct ggml_context * ctx,
  3071. enum ggml_type type,
  3072. int n_dims,
  3073. const int64_t * ne) {
  3074. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3075. }
  3076. struct ggml_tensor * ggml_new_tensor_1d(
  3077. struct ggml_context * ctx,
  3078. enum ggml_type type,
  3079. int64_t ne0) {
  3080. return ggml_new_tensor(ctx, type, 1, &ne0);
  3081. }
  3082. struct ggml_tensor * ggml_new_tensor_2d(
  3083. struct ggml_context * ctx,
  3084. enum ggml_type type,
  3085. int64_t ne0,
  3086. int64_t ne1) {
  3087. const int64_t ne[2] = { ne0, ne1 };
  3088. return ggml_new_tensor(ctx, type, 2, ne);
  3089. }
  3090. struct ggml_tensor * ggml_new_tensor_3d(
  3091. struct ggml_context * ctx,
  3092. enum ggml_type type,
  3093. int64_t ne0,
  3094. int64_t ne1,
  3095. int64_t ne2) {
  3096. const int64_t ne[3] = { ne0, ne1, ne2 };
  3097. return ggml_new_tensor(ctx, type, 3, ne);
  3098. }
  3099. struct ggml_tensor * ggml_new_tensor_4d(
  3100. struct ggml_context * ctx,
  3101. enum ggml_type type,
  3102. int64_t ne0,
  3103. int64_t ne1,
  3104. int64_t ne2,
  3105. int64_t ne3) {
  3106. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3107. return ggml_new_tensor(ctx, type, 4, ne);
  3108. }
  3109. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3110. ctx->scratch_save = ctx->scratch;
  3111. ctx->scratch.data = NULL;
  3112. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3113. ctx->scratch = ctx->scratch_save;
  3114. ggml_set_i32(result, value);
  3115. return result;
  3116. }
  3117. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3118. ctx->scratch_save = ctx->scratch;
  3119. ctx->scratch.data = NULL;
  3120. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3121. ctx->scratch = ctx->scratch_save;
  3122. ggml_set_f32(result, value);
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3126. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3127. }
  3128. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3129. memset(tensor->data, 0, ggml_nbytes(tensor));
  3130. return tensor;
  3131. }
  3132. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3133. const int n = ggml_nrows(tensor);
  3134. const int nc = tensor->ne[0];
  3135. const size_t n1 = tensor->nb[1];
  3136. char * const data = tensor->data;
  3137. switch (tensor->type) {
  3138. case GGML_TYPE_I8:
  3139. {
  3140. assert(tensor->nb[0] == sizeof(int8_t));
  3141. for (int i = 0; i < n; i++) {
  3142. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3143. }
  3144. } break;
  3145. case GGML_TYPE_I16:
  3146. {
  3147. assert(tensor->nb[0] == sizeof(int16_t));
  3148. for (int i = 0; i < n; i++) {
  3149. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3150. }
  3151. } break;
  3152. case GGML_TYPE_I32:
  3153. {
  3154. assert(tensor->nb[0] == sizeof(int32_t));
  3155. for (int i = 0; i < n; i++) {
  3156. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3157. }
  3158. } break;
  3159. case GGML_TYPE_F16:
  3160. {
  3161. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3162. for (int i = 0; i < n; i++) {
  3163. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3164. }
  3165. } break;
  3166. case GGML_TYPE_F32:
  3167. {
  3168. assert(tensor->nb[0] == sizeof(float));
  3169. for (int i = 0; i < n; i++) {
  3170. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3171. }
  3172. } break;
  3173. default:
  3174. {
  3175. GGML_ASSERT(false);
  3176. } break;
  3177. }
  3178. return tensor;
  3179. }
  3180. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3181. const int n = ggml_nrows(tensor);
  3182. const int nc = tensor->ne[0];
  3183. const size_t n1 = tensor->nb[1];
  3184. char * const data = tensor->data;
  3185. switch (tensor->type) {
  3186. case GGML_TYPE_I8:
  3187. {
  3188. assert(tensor->nb[0] == sizeof(int8_t));
  3189. for (int i = 0; i < n; i++) {
  3190. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3191. }
  3192. } break;
  3193. case GGML_TYPE_I16:
  3194. {
  3195. assert(tensor->nb[0] == sizeof(int16_t));
  3196. for (int i = 0; i < n; i++) {
  3197. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3198. }
  3199. } break;
  3200. case GGML_TYPE_I32:
  3201. {
  3202. assert(tensor->nb[0] == sizeof(int32_t));
  3203. for (int i = 0; i < n; i++) {
  3204. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3205. }
  3206. } break;
  3207. case GGML_TYPE_F16:
  3208. {
  3209. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3210. for (int i = 0; i < n; i++) {
  3211. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3212. }
  3213. } break;
  3214. case GGML_TYPE_F32:
  3215. {
  3216. assert(tensor->nb[0] == sizeof(float));
  3217. for (int i = 0; i < n; i++) {
  3218. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3219. }
  3220. } break;
  3221. default:
  3222. {
  3223. GGML_ASSERT(false);
  3224. } break;
  3225. }
  3226. return tensor;
  3227. }
  3228. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3229. switch (tensor->type) {
  3230. case GGML_TYPE_I8:
  3231. {
  3232. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3233. return ((int8_t *)(tensor->data))[i];
  3234. } break;
  3235. case GGML_TYPE_I16:
  3236. {
  3237. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3238. return ((int16_t *)(tensor->data))[i];
  3239. } break;
  3240. case GGML_TYPE_I32:
  3241. {
  3242. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3243. return ((int32_t *)(tensor->data))[i];
  3244. } break;
  3245. case GGML_TYPE_F16:
  3246. {
  3247. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3248. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3249. } break;
  3250. case GGML_TYPE_F32:
  3251. {
  3252. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3253. return ((float *)(tensor->data))[i];
  3254. } break;
  3255. default:
  3256. {
  3257. GGML_ASSERT(false);
  3258. } break;
  3259. }
  3260. return 0.0f;
  3261. }
  3262. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3263. switch (tensor->type) {
  3264. case GGML_TYPE_I8:
  3265. {
  3266. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3267. ((int8_t *)(tensor->data))[i] = value;
  3268. } break;
  3269. case GGML_TYPE_I16:
  3270. {
  3271. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3272. ((int16_t *)(tensor->data))[i] = value;
  3273. } break;
  3274. case GGML_TYPE_I32:
  3275. {
  3276. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3277. ((int32_t *)(tensor->data))[i] = value;
  3278. } break;
  3279. case GGML_TYPE_F16:
  3280. {
  3281. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3282. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3283. } break;
  3284. case GGML_TYPE_F32:
  3285. {
  3286. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3287. ((float *)(tensor->data))[i] = value;
  3288. } break;
  3289. default:
  3290. {
  3291. GGML_ASSERT(false);
  3292. } break;
  3293. }
  3294. }
  3295. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3296. switch (tensor->type) {
  3297. case GGML_TYPE_I8:
  3298. {
  3299. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3300. return ((int8_t *)(tensor->data))[i];
  3301. } break;
  3302. case GGML_TYPE_I16:
  3303. {
  3304. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3305. return ((int16_t *)(tensor->data))[i];
  3306. } break;
  3307. case GGML_TYPE_I32:
  3308. {
  3309. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3310. return ((int32_t *)(tensor->data))[i];
  3311. } break;
  3312. case GGML_TYPE_F16:
  3313. {
  3314. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3315. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3316. } break;
  3317. case GGML_TYPE_F32:
  3318. {
  3319. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3320. return ((float *)(tensor->data))[i];
  3321. } break;
  3322. default:
  3323. {
  3324. GGML_ASSERT(false);
  3325. } break;
  3326. }
  3327. return 0.0f;
  3328. }
  3329. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3330. switch (tensor->type) {
  3331. case GGML_TYPE_I8:
  3332. {
  3333. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3334. ((int8_t *)(tensor->data))[i] = value;
  3335. } break;
  3336. case GGML_TYPE_I16:
  3337. {
  3338. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3339. ((int16_t *)(tensor->data))[i] = value;
  3340. } break;
  3341. case GGML_TYPE_I32:
  3342. {
  3343. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3344. ((int32_t *)(tensor->data))[i] = value;
  3345. } break;
  3346. case GGML_TYPE_F16:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3349. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3350. } break;
  3351. case GGML_TYPE_F32:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3354. ((float *)(tensor->data))[i] = value;
  3355. } break;
  3356. default:
  3357. {
  3358. GGML_ASSERT(false);
  3359. } break;
  3360. }
  3361. }
  3362. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3363. return tensor->data;
  3364. }
  3365. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3366. assert(tensor->type == GGML_TYPE_F32);
  3367. return (float *)(tensor->data);
  3368. }
  3369. struct ggml_tensor * ggml_view_tensor(
  3370. struct ggml_context * ctx,
  3371. const struct ggml_tensor * src) {
  3372. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3373. result->nb[0] = src->nb[0];
  3374. result->nb[1] = src->nb[1];
  3375. result->nb[2] = src->nb[2];
  3376. result->nb[3] = src->nb[3];
  3377. return result;
  3378. }
  3379. ////////////////////////////////////////////////////////////////////////////////
  3380. // ggml_dup
  3381. struct ggml_tensor * ggml_dup_impl(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. bool inplace) {
  3385. bool is_node = false;
  3386. if (!inplace && (a->grad)) {
  3387. is_node = true;
  3388. }
  3389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3390. result->op = GGML_OP_DUP;
  3391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3392. result->src0 = a;
  3393. result->src1 = NULL;
  3394. return result;
  3395. }
  3396. struct ggml_tensor * ggml_dup(
  3397. struct ggml_context * ctx,
  3398. struct ggml_tensor * a) {
  3399. return ggml_dup_impl(ctx, a, false);
  3400. }
  3401. struct ggml_tensor * ggml_dup_inplace(
  3402. struct ggml_context * ctx,
  3403. struct ggml_tensor * a) {
  3404. return ggml_dup_impl(ctx, a, true);
  3405. }
  3406. // ggml_add
  3407. struct ggml_tensor * ggml_add_impl(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a,
  3410. struct ggml_tensor * b,
  3411. bool inplace) {
  3412. GGML_ASSERT(ggml_are_same_shape(a, b));
  3413. bool is_node = false;
  3414. if (!inplace && (a->grad || b->grad)) {
  3415. is_node = true;
  3416. }
  3417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3418. result->op = GGML_OP_ADD;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src0 = a;
  3421. result->src1 = b;
  3422. return result;
  3423. }
  3424. struct ggml_tensor * ggml_add(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a,
  3427. struct ggml_tensor * b) {
  3428. return ggml_add_impl(ctx, a, b, false);
  3429. }
  3430. struct ggml_tensor * ggml_add_inplace(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b) {
  3434. return ggml_add_impl(ctx, a, b, true);
  3435. }
  3436. // ggml_sub
  3437. struct ggml_tensor * ggml_sub_impl(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a,
  3440. struct ggml_tensor * b,
  3441. bool inplace) {
  3442. GGML_ASSERT(ggml_are_same_shape(a, b));
  3443. bool is_node = false;
  3444. if (!inplace && (a->grad || b->grad)) {
  3445. is_node = true;
  3446. }
  3447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3448. result->op = GGML_OP_SUB;
  3449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3450. result->src0 = a;
  3451. result->src1 = b;
  3452. return result;
  3453. }
  3454. struct ggml_tensor * ggml_sub(
  3455. struct ggml_context * ctx,
  3456. struct ggml_tensor * a,
  3457. struct ggml_tensor * b) {
  3458. return ggml_sub_impl(ctx, a, b, false);
  3459. }
  3460. struct ggml_tensor * ggml_sub_inplace(
  3461. struct ggml_context * ctx,
  3462. struct ggml_tensor * a,
  3463. struct ggml_tensor * b) {
  3464. return ggml_sub_impl(ctx, a, b, true);
  3465. }
  3466. // ggml_mul
  3467. struct ggml_tensor * ggml_mul_impl(
  3468. struct ggml_context * ctx,
  3469. struct ggml_tensor * a,
  3470. struct ggml_tensor * b,
  3471. bool inplace) {
  3472. GGML_ASSERT(ggml_are_same_shape(a, b));
  3473. bool is_node = false;
  3474. if (!inplace && (a->grad || b->grad)) {
  3475. is_node = true;
  3476. }
  3477. if (inplace) {
  3478. GGML_ASSERT(is_node == false);
  3479. }
  3480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3481. result->op = GGML_OP_MUL;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src0 = a;
  3484. result->src1 = b;
  3485. return result;
  3486. }
  3487. struct ggml_tensor * ggml_mul(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. struct ggml_tensor * b) {
  3491. return ggml_mul_impl(ctx, a, b, false);
  3492. }
  3493. struct ggml_tensor * ggml_mul_inplace(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a,
  3496. struct ggml_tensor * b) {
  3497. return ggml_mul_impl(ctx, a, b, true);
  3498. }
  3499. // ggml_div
  3500. struct ggml_tensor * ggml_div_impl(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b,
  3504. bool inplace) {
  3505. GGML_ASSERT(ggml_are_same_shape(a, b));
  3506. bool is_node = false;
  3507. if (!inplace && (a->grad || b->grad)) {
  3508. is_node = true;
  3509. }
  3510. if (inplace) {
  3511. GGML_ASSERT(is_node == false);
  3512. }
  3513. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3514. result->op = GGML_OP_DIV;
  3515. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3516. result->src0 = a;
  3517. result->src1 = b;
  3518. return result;
  3519. }
  3520. struct ggml_tensor * ggml_div(
  3521. struct ggml_context * ctx,
  3522. struct ggml_tensor * a,
  3523. struct ggml_tensor * b) {
  3524. return ggml_div_impl(ctx, a, b, false);
  3525. }
  3526. struct ggml_tensor * ggml_div_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b) {
  3530. return ggml_div_impl(ctx, a, b, true);
  3531. }
  3532. // ggml_sqr
  3533. struct ggml_tensor * ggml_sqr_impl(
  3534. struct ggml_context * ctx,
  3535. struct ggml_tensor * a,
  3536. bool inplace) {
  3537. bool is_node = false;
  3538. if (!inplace && (a->grad)) {
  3539. is_node = true;
  3540. }
  3541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3542. result->op = GGML_OP_SQR;
  3543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3544. result->src0 = a;
  3545. result->src1 = NULL;
  3546. return result;
  3547. }
  3548. struct ggml_tensor * ggml_sqr(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a) {
  3551. return ggml_sqr_impl(ctx, a, false);
  3552. }
  3553. struct ggml_tensor * ggml_sqr_inplace(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a) {
  3556. return ggml_sqr_impl(ctx, a, true);
  3557. }
  3558. // ggml_sqrt
  3559. struct ggml_tensor * ggml_sqrt_impl(
  3560. struct ggml_context * ctx,
  3561. struct ggml_tensor * a,
  3562. bool inplace) {
  3563. bool is_node = false;
  3564. if (!inplace && (a->grad)) {
  3565. is_node = true;
  3566. }
  3567. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3568. result->op = GGML_OP_SQRT;
  3569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3570. result->src0 = a;
  3571. result->src1 = NULL;
  3572. return result;
  3573. }
  3574. struct ggml_tensor * ggml_sqrt(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_sqrt_impl(ctx, a, false);
  3578. }
  3579. struct ggml_tensor * ggml_sqrt_inplace(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a) {
  3582. return ggml_sqrt_impl(ctx, a, true);
  3583. }
  3584. // ggml_sum
  3585. struct ggml_tensor * ggml_sum(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. bool is_node = false;
  3589. if (a->grad) {
  3590. is_node = true;
  3591. }
  3592. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3593. result->op = GGML_OP_SUM;
  3594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3595. result->src0 = a;
  3596. result->src1 = NULL;
  3597. return result;
  3598. }
  3599. // ggml_mean
  3600. struct ggml_tensor * ggml_mean(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a) {
  3603. bool is_node = false;
  3604. if (a->grad) {
  3605. GGML_ASSERT(false); // TODO: implement
  3606. is_node = true;
  3607. }
  3608. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3609. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3610. result->op = GGML_OP_MEAN;
  3611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3612. result->src0 = a;
  3613. result->src1 = NULL;
  3614. return result;
  3615. }
  3616. // ggml_repeat
  3617. struct ggml_tensor * ggml_repeat(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a,
  3620. struct ggml_tensor * b) {
  3621. GGML_ASSERT(ggml_can_repeat(a, b));
  3622. bool is_node = false;
  3623. if (a->grad) {
  3624. is_node = true;
  3625. }
  3626. if (ggml_are_same_shape(a, b) && !is_node) {
  3627. return a;
  3628. }
  3629. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3630. result->op = GGML_OP_REPEAT;
  3631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3632. result->src0 = a;
  3633. result->src1 = b;
  3634. return result;
  3635. }
  3636. // ggml_abs
  3637. struct ggml_tensor * ggml_abs_impl(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a,
  3640. bool inplace) {
  3641. bool is_node = false;
  3642. if (!inplace && (a->grad)) {
  3643. is_node = true;
  3644. }
  3645. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3646. result->op = GGML_OP_ABS;
  3647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3648. result->src0 = a;
  3649. result->src1 = NULL;
  3650. return result;
  3651. }
  3652. struct ggml_tensor * ggml_abs(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a) {
  3655. return ggml_abs_impl(ctx, a, false);
  3656. }
  3657. struct ggml_tensor * ggml_abs_inplace(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a) {
  3660. return ggml_abs_impl(ctx, a, true);
  3661. }
  3662. // ggml_sgn
  3663. struct ggml_tensor * ggml_sgn_impl(
  3664. struct ggml_context * ctx,
  3665. struct ggml_tensor * a,
  3666. bool inplace) {
  3667. bool is_node = false;
  3668. if (!inplace && (a->grad)) {
  3669. is_node = true;
  3670. }
  3671. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3672. result->op = GGML_OP_SGN;
  3673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3674. result->src0 = a;
  3675. result->src1 = NULL;
  3676. return result;
  3677. }
  3678. struct ggml_tensor * ggml_sgn(
  3679. struct ggml_context * ctx,
  3680. struct ggml_tensor * a) {
  3681. return ggml_sgn_impl(ctx, a, false);
  3682. }
  3683. struct ggml_tensor * ggml_sgn_inplace(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a) {
  3686. return ggml_sgn_impl(ctx, a, true);
  3687. }
  3688. // ggml_neg
  3689. struct ggml_tensor * ggml_neg_impl(
  3690. struct ggml_context * ctx,
  3691. struct ggml_tensor * a,
  3692. bool inplace) {
  3693. bool is_node = false;
  3694. if (!inplace && (a->grad)) {
  3695. is_node = true;
  3696. }
  3697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3698. result->op = GGML_OP_NEG;
  3699. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3700. result->src0 = a;
  3701. result->src1 = NULL;
  3702. return result;
  3703. }
  3704. struct ggml_tensor * ggml_neg(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a) {
  3707. return ggml_neg_impl(ctx, a, false);
  3708. }
  3709. struct ggml_tensor * ggml_neg_inplace(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a) {
  3712. return ggml_neg_impl(ctx, a, true);
  3713. }
  3714. // ggml_step
  3715. struct ggml_tensor * ggml_step_impl(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. bool inplace) {
  3719. bool is_node = false;
  3720. if (!inplace && (a->grad)) {
  3721. is_node = true;
  3722. }
  3723. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3724. result->op = GGML_OP_STEP;
  3725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3726. result->src0 = a;
  3727. result->src1 = NULL;
  3728. return result;
  3729. }
  3730. struct ggml_tensor * ggml_step(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a) {
  3733. return ggml_step_impl(ctx, a, false);
  3734. }
  3735. struct ggml_tensor * ggml_step_inplace(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a) {
  3738. return ggml_step_impl(ctx, a, true);
  3739. }
  3740. // ggml_relu
  3741. struct ggml_tensor * ggml_relu_impl(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. bool inplace) {
  3745. bool is_node = false;
  3746. if (!inplace && (a->grad)) {
  3747. is_node = true;
  3748. }
  3749. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3750. result->op = GGML_OP_RELU;
  3751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3752. result->src0 = a;
  3753. result->src1 = NULL;
  3754. return result;
  3755. }
  3756. struct ggml_tensor * ggml_relu(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a) {
  3759. return ggml_relu_impl(ctx, a, false);
  3760. }
  3761. struct ggml_tensor * ggml_relu_inplace(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a) {
  3764. return ggml_relu_impl(ctx, a, true);
  3765. }
  3766. // ggml_gelu
  3767. struct ggml_tensor * ggml_gelu_impl(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * a,
  3770. bool inplace) {
  3771. bool is_node = false;
  3772. if (!inplace && (a->grad)) {
  3773. is_node = true;
  3774. }
  3775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3776. result->op = GGML_OP_GELU;
  3777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3778. result->src0 = a;
  3779. result->src1 = NULL;
  3780. return result;
  3781. }
  3782. struct ggml_tensor * ggml_gelu(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a) {
  3785. return ggml_gelu_impl(ctx, a, false);
  3786. }
  3787. struct ggml_tensor * ggml_gelu_inplace(
  3788. struct ggml_context * ctx,
  3789. struct ggml_tensor * a) {
  3790. return ggml_gelu_impl(ctx, a, true);
  3791. }
  3792. // ggml_silu
  3793. struct ggml_tensor * ggml_silu_impl(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a,
  3796. bool inplace) {
  3797. bool is_node = false;
  3798. if (!inplace && (a->grad)) {
  3799. is_node = true;
  3800. }
  3801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3802. result->op = GGML_OP_SILU;
  3803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3804. result->src0 = a;
  3805. result->src1 = NULL;
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_silu(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a) {
  3811. return ggml_silu_impl(ctx, a, false);
  3812. }
  3813. struct ggml_tensor * ggml_silu_inplace(
  3814. struct ggml_context * ctx,
  3815. struct ggml_tensor * a) {
  3816. return ggml_silu_impl(ctx, a, true);
  3817. }
  3818. // ggml_norm
  3819. struct ggml_tensor * ggml_norm_impl(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a,
  3822. bool inplace) {
  3823. bool is_node = false;
  3824. if (!inplace && (a->grad)) {
  3825. GGML_ASSERT(false); // TODO: implement backward
  3826. is_node = true;
  3827. }
  3828. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3829. result->op = GGML_OP_NORM;
  3830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3831. result->src0 = a;
  3832. result->src1 = NULL; // TODO: maybe store epsilon here?
  3833. return result;
  3834. }
  3835. struct ggml_tensor * ggml_norm(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * a) {
  3838. return ggml_norm_impl(ctx, a, false);
  3839. }
  3840. struct ggml_tensor * ggml_norm_inplace(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a) {
  3843. return ggml_norm_impl(ctx, a, true);
  3844. }
  3845. struct ggml_tensor * ggml_rms_norm_impl(
  3846. struct ggml_context * ctx,
  3847. struct ggml_tensor * a,
  3848. bool inplace) {
  3849. bool is_node = false;
  3850. if (!inplace && (a->grad)) {
  3851. GGML_ASSERT(false); // TODO: implement backward
  3852. is_node = true;
  3853. }
  3854. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3855. result->op = GGML_OP_RMS_NORM;
  3856. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3857. result->src0 = a;
  3858. result->src1 = NULL; // TODO: maybe store epsilon here?
  3859. return result;
  3860. }
  3861. struct ggml_tensor * ggml_rms_norm(
  3862. struct ggml_context * ctx,
  3863. struct ggml_tensor * a) {
  3864. return ggml_rms_norm_impl(ctx, a, false);
  3865. }
  3866. struct ggml_tensor * ggml_rms_norm_inplace(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a) {
  3869. return ggml_rms_norm_impl(ctx, a, true);
  3870. }
  3871. // ggml_mul_mat
  3872. struct ggml_tensor * ggml_mul_mat(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. struct ggml_tensor * b) {
  3876. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3877. GGML_ASSERT(!ggml_is_transposed(a));
  3878. bool is_node = false;
  3879. if (a->grad || b->grad) {
  3880. is_node = true;
  3881. }
  3882. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3883. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3884. result->op = GGML_OP_MUL_MAT;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src0 = a;
  3887. result->src1 = b;
  3888. return result;
  3889. }
  3890. // ggml_scale
  3891. struct ggml_tensor * ggml_scale_impl(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b,
  3895. bool inplace) {
  3896. GGML_ASSERT(ggml_is_scalar(b));
  3897. GGML_ASSERT(ggml_is_padded_1d(a));
  3898. bool is_node = false;
  3899. if (!inplace && (a->grad || b->grad)) {
  3900. GGML_ASSERT(false); // TODO: implement backward
  3901. is_node = true;
  3902. }
  3903. // TODO: when implement backward, fix this:
  3904. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3905. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3906. result->op = GGML_OP_SCALE;
  3907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3908. result->src0 = a;
  3909. result->src1 = b;
  3910. return result;
  3911. }
  3912. struct ggml_tensor * ggml_scale(
  3913. struct ggml_context * ctx,
  3914. struct ggml_tensor * a,
  3915. struct ggml_tensor * b) {
  3916. return ggml_scale_impl(ctx, a, b, false);
  3917. }
  3918. struct ggml_tensor * ggml_scale_inplace(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a,
  3921. struct ggml_tensor * b) {
  3922. return ggml_scale_impl(ctx, a, b, true);
  3923. }
  3924. // ggml_cpy
  3925. struct ggml_tensor * ggml_cpy_impl(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a,
  3928. struct ggml_tensor * b,
  3929. bool inplace) {
  3930. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3931. bool is_node = false;
  3932. if (!inplace && (a->grad || b->grad)) {
  3933. GGML_ASSERT(false); // TODO: implement backward
  3934. is_node = true;
  3935. }
  3936. // make a view of the destination
  3937. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3938. result->op = GGML_OP_CPY;
  3939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3940. result->src0 = a;
  3941. result->src1 = b;
  3942. return result;
  3943. }
  3944. struct ggml_tensor * ggml_cpy(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b) {
  3948. return ggml_cpy_impl(ctx, a, b, false);
  3949. }
  3950. struct ggml_tensor * ggml_cpy_inplace(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b) {
  3954. return ggml_cpy_impl(ctx, a, b, true);
  3955. }
  3956. // ggml_cont
  3957. struct ggml_tensor * ggml_cont_impl(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. bool inplace) {
  3961. bool is_node = false;
  3962. if (!inplace && a->grad) {
  3963. GGML_ASSERT(false); // TODO: implement backward
  3964. is_node = true;
  3965. }
  3966. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3967. result->op = GGML_OP_CONT;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src0 = a;
  3970. result->src1 = NULL;
  3971. return result;
  3972. }
  3973. struct ggml_tensor * ggml_cont(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a) {
  3976. return ggml_cont_impl(ctx, a, false);
  3977. }
  3978. struct ggml_tensor * ggml_cont_inplace(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a) {
  3981. return ggml_cont_impl(ctx, a, true);
  3982. }
  3983. // ggml_reshape
  3984. struct ggml_tensor * ggml_reshape(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. struct ggml_tensor * b) {
  3988. GGML_ASSERT(ggml_is_contiguous(a));
  3989. GGML_ASSERT(ggml_is_contiguous(b));
  3990. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3991. bool is_node = false;
  3992. if (a->grad || b->grad) {
  3993. GGML_ASSERT(false); // TODO: implement backward
  3994. is_node = true;
  3995. }
  3996. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3997. result->op = GGML_OP_RESHAPE;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src0 = a;
  4000. result->src1 = NULL;
  4001. return result;
  4002. }
  4003. struct ggml_tensor * ggml_reshape_2d(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. int64_t ne0,
  4007. int64_t ne1) {
  4008. GGML_ASSERT(ggml_is_contiguous(a));
  4009. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4010. bool is_node = false;
  4011. if (a->grad) {
  4012. GGML_ASSERT(false); // TODO: implement backward
  4013. is_node = true;
  4014. }
  4015. const int64_t ne[2] = { ne0, ne1 };
  4016. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4017. result->op = GGML_OP_RESHAPE;
  4018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4019. result->src0 = a;
  4020. result->src1 = NULL;
  4021. return result;
  4022. }
  4023. struct ggml_tensor * ggml_reshape_3d(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. int64_t ne0,
  4027. int64_t ne1,
  4028. int64_t ne2) {
  4029. GGML_ASSERT(ggml_is_contiguous(a));
  4030. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4031. bool is_node = false;
  4032. if (a->grad) {
  4033. GGML_ASSERT(false); // TODO: implement backward
  4034. is_node = true;
  4035. }
  4036. const int64_t ne[3] = { ne0, ne1, ne2 };
  4037. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4038. result->op = GGML_OP_RESHAPE;
  4039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4040. result->src0 = a;
  4041. result->src1 = NULL;
  4042. return result;
  4043. }
  4044. // ggml_view_1d
  4045. struct ggml_tensor * ggml_view_1d(
  4046. struct ggml_context * ctx,
  4047. struct ggml_tensor * a,
  4048. int64_t ne0,
  4049. size_t offset) {
  4050. if (a->grad) {
  4051. GGML_ASSERT(false); // gradient propagation is not supported
  4052. }
  4053. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4054. result->op = GGML_OP_VIEW;
  4055. result->grad = NULL;
  4056. result->src0 = a;
  4057. result->src1 = NULL; // TODO: maybe store the offset here?
