ggml.c 670 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. // #define GGML_CROSS_ENTROPY_EXP_FP16
  106. // #define GGML_FLASH_ATTN_EXP_FP16
  107. #define GGML_SOFT_MAX_UNROLL 4
  108. #define GGML_VEC_DOT_UNROLL 2
  109. //
  110. // logging
  111. //
  112. #if (GGML_DEBUG >= 1)
  113. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  114. #else
  115. #define GGML_PRINT_DEBUG(...)
  116. #endif
  117. #if (GGML_DEBUG >= 5)
  118. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG_5(...)
  121. #endif
  122. #if (GGML_DEBUG >= 10)
  123. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  124. #else
  125. #define GGML_PRINT_DEBUG_10(...)
  126. #endif
  127. #define GGML_PRINT(...) printf(__VA_ARGS__)
  128. #ifdef GGML_USE_ACCELERATE
  129. // uncomment to use vDSP for soft max computation
  130. // note: not sure if it is actually faster
  131. //#define GGML_SOFT_MAX_ACCELERATE
  132. #endif
  133. //
  134. // logging
  135. //
  136. #if (GGML_DEBUG >= 1)
  137. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG(...)
  140. #endif
  141. #if (GGML_DEBUG >= 5)
  142. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_5(...)
  145. #endif
  146. #if (GGML_DEBUG >= 10)
  147. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_10(...)
  150. #endif
  151. #define GGML_PRINT(...) printf(__VA_ARGS__)
  152. //
  153. // end of logging block
  154. //
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. void * aligned_memory = NULL;
  161. #ifdef GGML_USE_METAL
  162. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  163. #else
  164. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  165. #endif
  166. if (result != 0) {
  167. // Handle allocation failure
  168. const char *error_desc = "unknown allocation error";
  169. switch (result) {
  170. case EINVAL:
  171. error_desc = "invalid alignment value";
  172. break;
  173. case ENOMEM:
  174. error_desc = "insufficient memory";
  175. break;
  176. }
  177. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #if defined(GGML_BLAS_USE_MKL)
  209. #include <mkl.h>
  210. #else
  211. #include <cblas.h>
  212. #endif
  213. #elif defined(GGML_USE_CUBLAS)
  214. #include "ggml-cuda.h"
  215. #elif defined(GGML_USE_CLBLAST)
  216. #include "ggml-opencl.h"
  217. #endif
  218. #undef MIN
  219. #undef MAX
  220. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  221. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  222. // floating point type used to accumulate sums
  223. typedef double ggml_float;
  224. // 16-bit float
  225. // on Arm, we use __fp16
  226. // on x86, we use uint16_t
  227. #ifdef __ARM_NEON
  228. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  229. //
  230. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  231. //
  232. #include <arm_neon.h>
  233. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  234. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  235. #define GGML_FP16_TO_FP32(x) ((float) (x))
  236. #define GGML_FP32_TO_FP16(x) (x)
  237. #else
  238. #ifdef __wasm_simd128__
  239. #include <wasm_simd128.h>
  240. #else
  241. #ifdef __POWER9_VECTOR__
  242. #include <altivec.h>
  243. #undef bool
  244. #define bool _Bool
  245. #else
  246. #if defined(_MSC_VER) || defined(__MINGW32__)
  247. #include <intrin.h>
  248. #else
  249. #if !defined(__riscv)
  250. #include <immintrin.h>
  251. #endif
  252. #endif
  253. #endif
  254. #endif
  255. #ifdef __riscv_v_intrinsic
  256. #include <riscv_vector.h>
  257. #endif
  258. #ifdef __F16C__
  259. #ifdef _MSC_VER
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  262. #else
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  265. #endif
  266. #elif defined(__POWER9_VECTOR__)
  267. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  268. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  269. /* the inline asm below is about 12% faster than the lookup method */
  270. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  273. register float f;
  274. register double d;
  275. __asm__(
  276. "mtfprd %0,%2\n"
  277. "xscvhpdp %0,%0\n"
  278. "frsp %1,%0\n" :
  279. /* temp */ "=d"(d),
  280. /* out */ "=f"(f):
  281. /* in */ "r"(h));
  282. return f;
  283. }
  284. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  285. register double d;
  286. register ggml_fp16_t r;
  287. __asm__( /* xscvdphp can work on double or single precision */
  288. "xscvdphp %0,%2\n"
  289. "mffprd %1,%0\n" :
  290. /* temp */ "=d"(d),
  291. /* out */ "=r"(r):
  292. /* in */ "f"(f));
  293. return r;
  294. }
  295. #else
  296. // FP16 <-> FP32
  297. // ref: https://github.com/Maratyszcza/FP16
  298. static inline float fp32_from_bits(uint32_t w) {
  299. union {
  300. uint32_t as_bits;
  301. float as_value;
  302. } fp32;
  303. fp32.as_bits = w;
  304. return fp32.as_value;
  305. }
  306. static inline uint32_t fp32_to_bits(float f) {
  307. union {
  308. float as_value;
  309. uint32_t as_bits;
  310. } fp32;
  311. fp32.as_value = f;
  312. return fp32.as_bits;
  313. }
  314. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  315. const uint32_t w = (uint32_t) h << 16;
  316. const uint32_t sign = w & UINT32_C(0x80000000);
  317. const uint32_t two_w = w + w;
  318. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  319. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  320. const float exp_scale = 0x1.0p-112f;
  321. #else
  322. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  323. #endif
  324. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  325. const uint32_t magic_mask = UINT32_C(126) << 23;
  326. const float magic_bias = 0.5f;
  327. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  328. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  329. const uint32_t result = sign |
  330. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  331. return fp32_from_bits(result);
  332. }
  333. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  334. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  335. const float scale_to_inf = 0x1.0p+112f;
  336. const float scale_to_zero = 0x1.0p-110f;
  337. #else
  338. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  339. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  340. #endif
  341. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  342. const uint32_t w = fp32_to_bits(f);
  343. const uint32_t shl1_w = w + w;
  344. const uint32_t sign = w & UINT32_C(0x80000000);
  345. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  346. if (bias < UINT32_C(0x71000000)) {
  347. bias = UINT32_C(0x71000000);
  348. }
  349. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  350. const uint32_t bits = fp32_to_bits(base);
  351. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  352. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  353. const uint32_t nonsign = exp_bits + mantissa_bits;
  354. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  355. }
  356. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  357. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  358. #endif // __F16C__
  359. #endif // __ARM_NEON
  360. //
  361. // global data
  362. //
  363. // precomputed gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_f16[1 << 16];
  365. // precomputed quick gelu table for f16 (128 KB)
  366. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  367. // precomputed silu table for f16 (128 KB)
  368. static ggml_fp16_t table_silu_f16[1 << 16];
  369. // precomputed exp table for f16 (128 KB)
  370. static ggml_fp16_t table_exp_f16[1 << 16];
  371. // precomputed f32 table for f16 (256 KB)
  372. static float table_f32_f16[1 << 16];
  373. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  374. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  375. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  376. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  377. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  378. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  379. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  380. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  381. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  382. // precomputed tables for expanding 8bits to 8 bytes:
  383. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  384. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  385. #endif
  386. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  387. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  388. // This is also true for POWER9.
  389. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  390. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  391. uint16_t s;
  392. memcpy(&s, &f, sizeof(uint16_t));
  393. return table_f32_f16[s];
  394. }
  395. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  396. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  397. #endif
  398. // note: do not use these inside ggml.c
  399. // these are meant to be used via the ggml.h API
  400. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  401. return (float) GGML_FP16_TO_FP32(x);
  402. }
  403. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  404. return GGML_FP32_TO_FP16(x);
  405. }
  406. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  407. for (int i = 0; i < n; i++) {
  408. y[i] = GGML_FP16_TO_FP32(x[i]);
  409. }
  410. }
  411. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  412. int i = 0;
  413. #if defined(__F16C__)
  414. for (; i + 7 < n; i += 8) {
  415. __m256 x_vec = _mm256_loadu_ps(x + i);
  416. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  417. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  418. }
  419. for(; i + 3 < n; i += 4) {
  420. __m128 x_vec = _mm_loadu_ps(x + i);
  421. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  422. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  423. }
  424. #endif
  425. for (; i < n; i++) {
  426. y[i] = GGML_FP32_TO_FP16(x[i]);
  427. }
  428. }
  429. //
  430. // timing
  431. //
  432. #if defined(_MSC_VER) || defined(__MINGW32__)
  433. static int64_t timer_freq, timer_start;
  434. void ggml_time_init(void) {
  435. LARGE_INTEGER t;
  436. QueryPerformanceFrequency(&t);
  437. timer_freq = t.QuadPart;
  438. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  439. // and the uptime is high enough.
  440. // We subtract the program start time to reduce the likelihood of that happening.
  441. QueryPerformanceCounter(&t);
  442. timer_start = t.QuadPart;
  443. }
  444. int64_t ggml_time_ms(void) {
  445. LARGE_INTEGER t;
  446. QueryPerformanceCounter(&t);
  447. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  448. }
  449. int64_t ggml_time_us(void) {
  450. LARGE_INTEGER t;
  451. QueryPerformanceCounter(&t);
  452. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  453. }
  454. #else
  455. void ggml_time_init(void) {}
  456. int64_t ggml_time_ms(void) {
  457. struct timespec ts;
  458. clock_gettime(CLOCK_MONOTONIC, &ts);
  459. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  460. }
  461. int64_t ggml_time_us(void) {
  462. struct timespec ts;
  463. clock_gettime(CLOCK_MONOTONIC, &ts);
  464. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  465. }
  466. #endif
  467. int64_t ggml_cycles(void) {
  468. return clock();
  469. }
  470. int64_t ggml_cycles_per_ms(void) {
  471. return CLOCKS_PER_SEC/1000;
  472. }
  473. #ifdef GGML_PERF
  474. #define ggml_perf_time_ms() ggml_time_ms()
  475. #define ggml_perf_time_us() ggml_time_us()
  476. #define ggml_perf_cycles() ggml_cycles()
  477. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  478. #else
  479. #define ggml_perf_time_ms() 0
  480. #define ggml_perf_time_us() 0
  481. #define ggml_perf_cycles() 0
  482. #define ggml_perf_cycles_per_ms() 0
  483. #endif
  484. //
  485. // cache line
  486. //
  487. #if defined(__cpp_lib_hardware_interference_size)
  488. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  489. #else
  490. #if defined(__POWER9_VECTOR__)
  491. #define CACHE_LINE_SIZE 128
  492. #else
  493. #define CACHE_LINE_SIZE 64
  494. #endif
  495. #endif
  496. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  497. //
  498. // quantization
  499. //
  500. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  501. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  502. // multiply int8_t, add results pairwise twice
  503. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  504. // Get absolute values of x vectors
  505. const __m128i ax = _mm_sign_epi8(x, x);
  506. // Sign the values of the y vectors
  507. const __m128i sy = _mm_sign_epi8(y, x);
  508. // Perform multiplication and create 16-bit values
  509. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  510. const __m128i ones = _mm_set1_epi16(1);
  511. return _mm_madd_epi16(ones, dot);
  512. }
  513. #if __AVX__ || __AVX2__ || __AVX512F__
  514. // horizontally add 8 floats
  515. static inline float hsum_float_8(const __m256 x) {
  516. __m128 res = _mm256_extractf128_ps(x, 1);
  517. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  518. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  519. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  520. return _mm_cvtss_f32(res);
  521. }
  522. // horizontally add 8 int32_t
  523. static inline int hsum_i32_8(const __m256i a) {
  524. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  525. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  526. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. // horizontally add 4 int32_t
  531. static inline int hsum_i32_4(const __m128i a) {
  532. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  533. const __m128i sum64 = _mm_add_epi32(hi64, a);
  534. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  535. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  536. }
  537. #if defined(__AVX2__) || defined(__AVX512F__)
  538. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  539. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  540. uint32_t x32;
  541. memcpy(&x32, x, sizeof(uint32_t));
  542. const __m256i shuf_mask = _mm256_set_epi64x(
  543. 0x0303030303030303, 0x0202020202020202,
  544. 0x0101010101010101, 0x0000000000000000);
  545. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  546. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  547. bytes = _mm256_or_si256(bytes, bit_mask);
  548. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  549. }
  550. // Unpack 32 4-bit fields into 32 bytes
  551. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  552. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  553. {
  554. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  555. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  556. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  557. return _mm256_and_si256(lowMask, bytes);
  558. }
  559. // add int16_t pairwise and return as float vector
  560. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  561. const __m256i ones = _mm256_set1_epi16(1);
  562. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  563. return _mm256_cvtepi32_ps(summed_pairs);
  564. }
  565. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  566. #if __AVXVNNI__
  567. const __m256i zero = _mm256_setzero_si256();
  568. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  569. return _mm256_cvtepi32_ps(summed_pairs);
  570. #else
  571. // Perform multiplication and create 16-bit values
  572. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  573. return sum_i16_pairs_float(dot);
  574. #endif
  575. }
  576. // multiply int8_t, add results pairwise twice and return as float vector
  577. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  578. #if __AVXVNNIINT8__
  579. const __m256i zero = _mm256_setzero_si256();
  580. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. #else
  583. // Get absolute values of x vectors
  584. const __m256i ax = _mm256_sign_epi8(x, x);
  585. // Sign the values of the y vectors
  586. const __m256i sy = _mm256_sign_epi8(y, x);
  587. return mul_sum_us8_pairs_float(ax, sy);
  588. #endif
  589. }
  590. static inline __m128i packNibbles( __m256i bytes )
  591. {
  592. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  593. #if __AVX512F__
  594. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  595. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  596. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  597. #else
  598. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  599. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  600. __m256i low = _mm256_and_si256( lowByte, bytes );
  601. high = _mm256_srli_epi16( high, 4 );
  602. bytes = _mm256_or_si256( low, high );
  603. // Compress uint16_t lanes into bytes
  604. __m128i r0 = _mm256_castsi256_si128( bytes );
  605. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  606. return _mm_packus_epi16( r0, r1 );
  607. #endif
  608. }
  609. #elif defined(__AVX__)
  610. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  611. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  612. uint32_t x32;
  613. memcpy(&x32, x, sizeof(uint32_t));
  614. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  615. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  616. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  617. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  618. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  619. bytesl = _mm_or_si128(bytesl, bit_mask);
  620. bytesh = _mm_or_si128(bytesh, bit_mask);
  621. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  622. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  623. return MM256_SET_M128I(bytesh, bytesl);
  624. }
  625. // Unpack 32 4-bit fields into 32 bytes
  626. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  627. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  628. {
  629. // Load 16 bytes from memory
  630. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  631. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  632. const __m128i lowMask = _mm_set1_epi8(0xF);
  633. tmpl = _mm_and_si128(lowMask, tmpl);
  634. tmph = _mm_and_si128(lowMask, tmph);
  635. return MM256_SET_M128I(tmph, tmpl);
  636. }
  637. // add int16_t pairwise and return as float vector
  638. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  639. const __m128i ones = _mm_set1_epi16(1);
  640. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  641. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  642. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  643. return _mm256_cvtepi32_ps(summed_pairs);
  644. }
  645. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  646. const __m128i axl = _mm256_castsi256_si128(ax);
  647. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  648. const __m128i syl = _mm256_castsi256_si128(sy);
  649. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  650. // Perform multiplication and create 16-bit values
  651. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  652. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  653. return sum_i16_pairs_float(doth, dotl);
  654. }
  655. // multiply int8_t, add results pairwise twice and return as float vector
  656. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  657. const __m128i xl = _mm256_castsi256_si128(x);
  658. const __m128i xh = _mm256_extractf128_si256(x, 1);
  659. const __m128i yl = _mm256_castsi256_si128(y);
  660. const __m128i yh = _mm256_extractf128_si256(y, 1);
  661. // Get absolute values of x vectors
  662. const __m128i axl = _mm_sign_epi8(xl, xl);
  663. const __m128i axh = _mm_sign_epi8(xh, xh);
  664. // Sign the values of the y vectors
  665. const __m128i syl = _mm_sign_epi8(yl, xl);
  666. const __m128i syh = _mm_sign_epi8(yh, xh);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  673. {
  674. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  675. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  676. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  677. __m128i low = _mm_and_si128( lowByte, bytes1 );
  678. high = _mm_srli_epi16( high, 4 );
  679. bytes1 = _mm_or_si128( low, high );
  680. high = _mm_andnot_si128( lowByte, bytes2 );
  681. low = _mm_and_si128( lowByte, bytes2 );
  682. high = _mm_srli_epi16( high, 4 );
  683. bytes2 = _mm_or_si128( low, high );
  684. return _mm_packus_epi16( bytes1, bytes2);
  685. }
  686. #endif
  687. #elif defined(__SSSE3__)
  688. // horizontally add 4x4 floats
  689. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  690. __m128 res_0 =_mm_hadd_ps(a, b);
  691. __m128 res_1 =_mm_hadd_ps(c, d);
  692. __m128 res =_mm_hadd_ps(res_0, res_1);
  693. res =_mm_hadd_ps(res, res);
  694. res =_mm_hadd_ps(res, res);
  695. return _mm_cvtss_f32(res);
  696. }
  697. #endif // __AVX__ || __AVX2__ || __AVX512F__
  698. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  699. #if defined(__ARM_NEON)
  700. #if !defined(__aarch64__)
  701. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  702. return
  703. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  704. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  705. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  706. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  707. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  708. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  709. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  710. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  711. }
  712. inline static int16_t vaddvq_s8(int8x16_t v) {
  713. return
  714. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  715. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  716. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  717. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  718. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  719. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  720. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  721. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  722. }
  723. inline static int32_t vaddvq_s16(int16x8_t v) {
  724. return
  725. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  726. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  727. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  728. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  729. }
  730. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  731. return
  732. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  733. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  734. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  735. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  736. }
  737. inline static int32_t vaddvq_s32(int32x4_t v) {
  738. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  739. }
  740. inline static float vaddvq_f32(float32x4_t v) {
  741. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  742. }
  743. inline static float vminvq_f32(float32x4_t v) {
  744. return
  745. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  746. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  747. }
  748. inline static float vmaxvq_f32(float32x4_t v) {
  749. return
  750. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  751. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  752. }
  753. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  754. int32x4_t res;
  755. res[0] = roundf(vgetq_lane_f32(v, 0));
  756. res[1] = roundf(vgetq_lane_f32(v, 1));
  757. res[2] = roundf(vgetq_lane_f32(v, 2));
  758. res[3] = roundf(vgetq_lane_f32(v, 3));
  759. return res;
  760. }
  761. #endif
  762. #endif
  763. #define QK4_0 32
  764. typedef struct {
  765. ggml_fp16_t d; // delta
  766. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  767. } block_q4_0;
  768. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  769. #define QK4_1 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. ggml_fp16_t m; // min
  773. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  774. } block_q4_1;
  775. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  776. #define QK5_0 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. uint8_t qh[4]; // 5-th bit of quants
  780. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  781. } block_q5_0;
  782. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  783. #define QK5_1 32
  784. typedef struct {
  785. ggml_fp16_t d; // delta
  786. ggml_fp16_t m; // min
  787. uint8_t qh[4]; // 5-th bit of quants
  788. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  789. } block_q5_1;
  790. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  791. #define QK8_0 32
  792. typedef struct {
  793. ggml_fp16_t d; // delta
  794. int8_t qs[QK8_0]; // quants
  795. } block_q8_0;
  796. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  797. #define QK8_1 32
  798. typedef struct {
  799. float d; // delta
  800. float s; // d * sum(qs[i])
  801. int8_t qs[QK8_1]; // quants
  802. } block_q8_1;
  803. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  804. // reference implementation for deterministic creation of model files
  805. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  806. static const int qk = QK4_0;
  807. assert(k % qk == 0);
  808. const int nb = k / qk;
  809. for (int i = 0; i < nb; i++) {
  810. float amax = 0.0f; // absolute max
  811. float max = 0.0f;
  812. for (int j = 0; j < qk; j++) {
  813. const float v = x[i*qk + j];
  814. if (amax < fabsf(v)) {
  815. amax = fabsf(v);
  816. max = v;
  817. }
  818. }
  819. const float d = max / -8;
  820. const float id = d ? 1.0f/d : 0.0f;
  821. y[i].d = GGML_FP32_TO_FP16(d);
  822. for (int j = 0; j < qk/2; ++j) {
  823. const float x0 = x[i*qk + 0 + j]*id;
  824. const float x1 = x[i*qk + qk/2 + j]*id;
  825. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  826. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  827. y[i].qs[j] = xi0;
  828. y[i].qs[j] |= xi1 << 4;
  829. }
  830. }
  831. }
  832. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  833. quantize_row_q4_0_reference(x, y, k);
  834. }
  835. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  836. const int qk = QK4_1;
  837. assert(k % qk == 0);
  838. const int nb = k / qk;
  839. for (int i = 0; i < nb; i++) {
  840. float min = FLT_MAX;
  841. float max = -FLT_MAX;
  842. for (int j = 0; j < qk; j++) {
  843. const float v = x[i*qk + j];
  844. if (v < min) min = v;
  845. if (v > max) max = v;
  846. }
  847. const float d = (max - min) / ((1 << 4) - 1);
  848. const float id = d ? 1.0f/d : 0.0f;
  849. y[i].d = GGML_FP32_TO_FP16(d);
  850. y[i].m = GGML_FP32_TO_FP16(min);
  851. for (int j = 0; j < qk/2; ++j) {
  852. const float x0 = (x[i*qk + 0 + j] - min)*id;
  853. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  854. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  855. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  856. y[i].qs[j] = xi0;
  857. y[i].qs[j] |= xi1 << 4;
  858. }
  859. }
  860. }
  861. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  862. quantize_row_q4_1_reference(x, y, k);
  863. }
  864. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  865. static const int qk = QK5_0;
  866. assert(k % qk == 0);
  867. const int nb = k / qk;
  868. for (int i = 0; i < nb; i++) {
  869. float amax = 0.0f; // absolute max
  870. float max = 0.0f;
  871. for (int j = 0; j < qk; j++) {
  872. const float v = x[i*qk + j];
  873. if (amax < fabsf(v)) {
  874. amax = fabsf(v);
  875. max = v;
  876. }
  877. }
  878. const float d = max / -16;
  879. const float id = d ? 1.0f/d : 0.0f;
  880. y[i].d = GGML_FP32_TO_FP16(d);
  881. uint32_t qh = 0;
  882. for (int j = 0; j < qk/2; ++j) {
  883. const float x0 = x[i*qk + 0 + j]*id;
  884. const float x1 = x[i*qk + qk/2 + j]*id;
  885. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  886. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  887. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  888. // get the 5-th bit and store it in qh at the right position
  889. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  890. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  891. }
  892. memcpy(&y[i].qh, &qh, sizeof(qh));
  893. }
  894. }
  895. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  896. quantize_row_q5_0_reference(x, y, k);
  897. }
  898. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  899. const int qk = QK5_1;
  900. assert(k % qk == 0);
  901. const int nb = k / qk;
  902. for (int i = 0; i < nb; i++) {
  903. float min = FLT_MAX;
  904. float max = -FLT_MAX;
  905. for (int j = 0; j < qk; j++) {
  906. const float v = x[i*qk + j];
  907. if (v < min) min = v;
  908. if (v > max) max = v;
  909. }
  910. const float d = (max - min) / ((1 << 5) - 1);
  911. const float id = d ? 1.0f/d : 0.0f;
  912. y[i].d = GGML_FP32_TO_FP16(d);
  913. y[i].m = GGML_FP32_TO_FP16(min);
  914. uint32_t qh = 0;
  915. for (int j = 0; j < qk/2; ++j) {
  916. const float x0 = (x[i*qk + 0 + j] - min)*id;
  917. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  918. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  919. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  920. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  921. // get the 5-th bit and store it in qh at the right position
  922. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  923. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  924. }
  925. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  926. }
  927. }
  928. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  929. quantize_row_q5_1_reference(x, y, k);
  930. }
  931. // reference implementation for deterministic creation of model files
  932. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  933. assert(k % QK8_0 == 0);
  934. const int nb = k / QK8_0;
  935. for (int i = 0; i < nb; i++) {
  936. float amax = 0.0f; // absolute max
  937. for (int j = 0; j < QK8_0; j++) {
  938. const float v = x[i*QK8_0 + j];
  939. amax = MAX(amax, fabsf(v));
  940. }
  941. const float d = amax / ((1 << 7) - 1);
  942. const float id = d ? 1.0f/d : 0.0f;
  943. y[i].d = GGML_FP32_TO_FP16(d);
  944. for (int j = 0; j < QK8_0; ++j) {
  945. const float x0 = x[i*QK8_0 + j]*id;
  946. y[i].qs[j] = roundf(x0);
  947. }
  948. }
  949. }
  950. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  951. assert(QK8_0 == 32);
  952. assert(k % QK8_0 == 0);
  953. const int nb = k / QK8_0;
  954. block_q8_0 * restrict y = vy;
  955. #if defined(__ARM_NEON)
  956. for (int i = 0; i < nb; i++) {
  957. float32x4_t srcv [8];
  958. float32x4_t asrcv[8];
  959. float32x4_t amaxv[8];
  960. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  961. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  962. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  963. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  964. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  965. const float amax = vmaxvq_f32(amaxv[0]);
  966. const float d = amax / ((1 << 7) - 1);
  967. const float id = d ? 1.0f/d : 0.0f;
  968. y[i].d = GGML_FP32_TO_FP16(d);
  969. for (int j = 0; j < 8; j++) {
  970. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  971. const int32x4_t vi = vcvtnq_s32_f32(v);
  972. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  973. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  974. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  975. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  976. }
  977. }
  978. #elif defined(__wasm_simd128__)
  979. for (int i = 0; i < nb; i++) {
  980. v128_t srcv [8];
  981. v128_t asrcv[8];
  982. v128_t amaxv[8];
  983. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  984. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  985. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  986. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  987. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  988. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  989. wasm_f32x4_extract_lane(amaxv[0], 1)),
  990. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  991. wasm_f32x4_extract_lane(amaxv[0], 3)));
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  997. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  998. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  999. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1000. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1001. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__AVX2__) || defined(__AVX__)
  1005. for (int i = 0; i < nb; i++) {
  1006. // Load elements into 4 AVX vectors
  1007. __m256 v0 = _mm256_loadu_ps( x );
  1008. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1009. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1010. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1011. x += 32;
  1012. // Compute max(abs(e)) for the block
  1013. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1014. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1015. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1018. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1019. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1020. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1021. const float maxScalar = _mm_cvtss_f32( max4 );
  1022. // Quantize these floats
  1023. const float d = maxScalar / 127.f;
  1024. y[i].d = GGML_FP32_TO_FP16(d);
  1025. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1026. const __m256 mul = _mm256_set1_ps( id );
  1027. // Apply the multiplier
  1028. v0 = _mm256_mul_ps( v0, mul );
  1029. v1 = _mm256_mul_ps( v1, mul );
  1030. v2 = _mm256_mul_ps( v2, mul );
  1031. v3 = _mm256_mul_ps( v3, mul );
  1032. // Round to nearest integer
  1033. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1034. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1035. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1036. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1037. // Convert floats to integers
  1038. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1039. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1040. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1041. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1042. #if defined(__AVX2__)
  1043. // Convert int32 to int16
  1044. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1045. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1046. // Convert int16 to int8
  1047. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1048. // We got our precious signed bytes, but the order is now wrong
  1049. // These AVX2 pack instructions process 16-byte pieces independently
  1050. // The following instruction is fixing the order
  1051. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1052. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1053. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1054. #else
  1055. // Since we don't have in AVX some necessary functions,
  1056. // we split the registers in half and call AVX2 analogs from SSE
  1057. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1058. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1059. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1060. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1061. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1062. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1063. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1064. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1065. // Convert int32 to int16
  1066. ni0 = _mm_packs_epi32( ni0, ni1 );
  1067. ni2 = _mm_packs_epi32( ni2, ni3 );
  1068. ni4 = _mm_packs_epi32( ni4, ni5 );
  1069. ni6 = _mm_packs_epi32( ni6, ni7 );
  1070. // Convert int16 to int8
  1071. ni0 = _mm_packs_epi16( ni0, ni2 );
  1072. ni4 = _mm_packs_epi16( ni4, ni6 );
  1073. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1075. #endif
  1076. }
  1077. #else
  1078. // scalar
  1079. quantize_row_q8_0_reference(x, y, k);
  1080. #endif
  1081. }
  1082. // reference implementation for deterministic creation of model files
  1083. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1084. assert(QK8_1 == 32);
  1085. assert(k % QK8_1 == 0);
  1086. const int nb = k / QK8_1;
  1087. for (int i = 0; i < nb; i++) {
  1088. float amax = 0.0f; // absolute max
  1089. for (int j = 0; j < QK8_1; j++) {
  1090. const float v = x[i*QK8_1 + j];
  1091. amax = MAX(amax, fabsf(v));
  1092. }
  1093. const float d = amax / ((1 << 7) - 1);
  1094. const float id = d ? 1.0f/d : 0.0f;
  1095. y[i].d = d;
  1096. int sum = 0;
  1097. for (int j = 0; j < QK8_1/2; ++j) {
  1098. const float v0 = x[i*QK8_1 + j]*id;
  1099. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1100. y[i].qs[ j] = roundf(v0);
  1101. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1102. sum += y[i].qs[ j];
  1103. sum += y[i].qs[QK8_1/2 + j];
  1104. }
  1105. y[i].s = sum*d;
  1106. }
  1107. }
  1108. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1109. assert(k % QK8_1 == 0);
  1110. const int nb = k / QK8_1;
  1111. block_q8_1 * restrict y = vy;
  1112. #if defined(__ARM_NEON)
  1113. for (int i = 0; i < nb; i++) {
  1114. float32x4_t srcv [8];
  1115. float32x4_t asrcv[8];
  1116. float32x4_t amaxv[8];
  1117. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1118. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1119. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1120. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1121. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1122. const float amax = vmaxvq_f32(amaxv[0]);
  1123. const float d = amax / ((1 << 7) - 1);
  1124. const float id = d ? 1.0f/d : 0.0f;
  1125. y[i].d = d;
  1126. int32x4_t accv = vdupq_n_s32(0);
  1127. for (int j = 0; j < 8; j++) {
  1128. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1129. const int32x4_t vi = vcvtnq_s32_f32(v);
  1130. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1131. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1132. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1133. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1134. accv = vaddq_s32(accv, vi);
  1135. }
  1136. y[i].s = d * vaddvq_s32(accv);
  1137. }
  1138. #elif defined(__wasm_simd128__)
  1139. for (int i = 0; i < nb; i++) {
  1140. v128_t srcv [8];
  1141. v128_t asrcv[8];
  1142. v128_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1149. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1150. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1151. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1152. const float d = amax / ((1 << 7) - 1);
  1153. const float id = d ? 1.0f/d : 0.0f;
  1154. y[i].d = d;
  1155. v128_t accv = wasm_i32x4_splat(0);
  1156. for (int j = 0; j < 8; j++) {
  1157. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1158. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1159. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1160. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1161. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1162. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1163. accv = wasm_i32x4_add(accv, vi);
  1164. }
  1165. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1166. wasm_i32x4_extract_lane(accv, 1) +
  1167. wasm_i32x4_extract_lane(accv, 2) +
  1168. wasm_i32x4_extract_lane(accv, 3));
  1169. }
  1170. #elif defined(__AVX2__) || defined(__AVX__)
  1171. for (int i = 0; i < nb; i++) {
  1172. // Load elements into 4 AVX vectors
  1173. __m256 v0 = _mm256_loadu_ps( x );
  1174. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1175. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1176. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1177. x += 32;
  1178. // Compute max(abs(e)) for the block
  1179. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1180. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1184. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1185. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1186. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1187. const float maxScalar = _mm_cvtss_f32( max4 );
  1188. // Quantize these floats
  1189. const float d = maxScalar / 127.f;
  1190. y[i].d = d;
  1191. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1192. const __m256 mul = _mm256_set1_ps( id );
  1193. // Apply the multiplier
  1194. v0 = _mm256_mul_ps( v0, mul );
  1195. v1 = _mm256_mul_ps( v1, mul );
  1196. v2 = _mm256_mul_ps( v2, mul );
  1197. v3 = _mm256_mul_ps( v3, mul );
  1198. // Round to nearest integer
  1199. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1200. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1201. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1202. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1203. // Convert floats to integers
  1204. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1205. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1206. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1207. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1208. #if defined(__AVX2__)
  1209. // Compute the sum of the quants and set y[i].s
  1210. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1211. // Convert int32 to int16
  1212. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1213. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // Convert int16 to int8
  1215. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1216. // We got our precious signed bytes, but the order is now wrong
  1217. // These AVX2 pack instructions process 16-byte pieces independently
  1218. // The following instruction is fixing the order
  1219. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1220. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1221. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1222. #else
  1223. // Since we don't have in AVX some necessary functions,
  1224. // we split the registers in half and call AVX2 analogs from SSE
  1225. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1226. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1227. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1228. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1229. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1230. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1231. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1232. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1233. // Compute the sum of the quants and set y[i].s
  1234. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1235. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1236. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1237. // Convert int32 to int16
  1238. ni0 = _mm_packs_epi32( ni0, ni1 );
  1239. ni2 = _mm_packs_epi32( ni2, ni3 );
  1240. ni4 = _mm_packs_epi32( ni4, ni5 );
  1241. ni6 = _mm_packs_epi32( ni6, ni7 );
  1242. // Convert int16 to int8
  1243. ni0 = _mm_packs_epi16( ni0, ni2 );
  1244. ni4 = _mm_packs_epi16( ni4, ni6 );
  1245. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1247. #endif
  1248. }
  1249. #else
  1250. // scalar
  1251. quantize_row_q8_1_reference(x, y, k);
  1252. #endif
  1253. }
  1254. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1255. static const int qk = QK4_0;
  1256. assert(k % qk == 0);
  1257. const int nb = k / qk;
  1258. for (int i = 0; i < nb; i++) {
  1259. const float d = GGML_FP16_TO_FP32(x[i].d);
  1260. for (int j = 0; j < qk/2; ++j) {