  4058. return result;
  4059. }
  4060. // ggml_view_2d
  4061. struct ggml_tensor * ggml_view_2d(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. int64_t ne0,
  4065. int64_t ne1,
  4066. size_t nb1,
  4067. size_t offset) {
  4068. if (a->grad) {
  4069. GGML_ASSERT(false); // gradient propagation is not supported
  4070. }
  4071. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4072. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4073. result->nb[1] = nb1;
  4074. result->nb[2] = result->nb[1]*ne1;
  4075. result->nb[3] = result->nb[2];
  4076. result->op = GGML_OP_VIEW;
  4077. result->grad = NULL;
  4078. result->src0 = a;
  4079. result->src1 = NULL; // TODO: maybe store the offset here?
  4080. return result;
  4081. }
  4082. // ggml_view_3d
  4083. struct ggml_tensor * ggml_view_3d(
  4084. struct ggml_context * ctx,
  4085. struct ggml_tensor * a,
  4086. int64_t ne0,
  4087. int64_t ne1,
  4088. int64_t ne2,
  4089. size_t nb1,
  4090. size_t nb2,
  4091. size_t offset) {
  4092. if (a->grad) {
  4093. GGML_ASSERT(false); // gradient propagation is not supported
  4094. }
  4095. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4096. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4097. result->nb[1] = nb1;
  4098. result->nb[2] = nb2;
  4099. result->nb[3] = result->nb[2]*ne2;
  4100. result->op = GGML_OP_VIEW;
  4101. result->grad = NULL;
  4102. result->src0 = a;
  4103. result->src1 = NULL; // TODO: maybe store the offset here?
  4104. return result;
  4105. }
  4106. // ggml_permute
  4107. struct ggml_tensor * ggml_permute(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. int axis0,
  4111. int axis1,
  4112. int axis2,
  4113. int axis3) {
  4114. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4115. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4116. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4117. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4118. GGML_ASSERT(axis0 != axis1);
  4119. GGML_ASSERT(axis0 != axis2);
  4120. GGML_ASSERT(axis0 != axis3);
  4121. GGML_ASSERT(axis1 != axis2);
  4122. GGML_ASSERT(axis1 != axis3);
  4123. GGML_ASSERT(axis2 != axis3);
  4124. bool is_node = false;
  4125. if (a->grad) {
  4126. GGML_ASSERT(false); // TODO: implement backward
  4127. is_node = true;
  4128. }
  4129. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4130. int ne[GGML_MAX_DIMS];
  4131. int nb[GGML_MAX_DIMS];
  4132. ne[axis0] = a->ne[0];
  4133. ne[axis1] = a->ne[1];
  4134. ne[axis2] = a->ne[2];
  4135. ne[axis3] = a->ne[3];
  4136. nb[axis0] = a->nb[0];
  4137. nb[axis1] = a->nb[1];
  4138. nb[axis2] = a->nb[2];
  4139. nb[axis3] = a->nb[3];
  4140. result->ne[0] = ne[0];
  4141. result->ne[1] = ne[1];
  4142. result->ne[2] = ne[2];
  4143. result->ne[3] = ne[3];
  4144. result->nb[0] = nb[0];
  4145. result->nb[1] = nb[1];
  4146. result->nb[2] = nb[2];
  4147. result->nb[3] = nb[3];
  4148. result->op = GGML_OP_PERMUTE;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src0 = a;
  4151. result->src1 = NULL; // TODO: maybe store the permutation here?
  4152. return result;
  4153. }
  4154. // ggml_transpose
  4155. struct ggml_tensor * ggml_transpose(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a) {
  4158. bool is_node = false;
  4159. if (a->grad) {
  4160. GGML_ASSERT(false); // TODO: implement backward
  4161. is_node = true;
  4162. }
  4163. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4164. result->ne[0] = a->ne[1];
  4165. result->ne[1] = a->ne[0];
  4166. result->nb[0] = a->nb[1];
  4167. result->nb[1] = a->nb[0];
  4168. result->op = GGML_OP_TRANSPOSE;
  4169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4170. result->src0 = a;
  4171. result->src1 = NULL;
  4172. return result;
  4173. }
  4174. // ggml_get_rows
  4175. struct ggml_tensor * ggml_get_rows(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b) {
  4179. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4180. bool is_node = false;
  4181. if (a->grad || b->grad) {
  4182. GGML_ASSERT(false); // TODO: implement backward
  4183. is_node = true;
  4184. }
  4185. // TODO: implement non F32 return
  4186. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4187. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4188. result->op = GGML_OP_GET_ROWS;
  4189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4190. result->src0 = a;
  4191. result->src1 = b;
  4192. return result;
  4193. }
  4194. // ggml_diag_mask_inf
  4195. struct ggml_tensor * ggml_diag_mask_inf(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. int n_past) {
  4199. bool is_node = false;
  4200. if (a->grad) {
  4201. GGML_ASSERT(false); // TODO: implement backward
  4202. is_node = true;
  4203. }
  4204. // TODO: when implement backward, fix this:
  4205. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4206. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4207. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4208. result->op = GGML_OP_DIAG_MASK_INF;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src0 = a;
  4211. result->src1 = b;
  4212. return result;
  4213. }
  4214. // ggml_soft_max
  4215. struct ggml_tensor * ggml_soft_max(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a) {
  4218. bool is_node = false;
  4219. if (a->grad) {
  4220. GGML_ASSERT(false); // TODO: implement backward
  4221. is_node = true;
  4222. }
  4223. // TODO: when implement backward, fix this:
  4224. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4225. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4226. result->op = GGML_OP_SOFT_MAX;
  4227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4228. result->src0 = a;
  4229. result->src1 = NULL;
  4230. return result;
  4231. }
  4232. // ggml_rope
  4233. struct ggml_tensor * ggml_rope(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. int n_past,
  4237. int n_dims,
  4238. int mode) {
  4239. GGML_ASSERT(n_past >= 0);
  4240. bool is_node = false;
  4241. if (a->grad) {
  4242. GGML_ASSERT(false); // TODO: implement backward
  4243. is_node = true;
  4244. }
  4245. // TODO: when implement backward, fix this:
  4246. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4247. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4248. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4249. ((int32_t *) b->data)[0] = n_past;
  4250. ((int32_t *) b->data)[1] = n_dims;
  4251. ((int32_t *) b->data)[2] = mode;
  4252. result->op = GGML_OP_ROPE;
  4253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4254. result->src0 = a;
  4255. result->src1 = b;
  4256. return result;
  4257. }
  4258. // ggml_conv_1d_1s
  4259. struct ggml_tensor * ggml_conv_1d_1s(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b) {
  4263. GGML_ASSERT(ggml_is_matrix(b));
  4264. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4265. GGML_ASSERT(a->ne[3] == 1);
  4266. bool is_node = false;
  4267. if (a->grad || b->grad) {
  4268. GGML_ASSERT(false); // TODO: implement backward
  4269. is_node = true;
  4270. }
  4271. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4272. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4273. result->op = GGML_OP_CONV_1D_1S;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src0 = a;
  4276. result->src1 = b;
  4277. return result;
  4278. }
  4279. // ggml_conv_1d_2s
  4280. struct ggml_tensor * ggml_conv_1d_2s(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. struct ggml_tensor * b) {
  4284. GGML_ASSERT(ggml_is_matrix(b));
  4285. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4286. GGML_ASSERT(a->ne[3] == 1);
  4287. bool is_node = false;
  4288. if (a->grad || b->grad) {
  4289. GGML_ASSERT(false); // TODO: implement backward
  4290. is_node = true;
  4291. }
  4292. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4293. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4294. result->op = GGML_OP_CONV_1D_2S;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src0 = a;
  4297. result->src1 = b;
  4298. return result;
  4299. }
  4300. // ggml_flash_attn
  4301. struct ggml_tensor * ggml_flash_attn(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * q,
  4304. struct ggml_tensor * k,
  4305. struct ggml_tensor * v,
  4306. bool masked) {
  4307. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4308. // TODO: check if vT can be multiplied by (k*qT)
  4309. bool is_node = false;
  4310. if (q->grad || k->grad || v->grad) {
  4311. GGML_ASSERT(false); // TODO: implement backward
  4312. is_node = true;
  4313. }
  4314. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4315. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4316. result->op = GGML_OP_FLASH_ATTN;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src0 = q;
  4319. result->src1 = k;
  4320. result->opt[0] = v;
  4321. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4322. return result;
  4323. }
  4324. // ggml_flash_ff
  4325. struct ggml_tensor * ggml_flash_ff(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a,
  4328. struct ggml_tensor * b0,
  4329. struct ggml_tensor * b1,
  4330. struct ggml_tensor * c0,
  4331. struct ggml_tensor * c1) {
  4332. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4333. // TODO: more checks
  4334. bool is_node = false;
  4335. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4336. GGML_ASSERT(false); // TODO: implement backward
  4337. is_node = true;
  4338. }
  4339. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4341. result->op = GGML_OP_FLASH_FF;
  4342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4343. result->src0 = a;
  4344. result->src1 = b0;
  4345. result->opt[0] = b1;
  4346. result->opt[1] = c0;
  4347. result->opt[2] = c1;
  4348. return result;
  4349. }
  4350. // ggml_map_unary
  4351. struct ggml_tensor * ggml_map_unary_impl_f32(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. const ggml_unary_op_f32_t fun,
  4355. bool inplace) {
  4356. bool is_node = false;
  4357. if (!inplace && a->grad) {
  4358. is_node = true;
  4359. }
  4360. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4361. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4362. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4363. result->op = GGML_OP_MAP_UNARY;
  4364. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4365. result->src0 = a;
  4366. result->opt[0] = addr_tensor;
  4367. return result;
  4368. }
  4369. struct ggml_tensor * ggml_map_unary_f32(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. const ggml_unary_op_f32_t fun) {
  4373. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4374. }
  4375. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. const ggml_unary_op_f32_t fun) {
  4379. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4380. }
  4381. // ggml_map_binary
  4382. struct ggml_tensor * ggml_map_binary_impl_f32(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b,
  4386. const ggml_binary_op_f32_t fun,
  4387. bool inplace) {
  4388. GGML_ASSERT(ggml_are_same_shape(a, b));
  4389. bool is_node = false;
  4390. if (!inplace && (a->grad || b->grad)) {
  4391. is_node = true;
  4392. }
  4393. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4394. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4395. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4396. result->op = GGML_OP_MAP_BINARY;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src0 = a;
  4399. result->src1 = b;
  4400. result->opt[0] = addr_tensor;
  4401. return result;
  4402. }
  4403. struct ggml_tensor * ggml_map_binary_f32(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a,
  4406. struct ggml_tensor * b,
  4407. const ggml_binary_op_f32_t fun) {
  4408. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4409. }
  4410. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4411. struct ggml_context * ctx,
  4412. struct ggml_tensor * a,
  4413. struct ggml_tensor * b,
  4414. const ggml_binary_op_f32_t fun) {
  4415. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4416. }
  4417. ////////////////////////////////////////////////////////////////////////////////
  4418. void ggml_set_param(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * tensor) {
  4421. tensor->is_param = true;
  4422. GGML_ASSERT(tensor->grad == NULL);
  4423. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4424. }
  4425. // ggml_compute_forward_dup
  4426. static void ggml_compute_forward_dup_f16(
  4427. const struct ggml_compute_params * params,
  4428. const struct ggml_tensor * src0,
  4429. struct ggml_tensor * dst) {
  4430. GGML_ASSERT(params->ith == 0);
  4431. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4432. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4433. return;
  4434. }
  4435. const int64_t ne00 = src0->ne[0];
  4436. const int64_t ne01 = src0->ne[1];
  4437. const int64_t ne02 = src0->ne[2];
  4438. const int64_t ne03 = src0->ne[3];
  4439. const size_t nb00 = src0->nb[0];
  4440. const size_t nb01 = src0->nb[1];
  4441. const size_t nb02 = src0->nb[2];
  4442. const size_t nb03 = src0->nb[3];
  4443. const size_t nb0 = dst->nb[0];
  4444. const size_t nb1 = dst->nb[1];
  4445. const size_t nb2 = dst->nb[2];
  4446. const size_t nb3 = dst->nb[3];
  4447. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4448. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4449. return;
  4450. }
  4451. if (src0->type == dst->type &&
  4452. src0->ne[0] == dst->ne[0] &&
  4453. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4454. // copy by rows
  4455. const size_t rs = ne00*nb00;
  4456. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4457. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4458. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4459. memcpy(
  4460. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4461. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4462. rs);
  4463. }
  4464. }
  4465. }
  4466. return;
  4467. }
  4468. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4469. if (ggml_is_contiguous(dst)) {
  4470. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  4471. if (dst->type == GGML_TYPE_F16) {
  4472. size_t id = 0;
  4473. const size_t rs = ne00*nb00;
  4474. for (int i03 = 0; i03 < ne03; i03++) {
  4475. for (int i02 = 0; i02 < ne02; i02++) {
  4476. for (int i01 = 0; i01 < ne01; i01++) {
  4477. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4478. char * dst_ptr = (char *) dst->data + id*rs;
  4479. memcpy(dst_ptr, src0_ptr, rs);
  4480. id++;
  4481. }
  4482. }
  4483. }
  4484. } else if (dst->type == GGML_TYPE_F32) {
  4485. size_t id = 0;
  4486. float * dst_ptr = (float *) dst->data;
  4487. for (int i03 = 0; i03 < ne03; i03++) {
  4488. for (int i02 = 0; i02 < ne02; i02++) {
  4489. for (int i01 = 0; i01 < ne01; i01++) {
  4490. for (int i00 = 0; i00 < ne00; i00++) {
  4491. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4492. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4493. id++;
  4494. }
  4495. }
  4496. }
  4497. }
  4498. } else {
  4499. GGML_ASSERT(false); // TODO: implement
  4500. }
  4501. } else {
  4502. //printf("%s: this is not optimal - fix me\n", __func__);
  4503. if (dst->type == GGML_TYPE_F32) {
  4504. size_t id = 0;
  4505. float * dst_ptr = (float *) dst->data;
  4506. for (int i03 = 0; i03 < ne03; i03++) {
  4507. for (int i02 = 0; i02 < ne02; i02++) {
  4508. for (int i01 = 0; i01 < ne01; i01++) {
  4509. for (int i00 = 0; i00 < ne00; i00++) {
  4510. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4511. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4512. id++;
  4513. }
  4514. }
  4515. }
  4516. }
  4517. } else if (dst->type == GGML_TYPE_F16) {
  4518. size_t id = 0;
  4519. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4520. for (int i03 = 0; i03 < ne03; i03++) {
  4521. for (int i02 = 0; i02 < ne02; i02++) {
  4522. for (int i01 = 0; i01 < ne01; i01++) {
  4523. for (int i00 = 0; i00 < ne00; i00++) {
  4524. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4525. dst_ptr[id] = *src0_ptr;
  4526. id++;
  4527. }
  4528. }
  4529. }
  4530. }
  4531. } else {
  4532. GGML_ASSERT(false); // TODO: implement
  4533. }
  4534. }
  4535. return;
  4536. }
  4537. // dst counters
  4538. int64_t i10 = 0;
  4539. int64_t i11 = 0;
  4540. int64_t i12 = 0;
  4541. int64_t i13 = 0;
  4542. if (dst->type == GGML_TYPE_F16) {
  4543. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4544. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4545. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4546. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4547. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4548. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4549. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4550. if (++i10 == ne00) {
  4551. i10 = 0;
  4552. if (++i11 == ne01) {
  4553. i11 = 0;
  4554. if (++i12 == ne02) {
  4555. i12 = 0;
  4556. if (++i13 == ne03) {
  4557. i13 = 0;
  4558. }
  4559. }
  4560. }
  4561. }
  4562. }
  4563. }
  4564. }
  4565. }
  4566. } else if (dst->type == GGML_TYPE_F32) {
  4567. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4568. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4569. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4570. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4571. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4572. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4573. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4574. if (++i10 == ne00) {
  4575. i10 = 0;
  4576. if (++i11 == ne01) {
  4577. i11 = 0;
  4578. if (++i12 == ne02) {
  4579. i12 = 0;
  4580. if (++i13 == ne03) {
  4581. i13 = 0;
  4582. }
  4583. }
  4584. }
  4585. }
  4586. }
  4587. }
  4588. }
  4589. }
  4590. } else {
  4591. GGML_ASSERT(false); // TODO: implement
  4592. }
  4593. }
  4594. static void ggml_compute_forward_dup_f32(
  4595. const struct ggml_compute_params * params,
  4596. const struct ggml_tensor * src0,
  4597. struct ggml_tensor * dst) {
  4598. GGML_ASSERT(params->ith == 0);
  4599. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4600. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4601. return;
  4602. }
  4603. const int64_t ne00 = src0->ne[0];
  4604. const int64_t ne01 = src0->ne[1];
  4605. const int64_t ne02 = src0->ne[2];
  4606. const int64_t ne03 = src0->ne[3];
  4607. const size_t nb00 = src0->nb[0];
  4608. const size_t nb01 = src0->nb[1];
  4609. const size_t nb02 = src0->nb[2];
  4610. const size_t nb03 = src0->nb[3];
  4611. const size_t nb0 = dst->nb[0];
  4612. const size_t nb1 = dst->nb[1];
  4613. const size_t nb2 = dst->nb[2];
  4614. const size_t nb3 = dst->nb[3];
  4615. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4616. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4617. return;
  4618. }
  4619. if (src0->type == dst->type &&
  4620. src0->ne[0] == dst->ne[0] &&
  4621. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4622. // copy by rows
  4623. const size_t rs = ne00*nb00;
  4624. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4625. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4626. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4627. memcpy(
  4628. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4629. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4630. rs);
  4631. }
  4632. }
  4633. }
  4634. return;
  4635. }
  4636. if (ggml_is_contiguous(dst)) {
  4637. // TODO: simplify
  4638. if (src0->nb[0] == sizeof(float)) {
  4639. if (dst->type == GGML_TYPE_F32) {
  4640. size_t id = 0;
  4641. const size_t rs = ne00*nb00;
  4642. for (int i03 = 0; i03 < ne03; i03++) {
  4643. for (int i02 = 0; i02 < ne02; i02++) {
  4644. for (int i01 = 0; i01 < ne01; i01++) {
  4645. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4646. char * dst_ptr = (char *) dst->data + id*rs;
  4647. memcpy(dst_ptr, src0_ptr, rs);
  4648. id++;
  4649. }
  4650. }
  4651. }
  4652. } else if (dst->type == GGML_TYPE_F16) {
  4653. size_t id = 0;
  4654. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4655. for (int i03 = 0; i03 < ne03; i03++) {
  4656. for (int i02 = 0; i02 < ne02; i02++) {
  4657. for (int i01 = 0; i01 < ne01; i01++) {
  4658. for (int i00 = 0; i00 < ne00; i00++) {
  4659. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4660. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4661. id++;
  4662. }
  4663. }
  4664. }
  4665. }
  4666. } else {
  4667. GGML_ASSERT(false); // TODO: implement
  4668. }
  4669. } else {
  4670. //printf("%s: this is not optimal - fix me\n", __func__);
  4671. if (dst->type == GGML_TYPE_F32) {
  4672. size_t id = 0;
  4673. float * dst_ptr = (float *) dst->data;
  4674. for (int i03 = 0; i03 < ne03; i03++) {
  4675. for (int i02 = 0; i02 < ne02; i02++) {
  4676. for (int i01 = 0; i01 < ne01; i01++) {
  4677. for (int i00 = 0; i00 < ne00; i00++) {
  4678. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4679. dst_ptr[id] = *src0_ptr;
  4680. id++;
  4681. }
  4682. }
  4683. }
  4684. }
  4685. } else if (dst->type == GGML_TYPE_F16) {
  4686. size_t id = 0;
  4687. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4688. for (int i03 = 0; i03 < ne03; i03++) {
  4689. for (int i02 = 0; i02 < ne02; i02++) {
  4690. for (int i01 = 0; i01 < ne01; i01++) {
  4691. for (int i00 = 0; i00 < ne00; i00++) {
  4692. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4693. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4694. id++;
  4695. }
  4696. }
  4697. }
  4698. }
  4699. } else {
  4700. GGML_ASSERT(false); // TODO: implement
  4701. }
  4702. }
  4703. return;
  4704. }
  4705. // dst counters
  4706. int64_t i10 = 0;
  4707. int64_t i11 = 0;
  4708. int64_t i12 = 0;
  4709. int64_t i13 = 0;
  4710. if (dst->type == GGML_TYPE_F32) {
  4711. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4712. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4713. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4714. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4715. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4716. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4717. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4718. if (++i10 == dst->ne[0]) {
  4719. i10 = 0;
  4720. if (++i11 == dst->ne[1]) {
  4721. i11 = 0;
  4722. if (++i12 == dst->ne[2]) {
  4723. i12 = 0;
  4724. if (++i13 == dst->ne[3]) {
  4725. i13 = 0;
  4726. }
  4727. }
  4728. }
  4729. }
  4730. }
  4731. }
  4732. }
  4733. }
  4734. } else if (dst->type == GGML_TYPE_F16) {
  4735. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4736. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4737. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4738. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4739. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4740. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4741. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4742. if (++i10 == dst->ne[0]) {
  4743. i10 = 0;
  4744. if (++i11 == dst->ne[1]) {
  4745. i11 = 0;
  4746. if (++i12 == dst->ne[2]) {
  4747. i12 = 0;
  4748. if (++i13 == dst->ne[3]) {
  4749. i13 = 0;
  4750. }
  4751. }
  4752. }
  4753. }
  4754. }
  4755. }
  4756. }
  4757. }
  4758. } else {
  4759. GGML_ASSERT(false); // TODO: implement
  4760. }
  4761. }
  4762. static void ggml_compute_forward_dup(
  4763. const struct ggml_compute_params * params,
  4764. const struct ggml_tensor * src0,
  4765. struct ggml_tensor * dst) {
  4766. switch (src0->type) {
  4767. case GGML_TYPE_F16:
  4768. {
  4769. ggml_compute_forward_dup_f16(params, src0, dst);
  4770. } break;
  4771. case GGML_TYPE_F32:
  4772. {
  4773. ggml_compute_forward_dup_f32(params, src0, dst);
  4774. } break;
  4775. default:
  4776. {
  4777. GGML_ASSERT(false);
  4778. } break;
  4779. }
  4780. }
  4781. // ggml_compute_forward_add
  4782. static void ggml_compute_forward_add_f32(
  4783. const struct ggml_compute_params * params,
  4784. const struct ggml_tensor * src0,
  4785. const struct ggml_tensor * src1,
  4786. struct ggml_tensor * dst) {
  4787. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4788. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4789. return;
  4790. }
  4791. const int ith = params->ith;
  4792. const int nth = params->nth;
  4793. const int n = ggml_nrows(src0);
  4794. const int nc = src0->ne[0];
  4795. const size_t nb00 = src0->nb[0];
  4796. const size_t nb01 = src0->nb[1];
  4797. const size_t nb10 = src1->nb[0];
  4798. const size_t nb11 = src1->nb[1];
  4799. const size_t nb0 = dst->nb[0];
  4800. const size_t nb1 = dst->nb[1];
  4801. GGML_ASSERT( nb0 == sizeof(float));
  4802. GGML_ASSERT(nb00 == sizeof(float));
  4803. if (nb10 == sizeof(float)) {
  4804. for (int j = ith; j < n; j += nth) {
  4805. #ifdef GGML_USE_ACCELERATE
  4806. vDSP_vadd(
  4807. (float *) ((char *) src0->data + j*nb01), 1,
  4808. (float *) ((char *) src1->data + j*nb11), 1,
  4809. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4810. #else
  4811. ggml_vec_add_f32(nc,
  4812. (float *) ((char *) dst->data + j*nb1),
  4813. (float *) ((char *) src0->data + j*nb01),
  4814. (float *) ((char *) src1->data + j*nb11));
  4815. #endif
  4816. }
  4817. } else {
  4818. // src1 is not contiguous
  4819. for (int j = ith; j < n; j += nth) {
  4820. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4821. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4822. for (int i = 0; i < nc; i++) {
  4823. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4824. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4825. }
  4826. }
  4827. }
  4828. }
  4829. static void ggml_compute_forward_add(
  4830. const struct ggml_compute_params * params,
  4831. const struct ggml_tensor * src0,
  4832. const struct ggml_tensor * src1,
  4833. struct ggml_tensor * dst) {
  4834. switch (src0->type) {
  4835. case GGML_TYPE_F32:
  4836. {
  4837. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4838. } break;
  4839. default:
  4840. {
  4841. GGML_ASSERT(false);
  4842. } break;
  4843. }
  4844. }
  4845. // ggml_compute_forward_sub
  4846. static void ggml_compute_forward_sub_f32(
  4847. const struct ggml_compute_params * params,
  4848. const struct ggml_tensor * src0,
  4849. const struct ggml_tensor * src1,
  4850. struct ggml_tensor * dst) {
  4851. assert(params->ith == 0);
  4852. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4854. return;
  4855. }
  4856. const int n = ggml_nrows(src0);
  4857. const int nc = src0->ne[0];
  4858. assert( dst->nb[0] == sizeof(float));
  4859. assert(src0->nb[0] == sizeof(float));
  4860. assert(src1->nb[0] == sizeof(float));
  4861. for (int i = 0; i < n; i++) {
  4862. ggml_vec_sub_f32(nc,
  4863. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4864. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4865. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4866. }
  4867. }
  4868. static void ggml_compute_forward_sub(
  4869. const struct ggml_compute_params * params,
  4870. const struct ggml_tensor * src0,
  4871. const struct ggml_tensor * src1,
  4872. struct ggml_tensor * dst) {
  4873. switch (src0->type) {
  4874. case GGML_TYPE_F32:
  4875. {
  4876. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4877. } break;
  4878. default:
  4879. {
  4880. GGML_ASSERT(false);
  4881. } break;
  4882. }
  4883. }
  4884. // ggml_compute_forward_mul
  4885. static void ggml_compute_forward_mul_f32(
  4886. const struct ggml_compute_params * params,
  4887. const struct ggml_tensor * src0,
  4888. const struct ggml_tensor * src1,
  4889. struct ggml_tensor * dst) {
  4890. assert(params->ith == 0);
  4891. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4893. return;
  4894. }
  4895. const int n = ggml_nrows(src0);
  4896. const int nc = src0->ne[0];
  4897. assert( dst->nb[0] == sizeof(float));
  4898. assert(src0->nb[0] == sizeof(float));
  4899. assert(src1->nb[0] == sizeof(float));
  4900. for (int i = 0; i < n; i++) {
  4901. ggml_vec_mul_f32(nc,
  4902. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4903. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4904. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4905. }
  4906. }
  4907. static void ggml_compute_forward_mul(
  4908. const struct ggml_compute_params * params,
  4909. const struct ggml_tensor * src0,
  4910. const struct ggml_tensor * src1,
  4911. struct ggml_tensor * dst) {
  4912. switch (src0->type) {
  4913. case GGML_TYPE_F32:
  4914. {
  4915. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4916. } break;
  4917. default:
  4918. {
  4919. GGML_ASSERT(false);
  4920. } break;
  4921. }
  4922. }
  4923. // ggml_compute_forward_div
  4924. static void ggml_compute_forward_div_f32(
  4925. const struct ggml_compute_params * params,
  4926. const struct ggml_tensor * src0,
  4927. const struct ggml_tensor * src1,
  4928. struct ggml_tensor * dst) {
  4929. assert(params->ith == 0);
  4930. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4932. return;
  4933. }
  4934. const int n = ggml_nrows(src0);
  4935. const int nc = src0->ne[0];
  4936. assert( dst->nb[0] == sizeof(float));
  4937. assert(src0->nb[0] == sizeof(float));
  4938. assert(src1->nb[0] == sizeof(float));
  4939. for (int i = 0; i < n; i++) {
  4940. ggml_vec_div_f32(nc,
  4941. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4942. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4943. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4944. }
  4945. }
  4946. static void ggml_compute_forward_div(
  4947. const struct ggml_compute_params * params,
  4948. const struct ggml_tensor * src0,
  4949. const struct ggml_tensor * src1,
  4950. struct ggml_tensor * dst) {
  4951. switch (src0->type) {
  4952. case GGML_TYPE_F32:
  4953. {
  4954. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4955. } break;
  4956. default:
  4957. {
  4958. GGML_ASSERT(false);
  4959. } break;
  4960. }
  4961. }
  4962. // ggml_compute_forward_sqr
  4963. static void ggml_compute_forward_sqr_f32(
  4964. const struct ggml_compute_params * params,
  4965. const struct ggml_tensor * src0,
  4966. struct ggml_tensor * dst) {
  4967. assert(params->ith == 0);
  4968. assert(ggml_are_same_shape(src0, dst));
  4969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4970. return;
  4971. }
  4972. const int n = ggml_nrows(src0);
  4973. const int nc = src0->ne[0];
  4974. assert( dst->nb[0] == sizeof(float));
  4975. assert(src0->nb[0] == sizeof(float));
  4976. for (int i = 0; i < n; i++) {
  4977. ggml_vec_sqr_f32(nc,
  4978. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4979. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4980. }
  4981. }
  4982. static void ggml_compute_forward_sqr(
  4983. const struct ggml_compute_params * params,
  4984. const struct ggml_tensor * src0,
  4985. struct ggml_tensor * dst) {
  4986. switch (src0->type) {
  4987. case GGML_TYPE_F32:
  4988. {
  4989. ggml_compute_forward_sqr_f32(params, src0, dst);
  4990. } break;
  4991. default:
  4992. {
  4993. GGML_ASSERT(false);
  4994. } break;
  4995. }
  4996. }
  4997. // ggml_compute_forward_sqrt
  4998. static void ggml_compute_forward_sqrt_f32(
  4999. const struct ggml_compute_params * params,
  5000. const struct ggml_tensor * src0,
  5001. struct ggml_tensor * dst) {
  5002. assert(params->ith == 0);
  5003. assert(ggml_are_same_shape(src0, dst));
  5004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5005. return;
  5006. }
  5007. const int n = ggml_nrows(src0);
  5008. const int nc = src0->ne[0];
  5009. assert( dst->nb[0] == sizeof(float));
  5010. assert(src0->nb[0] == sizeof(float));
  5011. for (int i = 0; i < n; i++) {
  5012. ggml_vec_sqrt_f32(nc,
  5013. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5014. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5015. }
  5016. }
  5017. static void ggml_compute_forward_sqrt(
  5018. const struct ggml_compute_params * params,
  5019. const struct ggml_tensor * src0,
  5020. struct ggml_tensor * dst) {
  5021. switch (src0->type) {
  5022. case GGML_TYPE_F32:
  5023. {
  5024. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5025. } break;
  5026. default:
  5027. {
  5028. GGML_ASSERT(false);
  5029. } break;
  5030. }
  5031. }
  5032. // ggml_compute_forward_sum
  5033. static void ggml_compute_forward_sum_f32(
  5034. const struct ggml_compute_params * params,
  5035. const struct ggml_tensor * src0,
  5036. struct ggml_tensor * dst) {
  5037. assert(params->ith == 0);
  5038. assert(ggml_is_scalar(dst));
  5039. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5040. return;
  5041. }
  5042. assert(ggml_is_scalar(dst));
  5043. assert(src0->nb[0] == sizeof(float));
  5044. const int64_t ne00 = src0->ne[0];
  5045. const int64_t ne01 = src0->ne[1];
  5046. const int64_t ne02 = src0->ne[2];
  5047. const int64_t ne03 = src0->ne[3];
  5048. const size_t nb01 = src0->nb[1];
  5049. const size_t nb02 = src0->nb[2];
  5050. const size_t nb03 = src0->nb[3];
  5051. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5052. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5053. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5054. ggml_vec_sum_f32(ne00,
  5055. (float *) (dst->data),
  5056. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5057. }
  5058. }
  5059. }
  5060. }
  5061. static void ggml_compute_forward_sum(
  5062. const struct ggml_compute_params * params,
  5063. const struct ggml_tensor * src0,
  5064. struct ggml_tensor * dst) {
  5065. switch (src0->type) {
  5066. case GGML_TYPE_F32:
  5067. {
  5068. ggml_compute_forward_sum_f32(params, src0, dst);
  5069. } break;
  5070. default:
  5071. {
  5072. GGML_ASSERT(false);
  5073. } break;
  5074. }
  5075. }
  5076. // ggml_compute_forward_mean
  5077. static void ggml_compute_forward_mean_f32(
  5078. const struct ggml_compute_params * params,
  5079. const struct ggml_tensor * src0,
  5080. struct ggml_tensor * dst) {
  5081. assert(params->ith == 0);
  5082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5083. return;
  5084. }
  5085. assert(src0->nb[0] == sizeof(float));
  5086. const int64_t ne00 = src0->ne[0];
  5087. const int64_t ne01 = src0->ne[1];
  5088. const int64_t ne02 = src0->ne[2];
  5089. const int64_t ne03 = src0->ne[3];
  5090. const size_t nb01 = src0->nb[1];
  5091. const size_t nb02 = src0->nb[2];
  5092. const size_t nb03 = src0->nb[3];
  5093. const int64_t ne0 = dst->ne[0];
  5094. const int64_t ne1 = dst->ne[1];
  5095. const int64_t ne2 = dst->ne[2];
  5096. const int64_t ne3 = dst->ne[3];
  5097. assert(ne0 == 1);
  5098. assert(ne1 == ne01);
  5099. assert(ne2 == ne02);
  5100. assert(ne3 == ne03);
  5101. UNUSED(ne0);
  5102. UNUSED(ne1);
  5103. UNUSED(ne2);
  5104. UNUSED(ne3);
  5105. const size_t nb1 = dst->nb[1];
  5106. const size_t nb2 = dst->nb[2];
  5107. const size_t nb3 = dst->nb[3];
  5108. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5109. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5110. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5111. ggml_vec_sum_f32(ne00,
  5112. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5113. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5114. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5115. }
  5116. }
  5117. }
  5118. }
  5119. static void ggml_compute_forward_mean(
  5120. const struct ggml_compute_params * params,
  5121. const struct ggml_tensor * src0,
  5122. struct ggml_tensor * dst) {
  5123. switch (src0->type) {
  5124. case GGML_TYPE_F32:
  5125. {
  5126. ggml_compute_forward_mean_f32(params, src0, dst);
  5127. } break;
  5128. default:
  5129. {
  5130. GGML_ASSERT(false);
  5131. } break;
  5132. }
  5133. }
  5134. // ggml_compute_forward_repeat
  5135. static void ggml_compute_forward_repeat_f32(
  5136. const struct ggml_compute_params * params,
  5137. const struct ggml_tensor * src0,
  5138. struct ggml_tensor * dst) {
  5139. assert(params->ith == 0);
  5140. assert(ggml_can_repeat(src0, dst));
  5141. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5142. return;
  5143. }
  5144. // TODO: implement support for rank > 2 tensors
  5145. assert(src0->ne[2] == 1);
  5146. assert(src0->ne[3] == 1);
  5147. assert( dst->ne[2] == 1);
  5148. assert( dst->ne[3] == 1);
  5149. const int nc = dst->ne[0];
  5150. const int nr = dst->ne[1];
  5151. const int nc0 = src0->ne[0];
  5152. const int nr0 = src0->ne[1];
  5153. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5154. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5155. // TODO: support for transposed / permuted tensors
  5156. assert( dst->nb[0] == sizeof(float));
  5157. assert(src0->nb[0] == sizeof(float));
  5158. // TODO: maybe this is not optimal?
  5159. for (int i = 0; i < nrr; i++) {
  5160. for (int j = 0; j < ncr; j++) {
  5161. for (int k = 0; k < nr0; k++) {
  5162. ggml_vec_cpy_f32(nc0,
  5163. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5164. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5165. }
  5166. }
  5167. }
  5168. }
  5169. static void ggml_compute_forward_repeat(
  5170. const struct ggml_compute_params * params,
  5171. const struct ggml_tensor * src0,
  5172. struct ggml_tensor * dst) {
  5173. switch (src0->type) {
  5174. case GGML_TYPE_F32:
  5175. {
  5176. ggml_compute_forward_repeat_f32(params, src0, dst);
  5177. } break;
  5178. default:
  5179. {
  5180. GGML_ASSERT(false);
  5181. } break;
  5182. }
  5183. }
  5184. // ggml_compute_forward_abs
  5185. static void ggml_compute_forward_abs_f32(
  5186. const struct ggml_compute_params * params,
  5187. const struct ggml_tensor * src0,
  5188. struct ggml_tensor * dst) {
  5189. assert(params->ith == 0);
  5190. assert(ggml_are_same_shape(src0, dst));
  5191. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5192. return;
  5193. }
  5194. const int n = ggml_nrows(src0);
  5195. const int nc = src0->ne[0];
  5196. assert(dst->nb[0] == sizeof(float));
  5197. assert(src0->nb[0] == sizeof(float));
  5198. for (int i = 0; i < n; i++) {
  5199. ggml_vec_abs_f32(nc,
  5200. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5201. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5202. }
  5203. }
  5204. static void ggml_compute_forward_abs(
  5205. const struct ggml_compute_params * params,
  5206. const struct ggml_tensor * src0,
  5207. struct ggml_tensor * dst) {
  5208. switch (src0->type) {
  5209. case GGML_TYPE_F32:
  5210. {
  5211. ggml_compute_forward_abs_f32(params, src0, dst);
  5212. } break;
  5213. default:
  5214. {
  5215. GGML_ASSERT(false);
  5216. } break;
  5217. }
  5218. }
  5219. // ggml_compute_forward_sgn
  5220. static void ggml_compute_forward_sgn_f32(
  5221. const struct ggml_compute_params * params,
  5222. const struct ggml_tensor * src0,
  5223. struct ggml_tensor * dst) {
  5224. assert(params->ith == 0);
  5225. assert(ggml_are_same_shape(src0, dst));
  5226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5227. return;
  5228. }
  5229. const int n = ggml_nrows(src0);
  5230. const int nc = src0->ne[0];
  5231. assert(dst->nb[0] == sizeof(float));
  5232. assert(src0->nb[0] == sizeof(float));
  5233. for (int i = 0; i < n; i++) {
  5234. ggml_vec_sgn_f32(nc,
  5235. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5236. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5237. }
  5238. }
  5239. static void ggml_compute_forward_sgn(
  5240. const struct ggml_compute_params * params,
  5241. const struct ggml_tensor * src0,
  5242. struct ggml_tensor * dst) {
  5243. switch (src0->type) {
  5244. case GGML_TYPE_F32:
  5245. {
  5246. ggml_compute_forward_sgn_f32(params, src0, dst);
  5247. } break;
  5248. default:
  5249. {
  5250. GGML_ASSERT(false);
  5251. } break;
  5252. }
  5253. }
  5254. // ggml_compute_forward_neg
  5255. static void ggml_compute_forward_neg_f32(
  5256. const struct ggml_compute_params * params,
  5257. const struct ggml_tensor * src0,
  5258. struct ggml_tensor * dst) {
  5259. assert(params->ith == 0);
  5260. assert(ggml_are_same_shape(src0, dst));
  5261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5262. return;
  5263. }
  5264. const int n = ggml_nrows(src0);
  5265. const int nc = src0->ne[0];
  5266. assert(dst->nb[0] == sizeof(float));
  5267. assert(src0->nb[0] == sizeof(float));
  5268. for (int i = 0; i < n; i++) {
  5269. ggml_vec_neg_f32(nc,
  5270. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5271. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5272. }
  5273. }
  5274. static void ggml_compute_forward_neg(
  5275. const struct ggml_compute_params * params,
  5276. const struct ggml_tensor * src0,
  5277. struct ggml_tensor * dst) {
  5278. switch (src0->type) {
  5279. case GGML_TYPE_F32:
  5280. {
  5281. ggml_compute_forward_neg_f32(params, src0, dst);
  5282. } break;
  5283. default:
  5284. {
  5285. GGML_ASSERT(false);
  5286. } break;
  5287. }
  5288. }
  5289. // ggml_compute_forward_step
  5290. static void ggml_compute_forward_step_f32(
  5291. const struct ggml_compute_params * params,
  5292. const struct ggml_tensor * src0,
  5293. struct ggml_tensor * dst) {
  5294. assert(params->ith == 0);
  5295. assert(ggml_are_same_shape(src0, dst));
  5296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5297. return;
  5298. }
  5299. const int n = ggml_nrows(src0);
  5300. const int nc = src0->ne[0];
  5301. assert(dst->nb[0] == sizeof(float));
  5302. assert(src0->nb[0] == sizeof(float));
  5303. for (int i = 0; i < n; i++) {
  5304. ggml_vec_step_f32(nc,
  5305. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5306. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5307. }
  5308. }
  5309. static void ggml_compute_forward_step(
  5310. const struct ggml_compute_params * params,
  5311. const struct ggml_tensor * src0,
  5312. struct ggml_tensor * dst) {
  5313. switch (src0->type) {
  5314. case GGML_TYPE_F32:
  5315. {
  5316. ggml_compute_forward_step_f32(params, src0, dst);
  5317. } break;
  5318. default:
  5319. {
  5320. GGML_ASSERT(false);
  5321. } break;
  5322. }
  5323. }
  5324. // ggml_compute_forward_relu
  5325. static void ggml_compute_forward_relu_f32(
  5326. const struct ggml_compute_params * params,
  5327. const struct ggml_tensor * src0,
  5328. struct ggml_tensor * dst) {
  5329. assert(params->ith == 0);
  5330. assert(ggml_are_same_shape(src0, dst));
  5331. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5332. return;
  5333. }
  5334. const int n = ggml_nrows(src0);
  5335. const int nc = src0->ne[0];
  5336. assert(dst->nb[0] == sizeof(float));
  5337. assert(src0->nb[0] == sizeof(float));
  5338. for (int i = 0; i < n; i++) {
  5339. ggml_vec_relu_f32(nc,
  5340. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5341. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5342. }
  5343. }
  5344. static void ggml_compute_forward_relu(
  5345. const struct ggml_compute_params * params,
  5346. const struct ggml_tensor * src0,
  5347. struct ggml_tensor * dst) {
  5348. switch (src0->type) {
  5349. case GGML_TYPE_F32:
  5350. {
  5351. ggml_compute_forward_relu_f32(params, src0, dst);
  5352. } break;
  5353. default:
  5354. {
  5355. GGML_ASSERT(false);
  5356. } break;
  5357. }
  5358. }
  5359. // ggml_compute_forward_gelu
  5360. static void ggml_compute_forward_gelu_f32(
  5361. const struct ggml_compute_params * params,
  5362. const struct ggml_tensor * src0,
  5363. struct ggml_tensor * dst) {
  5364. GGML_ASSERT(ggml_is_contiguous(src0));
  5365. GGML_ASSERT(ggml_is_contiguous(dst));
  5366. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5367. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5368. return;
  5369. }
  5370. const int ith = params->ith;
  5371. const int nth = params->nth;
  5372. const int nc = src0->ne[0];
  5373. const int nr = ggml_nrows(src0);
  5374. // rows per thread
  5375. const int dr = (nr + nth - 1)/nth;
  5376. // row range for this thread
  5377. const int ir0 = dr*ith;
  5378. const int ir1 = MIN(ir0 + dr, nr);
  5379. for (int i1 = ir0; i1 < ir1; i1++) {
  5380. ggml_vec_gelu_f32(nc,
  5381. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5382. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5383. #ifndef NDEBUG
  5384. for (int k = 0; k < nc; k++) {
  5385. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5386. UNUSED(x);
  5387. assert(!isnan(x));
  5388. assert(!isinf(x));
  5389. }
  5390. #endif
  5391. }
  5392. }
  5393. static void ggml_compute_forward_gelu(
  5394. const struct ggml_compute_params * params,
  5395. const struct ggml_tensor * src0,
  5396. struct ggml_tensor * dst) {
  5397. switch (src0->type) {
  5398. case GGML_TYPE_F32:
  5399. {
  5400. ggml_compute_forward_gelu_f32(params, src0, dst);
  5401. } break;
  5402. default:
  5403. {
  5404. GGML_ASSERT(false);
  5405. } break;
  5406. }
  5407. //printf("XXXXXXXX gelu\n");
  5408. }
  5409. // ggml_compute_forward_silu
  5410. static void ggml_compute_forward_silu_f32(
  5411. const struct ggml_compute_params * params,
  5412. const struct ggml_tensor * src0,
  5413. struct ggml_tensor * dst) {
  5414. GGML_ASSERT(ggml_is_contiguous(src0));
  5415. GGML_ASSERT(ggml_is_contiguous(dst));
  5416. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5418. return;
  5419. }
  5420. const int ith = params->ith;
  5421. const int nth = params->nth;
  5422. const int nc = src0->ne[0];
  5423. const int nr = ggml_nrows(src0);
  5424. // rows per thread
  5425. const int dr = (nr + nth - 1)/nth;
  5426. // row range for this thread
  5427. const int ir0 = dr*ith;
  5428. const int ir1 = MIN(ir0 + dr, nr);
  5429. for (int i1 = ir0; i1 < ir1; i1++) {
  5430. ggml_vec_silu_f32(nc,
  5431. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5432. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5433. #ifndef NDEBUG
  5434. for (int k = 0; k < nc; k++) {
  5435. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5436. UNUSED(x);
  5437. assert(!isnan(x));
  5438. assert(!isinf(x));
  5439. }
  5440. #endif
  5441. }
  5442. }
  5443. static void ggml_compute_forward_silu(
  5444. const struct ggml_compute_params * params,
  5445. const struct ggml_tensor * src0,
  5446. struct ggml_tensor * dst) {
  5447. switch (src0->type) {
  5448. case GGML_TYPE_F32:
  5449. {
  5450. ggml_compute_forward_silu_f32(params, src0, dst);
  5451. } break;
  5452. default:
  5453. {
  5454. GGML_ASSERT(false);
  5455. } break;
  5456. }
  5457. }
  5458. // ggml_compute_forward_norm
  5459. static void ggml_compute_forward_norm_f32(
  5460. const struct ggml_compute_params * params,
  5461. const struct ggml_tensor * src0,
  5462. struct ggml_tensor * dst) {
  5463. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5465. return;
  5466. }
  5467. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5468. const int ith = params->ith;
  5469. const int nth = params->nth;
  5470. const int64_t ne00 = src0->ne[0];
  5471. const int64_t ne01 = src0->ne[1];
  5472. const int64_t ne02 = src0->ne[2];
  5473. const int64_t ne03 = src0->ne[3];
  5474. const size_t nb01 = src0->nb[1];
  5475. const size_t nb02 = src0->nb[2];
  5476. const size_t nb03 = src0->nb[3];
  5477. const size_t nb1 = dst->nb[1];
  5478. const size_t nb2 = dst->nb[2];
  5479. const size_t nb3 = dst->nb[3];
  5480. const float eps = 1e-5f; // TODO: make this a parameter
  5481. // TODO: optimize
  5482. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5483. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5484. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5485. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5486. ggml_float sum = 0.0;
  5487. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5488. sum += (ggml_float)x[i00];
  5489. }
  5490. float mean = sum/ne00;
  5491. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5492. ggml_float sum2 = 0.0;
  5493. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5494. float v = x[i00] - mean;
  5495. y[i00] = v;
  5496. sum2 += (ggml_float)(v*v);
  5497. }
  5498. float variance = sum2/ne00;
  5499. const float scale = 1.0f/sqrtf(variance + eps);
  5500. ggml_vec_scale_f32(ne00, y, scale);
  5501. }
  5502. }
  5503. }
  5504. }
  5505. static void ggml_compute_forward_norm(
  5506. const struct ggml_compute_params * params,
  5507. const struct ggml_tensor * src0,
  5508. struct ggml_tensor * dst) {
  5509. switch (src0->type) {
  5510. case GGML_TYPE_F32:
  5511. {
  5512. ggml_compute_forward_norm_f32(params, src0, dst);
  5513. } break;
  5514. default:
  5515. {
  5516. GGML_ASSERT(false);
  5517. } break;
  5518. }
  5519. }
  5520. static void ggml_compute_forward_rms_norm_f32(
  5521. const struct ggml_compute_params * params,
  5522. const struct ggml_tensor * src0,
  5523. struct ggml_tensor * dst) {
  5524. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5526. return;
  5527. }
  5528. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5529. const int ith = params->ith;
  5530. const int nth = params->nth;
  5531. const int64_t ne00 = src0->ne[0];
  5532. const int64_t ne01 = src0->ne[1];
  5533. const int64_t ne02 = src0->ne[2];
  5534. const int64_t ne03 = src0->ne[3];
  5535. const size_t nb01 = src0->nb[1];
  5536. const size_t nb02 = src0->nb[2];
  5537. const size_t nb03 = src0->nb[3];
  5538. const size_t nb1 = dst->nb[1];
  5539. const size_t nb2 = dst->nb[2];
  5540. const size_t nb3 = dst->nb[3];
  5541. const float eps = 1e-6f; // TODO: make this a parameter
  5542. // TODO: optimize
  5543. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5544. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5545. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5546. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5547. ggml_float sum = 0.0;
  5548. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5549. sum += (ggml_float)(x[i00] * x[i00]);
  5550. }
  5551. float mean = sum/ne00;
  5552. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5553. memcpy(y, x, ne00 * sizeof(float));
  5554. // for (int i00 = 0; i00 < ne00; i00++) {
  5555. // y[i00] = x[i00];
  5556. // }
  5557. const float scale = 1.0f/sqrtf(mean + eps);
  5558. ggml_vec_scale_f32(ne00, y, scale);
  5559. }
  5560. }
  5561. }
  5562. }
  5563. static void ggml_compute_forward_rms_norm(
  5564. const struct ggml_compute_params * params,
  5565. const struct ggml_tensor * src0,
  5566. struct ggml_tensor * dst) {
  5567. switch (src0->type) {
  5568. case GGML_TYPE_F32:
  5569. {
  5570. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5571. } break;
  5572. default:
  5573. {
  5574. GGML_ASSERT(false);
  5575. } break;
  5576. }
  5577. }
  5578. // ggml_compute_forward_mul_mat
  5579. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5580. // helper function to determine if it is better to use BLAS or not
  5581. // for large matrices, BLAS is faster
  5582. static bool ggml_compute_forward_mul_mat_use_blas(
  5583. const struct ggml_tensor * src0,
  5584. const struct ggml_tensor * src1,
  5585. struct ggml_tensor * dst) {
  5586. //const int64_t ne00 = src0->ne[0];
  5587. //const int64_t ne01 = src0->ne[1];
  5588. const int64_t ne10 = src1->ne[0];
  5589. const int64_t ne0 = dst->ne[0];
  5590. const int64_t ne1 = dst->ne[1];
  5591. // TODO: find the optimal values for these
  5592. if (ggml_is_contiguous(src0) &&
  5593. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5594. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5595. return true;
  5596. }