  1261. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1262. const int x1 = (x[i].qs[j] >> 4) - 8;
  1263. y[i*qk + j + 0 ] = x0*d;
  1264. y[i*qk + j + qk/2] = x1*d;
  1265. }
  1266. }
  1267. }
  1268. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1269. static const int qk = QK4_1;
  1270. assert(k % qk == 0);
  1271. const int nb = k / qk;
  1272. for (int i = 0; i < nb; i++) {
  1273. const float d = GGML_FP16_TO_FP32(x[i].d);
  1274. const float m = GGML_FP16_TO_FP32(x[i].m);
  1275. for (int j = 0; j < qk/2; ++j) {
  1276. const int x0 = (x[i].qs[j] & 0x0F);
  1277. const int x1 = (x[i].qs[j] >> 4);
  1278. y[i*qk + j + 0 ] = x0*d + m;
  1279. y[i*qk + j + qk/2] = x1*d + m;
  1280. }
  1281. }
  1282. }
  1283. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1284. static const int qk = QK5_0;
  1285. assert(k % qk == 0);
  1286. const int nb = k / qk;
  1287. for (int i = 0; i < nb; i++) {
  1288. const float d = GGML_FP16_TO_FP32(x[i].d);
  1289. uint32_t qh;
  1290. memcpy(&qh, x[i].qh, sizeof(qh));
  1291. for (int j = 0; j < qk/2; ++j) {
  1292. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1293. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1294. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1295. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1296. y[i*qk + j + 0 ] = x0*d;
  1297. y[i*qk + j + qk/2] = x1*d;
  1298. }
  1299. }
  1300. }
  1301. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1302. static const int qk = QK5_1;
  1303. assert(k % qk == 0);
  1304. const int nb = k / qk;
  1305. for (int i = 0; i < nb; i++) {
  1306. const float d = GGML_FP16_TO_FP32(x[i].d);
  1307. const float m = GGML_FP16_TO_FP32(x[i].m);
  1308. uint32_t qh;
  1309. memcpy(&qh, x[i].qh, sizeof(qh));
  1310. for (int j = 0; j < qk/2; ++j) {
  1311. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1312. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1313. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1314. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1315. y[i*qk + j + 0 ] = x0*d + m;
  1316. y[i*qk + j + qk/2] = x1*d + m;
  1317. }
  1318. }
  1319. }
  1320. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1321. static const int qk = QK8_0;
  1322. assert(k % qk == 0);
  1323. const int nb = k / qk;
  1324. const block_q8_0 * restrict x = vx;
  1325. for (int i = 0; i < nb; i++) {
  1326. const float d = GGML_FP16_TO_FP32(x[i].d);
  1327. for (int j = 0; j < qk; ++j) {
  1328. y[i*qk + j] = x[i].qs[j]*d;
  1329. }
  1330. }
  1331. }
  1332. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1333. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1334. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1340. [GGML_TYPE_I8] = {
  1341. .type_name = "i8",
  1342. .blck_size = 1,
  1343. .type_size = sizeof(int8_t),
  1344. .is_quantized = false,
  1345. },
  1346. [GGML_TYPE_I16] = {
  1347. .type_name = "i16",
  1348. .blck_size = 1,
  1349. .type_size = sizeof(int16_t),
  1350. .is_quantized = false,
  1351. },
  1352. [GGML_TYPE_I32] = {
  1353. .type_name = "i32",
  1354. .blck_size = 1,
  1355. .type_size = sizeof(int32_t),
  1356. .is_quantized = false,
  1357. },
  1358. [GGML_TYPE_F32] = {
  1359. .type_name = "f32",
  1360. .blck_size = 1,
  1361. .type_size = sizeof(float),
  1362. .is_quantized = false,
  1363. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1364. .vec_dot_type = GGML_TYPE_F32,
  1365. },
  1366. [GGML_TYPE_F16] = {
  1367. .type_name = "f16",
  1368. .blck_size = 1,
  1369. .type_size = sizeof(ggml_fp16_t),
  1370. .is_quantized = false,
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .type_name = "q4_0",
  1379. .blck_size = QK4_0,
  1380. .type_size = sizeof(block_q4_0),
  1381. .is_quantized = true,
  1382. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1383. .from_float = quantize_row_q4_0,
  1384. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1385. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1386. .vec_dot_type = GGML_TYPE_Q8_0,
  1387. },
  1388. [GGML_TYPE_Q4_1] = {
  1389. .type_name = "q4_1",
  1390. .blck_size = QK4_1,
  1391. .type_size = sizeof(block_q4_1),
  1392. .is_quantized = true,
  1393. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1394. .from_float = quantize_row_q4_1,
  1395. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1396. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1397. .vec_dot_type = GGML_TYPE_Q8_1,
  1398. },
  1399. [GGML_TYPE_Q5_0] = {
  1400. .type_name = "q5_0",
  1401. .blck_size = QK5_0,
  1402. .type_size = sizeof(block_q5_0),
  1403. .is_quantized = true,
  1404. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1405. .from_float = quantize_row_q5_0,
  1406. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1407. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1408. .vec_dot_type = GGML_TYPE_Q8_0,
  1409. },
  1410. [GGML_TYPE_Q5_1] = {
  1411. .type_name = "q5_1",
  1412. .blck_size = QK5_1,
  1413. .type_size = sizeof(block_q5_1),
  1414. .is_quantized = true,
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1416. .from_float = quantize_row_q5_1,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1418. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1419. .vec_dot_type = GGML_TYPE_Q8_1,
  1420. },
  1421. [GGML_TYPE_Q8_0] = {
  1422. .type_name = "q8_0",
  1423. .blck_size = QK8_0,
  1424. .type_size = sizeof(block_q8_0),
  1425. .is_quantized = true,
  1426. .to_float = dequantize_row_q8_0,
  1427. .from_float = quantize_row_q8_0,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1429. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1430. .vec_dot_type = GGML_TYPE_Q8_0,
  1431. },
  1432. [GGML_TYPE_Q8_1] = {
  1433. .type_name = "q8_1",
  1434. .blck_size = QK8_1,
  1435. .type_size = sizeof(block_q8_1),
  1436. .is_quantized = true,
  1437. .from_float = quantize_row_q8_1,
  1438. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1439. .vec_dot_type = GGML_TYPE_Q8_1,
  1440. },
  1441. #ifdef GGML_USE_K_QUANTS
  1442. [GGML_TYPE_Q2_K] = {
  1443. .type_name = "q2_K",
  1444. .blck_size = QK_K,
  1445. .type_size = sizeof(block_q2_K),
  1446. .is_quantized = true,
  1447. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1448. .from_float = quantize_row_q2_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1450. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q3_K] = {
  1454. .type_name = "q3_K",
  1455. .blck_size = QK_K,
  1456. .type_size = sizeof(block_q3_K),
  1457. .is_quantized = true,
  1458. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1459. .from_float = quantize_row_q3_K,
  1460. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1461. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1462. .vec_dot_type = GGML_TYPE_Q8_K,
  1463. },
  1464. [GGML_TYPE_Q4_K] = {
  1465. .type_name = "q4_K",
  1466. .blck_size = QK_K,
  1467. .type_size = sizeof(block_q4_K),
  1468. .is_quantized = true,
  1469. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1470. .from_float = quantize_row_q4_K,
  1471. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1472. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1473. .vec_dot_type = GGML_TYPE_Q8_K,
  1474. },
  1475. [GGML_TYPE_Q5_K] = {
  1476. .type_name = "q5_K",
  1477. .blck_size = QK_K,
  1478. .type_size = sizeof(block_q5_K),
  1479. .is_quantized = true,
  1480. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1481. .from_float = quantize_row_q5_K,
  1482. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1483. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1484. .vec_dot_type = GGML_TYPE_Q8_K,
  1485. },
  1486. [GGML_TYPE_Q6_K] = {
  1487. .type_name = "q6_K",
  1488. .blck_size = QK_K,
  1489. .type_size = sizeof(block_q6_K),
  1490. .is_quantized = true,
  1491. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1492. .from_float = quantize_row_q6_K,
  1493. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1494. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1495. .vec_dot_type = GGML_TYPE_Q8_K,
  1496. },
  1497. [GGML_TYPE_Q8_K] = {
  1498. .type_name = "q8_K",
  1499. .blck_size = QK_K,
  1500. .type_size = sizeof(block_q8_K),
  1501. .is_quantized = true,
  1502. .from_float = quantize_row_q8_K,
  1503. }
  1504. #endif
  1505. };
  1506. // For internal test use
  1507. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1508. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1509. return type_traits[type];
  1510. }
  1511. //
  1512. // simd mappings
  1513. //
  1514. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1515. // we then implement the fundamental computation operations below using only these macros
  1516. // adding support for new architectures requires to define the corresponding SIMD macros
  1517. //
  1518. // GGML_F32_STEP / GGML_F16_STEP
  1519. // number of elements to process in a single step
  1520. //
  1521. // GGML_F32_EPR / GGML_F16_EPR
  1522. // number of elements to fit in a single register
  1523. //
  1524. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1525. #define GGML_SIMD
  1526. // F32 NEON
  1527. #define GGML_F32_STEP 16
  1528. #define GGML_F32_EPR 4
  1529. #define GGML_F32x4 float32x4_t
  1530. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1531. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1532. #define GGML_F32x4_LOAD vld1q_f32
  1533. #define GGML_F32x4_STORE vst1q_f32
  1534. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1535. #define GGML_F32x4_ADD vaddq_f32
  1536. #define GGML_F32x4_MUL vmulq_f32
  1537. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1538. #define GGML_F32x4_REDUCE(res, x) \
  1539. { \
  1540. int offset = GGML_F32_ARR >> 1; \
  1541. for (int i = 0; i < offset; ++i) { \
  1542. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1543. } \
  1544. offset >>= 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1547. } \
  1548. offset >>= 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1551. } \
  1552. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1553. }
  1554. #define GGML_F32_VEC GGML_F32x4
  1555. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1556. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1557. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1558. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1559. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1560. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1561. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1562. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1563. // F16 NEON
  1564. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1565. #define GGML_F16_STEP 32
  1566. #define GGML_F16_EPR 8
  1567. #define GGML_F16x8 float16x8_t
  1568. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1569. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1570. #define GGML_F16x8_LOAD vld1q_f16
  1571. #define GGML_F16x8_STORE vst1q_f16
  1572. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1573. #define GGML_F16x8_ADD vaddq_f16
  1574. #define GGML_F16x8_MUL vmulq_f16
  1575. #define GGML_F16x8_REDUCE(res, x) \
  1576. { \
  1577. int offset = GGML_F16_ARR >> 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1580. } \
  1581. offset >>= 1; \
  1582. for (int i = 0; i < offset; ++i) { \
  1583. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1584. } \
  1585. offset >>= 1; \
  1586. for (int i = 0; i < offset; ++i) { \
  1587. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1588. } \
  1589. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1590. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1591. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1592. }
  1593. #define GGML_F16_VEC GGML_F16x8
  1594. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1595. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1596. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1597. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1598. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1599. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1600. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1601. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1602. #else
  1603. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1604. // and take advantage of the vcvt_ functions to convert to/from FP16
  1605. #define GGML_F16_STEP 16
  1606. #define GGML_F16_EPR 4
  1607. #define GGML_F32Cx4 float32x4_t
  1608. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1609. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1610. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1611. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1612. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1613. #define GGML_F32Cx4_ADD vaddq_f32
  1614. #define GGML_F32Cx4_MUL vmulq_f32
  1615. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1616. #define GGML_F16_VEC GGML_F32Cx4
  1617. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1618. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1619. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1620. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1621. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1622. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1623. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1624. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1625. #endif
  1626. #elif defined(__AVX__)
  1627. #define GGML_SIMD
  1628. // F32 AVX
  1629. #define GGML_F32_STEP 32
  1630. #define GGML_F32_EPR 8
  1631. #define GGML_F32x8 __m256
  1632. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1633. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1634. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1635. #define GGML_F32x8_STORE _mm256_storeu_ps
  1636. #if defined(__FMA__)
  1637. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1638. #else
  1639. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1640. #endif
  1641. #define GGML_F32x8_ADD _mm256_add_ps
  1642. #define GGML_F32x8_MUL _mm256_mul_ps
  1643. #define GGML_F32x8_REDUCE(res, x) \
  1644. { \
  1645. int offset = GGML_F32_ARR >> 1; \
  1646. for (int i = 0; i < offset; ++i) { \
  1647. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1648. } \
  1649. offset >>= 1; \
  1650. for (int i = 0; i < offset; ++i) { \
  1651. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1652. } \
  1653. offset >>= 1; \
  1654. for (int i = 0; i < offset; ++i) { \
  1655. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1656. } \
  1657. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1658. _mm256_extractf128_ps(x[0], 1)); \
  1659. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1660. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1661. }
  1662. // TODO: is this optimal ?
  1663. #define GGML_F32_VEC GGML_F32x8
  1664. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1665. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1666. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1667. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1668. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1669. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1670. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1671. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1672. // F16 AVX
  1673. #define GGML_F16_STEP 32
  1674. #define GGML_F16_EPR 8
  1675. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1676. #define GGML_F32Cx8 __m256
  1677. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1678. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1679. #if defined(__F16C__)
  1680. // the _mm256_cvt intrinsics require F16C
  1681. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1682. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1683. #else
  1684. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1685. float tmp[8];
  1686. for (int i = 0; i < 8; i++) {
  1687. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1688. }
  1689. return _mm256_loadu_ps(tmp);
  1690. }
  1691. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1692. float arr[8];
  1693. _mm256_storeu_ps(arr, y);
  1694. for (int i = 0; i < 8; i++)
  1695. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1696. }
  1697. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1698. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1699. #endif
  1700. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1701. #define GGML_F32Cx8_ADD _mm256_add_ps
  1702. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1703. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1704. #define GGML_F16_VEC GGML_F32Cx8
  1705. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1706. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1709. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1710. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1711. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1712. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1713. #elif defined(__POWER9_VECTOR__)
  1714. #define GGML_SIMD
  1715. // F32 POWER9
  1716. #define GGML_F32_STEP 32
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 vector float
  1719. #define GGML_F32x4_ZERO 0.0f
  1720. #define GGML_F32x4_SET1 vec_splats
  1721. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1722. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1723. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1724. #define GGML_F32x4_ADD vec_add
  1725. #define GGML_F32x4_MUL vec_mul
  1726. #define GGML_F32x4_REDUCE(res, x) \
  1727. { \
  1728. int offset = GGML_F32_ARR >> 1; \
  1729. for (int i = 0; i < offset; ++i) { \
  1730. x[i] = vec_add(x[i], x[offset+i]); \
  1731. } \
  1732. offset >>= 1; \
  1733. for (int i = 0; i < offset; ++i) { \
  1734. x[i] = vec_add(x[i], x[offset+i]); \
  1735. } \
  1736. offset >>= 1; \
  1737. for (int i = 0; i < offset; ++i) { \
  1738. x[i] = vec_add(x[i], x[offset+i]); \
  1739. } \
  1740. res = vec_extract(x[0], 0) + \
  1741. vec_extract(x[0], 1) + \
  1742. vec_extract(x[0], 2) + \
  1743. vec_extract(x[0], 3); \
  1744. }
  1745. #define GGML_F32_VEC GGML_F32x4
  1746. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1747. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1748. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1749. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1750. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1751. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1752. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1753. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1754. // F16 POWER9
  1755. #define GGML_F16_STEP GGML_F32_STEP
  1756. #define GGML_F16_EPR GGML_F32_EPR
  1757. #define GGML_F16_VEC GGML_F32x4
  1758. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1760. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1761. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1762. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1763. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1764. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1765. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1766. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1767. #define GGML_F16_VEC_STORE(p, r, i) \
  1768. if (i & 0x1) \
  1769. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1770. r[i - GGML_ENDIAN_BYTE(0)]), \
  1771. 0, p - GGML_F16_EPR)
  1772. #elif defined(__wasm_simd128__)
  1773. #define GGML_SIMD
  1774. // F32 WASM
  1775. #define GGML_F32_STEP 16
  1776. #define GGML_F32_EPR 4
  1777. #define GGML_F32x4 v128_t
  1778. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1779. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1780. #define GGML_F32x4_LOAD wasm_v128_load
  1781. #define GGML_F32x4_STORE wasm_v128_store
  1782. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1783. #define GGML_F32x4_ADD wasm_f32x4_add
  1784. #define GGML_F32x4_MUL wasm_f32x4_mul
  1785. #define GGML_F32x4_REDUCE(res, x) \
  1786. { \
  1787. int offset = GGML_F32_ARR >> 1; \
  1788. for (int i = 0; i < offset; ++i) { \
  1789. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1790. } \
  1791. offset >>= 1; \
  1792. for (int i = 0; i < offset; ++i) { \
  1793. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1794. } \
  1795. offset >>= 1; \
  1796. for (int i = 0; i < offset; ++i) { \
  1797. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1798. } \
  1799. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1800. wasm_f32x4_extract_lane(x[0], 1) + \
  1801. wasm_f32x4_extract_lane(x[0], 2) + \
  1802. wasm_f32x4_extract_lane(x[0], 3); \
  1803. }
  1804. #define GGML_F32_VEC GGML_F32x4
  1805. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1806. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1807. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1808. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1809. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1810. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1811. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1812. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1813. // F16 WASM
  1814. #define GGML_F16_STEP 16
  1815. #define GGML_F16_EPR 4
  1816. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1817. float tmp[4];
  1818. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1819. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1820. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1821. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1822. return wasm_v128_load(tmp);
  1823. }
  1824. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1825. float tmp[4];
  1826. wasm_v128_store(tmp, x);
  1827. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1828. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1829. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1830. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1831. }
  1832. #define GGML_F16x4 v128_t
  1833. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1834. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1835. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1836. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1837. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1838. #define GGML_F16x4_ADD wasm_f32x4_add
  1839. #define GGML_F16x4_MUL wasm_f32x4_mul
  1840. #define GGML_F16x4_REDUCE(res, x) \
  1841. { \
  1842. int offset = GGML_F16_ARR >> 1; \
  1843. for (int i = 0; i < offset; ++i) { \
  1844. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1845. } \
  1846. offset >>= 1; \
  1847. for (int i = 0; i < offset; ++i) { \
  1848. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1849. } \
  1850. offset >>= 1; \
  1851. for (int i = 0; i < offset; ++i) { \
  1852. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1853. } \
  1854. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1855. wasm_f32x4_extract_lane(x[0], 1) + \
  1856. wasm_f32x4_extract_lane(x[0], 2) + \
  1857. wasm_f32x4_extract_lane(x[0], 3); \
  1858. }
  1859. #define GGML_F16_VEC GGML_F16x4
  1860. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1861. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1862. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1863. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1864. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1865. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1866. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1867. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1868. #elif defined(__SSE3__)
  1869. #define GGML_SIMD
  1870. // F32 SSE
  1871. #define GGML_F32_STEP 32
  1872. #define GGML_F32_EPR 4
  1873. #define GGML_F32x4 __m128
  1874. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1875. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1876. #define GGML_F32x4_LOAD _mm_loadu_ps
  1877. #define GGML_F32x4_STORE _mm_storeu_ps
  1878. #if defined(__FMA__)
  1879. // TODO: Does this work?
  1880. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1881. #else
  1882. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1883. #endif
  1884. #define GGML_F32x4_ADD _mm_add_ps
  1885. #define GGML_F32x4_MUL _mm_mul_ps
  1886. #define GGML_F32x4_REDUCE(res, x) \
  1887. { \
  1888. int offset = GGML_F32_ARR >> 1; \
  1889. for (int i = 0; i < offset; ++i) { \
  1890. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1891. } \
  1892. offset >>= 1; \
  1893. for (int i = 0; i < offset; ++i) { \
  1894. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1895. } \
  1896. offset >>= 1; \
  1897. for (int i = 0; i < offset; ++i) { \
  1898. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1899. } \
  1900. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1901. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1902. }
  1903. // TODO: is this optimal ?
  1904. #define GGML_F32_VEC GGML_F32x4
  1905. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1906. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1907. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1908. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1909. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1910. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1911. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1912. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1913. // F16 SSE
  1914. #define GGML_F16_STEP 32
  1915. #define GGML_F16_EPR 4
  1916. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1917. float tmp[4];
  1918. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1919. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1920. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1921. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1922. return _mm_loadu_ps(tmp);
  1923. }
  1924. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1925. float arr[4];
  1926. _mm_storeu_ps(arr, y);
  1927. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1928. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1929. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1930. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1931. }
  1932. #define GGML_F32Cx4 __m128
  1933. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1934. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1935. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1936. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1937. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1938. #define GGML_F32Cx4_ADD _mm_add_ps
  1939. #define GGML_F32Cx4_MUL _mm_mul_ps
  1940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1941. #define GGML_F16_VEC GGML_F32Cx4
  1942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1950. #endif
  1951. // GGML_F32_ARR / GGML_F16_ARR
  1952. // number of registers to use per step
  1953. #ifdef GGML_SIMD
  1954. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1955. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1956. #endif
  1957. //
  1958. // fundamental operations
  1959. //
  1960. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1961. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1962. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1963. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1964. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1965. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1966. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1967. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1968. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1969. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1970. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1971. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1972. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1973. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1974. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1975. #ifdef GGML_SIMD
  1976. float sumf = 0.0f;
  1977. const int np = (n & ~(GGML_F32_STEP - 1));
  1978. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1979. GGML_F32_VEC ax[GGML_F32_ARR];
  1980. GGML_F32_VEC ay[GGML_F32_ARR];
  1981. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1982. for (int j = 0; j < GGML_F32_ARR; j++) {
  1983. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1984. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1985. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1986. }
  1987. }
  1988. // reduce sum0..sum3 to sum0
  1989. GGML_F32_VEC_REDUCE(sumf, sum);
  1990. // leftovers
  1991. for (int i = np; i < n; ++i) {
  1992. sumf += x[i]*y[i];
  1993. }
  1994. #else
  1995. // scalar
  1996. ggml_float sumf = 0.0;
  1997. for (int i = 0; i < n; ++i) {
  1998. sumf += (ggml_float)(x[i]*y[i]);
  1999. }
  2000. #endif
  2001. *s = sumf;
  2002. }
  2003. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2004. ggml_float sumf = 0.0;
  2005. #if defined(GGML_SIMD)
  2006. const int np = (n & ~(GGML_F16_STEP - 1));
  2007. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2008. GGML_F16_VEC ax[GGML_F16_ARR];
  2009. GGML_F16_VEC ay[GGML_F16_ARR];
  2010. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2011. for (int j = 0; j < GGML_F16_ARR; j++) {
  2012. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2013. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2014. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2015. }
  2016. }
  2017. // reduce sum0..sum3 to sum0
  2018. GGML_F16_VEC_REDUCE(sumf, sum);
  2019. // leftovers
  2020. for (int i = np; i < n; ++i) {
  2021. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2022. }
  2023. #else
  2024. for (int i = 0; i < n; ++i) {
  2025. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2026. }
  2027. #endif
  2028. *s = sumf;
  2029. }
  2030. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2031. const int qk = QK8_0;
  2032. const int nb = n / qk;
  2033. assert(n % qk == 0);
  2034. const block_q4_0 * restrict x = vx;
  2035. const block_q8_0 * restrict y = vy;
  2036. #if defined(__ARM_NEON)
  2037. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2038. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2039. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2040. for (int i = 0; i < nb; i += 2) {
  2041. const block_q4_0 * restrict x0 = &x[i + 0];
  2042. const block_q4_0 * restrict x1 = &x[i + 1];
  2043. const block_q8_0 * restrict y0 = &y[i + 0];
  2044. const block_q8_0 * restrict y1 = &y[i + 1];
  2045. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2046. const int8x16_t s8b = vdupq_n_s8(0x8);
  2047. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2048. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2049. // 4-bit -> 8-bit
  2050. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2051. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2052. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2053. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2054. // sub 8
  2055. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2056. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2057. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2058. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2059. // load y
  2060. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2061. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2062. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2063. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2064. #if defined(__ARM_FEATURE_DOTPROD)
  2065. // dot product into int32x4_t
  2066. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2067. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2068. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2070. #else
  2071. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2072. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2073. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2074. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2075. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2076. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2077. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2078. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2079. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2080. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2081. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2082. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2083. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2084. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2085. #endif
  2086. }
  2087. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2088. #elif defined(__AVX2__)
  2089. // Initialize accumulator with zeros
  2090. __m256 acc = _mm256_setzero_ps();
  2091. // Main loop
  2092. for (int i = 0; i < nb; ++i) {
  2093. /* Compute combined scale for the block */
  2094. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2095. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2096. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2097. const __m256i off = _mm256_set1_epi8( 8 );
  2098. bx = _mm256_sub_epi8( bx, off );
  2099. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2100. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2101. /* Multiply q with scale and accumulate */
  2102. acc = _mm256_fmadd_ps( d, q, acc );
  2103. }
  2104. *s = hsum_float_8(acc);
  2105. #elif defined(__AVX__)
  2106. // Initialize accumulator with zeros
  2107. __m256 acc = _mm256_setzero_ps();
  2108. // Main loop
  2109. for (int i = 0; i < nb; ++i) {
  2110. // Compute combined scale for the block
  2111. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2112. const __m128i lowMask = _mm_set1_epi8(0xF);
  2113. const __m128i off = _mm_set1_epi8(8);
  2114. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2115. __m128i bx = _mm_and_si128(lowMask, tmp);
  2116. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2117. bx = _mm_sub_epi8(bx, off);
  2118. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2119. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2120. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2121. bx = _mm_sub_epi8(bx, off);
  2122. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2123. // Convert int32_t to float
  2124. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2125. // Apply the scale, and accumulate
  2126. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2127. }
  2128. *s = hsum_float_8(acc);
  2129. #elif defined(__SSSE3__)
  2130. // set constants
  2131. const __m128i lowMask = _mm_set1_epi8(0xF);
  2132. const __m128i off = _mm_set1_epi8(8);
  2133. // Initialize accumulator with zeros
  2134. __m128 acc_0 = _mm_setzero_ps();
  2135. __m128 acc_1 = _mm_setzero_ps();
  2136. __m128 acc_2 = _mm_setzero_ps();
  2137. __m128 acc_3 = _mm_setzero_ps();
  2138. // First round without accumulation
  2139. {
  2140. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2141. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2142. // Compute combined scale for the block 0 and 1
  2143. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2144. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2145. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2146. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2147. bx_0 = _mm_sub_epi8(bx_0, off);
  2148. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2149. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2150. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2151. bx_1 = _mm_sub_epi8(bx_1, off);
  2152. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2153. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2154. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2155. // Compute combined scale for the block 2 and 3
  2156. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2157. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2158. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2159. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2160. bx_2 = _mm_sub_epi8(bx_2, off);
  2161. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2162. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2163. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2164. bx_3 = _mm_sub_epi8(bx_3, off);
  2165. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2166. // Convert int32_t to float
  2167. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2168. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2169. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2170. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2171. // Apply the scale
  2172. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2173. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2174. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2175. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2176. }
  2177. // Main loop
  2178. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2179. for (int i = 2; i < nb; i+=2) {
  2180. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2181. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2182. // Compute combined scale for the block 0 and 1
  2183. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2184. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2185. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2186. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2187. bx_0 = _mm_sub_epi8(bx_0, off);
  2188. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2189. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2190. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2191. bx_1 = _mm_sub_epi8(bx_1, off);
  2192. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2193. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2194. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2195. // Compute combined scale for the block 2 and 3
  2196. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2197. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2198. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2199. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2200. bx_2 = _mm_sub_epi8(bx_2, off);
  2201. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2202. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2203. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2204. bx_3 = _mm_sub_epi8(bx_3, off);
  2205. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2206. // Convert int32_t to float
  2207. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2208. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2209. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2210. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2211. // Apply the scale
  2212. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2213. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2214. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2215. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2216. // Acummulate
  2217. acc_0 = _mm_add_ps(p0_d, acc_0);
  2218. acc_1 = _mm_add_ps(p1_d, acc_1);
  2219. acc_2 = _mm_add_ps(p2_d, acc_2);
  2220. acc_3 = _mm_add_ps(p3_d, acc_3);
  2221. }
  2222. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2223. #elif defined(__riscv_v_intrinsic)
  2224. float sumf = 0.0;
  2225. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2226. for (int i = 0; i < nb; i++) {
  2227. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2228. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2229. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2230. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2231. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2232. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2233. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2234. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2235. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2236. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2237. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2238. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2239. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2240. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2241. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2242. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2243. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2244. }
  2245. *s = sumf;
  2246. #else
  2247. // scalar
  2248. float sumf = 0.0;
  2249. for (int i = 0; i < nb; i++) {
  2250. int sumi = 0;
  2251. for (int j = 0; j < qk/2; ++j) {
  2252. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2253. const int v1 = (x[i].qs[j] >> 4) - 8;
  2254. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2255. }
  2256. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2257. }
  2258. *s = sumf;
  2259. #endif
  2260. }
  2261. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2262. const int qk = QK8_1;
  2263. const int nb = n / qk;
  2264. assert(n % qk == 0);
  2265. const block_q4_1 * restrict x = vx;
  2266. const block_q8_1 * restrict y = vy;
  2267. // TODO: add WASM SIMD
  2268. #if defined(__ARM_NEON)
  2269. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2270. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2271. float summs = 0;
  2272. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2273. for (int i = 0; i < nb; i += 2) {
  2274. const block_q4_1 * restrict x0 = &x[i + 0];
  2275. const block_q4_1 * restrict x1 = &x[i + 1];
  2276. const block_q8_1 * restrict y0 = &y[i + 0];
  2277. const block_q8_1 * restrict y1 = &y[i + 1];
  2278. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2279. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2280. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2281. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2282. // 4-bit -> 8-bit
  2283. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2284. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2285. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2286. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2287. // load y
  2288. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2289. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2290. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2291. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2292. #if defined(__ARM_FEATURE_DOTPROD)
  2293. // dot product into int32x4_t
  2294. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2295. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2296. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2297. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2298. #else
  2299. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2300. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2301. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2302. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2303. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2304. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2305. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2306. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2307. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2308. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2309. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2310. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2311. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2312. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2313. #endif
  2314. }
  2315. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2316. #elif defined(__AVX2__) || defined(__AVX__)
  2317. // Initialize accumulator with zeros