  5597. return false;
  5598. }
  5599. #endif
  5600. static void ggml_compute_forward_mul_mat_f32(
  5601. const struct ggml_compute_params * params,
  5602. const struct ggml_tensor * src0,
  5603. const struct ggml_tensor * src1,
  5604. struct ggml_tensor * dst) {
  5605. int64_t t0 = ggml_perf_time_us();
  5606. UNUSED(t0);
  5607. const int64_t ne00 = src0->ne[0];
  5608. const int64_t ne01 = src0->ne[1];
  5609. const int64_t ne02 = src0->ne[2];
  5610. const int64_t ne03 = src0->ne[3];
  5611. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5612. const int64_t ne10 = src1->ne[0];
  5613. #endif
  5614. const int64_t ne11 = src1->ne[1];
  5615. #ifndef NDEBUG
  5616. const int64_t ne12 = src1->ne[2];
  5617. const int64_t ne13 = src1->ne[3];
  5618. const int64_t ne0 = dst->ne[0];
  5619. const int64_t ne1 = dst->ne[1];
  5620. const int64_t ne2 = dst->ne[2];
  5621. const int64_t ne3 = dst->ne[3];
  5622. const int nb00 = src0->nb[0];
  5623. #endif
  5624. const int nb01 = src0->nb[1];
  5625. const int nb02 = src0->nb[2];
  5626. const int nb03 = src0->nb[3];
  5627. #ifndef NDEBUG
  5628. const int nb10 = src1->nb[0];
  5629. #endif
  5630. const int nb11 = src1->nb[1];
  5631. const int nb12 = src1->nb[2];
  5632. const int nb13 = src1->nb[3];
  5633. const int nb0 = dst->nb[0];
  5634. const int nb1 = dst->nb[1];
  5635. const int nb2 = dst->nb[2];
  5636. const int nb3 = dst->nb[3];
  5637. const int ith = params->ith;
  5638. const int nth = params->nth;
  5639. assert(ne02 == ne12);
  5640. assert(ne03 == ne13);
  5641. assert(ne2 == ne12);
  5642. assert(ne3 == ne13);
  5643. // we don't support permuted src0 or src1
  5644. assert(nb00 == sizeof(float));
  5645. assert(nb10 == sizeof(float));
  5646. // dst cannot be transposed or permuted
  5647. assert(nb0 == sizeof(float));
  5648. assert(nb0 <= nb1);
  5649. assert(nb1 <= nb2);
  5650. assert(nb2 <= nb3);
  5651. assert(ne0 == ne01);
  5652. assert(ne1 == ne11);
  5653. assert(ne2 == ne02);
  5654. assert(ne3 == ne03);
  5655. // nb01 >= nb00 - src0 is not transposed
  5656. // compute by src0 rows
  5657. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5658. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5659. if (params->ith != 0) {
  5660. return;
  5661. }
  5662. if (params->type == GGML_TASK_INIT) {
  5663. return;
  5664. }
  5665. if (params->type == GGML_TASK_FINALIZE) {
  5666. return;
  5667. }
  5668. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5669. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5670. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5671. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5672. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5673. // zT = y * xT
  5674. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5675. ne11, ne01, ne10,
  5676. 1.0f, y, ne10,
  5677. x, ne00,
  5678. 0.0f, d, ne01);
  5679. }
  5680. }
  5681. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5682. return;
  5683. }
  5684. #endif
  5685. if (params->type == GGML_TASK_INIT) {
  5686. return;
  5687. }
  5688. if (params->type == GGML_TASK_FINALIZE) {
  5689. return;
  5690. }
  5691. // parallelize by src0 rows using ggml_vec_dot_f32
  5692. // total rows in src0
  5693. const int nr = ne01*ne02*ne03;
  5694. // rows per thread
  5695. const int dr = (nr + nth - 1)/nth;
  5696. // row range for this thread
  5697. const int ir0 = dr*ith;
  5698. const int ir1 = MIN(ir0 + dr, nr);
  5699. for (int ir = ir0; ir < ir1; ++ir) {
  5700. // src0 indices
  5701. const int i03 = ir/(ne02*ne01);
  5702. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5703. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5704. for (int64_t ic = 0; ic < ne11; ++ic) {
  5705. // src1 indices
  5706. const int i13 = i03;
  5707. const int i12 = i02;
  5708. const int i11 = ic;
  5709. // dst indices
  5710. const int i0 = i01;
  5711. const int i1 = i11;
  5712. const int i2 = i02;
  5713. const int i3 = i03;
  5714. ggml_vec_dot_f32(ne00,
  5715. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5716. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5717. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5718. }
  5719. }
  5720. //int64_t t1 = ggml_perf_time_us();
  5721. //static int64_t acc = 0;
  5722. //acc += t1 - t0;
  5723. //if (t1 - t0 > 10) {
  5724. // printf("\n");
  5725. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5726. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5727. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5728. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5729. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5730. //}
  5731. }
  5732. static void ggml_compute_forward_mul_mat_f16_f32(
  5733. const struct ggml_compute_params * params,
  5734. const struct ggml_tensor * src0,
  5735. const struct ggml_tensor * src1,
  5736. struct ggml_tensor * dst) {
  5737. int64_t t0 = ggml_perf_time_us();
  5738. UNUSED(t0);
  5739. const int64_t ne00 = src0->ne[0];
  5740. const int64_t ne01 = src0->ne[1];
  5741. const int64_t ne02 = src0->ne[2];
  5742. const int64_t ne03 = src0->ne[3];
  5743. const int64_t ne10 = src1->ne[0];
  5744. const int64_t ne11 = src1->ne[1];
  5745. const int64_t ne12 = src1->ne[2];
  5746. const int64_t ne13 = src1->ne[3];
  5747. const int64_t ne0 = dst->ne[0];
  5748. const int64_t ne1 = dst->ne[1];
  5749. const int64_t ne2 = dst->ne[2];
  5750. const int64_t ne3 = dst->ne[3];
  5751. //const int64_t ne = ne0*ne1*ne2*ne3;
  5752. const int nb00 = src0->nb[0];
  5753. const int nb01 = src0->nb[1];
  5754. const int nb02 = src0->nb[2];
  5755. const int nb03 = src0->nb[3];
  5756. const int nb10 = src1->nb[0];
  5757. const int nb11 = src1->nb[1];
  5758. const int nb12 = src1->nb[2];
  5759. const int nb13 = src1->nb[3];
  5760. const int nb0 = dst->nb[0];
  5761. const int nb1 = dst->nb[1];
  5762. const int nb2 = dst->nb[2];
  5763. const int nb3 = dst->nb[3];
  5764. const int ith = params->ith;
  5765. const int nth = params->nth;
  5766. GGML_ASSERT(ne02 == ne12);
  5767. GGML_ASSERT(ne03 == ne13);
  5768. GGML_ASSERT(ne2 == ne12);
  5769. GGML_ASSERT(ne3 == ne13);
  5770. // TODO: we don't support permuted src0
  5771. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5772. // dst cannot be transposed or permuted
  5773. GGML_ASSERT(nb0 == sizeof(float));
  5774. GGML_ASSERT(nb0 <= nb1);
  5775. GGML_ASSERT(nb1 <= nb2);
  5776. GGML_ASSERT(nb2 <= nb3);
  5777. GGML_ASSERT(ne0 == ne01);
  5778. GGML_ASSERT(ne1 == ne11);
  5779. GGML_ASSERT(ne2 == ne02);
  5780. GGML_ASSERT(ne3 == ne03);
  5781. // nb01 >= nb00 - src0 is not transposed
  5782. // compute by src0 rows
  5783. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5784. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5785. GGML_ASSERT(nb10 == sizeof(float));
  5786. if (params->ith != 0) {
  5787. return;
  5788. }
  5789. if (params->type == GGML_TASK_INIT) {
  5790. return;
  5791. }
  5792. if (params->type == GGML_TASK_FINALIZE) {
  5793. return;
  5794. }
  5795. float * const wdata = params->wdata;
  5796. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5797. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5798. {
  5799. size_t id = 0;
  5800. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5801. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5802. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5803. }
  5804. }
  5805. }
  5806. const float * x = wdata;
  5807. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5808. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5809. // zT = y * xT
  5810. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5811. ne11, ne01, ne10,
  5812. 1.0f, y, ne10,
  5813. x, ne00,
  5814. 0.0f, d, ne01);
  5815. }
  5816. }
  5817. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5818. return;
  5819. }
  5820. #endif
  5821. if (params->type == GGML_TASK_INIT) {
  5822. ggml_fp16_t * const wdata = params->wdata;
  5823. size_t id = 0;
  5824. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5825. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5826. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5827. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5828. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5829. }
  5830. }
  5831. }
  5832. }
  5833. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5834. return;
  5835. }
  5836. if (params->type == GGML_TASK_FINALIZE) {
  5837. return;
  5838. }
  5839. // fp16 -> half the size, so divide by 2
  5840. // TODO: do not support transposed src1
  5841. assert(nb10/2 == sizeof(ggml_fp16_t));
  5842. // parallelize by src0 rows using ggml_vec_dot_f16
  5843. // total rows in src0
  5844. const int nr = ne01*ne02*ne03;
  5845. // rows per thread
  5846. const int dr = (nr + nth - 1)/nth;
  5847. // row range for this thread
  5848. const int ir0 = dr*ith;
  5849. const int ir1 = MIN(ir0 + dr, nr);
  5850. ggml_fp16_t * wdata = params->wdata;
  5851. for (int ir = ir0; ir < ir1; ++ir) {
  5852. // src0 indices
  5853. const int i03 = ir/(ne02*ne01);
  5854. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5855. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5856. const int i13 = i03;
  5857. const int i12 = i02;
  5858. const int i0 = i01;
  5859. const int i2 = i02;
  5860. const int i3 = i03;
  5861. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5862. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5863. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5864. for (int64_t ic = 0; ic < ne11; ++ic) {
  5865. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5866. }
  5867. }
  5868. //int64_t t1 = ggml_time_us();
  5869. //static int64_t acc = 0;
  5870. //acc += t1 - t0;
  5871. //if (t1 - t0 > 10) {
  5872. // printf("\n");
  5873. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5874. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5875. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5876. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5877. //}
  5878. }
  5879. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5880. [GGML_TYPE_Q4_0] = {
  5881. .dequantize_row_q = dequantize_row_q4_0,
  5882. .quantize_row_q = quantize_row_q4_0,
  5883. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5884. .quantize_row_q_dot = quantize_row_q8_0,
  5885. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  5886. },
  5887. [GGML_TYPE_Q4_1] = {
  5888. .dequantize_row_q = dequantize_row_q4_1,
  5889. .quantize_row_q = quantize_row_q4_1,
  5890. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5891. .quantize_row_q_dot = quantize_row_q4_1,
  5892. .vec_dot_q = ggml_vec_dot_q4_1,
  5893. },
  5894. // TODO: GGML_TYPE_Q8_0
  5895. };
  5896. // For internal test use
  5897. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5898. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5899. return quantize_fns[i];
  5900. }
  5901. static void ggml_compute_forward_mul_mat_q_f32(
  5902. const struct ggml_compute_params * params,
  5903. const struct ggml_tensor * src0,
  5904. const struct ggml_tensor * src1,
  5905. struct ggml_tensor * dst) {
  5906. int64_t t0 = ggml_perf_time_us();
  5907. UNUSED(t0);
  5908. const int64_t ne00 = src0->ne[0];
  5909. const int64_t ne01 = src0->ne[1];
  5910. const int64_t ne02 = src0->ne[2];
  5911. const int64_t ne03 = src0->ne[3];
  5912. const int64_t ne10 = src1->ne[0];
  5913. const int64_t ne11 = src1->ne[1];
  5914. const int64_t ne12 = src1->ne[2];
  5915. const int64_t ne13 = src1->ne[3];
  5916. const int64_t ne0 = dst->ne[0];
  5917. const int64_t ne1 = dst->ne[1];
  5918. const int64_t ne2 = dst->ne[2];
  5919. const int64_t ne3 = dst->ne[3];
  5920. const int nb00 = src0->nb[0];
  5921. const int nb01 = src0->nb[1];
  5922. const int nb02 = src0->nb[2];
  5923. const int nb03 = src0->nb[3];
  5924. const int nb10 = src1->nb[0];
  5925. const int nb11 = src1->nb[1];
  5926. const int nb12 = src1->nb[2];
  5927. const int nb13 = src1->nb[3];
  5928. const int nb0 = dst->nb[0];
  5929. const int nb1 = dst->nb[1];
  5930. const int nb2 = dst->nb[2];
  5931. const int nb3 = dst->nb[3];
  5932. const int ith = params->ith;
  5933. const int nth = params->nth;
  5934. GGML_ASSERT(ne02 == ne12);
  5935. GGML_ASSERT(ne03 == ne13);
  5936. GGML_ASSERT(ne2 == ne12);
  5937. GGML_ASSERT(ne3 == ne13);
  5938. const enum ggml_type type = src0->type;
  5939. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  5940. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5941. // we don't support permuted src0 or src1
  5942. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5943. GGML_ASSERT(nb10 == sizeof(float));
  5944. // dst cannot be transposed or permuted
  5945. GGML_ASSERT(nb0 == sizeof(float));
  5946. GGML_ASSERT(nb0 <= nb1);
  5947. GGML_ASSERT(nb1 <= nb2);
  5948. GGML_ASSERT(nb2 <= nb3);
  5949. GGML_ASSERT(ne0 == ne01);
  5950. GGML_ASSERT(ne1 == ne11);
  5951. GGML_ASSERT(ne2 == ne02);
  5952. GGML_ASSERT(ne3 == ne03);
  5953. // nb01 >= nb00 - src0 is not transposed
  5954. // compute by src0 rows
  5955. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5956. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5957. if (params->ith != 0) {
  5958. return;
  5959. }
  5960. if (params->type == GGML_TASK_INIT) {
  5961. return;
  5962. }
  5963. if (params->type == GGML_TASK_FINALIZE) {
  5964. return;
  5965. }
  5966. float * const wdata = params->wdata;
  5967. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5970. {
  5971. size_t id = 0;
  5972. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5973. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5974. id += ne00;
  5975. }
  5976. }
  5977. const float * x = wdata;
  5978. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5979. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5980. // zT = y * xT
  5981. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5982. ne11, ne01, ne10,
  5983. 1.0f, y, ne10,
  5984. x, ne00,
  5985. 0.0f, d, ne01);
  5986. }
  5987. }
  5988. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5989. return;
  5990. }
  5991. #endif
  5992. if (params->type == GGML_TASK_INIT) {
  5993. char * wdata = params->wdata;
  5994. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  5995. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5996. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5997. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5998. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5999. wdata += row_size;
  6000. }
  6001. }
  6002. }
  6003. return;
  6004. }
  6005. if (params->type == GGML_TASK_FINALIZE) {
  6006. return;
  6007. }
  6008. // parallelize by src0 rows using ggml_vec_dot_q
  6009. // total rows in src0
  6010. const int nr = ne01*ne02*ne03;
  6011. // rows per thread
  6012. const int dr = (nr + nth - 1)/nth;
  6013. // row range for this thread
  6014. const int ir0 = dr*ith;
  6015. const int ir1 = MIN(ir0 + dr, nr);
  6016. void * wdata = params->wdata;
  6017. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6018. for (int ir = ir0; ir < ir1; ++ir) {
  6019. // src0 indices
  6020. const int i03 = ir/(ne02*ne01);
  6021. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6022. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6023. const int i13 = i03;
  6024. const int i12 = i02;
  6025. const int i0 = i01;
  6026. const int i2 = i02;
  6027. const int i3 = i03;
  6028. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6029. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6030. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6031. assert(ne00 % 32 == 0);
  6032. for (int64_t ic = 0; ic < ne11; ++ic) {
  6033. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6034. }
  6035. }
  6036. //int64_t t1 = ggml_time_us();
  6037. //static int64_t acc = 0;
  6038. //acc += t1 - t0;
  6039. //if (t1 - t0 > 10) {
  6040. // printf("\n");
  6041. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6042. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6043. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6044. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6045. //}
  6046. }
  6047. static void ggml_compute_forward_mul_mat(
  6048. const struct ggml_compute_params * params,
  6049. const struct ggml_tensor * src0,
  6050. const struct ggml_tensor * src1,
  6051. struct ggml_tensor * dst) {
  6052. switch (src0->type) {
  6053. case GGML_TYPE_Q4_0:
  6054. case GGML_TYPE_Q4_1:
  6055. case GGML_TYPE_Q8_0:
  6056. {
  6057. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6058. } break;
  6059. case GGML_TYPE_F16:
  6060. {
  6061. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6062. } break;
  6063. case GGML_TYPE_F32:
  6064. {
  6065. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6066. } break;
  6067. default:
  6068. {
  6069. GGML_ASSERT(false);
  6070. } break;
  6071. }
  6072. #if 0
  6073. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  6074. static int first = 8;
  6075. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6076. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6077. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6078. if (first) {
  6079. --first;
  6080. } else {
  6081. for (int k = 0; k < dst->ne[1]; ++k) {
  6082. for (int j = 0; j < dst->ne[0]/16; ++j) {
  6083. for (int i = 0; i < 16; ++i) {
  6084. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6085. }
  6086. printf("\n");
  6087. }
  6088. printf("\n");
  6089. }
  6090. printf("\n");
  6091. exit(0);
  6092. }
  6093. } else {
  6094. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  6095. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  6096. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6097. }
  6098. #endif
  6099. }
  6100. // ggml_compute_forward_scale
  6101. static void ggml_compute_forward_scale_f32(
  6102. const struct ggml_compute_params * params,
  6103. const struct ggml_tensor * src0,
  6104. const struct ggml_tensor * src1,
  6105. struct ggml_tensor * dst) {
  6106. GGML_ASSERT(ggml_is_contiguous(src0));
  6107. GGML_ASSERT(ggml_is_contiguous(dst));
  6108. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6109. GGML_ASSERT(ggml_is_scalar(src1));
  6110. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6111. return;
  6112. }
  6113. // scale factor
  6114. const float v = *(float *) src1->data;
  6115. const int ith = params->ith;
  6116. const int nth = params->nth;
  6117. const int nc = src0->ne[0];
  6118. const int nr = ggml_nrows(src0);
  6119. // rows per thread
  6120. const int dr = (nr + nth - 1)/nth;
  6121. // row range for this thread
  6122. const int ir0 = dr*ith;
  6123. const int ir1 = MIN(ir0 + dr, nr);
  6124. for (int i1 = ir0; i1 < ir1; i1++) {
  6125. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6126. }
  6127. }
  6128. static void ggml_compute_forward_scale(
  6129. const struct ggml_compute_params * params,
  6130. const struct ggml_tensor * src0,
  6131. const struct ggml_tensor * src1,
  6132. struct ggml_tensor * dst) {
  6133. switch (src0->type) {
  6134. case GGML_TYPE_F32:
  6135. {
  6136. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6137. } break;
  6138. default:
  6139. {
  6140. GGML_ASSERT(false);
  6141. } break;
  6142. }
  6143. }
  6144. // ggml_compute_forward_cpy
  6145. static void ggml_compute_forward_cpy(
  6146. const struct ggml_compute_params * params,
  6147. const struct ggml_tensor * src0,
  6148. struct ggml_tensor * dst) {
  6149. ggml_compute_forward_dup(params, src0, dst);
  6150. }
  6151. // ggml_compute_forward_cont
  6152. static void ggml_compute_forward_cont(
  6153. const struct ggml_compute_params * params,
  6154. const struct ggml_tensor * src0,
  6155. struct ggml_tensor * dst) {
  6156. ggml_compute_forward_dup(params, src0, dst);
  6157. }
  6158. // ggml_compute_forward_reshape
  6159. static void ggml_compute_forward_reshape(
  6160. const struct ggml_compute_params * params,
  6161. const struct ggml_tensor * src0,
  6162. struct ggml_tensor * dst) {
  6163. // NOP
  6164. UNUSED(params);
  6165. UNUSED(src0);
  6166. UNUSED(dst);
  6167. }
  6168. // ggml_compute_forward_view
  6169. static void ggml_compute_forward_view(
  6170. const struct ggml_compute_params * params,
  6171. const struct ggml_tensor * src0) {
  6172. // NOP
  6173. UNUSED(params);
  6174. UNUSED(src0);
  6175. }
  6176. // ggml_compute_forward_permute
  6177. static void ggml_compute_forward_permute(
  6178. const struct ggml_compute_params * params,
  6179. const struct ggml_tensor * src0) {
  6180. // NOP
  6181. UNUSED(params);
  6182. UNUSED(src0);
  6183. }
  6184. // ggml_compute_forward_transpose
  6185. static void ggml_compute_forward_transpose(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0) {
  6188. // NOP
  6189. UNUSED(params);
  6190. UNUSED(src0);
  6191. }
  6192. // ggml_compute_forward_get_rows
  6193. static void ggml_compute_forward_get_rows_q(
  6194. const struct ggml_compute_params * params,
  6195. const struct ggml_tensor * src0,
  6196. const struct ggml_tensor * src1,
  6197. struct ggml_tensor * dst) {
  6198. assert(params->ith == 0);
  6199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6200. return;
  6201. }
  6202. const int nc = src0->ne[0];
  6203. const int nr = ggml_nelements(src1);
  6204. const enum ggml_type type = src0->type;
  6205. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6206. assert( dst->ne[0] == nc);
  6207. assert( dst->ne[1] == nr);
  6208. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6209. for (int i = 0; i < nr; ++i) {
  6210. const int r = ((int32_t *) src1->data)[i];
  6211. dequantize_row_q(
  6212. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6213. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6214. }
  6215. }
  6216. static void ggml_compute_forward_get_rows_f16(
  6217. const struct ggml_compute_params * params,
  6218. const struct ggml_tensor * src0,
  6219. const struct ggml_tensor * src1,
  6220. struct ggml_tensor * dst) {
  6221. assert(params->ith == 0);
  6222. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6223. return;
  6224. }
  6225. const int nc = src0->ne[0];
  6226. const int nr = ggml_nelements(src1);
  6227. assert( dst->ne[0] == nc);
  6228. assert( dst->ne[1] == nr);
  6229. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6230. for (int i = 0; i < nr; ++i) {
  6231. const int r = ((int32_t *) src1->data)[i];
  6232. for (int j = 0; j < nc; ++j) {
  6233. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6234. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6235. }
  6236. }
  6237. }
  6238. static void ggml_compute_forward_get_rows_f32(
  6239. const struct ggml_compute_params * params,
  6240. const struct ggml_tensor * src0,
  6241. const struct ggml_tensor * src1,
  6242. struct ggml_tensor * dst) {
  6243. assert(params->ith == 0);
  6244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6245. return;
  6246. }
  6247. const int nc = src0->ne[0];
  6248. const int nr = ggml_nelements(src1);
  6249. assert( dst->ne[0] == nc);
  6250. assert( dst->ne[1] == nr);
  6251. assert(src0->nb[0] == sizeof(float));
  6252. for (int i = 0; i < nr; ++i) {
  6253. const int r = ((int32_t *) src1->data)[i];
  6254. ggml_vec_cpy_f32(nc,
  6255. (float *) ((char *) dst->data + i*dst->nb[1]),
  6256. (float *) ((char *) src0->data + r*src0->nb[1]));
  6257. }
  6258. }
  6259. static void ggml_compute_forward_get_rows(
  6260. const struct ggml_compute_params * params,
  6261. const struct ggml_tensor * src0,
  6262. const struct ggml_tensor * src1,
  6263. struct ggml_tensor * dst) {
  6264. switch (src0->type) {
  6265. case GGML_TYPE_Q4_0:
  6266. case GGML_TYPE_Q4_1:
  6267. case GGML_TYPE_Q8_0:
  6268. {
  6269. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6270. } break;
  6271. case GGML_TYPE_F16:
  6272. {
  6273. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6274. } break;
  6275. case GGML_TYPE_F32:
  6276. {
  6277. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6278. } break;
  6279. default:
  6280. {
  6281. GGML_ASSERT(false);
  6282. } break;
  6283. }
  6284. //static bool first = true;
  6285. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6286. //if (first) {
  6287. // first = false;
  6288. //} else {
  6289. // for (int k = 0; k < dst->ne[1]; ++k) {
  6290. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6291. // for (int i = 0; i < 16; ++i) {
  6292. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6293. // }
  6294. // printf("\n");
  6295. // }
  6296. // printf("\n");
  6297. // }
  6298. // printf("\n");
  6299. // exit(0);
  6300. //}
  6301. }
  6302. // ggml_compute_forward_diag_mask_inf
  6303. static void ggml_compute_forward_diag_mask_inf_f32(
  6304. const struct ggml_compute_params * params,
  6305. const struct ggml_tensor * src0,
  6306. const struct ggml_tensor * src1,
  6307. struct ggml_tensor * dst) {
  6308. assert(params->ith == 0);
  6309. assert(src1->type == GGML_TYPE_I32);
  6310. assert(ggml_nelements(src1) == 1);
  6311. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6312. return;
  6313. }
  6314. const int n_past = ((int32_t *) src1->data)[0];
  6315. // TODO: handle transposed/permuted matrices
  6316. const int n = ggml_nrows(src0);
  6317. const int nc = src0->ne[0];
  6318. const int nr = src0->ne[1];
  6319. const int nz = n/nr;
  6320. assert( dst->nb[0] == sizeof(float));
  6321. assert(src0->nb[0] == sizeof(float));
  6322. for (int k = 0; k < nz; k++) {
  6323. for (int j = 0; j < nr; j++) {
  6324. for (int i = n_past; i < nc; i++) {
  6325. if (i > n_past + j) {
  6326. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6327. }
  6328. }
  6329. }