  2318. __m256 acc = _mm256_setzero_ps();
  2319. float summs = 0;
  2320. // Main loop
  2321. for (int i = 0; i < nb; ++i) {
  2322. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2323. const float d1 = y[i].d;
  2324. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2325. const __m256 d0v = _mm256_set1_ps( d0 );
  2326. const __m256 d1v = _mm256_set1_ps( d1 );
  2327. // Compute combined scales
  2328. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2329. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2330. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2331. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2332. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2333. // Accumulate d0*d1*x*y
  2334. #if defined(__AVX2__)
  2335. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2336. #else
  2337. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2338. #endif
  2339. }
  2340. *s = hsum_float_8(acc) + summs;
  2341. #elif defined(__riscv_v_intrinsic)
  2342. float sumf = 0.0;
  2343. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2344. for (int i = 0; i < nb; i++) {
  2345. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2346. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2347. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2348. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2349. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2350. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2351. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2352. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2353. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2354. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2355. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2356. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2357. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2358. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2359. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2360. }
  2361. *s = sumf;
  2362. #else
  2363. // scalar
  2364. float sumf = 0.0;
  2365. for (int i = 0; i < nb; i++) {
  2366. int sumi = 0;
  2367. for (int j = 0; j < qk/2; ++j) {
  2368. const int v0 = (x[i].qs[j] & 0x0F);
  2369. const int v1 = (x[i].qs[j] >> 4);
  2370. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2371. }
  2372. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2373. }
  2374. *s = sumf;
  2375. #endif
  2376. }
  2377. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2378. const int qk = QK8_0;
  2379. const int nb = n / qk;
  2380. assert(n % qk == 0);
  2381. assert(qk == QK5_0);
  2382. const block_q5_0 * restrict x = vx;
  2383. const block_q8_0 * restrict y = vy;
  2384. #if defined(__ARM_NEON)
  2385. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2386. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2387. uint32_t qh0;
  2388. uint32_t qh1;
  2389. uint64_t tmp0[4];
  2390. uint64_t tmp1[4];
  2391. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2392. for (int i = 0; i < nb; i += 2) {
  2393. const block_q5_0 * restrict x0 = &x[i];
  2394. const block_q5_0 * restrict x1 = &x[i + 1];
  2395. const block_q8_0 * restrict y0 = &y[i];
  2396. const block_q8_0 * restrict y1 = &y[i + 1];
  2397. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2398. // extract the 5th bit via lookup table ((!b) << 4)
  2399. memcpy(&qh0, x0->qh, sizeof(qh0));
  2400. memcpy(&qh1, x1->qh, sizeof(qh1));
  2401. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2402. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2403. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2404. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2405. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2406. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2407. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2408. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2409. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2410. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2411. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2412. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2413. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2414. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2415. // 4-bit -> 8-bit
  2416. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2417. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2418. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2419. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2420. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2421. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2422. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2423. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2424. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2425. // load y
  2426. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2427. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2428. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2429. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2430. #if defined(__ARM_FEATURE_DOTPROD)
  2431. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2432. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2433. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2434. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2435. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2436. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2437. #else
  2438. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2439. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2440. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2441. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2442. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2443. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2444. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2445. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2446. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2447. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2448. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2449. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2450. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2451. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2452. #endif
  2453. }
  2454. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2455. #elif defined(__wasm_simd128__)
  2456. v128_t sumv = wasm_f32x4_splat(0.0f);
  2457. uint32_t qh;
  2458. uint64_t tmp[4];
  2459. // TODO: check if unrolling this is better
  2460. for (int i = 0; i < nb; ++i) {
  2461. const block_q5_0 * restrict x0 = &x[i];
  2462. const block_q8_0 * restrict y0 = &y[i];
  2463. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2464. // extract the 5th bit
  2465. memcpy(&qh, x0->qh, sizeof(qh));
  2466. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2467. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2468. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2469. tmp[3] = table_b2b_1[(qh >> 24) ];
  2470. const v128_t qhl = wasm_v128_load(tmp + 0);
  2471. const v128_t qhh = wasm_v128_load(tmp + 2);
  2472. const v128_t v0 = wasm_v128_load(x0->qs);
  2473. // 4-bit -> 8-bit
  2474. const v128_t v0l = wasm_v128_and (v0, m4b);
  2475. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2476. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2477. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2478. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2479. // load y
  2480. const v128_t v1l = wasm_v128_load(y0->qs);
  2481. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2482. // int8x16 -> int16x8
  2483. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2484. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2485. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2486. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2487. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2488. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2489. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2490. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2491. // dot product
  2492. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2493. wasm_i32x4_add(
  2494. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2495. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2496. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2497. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2498. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2499. }
  2500. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2501. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2502. #elif defined(__AVX2__)
  2503. // Initialize accumulator with zeros
  2504. __m256 acc = _mm256_setzero_ps();
  2505. // Main loop
  2506. for (int i = 0; i < nb; i++) {
  2507. /* Compute combined scale for the block */
  2508. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2509. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2510. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2511. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2512. bx = _mm256_or_si256(bx, bxhi);
  2513. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2514. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2515. /* Multiply q with scale and accumulate */
  2516. acc = _mm256_fmadd_ps(d, q, acc);
  2517. }
  2518. *s = hsum_float_8(acc);
  2519. #elif defined(__AVX__)
  2520. // Initialize accumulator with zeros
  2521. __m256 acc = _mm256_setzero_ps();
  2522. __m128i mask = _mm_set1_epi8((char)0xF0);
  2523. // Main loop
  2524. for (int i = 0; i < nb; i++) {
  2525. /* Compute combined scale for the block */
  2526. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2527. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2528. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2529. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2530. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2531. bxhil = _mm_andnot_si128(bxhil, mask);
  2532. bxhih = _mm_andnot_si128(bxhih, mask);
  2533. __m128i bxl = _mm256_castsi256_si128(bx);
  2534. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2535. bxl = _mm_or_si128(bxl, bxhil);
  2536. bxh = _mm_or_si128(bxh, bxhih);
  2537. bx = MM256_SET_M128I(bxh, bxl);
  2538. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2539. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2540. /* Multiply q with scale and accumulate */
  2541. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2542. }
  2543. *s = hsum_float_8(acc);
  2544. #elif defined(__riscv_v_intrinsic)
  2545. float sumf = 0.0;
  2546. uint32_t qh;
  2547. // These temp values are for masking and shift operations
  2548. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2549. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2550. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2551. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2552. for (int i = 0; i < nb; i++) {
  2553. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2554. // temporary registers
  2555. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2556. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2557. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2558. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2559. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2560. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2561. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2562. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2563. // ((qh & (1u << (j + 16))) >> (j + 12));
  2564. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2565. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2566. // narrowing
  2567. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2568. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2569. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2570. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2571. // load
  2572. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2573. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2574. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2575. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2576. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2577. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2578. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2579. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2580. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2581. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2582. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2583. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2584. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2585. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2586. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2587. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2588. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2589. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2590. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2591. }
  2592. *s = sumf;
  2593. #else
  2594. // scalar
  2595. float sumf = 0.0;
  2596. for (int i = 0; i < nb; i++) {
  2597. uint32_t qh;
  2598. memcpy(&qh, x[i].qh, sizeof(qh));
  2599. int sumi = 0;
  2600. for (int j = 0; j < qk/2; ++j) {
  2601. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2602. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2603. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2604. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2605. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2606. }
  2607. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2608. }
  2609. *s = sumf;
  2610. #endif
  2611. }
  2612. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2613. const int qk = QK8_1;
  2614. const int nb = n / qk;
  2615. assert(n % qk == 0);
  2616. assert(qk == QK5_1);
  2617. const block_q5_1 * restrict x = vx;
  2618. const block_q8_1 * restrict y = vy;
  2619. #if defined(__ARM_NEON)
  2620. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2621. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2622. float summs0 = 0.0f;
  2623. float summs1 = 0.0f;
  2624. uint32_t qh0;
  2625. uint32_t qh1;
  2626. uint64_t tmp0[4];
  2627. uint64_t tmp1[4];
  2628. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2629. for (int i = 0; i < nb; i += 2) {
  2630. const block_q5_1 * restrict x0 = &x[i];
  2631. const block_q5_1 * restrict x1 = &x[i + 1];
  2632. const block_q8_1 * restrict y0 = &y[i];
  2633. const block_q8_1 * restrict y1 = &y[i + 1];
  2634. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2635. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2636. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2637. // extract the 5th bit via lookup table ((b) << 4)
  2638. memcpy(&qh0, x0->qh, sizeof(qh0));
  2639. memcpy(&qh1, x1->qh, sizeof(qh1));
  2640. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2641. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2642. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2643. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2644. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2645. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2646. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2647. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2648. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2649. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2650. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2651. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2652. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2653. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2654. // 4-bit -> 8-bit
  2655. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2656. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2657. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2658. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2659. // add high bit
  2660. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2661. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2662. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2663. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2664. // load y
  2665. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2666. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2667. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2668. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2669. #if defined(__ARM_FEATURE_DOTPROD)
  2670. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2671. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2672. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2673. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2674. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2675. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2676. #else
  2677. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2678. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2679. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2680. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2681. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2682. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2683. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2684. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2685. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2686. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2687. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2688. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2689. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2690. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2691. #endif
  2692. }
  2693. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2694. #elif defined(__wasm_simd128__)
  2695. v128_t sumv = wasm_f32x4_splat(0.0f);
  2696. float summs = 0.0f;
  2697. uint32_t qh;
  2698. uint64_t tmp[4];
  2699. // TODO: check if unrolling this is better
  2700. for (int i = 0; i < nb; ++i) {
  2701. const block_q5_1 * restrict x0 = &x[i];
  2702. const block_q8_1 * restrict y0 = &y[i];
  2703. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2704. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2705. // extract the 5th bit
  2706. memcpy(&qh, x0->qh, sizeof(qh));
  2707. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2708. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2709. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2710. tmp[3] = table_b2b_0[(qh >> 24) ];
  2711. const v128_t qhl = wasm_v128_load(tmp + 0);
  2712. const v128_t qhh = wasm_v128_load(tmp + 2);
  2713. const v128_t v0 = wasm_v128_load(x0->qs);
  2714. // 4-bit -> 8-bit
  2715. const v128_t v0l = wasm_v128_and (v0, m4b);
  2716. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2717. // add high bit
  2718. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2719. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2720. // load y
  2721. const v128_t v1l = wasm_v128_load(y0->qs);
  2722. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2723. // int8x16 -> int16x8
  2724. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2725. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2726. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2727. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2728. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2729. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2730. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2731. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2732. // dot product
  2733. sumv = wasm_f32x4_add(sumv,
  2734. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2735. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2736. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2737. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2738. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2739. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2740. }
  2741. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2742. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2743. #elif defined(__AVX2__)
  2744. // Initialize accumulator with zeros
  2745. __m256 acc = _mm256_setzero_ps();
  2746. float summs = 0.0f;
  2747. // Main loop
  2748. for (int i = 0; i < nb; i++) {
  2749. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2750. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2751. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2752. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2753. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2754. bx = _mm256_or_si256(bx, bxhi);
  2755. const __m256 dy = _mm256_set1_ps(y[i].d);
  2756. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2757. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2758. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2759. }
  2760. *s = hsum_float_8(acc) + summs;
  2761. #elif defined(__AVX__)
  2762. // Initialize accumulator with zeros
  2763. __m256 acc = _mm256_setzero_ps();
  2764. __m128i mask = _mm_set1_epi8(0x10);
  2765. float summs = 0.0f;
  2766. // Main loop
  2767. for (int i = 0; i < nb; i++) {
  2768. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2769. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2770. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2771. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2772. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2773. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2774. bxhil = _mm_and_si128(bxhil, mask);
  2775. bxhih = _mm_and_si128(bxhih, mask);
  2776. __m128i bxl = _mm256_castsi256_si128(bx);
  2777. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2778. bxl = _mm_or_si128(bxl, bxhil);
  2779. bxh = _mm_or_si128(bxh, bxhih);
  2780. bx = MM256_SET_M128I(bxh, bxl);
  2781. const __m256 dy = _mm256_set1_ps(y[i].d);
  2782. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2783. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2784. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2785. }
  2786. *s = hsum_float_8(acc) + summs;
  2787. #elif defined(__riscv_v_intrinsic)
  2788. float sumf = 0.0;
  2789. uint32_t qh;
  2790. // These temp values are for shift operations
  2791. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2792. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2793. for (int i = 0; i < nb; i++) {
  2794. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2795. // temporary registers
  2796. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2797. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2798. // load qh
  2799. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2800. // ((qh >> (j + 0)) << 4) & 0x10;
  2801. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2802. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2803. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2804. // ((qh >> (j + 12)) ) & 0x10;
  2805. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2806. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2807. // narrowing
  2808. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2809. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2810. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2811. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2812. // load
  2813. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2814. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2815. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2816. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2817. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2818. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2819. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2820. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2821. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2822. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2823. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2824. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2825. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2826. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2827. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2828. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2829. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2830. }
  2831. *s = sumf;
  2832. #else
  2833. // scalar
  2834. float sumf = 0.0;
  2835. for (int i = 0; i < nb; i++) {
  2836. uint32_t qh;
  2837. memcpy(&qh, x[i].qh, sizeof(qh));
  2838. int sumi = 0;
  2839. for (int j = 0; j < qk/2; ++j) {
  2840. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2841. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2842. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2843. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2844. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2845. }
  2846. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2847. }
  2848. *s = sumf;
  2849. #endif
  2850. }
  2851. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2852. const int qk = QK8_0;
  2853. const int nb = n / qk;
  2854. assert(n % qk == 0);
  2855. const block_q8_0 * restrict x = vx;
  2856. const block_q8_0 * restrict y = vy;
  2857. #if defined(__ARM_NEON)
  2858. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2859. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2860. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2861. for (int i = 0; i < nb; i += 2) {
  2862. const block_q8_0 * restrict x0 = &x[i + 0];
  2863. const block_q8_0 * restrict x1 = &x[i + 1];
  2864. const block_q8_0 * restrict y0 = &y[i + 0];
  2865. const block_q8_0 * restrict y1 = &y[i + 1];
  2866. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2867. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2868. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2869. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2870. // load y
  2871. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2872. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2873. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2874. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2875. #if defined(__ARM_FEATURE_DOTPROD)
  2876. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2877. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2878. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2879. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2880. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2881. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2882. #else
  2883. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2884. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2885. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2886. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2887. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2888. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2889. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2890. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2891. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2892. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2893. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2894. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2895. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2896. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2897. #endif
  2898. }
  2899. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2900. #elif defined(__AVX2__) || defined(__AVX__)
  2901. // Initialize accumulator with zeros
  2902. __m256 acc = _mm256_setzero_ps();
  2903. // Main loop
  2904. for (int i = 0; i < nb; ++i) {
  2905. // Compute combined scale for the block
  2906. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2907. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2908. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2909. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2910. // Multiply q with scale and accumulate
  2911. #if defined(__AVX2__)
  2912. acc = _mm256_fmadd_ps( d, q, acc );
  2913. #else
  2914. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2915. #endif
  2916. }
  2917. *s = hsum_float_8(acc);
  2918. #elif defined(__riscv_v_intrinsic)
  2919. float sumf = 0.0;
  2920. size_t vl = __riscv_vsetvl_e8m1(qk);
  2921. for (int i = 0; i < nb; i++) {
  2922. // load elements
  2923. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2924. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2925. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2926. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2927. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2928. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2929. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2930. }
  2931. *s = sumf;
  2932. #else
  2933. // scalar
  2934. float sumf = 0.0;
  2935. for (int i = 0; i < nb; i++) {
  2936. int sumi = 0;
  2937. for (int j = 0; j < qk; j++) {
  2938. sumi += x[i].qs[j]*y[i].qs[j];
  2939. }
  2940. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2941. }
  2942. *s = sumf;
  2943. #endif
  2944. }
  2945. // compute GGML_VEC_DOT_UNROLL dot products at once
  2946. // xs - x row stride in bytes
  2947. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2948. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2949. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2950. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2951. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2952. }
  2953. #if defined(GGML_SIMD)
  2954. const int np = (n & ~(GGML_F16_STEP - 1));
  2955. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2956. GGML_F16_VEC ax[GGML_F16_ARR];
  2957. GGML_F16_VEC ay[GGML_F16_ARR];
  2958. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2959. for (int j = 0; j < GGML_F16_ARR; j++) {
  2960. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2961. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2962. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2963. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2964. }
  2965. }
  2966. }
  2967. // reduce sum0..sum3 to sum0
  2968. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2969. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2970. }
  2971. // leftovers
  2972. for (int i = np; i < n; ++i) {
  2973. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2974. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2975. }
  2976. }
  2977. #else
  2978. for (int i = 0; i < n; ++i) {
  2979. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2980. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2981. }
  2982. }
  2983. #endif
  2984. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2985. s[i] = sumf[i];
  2986. }
  2987. }
  2988. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2989. #if defined(GGML_SIMD)
  2990. const int np = (n & ~(GGML_F32_STEP - 1));
  2991. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2992. GGML_F32_VEC ax[GGML_F32_ARR];
  2993. GGML_F32_VEC ay[GGML_F32_ARR];
  2994. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2995. for (int j = 0; j < GGML_F32_ARR; j++) {
  2996. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2997. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2998. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2999. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3000. }
  3001. }
  3002. // leftovers
  3003. for (int i = np; i < n; ++i) {
  3004. y[i] += x[i]*v;
  3005. }
  3006. #else
  3007. // scalar
  3008. for (int i = 0; i < n; ++i) {
  3009. y[i] += x[i]*v;
  3010. }
  3011. #endif
  3012. }
  3013. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3014. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3015. #if defined(GGML_USE_ACCELERATE)
  3016. vDSP_vsmul(y, 1, &v, y, 1, n);
  3017. #elif defined(GGML_SIMD)
  3018. const int np = (n & ~(GGML_F32_STEP - 1));
  3019. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3020. GGML_F32_VEC ay[GGML_F32_ARR];
  3021. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3022. for (int j = 0; j < GGML_F32_ARR; j++) {
  3023. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3024. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3025. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3026. }
  3027. }
  3028. // leftovers
  3029. for (int i = np; i < n; ++i) {
  3030. y[i] *= v;
  3031. }
  3032. #else
  3033. // scalar
  3034. for (int i = 0; i < n; ++i) {
  3035. y[i] *= v;
  3036. }
  3037. #endif
  3038. }
  3039. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3040. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3041. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3042. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3043. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3044. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3045. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3046. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3047. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3048. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3049. static const float GELU_COEF_A = 0.044715f;
  3050. static const float GELU_QUICK_COEF = -1.702f;
  3051. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3052. inline static float ggml_gelu_f32(float x) {
  3053. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3054. }
  3055. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3056. const uint16_t * i16 = (const uint16_t *) x;
  3057. for (int i = 0; i < n; ++i) {
  3058. y[i] = table_gelu_f16[i16[i]];
  3059. }
  3060. }
  3061. #ifdef GGML_GELU_FP16
  3062. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3063. uint16_t t;
  3064. for (int i = 0; i < n; ++i) {
  3065. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3066. memcpy(&t, &fp16, sizeof(uint16_t));
  3067. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3068. }
  3069. }
  3070. #else
  3071. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3072. for (int i = 0; i < n; ++i) {
  3073. y[i] = ggml_gelu_f32(x[i]);
  3074. }
  3075. }
  3076. #endif
  3077. inline static float ggml_gelu_quick_f32(float x) {
  3078. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3079. }
  3080. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3081. // const uint16_t * i16 = (const uint16_t *) x;
  3082. // for (int i = 0; i < n; ++i) {
  3083. // y[i] = table_gelu_quick_f16[i16[i]];
  3084. // }
  3085. //}
  3086. #ifdef GGML_GELU_QUICK_FP16
  3087. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3088. uint16_t t;
  3089. for (int i = 0; i < n; ++i) {
  3090. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3091. memcpy(&t, &fp16, sizeof(uint16_t));
  3092. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3093. }
  3094. }
  3095. #else
  3096. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3097. for (int i = 0; i < n; ++i) {
  3098. y[i] = ggml_gelu_quick_f32(x[i]);
  3099. }
  3100. }
  3101. #endif
  3102. // Sigmoid Linear Unit (SiLU) function
  3103. inline static float ggml_silu_f32(float x) {
  3104. return x/(1.0f + expf(-x));
  3105. }
  3106. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3107. // const uint16_t * i16 = (const uint16_t *) x;
  3108. // for (int i = 0; i < n; ++i) {
  3109. // y[i] = table_silu_f16[i16[i]];
  3110. // }
  3111. //}
  3112. #ifdef GGML_SILU_FP16
  3113. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3114. uint16_t t;
  3115. for (int i = 0; i < n; ++i) {
  3116. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3117. memcpy(&t, &fp16, sizeof(uint16_t));
  3118. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3119. }
  3120. }
  3121. #else
  3122. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3123. for (int i = 0; i < n; ++i) {
  3124. y[i] = ggml_silu_f32(x[i]);
  3125. }
  3126. }
  3127. #endif
  3128. inline static float ggml_silu_backward_f32(float x, float dy) {
  3129. const float s = 1.0f/(1.0f + expf(-x));
  3130. return dy*s*(1.0f + x*(1.0f - s));
  3131. }
  3132. #ifdef GGML_SILU_FP16
  3133. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3134. for (int i = 0; i < n; ++i) {
  3135. // we did not use x[i] to compute forward silu but its f16 equivalent
  3136. // take derivative at f16 of x[i]:
  3137. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3138. float usedx = GGML_FP16_TO_FP32(fp16);
  3139. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3140. }
  3141. }
  3142. #else
  3143. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3144. for (int i = 0; i < n; ++i) {
  3145. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3146. }
  3147. }
  3148. #endif
  3149. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3150. #ifndef GGML_USE_ACCELERATE
  3151. ggml_float sum = 0.0;
  3152. for (int i = 0; i < n; ++i) {
  3153. sum += (ggml_float)x[i];
  3154. }
  3155. *s = sum;
  3156. #else
  3157. vDSP_sve(x, 1, s, n);
  3158. #endif
  3159. }
  3160. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3161. ggml_float sum = 0.0;
  3162. for (int i = 0; i < n; ++i) {
  3163. sum += (ggml_float)x[i];
  3164. }
  3165. *s = sum;
  3166. }
  3167. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3168. float sum = 0.0f;
  3169. for (int i = 0; i < n; ++i) {
  3170. sum += GGML_FP16_TO_FP32(x[i]);
  3171. }
  3172. *s = sum;
  3173. }
  3174. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3175. #ifndef GGML_USE_ACCELERATE
  3176. float max = -INFINITY;
  3177. for (int i = 0; i < n; ++i) {
  3178. max = MAX(max, x[i]);
  3179. }
  3180. *s = max;
  3181. #else
  3182. vDSP_maxv(x, 1, s, n);
  3183. #endif
  3184. }
  3185. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3186. ggml_vec_norm_f32(n, s, x);
  3187. *s = 1.f/(*s);
  3188. }
  3189. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3190. float max = -INFINITY;
  3191. int idx = 0;
  3192. for (int i = 0; i < n; ++i) {
  3193. max = MAX(max, x[i]);
  3194. if (max == x[i]) { idx = i; }
  3195. }
  3196. *s = idx;
  3197. }
  3198. //
  3199. // data types
  3200. //
  3201. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3202. "NONE",
  3203. "DUP",
  3204. "ADD",
  3205. "ADD1",
  3206. "ACC",
  3207. "SUB",
  3208. "MUL",
  3209. "DIV",
  3210. "SQR",
  3211. "SQRT",
  3212. "LOG",
  3213. "SUM",
  3214. "SUM_ROWS",
  3215. "MEAN",
  3216. "ARGMAX",
  3217. "REPEAT",
  3218. "REPEAT_BACK",
  3219. "CONCAT",
  3220. "SILU_BACK",
  3221. "NORM",
  3222. "RMS_NORM",
  3223. "RMS_NORM_BACK",
  3224. "GROUP_NORM",
  3225. "MUL_MAT",
  3226. "OUT_PROD",
  3227. "SCALE",
  3228. "SET",
  3229. "CPY",
  3230. "CONT",
  3231. "RESHAPE",
  3232. "VIEW",
  3233. "PERMUTE",
  3234. "TRANSPOSE",
  3235. "GET_ROWS",
  3236. "GET_ROWS_BACK",
  3237. "DIAG",
  3238. "DIAG_MASK_INF",
  3239. "DIAG_MASK_ZERO",
  3240. "SOFT_MAX",
  3241. "SOFT_MAX_BACK",
  3242. "ROPE",
  3243. "ROPE_BACK",
  3244. "ALIBI",
  3245. "CLAMP",
  3246. "CONV_1D",
  3247. "CONV_2D",
  3248. "CONV_TRANSPOSE_2D",
  3249. "POOL_1D",
  3250. "POOL_2D",
  3251. "UPSCALE",
  3252. "FLASH_ATTN",
  3253. "FLASH_FF",
  3254. "FLASH_ATTN_BACK",
  3255. "WIN_PART",
  3256. "WIN_UNPART",
  3257. "GET_REL_POS",
  3258. "ADD_REL_POS",
  3259. "UNARY",
  3260. "MAP_UNARY",
  3261. "MAP_BINARY",
  3262. "MAP_CUSTOM1_F32",
  3263. "MAP_CUSTOM2_F32",
  3264. "MAP_CUSTOM3_F32",
  3265. "MAP_CUSTOM1",
  3266. "MAP_CUSTOM2",
  3267. "MAP_CUSTOM3",
  3268. "CROSS_ENTROPY_LOSS",
  3269. "CROSS_ENTROPY_LOSS_BACK",
  3270. };
  3271. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3272. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3273. "none",
  3274. "x",
  3275. "x+y",
  3276. "x+y",
  3277. "view(x,nb,offset)+=y->x",
  3278. "x-y",
  3279. "x*y",
  3280. "x/y",
  3281. "x^2",
  3282. "√x",
  3283. "log(x)",
  3284. "Σx",
  3285. "Σx_k",
  3286. "Σx/n",
  3287. "argmax(x)",
  3288. "repeat(x)",
  3289. "repeat_back(x)",
  3290. "concat(x, y)",
  3291. "silu_back(x)",
  3292. "norm(x)",
  3293. "rms_norm(x)",
  3294. "rms_norm_back(x)",
  3295. "group_norm(x)",
  3296. "X*Y",
  3297. "X*Y",
  3298. "x*v",
  3299. "y-\\>view(x)",
  3300. "x-\\>y",
  3301. "cont(x)",
  3302. "reshape(x)",
  3303. "view(x)",
  3304. "permute(x)",
  3305. "transpose(x)",
  3306. "get_rows(x)",
  3307. "get_rows_back(x)",
  3308. "diag(x)",
  3309. "diag_mask_inf(x)",
  3310. "diag_mask_zero(x)",
  3311. "soft_max(x)",
  3312. "soft_max_back(x)",
  3313. "rope(x)",
  3314. "rope_back(x)",
  3315. "alibi(x)",
  3316. "clamp(x)",
  3317. "conv_1d(x)",
  3318. "conv_2d(x)",
  3319. "conv_transpose_2d(x)",
  3320. "pool_1d(x)",
  3321. "pool_2d(x)",
  3322. "upscale(x)",
  3323. "flash_attn(x)",
  3324. "flash_ff(x)",
  3325. "flash_attn_back(x)",
  3326. "win_part(x)",
  3327. "win_unpart(x)",
  3328. "get_rel_pos(x)",
  3329. "add_rel_pos(x)",
  3330. "unary(x)",
  3331. "f(x)",
  3332. "f(x,y)",
  3333. "custom_f32(x)",
  3334. "custom_f32(x,y)",
  3335. "custom_f32(x,y,z)",
  3336. "custom(x)",
  3337. "custom(x,y)",
  3338. "custom(x,y,z)",
  3339. "cross_entropy_loss(x,y)",
  3340. "cross_entropy_loss_back(x,y)",
  3341. };
  3342. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3343. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3344. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3345. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3346. // WARN:
  3347. // Mis-confguration can lead to problem that's hard to reason about:
  3348. // * At best it crash or talks nosense.
  3349. // * At worst it talks slightly difference but hard to perceive.
  3350. //
  3351. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3352. // Take care about compile options (e.g., GGML_USE_xxx).
  3353. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3354. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3355. static void ggml_setup_op_has_task_pass(void) {
  3356. { // INIT
  3357. bool * p = GGML_OP_HAS_INIT;
  3358. p[GGML_OP_ACC ] = true;
  3359. p[GGML_OP_MUL_MAT ] = true;
  3360. p[GGML_OP_OUT_PROD ] = true;
  3361. p[GGML_OP_SET ] = true;
  3362. p[GGML_OP_GET_ROWS_BACK ] = true;
  3363. p[GGML_OP_DIAG_MASK_INF ] = true;
  3364. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3365. p[GGML_OP_CONV_1D ] = true;
  3366. p[GGML_OP_CONV_2D ] = true;
  3367. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3368. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3369. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3370. p[GGML_OP_ADD_REL_POS ] = true;
  3371. }
  3372. { // FINALIZE
  3373. bool * p = GGML_OP_HAS_FINALIZE;
  3374. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3375. }
  3376. }
  3377. //
  3378. // ggml context
  3379. //
  3380. struct ggml_context {
  3381. size_t mem_size;
  3382. void * mem_buffer;
  3383. bool mem_buffer_owned;
  3384. bool no_alloc;
  3385. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3386. int n_objects;
  3387. struct ggml_object * objects_begin;
  3388. struct ggml_object * objects_end;
  3389. struct ggml_scratch scratch;
  3390. struct ggml_scratch scratch_save;
  3391. };
  3392. struct ggml_context_container {
  3393. bool used;
  3394. struct ggml_context context;
  3395. };
  3396. //
  3397. // NUMA support
  3398. //
  3399. #define GGML_NUMA_MAX_NODES 8
  3400. #define GGML_NUMA_MAX_CPUS 512
  3401. struct ggml_numa_node {
  3402. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3403. uint32_t n_cpus;
  3404. };
  3405. struct ggml_numa_nodes {
  3406. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3407. uint32_t n_nodes;
  3408. uint32_t total_cpus; // hardware threads on system
  3409. };
  3410. //
  3411. // ggml state
  3412. //
  3413. struct ggml_state {
  3414. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3415. struct ggml_numa_nodes numa;
  3416. };
  3417. // global state
  3418. static struct ggml_state g_state;
  3419. static atomic_int g_state_barrier = 0;
  3420. // barrier via spin lock
  3421. inline static void ggml_critical_section_start(void) {
  3422. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3423. while (processing > 0) {
  3424. // wait for other threads to finish
  3425. atomic_fetch_sub(&g_state_barrier, 1);
  3426. sched_yield(); // TODO: reconsider this
  3427. processing = atomic_fetch_add(&g_state_barrier, 1);
  3428. }
  3429. }
  3430. // TODO: make this somehow automatically executed
  3431. // some sort of "sentry" mechanism
  3432. inline static void ggml_critical_section_end(void) {
  3433. atomic_fetch_sub(&g_state_barrier, 1);
  3434. }
  3435. void ggml_numa_init(void) {
  3436. if (g_state.numa.n_nodes > 0) {
  3437. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3438. return;
  3439. }
  3440. #ifdef __linux__
  3441. struct stat st;
  3442. char path[256];
  3443. int rv;
  3444. // enumerate nodes
  3445. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3446. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3447. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3448. if (stat(path, &st) != 0) { break; }
  3449. ++g_state.numa.n_nodes;
  3450. }
  3451. // enumerate CPUs
  3452. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3453. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3454. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3455. if (stat(path, &st) != 0) { break; }
  3456. ++g_state.numa.total_cpus;
  3457. }
  3458. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3459. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3460. g_state.numa.n_nodes = 0;
  3461. return;
  3462. }
  3463. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3464. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3465. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3466. node->n_cpus = 0;
  3467. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3468. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3469. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3470. if (stat(path, &st) == 0) {
  3471. node->cpus[node->n_cpus++] = c;
  3472. GGML_PRINT_DEBUG(" %u", c);
  3473. }
  3474. }
  3475. GGML_PRINT_DEBUG("\n");
  3476. }
  3477. if (ggml_is_numa()) {
  3478. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3479. if (fptr != NULL) {
  3480. char buf[42];
  3481. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3482. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3483. }
  3484. fclose(fptr);
  3485. }
  3486. }
  3487. #else
  3488. // TODO
  3489. #endif
  3490. }
  3491. bool ggml_is_numa(void) {
  3492. return g_state.numa.n_nodes > 1;
  3493. }
  3494. ////////////////////////////////////////////////////////////////////////////////
  3495. void ggml_print_object(const struct ggml_object * obj) {
  3496. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3497. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3498. }
  3499. void ggml_print_objects(const struct ggml_context * ctx) {
  3500. struct ggml_object * obj = ctx->objects_begin;
  3501. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3502. while (obj != NULL) {
  3503. ggml_print_object(obj);
  3504. obj = obj->next;
  3505. }
  3506. GGML_PRINT("%s: --- end ---\n", __func__);
  3507. }
  3508. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3509. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3510. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3511. }
  3512. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3513. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3514. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3515. }
  3516. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3517. size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
  3518. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3519. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3520. }
  3521. return nbytes;
  3522. }
  3523. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3524. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3525. }
  3526. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3527. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3528. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3529. }
  3530. int ggml_blck_size(enum ggml_type type) {
  3531. return type_traits[type].blck_size;
  3532. }
  3533. size_t ggml_type_size(enum ggml_type type) {
  3534. return type_traits[type].type_size;
  3535. }
  3536. float ggml_type_sizef(enum ggml_type type) {
  3537. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3538. }
  3539. const char * ggml_type_name(enum ggml_type type) {
  3540. return type_traits[type].type_name;
  3541. }
  3542. bool ggml_is_quantized(enum ggml_type type) {
  3543. return type_traits[type].is_quantized;
  3544. }
  3545. const char * ggml_op_name(enum ggml_op op) {
  3546. return GGML_OP_NAME[op];
  3547. }
  3548. const char * ggml_op_symbol(enum ggml_op op) {
  3549. return GGML_OP_SYMBOL[op];
  3550. }
  3551. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3552. return ggml_type_size(tensor->type);
  3553. }
  3554. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3555. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3556. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3557. }
  3558. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3559. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3560. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3561. }
  3562. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3563. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3564. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3565. }
  3566. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3567. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3568. return (t0->ne[0] == t1->ne[0]) &&
  3569. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3570. (t1->ne[3]%t0->ne[3] == 0);
  3571. }
  3572. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3573. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3574. return
  3575. (t0->ne[1] == t1->ne[1]) &&
  3576. (t0->ne[2] == t1->ne[2]) &&
  3577. (t0->ne[3] == t1->ne[3]);
  3578. }
  3579. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3580. enum ggml_type wtype = GGML_TYPE_COUNT;
  3581. switch (ftype) {
  3582. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3583. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3584. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3585. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3586. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3587. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3588. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3589. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3590. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3591. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3592. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3593. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3594. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3595. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3596. }
  3597. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3598. return wtype;
  3599. }
  3600. size_t ggml_tensor_overhead(void) {
  3601. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3602. }
  3603. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3604. return tensor->nb[0] > tensor->nb[1];
  3605. }
  3606. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3607. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3608. return
  3609. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3610. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3611. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3612. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3613. }
  3614. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3615. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3616. return
  3617. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3618. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3619. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3620. }
  3621. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3622. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3623. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3624. }
  3625. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3626. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3627. return
  3628. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3629. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3630. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3631. }
  3632. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3633. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3634. return
  3635. (t0->ne[0] == t1->ne[0] ) &&
  3636. (t0->ne[1] == t1->ne[1] ) &&
  3637. (t0->ne[2] == t1->ne[2] ) &&
  3638. (t0->ne[3] == t1->ne[3] );
  3639. }
  3640. // check if t1 can be represented as a repeatition of t0
  3641. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3642. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3643. return
  3644. (t1->ne[0]%t0->ne[0] == 0) &&
  3645. (t1->ne[1]%t0->ne[1] == 0) &&
  3646. (t1->ne[2]%t0->ne[2] == 0) &&
  3647. (t1->ne[3]%t0->ne[3] == 0);
  3648. }
  3649. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3650. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3651. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3652. }
  3653. static inline int ggml_up32(int n) {
  3654. return (n + 31) & ~31;
  3655. }
  3656. //static inline int ggml_up64(int n) {
  3657. // return (n + 63) & ~63;
  3658. //}
  3659. static inline int ggml_up(int n, int m) {
  3660. // assert m is a power of 2
  3661. GGML_ASSERT((m & (m - 1)) == 0);
  3662. return (n + m - 1) & ~(m - 1);
  3663. }
  3664. // assert that pointer is aligned to GGML_MEM_ALIGN
  3665. #define ggml_assert_aligned(ptr) \
  3666. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3667. ////////////////////////////////////////////////////////////////////////////////
  3668. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3669. // make this function thread safe
  3670. ggml_critical_section_start();
  3671. static bool is_first_call = true;
  3672. if (is_first_call) {
  3673. // initialize time system (required on Windows)
  3674. ggml_time_init();
  3675. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3676. {
  3677. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3678. ggml_fp16_t ii;
  3679. for (int i = 0; i < (1 << 16); ++i) {
  3680. uint16_t ui = i;
  3681. memcpy(&ii, &ui, sizeof(ii));
  3682. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3683. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3684. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3685. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3686. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3687. }
  3688. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3689. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3690. }
  3691. // initialize g_state
  3692. {
  3693. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3694. g_state = (struct ggml_state) {
  3695. /*.contexts =*/ { { 0 } },
  3696. /*.numa =*/ {
  3697. .n_nodes = 0,
  3698. .total_cpus = 0,
  3699. },
  3700. };
  3701. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3702. g_state.contexts[i].used = false;
  3703. }
  3704. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3705. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3706. }
  3707. #if defined(GGML_USE_CUBLAS)
  3708. ggml_init_cublas();
  3709. #elif defined(GGML_USE_CLBLAST)
  3710. ggml_cl_init();
  3711. #endif
  3712. ggml_setup_op_has_task_pass();
  3713. is_first_call = false;
  3714. }
  3715. // find non-used context in g_state
  3716. struct ggml_context * ctx = NULL;
  3717. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3718. if (!g_state.contexts[i].used) {
  3719. g_state.contexts[i].used = true;
  3720. ctx = &g_state.contexts[i].context;
  3721. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3722. break;
  3723. }
  3724. }
  3725. if (ctx == NULL) {
  3726. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3727. ggml_critical_section_end();
  3728. return NULL;
  3729. }
  3730. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3731. *ctx = (struct ggml_context) {
  3732. /*.mem_size =*/ mem_size,
  3733. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3734. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3735. /*.no_alloc =*/ params.no_alloc,
  3736. /*.no_alloc_save =*/ params.no_alloc,
  3737. /*.n_objects =*/ 0,
  3738. /*.objects_begin =*/ NULL,
  3739. /*.objects_end =*/ NULL,
  3740. /*.scratch =*/ { 0, 0, NULL, },
  3741. /*.scratch_save =*/ { 0, 0, NULL, },
  3742. };
  3743. GGML_ASSERT(ctx->mem_buffer != NULL);
  3744. ggml_assert_aligned(ctx->mem_buffer);
  3745. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3746. ggml_critical_section_end();
  3747. return ctx;
  3748. }
  3749. void ggml_free(struct ggml_context * ctx) {
  3750. // make this function thread safe
  3751. ggml_critical_section_start();
  3752. bool found = false;
  3753. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3754. if (&g_state.contexts[i].context == ctx) {
  3755. g_state.contexts[i].used = false;
  3756. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3757. __func__, i, ggml_used_mem(ctx));
  3758. if (ctx->mem_buffer_owned) {
  3759. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3760. }
  3761. found = true;
  3762. break;
  3763. }
  3764. }
  3765. if (!found) {
  3766. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3767. }
  3768. ggml_critical_section_end();
  3769. }
  3770. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3771. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3772. }
  3773. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3774. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3775. ctx->scratch = scratch;
  3776. return result;
  3777. }
  3778. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3779. return ctx->no_alloc;
  3780. }
  3781. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3782. ctx->no_alloc = no_alloc;
  3783. }
  3784. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3785. return ctx->mem_buffer;
  3786. }
  3787. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3788. return ctx->mem_size;
  3789. }
  3790. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3791. size_t max_size = 0;
  3792. struct ggml_object * obj = ctx->objects_begin;
  3793. while (obj != NULL) {
  3794. if (obj->type == GGML_OBJECT_TENSOR) {
  3795. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3796. const size_t size = ggml_nbytes(tensor);
  3797. if (max_size < size) {
  3798. max_size = size;
  3799. }
  3800. }
  3801. obj = obj->next;
  3802. }
  3803. return max_size;
  3804. }
  3805. // IMPORTANT:
  3806. // when creating "opt" tensors, always save and load the scratch buffer
  3807. // this is an error prone process, but it is necessary to support inplace
  3808. // operators when using scratch buffers
  3809. // TODO: implement a better way
  3810. static void ggml_scratch_save(struct ggml_context * ctx) {
  3811. // this is needed to allow opt tensors to store their data
  3812. // TODO: again, need to find a better way
  3813. ctx->no_alloc_save = ctx->no_alloc;
  3814. ctx->no_alloc = false;
  3815. ctx->scratch_save = ctx->scratch;
  3816. ctx->scratch.data = NULL;
  3817. }
  3818. static void ggml_scratch_load(struct ggml_context * ctx) {
  3819. ctx->no_alloc = ctx->no_alloc_save;
  3820. ctx->scratch = ctx->scratch_save;
  3821. }
  3822. ////////////////////////////////////////////////////////////////////////////////
  3823. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3824. // always insert objects at the end of the context's memory pool
  3825. struct ggml_object * obj_cur = ctx->objects_end;
  3826. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3827. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3828. const size_t cur_end = cur_offs + cur_size;
  3829. // align to GGML_MEM_ALIGN
  3830. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3831. char * const mem_buffer = ctx->mem_buffer;
  3832. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3833. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3834. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3835. __func__, cur_end + size_needed, ctx->mem_size);
  3836. assert(false);
  3837. return NULL;
  3838. }
  3839. *obj_new = (struct ggml_object) {
  3840. .offs = cur_end + GGML_OBJECT_SIZE,
  3841. .size = size_needed,
  3842. .next = NULL,
  3843. .type = type,
  3844. };
  3845. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3846. if (obj_cur != NULL) {
  3847. obj_cur->next = obj_new;
  3848. } else {
  3849. // this is the first object in this context
  3850. ctx->objects_begin = obj_new;
  3851. }
  3852. ctx->objects_end = obj_new;
  3853. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3854. return obj_new;
  3855. }
  3856. static struct ggml_tensor * ggml_new_tensor_impl(
  3857. struct ggml_context * ctx,
  3858. enum ggml_type type,
  3859. int n_dims,
  3860. const int64_t * ne,
  3861. struct ggml_tensor * view_src,
  3862. size_t view_offs) {
  3863. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3864. // find the base tensor and absolute offset
  3865. if (view_src != NULL && view_src->view_src != NULL) {
  3866. view_offs += view_src->view_offs;
  3867. view_src = view_src->view_src;
  3868. }
  3869. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3870. for (int i = 1; i < n_dims; i++) {
  3871. data_size *= ne[i];
  3872. }
  3873. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3874. void * data = view_src != NULL ? view_src->data : NULL;
  3875. if (data != NULL) {
  3876. data = (char *) data + view_offs;
  3877. }
  3878. size_t obj_alloc_size = 0;
  3879. if (view_src == NULL && ctx->no_alloc == false) {
  3880. if (ctx->scratch.data != NULL) {
  3881. // allocate tensor data in the scratch buffer
  3882. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3883. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3884. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3885. assert(false);
  3886. return NULL;
  3887. }
  3888. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3889. ctx->scratch.offs += data_size;
  3890. } else {
  3891. // allocate tensor data in the context's memory pool
  3892. obj_alloc_size = data_size;
  3893. }
  3894. }
  3895. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3896. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3897. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3898. *result = (struct ggml_tensor) {
  3899. /*.type =*/ type,
  3900. /*.backend =*/ GGML_BACKEND_CPU,
  3901. /*.n_dims =*/ n_dims,
  3902. /*.ne =*/ { 1, 1, 1, 1 },
  3903. /*.nb =*/ { 0, 0, 0, 0 },
  3904. /*.op =*/ GGML_OP_NONE,
  3905. /*.op_params =*/ { 0 },
  3906. /*.is_param =*/ false,
  3907. /*.grad =*/ NULL,
  3908. /*.src =*/ { NULL },
  3909. /*.perf_runs =*/ 0,
  3910. /*.perf_cycles =*/ 0,
  3911. /*.perf_time_us =*/ 0,
  3912. /*.view_src =*/ view_src,
  3913. /*.view_offs =*/ view_offs,
  3914. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3915. /*.name =*/ { 0 },
  3916. /*.extra =*/ NULL,
  3917. /*.padding =*/ { 0 },
  3918. };
  3919. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3920. //ggml_assert_aligned(result->data);
  3921. for (int i = 0; i < n_dims; i++) {
  3922. result->ne[i] = ne[i];
  3923. }
  3924. result->nb[0] = ggml_type_size(type);
  3925. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3926. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3927. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3928. }
  3929. ctx->n_objects++;
  3930. return result;
  3931. }
  3932. struct ggml_tensor * ggml_new_tensor(
  3933. struct ggml_context * ctx,
  3934. enum ggml_type type,
  3935. int n_dims,
  3936. const int64_t * ne) {
  3937. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3938. }
  3939. struct ggml_tensor * ggml_new_tensor_1d(
  3940. struct ggml_context * ctx,
  3941. enum ggml_type type,
  3942. int64_t ne0) {
  3943. return ggml_new_tensor(ctx, type, 1, &ne0);
  3944. }
  3945. struct ggml_tensor * ggml_new_tensor_2d(
  3946. struct ggml_context * ctx,
  3947. enum ggml_type type,
  3948. int64_t ne0,
  3949. int64_t ne1) {
  3950. const int64_t ne[2] = { ne0, ne1 };
  3951. return ggml_new_tensor(ctx, type, 2, ne);
  3952. }
  3953. struct ggml_tensor * ggml_new_tensor_3d(
  3954. struct ggml_context * ctx,
  3955. enum ggml_type type,
  3956. int64_t ne0,
  3957. int64_t ne1,
  3958. int64_t ne2) {
  3959. const int64_t ne[3] = { ne0, ne1, ne2 };
  3960. return ggml_new_tensor(ctx, type, 3, ne);
  3961. }
  3962. struct ggml_tensor * ggml_new_tensor_4d(
  3963. struct ggml_context * ctx,
  3964. enum ggml_type type,
  3965. int64_t ne0,
  3966. int64_t ne1,
  3967. int64_t ne2,
  3968. int64_t ne3) {
  3969. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3970. return ggml_new_tensor(ctx, type, 4, ne);
  3971. }
  3972. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3973. ggml_scratch_save(ctx);
  3974. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3975. ggml_scratch_load(ctx);
  3976. ggml_set_i32(result, value);
  3977. return result;
  3978. }
  3979. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3980. ggml_scratch_save(ctx);
  3981. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3982. ggml_scratch_load(ctx);
  3983. ggml_set_f32(result, value);
  3984. return result;
  3985. }
  3986. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3987. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3988. }
  3989. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3990. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3991. assert(params_size <= GGML_MAX_OP_PARAMS);
  3992. memcpy(tensor->op_params, params, params_size);
  3993. }
  3994. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3995. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3996. return ((const int32_t *)(tensor->op_params))[i];
  3997. }
  3998. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3999. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4000. ((int32_t *)(tensor->op_params))[i] = value;
  4001. }
  4002. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  4003. memset(tensor->data, 0, ggml_nbytes(tensor));
  4004. return tensor;
  4005. }
  4006. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  4007. const int n = ggml_nrows(tensor);
  4008. const int nc = tensor->ne[0];
  4009. const size_t n1 = tensor->nb[1];
  4010. char * const data = tensor->data;
  4011. switch (tensor->type) {
  4012. case GGML_TYPE_I8:
  4013. {
  4014. assert(tensor->nb[0] == sizeof(int8_t));
  4015. for (int i = 0; i < n; i++) {
  4016. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4017. }
  4018. } break;
  4019. case GGML_TYPE_I16:
  4020. {
  4021. assert(tensor->nb[0] == sizeof(int16_t));
  4022. for (int i = 0; i < n; i++) {
  4023. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4024. }
  4025. } break;
  4026. case GGML_TYPE_I32:
  4027. {
  4028. assert(tensor->nb[0] == sizeof(int32_t));
  4029. for (int i = 0; i < n; i++) {
  4030. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4031. }
  4032. } break;
  4033. case GGML_TYPE_F16:
  4034. {
  4035. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4036. for (int i = 0; i < n; i++) {
  4037. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4038. }
  4039. } break;
  4040. case GGML_TYPE_F32:
  4041. {
  4042. assert(tensor->nb[0] == sizeof(float));
  4043. for (int i = 0; i < n; i++) {
  4044. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4045. }
  4046. } break;
  4047. default:
  4048. {
  4049. GGML_ASSERT(false);
  4050. } break;
  4051. }
  4052. return tensor;
  4053. }
  4054. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4055. const int n = ggml_nrows(tensor);
  4056. const int nc = tensor->ne[0];
  4057. const size_t n1 = tensor->nb[1];
  4058. char * const data = tensor->data;
  4059. switch (tensor->type) {
  4060. case GGML_TYPE_I8:
  4061. {
  4062. assert(tensor->nb[0] == sizeof(int8_t));
  4063. for (int i = 0; i < n; i++) {
  4064. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4065. }
  4066. } break;
  4067. case GGML_TYPE_I16:
  4068. {
  4069. assert(tensor->nb[0] == sizeof(int16_t));
  4070. for (int i = 0; i < n; i++) {
  4071. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4072. }
  4073. } break;
  4074. case GGML_TYPE_I32:
  4075. {
  4076. assert(tensor->nb[0] == sizeof(int32_t));
  4077. for (int i = 0; i < n; i++) {
  4078. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4079. }
  4080. } break;
  4081. case GGML_TYPE_F16:
  4082. {
  4083. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4084. for (int i = 0; i < n; i++) {
  4085. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4086. }
  4087. } break;
  4088. case GGML_TYPE_F32:
  4089. {
  4090. assert(tensor->nb[0] == sizeof(float));
  4091. for (int i = 0; i < n; i++) {
  4092. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4093. }
  4094. } break;
  4095. default:
  4096. {
  4097. GGML_ASSERT(false);
  4098. } break;
  4099. }
  4100. return tensor;
  4101. }
  4102. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4103. switch (tensor->type) {
  4104. case GGML_TYPE_I8:
  4105. {
  4106. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4107. return ((int8_t *)(tensor->data))[i];
  4108. } break;
  4109. case GGML_TYPE_I16:
  4110. {
  4111. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4112. return ((int16_t *)(tensor->data))[i];
  4113. } break;
  4114. case GGML_TYPE_I32:
  4115. {
  4116. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4117. return ((int32_t *)(tensor->data))[i];
  4118. } break;
  4119. case GGML_TYPE_F16:
  4120. {
  4121. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4122. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4123. } break;
  4124. case GGML_TYPE_F32:
  4125. {
  4126. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4127. return ((float *)(tensor->data))[i];
  4128. } break;
  4129. default:
  4130. {
  4131. GGML_ASSERT(false);
  4132. } break;
  4133. }
  4134. return 0.0f;
  4135. }
  4136. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4137. switch (tensor->type) {
  4138. case GGML_TYPE_I8:
  4139. {
  4140. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4141. ((int8_t *)(tensor->data))[i] = value;
  4142. } break;
  4143. case GGML_TYPE_I16:
  4144. {
  4145. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4146. ((int16_t *)(tensor->data))[i] = value;
  4147. } break;
  4148. case GGML_TYPE_I32:
  4149. {
  4150. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4151. ((int32_t *)(tensor->data))[i] = value;
  4152. } break;
  4153. case GGML_TYPE_F16:
  4154. {
  4155. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4156. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4157. } break;
  4158. case GGML_TYPE_F32:
  4159. {
  4160. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4161. ((float *)(tensor->data))[i] = value;
  4162. } break;
  4163. default:
  4164. {
  4165. GGML_ASSERT(false);
  4166. } break;
  4167. }
  4168. }
  4169. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4170. switch (tensor->type) {
  4171. case GGML_TYPE_I8:
  4172. {
  4173. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4174. return ((int8_t *)(tensor->data))[i];
  4175. } break;
  4176. case GGML_TYPE_I16:
  4177. {
  4178. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4179. return ((int16_t *)(tensor->data))[i];
  4180. } break;
  4181. case GGML_TYPE_I32:
  4182. {
  4183. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4184. return ((int32_t *)(tensor->data))[i];
  4185. } break;
  4186. case GGML_TYPE_F16:
  4187. {
  4188. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4189. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4190. } break;
  4191. case GGML_TYPE_F32:
  4192. {
  4193. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4194. return ((float *)(tensor->data))[i];
  4195. } break;
  4196. default:
  4197. {
  4198. GGML_ASSERT(false);
  4199. } break;
  4200. }
  4201. return 0.0f;
  4202. }
  4203. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4204. switch (tensor->type) {
  4205. case GGML_TYPE_I8:
  4206. {
  4207. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4208. ((int8_t *)(tensor->data))[i] = value;
  4209. } break;
  4210. case GGML_TYPE_I16:
  4211. {
  4212. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4213. ((int16_t *)(tensor->data))[i] = value;
  4214. } break;
  4215. case GGML_TYPE_I32:
  4216. {
  4217. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4218. ((int32_t *)(tensor->data))[i] = value;
  4219. } break;
  4220. case GGML_TYPE_F16:
  4221. {
  4222. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4223. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4224. } break;
  4225. case GGML_TYPE_F32:
  4226. {
  4227. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4228. ((float *)(tensor->data))[i] = value;
  4229. } break;
  4230. default:
  4231. {
  4232. GGML_ASSERT(false);
  4233. } break;
  4234. }
  4235. }
  4236. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4237. return tensor->data;
  4238. }
  4239. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4240. assert(tensor->type == GGML_TYPE_F32);
  4241. return (float *)(tensor->data);
  4242. }
  4243. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4244. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4245. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4246. }
  4247. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4248. return tensor->name;
  4249. }
  4250. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4251. strncpy(tensor->name, name, sizeof(tensor->name));
  4252. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4253. return tensor;
  4254. }
  4255. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4256. va_list args;
  4257. va_start(args, fmt);
  4258. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4259. va_end(args);
  4260. return tensor;
  4261. }
  4262. struct ggml_tensor * ggml_view_tensor(
  4263. struct ggml_context * ctx,
  4264. struct ggml_tensor * src) {
  4265. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4266. ggml_format_name(result, "%s (view)", src->name);
  4267. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4268. result->nb[i] = src->nb[i];
  4269. }
  4270. return result;
  4271. }
  4272. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4273. struct ggml_object * obj = ctx->objects_begin;
  4274. char * const mem_buffer = ctx->mem_buffer;
  4275. while (obj != NULL) {
  4276. if (obj->type == GGML_OBJECT_TENSOR) {
  4277. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4278. if (strcmp(cur->name, name) == 0) {
  4279. return cur;
  4280. }
  4281. }
  4282. obj = obj->next;
  4283. }
  4284. return NULL;
  4285. }
  4286. ////////////////////////////////////////////////////////////////////////////////
  4287. // ggml_dup
  4288. static struct ggml_tensor * ggml_dup_impl(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. bool inplace) {
  4292. bool is_node = false;
  4293. if (!inplace && (a->grad)) {
  4294. is_node = true;
  4295. }
  4296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4297. result->op = GGML_OP_DUP;
  4298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4299. result->src[0] = a;
  4300. return result;
  4301. }
  4302. struct ggml_tensor * ggml_dup(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a) {
  4305. return ggml_dup_impl(ctx, a, false);
  4306. }
  4307. struct ggml_tensor * ggml_dup_inplace(
  4308. struct ggml_context * ctx,
  4309. struct ggml_tensor * a) {
  4310. return ggml_dup_impl(ctx, a, true);
  4311. }
  4312. // ggml_add
  4313. static struct ggml_tensor * ggml_add_impl(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a,
  4316. struct ggml_tensor * b,
  4317. bool inplace) {
  4318. // TODO: support less-strict constraint
  4319. // GGML_ASSERT(ggml_can_repeat(b, a));
  4320. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4321. bool is_node = false;
  4322. if (!inplace && (a->grad || b->grad)) {
  4323. // TODO: support backward pass for broadcasting
  4324. GGML_ASSERT(ggml_are_same_shape(a, b));
  4325. is_node = true;
  4326. }
  4327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4328. result->op = GGML_OP_ADD;
  4329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4330. result->src[0] = a;
  4331. result->src[1] = b;
  4332. return result;
  4333. }
  4334. struct ggml_tensor * ggml_add(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. struct ggml_tensor * b) {
  4338. return ggml_add_impl(ctx, a, b, false);
  4339. }
  4340. struct ggml_tensor * ggml_add_inplace(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b) {
  4344. return ggml_add_impl(ctx, a, b, true);
  4345. }
  4346. // ggml_add1
  4347. static struct ggml_tensor * ggml_add1_impl(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. struct ggml_tensor * b,
  4351. bool inplace) {
  4352. GGML_ASSERT(ggml_is_scalar(b));
  4353. GGML_ASSERT(ggml_is_padded_1d(a));
  4354. bool is_node = false;
  4355. if (a->grad || b->grad) {
  4356. is_node = true;
  4357. }
  4358. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4359. result->op = GGML_OP_ADD1;
  4360. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4361. result->src[0] = a;
  4362. result->src[1] = b;
  4363. return result;
  4364. }
  4365. struct ggml_tensor * ggml_add1(
  4366. struct ggml_context * ctx,
  4367. struct ggml_tensor * a,
  4368. struct ggml_tensor * b) {
  4369. return ggml_add1_impl(ctx, a, b, false);
  4370. }
  4371. struct ggml_tensor * ggml_add1_inplace(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b) {
  4375. return ggml_add1_impl(ctx, a, b, true);
  4376. }
  4377. // ggml_acc
  4378. static struct ggml_tensor * ggml_acc_impl(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. struct ggml_tensor * b,
  4382. size_t nb1,
  4383. size_t nb2,
  4384. size_t nb3,
  4385. size_t offset,
  4386. bool inplace) {
  4387. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4388. GGML_ASSERT(ggml_is_contiguous(a));
  4389. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4390. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4391. bool is_node = false;
  4392. if (!inplace && (a->grad || b->grad)) {
  4393. is_node = true;
  4394. }
  4395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4396. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4397. ggml_set_op_params(result, params, sizeof(params));
  4398. result->op = GGML_OP_ACC;
  4399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4400. result->src[0] = a;
  4401. result->src[1] = b;
  4402. return result;
  4403. }
  4404. struct ggml_tensor * ggml_acc(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. struct ggml_tensor * b,
  4408. size_t nb1,
  4409. size_t nb2,
  4410. size_t nb3,
  4411. size_t offset) {
  4412. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4413. }
  4414. struct ggml_tensor * ggml_acc_inplace(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. struct ggml_tensor * b,
  4418. size_t nb1,
  4419. size_t nb2,
  4420. size_t nb3,
  4421. size_t offset) {
  4422. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4423. }
  4424. // ggml_sub
  4425. static struct ggml_tensor * ggml_sub_impl(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. struct ggml_tensor * b,
  4429. bool inplace) {
  4430. GGML_ASSERT(ggml_are_same_shape(a, b));
  4431. bool is_node = false;
  4432. if (!inplace && (a->grad || b->grad)) {
  4433. is_node = true;
  4434. }
  4435. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4436. result->op = GGML_OP_SUB;
  4437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4438. result->src[0] = a;
  4439. result->src[1] = b;
  4440. return result;
  4441. }
  4442. struct ggml_tensor * ggml_sub(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * b) {
  4446. return ggml_sub_impl(ctx, a, b, false);
  4447. }
  4448. struct ggml_tensor * ggml_sub_inplace(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. struct ggml_tensor * b) {
  4452. return ggml_sub_impl(ctx, a, b, true);
  4453. }
  4454. // ggml_mul
  4455. static struct ggml_tensor * ggml_mul_impl(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b,
  4459. bool inplace) {
  4460. // TODO: support less-strict constraint
  4461. // GGML_ASSERT(ggml_can_repeat(b, a));
  4462. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4463. bool is_node = false;
  4464. if (!inplace && (a->grad || b->grad)) {
  4465. // TODO: support backward pass for broadcasting
  4466. GGML_ASSERT(ggml_are_same_shape(a, b));
  4467. is_node = true;
  4468. }
  4469. if (inplace) {
  4470. GGML_ASSERT(is_node == false);
  4471. }
  4472. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4473. result->op = GGML_OP_MUL;
  4474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4475. result->src[0] = a;
  4476. result->src[1] = b;
  4477. return result;
  4478. }
  4479. struct ggml_tensor * ggml_mul(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. struct ggml_tensor * b) {
  4483. return ggml_mul_impl(ctx, a, b, false);
  4484. }
  4485. struct ggml_tensor * ggml_mul_inplace(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * b) {
  4489. return ggml_mul_impl(ctx, a, b, true);
  4490. }
  4491. // ggml_div
  4492. static struct ggml_tensor * ggml_div_impl(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * a,
  4495. struct ggml_tensor * b,
  4496. bool inplace) {
  4497. GGML_ASSERT(ggml_are_same_shape(a, b));
  4498. bool is_node = false;
  4499. if (!inplace && (a->grad || b->grad)) {
  4500. is_node = true;
  4501. }
  4502. if (inplace) {
  4503. GGML_ASSERT(is_node == false);
  4504. }
  4505. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4506. result->op = GGML_OP_DIV;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src[0] = a;
  4509. result->src[1] = b;
  4510. return result;
  4511. }
  4512. struct ggml_tensor * ggml_div(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. struct ggml_tensor * b) {
  4516. return ggml_div_impl(ctx, a, b, false);
  4517. }
  4518. struct ggml_tensor * ggml_div_inplace(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. struct ggml_tensor * b) {
  4522. return ggml_div_impl(ctx, a, b, true);
  4523. }
  4524. // ggml_sqr
  4525. static struct ggml_tensor * ggml_sqr_impl(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. bool inplace) {
  4529. bool is_node = false;
  4530. if (!inplace && (a->grad)) {
  4531. is_node = true;
  4532. }
  4533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4534. result->op = GGML_OP_SQR;
  4535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4536. result->src[0] = a;
  4537. return result;
  4538. }
  4539. struct ggml_tensor * ggml_sqr(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. return ggml_sqr_impl(ctx, a, false);
  4543. }
  4544. struct ggml_tensor * ggml_sqr_inplace(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a) {
  4547. return ggml_sqr_impl(ctx, a, true);
  4548. }
  4549. // ggml_sqrt
  4550. static struct ggml_tensor * ggml_sqrt_impl(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. bool inplace) {
  4554. bool is_node = false;
  4555. if (!inplace && (a->grad)) {
  4556. is_node = true;
  4557. }
  4558. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4559. result->op = GGML_OP_SQRT;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src[0] = a;
  4562. return result;
  4563. }
  4564. struct ggml_tensor * ggml_sqrt(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_sqrt_impl(ctx, a, false);
  4568. }
  4569. struct ggml_tensor * ggml_sqrt_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_sqrt_impl(ctx, a, true);
  4573. }
  4574. // ggml_log
  4575. static struct ggml_tensor * ggml_log_impl(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a,
  4578. bool inplace) {
  4579. bool is_node = false;
  4580. if (!inplace && (a->grad)) {
  4581. is_node = true;
  4582. }
  4583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4584. result->op = GGML_OP_LOG;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src[0] = a;
  4587. return result;
  4588. }
  4589. struct ggml_tensor * ggml_log(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a) {
  4592. return ggml_log_impl(ctx, a, false);
  4593. }
  4594. struct ggml_tensor * ggml_log_inplace(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a) {
  4597. return ggml_log_impl(ctx, a, true);
  4598. }
  4599. // ggml_sum
  4600. struct ggml_tensor * ggml_sum(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a) {
  4603. bool is_node = false;
  4604. if (a->grad) {
  4605. is_node = true;
  4606. }
  4607. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4608. result->op = GGML_OP_SUM;
  4609. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4610. result->src[0] = a;
  4611. return result;
  4612. }
  4613. // ggml_sum_rows
  4614. struct ggml_tensor * ggml_sum_rows(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a) {
  4617. bool is_node = false;
  4618. if (a->grad) {
  4619. is_node = true;
  4620. }
  4621. int64_t ne[4] = {1,1,1,1};
  4622. for (int i=1; i<a->n_dims; ++i) {
  4623. ne[i] = a->ne[i];
  4624. }
  4625. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4626. result->op = GGML_OP_SUM_ROWS;
  4627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4628. result->src[0] = a;
  4629. return result;
  4630. }
  4631. // ggml_mean
  4632. struct ggml_tensor * ggml_mean(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a) {
  4635. bool is_node = false;
  4636. if (a->grad) {
  4637. GGML_ASSERT(false); // TODO: implement
  4638. is_node = true;
  4639. }
  4640. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4641. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4642. result->op = GGML_OP_MEAN;
  4643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4644. result->src[0] = a;
  4645. return result;
  4646. }
  4647. // ggml_argmax
  4648. struct ggml_tensor * ggml_argmax(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a) {
  4651. GGML_ASSERT(ggml_is_matrix(a));
  4652. bool is_node = false;
  4653. if (a->grad) {
  4654. GGML_ASSERT(false);
  4655. is_node = true;
  4656. }
  4657. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4658. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4659. result->op = GGML_OP_ARGMAX;
  4660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4661. result->src[0] = a;
  4662. return result;
  4663. }
  4664. // ggml_repeat
  4665. struct ggml_tensor * ggml_repeat(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. struct ggml_tensor * b) {
  4669. GGML_ASSERT(ggml_can_repeat(a, b));
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4675. result->op = GGML_OP_REPEAT;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. result->src[1] = b;
  4679. return result;
  4680. }
  4681. // ggml_repeat_back
  4682. struct ggml_tensor * ggml_repeat_back(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. struct ggml_tensor * b) {