  6330. }
  6331. }
  6332. static void ggml_compute_forward_diag_mask_inf(
  6333. const struct ggml_compute_params * params,
  6334. const struct ggml_tensor * src0,
  6335. const struct ggml_tensor * src1,
  6336. struct ggml_tensor * dst) {
  6337. switch (src0->type) {
  6338. case GGML_TYPE_F32:
  6339. {
  6340. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6341. } break;
  6342. default:
  6343. {
  6344. GGML_ASSERT(false);
  6345. } break;
  6346. }
  6347. }
  6348. // ggml_compute_forward_soft_max
  6349. static void ggml_compute_forward_soft_max_f32(
  6350. const struct ggml_compute_params * params,
  6351. const struct ggml_tensor * src0,
  6352. struct ggml_tensor * dst) {
  6353. GGML_ASSERT(ggml_is_contiguous(src0));
  6354. GGML_ASSERT(ggml_is_contiguous(dst));
  6355. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6357. return;
  6358. }
  6359. // TODO: handle transposed/permuted matrices
  6360. const int ith = params->ith;
  6361. const int nth = params->nth;
  6362. const int nc = src0->ne[0];
  6363. const int nr = ggml_nrows(src0);
  6364. // rows per thread
  6365. const int dr = (nr + nth - 1)/nth;
  6366. // row range for this thread
  6367. const int ir0 = dr*ith;
  6368. const int ir1 = MIN(ir0 + dr, nr);
  6369. for (int i1 = ir0; i1 < ir1; i1++) {
  6370. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6371. #ifndef NDEBUG
  6372. for (int i = 0; i < nc; ++i) {
  6373. //printf("p[%d] = %f\n", i, p[i]);
  6374. assert(!isnan(p[i]));
  6375. }
  6376. #endif
  6377. float max = -INFINITY;
  6378. ggml_vec_max_f32(nc, &max, p);
  6379. ggml_float sum = 0.0;
  6380. uint16_t scvt;
  6381. for (int i = 0; i < nc; i++) {
  6382. if (p[i] == -INFINITY) {
  6383. p[i] = 0.0f;
  6384. } else {
  6385. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6386. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6387. memcpy(&scvt, &s, sizeof(scvt));
  6388. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6389. sum += (ggml_float)val;
  6390. p[i] = val;
  6391. }
  6392. }
  6393. assert(sum > 0.0);
  6394. sum = 1.0/sum;
  6395. ggml_vec_scale_f32(nc, p, sum);
  6396. #ifndef NDEBUG
  6397. for (int i = 0; i < nc; ++i) {
  6398. assert(!isnan(p[i]));
  6399. assert(!isinf(p[i]));
  6400. }
  6401. #endif
  6402. }
  6403. }
  6404. static void ggml_compute_forward_soft_max(
  6405. const struct ggml_compute_params * params,
  6406. const struct ggml_tensor * src0,
  6407. struct ggml_tensor * dst) {
  6408. switch (src0->type) {
  6409. case GGML_TYPE_F32:
  6410. {
  6411. ggml_compute_forward_soft_max_f32(params, src0, dst);
  6412. } break;
  6413. default:
  6414. {
  6415. GGML_ASSERT(false);
  6416. } break;
  6417. }
  6418. }
  6419. // ggml_compute_forward_rope
  6420. static void ggml_compute_forward_rope_f32(
  6421. const struct ggml_compute_params * params,
  6422. const struct ggml_tensor * src0,
  6423. const struct ggml_tensor * src1,
  6424. struct ggml_tensor * dst) {
  6425. assert(src1->type == GGML_TYPE_I32);
  6426. assert(ggml_nelements(src1) == 3);
  6427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6428. return;
  6429. }
  6430. const int n_past = ((int32_t *) src1->data)[0];
  6431. const int n_dims = ((int32_t *) src1->data)[1];
  6432. const int mode = ((int32_t *) src1->data)[2];
  6433. //const int64_t ne0 = src0->ne[0];
  6434. const int64_t ne1 = src0->ne[1];
  6435. const int64_t ne2 = src0->ne[2];
  6436. const int64_t ne3 = src0->ne[3];
  6437. const int nb0 = src0->nb[0];
  6438. const int nb1 = src0->nb[1];
  6439. const int nb2 = src0->nb[2];
  6440. const int nb3 = src0->nb[3];
  6441. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6442. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6443. assert(nb0 == sizeof(float));
  6444. const int ith = params->ith;
  6445. const int nth = params->nth;
  6446. const int nr = ggml_nrows(src0);
  6447. // rows per thread
  6448. const int dr = (nr + nth - 1)/nth;
  6449. // row range for this thread
  6450. const int ir0 = dr*ith;
  6451. const int ir1 = MIN(ir0 + dr, nr);
  6452. // row index used to determine which thread to use
  6453. int ir = 0;
  6454. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6455. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6456. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6457. const int p = (mode == 0 ? n_past + i2 : i2);
  6458. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6459. if (ir++ < ir0) continue;
  6460. if (ir > ir1) break;
  6461. float theta = (float)p;
  6462. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6463. const float cos_theta = cosf(theta);
  6464. const float sin_theta = sinf(theta);
  6465. theta *= theta_scale;
  6466. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6467. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6468. const float x0 = src[0];
  6469. const float x1 = src[1];
  6470. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6471. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6472. }
  6473. }
  6474. }
  6475. }
  6476. }
  6477. static void ggml_compute_forward_rope_f16(
  6478. const struct ggml_compute_params * params,
  6479. const struct ggml_tensor * src0,
  6480. const struct ggml_tensor * src1,
  6481. struct ggml_tensor * dst) {
  6482. assert(src1->type == GGML_TYPE_I32);
  6483. assert(ggml_nelements(src1) == 3);
  6484. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6485. return;
  6486. }
  6487. const int n_past = ((int32_t *) src1->data)[0];
  6488. const int n_dims = ((int32_t *) src1->data)[1];
  6489. const int mode = ((int32_t *) src1->data)[2];
  6490. //const int64_t ne0 = src0->ne[0];
  6491. const int64_t ne1 = src0->ne[1];
  6492. const int64_t ne2 = src0->ne[2];
  6493. const int64_t ne3 = src0->ne[3];
  6494. const int nb0 = src0->nb[0];
  6495. const int nb1 = src0->nb[1];
  6496. const int nb2 = src0->nb[2];
  6497. const int nb3 = src0->nb[3];
  6498. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6499. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6500. assert(nb0 == sizeof(ggml_fp16_t));
  6501. const int ith = params->ith;
  6502. const int nth = params->nth;
  6503. const int nr = ggml_nrows(src0);
  6504. // rows per thread
  6505. const int dr = (nr + nth - 1)/nth;
  6506. // row range for this thread
  6507. const int ir0 = dr*ith;
  6508. const int ir1 = MIN(ir0 + dr, nr);
  6509. // row index used to determine which thread to use
  6510. int ir = 0;
  6511. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  6512. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6513. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6514. const int p = (mode == 0 ? n_past + i2 : i2);
  6515. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6516. if (ir++ < ir0) continue;
  6517. if (ir > ir1) break;
  6518. float theta = (float)p;
  6519. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6520. const float cos_theta = cosf(theta);
  6521. const float sin_theta = sinf(theta);
  6522. theta *= theta_scale;
  6523. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6524. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6525. const float x0 = GGML_FP16_TO_FP32(src[0]);
  6526. const float x1 = GGML_FP16_TO_FP32(src[1]);
  6527. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  6528. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  6529. }
  6530. }
  6531. }
  6532. }
  6533. }
  6534. static void ggml_compute_forward_rope(
  6535. const struct ggml_compute_params * params,
  6536. const struct ggml_tensor * src0,
  6537. const struct ggml_tensor * src1,
  6538. struct ggml_tensor * dst) {
  6539. switch (src0->type) {
  6540. case GGML_TYPE_F16:
  6541. {
  6542. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6543. } break;
  6544. case GGML_TYPE_F32:
  6545. {
  6546. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6547. } break;
  6548. default:
  6549. {
  6550. GGML_ASSERT(false);
  6551. } break;
  6552. }
  6553. }
  6554. // ggml_compute_forward_conv_1d_1s
  6555. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6556. const struct ggml_compute_params * params,
  6557. const struct ggml_tensor * src0,
  6558. const struct ggml_tensor * src1,
  6559. struct ggml_tensor * dst) {
  6560. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6561. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6562. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6563. int64_t t0 = ggml_perf_time_us();
  6564. UNUSED(t0);
  6565. const int64_t ne00 = src0->ne[0];
  6566. const int64_t ne01 = src0->ne[1];
  6567. const int64_t ne02 = src0->ne[2];
  6568. //const int64_t ne03 = src0->ne[3];
  6569. const int64_t ne10 = src1->ne[0];
  6570. const int64_t ne11 = src1->ne[1];
  6571. //const int64_t ne12 = src1->ne[2];
  6572. //const int64_t ne13 = src1->ne[3];
  6573. //const int64_t ne0 = dst->ne[0];
  6574. //const int64_t ne1 = dst->ne[1];
  6575. //const int64_t ne2 = dst->ne[2];
  6576. //const int64_t ne3 = dst->ne[3];
  6577. //const int64_t ne = ne0*ne1*ne2*ne3;
  6578. const int nb00 = src0->nb[0];
  6579. const int nb01 = src0->nb[1];
  6580. const int nb02 = src0->nb[2];
  6581. //const int nb03 = src0->nb[3];
  6582. const int nb10 = src1->nb[0];
  6583. const int nb11 = src1->nb[1];
  6584. //const int nb12 = src1->nb[2];
  6585. //const int nb13 = src1->nb[3];
  6586. //const int nb0 = dst->nb[0];
  6587. const int nb1 = dst->nb[1];
  6588. //const int nb2 = dst->nb[2];
  6589. //const int nb3 = dst->nb[3];
  6590. const int ith = params->ith;
  6591. const int nth = params->nth;
  6592. const int nk = ne00;
  6593. const int nh = nk/2;
  6594. const int ew0 = ggml_up32(ne01);
  6595. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6596. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6597. GGML_ASSERT(nb10 == sizeof(float));
  6598. if (params->type == GGML_TASK_INIT) {
  6599. // TODO: fix this memset (wsize is overestimated)
  6600. memset(params->wdata, 0, params->wsize);
  6601. // prepare kernel data (src0)
  6602. {
  6603. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6604. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6605. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6606. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6607. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6608. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6609. dst_data[i00*ew0 + i01] = src[i00];
  6610. }
  6611. }
  6612. }
  6613. }
  6614. // prepare source data (src1)
  6615. {
  6616. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6617. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6618. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6619. ggml_fp16_t * dst_data = wdata;
  6620. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6621. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6622. }
  6623. }
  6624. }
  6625. return;
  6626. }
  6627. if (params->type == GGML_TASK_FINALIZE) {
  6628. return;
  6629. }
  6630. // total rows in dst
  6631. const int nr = ne02;
  6632. // rows per thread
  6633. const int dr = (nr + nth - 1)/nth;
  6634. // row range for this thread
  6635. const int ir0 = dr*ith;
  6636. const int ir1 = MIN(ir0 + dr, nr);
  6637. for (int i1 = ir0; i1 < ir1; i1++) {
  6638. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6639. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6640. dst_data[i0] = 0;
  6641. for (int k = -nh; k <= nh; k++) {
  6642. float v = 0.0f;
  6643. ggml_vec_dot_f16(ew0, &v,
  6644. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6645. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6646. dst_data[i0] += v;
  6647. }
  6648. }
  6649. }
  6650. }
  6651. static void ggml_compute_forward_conv_1d_1s_f32(
  6652. const struct ggml_compute_params * params,
  6653. const struct ggml_tensor * src0,
  6654. const struct ggml_tensor * src1,
  6655. struct ggml_tensor * dst) {
  6656. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6657. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6658. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6659. int64_t t0 = ggml_perf_time_us();
  6660. UNUSED(t0);
  6661. const int64_t ne00 = src0->ne[0];
  6662. const int64_t ne01 = src0->ne[1];
  6663. const int64_t ne02 = src0->ne[2];
  6664. //const int64_t ne03 = src0->ne[3];
  6665. const int64_t ne10 = src1->ne[0];
  6666. const int64_t ne11 = src1->ne[1];
  6667. //const int64_t ne12 = src1->ne[2];
  6668. //const int64_t ne13 = src1->ne[3];
  6669. //const int64_t ne0 = dst->ne[0];
  6670. //const int64_t ne1 = dst->ne[1];
  6671. //const int64_t ne2 = dst->ne[2];
  6672. //const int64_t ne3 = dst->ne[3];
  6673. //const int64_t ne = ne0*ne1*ne2*ne3;
  6674. const int nb00 = src0->nb[0];
  6675. const int nb01 = src0->nb[1];
  6676. const int nb02 = src0->nb[2];
  6677. //const int nb03 = src0->nb[3];
  6678. const int nb10 = src1->nb[0];
  6679. const int nb11 = src1->nb[1];
  6680. //const int nb12 = src1->nb[2];
  6681. //const int nb13 = src1->nb[3];
  6682. //const int nb0 = dst->nb[0];
  6683. const int nb1 = dst->nb[1];
  6684. //const int nb2 = dst->nb[2];
  6685. //const int nb3 = dst->nb[3];
  6686. const int ith = params->ith;
  6687. const int nth = params->nth;
  6688. const int nk = ne00;
  6689. const int nh = nk/2;
  6690. const int ew0 = ggml_up32(ne01);
  6691. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6692. GGML_ASSERT(nb00 == sizeof(float));
  6693. GGML_ASSERT(nb10 == sizeof(float));
  6694. if (params->type == GGML_TASK_INIT) {
  6695. // TODO: fix this memset (wsize is overestimated)
  6696. memset(params->wdata, 0, params->wsize);
  6697. // prepare kernel data (src0)
  6698. {
  6699. float * const wdata = (float *) params->wdata + 0;
  6700. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6701. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6702. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6703. float * dst_data = wdata + i02*ew0*ne00;
  6704. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6705. dst_data[i00*ew0 + i01] = src[i00];
  6706. }
  6707. }
  6708. }
  6709. }
  6710. // prepare source data (src1)
  6711. {
  6712. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6713. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6714. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6715. float * dst_data = wdata;
  6716. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6717. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6718. }
  6719. }
  6720. }
  6721. return;
  6722. }
  6723. if (params->type == GGML_TASK_FINALIZE) {
  6724. return;
  6725. }
  6726. // total rows in dst
  6727. const int nr = ne02;
  6728. // rows per thread
  6729. const int dr = (nr + nth - 1)/nth;
  6730. // row range for this thread
  6731. const int ir0 = dr*ith;
  6732. const int ir1 = MIN(ir0 + dr, nr);
  6733. for (int i1 = ir0; i1 < ir1; i1++) {
  6734. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6735. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6736. dst_data[i0] = 0;
  6737. for (int k = -nh; k <= nh; k++) {
  6738. float v = 0.0f;
  6739. ggml_vec_dot_f32(ew0, &v,
  6740. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6741. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6742. dst_data[i0] += v;
  6743. }
  6744. }
  6745. }
  6746. }
  6747. static void ggml_compute_forward_conv_1d_1s(
  6748. const struct ggml_compute_params * params,
  6749. const struct ggml_tensor * src0,
  6750. const struct ggml_tensor * src1,
  6751. struct ggml_tensor * dst) {
  6752. switch (src0->type) {
  6753. case GGML_TYPE_F16:
  6754. {
  6755. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6756. } break;
  6757. case GGML_TYPE_F32:
  6758. {
  6759. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6760. } break;
  6761. default:
  6762. {
  6763. GGML_ASSERT(false);
  6764. } break;
  6765. }
  6766. }
  6767. // ggml_compute_forward_conv_1d_2s
  6768. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6769. const struct ggml_compute_params * params,
  6770. const struct ggml_tensor * src0,
  6771. const struct ggml_tensor * src1,
  6772. struct ggml_tensor * dst) {
  6773. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6774. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6775. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6776. int64_t t0 = ggml_perf_time_us();
  6777. UNUSED(t0);
  6778. const int64_t ne00 = src0->ne[0];
  6779. const int64_t ne01 = src0->ne[1];
  6780. const int64_t ne02 = src0->ne[2];
  6781. //const int64_t ne03 = src0->ne[3];
  6782. const int64_t ne10 = src1->ne[0];
  6783. const int64_t ne11 = src1->ne[1];
  6784. //const int64_t ne12 = src1->ne[2];
  6785. //const int64_t ne13 = src1->ne[3];
  6786. //const int64_t ne0 = dst->ne[0];
  6787. //const int64_t ne1 = dst->ne[1];
  6788. //const int64_t ne2 = dst->ne[2];
  6789. //const int64_t ne3 = dst->ne[3];
  6790. //const int64_t ne = ne0*ne1*ne2*ne3;
  6791. const int nb00 = src0->nb[0];
  6792. const int nb01 = src0->nb[1];
  6793. const int nb02 = src0->nb[2];
  6794. //const int nb03 = src0->nb[3];
  6795. const int nb10 = src1->nb[0];
  6796. const int nb11 = src1->nb[1];
  6797. //const int nb12 = src1->nb[2];
  6798. //const int nb13 = src1->nb[3];
  6799. //const int nb0 = dst->nb[0];
  6800. const int nb1 = dst->nb[1];
  6801. //const int nb2 = dst->nb[2];
  6802. //const int nb3 = dst->nb[3];
  6803. const int ith = params->ith;
  6804. const int nth = params->nth;
  6805. const int nk = ne00;
  6806. const int nh = nk/2;
  6807. const int ew0 = ggml_up32(ne01);
  6808. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6809. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6810. GGML_ASSERT(nb10 == sizeof(float));
  6811. if (params->type == GGML_TASK_INIT) {
  6812. // TODO: fix this memset (wsize is overestimated)
  6813. memset(params->wdata, 0, params->wsize);
  6814. // prepare kernel data (src0)
  6815. {
  6816. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6817. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6818. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6819. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6820. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6821. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6822. dst_data[i00*ew0 + i01] = src[i00];
  6823. }
  6824. }
  6825. }
  6826. }
  6827. // prepare source data (src1)
  6828. {
  6829. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6830. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6831. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6832. ggml_fp16_t * dst_data = wdata;
  6833. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6834. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6835. }
  6836. }
  6837. }
  6838. return;
  6839. }
  6840. if (params->type == GGML_TASK_FINALIZE) {
  6841. return;
  6842. }
  6843. // total rows in dst
  6844. const int nr = ne02;
  6845. // rows per thread
  6846. const int dr = (nr + nth - 1)/nth;
  6847. // row range for this thread
  6848. const int ir0 = dr*ith;
  6849. const int ir1 = MIN(ir0 + dr, nr);
  6850. for (int i1 = ir0; i1 < ir1; i1++) {
  6851. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6852. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6853. dst_data[i0/2] = 0;
  6854. for (int k = -nh; k <= nh; k++) {
  6855. float v = 0.0f;
  6856. ggml_vec_dot_f16(ew0, &v,
  6857. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6858. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6859. dst_data[i0/2] += v;
  6860. }
  6861. }
  6862. }
  6863. }
  6864. static void ggml_compute_forward_conv_1d_2s_f32(
  6865. const struct ggml_compute_params * params,
  6866. const struct ggml_tensor * src0,
  6867. const struct ggml_tensor * src1,
  6868. struct ggml_tensor * dst) {
  6869. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6870. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6871. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6872. int64_t t0 = ggml_perf_time_us();
  6873. UNUSED(t0);
  6874. const int64_t ne00 = src0->ne[0];
  6875. const int64_t ne01 = src0->ne[1];
  6876. const int64_t ne02 = src0->ne[2];
  6877. //const int64_t ne03 = src0->ne[3];
  6878. const int64_t ne10 = src1->ne[0];
  6879. const int64_t ne11 = src1->ne[1];
  6880. //const int64_t ne12 = src1->ne[2];
  6881. //const int64_t ne13 = src1->ne[3];
  6882. //const int64_t ne0 = dst->ne[0];
  6883. //const int64_t ne1 = dst->ne[1];
  6884. //const int64_t ne2 = dst->ne[2];
  6885. //const int64_t ne3 = dst->ne[3];
  6886. //const int64_t ne = ne0*ne1*ne2*ne3;
  6887. const int nb00 = src0->nb[0];
  6888. const int nb01 = src0->nb[1];
  6889. const int nb02 = src0->nb[2];
  6890. //const int nb03 = src0->nb[3];
  6891. const int nb10 = src1->nb[0];
  6892. const int nb11 = src1->nb[1];
  6893. //const int nb12 = src1->nb[2];
  6894. //const int nb13 = src1->nb[3];
  6895. //const int nb0 = dst->nb[0];
  6896. const int nb1 = dst->nb[1];
  6897. //const int nb2 = dst->nb[2];
  6898. //const int nb3 = dst->nb[3];
  6899. const int ith = params->ith;
  6900. const int nth = params->nth;
  6901. const int nk = ne00;
  6902. const int nh = nk/2;
  6903. const int ew0 = ggml_up32(ne01);
  6904. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6905. GGML_ASSERT(nb00 == sizeof(float));
  6906. GGML_ASSERT(nb10 == sizeof(float));
  6907. if (params->type == GGML_TASK_INIT) {
  6908. // TODO: fix this memset (wsize is overestimated)
  6909. memset(params->wdata, 0, params->wsize);
  6910. // prepare kernel data (src0)
  6911. {
  6912. float * const wdata = (float *) params->wdata + 0;
  6913. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6914. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6915. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6916. float * dst_data = wdata + i02*ew0*ne00;
  6917. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6918. dst_data[i00*ew0 + i01] = src[i00];
  6919. }
  6920. }
  6921. }
  6922. }
  6923. // prepare source data (src1)
  6924. {
  6925. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6926. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6927. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6928. float * dst_data = wdata;
  6929. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6930. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6931. }
  6932. }
  6933. }
  6934. return;
  6935. }
  6936. if (params->type == GGML_TASK_FINALIZE) {
  6937. return;
  6938. }
  6939. // total rows in dst
  6940. const int nr = ne02;
  6941. // rows per thread
  6942. const int dr = (nr + nth - 1)/nth;
  6943. // row range for this thread
  6944. const int ir0 = dr*ith;
  6945. const int ir1 = MIN(ir0 + dr, nr);
  6946. for (int i1 = ir0; i1 < ir1; i1++) {
  6947. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6948. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6949. dst_data[i0/2] = 0;
  6950. for (int k = -nh; k <= nh; k++) {
  6951. float v = 0.0f;
  6952. ggml_vec_dot_f32(ew0, &v,
  6953. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6954. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6955. dst_data[i0/2] += v;
  6956. }
  6957. }
  6958. }
  6959. }
  6960. static void ggml_compute_forward_conv_1d_2s(
  6961. const struct ggml_compute_params * params,
  6962. const struct ggml_tensor * src0,
  6963. const struct ggml_tensor * src1,
  6964. struct ggml_tensor * dst) {
  6965. switch (src0->type) {
  6966. case GGML_TYPE_F16:
  6967. {
  6968. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6969. } break;
  6970. case GGML_TYPE_F32:
  6971. {
  6972. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6973. } break;
  6974. default:
  6975. {
  6976. GGML_ASSERT(false);
  6977. } break;
  6978. }
  6979. }
  6980. // ggml_compute_forward_flash_attn
  6981. static void ggml_compute_forward_flash_attn_f32(
  6982. const struct ggml_compute_params * params,
  6983. const struct ggml_tensor * q,
  6984. const struct ggml_tensor * k,
  6985. const struct ggml_tensor * v,
  6986. const bool masked,
  6987. struct ggml_tensor * dst) {
  6988. int64_t t0 = ggml_perf_time_us();
  6989. UNUSED(t0);
  6990. const int64_t neq0 = q->ne[0];
  6991. const int64_t neq1 = q->ne[1];
  6992. const int64_t neq2 = q->ne[2];
  6993. const int64_t neq3 = q->ne[3];
  6994. const int64_t nek0 = k->ne[0];
  6995. const int64_t nek1 = k->ne[1];
  6996. //const int64_t nek2 = k->ne[2];
  6997. //const int64_t nek3 = k->ne[3];
  6998. //const int64_t nev0 = v->ne[0];
  6999. const int64_t nev1 = v->ne[1];
  7000. //const int64_t nev2 = v->ne[2];
  7001. //const int64_t nev3 = v->ne[3];
  7002. const int64_t ne0 = dst->ne[0];
  7003. const int64_t ne1 = dst->ne[1];
  7004. //const int64_t ne2 = dst->ne[2];
  7005. //const int64_t ne3 = dst->ne[3];
  7006. const int nbk0 = k->nb[0];
  7007. const int nbk1 = k->nb[1];
  7008. const int nbk2 = k->nb[2];
  7009. const int nbk3 = k->nb[3];
  7010. const int nbq0 = q->nb[0];
  7011. const int nbq1 = q->nb[1];
  7012. const int nbq2 = q->nb[2];
  7013. const int nbq3 = q->nb[3];
  7014. const int nbv0 = v->nb[0];
  7015. const int nbv1 = v->nb[1];
  7016. const int nbv2 = v->nb[2];
  7017. const int nbv3 = v->nb[3];
  7018. const int nb0 = dst->nb[0];
  7019. const int nb1 = dst->nb[1];
  7020. const int nb2 = dst->nb[2];
  7021. const int nb3 = dst->nb[3];
  7022. const int ith = params->ith;
  7023. const int nth = params->nth;
  7024. const int64_t D = neq0;
  7025. const int64_t N = neq1;
  7026. const int64_t P = nek1 - N;
  7027. const int64_t M = P + N;
  7028. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7029. GGML_ASSERT(ne0 == D);
  7030. GGML_ASSERT(ne1 == N);
  7031. GGML_ASSERT(P >= 0);
  7032. GGML_ASSERT(nbq0 == sizeof(float));