  4686. GGML_ASSERT(ggml_can_repeat(b, a));
  4687. bool is_node = false;
  4688. if (a->grad) {
  4689. is_node = true;
  4690. }
  4691. if (ggml_are_same_shape(a, b) && !is_node) {
  4692. return a;
  4693. }
  4694. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4695. result->op = GGML_OP_REPEAT_BACK;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src[0] = a;
  4698. result->src[1] = b;
  4699. return result;
  4700. }
  4701. // ggml_concat
  4702. struct ggml_tensor * ggml_concat(
  4703. struct ggml_context* ctx,
  4704. struct ggml_tensor* a,
  4705. struct ggml_tensor* b) {
  4706. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4707. bool is_node = false;
  4708. if (a->grad || b->grad) {
  4709. is_node = true;
  4710. }
  4711. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4712. result->op = GGML_OP_CONCAT;
  4713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4714. result->src[0] = a;
  4715. result->src[1] = b;
  4716. return result;
  4717. }
  4718. // ggml_abs
  4719. struct ggml_tensor * ggml_abs(
  4720. struct ggml_context * ctx,
  4721. struct ggml_tensor * a) {
  4722. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4723. }
  4724. struct ggml_tensor * ggml_abs_inplace(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a) {
  4727. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4728. }
  4729. // ggml_sgn
  4730. struct ggml_tensor * ggml_sgn(
  4731. struct ggml_context * ctx,
  4732. struct ggml_tensor * a) {
  4733. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4734. }
  4735. struct ggml_tensor * ggml_sgn_inplace(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a) {
  4738. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4739. }
  4740. // ggml_neg
  4741. struct ggml_tensor * ggml_neg(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a) {
  4744. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4745. }
  4746. struct ggml_tensor * ggml_neg_inplace(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a) {
  4749. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4750. }
  4751. // ggml_step
  4752. struct ggml_tensor * ggml_step(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a) {
  4755. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4756. }
  4757. struct ggml_tensor * ggml_step_inplace(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a) {
  4760. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4761. }
  4762. // ggml_tanh
  4763. struct ggml_tensor * ggml_tanh(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a) {
  4766. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4767. }
  4768. struct ggml_tensor * ggml_tanh_inplace(
  4769. struct ggml_context * ctx,
  4770. struct ggml_tensor * a) {
  4771. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4772. }
  4773. // ggml_elu
  4774. struct ggml_tensor * ggml_elu(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a) {
  4777. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4778. }
  4779. struct ggml_tensor * ggml_elu_inplace(
  4780. struct ggml_context * ctx,
  4781. struct ggml_tensor * a) {
  4782. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4783. }
  4784. // ggml_relu
  4785. struct ggml_tensor * ggml_relu(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a) {
  4788. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4789. }
  4790. struct ggml_tensor * ggml_relu_inplace(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a) {
  4793. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4794. }
  4795. // ggml_gelu
  4796. struct ggml_tensor * ggml_gelu(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a) {
  4799. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4800. }
  4801. struct ggml_tensor * ggml_gelu_inplace(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a) {
  4804. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4805. }
  4806. // ggml_gelu_quick
  4807. struct ggml_tensor * ggml_gelu_quick(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a) {
  4810. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4811. }
  4812. struct ggml_tensor * ggml_gelu_quick_inplace(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a) {
  4815. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4816. }
  4817. // ggml_silu
  4818. struct ggml_tensor * ggml_silu(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a) {
  4821. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4822. }
  4823. struct ggml_tensor * ggml_silu_inplace(
  4824. struct ggml_context * ctx,
  4825. struct ggml_tensor * a) {
  4826. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4827. }
  4828. // ggml_silu_back
  4829. struct ggml_tensor * ggml_silu_back(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. struct ggml_tensor * b) {
  4833. bool is_node = false;
  4834. if (a->grad || b->grad) {
  4835. // TODO: implement backward
  4836. is_node = true;
  4837. }
  4838. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4839. result->op = GGML_OP_SILU_BACK;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src[0] = a;
  4842. result->src[1] = b;
  4843. return result;
  4844. }
  4845. // ggml_norm
  4846. static struct ggml_tensor * ggml_norm_impl(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. float eps,
  4850. bool inplace) {
  4851. bool is_node = false;
  4852. if (!inplace && (a->grad)) {
  4853. GGML_ASSERT(false); // TODO: implement backward
  4854. is_node = true;
  4855. }
  4856. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4857. ggml_set_op_params(result, &eps, sizeof(eps));
  4858. result->op = GGML_OP_NORM;
  4859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4860. result->src[0] = a;
  4861. return result;
  4862. }
  4863. struct ggml_tensor * ggml_norm(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. float eps) {
  4867. return ggml_norm_impl(ctx, a, eps, false);
  4868. }
  4869. struct ggml_tensor * ggml_norm_inplace(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. float eps) {
  4873. return ggml_norm_impl(ctx, a, eps, true);
  4874. }
  4875. // ggml_rms_norm
  4876. static struct ggml_tensor * ggml_rms_norm_impl(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. float eps,
  4880. bool inplace) {
  4881. bool is_node = false;
  4882. if (!inplace && (a->grad)) {
  4883. is_node = true;
  4884. }
  4885. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4886. ggml_set_op_params(result, &eps, sizeof(eps));
  4887. result->op = GGML_OP_RMS_NORM;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. return result;
  4891. }
  4892. struct ggml_tensor * ggml_rms_norm(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. float eps) {
  4896. return ggml_rms_norm_impl(ctx, a, eps, false);
  4897. }
  4898. struct ggml_tensor * ggml_rms_norm_inplace(
  4899. struct ggml_context * ctx,
  4900. struct ggml_tensor * a,
  4901. float eps) {
  4902. return ggml_rms_norm_impl(ctx, a, eps, true);
  4903. }
  4904. // ggml_rms_norm_back
  4905. struct ggml_tensor * ggml_rms_norm_back(
  4906. struct ggml_context * ctx,
  4907. struct ggml_tensor * a,
  4908. struct ggml_tensor * b,
  4909. float eps) {
  4910. bool is_node = false;
  4911. if (a->grad) {
  4912. // TODO: implement backward
  4913. is_node = true;
  4914. }
  4915. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4916. ggml_set_op_params(result, &eps, sizeof(eps));
  4917. result->op = GGML_OP_RMS_NORM_BACK;
  4918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4919. result->src[0] = a;
  4920. result->src[1] = b;
  4921. return result;
  4922. }
  4923. // ggml_group_norm
  4924. static struct ggml_tensor * ggml_group_norm_impl(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. int n_groups,
  4928. bool inplace) {
  4929. bool is_node = false;
  4930. if (!inplace && (a->grad)) {
  4931. GGML_ASSERT(false); // TODO: implement backward
  4932. is_node = true;
  4933. }
  4934. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4935. result->op = GGML_OP_GROUP_NORM;
  4936. result->op_params[0] = n_groups;
  4937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4938. result->src[0] = a;
  4939. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4940. return result;
  4941. }
  4942. struct ggml_tensor * ggml_group_norm(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a,
  4945. int n_groups) {
  4946. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4947. }
  4948. struct ggml_tensor * ggml_group_norm_inplace(
  4949. struct ggml_context * ctx,
  4950. struct ggml_tensor * a,
  4951. int n_groups) {
  4952. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4953. }
  4954. // ggml_mul_mat
  4955. struct ggml_tensor * ggml_mul_mat(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. struct ggml_tensor * b) {
  4959. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4960. GGML_ASSERT(!ggml_is_transposed(a));
  4961. bool is_node = false;
  4962. if (a->grad || b->grad) {
  4963. is_node = true;
  4964. }
  4965. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4966. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4967. result->op = GGML_OP_MUL_MAT;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src[0] = a;
  4970. result->src[1] = b;
  4971. return result;
  4972. }
  4973. // ggml_out_prod
  4974. struct ggml_tensor * ggml_out_prod(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. struct ggml_tensor * b) {
  4978. GGML_ASSERT(ggml_can_out_prod(a, b));
  4979. GGML_ASSERT(!ggml_is_transposed(a));
  4980. bool is_node = false;
  4981. if (a->grad || b->grad) {
  4982. is_node = true;
  4983. }
  4984. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4985. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4986. result->op = GGML_OP_OUT_PROD;
  4987. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4988. result->src[0] = a;
  4989. result->src[1] = b;
  4990. return result;
  4991. }
  4992. // ggml_scale
  4993. static struct ggml_tensor * ggml_scale_impl(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. bool inplace) {
  4998. GGML_ASSERT(ggml_is_scalar(b));
  4999. GGML_ASSERT(ggml_is_padded_1d(a));
  5000. bool is_node = false;
  5001. if (a->grad || b->grad) {
  5002. is_node = true;
  5003. }
  5004. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5005. result->op = GGML_OP_SCALE;
  5006. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5007. result->src[0] = a;
  5008. result->src[1] = b;
  5009. return result;
  5010. }
  5011. struct ggml_tensor * ggml_scale(
  5012. struct ggml_context * ctx,
  5013. struct ggml_tensor * a,
  5014. struct ggml_tensor * b) {
  5015. return ggml_scale_impl(ctx, a, b, false);
  5016. }
  5017. struct ggml_tensor * ggml_scale_inplace(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. struct ggml_tensor * b) {
  5021. return ggml_scale_impl(ctx, a, b, true);
  5022. }
  5023. // ggml_set
  5024. static struct ggml_tensor * ggml_set_impl(
  5025. struct ggml_context * ctx,
  5026. struct ggml_tensor * a,
  5027. struct ggml_tensor * b,
  5028. size_t nb1,
  5029. size_t nb2,
  5030. size_t nb3,
  5031. size_t offset,
  5032. bool inplace) {
  5033. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5034. bool is_node = false;
  5035. if (a->grad || b->grad) {
  5036. is_node = true;
  5037. }
  5038. // make a view of the destination
  5039. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5040. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5041. ggml_set_op_params(result, params, sizeof(params));
  5042. result->op = GGML_OP_SET;
  5043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5044. result->src[0] = a;
  5045. result->src[1] = b;
  5046. return result;
  5047. }
  5048. struct ggml_tensor * ggml_set(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b,
  5052. size_t nb1,
  5053. size_t nb2,
  5054. size_t nb3,
  5055. size_t offset) {
  5056. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5057. }
  5058. struct ggml_tensor * ggml_set_inplace(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. size_t nb1,
  5063. size_t nb2,
  5064. size_t nb3,
  5065. size_t offset) {
  5066. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5067. }
  5068. struct ggml_tensor * ggml_set_1d(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. struct ggml_tensor * b,
  5072. size_t offset) {
  5073. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5074. }
  5075. struct ggml_tensor * ggml_set_1d_inplace(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. struct ggml_tensor * b,
  5079. size_t offset) {
  5080. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5081. }
  5082. struct ggml_tensor * ggml_set_2d(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. struct ggml_tensor * b,
  5086. size_t nb1,
  5087. size_t offset) {
  5088. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5089. }
  5090. struct ggml_tensor * ggml_set_2d_inplace(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. struct ggml_tensor * b,
  5094. size_t nb1,
  5095. size_t offset) {
  5096. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5097. }
  5098. // ggml_cpy
  5099. static struct ggml_tensor * ggml_cpy_impl(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. struct ggml_tensor * b,
  5103. bool inplace) {
  5104. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5105. bool is_node = false;
  5106. if (!inplace && (a->grad || b->grad)) {
  5107. is_node = true;
  5108. }
  5109. // make a view of the destination
  5110. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5111. if (strlen(b->name) > 0) {
  5112. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5113. } else {
  5114. ggml_format_name(result, "%s (copy)", a->name);
  5115. }
  5116. result->op = GGML_OP_CPY;
  5117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5118. result->src[0] = a;
  5119. result->src[1] = b;
  5120. return result;
  5121. }
  5122. struct ggml_tensor * ggml_cpy(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * b) {
  5126. return ggml_cpy_impl(ctx, a, b, false);
  5127. }
  5128. struct ggml_tensor * ggml_cpy_inplace(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. struct ggml_tensor * b) {
  5132. return ggml_cpy_impl(ctx, a, b, true);
  5133. }
  5134. // ggml_cont
  5135. static struct ggml_tensor * ggml_cont_impl(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. bool inplace) {
  5139. bool is_node = false;
  5140. if (!inplace && a->grad) {
  5141. is_node = true;
  5142. }
  5143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5144. ggml_format_name(result, "%s (cont)", a->name);
  5145. result->op = GGML_OP_CONT;
  5146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5147. result->src[0] = a;
  5148. return result;
  5149. }
  5150. struct ggml_tensor * ggml_cont(
  5151. struct ggml_context * ctx,
  5152. struct ggml_tensor * a) {
  5153. return ggml_cont_impl(ctx, a, false);
  5154. }
  5155. struct ggml_tensor * ggml_cont_inplace(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a) {
  5158. return ggml_cont_impl(ctx, a, true);
  5159. }
  5160. // ggml_reshape
  5161. struct ggml_tensor * ggml_reshape(
  5162. struct ggml_context * ctx,
  5163. struct ggml_tensor * a,
  5164. struct ggml_tensor * b) {
  5165. GGML_ASSERT(ggml_is_contiguous(a));
  5166. GGML_ASSERT(ggml_is_contiguous(b));
  5167. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5168. bool is_node = false;
  5169. if (a->grad) {
  5170. is_node = true;
  5171. }
  5172. if (b->grad) {
  5173. // gradient propagation is not supported
  5174. //GGML_ASSERT(false);
  5175. }
  5176. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5177. ggml_format_name(result, "%s (reshaped)", a->name);
  5178. result->op = GGML_OP_RESHAPE;
  5179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5180. result->src[0] = a;
  5181. return result;
  5182. }
  5183. struct ggml_tensor * ggml_reshape_1d(
  5184. struct ggml_context * ctx,
  5185. struct ggml_tensor * a,
  5186. int64_t ne0) {
  5187. GGML_ASSERT(ggml_is_contiguous(a));
  5188. GGML_ASSERT(ggml_nelements(a) == ne0);
  5189. bool is_node = false;
  5190. if (a->grad) {
  5191. is_node = true;
  5192. }
  5193. const int64_t ne[1] = { ne0 };
  5194. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5195. ggml_format_name(result, "%s (reshaped)", a->name);
  5196. result->op = GGML_OP_RESHAPE;
  5197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5198. result->src[0] = a;
  5199. return result;
  5200. }
  5201. struct ggml_tensor * ggml_reshape_2d(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. int64_t ne0,
  5205. int64_t ne1) {
  5206. GGML_ASSERT(ggml_is_contiguous(a));
  5207. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5208. bool is_node = false;
  5209. if (a->grad) {
  5210. is_node = true;
  5211. }
  5212. const int64_t ne[2] = { ne0, ne1 };
  5213. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5214. ggml_format_name(result, "%s (reshaped)", a->name);
  5215. result->op = GGML_OP_RESHAPE;
  5216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5217. result->src[0] = a;
  5218. return result;
  5219. }
  5220. struct ggml_tensor * ggml_reshape_3d(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. int64_t ne0,
  5224. int64_t ne1,
  5225. int64_t ne2) {
  5226. GGML_ASSERT(ggml_is_contiguous(a));
  5227. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5228. bool is_node = false;
  5229. if (a->grad) {
  5230. is_node = true;
  5231. }
  5232. const int64_t ne[3] = { ne0, ne1, ne2 };
  5233. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5234. ggml_format_name(result, "%s (reshaped)", a->name);
  5235. result->op = GGML_OP_RESHAPE;
  5236. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5237. result->src[0] = a;
  5238. return result;
  5239. }
  5240. struct ggml_tensor * ggml_reshape_4d(
  5241. struct ggml_context * ctx,
  5242. struct ggml_tensor * a,
  5243. int64_t ne0,
  5244. int64_t ne1,
  5245. int64_t ne2,
  5246. int64_t ne3) {
  5247. GGML_ASSERT(ggml_is_contiguous(a));
  5248. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5249. bool is_node = false;
  5250. if (a->grad) {
  5251. is_node = true;
  5252. }
  5253. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5254. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5255. ggml_format_name(result, "%s (reshaped)", a->name);
  5256. result->op = GGML_OP_RESHAPE;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src[0] = a;
  5259. return result;
  5260. }
  5261. static struct ggml_tensor * ggml_view_impl(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. int n_dims,
  5265. const int64_t * ne,
  5266. size_t offset) {
  5267. bool is_node = false;
  5268. if (a->grad) {
  5269. is_node = true;
  5270. }
  5271. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5272. ggml_format_name(result, "%s (view)", a->name);
  5273. ggml_set_op_params(result, &offset, sizeof(offset));
  5274. result->op = GGML_OP_VIEW;
  5275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5276. result->src[0] = a;
  5277. return result;
  5278. }
  5279. // ggml_view_1d
  5280. struct ggml_tensor * ggml_view_1d(
  5281. struct ggml_context * ctx,
  5282. struct ggml_tensor * a,
  5283. int64_t ne0,
  5284. size_t offset) {
  5285. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5286. return result;
  5287. }
  5288. // ggml_view_2d
  5289. struct ggml_tensor * ggml_view_2d(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. int64_t ne0,
  5293. int64_t ne1,
  5294. size_t nb1,
  5295. size_t offset) {
  5296. const int64_t ne[2] = { ne0, ne1 };
  5297. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5298. result->nb[1] = nb1;
  5299. result->nb[2] = result->nb[1]*ne1;
  5300. result->nb[3] = result->nb[2];
  5301. return result;
  5302. }
  5303. // ggml_view_3d
  5304. struct ggml_tensor * ggml_view_3d(
  5305. struct ggml_context * ctx,
  5306. struct ggml_tensor * a,
  5307. int64_t ne0,
  5308. int64_t ne1,
  5309. int64_t ne2,
  5310. size_t nb1,
  5311. size_t nb2,
  5312. size_t offset) {
  5313. const int64_t ne[3] = { ne0, ne1, ne2 };
  5314. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5315. result->nb[1] = nb1;
  5316. result->nb[2] = nb2;
  5317. result->nb[3] = result->nb[2]*ne2;
  5318. return result;
  5319. }
  5320. // ggml_view_4d
  5321. struct ggml_tensor * ggml_view_4d(
  5322. struct ggml_context * ctx,
  5323. struct ggml_tensor * a,
  5324. int64_t ne0,
  5325. int64_t ne1,
  5326. int64_t ne2,
  5327. int64_t ne3,
  5328. size_t nb1,
  5329. size_t nb2,
  5330. size_t nb3,
  5331. size_t offset) {
  5332. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5333. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5334. result->nb[1] = nb1;
  5335. result->nb[2] = nb2;
  5336. result->nb[3] = nb3;
  5337. return result;
  5338. }
  5339. // ggml_permute
  5340. struct ggml_tensor * ggml_permute(
  5341. struct ggml_context * ctx,
  5342. struct ggml_tensor * a,
  5343. int axis0,
  5344. int axis1,
  5345. int axis2,
  5346. int axis3) {
  5347. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5348. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5349. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5350. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5351. GGML_ASSERT(axis0 != axis1);
  5352. GGML_ASSERT(axis0 != axis2);
  5353. GGML_ASSERT(axis0 != axis3);
  5354. GGML_ASSERT(axis1 != axis2);
  5355. GGML_ASSERT(axis1 != axis3);
  5356. GGML_ASSERT(axis2 != axis3);
  5357. bool is_node = false;
  5358. if (a->grad) {
  5359. is_node = true;
  5360. }
  5361. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5362. ggml_format_name(result, "%s (permuted)", a->name);
  5363. int ne[GGML_MAX_DIMS];
  5364. int nb[GGML_MAX_DIMS];
  5365. ne[axis0] = a->ne[0];
  5366. ne[axis1] = a->ne[1];
  5367. ne[axis2] = a->ne[2];
  5368. ne[axis3] = a->ne[3];
  5369. nb[axis0] = a->nb[0];
  5370. nb[axis1] = a->nb[1];
  5371. nb[axis2] = a->nb[2];
  5372. nb[axis3] = a->nb[3];
  5373. result->ne[0] = ne[0];
  5374. result->ne[1] = ne[1];
  5375. result->ne[2] = ne[2];
  5376. result->ne[3] = ne[3];
  5377. result->nb[0] = nb[0];
  5378. result->nb[1] = nb[1];
  5379. result->nb[2] = nb[2];
  5380. result->nb[3] = nb[3];
  5381. result->op = GGML_OP_PERMUTE;
  5382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5383. result->src[0] = a;
  5384. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5385. ggml_set_op_params(result, params, sizeof(params));
  5386. return result;
  5387. }
  5388. // ggml_transpose
  5389. struct ggml_tensor * ggml_transpose(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a) {
  5392. bool is_node = false;
  5393. if (a->grad) {
  5394. is_node = true;
  5395. }
  5396. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5397. ggml_format_name(result, "%s (transposed)", a->name);
  5398. result->ne[0] = a->ne[1];
  5399. result->ne[1] = a->ne[0];
  5400. result->nb[0] = a->nb[1];
  5401. result->nb[1] = a->nb[0];
  5402. result->op = GGML_OP_TRANSPOSE;
  5403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5404. result->src[0] = a;
  5405. return result;
  5406. }
  5407. // ggml_get_rows
  5408. struct ggml_tensor * ggml_get_rows(
  5409. struct ggml_context * ctx,
  5410. struct ggml_tensor * a,
  5411. struct ggml_tensor * b) {
  5412. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5413. bool is_node = false;
  5414. if (a->grad || b->grad) {
  5415. is_node = true;
  5416. }
  5417. // TODO: implement non F32 return
  5418. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5419. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5420. result->op = GGML_OP_GET_ROWS;
  5421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5422. result->src[0] = a;
  5423. result->src[1] = b;
  5424. return result;
  5425. }
  5426. // ggml_get_rows_back
  5427. struct ggml_tensor * ggml_get_rows_back(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a,
  5430. struct ggml_tensor * b,
  5431. struct ggml_tensor * c) {
  5432. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5433. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5434. bool is_node = false;
  5435. if (a->grad || b->grad) {
  5436. is_node = true;
  5437. }
  5438. // TODO: implement non F32 return
  5439. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5440. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5441. result->op = GGML_OP_GET_ROWS_BACK;
  5442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5443. result->src[0] = a;
  5444. result->src[1] = b;
  5445. result->src[2] = c;
  5446. return result;
  5447. }
  5448. // ggml_diag
  5449. struct ggml_tensor * ggml_diag(
  5450. struct ggml_context * ctx,
  5451. struct ggml_tensor * a) {
  5452. GGML_ASSERT(a->ne[1] == 1);
  5453. bool is_node = false;
  5454. if (a->grad) {
  5455. is_node = true;
  5456. }
  5457. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5458. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5459. result->op = GGML_OP_DIAG;
  5460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5461. result->src[0] = a;
  5462. return result;
  5463. }
  5464. // ggml_diag_mask_inf
  5465. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. int n_past,
  5469. bool inplace) {
  5470. bool is_node = false;
  5471. if (a->grad) {
  5472. is_node = true;
  5473. }
  5474. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5475. int32_t params[] = { n_past };
  5476. ggml_set_op_params(result, params, sizeof(params));
  5477. result->op = GGML_OP_DIAG_MASK_INF;
  5478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5479. result->src[0] = a;
  5480. return result;
  5481. }
  5482. struct ggml_tensor * ggml_diag_mask_inf(
  5483. struct ggml_context * ctx,
  5484. struct ggml_tensor * a,
  5485. int n_past) {
  5486. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5487. }
  5488. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5489. struct ggml_context * ctx,
  5490. struct ggml_tensor * a,
  5491. int n_past) {
  5492. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5493. }
  5494. // ggml_diag_mask_zero
  5495. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5496. struct ggml_context * ctx,
  5497. struct ggml_tensor * a,
  5498. int n_past,
  5499. bool inplace) {
  5500. bool is_node = false;
  5501. if (a->grad) {
  5502. is_node = true;
  5503. }
  5504. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5505. int32_t params[] = { n_past };
  5506. ggml_set_op_params(result, params, sizeof(params));
  5507. result->op = GGML_OP_DIAG_MASK_ZERO;
  5508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5509. result->src[0] = a;
  5510. return result;
  5511. }
  5512. struct ggml_tensor * ggml_diag_mask_zero(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. int n_past) {
  5516. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5517. }
  5518. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5519. struct ggml_context * ctx,
  5520. struct ggml_tensor * a,
  5521. int n_past) {
  5522. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5523. }
  5524. // ggml_soft_max
  5525. static struct ggml_tensor * ggml_soft_max_impl(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. bool inplace) {
  5529. bool is_node = false;
  5530. if (a->grad) {
  5531. is_node = true;
  5532. }
  5533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5534. result->op = GGML_OP_SOFT_MAX;
  5535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5536. result->src[0] = a;
  5537. return result;
  5538. }
  5539. struct ggml_tensor * ggml_soft_max(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a) {
  5542. return ggml_soft_max_impl(ctx, a, false);
  5543. }
  5544. struct ggml_tensor * ggml_soft_max_inplace(
  5545. struct ggml_context * ctx,
  5546. struct ggml_tensor * a) {
  5547. return ggml_soft_max_impl(ctx, a, true);
  5548. }
  5549. // ggml_soft_max_back
  5550. static struct ggml_tensor * ggml_soft_max_back_impl(
  5551. struct ggml_context * ctx,
  5552. struct ggml_tensor * a,
  5553. struct ggml_tensor * b,
  5554. bool inplace) {
  5555. bool is_node = false;
  5556. if (a->grad || b->grad) {
  5557. is_node = true; // TODO : implement backward pass
  5558. }
  5559. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5560. result->op = GGML_OP_SOFT_MAX_BACK;
  5561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5562. result->src[0] = a;
  5563. result->src[1] = b;
  5564. return result;
  5565. }
  5566. struct ggml_tensor * ggml_soft_max_back(
  5567. struct ggml_context * ctx,
  5568. struct ggml_tensor * a,
  5569. struct ggml_tensor * b) {
  5570. return ggml_soft_max_back_impl(ctx, a, b, false);
  5571. }
  5572. struct ggml_tensor * ggml_soft_max_back_inplace(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. struct ggml_tensor * b) {
  5576. return ggml_soft_max_back_impl(ctx, a, b, true);
  5577. }
  5578. // ggml_rope
  5579. static struct ggml_tensor * ggml_rope_impl(
  5580. struct ggml_context * ctx,
  5581. struct ggml_tensor * a,
  5582. int n_past,
  5583. int n_dims,
  5584. int mode,
  5585. int n_ctx,
  5586. float freq_base,
  5587. float freq_scale,
  5588. float xpos_base,
  5589. bool xpos_down,
  5590. bool inplace) {
  5591. GGML_ASSERT(n_past >= 0);
  5592. bool is_node = false;
  5593. if (a->grad) {
  5594. is_node = true;
  5595. }
  5596. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5597. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5598. memcpy(params + 4, &freq_base, sizeof(float));
  5599. memcpy(params + 5, &freq_scale, sizeof(float));
  5600. memcpy(params + 6, &xpos_base, sizeof(float));
  5601. memcpy(params + 7, &xpos_down, sizeof(bool));
  5602. ggml_set_op_params(result, params, sizeof(params));
  5603. result->op = GGML_OP_ROPE;
  5604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5605. result->src[0] = a;
  5606. return result;
  5607. }
  5608. struct ggml_tensor * ggml_rope(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. int n_past,
  5612. int n_dims,
  5613. int mode,
  5614. int n_ctx) {
  5615. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5616. }
  5617. struct ggml_tensor * ggml_rope_inplace(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. int n_past,
  5621. int n_dims,
  5622. int mode,
  5623. int n_ctx) {
  5624. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5625. }
  5626. struct ggml_tensor * ggml_rope_custom(
  5627. struct ggml_context * ctx,
  5628. struct ggml_tensor * a,
  5629. int n_past,
  5630. int n_dims,
  5631. int mode,
  5632. int n_ctx,
  5633. float freq_base,
  5634. float freq_scale) {
  5635. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5636. }
  5637. struct ggml_tensor * ggml_rope_custom_inplace(
  5638. struct ggml_context * ctx,
  5639. struct ggml_tensor * a,
  5640. int n_past,
  5641. int n_dims,
  5642. int mode,
  5643. int n_ctx,
  5644. float freq_base,
  5645. float freq_scale) {
  5646. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5647. }
  5648. struct ggml_tensor * ggml_rope_xpos_inplace(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. int n_past,
  5652. int n_dims,
  5653. float base,
  5654. bool down) {
  5655. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5656. }
  5657. // ggml_rope_back
  5658. struct ggml_tensor * ggml_rope_back(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. int n_past,
  5662. int n_dims,
  5663. int mode,
  5664. int n_ctx,
  5665. float freq_base,
  5666. float freq_scale,
  5667. float xpos_base,
  5668. bool xpos_down) {
  5669. GGML_ASSERT(n_past >= 0);
  5670. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5671. bool is_node = false;
  5672. if (a->grad) {
  5673. is_node = false; // TODO: implement backward
  5674. }
  5675. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5676. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5677. memcpy(params + 4, &freq_base, sizeof(float));
  5678. memcpy(params + 5, &freq_scale, sizeof(float));
  5679. memcpy(params + 6, &xpos_base, sizeof(float));
  5680. memcpy(params + 7, &xpos_down, sizeof(bool));
  5681. ggml_set_op_params(result, params, sizeof(params));
  5682. result->op = GGML_OP_ROPE_BACK;
  5683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5684. result->src[0] = a;
  5685. return result;
  5686. }
  5687. // ggml_alibi
  5688. struct ggml_tensor * ggml_alibi(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. int n_past,
  5692. int n_head,
  5693. float bias_max) {
  5694. GGML_ASSERT(n_past >= 0);
  5695. bool is_node = false;
  5696. if (a->grad) {
  5697. GGML_ASSERT(false); // TODO: implement backward
  5698. is_node = true;
  5699. }
  5700. // TODO: when implement backward, fix this:
  5701. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5702. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5703. int32_t op_params[3] = { n_past, n_head };
  5704. memcpy(op_params + 2, &bias_max, sizeof(float));
  5705. ggml_set_op_params(result, op_params, sizeof(op_params));
  5706. result->op = GGML_OP_ALIBI;
  5707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5708. result->src[0] = a;
  5709. return result;
  5710. }
  5711. // ggml_clamp
  5712. struct ggml_tensor * ggml_clamp(
  5713. struct ggml_context * ctx,
  5714. struct ggml_tensor * a,
  5715. float min,
  5716. float max) {
  5717. bool is_node = false;
  5718. if (a->grad) {
  5719. GGML_ASSERT(false); // TODO: implement backward
  5720. is_node = true;
  5721. }
  5722. // TODO: when implement backward, fix this:
  5723. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5724. float params[] = { min, max };
  5725. ggml_set_op_params(result, params, sizeof(params));
  5726. result->op = GGML_OP_CLAMP;
  5727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5728. result->src[0] = a;
  5729. return result;
  5730. }
  5731. // ggml_conv_1d
  5732. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5733. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5734. }
  5735. GGML_API struct ggml_tensor * ggml_conv_1d(
  5736. struct ggml_context * ctx,
  5737. struct ggml_tensor * a,
  5738. struct ggml_tensor * b,
  5739. int s0,
  5740. int p0,
  5741. int d0) {
  5742. GGML_ASSERT(ggml_is_matrix(b));
  5743. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5744. bool is_node = false;
  5745. if (a->grad || b->grad) {
  5746. GGML_ASSERT(false); // TODO: implement backward
  5747. is_node = true;
  5748. }
  5749. const int64_t ne[4] = {
  5750. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5751. a->ne[2], 1, 1,
  5752. };
  5753. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5754. int32_t params[] = { s0, p0, d0 };
  5755. ggml_set_op_params(result, params, sizeof(params));
  5756. result->op = GGML_OP_CONV_1D;
  5757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5758. result->src[0] = a;
  5759. result->src[1] = b;
  5760. return result;
  5761. }
  5762. // ggml_conv_1d_ph
  5763. struct ggml_tensor* ggml_conv_1d_ph(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. struct ggml_tensor * b,
  5767. int s,
  5768. int d) {
  5769. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5770. }
  5771. // ggml_conv_2d
  5772. struct ggml_tensor * ggml_conv_2d(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * a,
  5775. struct ggml_tensor * b,
  5776. int s0,
  5777. int s1,
  5778. int p0,
  5779. int p1,
  5780. int d0,
  5781. int d1) {
  5782. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5783. bool is_node = false;
  5784. if (a->grad || b->grad) {
  5785. GGML_ASSERT(false); // TODO: implement backward
  5786. is_node = true;
  5787. }
  5788. const int64_t ne[4] = {
  5789. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5790. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5791. a->ne[3], b->ne[3],
  5792. };
  5793. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5794. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5795. ggml_set_op_params(result, params, sizeof(params));
  5796. result->op = GGML_OP_CONV_2D;
  5797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5798. result->src[0] = a;
  5799. result->src[1] = b;
  5800. return result;
  5801. }
  5802. // ggml_conv_2d_sk_p0
  5803. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5804. struct ggml_context * ctx,
  5805. struct ggml_tensor * a,
  5806. struct ggml_tensor * b) {
  5807. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5808. }
  5809. // ggml_conv_2d_s1_ph
  5810. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. struct ggml_tensor * b) {
  5814. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5815. }
  5816. // ggml_conv_transpose_2d_p0
  5817. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5818. return (ins - 1) * s - 2 * p + ks;
  5819. }
  5820. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5821. struct ggml_context * ctx,
  5822. struct ggml_tensor * a,
  5823. struct ggml_tensor * b,
  5824. int stride) {
  5825. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5826. bool is_node = false;
  5827. if (a->grad || b->grad) {
  5828. GGML_ASSERT(false); // TODO: implement backward
  5829. is_node = true;
  5830. }
  5831. const int64_t ne[4] = {
  5832. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5833. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5834. a->ne[2], b->ne[3],
  5835. };
  5836. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5837. ggml_set_op_params_i32(result, 0, stride);
  5838. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5839. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5840. result->src[0] = a;
  5841. result->src[1] = b;
  5842. return result;
  5843. }
  5844. // ggml_pool_*
  5845. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5846. return (ins + 2 * p - ks) / s + 1;
  5847. }
  5848. // ggml_pool_1d
  5849. struct ggml_tensor * ggml_pool_1d(
  5850. struct ggml_context * ctx,
  5851. struct ggml_tensor * a,
  5852. enum ggml_op_pool op,
  5853. int k0,
  5854. int s0,
  5855. int p0) {
  5856. bool is_node = false;
  5857. if (a->grad) {
  5858. GGML_ASSERT(false); // TODO: implement backward
  5859. is_node = true;
  5860. }
  5861. const int64_t ne[3] = {
  5862. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5863. a->ne[1],
  5864. };
  5865. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5866. int32_t params[] = { op, k0, s0, p0 };
  5867. ggml_set_op_params(result, params, sizeof(params));
  5868. result->op = GGML_OP_POOL_1D;
  5869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5870. result->src[0] = a;
  5871. return result;
  5872. }
  5873. // ggml_pool_2d
  5874. struct ggml_tensor * ggml_pool_2d(
  5875. struct ggml_context * ctx,
  5876. struct ggml_tensor * a,
  5877. enum ggml_op_pool op,
  5878. int k0,
  5879. int k1,
  5880. int s0,
  5881. int s1,
  5882. int p0,
  5883. int p1) {
  5884. bool is_node = false;
  5885. if (a->grad) {
  5886. GGML_ASSERT(false); // TODO: implement backward
  5887. is_node = true;
  5888. }
  5889. const int64_t ne[3] = {
  5890. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5891. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5892. a->ne[2],
  5893. };
  5894. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5895. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5896. ggml_set_op_params(result, params, sizeof(params));
  5897. result->op = GGML_OP_POOL_2D;
  5898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5899. result->src[0] = a;
  5900. return result;
  5901. }
  5902. // ggml_upscale
  5903. static struct ggml_tensor * ggml_upscale_impl(
  5904. struct ggml_context * ctx,
  5905. struct ggml_tensor * a,
  5906. int scale_factor) {
  5907. bool is_node = false;
  5908. if (a->grad) {
  5909. GGML_ASSERT(false); // TODO: implement backward
  5910. is_node = true;
  5911. }
  5912. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5913. a->ne[0] * scale_factor,
  5914. a->ne[1] * scale_factor,
  5915. a->ne[2], a->ne[3]);
  5916. result->op = GGML_OP_UPSCALE;
  5917. result->op_params[0] = scale_factor;
  5918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5919. result->src[0] = a;
  5920. result->src[1] = NULL;
  5921. return result;
  5922. }
  5923. struct ggml_tensor * ggml_upscale(
  5924. struct ggml_context * ctx,
  5925. struct ggml_tensor * a,
  5926. int scale_factor) {
  5927. return ggml_upscale_impl(ctx, a, scale_factor);
  5928. }
  5929. // ggml_flash_attn
  5930. struct ggml_tensor * ggml_flash_attn(
  5931. struct ggml_context * ctx,
  5932. struct ggml_tensor * q,
  5933. struct ggml_tensor * k,
  5934. struct ggml_tensor * v,
  5935. bool masked) {
  5936. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5937. // TODO: check if vT can be multiplied by (k*qT)
  5938. bool is_node = false;
  5939. if (q->grad || k->grad || v->grad) {
  5940. is_node = true;
  5941. }
  5942. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5944. int32_t t = masked ? 1 : 0;
  5945. ggml_set_op_params(result, &t, sizeof(t));
  5946. result->op = GGML_OP_FLASH_ATTN;
  5947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5948. result->src[0] = q;
  5949. result->src[1] = k;
  5950. result->src[2] = v;
  5951. return result;
  5952. }
  5953. // ggml_flash_ff
  5954. struct ggml_tensor * ggml_flash_ff(
  5955. struct ggml_context * ctx,
  5956. struct ggml_tensor * a,
  5957. struct ggml_tensor * b0,
  5958. struct ggml_tensor * b1,
  5959. struct ggml_tensor * c0,
  5960. struct ggml_tensor * c1) {
  5961. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5962. // TODO: more checks
  5963. bool is_node = false;
  5964. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5965. is_node = true;
  5966. }
  5967. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5968. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5969. result->op = GGML_OP_FLASH_FF;
  5970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5971. result->src[0] = a;
  5972. result->src[1] = b0;
  5973. result->src[2] = b1;
  5974. result->src[3] = c0;
  5975. result->src[4] = c1;
  5976. return result;
  5977. }
  5978. // ggml_flash_attn_back
  5979. struct ggml_tensor * ggml_flash_attn_back(
  5980. struct ggml_context * ctx,
  5981. struct ggml_tensor * q,
  5982. struct ggml_tensor * k,
  5983. struct ggml_tensor * v,
  5984. struct ggml_tensor * d,
  5985. bool masked) {
  5986. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5987. // TODO: check if vT can be multiplied by (k*qT)
  5988. // d shape [D,N,ne2,ne3]
  5989. // q shape [D,N,ne2,ne3]
  5990. // k shape [D,M,ne2,ne3]
  5991. // v shape [M,D,ne2,ne3]
  5992. const int64_t D = q->ne[0];
  5993. const int64_t N = q->ne[1];
  5994. const int64_t M = k->ne[1];
  5995. const int64_t ne2 = q->ne[2];
  5996. const int64_t ne3 = q->ne[3];
  5997. GGML_ASSERT(k->ne[0] == D);
  5998. GGML_ASSERT(v->ne[0] == M);
  5999. GGML_ASSERT(v->ne[1] == D);
  6000. GGML_ASSERT(d->ne[0] == D);
  6001. GGML_ASSERT(d->ne[1] == N);
  6002. GGML_ASSERT(k->ne[2] == ne2);
  6003. GGML_ASSERT(k->ne[3] == ne3);
  6004. GGML_ASSERT(v->ne[2] == ne2);
  6005. GGML_ASSERT(v->ne[3] == ne3);
  6006. GGML_ASSERT(d->ne[2] == ne2);
  6007. GGML_ASSERT(d->ne[3] == ne3);
  6008. bool is_node = false;
  6009. if (q->grad || k->grad || v->grad) {
  6010. // when using this operation (in backwards pass) these grads are set.
  6011. // we don't want to create (big) grad of our result, so is_node is false.
  6012. is_node = false;
  6013. }
  6014. // store gradients of q, k and v as continuous tensors concatenated in result.