  7033. GGML_ASSERT(nbk0 == sizeof(float));
  7034. GGML_ASSERT(nbv0 == sizeof(float));
  7035. GGML_ASSERT(neq0 == D);
  7036. GGML_ASSERT(nek0 == D);
  7037. GGML_ASSERT(nev1 == D);
  7038. GGML_ASSERT(neq1 == N);
  7039. GGML_ASSERT(nek1 == N + P);
  7040. GGML_ASSERT(nev1 == D);
  7041. // dst cannot be transposed or permuted
  7042. GGML_ASSERT(nb0 == sizeof(float));
  7043. GGML_ASSERT(nb0 <= nb1);
  7044. GGML_ASSERT(nb1 <= nb2);
  7045. GGML_ASSERT(nb2 <= nb3);
  7046. if (params->type == GGML_TASK_INIT) {
  7047. return;
  7048. }
  7049. if (params->type == GGML_TASK_FINALIZE) {
  7050. return;
  7051. }
  7052. // parallelize by q rows using ggml_vec_dot_f32
  7053. // total rows in q
  7054. const int nr = neq1*neq2*neq3;
  7055. // rows per thread
  7056. const int dr = (nr + nth - 1)/nth;
  7057. // row range for this thread
  7058. const int ir0 = dr*ith;
  7059. const int ir1 = MIN(ir0 + dr, nr);
  7060. const float scale = 1.0f/sqrtf(D);
  7061. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7062. for (int ir = ir0; ir < ir1; ++ir) {
  7063. // q indices
  7064. const int iq3 = ir/(neq2*neq1);
  7065. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7066. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7067. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7068. for (int i = M; i < Mup; ++i) {
  7069. S[i] = -INFINITY;
  7070. }
  7071. for (int64_t ic = 0; ic < nek1; ++ic) {
  7072. // k indices
  7073. const int ik3 = iq3;
  7074. const int ik2 = iq2;
  7075. const int ik1 = ic;
  7076. // S indices
  7077. const int i1 = ik1;
  7078. ggml_vec_dot_f32(neq0,
  7079. S + i1,
  7080. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7081. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7082. }
  7083. // scale
  7084. ggml_vec_scale_f32(nek1, S, scale);
  7085. if (masked) {
  7086. for (int64_t i = P; i < M; i++) {
  7087. if (i > P + iq1) {
  7088. S[i] = -INFINITY;
  7089. }
  7090. }
  7091. }
  7092. // softmax
  7093. {
  7094. float max = -INFINITY;
  7095. ggml_vec_max_f32(M, &max, S);
  7096. ggml_float sum = 0.0;
  7097. {
  7098. #ifdef GGML_SOFT_MAX_ACCELERATE
  7099. max = -max;
  7100. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7101. vvexpf(S, S, &Mup);
  7102. ggml_vec_sum_f32(Mup, &sum, S);
  7103. #else
  7104. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7105. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7106. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7107. float * SS = S + i;
  7108. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7109. if (SS[j] == -INFINITY) {
  7110. SS[j] = 0.0f;
  7111. } else {
  7112. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7113. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7114. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7115. sump[j] += (ggml_float)val;
  7116. SS[j] = val;
  7117. }
  7118. }
  7119. }
  7120. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7121. sum += sump[i];
  7122. }
  7123. #endif
  7124. }
  7125. assert(sum > 0.0);
  7126. sum = 1.0/sum;
  7127. ggml_vec_scale_f32(M, S, sum);
  7128. #ifndef NDEBUG
  7129. for (int i = 0; i < M; ++i) {
  7130. assert(!isnan(S[i]));
  7131. assert(!isinf(S[i]));
  7132. }
  7133. #endif
  7134. }
  7135. for (int64_t ic = 0; ic < nev1; ++ic) {
  7136. // dst indices
  7137. const int i1 = iq1;
  7138. const int i2 = iq2;
  7139. const int i3 = iq3;
  7140. ggml_vec_dot_f32(nek1,
  7141. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7142. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7143. S);
  7144. }
  7145. }
  7146. }
  7147. static void ggml_compute_forward_flash_attn_f16(
  7148. const struct ggml_compute_params * params,
  7149. const struct ggml_tensor * q,
  7150. const struct ggml_tensor * k,
  7151. const struct ggml_tensor * v,
  7152. const bool masked,
  7153. struct ggml_tensor * dst) {
  7154. int64_t t0 = ggml_perf_time_us();
  7155. UNUSED(t0);
  7156. const int64_t neq0 = q->ne[0];
  7157. const int64_t neq1 = q->ne[1];
  7158. const int64_t neq2 = q->ne[2];
  7159. const int64_t neq3 = q->ne[3];
  7160. const int64_t nek0 = k->ne[0];
  7161. const int64_t nek1 = k->ne[1];
  7162. //const int64_t nek2 = k->ne[2];
  7163. //const int64_t nek3 = k->ne[3];
  7164. //const int64_t nev0 = v->ne[0];
  7165. const int64_t nev1 = v->ne[1];
  7166. //const int64_t nev2 = v->ne[2];
  7167. //const int64_t nev3 = v->ne[3];
  7168. const int64_t ne0 = dst->ne[0];
  7169. const int64_t ne1 = dst->ne[1];
  7170. //const int64_t ne2 = dst->ne[2];
  7171. //const int64_t ne3 = dst->ne[3];
  7172. const int nbk0 = k->nb[0];
  7173. const int nbk1 = k->nb[1];
  7174. const int nbk2 = k->nb[2];
  7175. const int nbk3 = k->nb[3];
  7176. const int nbq0 = q->nb[0];
  7177. const int nbq1 = q->nb[1];
  7178. const int nbq2 = q->nb[2];
  7179. const int nbq3 = q->nb[3];
  7180. const int nbv0 = v->nb[0];
  7181. const int nbv1 = v->nb[1];
  7182. const int nbv2 = v->nb[2];
  7183. const int nbv3 = v->nb[3];
  7184. const int nb0 = dst->nb[0];
  7185. const int nb1 = dst->nb[1];
  7186. const int nb2 = dst->nb[2];
  7187. const int nb3 = dst->nb[3];
  7188. const int ith = params->ith;
  7189. const int nth = params->nth;
  7190. const int64_t D = neq0;
  7191. const int64_t N = neq1;
  7192. const int64_t P = nek1 - N;
  7193. const int64_t M = P + N;
  7194. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7195. GGML_ASSERT(ne0 == D);
  7196. GGML_ASSERT(ne1 == N);
  7197. GGML_ASSERT(P >= 0);
  7198. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7199. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7200. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7201. GGML_ASSERT(neq0 == D);
  7202. GGML_ASSERT(nek0 == D);
  7203. GGML_ASSERT(nev1 == D);
  7204. GGML_ASSERT(neq1 == N);
  7205. GGML_ASSERT(nek1 == N + P);
  7206. GGML_ASSERT(nev1 == D);
  7207. // dst cannot be transposed or permuted
  7208. GGML_ASSERT(nb0 == sizeof(float));
  7209. GGML_ASSERT(nb0 <= nb1);
  7210. GGML_ASSERT(nb1 <= nb2);
  7211. GGML_ASSERT(nb2 <= nb3);
  7212. if (params->type == GGML_TASK_INIT) {
  7213. return;
  7214. }
  7215. if (params->type == GGML_TASK_FINALIZE) {
  7216. return;
  7217. }
  7218. // parallelize by q rows using ggml_vec_dot_f32
  7219. // total rows in q
  7220. const int nr = neq1*neq2*neq3;
  7221. // rows per thread
  7222. const int dr = (nr + nth - 1)/nth;
  7223. // row range for this thread
  7224. const int ir0 = dr*ith;
  7225. const int ir1 = MIN(ir0 + dr, nr);
  7226. const float scale = 1.0f/sqrtf(D);
  7227. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7228. for (int ir = ir0; ir < ir1; ++ir) {
  7229. // q indices
  7230. const int iq3 = ir/(neq2*neq1);
  7231. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7232. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7233. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7234. for (int i = M; i < Mup; ++i) {
  7235. S[i] = -INFINITY;
  7236. }
  7237. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7238. for (int64_t ic = 0; ic < nek1; ++ic) {
  7239. // k indices
  7240. const int ik3 = iq3;
  7241. const int ik2 = iq2;
  7242. const int ik1 = ic;
  7243. // S indices
  7244. const int i1 = ik1;
  7245. ggml_vec_dot_f16(neq0,
  7246. S + i1,
  7247. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7248. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7249. }
  7250. } else {
  7251. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7252. // k indices
  7253. const int ik3 = iq3;
  7254. const int ik2 = iq2;
  7255. const int ik1 = ic;
  7256. // S indices
  7257. const int i1 = ik1;
  7258. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7259. S + i1,
  7260. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7261. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7262. }
  7263. }
  7264. // scale
  7265. ggml_vec_scale_f32(nek1, S, scale);
  7266. if (masked) {
  7267. for (int64_t i = P; i < M; i++) {
  7268. if (i > P + iq1) {
  7269. S[i] = -INFINITY;
  7270. }
  7271. }
  7272. }
  7273. // softmax
  7274. {
  7275. float max = -INFINITY;
  7276. ggml_vec_max_f32(M, &max, S);
  7277. ggml_float sum = 0.0;
  7278. {
  7279. #ifdef GGML_SOFT_MAX_ACCELERATE
  7280. max = -max;
  7281. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7282. vvexpf(S, S, &Mup);
  7283. ggml_vec_sum_f32(Mup, &sum, S);
  7284. #else
  7285. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7286. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7287. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7288. float * SS = S + i;
  7289. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7290. if (SS[j] == -INFINITY) {
  7291. SS[j] = 0.0f;
  7292. } else {
  7293. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7294. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7295. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7296. sump[j] += (ggml_float)val;
  7297. SS[j] = val;
  7298. }
  7299. }
  7300. }
  7301. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7302. sum += sump[i];
  7303. }
  7304. #endif
  7305. }
  7306. assert(sum > 0.0);
  7307. sum = 1.0/sum;
  7308. ggml_vec_scale_f32(M, S, sum);
  7309. #ifndef NDEBUG
  7310. for (int i = 0; i < M; ++i) {
  7311. assert(!isnan(S[i]));
  7312. assert(!isinf(S[i]));
  7313. }
  7314. #endif
  7315. }
  7316. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7317. for (int64_t i = 0; i < M; i++) {
  7318. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7319. }
  7320. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7321. for (int64_t ic = 0; ic < nev1; ++ic) {
  7322. // dst indices
  7323. const int i1 = iq1;
  7324. const int i2 = iq2;
  7325. const int i3 = iq3;
  7326. ggml_vec_dot_f16(nek1,
  7327. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7328. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7329. S16);
  7330. }
  7331. } else {
  7332. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7333. // dst indices
  7334. const int i1 = iq1;
  7335. const int i2 = iq2;
  7336. const int i3 = iq3;
  7337. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7338. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7339. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7340. S16);
  7341. }
  7342. }
  7343. }
  7344. }
  7345. static void ggml_compute_forward_flash_attn(
  7346. const struct ggml_compute_params * params,
  7347. const struct ggml_tensor * q,
  7348. const struct ggml_tensor * k,
  7349. const struct ggml_tensor * v,
  7350. const bool masked,
  7351. struct ggml_tensor * dst) {
  7352. switch (q->type) {
  7353. case GGML_TYPE_F16:
  7354. {
  7355. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7356. } break;
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. // ggml_compute_forward_flash_ff
  7368. static void ggml_compute_forward_flash_ff_f16(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * a, // F16
  7371. const struct ggml_tensor * b0, // F16 fc_w
  7372. const struct ggml_tensor * b1, // F32 fc_b
  7373. const struct ggml_tensor * c0, // F16 proj_w
  7374. const struct ggml_tensor * c1, // F32 proj_b
  7375. struct ggml_tensor * dst) {
  7376. int64_t t0 = ggml_perf_time_us();
  7377. UNUSED(t0);
  7378. const int64_t nea0 = a->ne[0];
  7379. const int64_t nea1 = a->ne[1];
  7380. const int64_t nea2 = a->ne[2];
  7381. const int64_t nea3 = a->ne[3];
  7382. const int64_t neb00 = b0->ne[0];
  7383. const int64_t neb01 = b0->ne[1];
  7384. //const int64_t neb02 = b0->ne[2];
  7385. //const int64_t neb03 = b0->ne[3];
  7386. const int64_t neb10 = b1->ne[0];
  7387. const int64_t neb11 = b1->ne[1];
  7388. //const int64_t neb12 = b1->ne[2];
  7389. //const int64_t neb13 = b1->ne[3];
  7390. const int64_t nec00 = c0->ne[0];
  7391. const int64_t nec01 = c0->ne[1];
  7392. //const int64_t nec02 = c0->ne[2];
  7393. //const int64_t nec03 = c0->ne[3];
  7394. const int64_t nec10 = c1->ne[0];
  7395. const int64_t nec11 = c1->ne[1];
  7396. //const int64_t nec12 = c1->ne[2];
  7397. //const int64_t nec13 = c1->ne[3];
  7398. const int64_t ne0 = dst->ne[0];
  7399. const int64_t ne1 = dst->ne[1];
  7400. const int64_t ne2 = dst->ne[2];
  7401. //const int64_t ne3 = dst->ne[3];
  7402. const int nba0 = a->nb[0];
  7403. const int nba1 = a->nb[1];
  7404. const int nba2 = a->nb[2];
  7405. const int nba3 = a->nb[3];
  7406. const int nbb00 = b0->nb[0];
  7407. const int nbb01 = b0->nb[1];
  7408. const int nbb02 = b0->nb[2];
  7409. const int nbb03 = b0->nb[3];
  7410. const int nbb10 = b1->nb[0];
  7411. //const int nbb11 = b1->nb[1];
  7412. //const int nbb12 = b1->nb[2];
  7413. //const int nbb13 = b1->nb[3];
  7414. const int nbc00 = c0->nb[0];
  7415. const int nbc01 = c0->nb[1];
  7416. const int nbc02 = c0->nb[2];
  7417. const int nbc03 = c0->nb[3];
  7418. const int nbc10 = c1->nb[0];
  7419. //const int nbc11 = c1->nb[1];
  7420. //const int nbc12 = c1->nb[2];
  7421. //const int nbc13 = c1->nb[3];
  7422. const int nb0 = dst->nb[0];
  7423. const int nb1 = dst->nb[1];
  7424. const int nb2 = dst->nb[2];
  7425. const int nb3 = dst->nb[3];
  7426. const int ith = params->ith;
  7427. const int nth = params->nth;
  7428. const int64_t D = nea0;
  7429. //const int64_t N = nea1;
  7430. const int64_t M = neb01;
  7431. GGML_ASSERT(ne0 == nea0);
  7432. GGML_ASSERT(ne1 == nea1);
  7433. GGML_ASSERT(ne2 == nea2);
  7434. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7435. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7436. GGML_ASSERT(nbb10 == sizeof(float));
  7437. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7438. GGML_ASSERT(nbc10 == sizeof(float));
  7439. GGML_ASSERT(neb00 == D);
  7440. GGML_ASSERT(neb01 == M);
  7441. GGML_ASSERT(neb10 == M);
  7442. GGML_ASSERT(neb11 == 1);
  7443. GGML_ASSERT(nec00 == M);
  7444. GGML_ASSERT(nec01 == D);
  7445. GGML_ASSERT(nec10 == D);
  7446. GGML_ASSERT(nec11 == 1);
  7447. // dst cannot be transposed or permuted
  7448. GGML_ASSERT(nb0 == sizeof(float));
  7449. GGML_ASSERT(nb0 <= nb1);
  7450. GGML_ASSERT(nb1 <= nb2);
  7451. GGML_ASSERT(nb2 <= nb3);
  7452. if (params->type == GGML_TASK_INIT) {
  7453. return;
  7454. }
  7455. if (params->type == GGML_TASK_FINALIZE) {
  7456. return;
  7457. }
  7458. // parallelize by a rows using ggml_vec_dot_f32
  7459. // total rows in a
  7460. const int nr = nea1*nea2*nea3;
  7461. // rows per thread
  7462. const int dr = (nr + nth - 1)/nth;
  7463. // row range for this thread
  7464. const int ir0 = dr*ith;
  7465. const int ir1 = MIN(ir0 + dr, nr);
  7466. for (int ir = ir0; ir < ir1; ++ir) {
  7467. // a indices
  7468. const int ia3 = ir/(nea2*nea1);
  7469. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7470. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7471. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7472. for (int64_t ic = 0; ic < neb01; ++ic) {
  7473. // b0 indices
  7474. const int ib03 = ia3;
  7475. const int ib02 = ia2;
  7476. const int ib01 = ic;
  7477. // S indices
  7478. const int i1 = ib01;
  7479. ggml_vec_dot_f16(nea0,
  7480. S + i1,
  7481. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7482. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7483. }
  7484. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7485. //ggml_vec_gelu_f32(neb01, S, S);
  7486. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7487. for (int64_t i = 0; i < M; i++) {
  7488. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7489. }
  7490. ggml_vec_gelu_f16(neb01, S16, S16);
  7491. {
  7492. // dst indices
  7493. const int i1 = ia1;
  7494. const int i2 = ia2;
  7495. const int i3 = ia3;
  7496. for (int64_t ic = 0; ic < nec01; ++ic) {
  7497. ggml_vec_dot_f16(neb01,
  7498. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7499. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7500. S16);
  7501. }
  7502. ggml_vec_add_f32(nec01,
  7503. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7504. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7505. (float *) c1->data);
  7506. }
  7507. }
  7508. }
  7509. static void ggml_compute_forward_flash_ff(
  7510. const struct ggml_compute_params * params,
  7511. const struct ggml_tensor * a,
  7512. const struct ggml_tensor * b0,
  7513. const struct ggml_tensor * b1,
  7514. const struct ggml_tensor * c0,
  7515. const struct ggml_tensor * c1,
  7516. struct ggml_tensor * dst) {
  7517. switch (b0->type) {
  7518. case GGML_TYPE_F16:
  7519. {
  7520. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7521. } break;
  7522. case GGML_TYPE_F32:
  7523. {
  7524. GGML_ASSERT(false); // TODO
  7525. } break;
  7526. default:
  7527. {
  7528. GGML_ASSERT(false);
  7529. } break;
  7530. }
  7531. }
  7532. // ggml_compute_forward_map_unary
  7533. static void ggml_compute_forward_map_unary_f32(
  7534. const struct ggml_compute_params * params,
  7535. const struct ggml_tensor * src0,
  7536. struct ggml_tensor * dst,
  7537. const ggml_unary_op_f32_t fun) {
  7538. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7539. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7540. return;
  7541. }
  7542. const int n = ggml_nrows(src0);
  7543. const int nc = src0->ne[0];
  7544. assert( dst->nb[0] == sizeof(float));
  7545. assert(src0->nb[0] == sizeof(float));
  7546. for (int i = 0; i < n; i++) {
  7547. fun(nc,
  7548. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7549. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7550. }
  7551. }
  7552. static void ggml_compute_forward_map_unary(
  7553. const struct ggml_compute_params * params,
  7554. const struct ggml_tensor * src0,
  7555. struct ggml_tensor * dst,
  7556. const ggml_unary_op_f32_t fun) {
  7557. switch (src0->type) {
  7558. case GGML_TYPE_F32:
  7559. {
  7560. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  7561. } break;
  7562. default:
  7563. {
  7564. GGML_ASSERT(false);
  7565. } break;
  7566. }
  7567. }
  7568. // ggml_compute_forward_map_binary
  7569. static void ggml_compute_forward_map_binary_f32(
  7570. const struct ggml_compute_params * params,
  7571. const struct ggml_tensor * src0,
  7572. const struct ggml_tensor * src1,
  7573. struct ggml_tensor * dst,
  7574. const ggml_binary_op_f32_t fun) {
  7575. assert(params->ith == 0);
  7576. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7578. return;
  7579. }
  7580. const int n = ggml_nrows(src0);
  7581. const int nc = src0->ne[0];
  7582. assert( dst->nb[0] == sizeof(float));
  7583. assert(src0->nb[0] == sizeof(float));
  7584. assert(src1->nb[0] == sizeof(float));
  7585. for (int i = 0; i < n; i++) {
  7586. fun(nc,
  7587. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7588. (float *) ((char *) src0->data + i*(src0->nb[1])),
  7589. (float *) ((char *) src1->data + i*(src1->nb[1])));
  7590. }
  7591. }
  7592. static void ggml_compute_forward_map_binary(
  7593. const struct ggml_compute_params * params,
  7594. const struct ggml_tensor * src0,
  7595. const struct ggml_tensor * src1,
  7596. struct ggml_tensor * dst,
  7597. const ggml_binary_op_f32_t fun) {
  7598. switch (src0->type) {
  7599. case GGML_TYPE_F32:
  7600. {
  7601. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  7602. } break;
  7603. default:
  7604. {
  7605. GGML_ASSERT(false);
  7606. } break;
  7607. }
  7608. }
  7609. /////////////////////////////////
  7610. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7611. GGML_ASSERT(params);
  7612. switch (tensor->op) {
  7613. case GGML_OP_DUP:
  7614. {
  7615. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7616. } break;
  7617. case GGML_OP_ADD:
  7618. {
  7619. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7620. } break;
  7621. case GGML_OP_SUB:
  7622. {
  7623. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7624. } break;
  7625. case GGML_OP_MUL:
  7626. {
  7627. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7628. } break;
  7629. case GGML_OP_DIV:
  7630. {
  7631. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7632. } break;
  7633. case GGML_OP_SQR:
  7634. {
  7635. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7636. } break;
  7637. case GGML_OP_SQRT:
  7638. {
  7639. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7640. } break;
  7641. case GGML_OP_SUM:
  7642. {
  7643. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7644. } break;
  7645. case GGML_OP_MEAN:
  7646. {
  7647. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7648. } break;
  7649. case GGML_OP_REPEAT:
  7650. {
  7651. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7652. } break;
  7653. case GGML_OP_ABS:
  7654. {
  7655. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7656. } break;
  7657. case GGML_OP_SGN:
  7658. {
  7659. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7660. } break;
  7661. case GGML_OP_NEG:
  7662. {
  7663. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7664. } break;
  7665. case GGML_OP_STEP:
  7666. {
  7667. ggml_compute_forward_step(params, tensor->src0, tensor);
  7668. } break;
  7669. case GGML_OP_RELU:
  7670. {
  7671. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7672. } break;
  7673. case GGML_OP_GELU:
  7674. {
  7675. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7676. } break;
  7677. case GGML_OP_SILU:
  7678. {
  7679. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7680. } break;
  7681. case GGML_OP_NORM:
  7682. {
  7683. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7684. } break;
  7685. case GGML_OP_RMS_NORM:
  7686. {
  7687. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7688. } break;
  7689. case GGML_OP_MUL_MAT:
  7690. {
  7691. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7692. } break;
  7693. case GGML_OP_SCALE:
  7694. {
  7695. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7696. } break;
  7697. case GGML_OP_CPY:
  7698. {
  7699. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7700. } break;
  7701. case GGML_OP_CONT:
  7702. {
  7703. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7704. } break;
  7705. case GGML_OP_RESHAPE:
  7706. {
  7707. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7708. } break;
  7709. case GGML_OP_VIEW:
  7710. {
  7711. ggml_compute_forward_view(params, tensor->src0);
  7712. } break;
  7713. case GGML_OP_PERMUTE:
  7714. {
  7715. ggml_compute_forward_permute(params, tensor->src0);
  7716. } break;
  7717. case GGML_OP_TRANSPOSE:
  7718. {
  7719. ggml_compute_forward_transpose(params, tensor->src0);
  7720. } break;
  7721. case GGML_OP_GET_ROWS:
  7722. {
  7723. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7724. } break;
  7725. case GGML_OP_DIAG_MASK_INF:
  7726. {
  7727. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7728. } break;
  7729. case GGML_OP_SOFT_MAX:
  7730. {
  7731. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7732. } break;
  7733. case GGML_OP_ROPE:
  7734. {
  7735. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7736. } break;
  7737. case GGML_OP_CONV_1D_1S:
  7738. {
  7739. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7740. } break;
  7741. case GGML_OP_CONV_1D_2S:
  7742. {
  7743. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7744. } break;
  7745. case GGML_OP_FLASH_ATTN:
  7746. {
  7747. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7748. GGML_ASSERT(t == 0 || t == 1);
  7749. bool masked = t != 0;
  7750. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7751. } break;
  7752. case GGML_OP_FLASH_FF:
  7753. {
  7754. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7755. } break;
  7756. case GGML_OP_MAP_UNARY:
  7757. {
  7758. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  7759. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  7760. }
  7761. break;
  7762. case GGML_OP_MAP_BINARY:
  7763. {
  7764. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  7765. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  7766. }
  7767. break;
  7768. case GGML_OP_NONE:
  7769. {
  7770. // nop
  7771. } break;
  7772. case GGML_OP_COUNT:
  7773. {
  7774. GGML_ASSERT(false);
  7775. } break;
  7776. }
  7777. }
  7778. ////////////////////////////////////////////////////////////////////////////////
  7779. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7780. struct ggml_tensor * src0 = tensor->src0;
  7781. struct ggml_tensor * src1 = tensor->src1;
  7782. switch (tensor->op) {
  7783. case GGML_OP_DUP:
  7784. {
  7785. if (src0->grad) {
  7786. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7787. }
  7788. } break;
  7789. case GGML_OP_ADD:
  7790. {
  7791. if (src0->grad) {
  7792. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7793. }
  7794. if (src1->grad) {
  7795. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7796. }
  7797. } break;
  7798. case GGML_OP_SUB:
  7799. {
  7800. if (src0->grad) {
  7801. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7802. }
  7803. if (src1->grad) {
  7804. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7805. }
  7806. } break;
  7807. case GGML_OP_MUL:
  7808. {
  7809. if (src0->grad) {
  7810. src0->grad =
  7811. ggml_add_impl(ctx,
  7812. src0->grad,
  7813. ggml_mul(ctx, src1, tensor->grad),
  7814. inplace);
  7815. }
  7816. if (src1->grad) {
  7817. src1->grad =
  7818. ggml_add_impl(ctx,
  7819. src1->grad,
  7820. ggml_mul(ctx, src0, tensor->grad),
  7821. inplace);
  7822. }
  7823. } break;
  7824. case GGML_OP_DIV:
  7825. {
  7826. if (src0->grad) {
  7827. src0->grad =
  7828. ggml_add_impl(ctx,
  7829. src0->grad,
  7830. ggml_div(ctx, tensor->grad, src1),
  7831. inplace);
  7832. }
  7833. if (src1->grad) {
  7834. src1->grad =
  7835. ggml_sub_impl(ctx,
  7836. src1->grad,
  7837. ggml_mul(ctx,