  6015. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  6016. // gradq->data = result->data
  6017. // gradk->data = result->data + nb0*D*N*ne2*ne3
  6018. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  6019. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6020. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  6021. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6022. int32_t masked_i = masked ? 1 : 0;
  6023. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6024. result->op = GGML_OP_FLASH_ATTN_BACK;
  6025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6026. result->src[0] = q;
  6027. result->src[1] = k;
  6028. result->src[2] = v;
  6029. result->src[3] = d;
  6030. return result;
  6031. }
  6032. // ggml_win_part
  6033. struct ggml_tensor * ggml_win_part(
  6034. struct ggml_context * ctx,
  6035. struct ggml_tensor * a,
  6036. int w) {
  6037. GGML_ASSERT(a->ne[3] == 1);
  6038. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6039. bool is_node = false;
  6040. if (a->grad) {
  6041. GGML_ASSERT(false); // TODO: implement backward
  6042. is_node = true;
  6043. }
  6044. // padding
  6045. const int px = (w - a->ne[1]%w)%w;
  6046. const int py = (w - a->ne[2]%w)%w;
  6047. const int npx = (px + a->ne[1])/w;
  6048. const int npy = (py + a->ne[2])/w;
  6049. const int np = npx*npy;
  6050. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6051. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6052. int32_t params[] = { npx, npy, w };
  6053. ggml_set_op_params(result, params, sizeof(params));
  6054. result->op = GGML_OP_WIN_PART;
  6055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6056. result->src[0] = a;
  6057. return result;
  6058. }
  6059. // ggml_win_unpart
  6060. struct ggml_tensor * ggml_win_unpart(
  6061. struct ggml_context * ctx,
  6062. struct ggml_tensor * a,
  6063. int w0,
  6064. int h0,
  6065. int w) {
  6066. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6067. bool is_node = false;
  6068. if (a->grad) {
  6069. GGML_ASSERT(false); // TODO: implement backward
  6070. is_node = true;
  6071. }
  6072. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6073. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6074. int32_t params[] = { w };
  6075. ggml_set_op_params(result, params, sizeof(params));
  6076. result->op = GGML_OP_WIN_UNPART;
  6077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6078. result->src[0] = a;
  6079. return result;
  6080. }
  6081. // ggml_get_rel_pos
  6082. struct ggml_tensor * ggml_get_rel_pos(
  6083. struct ggml_context * ctx,
  6084. struct ggml_tensor * a,
  6085. int qh,
  6086. int kh) {
  6087. GGML_ASSERT(qh == kh);
  6088. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6089. bool is_node = false;
  6090. if (a->grad) {
  6091. GGML_ASSERT(false); // TODO: implement backward
  6092. is_node = true;
  6093. }
  6094. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6095. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6096. result->op = GGML_OP_GET_REL_POS;
  6097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6098. result->src[0] = a;
  6099. result->src[1] = NULL;
  6100. return result;
  6101. }
  6102. // ggml_add_rel_pos
  6103. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6104. struct ggml_context * ctx,
  6105. struct ggml_tensor * a,
  6106. struct ggml_tensor * pw,
  6107. struct ggml_tensor * ph,
  6108. bool inplace) {
  6109. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6110. GGML_ASSERT(ggml_is_contiguous(a));
  6111. GGML_ASSERT(ggml_is_contiguous(pw));
  6112. GGML_ASSERT(ggml_is_contiguous(ph));
  6113. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6114. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6115. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6116. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6117. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6118. bool is_node = false;
  6119. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6120. is_node = true;
  6121. }
  6122. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6123. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6124. result->op = GGML_OP_ADD_REL_POS;
  6125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6126. result->src[0] = a;
  6127. result->src[1] = pw;
  6128. result->src[2] = ph;
  6129. return result;
  6130. }
  6131. struct ggml_tensor * ggml_add_rel_pos(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. struct ggml_tensor * pw,
  6135. struct ggml_tensor * ph) {
  6136. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6137. }
  6138. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6139. struct ggml_context * ctx,
  6140. struct ggml_tensor * a,
  6141. struct ggml_tensor * pw,
  6142. struct ggml_tensor * ph) {
  6143. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6144. }
  6145. // gmml_unary
  6146. static struct ggml_tensor * ggml_unary_impl(
  6147. struct ggml_context * ctx,
  6148. struct ggml_tensor * a,
  6149. enum ggml_unary_op op,
  6150. bool inplace) {
  6151. bool is_node = false;
  6152. if (!inplace && (a->grad)) {
  6153. is_node = true;
  6154. }
  6155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6156. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6157. result->op = GGML_OP_UNARY;
  6158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6159. result->src[0] = a;
  6160. return result;
  6161. }
  6162. struct ggml_tensor * ggml_unary(
  6163. struct ggml_context * ctx,
  6164. struct ggml_tensor * a,
  6165. enum ggml_unary_op op) {
  6166. return ggml_unary_impl(ctx, a, op, false);
  6167. }
  6168. struct ggml_tensor * ggml_unary_inplace(
  6169. struct ggml_context * ctx,
  6170. struct ggml_tensor * a,
  6171. enum ggml_unary_op op) {
  6172. return ggml_unary_impl(ctx, a, op, true);
  6173. }
  6174. // ggml_map_unary
  6175. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6176. struct ggml_context * ctx,
  6177. struct ggml_tensor * a,
  6178. const ggml_unary_op_f32_t fun,
  6179. bool inplace) {
  6180. bool is_node = false;
  6181. if (!inplace && a->grad) {
  6182. is_node = true;
  6183. }
  6184. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6185. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6186. result->op = GGML_OP_MAP_UNARY;
  6187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6188. result->src[0] = a;
  6189. return result;
  6190. }
  6191. struct ggml_tensor * ggml_map_unary_f32(
  6192. struct ggml_context * ctx,
  6193. struct ggml_tensor * a,
  6194. const ggml_unary_op_f32_t fun) {
  6195. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6196. }
  6197. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6198. struct ggml_context * ctx,
  6199. struct ggml_tensor * a,
  6200. const ggml_unary_op_f32_t fun) {
  6201. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6202. }
  6203. // ggml_map_binary
  6204. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6205. struct ggml_context * ctx,
  6206. struct ggml_tensor * a,
  6207. struct ggml_tensor * b,
  6208. const ggml_binary_op_f32_t fun,
  6209. bool inplace) {
  6210. GGML_ASSERT(ggml_are_same_shape(a, b));
  6211. bool is_node = false;
  6212. if (!inplace && (a->grad || b->grad)) {
  6213. is_node = true;
  6214. }
  6215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6216. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6217. result->op = GGML_OP_MAP_BINARY;
  6218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6219. result->src[0] = a;
  6220. result->src[1] = b;
  6221. return result;
  6222. }
  6223. struct ggml_tensor * ggml_map_binary_f32(
  6224. struct ggml_context * ctx,
  6225. struct ggml_tensor * a,
  6226. struct ggml_tensor * b,
  6227. const ggml_binary_op_f32_t fun) {
  6228. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6229. }
  6230. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6231. struct ggml_context * ctx,
  6232. struct ggml_tensor * a,
  6233. struct ggml_tensor * b,
  6234. const ggml_binary_op_f32_t fun) {
  6235. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6236. }
  6237. // ggml_map_custom1_f32
  6238. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6239. struct ggml_context * ctx,
  6240. struct ggml_tensor * a,
  6241. const ggml_custom1_op_f32_t fun,
  6242. bool inplace) {
  6243. bool is_node = false;
  6244. if (!inplace && a->grad) {
  6245. is_node = true;
  6246. }
  6247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6248. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6249. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6251. result->src[0] = a;
  6252. return result;
  6253. }
  6254. struct ggml_tensor * ggml_map_custom1_f32(
  6255. struct ggml_context * ctx,
  6256. struct ggml_tensor * a,
  6257. const ggml_custom1_op_f32_t fun) {
  6258. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6259. }
  6260. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * a,
  6263. const ggml_custom1_op_f32_t fun) {
  6264. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6265. }
  6266. // ggml_map_custom2_f32
  6267. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6268. struct ggml_context * ctx,
  6269. struct ggml_tensor * a,
  6270. struct ggml_tensor * b,
  6271. const ggml_custom2_op_f32_t fun,
  6272. bool inplace) {
  6273. bool is_node = false;
  6274. if (!inplace && (a->grad || b->grad)) {
  6275. is_node = true;
  6276. }
  6277. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6278. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6279. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6281. result->src[0] = a;
  6282. result->src[1] = b;
  6283. return result;
  6284. }
  6285. struct ggml_tensor * ggml_map_custom2_f32(
  6286. struct ggml_context * ctx,
  6287. struct ggml_tensor * a,
  6288. struct ggml_tensor * b,
  6289. const ggml_custom2_op_f32_t fun) {
  6290. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6291. }
  6292. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6293. struct ggml_context * ctx,
  6294. struct ggml_tensor * a,
  6295. struct ggml_tensor * b,
  6296. const ggml_custom2_op_f32_t fun) {
  6297. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6298. }
  6299. // ggml_map_custom3_f32
  6300. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6301. struct ggml_context * ctx,
  6302. struct ggml_tensor * a,
  6303. struct ggml_tensor * b,
  6304. struct ggml_tensor * c,
  6305. const ggml_custom3_op_f32_t fun,
  6306. bool inplace) {
  6307. bool is_node = false;
  6308. if (!inplace && (a->grad || b->grad || c->grad)) {
  6309. is_node = true;
  6310. }
  6311. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6312. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6313. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6314. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6315. result->src[0] = a;
  6316. result->src[1] = b;
  6317. result->src[2] = c;
  6318. return result;
  6319. }
  6320. struct ggml_tensor * ggml_map_custom3_f32(
  6321. struct ggml_context * ctx,
  6322. struct ggml_tensor * a,
  6323. struct ggml_tensor * b,
  6324. struct ggml_tensor * c,
  6325. const ggml_custom3_op_f32_t fun) {
  6326. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6327. }
  6328. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6329. struct ggml_context * ctx,
  6330. struct ggml_tensor * a,
  6331. struct ggml_tensor * b,
  6332. struct ggml_tensor * c,
  6333. const ggml_custom3_op_f32_t fun) {
  6334. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6335. }
  6336. // ggml_map_custom1
  6337. struct ggml_map_custom1_op_params {
  6338. ggml_custom1_op_t fun;
  6339. int n_tasks;
  6340. void * userdata;
  6341. };
  6342. static struct ggml_tensor * ggml_map_custom1_impl(
  6343. struct ggml_context * ctx,
  6344. struct ggml_tensor * a,
  6345. const ggml_custom1_op_t fun,
  6346. int n_tasks,
  6347. void * userdata,
  6348. bool inplace) {
  6349. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6350. bool is_node = false;
  6351. if (!inplace && a->grad) {
  6352. is_node = true;
  6353. }
  6354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6355. struct ggml_map_custom1_op_params params = {
  6356. /*.fun =*/ fun,
  6357. /*.n_tasks =*/ n_tasks,
  6358. /*.userdata =*/ userdata
  6359. };
  6360. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6361. result->op = GGML_OP_MAP_CUSTOM1;
  6362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6363. result->src[0] = a;
  6364. return result;
  6365. }
  6366. struct ggml_tensor * ggml_map_custom1(
  6367. struct ggml_context * ctx,
  6368. struct ggml_tensor * a,
  6369. const ggml_custom1_op_t fun,
  6370. int n_tasks,
  6371. void * userdata) {
  6372. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6373. }
  6374. struct ggml_tensor * ggml_map_custom1_inplace(
  6375. struct ggml_context * ctx,
  6376. struct ggml_tensor * a,
  6377. const ggml_custom1_op_t fun,
  6378. int n_tasks,
  6379. void * userdata) {
  6380. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6381. }
  6382. // ggml_map_custom2
  6383. struct ggml_map_custom2_op_params {
  6384. ggml_custom2_op_t fun;
  6385. int n_tasks;
  6386. void * userdata;
  6387. };
  6388. static struct ggml_tensor * ggml_map_custom2_impl(
  6389. struct ggml_context * ctx,
  6390. struct ggml_tensor * a,
  6391. struct ggml_tensor * b,
  6392. const ggml_custom2_op_t fun,
  6393. int n_tasks,
  6394. void * userdata,
  6395. bool inplace) {
  6396. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6397. bool is_node = false;
  6398. if (!inplace && (a->grad || b->grad)) {
  6399. is_node = true;
  6400. }
  6401. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6402. struct ggml_map_custom2_op_params params = {
  6403. /*.fun =*/ fun,
  6404. /*.n_tasks =*/ n_tasks,
  6405. /*.userdata =*/ userdata
  6406. };
  6407. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6408. result->op = GGML_OP_MAP_CUSTOM2;
  6409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6410. result->src[0] = a;
  6411. result->src[1] = b;
  6412. return result;
  6413. }
  6414. struct ggml_tensor * ggml_map_custom2(
  6415. struct ggml_context * ctx,
  6416. struct ggml_tensor * a,
  6417. struct ggml_tensor * b,
  6418. const ggml_custom2_op_t fun,
  6419. int n_tasks,
  6420. void * userdata) {
  6421. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6422. }
  6423. struct ggml_tensor * ggml_map_custom2_inplace(
  6424. struct ggml_context * ctx,
  6425. struct ggml_tensor * a,
  6426. struct ggml_tensor * b,
  6427. const ggml_custom2_op_t fun,
  6428. int n_tasks,
  6429. void * userdata) {
  6430. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6431. }
  6432. // ggml_map_custom3
  6433. struct ggml_map_custom3_op_params {
  6434. ggml_custom3_op_t fun;
  6435. int n_tasks;
  6436. void * userdata;
  6437. };
  6438. static struct ggml_tensor * ggml_map_custom3_impl(
  6439. struct ggml_context * ctx,
  6440. struct ggml_tensor * a,
  6441. struct ggml_tensor * b,
  6442. struct ggml_tensor * c,
  6443. const ggml_custom3_op_t fun,
  6444. int n_tasks,
  6445. void * userdata,
  6446. bool inplace) {
  6447. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6448. bool is_node = false;
  6449. if (!inplace && (a->grad || b->grad || c->grad)) {
  6450. is_node = true;
  6451. }
  6452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6453. struct ggml_map_custom3_op_params params = {
  6454. /*.fun =*/ fun,
  6455. /*.n_tasks =*/ n_tasks,
  6456. /*.userdata =*/ userdata
  6457. };
  6458. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6459. result->op = GGML_OP_MAP_CUSTOM3;
  6460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6461. result->src[0] = a;
  6462. result->src[1] = b;
  6463. result->src[2] = c;
  6464. return result;
  6465. }
  6466. struct ggml_tensor * ggml_map_custom3(
  6467. struct ggml_context * ctx,
  6468. struct ggml_tensor * a,
  6469. struct ggml_tensor * b,
  6470. struct ggml_tensor * c,
  6471. const ggml_custom3_op_t fun,
  6472. int n_tasks,
  6473. void * userdata) {
  6474. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6475. }
  6476. struct ggml_tensor * ggml_map_custom3_inplace(
  6477. struct ggml_context * ctx,
  6478. struct ggml_tensor * a,
  6479. struct ggml_tensor * b,
  6480. struct ggml_tensor * c,
  6481. const ggml_custom3_op_t fun,
  6482. int n_tasks,
  6483. void * userdata) {
  6484. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6485. }
  6486. // ggml_cross_entropy_loss
  6487. struct ggml_tensor * ggml_cross_entropy_loss(
  6488. struct ggml_context * ctx,
  6489. struct ggml_tensor * a,
  6490. struct ggml_tensor * b) {
  6491. GGML_ASSERT(ggml_are_same_shape(a, b));
  6492. bool is_node = false;
  6493. if (a->grad || b->grad) {
  6494. is_node = true;
  6495. }
  6496. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6497. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6499. result->src[0] = a;
  6500. result->src[1] = b;
  6501. return result;
  6502. }
  6503. // ggml_cross_entropy_loss_back
  6504. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6505. struct ggml_context * ctx,
  6506. struct ggml_tensor * a,
  6507. struct ggml_tensor * b,
  6508. struct ggml_tensor * c) {
  6509. GGML_ASSERT(ggml_are_same_shape(a, b));
  6510. GGML_ASSERT(ggml_is_scalar(c));
  6511. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6512. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6513. result->grad = NULL;
  6514. result->src[0] = a;
  6515. result->src[1] = b;
  6516. result->src[2] = c;
  6517. return result;
  6518. }
  6519. ////////////////////////////////////////////////////////////////////////////////
  6520. void ggml_set_param(
  6521. struct ggml_context * ctx,
  6522. struct ggml_tensor * tensor) {
  6523. tensor->is_param = true;
  6524. GGML_ASSERT(tensor->grad == NULL);
  6525. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6526. }
  6527. // ggml_compute_forward_dup
  6528. static void ggml_compute_forward_dup_same_cont(
  6529. const struct ggml_compute_params * params,
  6530. const struct ggml_tensor * src0,
  6531. struct ggml_tensor * dst) {
  6532. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6533. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6534. GGML_ASSERT(src0->type == dst->type);
  6535. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6536. return;
  6537. }
  6538. const size_t nb00 = src0->nb[0];
  6539. const size_t nb0 = dst->nb[0];
  6540. const int ith = params->ith; // thread index
  6541. const int nth = params->nth; // number of threads
  6542. // parallelize by elements
  6543. const int ne = ggml_nelements(dst);
  6544. const int dr = (ne + nth - 1) / nth;
  6545. const int ie0 = dr * ith;
  6546. const int ie1 = MIN(ie0 + dr, ne);
  6547. if (ie0 < ie1) {
  6548. memcpy(
  6549. ((char *) dst->data + ie0*nb0),
  6550. ((char *) src0->data + ie0*nb00),
  6551. (ie1 - ie0) * ggml_type_size(src0->type));
  6552. }
  6553. }
  6554. static void ggml_compute_forward_dup_f16(
  6555. const struct ggml_compute_params * params,
  6556. const struct ggml_tensor * src0,
  6557. struct ggml_tensor * dst) {
  6558. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6559. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6560. return;
  6561. }
  6562. GGML_TENSOR_UNARY_OP_LOCALS;
  6563. const int ith = params->ith; // thread index
  6564. const int nth = params->nth; // number of threads
  6565. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6566. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6567. return;
  6568. }
  6569. // parallelize by rows
  6570. const int nr = ne01;
  6571. // number of rows per thread
  6572. const int dr = (nr + nth - 1) / nth;
  6573. // row range for this thread
  6574. const int ir0 = dr * ith;
  6575. const int ir1 = MIN(ir0 + dr, nr);
  6576. if (src0->type == dst->type &&
  6577. ne00 == ne0 &&
  6578. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6579. // copy by rows
  6580. const size_t rs = ne00*nb00;
  6581. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6582. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6583. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6584. memcpy(
  6585. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6586. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6587. rs);
  6588. }
  6589. }
  6590. }
  6591. return;
  6592. }
  6593. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6594. if (ggml_is_contiguous(dst)) {
  6595. if (nb00 == sizeof(ggml_fp16_t)) {
  6596. if (dst->type == GGML_TYPE_F16) {
  6597. size_t id = 0;
  6598. const size_t rs = ne00 * nb00;
  6599. char * dst_ptr = (char *) dst->data;
  6600. for (int i03 = 0; i03 < ne03; i03++) {
  6601. for (int i02 = 0; i02 < ne02; i02++) {
  6602. id += rs * ir0;
  6603. for (int i01 = ir0; i01 < ir1; i01++) {
  6604. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6605. memcpy(dst_ptr + id, src0_ptr, rs);
  6606. id += rs;
  6607. }
  6608. id += rs * (ne01 - ir1);
  6609. }
  6610. }
  6611. } else if (dst->type == GGML_TYPE_F32) {
  6612. size_t id = 0;
  6613. float * dst_ptr = (float *) dst->data;
  6614. for (int i03 = 0; i03 < ne03; i03++) {
  6615. for (int i02 = 0; i02 < ne02; i02++) {
  6616. id += ne00 * ir0;
  6617. for (int i01 = ir0; i01 < ir1; i01++) {
  6618. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6619. for (int i00 = 0; i00 < ne00; i00++) {
  6620. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6621. id++;
  6622. }
  6623. }
  6624. id += ne00 * (ne01 - ir1);
  6625. }
  6626. }
  6627. } else if (type_traits[dst->type].from_float) {
  6628. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6629. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6630. size_t id = 0;
  6631. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6632. char * dst_ptr = (char *) dst->data;
  6633. for (int i03 = 0; i03 < ne03; i03++) {
  6634. for (int i02 = 0; i02 < ne02; i02++) {
  6635. id += rs * ir0;
  6636. for (int i01 = ir0; i01 < ir1; i01++) {
  6637. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6638. for (int i00 = 0; i00 < ne00; i00++) {
  6639. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6640. }
  6641. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6642. id += rs;
  6643. }
  6644. id += rs * (ne01 - ir1);
  6645. }
  6646. }
  6647. } else {
  6648. GGML_ASSERT(false); // TODO: implement
  6649. }
  6650. } else {
  6651. //printf("%s: this is not optimal - fix me\n", __func__);
  6652. if (dst->type == GGML_TYPE_F32) {
  6653. size_t id = 0;
  6654. float * dst_ptr = (float *) dst->data;
  6655. for (int i03 = 0; i03 < ne03; i03++) {
  6656. for (int i02 = 0; i02 < ne02; i02++) {
  6657. id += ne00 * ir0;
  6658. for (int i01 = ir0; i01 < ir1; i01++) {
  6659. for (int i00 = 0; i00 < ne00; i00++) {
  6660. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6661. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6662. id++;
  6663. }
  6664. }
  6665. id += ne00 * (ne01 - ir1);
  6666. }
  6667. }
  6668. } else if (dst->type == GGML_TYPE_F16) {
  6669. size_t id = 0;
  6670. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6671. for (int i03 = 0; i03 < ne03; i03++) {
  6672. for (int i02 = 0; i02 < ne02; i02++) {
  6673. id += ne00 * ir0;
  6674. for (int i01 = ir0; i01 < ir1; i01++) {
  6675. for (int i00 = 0; i00 < ne00; i00++) {
  6676. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6677. dst_ptr[id] = *src0_ptr;
  6678. id++;
  6679. }
  6680. }
  6681. id += ne00 * (ne01 - ir1);
  6682. }
  6683. }
  6684. } else {
  6685. GGML_ASSERT(false); // TODO: implement
  6686. }
  6687. }
  6688. return;
  6689. }
  6690. // dst counters
  6691. int64_t i10 = 0;
  6692. int64_t i11 = 0;
  6693. int64_t i12 = 0;
  6694. int64_t i13 = 0;
  6695. if (dst->type == GGML_TYPE_F16) {
  6696. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6697. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6698. i10 += ne00 * ir0;
  6699. while (i10 >= ne0) {
  6700. i10 -= ne0;
  6701. if (++i11 == ne1) {
  6702. i11 = 0;
  6703. if (++i12 == ne2) {
  6704. i12 = 0;
  6705. if (++i13 == ne3) {
  6706. i13 = 0;
  6707. }
  6708. }
  6709. }
  6710. }
  6711. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6712. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6713. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6714. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6715. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6716. if (++i10 == ne00) {
  6717. i10 = 0;
  6718. if (++i11 == ne01) {
  6719. i11 = 0;
  6720. if (++i12 == ne02) {
  6721. i12 = 0;
  6722. if (++i13 == ne03) {
  6723. i13 = 0;
  6724. }
  6725. }
  6726. }
  6727. }
  6728. }
  6729. }
  6730. i10 += ne00 * (ne01 - ir1);
  6731. while (i10 >= ne0) {
  6732. i10 -= ne0;
  6733. if (++i11 == ne1) {
  6734. i11 = 0;
  6735. if (++i12 == ne2) {
  6736. i12 = 0;
  6737. if (++i13 == ne3) {
  6738. i13 = 0;
  6739. }
  6740. }
  6741. }
  6742. }
  6743. }
  6744. }
  6745. } else if (dst->type == GGML_TYPE_F32) {
  6746. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6747. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6748. i10 += ne00 * ir0;
  6749. while (i10 >= ne0) {
  6750. i10 -= ne0;
  6751. if (++i11 == ne1) {
  6752. i11 = 0;
  6753. if (++i12 == ne2) {
  6754. i12 = 0;
  6755. if (++i13 == ne3) {
  6756. i13 = 0;
  6757. }
  6758. }
  6759. }
  6760. }
  6761. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6762. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6763. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6764. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6765. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6766. if (++i10 == ne0) {
  6767. i10 = 0;
  6768. if (++i11 == ne1) {
  6769. i11 = 0;
  6770. if (++i12 == ne2) {
  6771. i12 = 0;
  6772. if (++i13 == ne3) {
  6773. i13 = 0;
  6774. }
  6775. }
  6776. }
  6777. }
  6778. }
  6779. }
  6780. i10 += ne00 * (ne01 - ir1);
  6781. while (i10 >= ne0) {
  6782. i10 -= ne0;
  6783. if (++i11 == ne1) {
  6784. i11 = 0;
  6785. if (++i12 == ne2) {
  6786. i12 = 0;
  6787. if (++i13 == ne3) {
  6788. i13 = 0;
  6789. }
  6790. }
  6791. }
  6792. }
  6793. }
  6794. }
  6795. } else {
  6796. GGML_ASSERT(false); // TODO: implement
  6797. }
  6798. }
  6799. static void ggml_compute_forward_dup_f32(
  6800. const struct ggml_compute_params * params,
  6801. const struct ggml_tensor * src0,
  6802. struct ggml_tensor * dst) {
  6803. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6804. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6805. return;
  6806. }
  6807. GGML_TENSOR_UNARY_OP_LOCALS;
  6808. const int ith = params->ith; // thread index
  6809. const int nth = params->nth; // number of threads
  6810. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6811. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6812. return;
  6813. }
  6814. // parallelize by rows
  6815. const int nr = ne01;
  6816. // number of rows per thread
  6817. const int dr = (nr + nth - 1) / nth;
  6818. // row range for this thread
  6819. const int ir0 = dr * ith;
  6820. const int ir1 = MIN(ir0 + dr, nr);
  6821. if (src0->type == dst->type &&
  6822. ne00 == ne0 &&
  6823. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6824. // copy by rows
  6825. const size_t rs = ne00*nb00;
  6826. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6827. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6828. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6829. memcpy(
  6830. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6831. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6832. rs);
  6833. }
  6834. }
  6835. }
  6836. return;
  6837. }
  6838. if (ggml_is_contiguous(dst)) {
  6839. // TODO: simplify
  6840. if (nb00 == sizeof(float)) {
  6841. if (dst->type == GGML_TYPE_F32) {
  6842. size_t id = 0;
  6843. const size_t rs = ne00 * nb00;
  6844. char * dst_ptr = (char *) dst->data;
  6845. for (int i03 = 0; i03 < ne03; i03++) {
  6846. for (int i02 = 0; i02 < ne02; i02++) {
  6847. id += rs * ir0;
  6848. for (int i01 = ir0; i01 < ir1; i01++) {
  6849. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6850. memcpy(dst_ptr + id, src0_ptr, rs);
  6851. id += rs;
  6852. }
  6853. id += rs * (ne01 - ir1);
  6854. }
  6855. }
  6856. } else if (type_traits[dst->type].from_float) {
  6857. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6858. size_t id = 0;
  6859. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6860. char * dst_ptr = (char *) dst->data;
  6861. for (int i03 = 0; i03 < ne03; i03++) {
  6862. for (int i02 = 0; i02 < ne02; i02++) {
  6863. id += rs * ir0;
  6864. for (int i01 = ir0; i01 < ir1; i01++) {
  6865. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6866. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6867. id += rs;
  6868. }
  6869. id += rs * (ne01 - ir1);
  6870. }
  6871. }
  6872. } else {
  6873. GGML_ASSERT(false); // TODO: implement
  6874. }
  6875. } else {
  6876. //printf("%s: this is not optimal - fix me\n", __func__);
  6877. if (dst->type == GGML_TYPE_F32) {
  6878. size_t id = 0;
  6879. float * dst_ptr = (float *) dst->data;
  6880. for (int i03 = 0; i03 < ne03; i03++) {
  6881. for (int i02 = 0; i02 < ne02; i02++) {
  6882. id += ne00 * ir0;
  6883. for (int i01 = ir0; i01 < ir1; i01++) {
  6884. for (int i00 = 0; i00 < ne00; i00++) {
  6885. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6886. dst_ptr[id] = *src0_ptr;
  6887. id++;
  6888. }
  6889. }
  6890. id += ne00 * (ne01 - ir1);
  6891. }
  6892. }
  6893. } else if (dst->type == GGML_TYPE_F16) {
  6894. size_t id = 0;
  6895. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6896. for (int i03 = 0; i03 < ne03; i03++) {
  6897. for (int i02 = 0; i02 < ne02; i02++) {
  6898. id += ne00 * ir0;
  6899. for (int i01 = ir0; i01 < ir1; i01++) {
  6900. for (int i00 = 0; i00 < ne00; i00++) {
  6901. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6902. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6903. id++;
  6904. }
  6905. }
  6906. id += ne00 * (ne01 - ir1);
  6907. }
  6908. }
  6909. } else {
  6910. GGML_ASSERT(false); // TODO: implement
  6911. }
  6912. }
  6913. return;
  6914. }
  6915. // dst counters
  6916. int64_t i10 = 0;
  6917. int64_t i11 = 0;
  6918. int64_t i12 = 0;
  6919. int64_t i13 = 0;
  6920. if (dst->type == GGML_TYPE_F32) {
  6921. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6922. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6923. i10 += ne00 * ir0;
  6924. while (i10 >= ne0) {
  6925. i10 -= ne0;
  6926. if (++i11 == ne1) {
  6927. i11 = 0;
  6928. if (++i12 == ne2) {
  6929. i12 = 0;
  6930. if (++i13 == ne3) {
  6931. i13 = 0;
  6932. }
  6933. }
  6934. }
  6935. }
  6936. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6937. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6938. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6939. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6940. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6941. if (++i10 == ne0) {
  6942. i10 = 0;
  6943. if (++i11 == ne1) {
  6944. i11 = 0;
  6945. if (++i12 == ne2) {
  6946. i12 = 0;
  6947. if (++i13 == ne3) {
  6948. i13 = 0;
  6949. }
  6950. }
  6951. }
  6952. }
  6953. }
  6954. }
  6955. i10 += ne00 * (ne01 - ir1);
  6956. while (i10 >= ne0) {
  6957. i10 -= ne0;
  6958. if (++i11 == ne1) {
  6959. i11 = 0;
  6960. if (++i12 == ne2) {
  6961. i12 = 0;
  6962. if (++i13 == ne3) {
  6963. i13 = 0;
  6964. }
  6965. }
  6966. }
  6967. }
  6968. }
  6969. }
  6970. } else if (dst->type == GGML_TYPE_F16) {
  6971. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6972. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6973. i10 += ne00 * ir0;
  6974. while (i10 >= ne0) {
  6975. i10 -= ne0;
  6976. if (++i11 == ne1) {
  6977. i11 = 0;
  6978. if (++i12 == ne2) {
  6979. i12 = 0;
  6980. if (++i13 == ne3) {
  6981. i13 = 0;
  6982. }
  6983. }
  6984. }
  6985. }
  6986. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6987. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6988. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6989. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6990. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6991. if (++i10 == ne0) {
  6992. i10 = 0;
  6993. if (++i11 == ne1) {
  6994. i11 = 0;
  6995. if (++i12 == ne2) {
  6996. i12 = 0;
  6997. if (++i13 == ne3) {
  6998. i13 = 0;
  6999. }
  7000. }
  7001. }
  7002. }
  7003. }
  7004. }
  7005. i10 += ne00 * (ne01 - ir1);
  7006. while (i10 >= ne0) {
  7007. i10 -= ne0;
  7008. if (++i11 == ne1) {
  7009. i11 = 0;
  7010. if (++i12 == ne2) {
  7011. i12 = 0;
  7012. if (++i13 == ne3) {
  7013. i13 = 0;
  7014. }
  7015. }
  7016. }
  7017. }
  7018. }
  7019. }
  7020. } else {
  7021. GGML_ASSERT(false); // TODO: implement
  7022. }
  7023. }
  7024. static void ggml_compute_forward_dup(
  7025. const struct ggml_compute_params * params,
  7026. const struct ggml_tensor * src0,
  7027. struct ggml_tensor * dst) {
  7028. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7029. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7030. return;
  7031. }
  7032. switch (src0->type) {
  7033. case GGML_TYPE_F16:
  7034. {
  7035. ggml_compute_forward_dup_f16(params, src0, dst);
  7036. } break;
  7037. case GGML_TYPE_F32:
  7038. {
  7039. ggml_compute_forward_dup_f32(params, src0, dst);
  7040. } break;
  7041. default:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. // ggml_compute_forward_add
  7048. static void ggml_compute_forward_add_f32(
  7049. const struct ggml_compute_params * params,
  7050. const struct ggml_tensor * src0,
  7051. const struct ggml_tensor * src1,
  7052. struct ggml_tensor * dst) {
  7053. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7055. return;
  7056. }
  7057. const int ith = params->ith;
  7058. const int nth = params->nth;
  7059. const int nr = ggml_nrows(src0);
  7060. GGML_TENSOR_BINARY_OP_LOCALS;
  7061. GGML_ASSERT( nb0 == sizeof(float));
  7062. GGML_ASSERT(nb00 == sizeof(float));
  7063. // rows per thread
  7064. const int dr = (nr + nth - 1)/nth;
  7065. // row range for this thread
  7066. const int ir0 = dr*ith;
  7067. const int ir1 = MIN(ir0 + dr, nr);
  7068. if (nb10 == sizeof(float)) {
  7069. for (int ir = ir0; ir < ir1; ++ir) {
  7070. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7071. const int64_t i03 = ir/(ne02*ne01);
  7072. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7073. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7074. const int64_t i13 = i03 % ne13;
  7075. const int64_t i12 = i02 % ne12;
  7076. const int64_t i11 = i01 % ne11;
  7077. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7078. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7079. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7080. #ifdef GGML_USE_ACCELERATE
  7081. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7082. #else
  7083. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7084. #endif
  7085. // }
  7086. // }
  7087. }
  7088. } else {
  7089. // src1 is not contiguous
  7090. for (int ir = ir0; ir < ir1; ++ir) {
  7091. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7092. const int64_t i03 = ir/(ne02*ne01);
  7093. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7094. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7095. const int64_t i13 = i03 % ne13;
  7096. const int64_t i12 = i02 % ne12;
  7097. const int64_t i11 = i01 % ne11;
  7098. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7099. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7100. for (int i0 = 0; i0 < ne0; i0++) {
  7101. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7102. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7103. }
  7104. }
  7105. }
  7106. }
  7107. static void ggml_compute_forward_add_f16_f32(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. const struct ggml_tensor * src1,
  7111. struct ggml_tensor * dst) {
  7112. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7114. return;
  7115. }
  7116. const int ith = params->ith;
  7117. const int nth = params->nth;
  7118. const int nr = ggml_nrows(src0);
  7119. GGML_TENSOR_BINARY_OP_LOCALS;
  7120. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7121. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7122. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7123. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7124. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7125. // rows per thread
  7126. const int dr = (nr + nth - 1)/nth;
  7127. // row range for this thread
  7128. const int ir0 = dr*ith;
  7129. const int ir1 = MIN(ir0 + dr, nr);
  7130. if (nb10 == sizeof(float)) {
  7131. for (int ir = ir0; ir < ir1; ++ir) {
  7132. // src0, src1 and dst are same shape => same indices
  7133. const int i3 = ir/(ne2*ne1);
  7134. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7135. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7136. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7137. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7138. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7139. for (int i = 0; i < ne0; i++) {
  7140. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7141. }
  7142. }
  7143. }
  7144. else {
  7145. // src1 is not contiguous
  7146. GGML_ASSERT(false);