  7838. tensor->grad,
  7839. ggml_div(ctx, tensor, src1)),
  7840. inplace);
  7841. }
  7842. } break;
  7843. case GGML_OP_SQR:
  7844. {
  7845. if (src0->grad) {
  7846. src0->grad =
  7847. ggml_add_impl(ctx,
  7848. src0->grad,
  7849. ggml_mul(ctx,
  7850. ggml_mul(ctx, src0, tensor->grad),
  7851. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7852. inplace);
  7853. }
  7854. } break;
  7855. case GGML_OP_SQRT:
  7856. {
  7857. if (src0->grad) {
  7858. src0->grad =
  7859. ggml_add_impl(ctx,
  7860. src0->grad,
  7861. ggml_div(ctx,
  7862. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7863. tensor),
  7864. inplace);
  7865. }
  7866. } break;
  7867. case GGML_OP_SUM:
  7868. {
  7869. if (src0->grad) {
  7870. src0->grad =
  7871. ggml_add_impl(ctx,
  7872. src0->grad,
  7873. ggml_repeat(ctx, tensor->grad, src0->grad),
  7874. inplace);
  7875. }
  7876. } break;
  7877. case GGML_OP_MEAN:
  7878. {
  7879. GGML_ASSERT(false); // TODO: implement
  7880. } break;
  7881. case GGML_OP_REPEAT:
  7882. {
  7883. if (src0->grad) {
  7884. src0->grad =
  7885. ggml_add_impl(ctx,
  7886. src0->grad,
  7887. ggml_sum(ctx, tensor->grad),
  7888. inplace);
  7889. }
  7890. } break;
  7891. case GGML_OP_ABS:
  7892. {
  7893. if (src0->grad) {
  7894. src0->grad =
  7895. ggml_add_impl(ctx,
  7896. src0->grad,
  7897. ggml_mul(ctx,
  7898. ggml_sgn(ctx, src0),
  7899. tensor->grad),
  7900. inplace);
  7901. }
  7902. } break;
  7903. case GGML_OP_SGN:
  7904. {
  7905. if (src0->grad) {
  7906. // noop
  7907. }
  7908. } break;
  7909. case GGML_OP_NEG:
  7910. {
  7911. if (src0->grad) {
  7912. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7913. }
  7914. } break;
  7915. case GGML_OP_STEP:
  7916. {
  7917. if (src0->grad) {
  7918. // noop
  7919. }
  7920. } break;
  7921. case GGML_OP_RELU:
  7922. {
  7923. if (src0->grad) {
  7924. src0->grad = ggml_sub_impl(ctx,
  7925. src0->grad,
  7926. ggml_mul(ctx,
  7927. ggml_step(ctx, src0),
  7928. tensor->grad),
  7929. inplace);
  7930. }
  7931. } break;
  7932. case GGML_OP_GELU:
  7933. {
  7934. GGML_ASSERT(false); // TODO: not implemented
  7935. } break;
  7936. case GGML_OP_SILU:
  7937. {
  7938. GGML_ASSERT(false); // TODO: not implemented
  7939. } break;
  7940. case GGML_OP_NORM:
  7941. {
  7942. GGML_ASSERT(false); // TODO: not implemented
  7943. } break;
  7944. case GGML_OP_RMS_NORM:
  7945. {
  7946. GGML_ASSERT(false); // TODO: not implemented
  7947. } break;
  7948. case GGML_OP_MUL_MAT:
  7949. {
  7950. if (src0->grad) {
  7951. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7952. GGML_ASSERT(false);
  7953. }
  7954. if (src1->grad) {
  7955. src1->grad =
  7956. ggml_add_impl(ctx,
  7957. src1->grad,
  7958. ggml_mul_mat(ctx,
  7959. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7960. tensor->grad),
  7961. inplace);
  7962. }
  7963. } break;
  7964. case GGML_OP_SCALE:
  7965. {
  7966. GGML_ASSERT(false); // TODO: not implemented
  7967. } break;
  7968. case GGML_OP_CPY:
  7969. {
  7970. GGML_ASSERT(false); // TODO: not implemented
  7971. } break;
  7972. case GGML_OP_CONT:
  7973. {
  7974. GGML_ASSERT(false); // TODO: not implemented
  7975. } break;
  7976. case GGML_OP_RESHAPE:
  7977. {
  7978. GGML_ASSERT(false); // TODO: not implemented
  7979. } break;
  7980. case GGML_OP_VIEW:
  7981. {
  7982. GGML_ASSERT(false); // not supported
  7983. } break;
  7984. case GGML_OP_PERMUTE:
  7985. {
  7986. GGML_ASSERT(false); // TODO: not implemented
  7987. } break;
  7988. case GGML_OP_TRANSPOSE:
  7989. {
  7990. GGML_ASSERT(false); // TODO: not implemented
  7991. } break;
  7992. case GGML_OP_GET_ROWS:
  7993. {
  7994. GGML_ASSERT(false); // TODO: not implemented
  7995. } break;
  7996. case GGML_OP_DIAG_MASK_INF:
  7997. {
  7998. GGML_ASSERT(false); // TODO: not implemented
  7999. } break;
  8000. case GGML_OP_SOFT_MAX:
  8001. {
  8002. GGML_ASSERT(false); // TODO: not implemented
  8003. } break;
  8004. case GGML_OP_ROPE:
  8005. {
  8006. GGML_ASSERT(false); // TODO: not implemented
  8007. } break;
  8008. case GGML_OP_CONV_1D_1S:
  8009. {
  8010. GGML_ASSERT(false); // TODO: not implemented
  8011. } break;
  8012. case GGML_OP_CONV_1D_2S:
  8013. {
  8014. GGML_ASSERT(false); // TODO: not implemented
  8015. } break;
  8016. case GGML_OP_FLASH_ATTN:
  8017. {
  8018. GGML_ASSERT(false); // not supported
  8019. } break;
  8020. case GGML_OP_FLASH_FF:
  8021. {
  8022. GGML_ASSERT(false); // not supported
  8023. } break;
  8024. case GGML_OP_MAP_UNARY:
  8025. case GGML_OP_MAP_BINARY:
  8026. {
  8027. GGML_ASSERT(false); // not supported
  8028. } break;
  8029. case GGML_OP_NONE:
  8030. {
  8031. // nop
  8032. } break;
  8033. case GGML_OP_COUNT:
  8034. {
  8035. GGML_ASSERT(false);
  8036. } break;
  8037. }
  8038. }
  8039. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8040. if (node->grad == NULL) {
  8041. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8042. // it can also happen during forward pass, if the user performs computations with constants
  8043. if (node->op != GGML_OP_NONE) {
  8044. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8045. }
  8046. }
  8047. // check if already visited
  8048. for (int i = 0; i < cgraph->n_nodes; i++) {
  8049. if (cgraph->nodes[i] == node) {
  8050. return;
  8051. }
  8052. }
  8053. for (int i = 0; i < cgraph->n_leafs; i++) {
  8054. if (cgraph->leafs[i] == node) {
  8055. return;
  8056. }
  8057. }
  8058. if (node->src0) {
  8059. ggml_visit_parents(cgraph, node->src0);
  8060. }
  8061. if (node->src1) {
  8062. ggml_visit_parents(cgraph, node->src1);
  8063. }
  8064. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8065. if (node->opt[i]) {
  8066. ggml_visit_parents(cgraph, node->opt[i]);
  8067. }
  8068. }
  8069. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8070. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8071. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8072. cgraph->leafs[cgraph->n_leafs] = node;
  8073. cgraph->n_leafs++;
  8074. } else {
  8075. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8076. cgraph->nodes[cgraph->n_nodes] = node;
  8077. cgraph->grads[cgraph->n_nodes] = node->grad;
  8078. cgraph->n_nodes++;
  8079. }
  8080. }
  8081. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8082. if (!expand) {
  8083. cgraph->n_nodes = 0;
  8084. cgraph->n_leafs = 0;
  8085. }
  8086. const int n0 = cgraph->n_nodes;
  8087. UNUSED(n0);
  8088. ggml_visit_parents(cgraph, tensor);
  8089. const int n_new = cgraph->n_nodes - n0;
  8090. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8091. if (n_new > 0) {
  8092. // the last added node should always be starting point
  8093. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8094. }
  8095. }
  8096. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8097. ggml_build_forward_impl(cgraph, tensor, true);
  8098. }
  8099. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8100. struct ggml_cgraph result = {
  8101. /*.n_nodes =*/ 0,
  8102. /*.n_leafs =*/ 0,
  8103. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8104. /*.work_size =*/ 0,
  8105. /*.work =*/ NULL,
  8106. /*.nodes =*/ { NULL },
  8107. /*.grads =*/ { NULL },
  8108. /*.leafs =*/ { NULL },
  8109. /*.perf_runs =*/ 0,
  8110. /*.perf_cycles =*/ 0,
  8111. /*.perf_time_us =*/ 0,
  8112. };
  8113. ggml_build_forward_impl(&result, tensor, false);
  8114. return result;
  8115. }
  8116. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8117. struct ggml_cgraph result = *gf;
  8118. GGML_ASSERT(gf->n_nodes > 0);
  8119. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8120. if (keep) {
  8121. for (int i = 0; i < gf->n_nodes; i++) {
  8122. struct ggml_tensor * node = gf->nodes[i];
  8123. if (node->grad) {
  8124. node->grad = ggml_dup_tensor(ctx, node);
  8125. gf->grads[i] = node->grad;
  8126. }
  8127. }
  8128. }
  8129. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8130. struct ggml_tensor * node = gf->nodes[i];
  8131. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8132. if (node->grad) {
  8133. ggml_compute_backward(ctx, node, keep);
  8134. }
  8135. }
  8136. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8137. struct ggml_tensor * node = gf->nodes[i];
  8138. if (node->is_param) {
  8139. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8140. ggml_build_forward_impl(&result, node->grad, true);
  8141. }
  8142. }
  8143. return result;
  8144. }
  8145. //
  8146. // thread data
  8147. //
  8148. // synchronization is done via busy loops
  8149. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8150. //
  8151. #ifdef __APPLE__
  8152. //#include <os/lock.h>
  8153. //
  8154. //typedef os_unfair_lock ggml_lock_t;
  8155. //
  8156. //#define ggml_lock_init(x) UNUSED(x)
  8157. //#define ggml_lock_destroy(x) UNUSED(x)
  8158. //#define ggml_lock_lock os_unfair_lock_lock
  8159. //#define ggml_lock_unlock os_unfair_lock_unlock
  8160. //
  8161. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8162. typedef int ggml_lock_t;
  8163. #define ggml_lock_init(x) UNUSED(x)
  8164. #define ggml_lock_destroy(x) UNUSED(x)
  8165. #define ggml_lock_lock(x) UNUSED(x)
  8166. #define ggml_lock_unlock(x) UNUSED(x)
  8167. #define GGML_LOCK_INITIALIZER 0
  8168. typedef pthread_t ggml_thread_t;
  8169. #define ggml_thread_create pthread_create
  8170. #define ggml_thread_join pthread_join
  8171. #else
  8172. //typedef pthread_spinlock_t ggml_lock_t;
  8173. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8174. //#define ggml_lock_destroy pthread_spin_destroy
  8175. //#define ggml_lock_lock pthread_spin_lock
  8176. //#define ggml_lock_unlock pthread_spin_unlock
  8177. typedef int ggml_lock_t;
  8178. #define ggml_lock_init(x) UNUSED(x)
  8179. #define ggml_lock_destroy(x) UNUSED(x)
  8180. #define ggml_lock_lock(x) UNUSED(x)
  8181. #define ggml_lock_unlock(x) UNUSED(x)
  8182. #define GGML_LOCK_INITIALIZER 0
  8183. typedef pthread_t ggml_thread_t;
  8184. #define ggml_thread_create pthread_create
  8185. #define ggml_thread_join pthread_join
  8186. #endif
  8187. struct ggml_compute_state_shared {
  8188. ggml_lock_t spin;
  8189. int n_threads;
  8190. // synchronization primitives
  8191. atomic_int n_ready;
  8192. atomic_bool has_work;
  8193. atomic_bool stop; // stop all threads
  8194. };
  8195. struct ggml_compute_state {
  8196. ggml_thread_t thrd;
  8197. struct ggml_compute_params params;
  8198. struct ggml_tensor * node;
  8199. struct ggml_compute_state_shared * shared;
  8200. };
  8201. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8202. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8203. const int n_threads = state->shared->n_threads;
  8204. while (true) {
  8205. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8206. atomic_store(&state->shared->has_work, false);
  8207. } else {
  8208. while (atomic_load(&state->shared->has_work)) {
  8209. if (atomic_load(&state->shared->stop)) {
  8210. return 0;
  8211. }
  8212. ggml_lock_lock (&state->shared->spin);
  8213. ggml_lock_unlock(&state->shared->spin);
  8214. }
  8215. }
  8216. atomic_fetch_sub(&state->shared->n_ready, 1);
  8217. // wait for work
  8218. while (!atomic_load(&state->shared->has_work)) {
  8219. if (atomic_load(&state->shared->stop)) {
  8220. return 0;
  8221. }
  8222. ggml_lock_lock (&state->shared->spin);
  8223. ggml_lock_unlock(&state->shared->spin);
  8224. }
  8225. // check if we should stop
  8226. if (atomic_load(&state->shared->stop)) {
  8227. break;
  8228. }
  8229. if (state->node) {
  8230. if (state->params.ith < state->params.nth) {
  8231. ggml_compute_forward(&state->params, state->node);
  8232. }
  8233. state->node = NULL;
  8234. } else {
  8235. break;
  8236. }
  8237. }
  8238. return 0;
  8239. }
  8240. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8241. const int n_threads = cgraph->n_threads;
  8242. struct ggml_compute_state_shared state_shared = {
  8243. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8244. /*.n_threads =*/ n_threads,
  8245. /*.n_ready =*/ 0,
  8246. /*.has_work =*/ false,
  8247. /*.stop =*/ false,
  8248. };
  8249. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8250. // create thread pool
  8251. if (n_threads > 1) {
  8252. ggml_lock_init(&state_shared.spin);
  8253. atomic_store(&state_shared.has_work, true);
  8254. for (int j = 0; j < n_threads - 1; j++) {
  8255. workers[j] = (struct ggml_compute_state) {
  8256. .thrd = 0,
  8257. .params = {
  8258. .type = GGML_TASK_COMPUTE,
  8259. .ith = j + 1,
  8260. .nth = n_threads,
  8261. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8262. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8263. },
  8264. .node = NULL,
  8265. .shared = &state_shared,
  8266. };
  8267. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8268. GGML_ASSERT(rc == 0);
  8269. UNUSED(rc);
  8270. }
  8271. }
  8272. // initialize tasks + work buffer
  8273. {
  8274. size_t work_size = 0;
  8275. // thread scheduling for the different operations
  8276. for (int i = 0; i < cgraph->n_nodes; i++) {
  8277. struct ggml_tensor * node = cgraph->nodes[i];
  8278. switch (node->op) {
  8279. case GGML_OP_DUP:
  8280. {
  8281. node->n_tasks = 1;
  8282. } break;
  8283. case GGML_OP_ADD:
  8284. {
  8285. node->n_tasks = n_threads;
  8286. } break;
  8287. case GGML_OP_SUB:
  8288. case GGML_OP_MUL:
  8289. case GGML_OP_DIV:
  8290. case GGML_OP_SQR:
  8291. case GGML_OP_SQRT:
  8292. case GGML_OP_SUM:
  8293. case GGML_OP_MEAN:
  8294. case GGML_OP_REPEAT:
  8295. case GGML_OP_ABS:
  8296. case GGML_OP_SGN:
  8297. case GGML_OP_NEG:
  8298. case GGML_OP_STEP:
  8299. case GGML_OP_RELU:
  8300. {
  8301. node->n_tasks = 1;
  8302. } break;
  8303. case GGML_OP_GELU:
  8304. {
  8305. node->n_tasks = n_threads;
  8306. } break;
  8307. case GGML_OP_SILU:
  8308. {
  8309. node->n_tasks = n_threads;
  8310. } break;
  8311. case GGML_OP_NORM:
  8312. case GGML_OP_RMS_NORM:
  8313. {
  8314. node->n_tasks = n_threads;
  8315. } break;
  8316. case GGML_OP_MUL_MAT:
  8317. {
  8318. node->n_tasks = n_threads;
  8319. // TODO: use different scheduling for different matrix sizes
  8320. //const int nr0 = ggml_nrows(node->src0);
  8321. //const int nr1 = ggml_nrows(node->src1);
  8322. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8323. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8324. size_t cur = 0;
  8325. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8326. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8327. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8328. node->n_tasks = 1; // TODO: this actually is doing nothing
  8329. // the threads are still spinning
  8330. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8331. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8332. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8333. //printf("cur = %zu\n", cur);
  8334. } else {
  8335. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8336. }
  8337. #else
  8338. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8339. #endif
  8340. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8341. cur = 0;
  8342. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  8343. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8344. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8345. node->n_tasks = 1;
  8346. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8347. } else
  8348. #endif
  8349. {
  8350. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8351. }
  8352. } else {
  8353. GGML_ASSERT(false);
  8354. }
  8355. work_size = MAX(work_size, cur);
  8356. } break;
  8357. case GGML_OP_SCALE:
  8358. {
  8359. node->n_tasks = n_threads;
  8360. } break;
  8361. case GGML_OP_CPY:
  8362. case GGML_OP_CONT:
  8363. case GGML_OP_RESHAPE:
  8364. case GGML_OP_VIEW:
  8365. case GGML_OP_PERMUTE:
  8366. case GGML_OP_TRANSPOSE:
  8367. case GGML_OP_GET_ROWS:
  8368. case GGML_OP_DIAG_MASK_INF:
  8369. {
  8370. node->n_tasks = 1;
  8371. } break;
  8372. case GGML_OP_SOFT_MAX:
  8373. {
  8374. node->n_tasks = n_threads;
  8375. } break;
  8376. case GGML_OP_ROPE:
  8377. {
  8378. node->n_tasks = n_threads;
  8379. } break;
  8380. case GGML_OP_CONV_1D_1S:
  8381. case GGML_OP_CONV_1D_2S:
  8382. {
  8383. node->n_tasks = n_threads;
  8384. GGML_ASSERT(node->src0->ne[3] == 1);
  8385. GGML_ASSERT(node->src1->ne[2] == 1);
  8386. GGML_ASSERT(node->src1->ne[3] == 1);
  8387. size_t cur = 0;
  8388. const int nk = node->src0->ne[0];
  8389. if (node->src0->type == GGML_TYPE_F16 &&
  8390. node->src1->type == GGML_TYPE_F32) {
  8391. cur = sizeof(ggml_fp16_t)*(
  8392. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8393. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8394. );
  8395. } else if (node->src0->type == GGML_TYPE_F32 &&
  8396. node->src1->type == GGML_TYPE_F32) {
  8397. cur = sizeof(float)*(
  8398. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  8399. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  8400. );
  8401. } else {
  8402. GGML_ASSERT(false);
  8403. }
  8404. work_size = MAX(work_size, cur);
  8405. } break;
  8406. case GGML_OP_FLASH_ATTN:
  8407. {
  8408. node->n_tasks = n_threads;
  8409. size_t cur = 0;
  8410. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  8411. if (node->src1->type == GGML_TYPE_F32) {
  8412. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8413. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8414. }
  8415. if (node->src1->type == GGML_TYPE_F16) {
  8416. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  8417. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  8418. }
  8419. work_size = MAX(work_size, cur);
  8420. } break;
  8421. case GGML_OP_FLASH_FF:
  8422. {
  8423. node->n_tasks = n_threads;
  8424. size_t cur = 0;
  8425. if (node->src1->type == GGML_TYPE_F32) {
  8426. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8427. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8428. }
  8429. if (node->src1->type == GGML_TYPE_F16) {
  8430. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  8431. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  8432. }
  8433. work_size = MAX(work_size, cur);
  8434. } break;
  8435. case GGML_OP_MAP_UNARY:
  8436. case GGML_OP_MAP_BINARY:
  8437. {
  8438. node->n_tasks = 1;
  8439. } break;
  8440. case GGML_OP_NONE:
  8441. {
  8442. node->n_tasks = 1;
  8443. } break;
  8444. case GGML_OP_COUNT:
  8445. {
  8446. GGML_ASSERT(false);
  8447. } break;
  8448. }
  8449. }
  8450. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  8451. GGML_ASSERT(false); // TODO: better handling
  8452. }
  8453. if (work_size > 0 && cgraph->work == NULL) {
  8454. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  8455. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  8456. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  8457. }
  8458. }
  8459. const int64_t perf_start_cycles = ggml_perf_cycles();
  8460. const int64_t perf_start_time_us = ggml_perf_time_us();
  8461. for (int i = 0; i < cgraph->n_nodes; i++) {
  8462. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  8463. struct ggml_tensor * node = cgraph->nodes[i];
  8464. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  8465. //if (node->grad == NULL && node->perf_runs > 0) {
  8466. // continue;
  8467. //}
  8468. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  8469. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  8470. // INIT
  8471. struct ggml_compute_params params = {
  8472. /*.type =*/ GGML_TASK_INIT,
  8473. /*.ith =*/ 0,
  8474. /*.nth =*/ node->n_tasks,
  8475. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8476. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  8477. };
  8478. ggml_compute_forward(&params, node);
  8479. // COMPUTE
  8480. if (node->n_tasks > 1) {
  8481. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8482. atomic_store(&state_shared.has_work, false);
  8483. }
  8484. while (atomic_load(&state_shared.has_work)) {
  8485. ggml_lock_lock (&state_shared.spin);
  8486. ggml_lock_unlock(&state_shared.spin);
  8487. }
  8488. // launch thread pool
  8489. for (int j = 0; j < n_threads - 1; j++) {
  8490. workers[j].params = (struct ggml_compute_params) {
  8491. .type = GGML_TASK_COMPUTE,
  8492. .ith = j + 1,
  8493. .nth = node->n_tasks,
  8494. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8495. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8496. };
  8497. workers[j].node = node;
  8498. }
  8499. atomic_fetch_sub(&state_shared.n_ready, 1);
  8500. while (atomic_load(&state_shared.n_ready) > 0) {
  8501. ggml_lock_lock (&state_shared.spin);
  8502. ggml_lock_unlock(&state_shared.spin);
  8503. }
  8504. atomic_store(&state_shared.has_work, true);
  8505. }
  8506. params.type = GGML_TASK_COMPUTE;
  8507. ggml_compute_forward(&params, node);
  8508. // wait for thread pool
  8509. if (node->n_tasks > 1) {
  8510. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8511. atomic_store(&state_shared.has_work, false);
  8512. }
  8513. while (atomic_load(&state_shared.has_work)) {
  8514. ggml_lock_lock (&state_shared.spin);
  8515. ggml_lock_unlock(&state_shared.spin);
  8516. }
  8517. atomic_fetch_sub(&state_shared.n_ready, 1);
  8518. while (atomic_load(&state_shared.n_ready) != 0) {
  8519. ggml_lock_lock (&state_shared.spin);
  8520. ggml_lock_unlock(&state_shared.spin);
  8521. }
  8522. }
  8523. // FINALIZE
  8524. if (node->n_tasks > 1) {
  8525. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8526. atomic_store(&state_shared.has_work, false);
  8527. }
  8528. while (atomic_load(&state_shared.has_work)) {
  8529. ggml_lock_lock (&state_shared.spin);
  8530. ggml_lock_unlock(&state_shared.spin);
  8531. }
  8532. // launch thread pool
  8533. for (int j = 0; j < n_threads - 1; j++) {
  8534. workers[j].params = (struct ggml_compute_params) {
  8535. .type = GGML_TASK_FINALIZE,
  8536. .ith = j + 1,
  8537. .nth = node->n_tasks,
  8538. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8539. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8540. };
  8541. workers[j].node = node;
  8542. }
  8543. atomic_fetch_sub(&state_shared.n_ready, 1);
  8544. while (atomic_load(&state_shared.n_ready) > 0) {
  8545. ggml_lock_lock (&state_shared.spin);
  8546. ggml_lock_unlock(&state_shared.spin);
  8547. }
  8548. atomic_store(&state_shared.has_work, true);
  8549. }
  8550. params.type = GGML_TASK_FINALIZE;
  8551. ggml_compute_forward(&params, node);
  8552. // wait for thread pool
  8553. if (node->n_tasks > 1) {
  8554. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8555. atomic_store(&state_shared.has_work, false);
  8556. }
  8557. while (atomic_load(&state_shared.has_work)) {
  8558. ggml_lock_lock (&state_shared.spin);
  8559. ggml_lock_unlock(&state_shared.spin);
  8560. }
  8561. atomic_fetch_sub(&state_shared.n_ready, 1);
  8562. while (atomic_load(&state_shared.n_ready) != 0) {
  8563. ggml_lock_lock (&state_shared.spin);
  8564. ggml_lock_unlock(&state_shared.spin);
  8565. }
  8566. }
  8567. // performance stats (node)
  8568. {
  8569. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8570. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8571. node->perf_runs++;
  8572. node->perf_cycles += perf_cycles_cur;
  8573. node->perf_time_us += perf_time_us_cur;
  8574. }
  8575. }
  8576. // join thread pool
  8577. if (n_threads > 1) {
  8578. atomic_store(&state_shared.stop, true);
  8579. atomic_store(&state_shared.has_work, true);
  8580. for (int j = 0; j < n_threads - 1; j++) {
  8581. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8582. GGML_ASSERT(rc == 0);
  8583. UNUSED(rc);
  8584. }
  8585. ggml_lock_destroy(&state_shared.spin);
  8586. }
  8587. // performance stats (graph)
  8588. {
  8589. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8590. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8591. cgraph->perf_runs++;
  8592. cgraph->perf_cycles += perf_cycles_cur;
  8593. cgraph->perf_time_us += perf_time_us_cur;
  8594. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8595. __func__, cgraph->perf_runs,
  8596. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8597. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8598. (double) perf_time_us_cur / 1000.0,
  8599. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8600. }
  8601. }
  8602. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8603. for (int i = 0; i < cgraph->n_nodes; i++) {
  8604. struct ggml_tensor * grad = cgraph->grads[i];
  8605. if (grad) {
  8606. ggml_set_zero(grad);
  8607. }
  8608. }
  8609. }
  8610. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8611. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8612. GGML_PRINT("=== GRAPH ===\n");
  8613. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8614. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  8615. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8616. for (int i = 0; i < cgraph->n_nodes; i++) {
  8617. struct ggml_tensor * node = cgraph->nodes[i];
  8618. perf_total_per_op_us[node->op] += node->perf_time_us;
  8619. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8620. i,
  8621. node->ne[0], node->ne[1], node->ne[2],
  8622. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8623. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8624. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8625. (double) node->perf_time_us / 1000.0,
  8626. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8627. }
  8628. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8629. for (int i = 0; i < cgraph->n_leafs; i++) {
  8630. struct ggml_tensor * node = cgraph->leafs[i];