  7147. }
  7148. }
  7149. static void ggml_compute_forward_add_f16_f16(
  7150. const struct ggml_compute_params * params,
  7151. const struct ggml_tensor * src0,
  7152. const struct ggml_tensor * src1,
  7153. struct ggml_tensor * dst) {
  7154. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7156. return;
  7157. }
  7158. const int ith = params->ith;
  7159. const int nth = params->nth;
  7160. const int nr = ggml_nrows(src0);
  7161. GGML_TENSOR_BINARY_OP_LOCALS;
  7162. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7163. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7164. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7165. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7166. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7167. // rows per thread
  7168. const int dr = (nr + nth - 1)/nth;
  7169. // row range for this thread
  7170. const int ir0 = dr*ith;
  7171. const int ir1 = MIN(ir0 + dr, nr);
  7172. if (nb10 == sizeof(ggml_fp16_t)) {
  7173. for (int ir = ir0; ir < ir1; ++ir) {
  7174. // src0, src1 and dst are same shape => same indices
  7175. const int i3 = ir/(ne2*ne1);
  7176. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7177. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7178. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7179. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7180. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7181. for (int i = 0; i < ne0; i++) {
  7182. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7183. }
  7184. }
  7185. }
  7186. else {
  7187. // src1 is not contiguous
  7188. GGML_ASSERT(false);
  7189. }
  7190. }
  7191. static void ggml_compute_forward_add_q_f32(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. const struct ggml_tensor * src1,
  7195. struct ggml_tensor * dst) {
  7196. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7198. return;
  7199. }
  7200. const int nr = ggml_nrows(src0);
  7201. GGML_TENSOR_BINARY_OP_LOCALS;
  7202. const int ith = params->ith;
  7203. const int nth = params->nth;
  7204. const enum ggml_type type = src0->type;
  7205. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7206. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7207. // we don't support permuted src0 or src1
  7208. GGML_ASSERT(nb00 == ggml_type_size(type));
  7209. GGML_ASSERT(nb10 == sizeof(float));
  7210. // dst cannot be transposed or permuted
  7211. GGML_ASSERT(nb0 <= nb1);
  7212. GGML_ASSERT(nb1 <= nb2);
  7213. GGML_ASSERT(nb2 <= nb3);
  7214. GGML_ASSERT(ggml_is_quantized(src0->type));
  7215. GGML_ASSERT(dst->type == src0->type);
  7216. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7217. // rows per thread
  7218. const int dr = (nr + nth - 1)/nth;
  7219. // row range for this thread
  7220. const int ir0 = dr*ith;
  7221. const int ir1 = MIN(ir0 + dr, nr);
  7222. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7223. for (int ir = ir0; ir < ir1; ++ir) {
  7224. // src0 indices
  7225. const int i03 = ir/(ne02*ne01);
  7226. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7227. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7228. // src1 and dst are same shape as src0 => same indices
  7229. const int i13 = i03;
  7230. const int i12 = i02;
  7231. const int i11 = i01;
  7232. const int i3 = i03;
  7233. const int i2 = i02;
  7234. const int i1 = i01;
  7235. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7236. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7237. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7238. assert(ne00 % 32 == 0);
  7239. // unquantize row from src0 to temp buffer
  7240. dequantize_row_q(src0_row, wdata, ne00);
  7241. // add src1
  7242. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7243. // quantize row to dst
  7244. quantize_row_q(wdata, dst_row, ne00);
  7245. }
  7246. }
  7247. static void ggml_compute_forward_add(
  7248. const struct ggml_compute_params * params,
  7249. const struct ggml_tensor * src0,
  7250. const struct ggml_tensor * src1,
  7251. struct ggml_tensor * dst) {
  7252. switch (src0->type) {
  7253. case GGML_TYPE_F32:
  7254. {
  7255. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7256. } break;
  7257. case GGML_TYPE_F16:
  7258. {
  7259. if (src1->type == GGML_TYPE_F16) {
  7260. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7261. }
  7262. else if (src1->type == GGML_TYPE_F32) {
  7263. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7264. }
  7265. else {
  7266. GGML_ASSERT(false);
  7267. }
  7268. } break;
  7269. case GGML_TYPE_Q4_0:
  7270. case GGML_TYPE_Q4_1:
  7271. case GGML_TYPE_Q5_0:
  7272. case GGML_TYPE_Q5_1:
  7273. case GGML_TYPE_Q8_0:
  7274. case GGML_TYPE_Q2_K:
  7275. case GGML_TYPE_Q3_K:
  7276. case GGML_TYPE_Q4_K:
  7277. case GGML_TYPE_Q5_K:
  7278. case GGML_TYPE_Q6_K:
  7279. {
  7280. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7281. } break;
  7282. default:
  7283. {
  7284. GGML_ASSERT(false);
  7285. } break;
  7286. }
  7287. }
  7288. // ggml_compute_forward_add1
  7289. static void ggml_compute_forward_add1_f32(
  7290. const struct ggml_compute_params * params,
  7291. const struct ggml_tensor * src0,
  7292. const struct ggml_tensor * src1,
  7293. struct ggml_tensor * dst) {
  7294. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7295. GGML_ASSERT(ggml_is_scalar(src1));
  7296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7297. return;
  7298. }
  7299. const int ith = params->ith;
  7300. const int nth = params->nth;
  7301. const int nr = ggml_nrows(src0);
  7302. GGML_TENSOR_UNARY_OP_LOCALS;
  7303. GGML_ASSERT( nb0 == sizeof(float));
  7304. GGML_ASSERT(nb00 == sizeof(float));
  7305. // rows per thread
  7306. const int dr = (nr + nth - 1)/nth;
  7307. // row range for this thread
  7308. const int ir0 = dr*ith;
  7309. const int ir1 = MIN(ir0 + dr, nr);
  7310. for (int ir = ir0; ir < ir1; ++ir) {
  7311. // src0 and dst are same shape => same indices
  7312. const int i3 = ir/(ne2*ne1);
  7313. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7314. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7315. #ifdef GGML_USE_ACCELERATE
  7316. UNUSED(ggml_vec_add1_f32);
  7317. vDSP_vadd(
  7318. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7319. (float *) ((char *) src1->data), 0,
  7320. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7321. ne0);
  7322. #else
  7323. ggml_vec_add1_f32(ne0,
  7324. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7325. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7326. *(float *) src1->data);
  7327. #endif
  7328. }
  7329. }
  7330. static void ggml_compute_forward_add1_f16_f32(
  7331. const struct ggml_compute_params * params,
  7332. const struct ggml_tensor * src0,
  7333. const struct ggml_tensor * src1,
  7334. struct ggml_tensor * dst) {
  7335. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7336. GGML_ASSERT(ggml_is_scalar(src1));
  7337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7338. return;
  7339. }
  7340. // scalar to add
  7341. const float v = *(float *) src1->data;
  7342. const int ith = params->ith;
  7343. const int nth = params->nth;
  7344. const int nr = ggml_nrows(src0);
  7345. GGML_TENSOR_UNARY_OP_LOCALS;
  7346. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7347. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7348. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7349. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7350. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7351. // rows per thread
  7352. const int dr = (nr + nth - 1)/nth;
  7353. // row range for this thread
  7354. const int ir0 = dr*ith;
  7355. const int ir1 = MIN(ir0 + dr, nr);
  7356. for (int ir = ir0; ir < ir1; ++ir) {
  7357. // src0 and dst are same shape => same indices
  7358. const int i3 = ir/(ne2*ne1);
  7359. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7360. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7361. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7362. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7363. for (int i = 0; i < ne0; i++) {
  7364. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7365. }
  7366. }
  7367. }
  7368. static void ggml_compute_forward_add1_f16_f16(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. const struct ggml_tensor * src1,
  7372. struct ggml_tensor * dst) {
  7373. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7374. GGML_ASSERT(ggml_is_scalar(src1));
  7375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7376. return;
  7377. }
  7378. // scalar to add
  7379. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7380. const int ith = params->ith;
  7381. const int nth = params->nth;
  7382. const int nr = ggml_nrows(src0);
  7383. GGML_TENSOR_UNARY_OP_LOCALS;
  7384. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7385. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7386. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7387. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7388. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7389. // rows per thread
  7390. const int dr = (nr + nth - 1)/nth;
  7391. // row range for this thread
  7392. const int ir0 = dr*ith;
  7393. const int ir1 = MIN(ir0 + dr, nr);
  7394. for (int ir = ir0; ir < ir1; ++ir) {
  7395. // src0 and dst are same shape => same indices
  7396. const int i3 = ir/(ne2*ne1);
  7397. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7398. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7399. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7400. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7401. for (int i = 0; i < ne0; i++) {
  7402. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7403. }
  7404. }
  7405. }
  7406. static void ggml_compute_forward_add1_q_f32(
  7407. const struct ggml_compute_params * params,
  7408. const struct ggml_tensor * src0,
  7409. const struct ggml_tensor * src1,
  7410. struct ggml_tensor * dst) {
  7411. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7412. GGML_ASSERT(ggml_is_scalar(src1));
  7413. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7414. return;
  7415. }
  7416. // scalar to add
  7417. const float v = *(float *) src1->data;
  7418. const int ith = params->ith;
  7419. const int nth = params->nth;
  7420. const int nr = ggml_nrows(src0);
  7421. GGML_TENSOR_UNARY_OP_LOCALS;
  7422. const enum ggml_type type = src0->type;
  7423. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7424. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7425. // we don't support permuted src0
  7426. GGML_ASSERT(nb00 == ggml_type_size(type));
  7427. // dst cannot be transposed or permuted
  7428. GGML_ASSERT(nb0 <= nb1);
  7429. GGML_ASSERT(nb1 <= nb2);
  7430. GGML_ASSERT(nb2 <= nb3);
  7431. GGML_ASSERT(ggml_is_quantized(src0->type));
  7432. GGML_ASSERT(dst->type == src0->type);
  7433. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7434. // rows per thread
  7435. const int dr = (nr + nth - 1)/nth;
  7436. // row range for this thread
  7437. const int ir0 = dr*ith;
  7438. const int ir1 = MIN(ir0 + dr, nr);
  7439. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7440. for (int ir = ir0; ir < ir1; ++ir) {
  7441. // src0 and dst are same shape => same indices
  7442. const int i3 = ir/(ne2*ne1);
  7443. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7444. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7445. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7446. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7447. assert(ne0 % 32 == 0);
  7448. // unquantize row from src0 to temp buffer
  7449. dequantize_row_q(src0_row, wdata, ne0);
  7450. // add src1
  7451. ggml_vec_acc1_f32(ne0, wdata, v);
  7452. // quantize row to dst
  7453. quantize_row_q(wdata, dst_row, ne0);
  7454. }
  7455. }
  7456. static void ggml_compute_forward_add1(
  7457. const struct ggml_compute_params * params,
  7458. const struct ggml_tensor * src0,
  7459. const struct ggml_tensor * src1,
  7460. struct ggml_tensor * dst) {
  7461. switch (src0->type) {
  7462. case GGML_TYPE_F32:
  7463. {
  7464. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7465. } break;
  7466. case GGML_TYPE_F16:
  7467. {
  7468. if (src1->type == GGML_TYPE_F16) {
  7469. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7470. }
  7471. else if (src1->type == GGML_TYPE_F32) {
  7472. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7473. }
  7474. else {
  7475. GGML_ASSERT(false);
  7476. }
  7477. } break;
  7478. case GGML_TYPE_Q4_0:
  7479. case GGML_TYPE_Q4_1:
  7480. case GGML_TYPE_Q5_0:
  7481. case GGML_TYPE_Q5_1:
  7482. case GGML_TYPE_Q8_0:
  7483. case GGML_TYPE_Q8_1:
  7484. case GGML_TYPE_Q2_K:
  7485. case GGML_TYPE_Q3_K:
  7486. case GGML_TYPE_Q4_K:
  7487. case GGML_TYPE_Q5_K:
  7488. case GGML_TYPE_Q6_K:
  7489. {
  7490. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7491. } break;
  7492. default:
  7493. {
  7494. GGML_ASSERT(false);
  7495. } break;
  7496. }
  7497. }
  7498. // ggml_compute_forward_acc
  7499. static void ggml_compute_forward_acc_f32(
  7500. const struct ggml_compute_params * params,
  7501. const struct ggml_tensor * src0,
  7502. const struct ggml_tensor * src1,
  7503. struct ggml_tensor * dst) {
  7504. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7505. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7506. // view src0 and dst with these strides and data offset inbytes during acc
  7507. // nb0 is implicitely element_size because src0 and dst are contiguous
  7508. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7509. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7510. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7511. size_t offset = ((int32_t *) dst->op_params)[3];
  7512. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7513. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7514. // memcpy needs to be synchronized across threads to avoid race conditions.
  7515. // => do it in INIT phase
  7516. memcpy(
  7517. ((char *) dst->data),
  7518. ((char *) src0->data),
  7519. ggml_nbytes(dst));
  7520. }
  7521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7522. return;
  7523. }
  7524. const int ith = params->ith;
  7525. const int nth = params->nth;
  7526. const int nr = ggml_nrows(src1);
  7527. const int nc = src1->ne[0];
  7528. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7529. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7530. // src0 and dst as viewed during acc
  7531. const size_t nb0 = ggml_element_size(src0);
  7532. const size_t nb00 = nb0;
  7533. const size_t nb01 = nb1;
  7534. const size_t nb02 = nb2;
  7535. const size_t nb03 = nb3;
  7536. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7537. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7538. GGML_ASSERT(nb10 == sizeof(float));
  7539. // rows per thread
  7540. const int dr = (nr + nth - 1)/nth;
  7541. // row range for this thread
  7542. const int ir0 = dr*ith;
  7543. const int ir1 = MIN(ir0 + dr, nr);
  7544. for (int ir = ir0; ir < ir1; ++ir) {
  7545. // src0 and dst are viewed with shape of src1 and offset
  7546. // => same indices
  7547. const int i3 = ir/(ne12*ne11);
  7548. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7549. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7550. #ifdef GGML_USE_ACCELERATE
  7551. vDSP_vadd(
  7552. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7553. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7554. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7555. #else
  7556. ggml_vec_add_f32(nc,
  7557. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7558. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7559. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7560. #endif
  7561. }
  7562. }
  7563. static void ggml_compute_forward_acc(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. const struct ggml_tensor * src1,
  7567. struct ggml_tensor * dst) {
  7568. switch (src0->type) {
  7569. case GGML_TYPE_F32:
  7570. {
  7571. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7572. } break;
  7573. case GGML_TYPE_F16:
  7574. case GGML_TYPE_Q4_0:
  7575. case GGML_TYPE_Q4_1:
  7576. case GGML_TYPE_Q5_0:
  7577. case GGML_TYPE_Q5_1:
  7578. case GGML_TYPE_Q8_0:
  7579. case GGML_TYPE_Q8_1:
  7580. case GGML_TYPE_Q2_K:
  7581. case GGML_TYPE_Q3_K:
  7582. case GGML_TYPE_Q4_K:
  7583. case GGML_TYPE_Q5_K:
  7584. case GGML_TYPE_Q6_K:
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_sub
  7592. static void ggml_compute_forward_sub_f32(
  7593. const struct ggml_compute_params * params,
  7594. const struct ggml_tensor * src0,
  7595. const struct ggml_tensor * src1,
  7596. struct ggml_tensor * dst) {
  7597. assert(params->ith == 0);
  7598. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7600. return;
  7601. }
  7602. const int nr = ggml_nrows(src0);
  7603. GGML_TENSOR_BINARY_OP_LOCALS;
  7604. GGML_ASSERT( nb0 == sizeof(float));
  7605. GGML_ASSERT(nb00 == sizeof(float));
  7606. if (nb10 == sizeof(float)) {
  7607. for (int ir = 0; ir < nr; ++ir) {
  7608. // src0, src1 and dst are same shape => same indices
  7609. const int i3 = ir/(ne2*ne1);
  7610. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7611. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7612. #ifdef GGML_USE_ACCELERATE
  7613. vDSP_vsub(
  7614. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7615. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7616. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7617. ne0);
  7618. #else
  7619. ggml_vec_sub_f32(ne0,
  7620. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7621. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7622. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7623. #endif
  7624. // }
  7625. // }
  7626. }
  7627. } else {
  7628. // src1 is not contiguous
  7629. for (int ir = 0; ir < nr; ++ir) {
  7630. // src0, src1 and dst are same shape => same indices
  7631. const int i3 = ir/(ne2*ne1);
  7632. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7633. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7634. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7635. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7636. for (int i0 = 0; i0 < ne0; i0++) {
  7637. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7638. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7639. }
  7640. }
  7641. }
  7642. }
  7643. static void ggml_compute_forward_sub(
  7644. const struct ggml_compute_params * params,
  7645. const struct ggml_tensor * src0,
  7646. const struct ggml_tensor * src1,
  7647. struct ggml_tensor * dst) {
  7648. switch (src0->type) {
  7649. case GGML_TYPE_F32:
  7650. {
  7651. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7652. } break;
  7653. default:
  7654. {
  7655. GGML_ASSERT(false);
  7656. } break;
  7657. }
  7658. }
  7659. // ggml_compute_forward_mul
  7660. static void ggml_compute_forward_mul_f32(
  7661. const struct ggml_compute_params * params,
  7662. const struct ggml_tensor * src0,
  7663. const struct ggml_tensor * src1,
  7664. struct ggml_tensor * dst) {
  7665. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7667. return;
  7668. }
  7669. const int ith = params->ith;
  7670. const int nth = params->nth;
  7671. #ifdef GGML_USE_CLBLAST
  7672. if (src1->backend == GGML_BACKEND_GPU) {
  7673. if (ith == 0) {
  7674. ggml_cl_mul(src0, src1, dst);
  7675. }
  7676. return;
  7677. }
  7678. #endif
  7679. const int64_t nr = ggml_nrows(src0);
  7680. GGML_TENSOR_BINARY_OP_LOCALS;
  7681. GGML_ASSERT( nb0 == sizeof(float));
  7682. GGML_ASSERT(nb00 == sizeof(float));
  7683. GGML_ASSERT(ne00 == ne10);
  7684. if (nb10 == sizeof(float)) {
  7685. for (int64_t ir = ith; ir < nr; ir += nth) {
  7686. // src0 and dst are same shape => same indices
  7687. const int64_t i03 = ir/(ne02*ne01);
  7688. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7689. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7690. const int64_t i13 = i03 % ne13;
  7691. const int64_t i12 = i02 % ne12;
  7692. const int64_t i11 = i01 % ne11;
  7693. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7694. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7695. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7696. #ifdef GGML_USE_ACCELERATE
  7697. UNUSED(ggml_vec_mul_f32);
  7698. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7699. #else
  7700. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7701. #endif
  7702. // }
  7703. // }
  7704. }
  7705. } else {
  7706. // src1 is not contiguous
  7707. for (int64_t ir = ith; ir < nr; ir += nth) {
  7708. // src0 and dst are same shape => same indices
  7709. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7710. const int64_t i03 = ir/(ne02*ne01);
  7711. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7712. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7713. const int64_t i13 = i03 % ne13;
  7714. const int64_t i12 = i02 % ne12;
  7715. const int64_t i11 = i01 % ne11;
  7716. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7717. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7718. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7719. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7720. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7721. }
  7722. }
  7723. }
  7724. }
  7725. static void ggml_compute_forward_mul(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. const struct ggml_tensor * src1,
  7729. struct ggml_tensor * dst) {
  7730. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7731. switch (src0->type) {
  7732. case GGML_TYPE_F32:
  7733. {
  7734. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7735. } break;
  7736. default:
  7737. {
  7738. GGML_ASSERT(false);
  7739. } break;
  7740. }
  7741. }
  7742. // ggml_compute_forward_div
  7743. static void ggml_compute_forward_div_f32(
  7744. const struct ggml_compute_params * params,
  7745. const struct ggml_tensor * src0,
  7746. const struct ggml_tensor * src1,
  7747. struct ggml_tensor * dst) {
  7748. assert(params->ith == 0);
  7749. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7750. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7751. return;
  7752. }
  7753. const int nr = ggml_nrows(src0);
  7754. GGML_TENSOR_BINARY_OP_LOCALS;
  7755. GGML_ASSERT( nb0 == sizeof(float));
  7756. GGML_ASSERT(nb00 == sizeof(float));
  7757. if (nb10 == sizeof(float)) {
  7758. for (int ir = 0; ir < nr; ++ir) {
  7759. // src0, src1 and dst are same shape => same indices
  7760. const int i3 = ir/(ne2*ne1);
  7761. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7762. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7763. #ifdef GGML_USE_ACCELERATE
  7764. UNUSED(ggml_vec_div_f32);
  7765. vDSP_vdiv(
  7766. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7767. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7768. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7769. ne0);
  7770. #else
  7771. ggml_vec_div_f32(ne0,
  7772. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7773. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7774. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7775. #endif
  7776. // }
  7777. // }
  7778. }
  7779. } else {
  7780. // src1 is not contiguous
  7781. for (int ir = 0; ir < nr; ++ir) {
  7782. // src0, src1 and dst are same shape => same indices
  7783. const int i3 = ir/(ne2*ne1);
  7784. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7785. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7786. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7787. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7788. for (int i0 = 0; i0 < ne0; i0++) {
  7789. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7790. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7791. }
  7792. }
  7793. }
  7794. }
  7795. static void ggml_compute_forward_div(
  7796. const struct ggml_compute_params * params,
  7797. const struct ggml_tensor * src0,
  7798. const struct ggml_tensor * src1,
  7799. struct ggml_tensor * dst) {
  7800. switch (src0->type) {
  7801. case GGML_TYPE_F32:
  7802. {
  7803. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7804. } break;
  7805. default:
  7806. {
  7807. GGML_ASSERT(false);
  7808. } break;
  7809. }
  7810. }
  7811. // ggml_compute_forward_sqr
  7812. static void ggml_compute_forward_sqr_f32(
  7813. const struct ggml_compute_params * params,
  7814. const struct ggml_tensor * src0,
  7815. struct ggml_tensor * dst) {
  7816. assert(params->ith == 0);
  7817. assert(ggml_are_same_shape(src0, dst));
  7818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7819. return;
  7820. }
  7821. const int n = ggml_nrows(src0);
  7822. const int nc = src0->ne[0];
  7823. assert( dst->nb[0] == sizeof(float));
  7824. assert(src0->nb[0] == sizeof(float));
  7825. for (int i = 0; i < n; i++) {
  7826. ggml_vec_sqr_f32(nc,
  7827. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7828. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7829. }
  7830. }
  7831. static void ggml_compute_forward_sqr(
  7832. const struct ggml_compute_params * params,
  7833. const struct ggml_tensor * src0,
  7834. struct ggml_tensor * dst) {
  7835. switch (src0->type) {
  7836. case GGML_TYPE_F32:
  7837. {
  7838. ggml_compute_forward_sqr_f32(params, src0, dst);
  7839. } break;
  7840. default:
  7841. {
  7842. GGML_ASSERT(false);
  7843. } break;
  7844. }
  7845. }
  7846. // ggml_compute_forward_sqrt
  7847. static void ggml_compute_forward_sqrt_f32(
  7848. const struct ggml_compute_params * params,
  7849. const struct ggml_tensor * src0,
  7850. struct ggml_tensor * dst) {
  7851. assert(params->ith == 0);
  7852. assert(ggml_are_same_shape(src0, dst));
  7853. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7854. return;
  7855. }
  7856. const int n = ggml_nrows(src0);
  7857. const int nc = src0->ne[0];
  7858. assert( dst->nb[0] == sizeof(float));
  7859. assert(src0->nb[0] == sizeof(float));
  7860. for (int i = 0; i < n; i++) {
  7861. ggml_vec_sqrt_f32(nc,
  7862. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7863. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7864. }
  7865. }
  7866. static void ggml_compute_forward_sqrt(
  7867. const struct ggml_compute_params * params,
  7868. const struct ggml_tensor * src0,
  7869. struct ggml_tensor * dst) {
  7870. switch (src0->type) {
  7871. case GGML_TYPE_F32:
  7872. {
  7873. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7874. } break;
  7875. default:
  7876. {
  7877. GGML_ASSERT(false);
  7878. } break;
  7879. }
  7880. }
  7881. // ggml_compute_forward_log
  7882. static void ggml_compute_forward_log_f32(
  7883. const struct ggml_compute_params * params,
  7884. const struct ggml_tensor * src0,
  7885. struct ggml_tensor * dst) {
  7886. GGML_ASSERT(params->ith == 0);
  7887. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7889. return;
  7890. }
  7891. const int n = ggml_nrows(src0);
  7892. const int nc = src0->ne[0];
  7893. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7894. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7895. for (int i = 0; i < n; i++) {
  7896. ggml_vec_log_f32(nc,
  7897. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7898. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7899. }
  7900. }
  7901. static void ggml_compute_forward_log(
  7902. const struct ggml_compute_params * params,
  7903. const struct ggml_tensor * src0,
  7904. struct ggml_tensor * dst) {
  7905. switch (src0->type) {
  7906. case GGML_TYPE_F32:
  7907. {
  7908. ggml_compute_forward_log_f32(params, src0, dst);
  7909. } break;
  7910. default:
  7911. {
  7912. GGML_ASSERT(false);
  7913. } break;
  7914. }
  7915. }
  7916. // ggml_compute_forward_sum
  7917. static void ggml_compute_forward_sum_f32(
  7918. const struct ggml_compute_params * params,
  7919. const struct ggml_tensor * src0,
  7920. struct ggml_tensor * dst) {
  7921. assert(params->ith == 0);
  7922. assert(ggml_is_scalar(dst));
  7923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7924. return;
  7925. }
  7926. assert(ggml_is_scalar(dst));
  7927. assert(src0->nb[0] == sizeof(float));
  7928. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7929. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7930. ggml_float sum = 0;
  7931. ggml_float row_sum = 0;
  7932. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7933. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7934. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7935. ggml_vec_sum_f32_ggf(ne00,
  7936. &row_sum,
  7937. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7938. sum += row_sum;
  7939. }
  7940. }
  7941. }
  7942. ((float *) dst->data)[0] = sum;
  7943. }
  7944. static void ggml_compute_forward_sum_f16(
  7945. const struct ggml_compute_params * params,
  7946. const struct ggml_tensor * src0,
  7947. struct ggml_tensor * dst) {
  7948. assert(params->ith == 0);
  7949. assert(ggml_is_scalar(dst));
  7950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7951. return;
  7952. }
  7953. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7954. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7955. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7956. float sum = 0;
  7957. float row_sum = 0;
  7958. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7959. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7960. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7961. ggml_vec_sum_f16_ggf(ne00,
  7962. &row_sum,
  7963. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7964. sum += row_sum;
  7965. }
  7966. }
  7967. }
  7968. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7969. }
  7970. static void ggml_compute_forward_sum(
  7971. const struct ggml_compute_params * params,
  7972. const struct ggml_tensor * src0,
  7973. struct ggml_tensor * dst) {
  7974. switch (src0->type) {
  7975. case GGML_TYPE_F32:
  7976. {
  7977. ggml_compute_forward_sum_f32(params, src0, dst);
  7978. } break;
  7979. case GGML_TYPE_F16:
  7980. {
  7981. ggml_compute_forward_sum_f16(params, src0, dst);
  7982. } break;
  7983. default:
  7984. {
  7985. GGML_ASSERT(false);
  7986. } break;
  7987. }
  7988. }
  7989. // ggml_compute_forward_sum_rows
  7990. static void ggml_compute_forward_sum_rows_f32(
  7991. const struct ggml_compute_params * params,
  7992. const struct ggml_tensor * src0,
  7993. struct ggml_tensor * dst) {
  7994. GGML_ASSERT(params->ith == 0);
  7995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7996. return;
  7997. }
  7998. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7999. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8000. GGML_TENSOR_UNARY_OP_LOCALS;
  8001. GGML_ASSERT(ne0 == 1);
  8002. GGML_ASSERT(ne1 == ne01);
  8003. GGML_ASSERT(ne2 == ne02);
  8004. GGML_ASSERT(ne3 == ne03);
  8005. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8006. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8007. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8008. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8009. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8010. float row_sum = 0;
  8011. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8012. dst_row[0] = row_sum;
  8013. }
  8014. }
  8015. }
  8016. }
  8017. static void ggml_compute_forward_sum_rows(
  8018. const struct ggml_compute_params * params,
  8019. const struct ggml_tensor * src0,
  8020. struct ggml_tensor * dst) {
  8021. switch (src0->type) {
  8022. case GGML_TYPE_F32:
  8023. {
  8024. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8025. } break;
  8026. default:
  8027. {
  8028. GGML_ASSERT(false);
  8029. } break;
  8030. }
  8031. }
  8032. // ggml_compute_forward_mean
  8033. static void ggml_compute_forward_mean_f32(
  8034. const struct ggml_compute_params * params,
  8035. const struct ggml_tensor * src0,
  8036. struct ggml_tensor * dst) {
  8037. assert(params->ith == 0);
  8038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8039. return;
  8040. }
  8041. assert(src0->nb[0] == sizeof(float));
  8042. GGML_TENSOR_UNARY_OP_LOCALS;
  8043. assert(ne0 == 1);
  8044. assert(ne1 == ne01);
  8045. assert(ne2 == ne02);
  8046. assert(ne3 == ne03);
  8047. UNUSED(ne0);
  8048. UNUSED(ne1);
  8049. UNUSED(ne2);
  8050. UNUSED(ne3);
  8051. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8052. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8053. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8054. ggml_vec_sum_f32(ne00,
  8055. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8056. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8057. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8058. }
  8059. }
  8060. }
  8061. }
  8062. static void ggml_compute_forward_mean(
  8063. const struct ggml_compute_params * params,
  8064. const struct ggml_tensor * src0,
  8065. struct ggml_tensor * dst) {
  8066. switch (src0->type) {
  8067. case GGML_TYPE_F32:
  8068. {
  8069. ggml_compute_forward_mean_f32(params, src0, dst);
  8070. } break;
  8071. default:
  8072. {
  8073. GGML_ASSERT(false);
  8074. } break;
  8075. }
  8076. }
  8077. // ggml_compute_forward_argmax
  8078. static void ggml_compute_forward_argmax_f32(
  8079. const struct ggml_compute_params * params,
  8080. const struct ggml_tensor * src0,
  8081. struct ggml_tensor * dst) {
  8082. assert(params->ith == 0);
  8083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8084. return;
  8085. }
  8086. assert(src0->nb[0] == sizeof(float));
  8087. assert(dst->nb[0] == sizeof(float));
  8088. const int64_t ne00 = src0->ne[0];
  8089. const int64_t ne01 = src0->ne[1];
  8090. const size_t nb01 = src0->nb[1];
  8091. const size_t nb0 = dst->nb[0];
  8092. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8093. float * src = (float *) ((char *) src0->data + i1*nb01);
  8094. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8095. int v = 0;
  8096. ggml_vec_argmax_f32(ne00, &v, src);
  8097. dst_[0] = v;
  8098. }
  8099. }
  8100. static void ggml_compute_forward_argmax(
  8101. const struct ggml_compute_params * params,
  8102. const struct ggml_tensor * src0,
  8103. struct ggml_tensor * dst) {
  8104. switch (src0->type) {
  8105. case GGML_TYPE_F32:
  8106. {
  8107. ggml_compute_forward_argmax_f32(params, src0, dst);
  8108. } break;
  8109. default:
  8110. {
  8111. GGML_ASSERT(false);
  8112. } break;
  8113. }
  8114. }
  8115. // ggml_compute_forward_repeat
  8116. static void ggml_compute_forward_repeat_f32(
  8117. const struct ggml_compute_params * params,
  8118. const struct ggml_tensor * src0,
  8119. struct ggml_tensor * dst) {
  8120. GGML_ASSERT(params->ith == 0);
  8121. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8123. return;
  8124. }
  8125. GGML_TENSOR_UNARY_OP_LOCALS;
  8126. // guaranteed to be an integer due to the check in ggml_can_repeat
  8127. const int nr0 = (int)(ne0/ne00);
  8128. const int nr1 = (int)(ne1/ne01);
  8129. const int nr2 = (int)(ne2/ne02);
  8130. const int nr3 = (int)(ne3/ne03);
  8131. // TODO: support for transposed / permuted tensors
  8132. GGML_ASSERT(nb0 == sizeof(float));
  8133. GGML_ASSERT(nb00 == sizeof(float));
  8134. // TODO: maybe this is not optimal?
  8135. for (int i3 = 0; i3 < nr3; i3++) {
  8136. for (int k3 = 0; k3 < ne03; k3++) {
  8137. for (int i2 = 0; i2 < nr2; i2++) {
  8138. for (int k2 = 0; k2 < ne02; k2++) {
  8139. for (int i1 = 0; i1 < nr1; i1++) {
  8140. for (int k1 = 0; k1 < ne01; k1++) {
  8141. for (int i0 = 0; i0 < nr0; i0++) {
  8142. ggml_vec_cpy_f32(ne00,
  8143. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8144. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8145. }
  8146. }
  8147. }
  8148. }
  8149. }
  8150. }
  8151. }
  8152. }
  8153. static void ggml_compute_forward_repeat(
  8154. const struct ggml_compute_params * params,
  8155. const struct ggml_tensor * src0,
  8156. struct ggml_tensor * dst) {
  8157. switch (src0->type) {
  8158. case GGML_TYPE_F32:
  8159. {
  8160. ggml_compute_forward_repeat_f32(params, src0, dst);
  8161. } break;
  8162. default:
  8163. {
  8164. GGML_ASSERT(false);
  8165. } break;
  8166. }
  8167. }
  8168. // ggml_compute_forward_repeat_back
  8169. static void ggml_compute_forward_repeat_back_f32(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * src0,
  8172. struct ggml_tensor * dst) {
  8173. GGML_ASSERT(params->ith == 0);
  8174. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8176. return;
  8177. }
  8178. GGML_TENSOR_UNARY_OP_LOCALS;
  8179. // guaranteed to be an integer due to the check in ggml_can_repeat
  8180. const int nr0 = (int)(ne00/ne0);
  8181. const int nr1 = (int)(ne01/ne1);
  8182. const int nr2 = (int)(ne02/ne2);
  8183. const int nr3 = (int)(ne03/ne3);
  8184. // TODO: support for transposed / permuted tensors
  8185. GGML_ASSERT(nb0 == sizeof(float));
  8186. GGML_ASSERT(nb00 == sizeof(float));
  8187. if (ggml_is_contiguous(dst)) {
  8188. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8189. } else {
  8190. for (int k3 = 0; k3 < ne3; k3++) {
  8191. for (int k2 = 0; k2 < ne2; k2++) {
  8192. for (int k1 = 0; k1 < ne1; k1++) {
  8193. ggml_vec_set_f32(ne0,
  8194. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8195. 0);
  8196. }
  8197. }
  8198. }
  8199. }
  8200. // TODO: maybe this is not optimal?