  8631. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8632. i,
  8633. node->ne[0], node->ne[1],
  8634. GGML_OP_LABEL[node->op]);
  8635. }
  8636. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8637. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8638. }
  8639. GGML_PRINT("========================================\n");
  8640. }
  8641. // check if node is part of the graph
  8642. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8643. if (cgraph == NULL) {
  8644. return true;
  8645. }
  8646. for (int i = 0; i < cgraph->n_nodes; i++) {
  8647. if (cgraph->nodes[i] == node) {
  8648. return true;
  8649. }
  8650. }
  8651. return false;
  8652. }
  8653. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8654. for (int i = 0; i < cgraph->n_nodes; i++) {
  8655. struct ggml_tensor * parent = cgraph->nodes[i];
  8656. if (parent->grad == node) {
  8657. return parent;
  8658. }
  8659. }
  8660. return NULL;
  8661. }
  8662. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8663. char color[16];
  8664. FILE * fp = fopen(filename, "w");
  8665. GGML_ASSERT(fp);
  8666. fprintf(fp, "digraph G {\n");
  8667. fprintf(fp, " newrank = true;\n");
  8668. fprintf(fp, " rankdir = LR;\n");
  8669. for (int i = 0; i < gb->n_nodes; i++) {
  8670. struct ggml_tensor * node = gb->nodes[i];
  8671. if (ggml_graph_get_parent(gb, node) != NULL) {
  8672. continue;
  8673. }
  8674. if (node->is_param) {
  8675. snprintf(color, sizeof(color), "yellow");
  8676. } else if (node->grad) {
  8677. if (ggml_graph_find(gf, node)) {
  8678. snprintf(color, sizeof(color), "green");
  8679. } else {
  8680. snprintf(color, sizeof(color), "lightblue");
  8681. }
  8682. } else {
  8683. snprintf(color, sizeof(color), "white");
  8684. }
  8685. fprintf(fp, " \"%p\" [ \
  8686. style = filled; fillcolor = %s; shape = record; \
  8687. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8688. (void *) node, color,
  8689. i, node->ne[0], node->ne[1],
  8690. GGML_OP_SYMBOL[node->op]);
  8691. if (node->grad) {
  8692. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8693. } else {
  8694. fprintf(fp, "\"; ]\n");
  8695. }
  8696. }
  8697. for (int i = 0; i < gb->n_leafs; i++) {
  8698. struct ggml_tensor * node = gb->leafs[i];
  8699. snprintf(color, sizeof(color), "pink");
  8700. if (ggml_nelements(node) == 1) {
  8701. fprintf(fp, " \"%p\" [ \
  8702. style = filled; fillcolor = %s; shape = record; \
  8703. label=\"<x>%.1e\"; ]\n",
  8704. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8705. } else {
  8706. fprintf(fp, " \"%p\" [ \
  8707. style = filled; fillcolor = %s; shape = record; \
  8708. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8709. (void *) node, color,
  8710. i, node->ne[0], node->ne[1]);
  8711. }
  8712. }
  8713. for (int i = 0; i < gb->n_nodes; i++) {
  8714. struct ggml_tensor * node = gb->nodes[i];
  8715. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8716. if (node->src0) {
  8717. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8718. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8719. parent0 ? (void *) parent0 : (void *) node->src0,
  8720. parent0 ? "g" : "x",
  8721. parent ? (void *) parent : (void *) node,
  8722. parent ? "g" : "x",
  8723. parent ? "empty" : "vee",
  8724. parent ? "dashed" : "solid");
  8725. }
  8726. if (node->src1) {
  8727. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8728. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8729. parent1 ? (void *) parent1 : (void *) node->src1,
  8730. parent1 ? "g" : "x",
  8731. parent ? (void *) parent : (void *) node,
  8732. parent ? "g" : "x",
  8733. parent ? "empty" : "vee",
  8734. parent ? "dashed" : "solid");
  8735. }
  8736. }
  8737. for (int i = 0; i < gb->n_leafs; i++) {
  8738. struct ggml_tensor * node = gb->leafs[i];
  8739. if (node->src0) {
  8740. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8741. (void *) node->src0, "x",
  8742. (void *) node, "x");
  8743. }
  8744. if (node->src1) {
  8745. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8746. (void *) node->src1, "x",
  8747. (void *) node, "x");
  8748. }
  8749. }
  8750. fprintf(fp, "}\n");
  8751. fclose(fp);
  8752. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8753. }
  8754. ////////////////////////////////////////////////////////////////////////////////
  8755. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8756. int i = 0;
  8757. for (int p = 0; p < np; ++p) {
  8758. const int64_t ne = ggml_nelements(ps[p]) ;
  8759. // TODO: add function to set tensor from array
  8760. for (int64_t j = 0; j < ne; ++j) {
  8761. ggml_set_f32_1d(ps[p], j, x[i++]);
  8762. }
  8763. }
  8764. }
  8765. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8766. int i = 0;
  8767. for (int p = 0; p < np; ++p) {
  8768. const int64_t ne = ggml_nelements(ps[p]) ;
  8769. // TODO: add function to get all elements at once
  8770. for (int64_t j = 0; j < ne; ++j) {
  8771. x[i++] = ggml_get_f32_1d(ps[p], j);
  8772. }
  8773. }
  8774. }
  8775. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8776. int i = 0;
  8777. for (int p = 0; p < np; ++p) {
  8778. const int64_t ne = ggml_nelements(ps[p]) ;
  8779. // TODO: add function to get all elements at once
  8780. for (int64_t j = 0; j < ne; ++j) {
  8781. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8782. }
  8783. }
  8784. }
  8785. //
  8786. // ADAM
  8787. //
  8788. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8789. //
  8790. static enum ggml_opt_result ggml_opt_adam(
  8791. struct ggml_context * ctx,
  8792. struct ggml_opt_params params,
  8793. struct ggml_tensor * f,
  8794. struct ggml_cgraph * gf,
  8795. struct ggml_cgraph * gb) {
  8796. GGML_ASSERT(ggml_is_scalar(f));
  8797. gf->n_threads = params.n_threads;
  8798. gb->n_threads = params.n_threads;
  8799. // these will store the parameters we want to optimize
  8800. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8801. int np = 0;
  8802. int nx = 0;
  8803. for (int i = 0; i < gf->n_nodes; ++i) {
  8804. if (gf->nodes[i]->is_param) {
  8805. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8806. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8807. ps[np++] = gf->nodes[i];
  8808. nx += ggml_nelements(gf->nodes[i]);
  8809. }
  8810. }
  8811. // constants
  8812. const float alpha = params.adam.alpha;
  8813. const float beta1 = params.adam.beta1;
  8814. const float beta2 = params.adam.beta2;
  8815. const float eps = params.adam.eps;
  8816. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8817. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8818. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8819. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8820. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8821. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8822. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8823. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8824. // initialize
  8825. ggml_vec_set_f32(nx, m, 0.0f);
  8826. ggml_vec_set_f32(nx, v, 0.0f);
  8827. // update view
  8828. ggml_opt_get_params(np, ps, x);
  8829. // compute the function value
  8830. ggml_graph_reset (gf);
  8831. ggml_set_f32 (f->grad, 1.0f);
  8832. ggml_graph_compute(ctx, gb);
  8833. float fx_prev = ggml_get_f32_1d(f, 0);
  8834. if (pf) {
  8835. pf[0] = fx_prev;
  8836. }
  8837. int n_no_improvement = 0;
  8838. float fx_best = fx_prev;
  8839. // run the optimizer
  8840. for (int t = 0; t < params.adam.n_iter; ++t) {
  8841. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8842. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8843. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8844. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8845. for (int i = 0; i < np; ++i) {
  8846. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8847. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8848. }
  8849. const int64_t t_start_wall = ggml_time_us();
  8850. const int64_t t_start_cpu = ggml_cycles();
  8851. UNUSED(t_start_wall);
  8852. UNUSED(t_start_cpu);
  8853. {
  8854. // update the gradient
  8855. ggml_opt_get_grad(np, ps, g1);
  8856. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8857. ggml_vec_scale_f32(nx, m, beta1);
  8858. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8859. // g2 = g1^2
  8860. ggml_vec_sqr_f32 (nx, g2, g1);
  8861. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8862. ggml_vec_scale_f32(nx, v, beta2);
  8863. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8864. // m^hat = m_t / (1 - beta1^t)
  8865. // v^hat = v_t / (1 - beta2^t)
  8866. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8867. ggml_vec_cpy_f32 (nx, mh, m);
  8868. ggml_vec_cpy_f32 (nx, vh, v);
  8869. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8870. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8871. ggml_vec_sqrt_f32 (nx, vh, vh);
  8872. ggml_vec_acc1_f32 (nx, vh, eps);
  8873. ggml_vec_div_f32 (nx, mh, mh, vh);
  8874. ggml_vec_sub_f32 (nx, x, x, mh);
  8875. // update the parameters
  8876. ggml_opt_set_params(np, ps, x);
  8877. }
  8878. ggml_graph_reset (gf);
  8879. ggml_set_f32 (f->grad, 1.0f);
  8880. ggml_graph_compute(ctx, gb);
  8881. const float fx = ggml_get_f32_1d(f, 0);
  8882. // check convergence
  8883. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8884. GGML_PRINT_DEBUG("converged\n");
  8885. return GGML_OPT_OK;
  8886. }
  8887. // delta-based convergence test
  8888. if (pf != NULL) {
  8889. // need at least params.past iterations to start checking for convergence
  8890. if (params.past <= t) {
  8891. const float rate = (pf[t%params.past] - fx)/fx;
  8892. if (fabsf(rate) < params.delta) {
  8893. return GGML_OPT_OK;
  8894. }
  8895. }
  8896. pf[t%params.past] = fx;
  8897. }
  8898. // check for improvement
  8899. if (params.max_no_improvement > 0) {
  8900. if (fx_best > fx) {
  8901. fx_best = fx;
  8902. n_no_improvement = 0;
  8903. } else {
  8904. ++n_no_improvement;
  8905. if (n_no_improvement >= params.max_no_improvement) {
  8906. return GGML_OPT_OK;
  8907. }
  8908. }
  8909. }
  8910. fx_prev = fx;
  8911. {
  8912. const int64_t t_end_cpu = ggml_cycles();
  8913. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8914. UNUSED(t_end_cpu);
  8915. const int64_t t_end_wall = ggml_time_us();
  8916. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8917. UNUSED(t_end_wall);
  8918. }
  8919. }
  8920. return GGML_OPT_DID_NOT_CONVERGE;
  8921. }
  8922. //
  8923. // L-BFGS
  8924. //
  8925. // the L-BFGS implementation below is based on the following implementation:
  8926. //
  8927. // https://github.com/chokkan/liblbfgs
  8928. //
  8929. struct ggml_lbfgs_iteration_data {
  8930. float alpha;
  8931. float ys;
  8932. float * s;
  8933. float * y;
  8934. };
  8935. static enum ggml_opt_result linesearch_backtracking(
  8936. struct ggml_context * ctx,
  8937. const struct ggml_opt_params * params,
  8938. int nx,
  8939. float * x,
  8940. float * fx,
  8941. float * g,
  8942. float * d,
  8943. float * step,
  8944. const float * xp,
  8945. struct ggml_tensor * f,
  8946. struct ggml_cgraph * gf,
  8947. struct ggml_cgraph * gb,
  8948. const int np,
  8949. struct ggml_tensor * ps[]) {
  8950. int count = 0;
  8951. float width = 0.0f;
  8952. float dg = 0.0f;
  8953. float finit = 0.0f;
  8954. float dginit = 0.0f;
  8955. float dgtest = 0.0f;
  8956. const float dec = 0.5f;
  8957. const float inc = 2.1f;
  8958. if (*step <= 0.f) {
  8959. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8960. }
  8961. // compute the initial gradient in the search direction
  8962. ggml_vec_dot_f32(nx, &dginit, g, d);
  8963. // make sure that d points to a descent direction
  8964. if (0 < dginit) {
  8965. return GGML_LINESEARCH_FAIL;
  8966. }
  8967. // initialize local variables
  8968. finit = *fx;
  8969. dgtest = params->lbfgs.ftol*dginit;
  8970. while (true) {
  8971. ggml_vec_cpy_f32(nx, x, xp);
  8972. ggml_vec_mad_f32(nx, x, d, *step);
  8973. // evaluate the function and gradient values
  8974. {
  8975. ggml_opt_set_params(np, ps, x);
  8976. ggml_graph_reset (gf);
  8977. ggml_set_f32 (f->grad, 1.0f);
  8978. ggml_graph_compute(ctx, gb);
  8979. ggml_opt_get_grad(np, ps, g);
  8980. *fx = ggml_get_f32_1d(f, 0);
  8981. }
  8982. ++count;
  8983. if (*fx > finit + (*step)*dgtest) {
  8984. width = dec;
  8985. } else {
  8986. // Armijo condition is satisfied
  8987. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8988. return count;
  8989. }
  8990. ggml_vec_dot_f32(nx, &dg, g, d);
  8991. // check the Wolfe condition
  8992. if (dg < params->lbfgs.wolfe * dginit) {
  8993. width = inc;
  8994. } else {
  8995. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8996. // regular Wolfe conditions
  8997. return count;
  8998. }
  8999. if(dg > -params->lbfgs.wolfe*dginit) {
  9000. width = dec;
  9001. } else {
  9002. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9003. return count;
  9004. }
  9005. return count;
  9006. }
  9007. }
  9008. if (*step < params->lbfgs.min_step) {
  9009. return GGML_LINESEARCH_MINIMUM_STEP;
  9010. }
  9011. if (*step > params->lbfgs.max_step) {
  9012. return GGML_LINESEARCH_MAXIMUM_STEP;
  9013. }
  9014. if (params->lbfgs.max_linesearch <= count) {
  9015. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9016. }
  9017. (*step) *= width;
  9018. }
  9019. return GGML_LINESEARCH_FAIL;
  9020. }
  9021. static enum ggml_opt_result ggml_opt_lbfgs(
  9022. struct ggml_context * ctx,
  9023. struct ggml_opt_params params,
  9024. struct ggml_tensor * f,
  9025. struct ggml_cgraph * gf,
  9026. struct ggml_cgraph * gb) {
  9027. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9028. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9029. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9030. return GGML_OPT_INVALID_WOLFE;
  9031. }
  9032. }
  9033. gf->n_threads = params.n_threads;
  9034. gb->n_threads = params.n_threads;
  9035. const int m = params.lbfgs.m;
  9036. // these will store the parameters we want to optimize
  9037. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9038. int np = 0;
  9039. int nx = 0;
  9040. for (int i = 0; i < gf->n_nodes; ++i) {
  9041. if (gf->nodes[i]->is_param) {
  9042. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9043. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9044. ps[np++] = gf->nodes[i];
  9045. nx += ggml_nelements(gf->nodes[i]);
  9046. }
  9047. }
  9048. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9049. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9050. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9051. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9052. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9053. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9054. float fx = 0.0f; // cost function value
  9055. float xnorm = 0.0f; // ||x||
  9056. float gnorm = 0.0f; // ||g||
  9057. float step = 0.0f;
  9058. // initialize x from the graph nodes
  9059. ggml_opt_get_params(np, ps, x);
  9060. // the L-BFGS memory
  9061. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9062. for (int i = 0; i < m; ++i) {
  9063. lm[i].alpha = 0.0f;
  9064. lm[i].ys = 0.0f;
  9065. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9066. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9067. }
  9068. // evaluate the function value and its gradient
  9069. {
  9070. ggml_opt_set_params(np, ps, x);
  9071. ggml_graph_reset (gf);
  9072. ggml_set_f32 (f->grad, 1.0f);
  9073. ggml_graph_compute(ctx, gb);
  9074. ggml_opt_get_grad(np, ps, g);
  9075. fx = ggml_get_f32_1d(f, 0);
  9076. }
  9077. if (pf) {
  9078. pf[0] = fx;
  9079. }
  9080. float fx_best = fx;
  9081. // search direction = -gradient
  9082. ggml_vec_neg_f32(nx, d, g);
  9083. // ||x||, ||g||
  9084. ggml_vec_norm_f32(nx, &xnorm, x);
  9085. ggml_vec_norm_f32(nx, &gnorm, g);
  9086. if (xnorm < 1.0f) {
  9087. xnorm = 1.0f;
  9088. }
  9089. // already optimized
  9090. if (gnorm/xnorm <= params.lbfgs.eps) {
  9091. return GGML_OPT_OK;
  9092. }
  9093. // initial step
  9094. ggml_vec_norm_inv_f32(nx, &step, d);
  9095. int j = 0;
  9096. int k = 1;
  9097. int ls = 0;
  9098. int end = 0;
  9099. int bound = 0;
  9100. int n_no_improvement = 0;
  9101. float ys = 0.0f;
  9102. float yy = 0.0f;
  9103. float beta = 0.0f;
  9104. while (true) {
  9105. // store the current position and gradient vectors
  9106. ggml_vec_cpy_f32(nx, xp, x);
  9107. ggml_vec_cpy_f32(nx, gp, g);
  9108. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9109. if (ls < 0) {
  9110. // linesearch failed - go back to the previous point and return
  9111. ggml_vec_cpy_f32(nx, x, xp);
  9112. ggml_vec_cpy_f32(nx, g, gp);
  9113. return ls;
  9114. }
  9115. ggml_vec_norm_f32(nx, &xnorm, x);
  9116. ggml_vec_norm_f32(nx, &gnorm, g);
  9117. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9118. if (xnorm < 1.0f) {
  9119. xnorm = 1.0f;
  9120. }
  9121. if (gnorm/xnorm <= params.lbfgs.eps) {
  9122. // converged
  9123. return GGML_OPT_OK;
  9124. }
  9125. // delta-based convergence test
  9126. if (pf != NULL) {
  9127. // need at least params.past iterations to start checking for convergence
  9128. if (params.past <= k) {
  9129. const float rate = (pf[k%params.past] - fx)/fx;
  9130. if (fabsf(rate) < params.delta) {
  9131. return GGML_OPT_OK;
  9132. }
  9133. }
  9134. pf[k%params.past] = fx;
  9135. }
  9136. // check for improvement
  9137. if (params.max_no_improvement > 0) {
  9138. if (fx < fx_best) {
  9139. fx_best = fx;
  9140. n_no_improvement = 0;
  9141. } else {
  9142. n_no_improvement++;
  9143. if (n_no_improvement >= params.max_no_improvement) {
  9144. return GGML_OPT_OK;
  9145. }
  9146. }
  9147. }
  9148. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9149. // reached the maximum number of iterations
  9150. return GGML_OPT_DID_NOT_CONVERGE;
  9151. }
  9152. // update vectors s and y:
  9153. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9154. // y_{k+1} = g_{k+1} - g_{k}.
  9155. //
  9156. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9157. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9158. // compute scalars ys and yy:
  9159. // ys = y^t \cdot s -> 1 / \rho.
  9160. // yy = y^t \cdot y.
  9161. //
  9162. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9163. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9164. lm[end].ys = ys;
  9165. // find new search direction
  9166. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9167. bound = (m <= k) ? m : k;
  9168. k++;
  9169. end = (end + 1)%m;
  9170. // initialize search direction with -g
  9171. ggml_vec_neg_f32(nx, d, g);
  9172. j = end;
  9173. for (int i = 0; i < bound; ++i) {
  9174. j = (j + m - 1) % m;
  9175. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9176. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9177. lm[j].alpha /= lm[j].ys;
  9178. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9179. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9180. }
  9181. ggml_vec_scale_f32(nx, d, ys/yy);
  9182. for (int i = 0; i < bound; ++i) {
  9183. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9184. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9185. beta /= lm[j].ys;
  9186. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9187. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9188. j = (j + 1)%m;
  9189. }
  9190. step = 1.0;
  9191. }
  9192. return GGML_OPT_DID_NOT_CONVERGE;
  9193. }
  9194. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9195. struct ggml_opt_params result;
  9196. switch (type) {
  9197. case GGML_OPT_ADAM:
  9198. {
  9199. result = (struct ggml_opt_params) {
  9200. .type = GGML_OPT_ADAM,
  9201. .n_threads = 1,
  9202. .past = 0,
  9203. .delta = 1e-5f,
  9204. .max_no_improvement = 100,
  9205. .print_forward_graph = true,
  9206. .print_backward_graph = true,
  9207. .adam = {
  9208. .n_iter = 10000,
  9209. .alpha = 0.001f,
  9210. .beta1 = 0.9f,
  9211. .beta2 = 0.999f,
  9212. .eps = 1e-8f,
  9213. .eps_f = 1e-5f,
  9214. .eps_g = 1e-3f,
  9215. },
  9216. };
  9217. } break;
  9218. case GGML_OPT_LBFGS:
  9219. {
  9220. result = (struct ggml_opt_params) {
  9221. .type = GGML_OPT_LBFGS,
  9222. .n_threads = 1,
  9223. .past = 0,
  9224. .delta = 1e-5f,
  9225. .max_no_improvement = 0,
  9226. .print_forward_graph = true,
  9227. .print_backward_graph = true,
  9228. .lbfgs = {
  9229. .m = 6,
  9230. .n_iter = 100,
  9231. .max_linesearch = 20,
  9232. .eps = 1e-5f,
  9233. .ftol = 1e-4f,
  9234. .wolfe = 0.9f,
  9235. .min_step = 1e-20f,
  9236. .max_step = 1e+20f,
  9237. .linesearch = GGML_LINESEARCH_DEFAULT,
  9238. },
  9239. };
  9240. } break;
  9241. }
  9242. return result;
  9243. }
  9244. enum ggml_opt_result ggml_opt(
  9245. struct ggml_context * ctx,
  9246. struct ggml_opt_params params,
  9247. struct ggml_tensor * f) {
  9248. bool free_ctx = false;
  9249. if (ctx == NULL) {
  9250. struct ggml_init_params params_ctx = {
  9251. .mem_size = 16*1024*1024,
  9252. .mem_buffer = NULL,
  9253. .no_alloc = false,
  9254. };
  9255. ctx = ggml_init(params_ctx);
  9256. if (ctx == NULL) {
  9257. return GGML_OPT_NO_CONTEXT;
  9258. }
  9259. free_ctx = true;
  9260. }
  9261. enum ggml_opt_result result = GGML_OPT_OK;
  9262. // build forward + backward compute graphs
  9263. struct ggml_cgraph gf = ggml_build_forward (f);
  9264. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9265. switch (params.type) {
  9266. case GGML_OPT_ADAM:
  9267. {
  9268. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9269. } break;
  9270. case GGML_OPT_LBFGS:
  9271. {
  9272. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9273. } break;
  9274. }
  9275. if (params.print_forward_graph) {
  9276. ggml_graph_print (&gf);
  9277. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9278. }
  9279. if (params.print_backward_graph) {
  9280. ggml_graph_print (&gb);
  9281. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9282. }
  9283. if (free_ctx) {
  9284. ggml_free(ctx);
  9285. }
  9286. return result;
  9287. }
  9288. ////////////////////////////////////////////////////////////////////////////////
  9289. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9290. assert(k % QK4_0 == 0);
  9291. const int nb = k / QK4_0;
  9292. for (int j = 0; j < n; j += k) {
  9293. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9294. quantize_row_q4_0_reference(src + j, y, k);
  9295. for (int i = 0; i < nb; i++) {
  9296. for (int l = 0; l < QK4_0; l += 2) {
  9297. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9298. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9299. hist[vi0]++;
  9300. hist[vi1]++;
  9301. }
  9302. }
  9303. }
  9304. return (n/QK4_0*sizeof(block_q4_0));
  9305. }
  9306. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9307. assert(k % QK4_1 == 0);
  9308. const int nb = k / QK4_1;
  9309. for (int j = 0; j < n; j += k) {
  9310. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9311. quantize_row_q4_1_reference(src + j, y, k);
  9312. for (int i = 0; i < nb; i++) {
  9313. for (int l = 0; l < QK4_1; l += 2) {
  9314. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9315. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9316. hist[vi0]++;
  9317. hist[vi1]++;
  9318. }
  9319. }
  9320. }
  9321. return (n/QK4_1*sizeof(block_q4_1));
  9322. }
  9323. ////////////////////////////////////////////////////////////////////////////////
  9324. int ggml_cpu_has_avx(void) {
  9325. #if defined(__AVX__)
  9326. return 1;
  9327. #else
  9328. return 0;
  9329. #endif
  9330. }
  9331. int ggml_cpu_has_avx2(void) {
  9332. #if defined(__AVX2__)
  9333. return 1;
  9334. #else
  9335. return 0;
  9336. #endif
  9337. }
  9338. int ggml_cpu_has_avx512(void) {
  9339. #if defined(__AVX512F__)
  9340. return 1;
  9341. #else
  9342. return 0;
  9343. #endif
  9344. }
  9345. int ggml_cpu_has_avx512_vbmi(void) {
  9346. #if defined(__AVX512VBMI__)
  9347. return 1;
  9348. #else
  9349. return 0;
  9350. #endif
  9351. }
  9352. int ggml_cpu_has_avx512_vnni(void) {
  9353. #if defined(__AVX512VNNI__)
  9354. return 1;
  9355. #else
  9356. return 0;
  9357. #endif
  9358. }
  9359. int ggml_cpu_has_fma(void) {
  9360. #if defined(__FMA__)
  9361. return 1;
  9362. #else
  9363. return 0;
  9364. #endif
  9365. }
  9366. int ggml_cpu_has_neon(void) {
  9367. #if defined(__ARM_NEON)
  9368. return 1;
  9369. #else
  9370. return 0;
  9371. #endif
  9372. }
  9373. int ggml_cpu_has_arm_fma(void) {
  9374. #if defined(__ARM_FEATURE_FMA)
  9375. return 1;
  9376. #else
  9377. return 0;
  9378. #endif
  9379. }
  9380. int ggml_cpu_has_f16c(void) {
  9381. #if defined(__F16C__)
  9382. return 1;
  9383. #else
  9384. return 0;
  9385. #endif
  9386. }
  9387. int ggml_cpu_has_fp16_va(void) {
  9388. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  9389. return 1;
  9390. #else
  9391. return 0;
  9392. #endif
  9393. }
  9394. int ggml_cpu_has_wasm_simd(void) {
  9395. #if defined(__wasm_simd128__)
  9396. return 1;
  9397. #else
  9398. return 0;
  9399. #endif
  9400. }
  9401. int ggml_cpu_has_blas(void) {
  9402. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9403. return 1;
  9404. #else
  9405. return 0;
  9406. #endif
  9407. }
  9408. int ggml_cpu_has_sse3(void) {
  9409. #if defined(__SSE3__)
  9410. return 1;
  9411. #else
  9412. return 0;
  9413. #endif
  9414. }
  9415. int ggml_cpu_has_vsx(void) {
  9416. #if defined(__POWER9_VECTOR__)
  9417. return 1;
  9418. #else
  9419. return 0;
  9420. #endif
  9421. }
  9422. ////////////////////////////////////////////////////////////////////////////////