  8201. for (int i3 = 0; i3 < nr3; i3++) {
  8202. for (int k3 = 0; k3 < ne3; k3++) {
  8203. for (int i2 = 0; i2 < nr2; i2++) {
  8204. for (int k2 = 0; k2 < ne2; k2++) {
  8205. for (int i1 = 0; i1 < nr1; i1++) {
  8206. for (int k1 = 0; k1 < ne1; k1++) {
  8207. for (int i0 = 0; i0 < nr0; i0++) {
  8208. ggml_vec_acc_f32(ne0,
  8209. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8210. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8211. }
  8212. }
  8213. }
  8214. }
  8215. }
  8216. }
  8217. }
  8218. }
  8219. static void ggml_compute_forward_repeat_back(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. struct ggml_tensor * dst) {
  8223. switch (src0->type) {
  8224. case GGML_TYPE_F32:
  8225. {
  8226. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8227. } break;
  8228. default:
  8229. {
  8230. GGML_ASSERT(false);
  8231. } break;
  8232. }
  8233. }
  8234. // ggml_compute_forward_concat
  8235. static void ggml_compute_forward_concat_f32(
  8236. const struct ggml_compute_params * params,
  8237. const struct ggml_tensor * src0,
  8238. const struct ggml_tensor * src1,
  8239. struct ggml_tensor * dst) {
  8240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8241. return;
  8242. }
  8243. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8244. const int ith = params->ith;
  8245. GGML_TENSOR_BINARY_OP_LOCALS;
  8246. // TODO: support for transposed / permuted tensors
  8247. GGML_ASSERT(nb0 == sizeof(float));
  8248. GGML_ASSERT(nb00 == sizeof(float));
  8249. GGML_ASSERT(nb10 == sizeof(float));
  8250. for (int i3 = 0; i3 < ne3; i3++) {
  8251. for (int i2 = ith; i2 < ne2; i2++) {
  8252. if (i2 < ne02) { // src0
  8253. for (int i1 = 0; i1 < ne1; i1++) {
  8254. for (int i0 = 0; i0 < ne0; i0++) {
  8255. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8256. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8257. *y = *x;
  8258. }
  8259. }
  8260. } // src1
  8261. else {
  8262. for (int i1 = 0; i1 < ne1; i1++) {
  8263. for (int i0 = 0; i0 < ne0; i0++) {
  8264. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8265. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8266. *y = *x;
  8267. }
  8268. }
  8269. }
  8270. }
  8271. }
  8272. }
  8273. static void ggml_compute_forward_concat(
  8274. const struct ggml_compute_params* params,
  8275. const struct ggml_tensor* src0,
  8276. const struct ggml_tensor* src1,
  8277. struct ggml_tensor* dst) {
  8278. switch (src0->type) {
  8279. case GGML_TYPE_F32:
  8280. {
  8281. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8282. } break;
  8283. default:
  8284. {
  8285. GGML_ASSERT(false);
  8286. } break;
  8287. }
  8288. }
  8289. // ggml_compute_forward_abs
  8290. static void ggml_compute_forward_abs_f32(
  8291. const struct ggml_compute_params * params,
  8292. const struct ggml_tensor * src0,
  8293. struct ggml_tensor * dst) {
  8294. assert(params->ith == 0);
  8295. assert(ggml_are_same_shape(src0, dst));
  8296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8297. return;
  8298. }
  8299. const int n = ggml_nrows(src0);
  8300. const int nc = src0->ne[0];
  8301. assert(dst->nb[0] == sizeof(float));
  8302. assert(src0->nb[0] == sizeof(float));
  8303. for (int i = 0; i < n; i++) {
  8304. ggml_vec_abs_f32(nc,
  8305. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8306. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8307. }
  8308. }
  8309. static void ggml_compute_forward_abs(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. struct ggml_tensor * dst) {
  8313. switch (src0->type) {
  8314. case GGML_TYPE_F32:
  8315. {
  8316. ggml_compute_forward_abs_f32(params, src0, dst);
  8317. } break;
  8318. default:
  8319. {
  8320. GGML_ASSERT(false);
  8321. } break;
  8322. }
  8323. }
  8324. // ggml_compute_forward_sgn
  8325. static void ggml_compute_forward_sgn_f32(
  8326. const struct ggml_compute_params * params,
  8327. const struct ggml_tensor * src0,
  8328. struct ggml_tensor * dst) {
  8329. assert(params->ith == 0);
  8330. assert(ggml_are_same_shape(src0, dst));
  8331. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8332. return;
  8333. }
  8334. const int n = ggml_nrows(src0);
  8335. const int nc = src0->ne[0];
  8336. assert(dst->nb[0] == sizeof(float));
  8337. assert(src0->nb[0] == sizeof(float));
  8338. for (int i = 0; i < n; i++) {
  8339. ggml_vec_sgn_f32(nc,
  8340. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8341. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8342. }
  8343. }
  8344. static void ggml_compute_forward_sgn(
  8345. const struct ggml_compute_params * params,
  8346. const struct ggml_tensor * src0,
  8347. struct ggml_tensor * dst) {
  8348. switch (src0->type) {
  8349. case GGML_TYPE_F32:
  8350. {
  8351. ggml_compute_forward_sgn_f32(params, src0, dst);
  8352. } break;
  8353. default:
  8354. {
  8355. GGML_ASSERT(false);
  8356. } break;
  8357. }
  8358. }
  8359. // ggml_compute_forward_neg
  8360. static void ggml_compute_forward_neg_f32(
  8361. const struct ggml_compute_params * params,
  8362. const struct ggml_tensor * src0,
  8363. struct ggml_tensor * dst) {
  8364. assert(params->ith == 0);
  8365. assert(ggml_are_same_shape(src0, dst));
  8366. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8367. return;
  8368. }
  8369. const int n = ggml_nrows(src0);
  8370. const int nc = src0->ne[0];
  8371. assert(dst->nb[0] == sizeof(float));
  8372. assert(src0->nb[0] == sizeof(float));
  8373. for (int i = 0; i < n; i++) {
  8374. ggml_vec_neg_f32(nc,
  8375. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8376. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8377. }
  8378. }
  8379. static void ggml_compute_forward_neg(
  8380. const struct ggml_compute_params * params,
  8381. const struct ggml_tensor * src0,
  8382. struct ggml_tensor * dst) {
  8383. switch (src0->type) {
  8384. case GGML_TYPE_F32:
  8385. {
  8386. ggml_compute_forward_neg_f32(params, src0, dst);
  8387. } break;
  8388. default:
  8389. {
  8390. GGML_ASSERT(false);
  8391. } break;
  8392. }
  8393. }
  8394. // ggml_compute_forward_step
  8395. static void ggml_compute_forward_step_f32(
  8396. const struct ggml_compute_params * params,
  8397. const struct ggml_tensor * src0,
  8398. struct ggml_tensor * dst) {
  8399. assert(params->ith == 0);
  8400. assert(ggml_are_same_shape(src0, dst));
  8401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8402. return;
  8403. }
  8404. const int n = ggml_nrows(src0);
  8405. const int nc = src0->ne[0];
  8406. assert(dst->nb[0] == sizeof(float));
  8407. assert(src0->nb[0] == sizeof(float));
  8408. for (int i = 0; i < n; i++) {
  8409. ggml_vec_step_f32(nc,
  8410. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8411. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8412. }
  8413. }
  8414. static void ggml_compute_forward_step(
  8415. const struct ggml_compute_params * params,
  8416. const struct ggml_tensor * src0,
  8417. struct ggml_tensor * dst) {
  8418. switch (src0->type) {
  8419. case GGML_TYPE_F32:
  8420. {
  8421. ggml_compute_forward_step_f32(params, src0, dst);
  8422. } break;
  8423. default:
  8424. {
  8425. GGML_ASSERT(false);
  8426. } break;
  8427. }
  8428. }
  8429. // ggml_compute_forward_tanh
  8430. static void ggml_compute_forward_tanh_f32(
  8431. const struct ggml_compute_params * params,
  8432. const struct ggml_tensor * src0,
  8433. struct ggml_tensor * dst) {
  8434. assert(params->ith == 0);
  8435. assert(ggml_are_same_shape(src0, dst));
  8436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8437. return;
  8438. }
  8439. const int n = ggml_nrows(src0);
  8440. const int nc = src0->ne[0];
  8441. assert(dst->nb[0] == sizeof(float));
  8442. assert(src0->nb[0] == sizeof(float));
  8443. for (int i = 0; i < n; i++) {
  8444. ggml_vec_tanh_f32(nc,
  8445. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8446. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8447. }
  8448. }
  8449. static void ggml_compute_forward_tanh(
  8450. const struct ggml_compute_params * params,
  8451. const struct ggml_tensor * src0,
  8452. struct ggml_tensor * dst) {
  8453. switch (src0->type) {
  8454. case GGML_TYPE_F32:
  8455. {
  8456. ggml_compute_forward_tanh_f32(params, src0, dst);
  8457. } break;
  8458. default:
  8459. {
  8460. GGML_ASSERT(false);
  8461. } break;
  8462. }
  8463. }
  8464. // ggml_compute_forward_elu
  8465. static void ggml_compute_forward_elu_f32(
  8466. const struct ggml_compute_params * params,
  8467. const struct ggml_tensor * src0,
  8468. struct ggml_tensor * dst) {
  8469. assert(params->ith == 0);
  8470. assert(ggml_are_same_shape(src0, dst));
  8471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8472. return;
  8473. }
  8474. const int n = ggml_nrows(src0);
  8475. const int nc = src0->ne[0];
  8476. assert(dst->nb[0] == sizeof(float));
  8477. assert(src0->nb[0] == sizeof(float));
  8478. for (int i = 0; i < n; i++) {
  8479. ggml_vec_elu_f32(nc,
  8480. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8481. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8482. }
  8483. }
  8484. static void ggml_compute_forward_elu(
  8485. const struct ggml_compute_params * params,
  8486. const struct ggml_tensor * src0,
  8487. struct ggml_tensor * dst) {
  8488. switch (src0->type) {
  8489. case GGML_TYPE_F32:
  8490. {
  8491. ggml_compute_forward_elu_f32(params, src0, dst);
  8492. } break;
  8493. default:
  8494. {
  8495. GGML_ASSERT(false);
  8496. } break;
  8497. }
  8498. }
  8499. // ggml_compute_forward_relu
  8500. static void ggml_compute_forward_relu_f32(
  8501. const struct ggml_compute_params * params,
  8502. const struct ggml_tensor * src0,
  8503. struct ggml_tensor * dst) {
  8504. assert(params->ith == 0);
  8505. assert(ggml_are_same_shape(src0, dst));
  8506. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8507. return;
  8508. }
  8509. const int n = ggml_nrows(src0);
  8510. const int nc = src0->ne[0];
  8511. assert(dst->nb[0] == sizeof(float));
  8512. assert(src0->nb[0] == sizeof(float));
  8513. for (int i = 0; i < n; i++) {
  8514. ggml_vec_relu_f32(nc,
  8515. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8516. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8517. }
  8518. }
  8519. static void ggml_compute_forward_relu(
  8520. const struct ggml_compute_params * params,
  8521. const struct ggml_tensor * src0,
  8522. struct ggml_tensor * dst) {
  8523. switch (src0->type) {
  8524. case GGML_TYPE_F32:
  8525. {
  8526. ggml_compute_forward_relu_f32(params, src0, dst);
  8527. } break;
  8528. default:
  8529. {
  8530. GGML_ASSERT(false);
  8531. } break;
  8532. }
  8533. }
  8534. // ggml_compute_forward_gelu
  8535. static void ggml_compute_forward_gelu_f32(
  8536. const struct ggml_compute_params * params,
  8537. const struct ggml_tensor * src0,
  8538. struct ggml_tensor * dst) {
  8539. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8540. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8541. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8543. return;
  8544. }
  8545. const int ith = params->ith;
  8546. const int nth = params->nth;
  8547. const int nc = src0->ne[0];
  8548. const int nr = ggml_nrows(src0);
  8549. // rows per thread
  8550. const int dr = (nr + nth - 1)/nth;
  8551. // row range for this thread
  8552. const int ir0 = dr*ith;
  8553. const int ir1 = MIN(ir0 + dr, nr);
  8554. for (int i1 = ir0; i1 < ir1; i1++) {
  8555. ggml_vec_gelu_f32(nc,
  8556. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8557. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8558. #ifndef NDEBUG
  8559. for (int k = 0; k < nc; k++) {
  8560. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8561. UNUSED(x);
  8562. assert(!isnan(x));
  8563. assert(!isinf(x));
  8564. }
  8565. #endif
  8566. }
  8567. }
  8568. static void ggml_compute_forward_gelu(
  8569. const struct ggml_compute_params * params,
  8570. const struct ggml_tensor * src0,
  8571. struct ggml_tensor * dst) {
  8572. switch (src0->type) {
  8573. case GGML_TYPE_F32:
  8574. {
  8575. ggml_compute_forward_gelu_f32(params, src0, dst);
  8576. } break;
  8577. default:
  8578. {
  8579. GGML_ASSERT(false);
  8580. } break;
  8581. }
  8582. }
  8583. // ggml_compute_forward_gelu_quick
  8584. static void ggml_compute_forward_gelu_quick_f32(
  8585. const struct ggml_compute_params * params,
  8586. const struct ggml_tensor * src0,
  8587. struct ggml_tensor * dst) {
  8588. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8589. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8590. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8592. return;
  8593. }
  8594. const int ith = params->ith;
  8595. const int nth = params->nth;
  8596. const int nc = src0->ne[0];
  8597. const int nr = ggml_nrows(src0);
  8598. // rows per thread
  8599. const int dr = (nr + nth - 1)/nth;
  8600. // row range for this thread
  8601. const int ir0 = dr*ith;
  8602. const int ir1 = MIN(ir0 + dr, nr);
  8603. for (int i1 = ir0; i1 < ir1; i1++) {
  8604. ggml_vec_gelu_quick_f32(nc,
  8605. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8606. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8607. #ifndef NDEBUG
  8608. for (int k = 0; k < nc; k++) {
  8609. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8610. UNUSED(x);
  8611. assert(!isnan(x));
  8612. assert(!isinf(x));
  8613. }
  8614. #endif
  8615. }
  8616. }
  8617. static void ggml_compute_forward_gelu_quick(
  8618. const struct ggml_compute_params * params,
  8619. const struct ggml_tensor * src0,
  8620. struct ggml_tensor * dst) {
  8621. switch (src0->type) {
  8622. case GGML_TYPE_F32:
  8623. {
  8624. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8625. } break;
  8626. default:
  8627. {
  8628. GGML_ASSERT(false);
  8629. } break;
  8630. }
  8631. }
  8632. // ggml_compute_forward_silu
  8633. static void ggml_compute_forward_silu_f32(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * src0,
  8636. struct ggml_tensor * dst) {
  8637. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8638. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8639. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8641. return;
  8642. }
  8643. const int ith = params->ith;
  8644. const int nth = params->nth;
  8645. const int nc = src0->ne[0];
  8646. const int nr = ggml_nrows(src0);
  8647. // rows per thread
  8648. const int dr = (nr + nth - 1)/nth;
  8649. // row range for this thread
  8650. const int ir0 = dr*ith;
  8651. const int ir1 = MIN(ir0 + dr, nr);
  8652. for (int i1 = ir0; i1 < ir1; i1++) {
  8653. ggml_vec_silu_f32(nc,
  8654. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8655. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8656. #ifndef NDEBUG
  8657. for (int k = 0; k < nc; k++) {
  8658. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8659. UNUSED(x);
  8660. assert(!isnan(x));
  8661. assert(!isinf(x));
  8662. }
  8663. #endif
  8664. }
  8665. }
  8666. static void ggml_compute_forward_silu(
  8667. const struct ggml_compute_params * params,
  8668. const struct ggml_tensor * src0,
  8669. struct ggml_tensor * dst) {
  8670. switch (src0->type) {
  8671. case GGML_TYPE_F32:
  8672. {
  8673. ggml_compute_forward_silu_f32(params, src0, dst);
  8674. } break;
  8675. default:
  8676. {
  8677. GGML_ASSERT(false);
  8678. } break;
  8679. }
  8680. }
  8681. // ggml_compute_forward_silu_back
  8682. static void ggml_compute_forward_silu_back_f32(
  8683. const struct ggml_compute_params * params,
  8684. const struct ggml_tensor * src0,
  8685. const struct ggml_tensor * grad,
  8686. struct ggml_tensor * dst) {
  8687. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8688. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8689. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8690. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8691. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8693. return;
  8694. }
  8695. const int ith = params->ith;
  8696. const int nth = params->nth;
  8697. const int nc = src0->ne[0];
  8698. const int nr = ggml_nrows(src0);
  8699. // rows per thread
  8700. const int dr = (nr + nth - 1)/nth;
  8701. // row range for this thread
  8702. const int ir0 = dr*ith;
  8703. const int ir1 = MIN(ir0 + dr, nr);
  8704. for (int i1 = ir0; i1 < ir1; i1++) {
  8705. ggml_vec_silu_backward_f32(nc,
  8706. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8707. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8708. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8709. #ifndef NDEBUG
  8710. for (int k = 0; k < nc; k++) {
  8711. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8712. UNUSED(x);
  8713. assert(!isnan(x));
  8714. assert(!isinf(x));
  8715. }
  8716. #endif
  8717. }
  8718. }
  8719. static void ggml_compute_forward_silu_back(
  8720. const struct ggml_compute_params * params,
  8721. const struct ggml_tensor * src0,
  8722. const struct ggml_tensor * grad,
  8723. struct ggml_tensor * dst) {
  8724. switch (src0->type) {
  8725. case GGML_TYPE_F32:
  8726. {
  8727. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8728. } break;
  8729. default:
  8730. {
  8731. GGML_ASSERT(false);
  8732. } break;
  8733. }
  8734. }
  8735. // ggml_compute_forward_norm
  8736. static void ggml_compute_forward_norm_f32(
  8737. const struct ggml_compute_params * params,
  8738. const struct ggml_tensor * src0,
  8739. struct ggml_tensor * dst) {
  8740. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8742. return;
  8743. }
  8744. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8745. const int ith = params->ith;
  8746. const int nth = params->nth;
  8747. GGML_TENSOR_UNARY_OP_LOCALS;
  8748. float eps;
  8749. memcpy(&eps, dst->op_params, sizeof(float));
  8750. // TODO: optimize
  8751. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8752. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8753. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8754. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8755. ggml_float sum = 0.0;
  8756. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8757. sum += (ggml_float)x[i00];
  8758. }
  8759. float mean = sum/ne00;
  8760. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8761. ggml_float sum2 = 0.0;
  8762. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8763. float v = x[i00] - mean;
  8764. y[i00] = v;
  8765. sum2 += (ggml_float)(v*v);
  8766. }
  8767. float variance = sum2/ne00;
  8768. const float scale = 1.0f/sqrtf(variance + eps);
  8769. ggml_vec_scale_f32(ne00, y, scale);
  8770. }
  8771. }
  8772. }
  8773. }
  8774. static void ggml_compute_forward_norm(
  8775. const struct ggml_compute_params * params,
  8776. const struct ggml_tensor * src0,
  8777. struct ggml_tensor * dst) {
  8778. switch (src0->type) {
  8779. case GGML_TYPE_F32:
  8780. {
  8781. ggml_compute_forward_norm_f32(params, src0, dst);
  8782. } break;
  8783. default:
  8784. {
  8785. GGML_ASSERT(false);
  8786. } break;
  8787. }
  8788. }
  8789. // ggml_compute_forward_group_rms_norm
  8790. static void ggml_compute_forward_rms_norm_f32(
  8791. const struct ggml_compute_params * params,
  8792. const struct ggml_tensor * src0,
  8793. struct ggml_tensor * dst) {
  8794. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8796. return;
  8797. }
  8798. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8799. const int ith = params->ith;
  8800. const int nth = params->nth;
  8801. GGML_TENSOR_UNARY_OP_LOCALS;
  8802. float eps;
  8803. memcpy(&eps, dst->op_params, sizeof(float));
  8804. // TODO: optimize
  8805. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8806. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8807. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8808. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8809. ggml_float sum = 0.0;
  8810. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8811. sum += (ggml_float)(x[i00] * x[i00]);
  8812. }
  8813. const float mean = sum/ne00;
  8814. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8815. memcpy(y, x, ne00 * sizeof(float));
  8816. // for (int i00 = 0; i00 < ne00; i00++) {
  8817. // y[i00] = x[i00];
  8818. // }
  8819. const float scale = 1.0f/sqrtf(mean + eps);
  8820. ggml_vec_scale_f32(ne00, y, scale);
  8821. }
  8822. }
  8823. }
  8824. }
  8825. static void ggml_compute_forward_rms_norm(
  8826. const struct ggml_compute_params * params,
  8827. const struct ggml_tensor * src0,
  8828. struct ggml_tensor * dst) {
  8829. switch (src0->type) {
  8830. case GGML_TYPE_F32:
  8831. {
  8832. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8833. } break;
  8834. default:
  8835. {
  8836. GGML_ASSERT(false);
  8837. } break;
  8838. }
  8839. }
  8840. static void ggml_compute_forward_rms_norm_back_f32(
  8841. const struct ggml_compute_params * params,
  8842. const struct ggml_tensor * src0,
  8843. const struct ggml_tensor * src1,
  8844. struct ggml_tensor * dst) {
  8845. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8847. return;
  8848. }
  8849. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8850. const int ith = params->ith;
  8851. const int nth = params->nth;
  8852. GGML_TENSOR_BINARY_OP_LOCALS;
  8853. float eps;
  8854. memcpy(&eps, dst->op_params, sizeof(float));
  8855. // TODO: optimize
  8856. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8857. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8858. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8859. // src1 is same shape as src0 => same indices
  8860. const int64_t i11 = i01;
  8861. const int64_t i12 = i02;
  8862. const int64_t i13 = i03;
  8863. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8864. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8865. ggml_float sum_xx = 0.0;
  8866. ggml_float sum_xdz = 0.0;
  8867. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8868. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8869. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8870. }
  8871. //const float mean = (float)(sum_xx)/ne00;
  8872. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8873. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8874. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8875. // we could cache rms from forward pass to improve performance.
  8876. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8877. //const float rms = sqrtf(mean_eps);
  8878. const float rrms = 1.0f / sqrtf(mean_eps);
  8879. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8880. {
  8881. // z = rms_norm(x)
  8882. //
  8883. // rms_norm(src0) =
  8884. // scale(
  8885. // src0,
  8886. // div(
  8887. // 1,
  8888. // sqrt(
  8889. // add(
  8890. // scale(
  8891. // sum(
  8892. // sqr(
  8893. // src0)),
  8894. // (1.0/N)),
  8895. // eps))));
  8896. // postorder:
  8897. // ## op args grad
  8898. // 00 param src0 grad[#00]
  8899. // 01 const 1
  8900. // 02 sqr (#00) grad[#02]
  8901. // 03 sum (#02) grad[#03]
  8902. // 04 const 1/N
  8903. // 05 scale (#03, #04) grad[#05]
  8904. // 06 const eps
  8905. // 07 add (#05, #06) grad[#07]
  8906. // 08 sqrt (#07) grad[#08]
  8907. // 09 div (#01,#08) grad[#09]
  8908. // 10 scale (#00,#09) grad[#10]
  8909. //
  8910. // backward pass, given grad[#10]
  8911. // #10: scale
  8912. // grad[#00] += scale(grad[#10],#09)
  8913. // grad[#09] += sum(mul(grad[#10],#00))
  8914. // #09: div
  8915. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8916. // #08: sqrt
  8917. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8918. // #07: add
  8919. // grad[#05] += grad[#07]
  8920. // #05: scale
  8921. // grad[#03] += scale(grad[#05],#04)
  8922. // #03: sum
  8923. // grad[#02] += repeat(grad[#03], #02)
  8924. // #02:
  8925. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8926. //
  8927. // substitute and simplify:
  8928. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8929. // grad[#02] = repeat(grad[#03], #02)
  8930. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8931. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8932. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8933. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8934. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8935. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8936. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8937. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8938. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8939. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8940. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8941. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8942. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8943. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8944. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8945. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8946. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8947. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8948. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8949. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8950. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8951. // a = b*c + d*e
  8952. // a = b*c*f/f + d*e*f/f
  8953. // a = (b*c*f + d*e*f)*(1/f)
  8954. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8955. // a = (b + d*e/c)*c
  8956. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8957. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8958. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8959. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8960. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8961. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8962. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8963. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8964. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8965. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8966. }
  8967. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8968. // post-order:
  8969. // dx := x
  8970. // dx := scale(dx,-mean_xdz/mean_eps)
  8971. // dx := add(dx, dz)
  8972. // dx := scale(dx, rrms)
  8973. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8974. ggml_vec_cpy_f32 (ne00, dx, x);
  8975. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8976. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8977. ggml_vec_acc_f32 (ne00, dx, dz);
  8978. ggml_vec_scale_f32(ne00, dx, rrms);
  8979. }
  8980. }
  8981. }
  8982. }
  8983. static void ggml_compute_forward_rms_norm_back(
  8984. const struct ggml_compute_params * params,
  8985. const struct ggml_tensor * src0,
  8986. const struct ggml_tensor * src1,
  8987. struct ggml_tensor * dst) {
  8988. switch (src0->type) {
  8989. case GGML_TYPE_F32:
  8990. {
  8991. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8992. } break;
  8993. default:
  8994. {
  8995. GGML_ASSERT(false);
  8996. } break;
  8997. }
  8998. }
  8999. // ggml_compute_forward_group_norm
  9000. static void ggml_compute_forward_group_norm_f32(
  9001. const struct ggml_compute_params * params,
  9002. const struct ggml_tensor * src0,
  9003. struct ggml_tensor * dst) {
  9004. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9005. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9006. return;
  9007. }
  9008. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9009. const int ith = params->ith;
  9010. const int nth = params->nth;
  9011. GGML_TENSOR_UNARY_OP_LOCALS;
  9012. const float eps = 1e-6f; // TODO: make this a parameter
  9013. // TODO: optimize
  9014. int n_channels = src0->ne[2];
  9015. int n_groups = dst->op_params[0];
  9016. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9017. for (int i = ith; i < n_groups; i+=nth) {
  9018. int start = i * n_channels_per_group;
  9019. int end = start + n_channels_per_group;
  9020. if (end > n_channels) {
  9021. end = n_channels;
  9022. }
  9023. int step = end - start;
  9024. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9025. ggml_float sum = 0.0;
  9026. for (int64_t i02 = start; i02 < end; i02++) {
  9027. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9028. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9029. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9030. sum += (ggml_float)x[i00];
  9031. }
  9032. }
  9033. }
  9034. float mean = sum / (ne00 * ne01 * step);
  9035. ggml_float sum2 = 0.0;
  9036. for (int64_t i02 = start; i02 < end; i02++) {
  9037. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9038. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9039. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9040. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9041. float v = x[i00] - mean;
  9042. y[i00] = v;
  9043. sum2 += (ggml_float)(v * v);
  9044. }
  9045. }
  9046. }
  9047. float variance = sum2 / (ne00 * ne01 * step);
  9048. const float scale = 1.0f / sqrtf(variance + eps);
  9049. for (int64_t i02 = start; i02 < end; i02++) {
  9050. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9051. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9052. ggml_vec_scale_f32(ne00, y, scale);
  9053. }
  9054. }
  9055. }
  9056. }
  9057. }
  9058. static void ggml_compute_forward_group_norm(
  9059. const struct ggml_compute_params * params,
  9060. const struct ggml_tensor * src0,
  9061. struct ggml_tensor * dst) {
  9062. switch (src0->type) {
  9063. case GGML_TYPE_F32:
  9064. {
  9065. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9066. } break;
  9067. default:
  9068. {
  9069. GGML_ASSERT(false);
  9070. } break;
  9071. }
  9072. }
  9073. // ggml_compute_forward_mul_mat
  9074. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9075. // helper function to determine if it is better to use BLAS or not
  9076. // for large matrices, BLAS is faster
  9077. static bool ggml_compute_forward_mul_mat_use_blas(
  9078. const struct ggml_tensor * src0,
  9079. const struct ggml_tensor * src1,
  9080. struct ggml_tensor * dst) {
  9081. //const int64_t ne00 = src0->ne[0];
  9082. //const int64_t ne01 = src0->ne[1];
  9083. const int64_t ne10 = src1->ne[0];
  9084. const int64_t ne0 = dst->ne[0];
  9085. const int64_t ne1 = dst->ne[1];
  9086. // TODO: find the optimal values for these
  9087. if (ggml_is_contiguous(src0) &&
  9088. ggml_is_contiguous(src1) &&
  9089. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9090. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9091. return true;
  9092. }
  9093. return false;
  9094. }
  9095. #endif
  9096. static void ggml_compute_forward_mul_mat(
  9097. const struct ggml_compute_params * params,
  9098. const struct ggml_tensor * src0,
  9099. const struct ggml_tensor * src1,
  9100. struct ggml_tensor * dst) {
  9101. int64_t t0 = ggml_perf_time_us();
  9102. UNUSED(t0);
  9103. GGML_TENSOR_BINARY_OP_LOCALS;
  9104. const int ith = params->ith;
  9105. const int nth = params->nth;
  9106. const enum ggml_type type = src0->type;
  9107. const bool src1_cont = ggml_is_contiguous(src1);
  9108. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9109. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9110. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9111. GGML_ASSERT(ne0 == ne01);
  9112. GGML_ASSERT(ne1 == ne11);
  9113. GGML_ASSERT(ne2 == ne12);
  9114. GGML_ASSERT(ne3 == ne13);
  9115. // we don't support permuted src0 or src1
  9116. GGML_ASSERT(nb00 == ggml_type_size(type));
  9117. GGML_ASSERT(nb10 == sizeof(float));
  9118. // dst cannot be transposed or permuted
  9119. GGML_ASSERT(nb0 == sizeof(float));
  9120. GGML_ASSERT(nb0 <= nb1);
  9121. GGML_ASSERT(nb1 <= nb2);
  9122. GGML_ASSERT(nb2 <= nb3);
  9123. // broadcast factors
  9124. const int64_t r2 = ne12/ne02;
  9125. const int64_t r3 = ne13/ne03;
  9126. // nb01 >= nb00 - src0 is not transposed
  9127. // compute by src0 rows
  9128. #if defined(GGML_USE_CLBLAST)
  9129. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9130. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9131. // ref: https://github.com/ggerganov/ggml/pull/224
  9132. GGML_ASSERT(ne02 == ne12);
  9133. GGML_ASSERT(ne03 == ne13);
  9134. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9135. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9136. }
  9137. return;
  9138. }
  9139. #endif
  9140. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9141. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9142. if (params->ith != 0) {
  9143. return;
  9144. }
  9145. if (params->type == GGML_TASK_INIT) {
  9146. return;
  9147. }
  9148. if (params->type == GGML_TASK_FINALIZE) {
  9149. return;
  9150. }
  9151. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9152. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9153. // broadcast src0 into src1 across 2nd,3rd dimension
  9154. const int64_t i03 = i13/r3;
  9155. const int64_t i02 = i12/r2;
  9156. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9157. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9158. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9159. if (type != GGML_TYPE_F32) {
  9160. float * const wdata = params->wdata;
  9161. ggml_to_float_t const to_float = type_traits[type].to_float;
  9162. size_t id = 0;
  9163. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9164. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9165. id += ne00;
  9166. }
  9167. assert(id*sizeof(float) <= params->wsize);
  9168. x = wdata;
  9169. }
  9170. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9171. ne11, ne01, ne10,
  9172. 1.0f, y, ne10,
  9173. x, ne00,
  9174. 0.0f, d, ne01);
  9175. }
  9176. }
  9177. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9178. return;
  9179. }
  9180. #endif
  9181. if (params->type == GGML_TASK_INIT) {
  9182. if (src1->type != vec_dot_type) {
  9183. char * wdata = params->wdata;
  9184. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9185. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9186. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9187. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9188. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9189. wdata += row_size;
  9190. }
  9191. }
  9192. }
  9193. }
  9194. return;
  9195. }
  9196. if (params->type == GGML_TASK_FINALIZE) {
  9197. return;
  9198. }
  9199. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9200. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9201. const int64_t nr0 = ne01; // src0 rows
  9202. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9203. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9204. // distribute the thread work across the inner or outer loop based on which one is larger
  9205. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9206. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9207. const int64_t ith0 = ith % nth0;
  9208. const int64_t ith1 = ith / nth0;
  9209. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9210. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9211. const int64_t ir010 = dr0*ith0;
  9212. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9213. const int64_t ir110 = dr1*ith1;
  9214. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9215. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9216. // threads with no work simply yield (not sure if it helps)
  9217. if (ir010 >= ir011 || ir110 >= ir111) {
  9218. sched_yield();
  9219. return;
  9220. }
  9221. assert(ne12 % ne02 == 0);
  9222. assert(ne13 % ne03 == 0);
  9223. // block-tiling attempt
  9224. const int64_t blck_0 = 16;
  9225. const int64_t blck_1 = 16;
  9226. // attempt to reduce false-sharing (does not seem to make a difference)
  9227. float tmp[16];
  9228. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9229. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9230. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9231. const int64_t i13 = (ir1/(ne12*ne11));
  9232. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9233. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9234. // broadcast src0 into src1
  9235. const int64_t i03 = i13/r3;
  9236. const int64_t i02 = i12/r2;
  9237. const int64_t i1 = i11;
  9238. const int64_t i2 = i12;
  9239. const int64_t i3 = i13;
  9240. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9241. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9242. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9243. // the original src1 data pointer, so we should index using the indices directly
  9244. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9245. const char * src1_col = (const char *) wdata +
  9246. (src1_cont || src1->type != vec_dot_type
  9247. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9248. : (i11*nb11 + i12*nb12 + i13*nb13));
  9249. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9250. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9251. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9252. //}
  9253. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9254. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9255. }
  9256. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9257. }
  9258. }
  9259. }
  9260. }
  9261. // ggml_compute_forward_out_prod
  9262. static void ggml_compute_forward_out_prod_f32(
  9263. const struct ggml_compute_params * params,
  9264. const struct ggml_tensor * src0,
  9265. const struct ggml_tensor * src1,
  9266. struct ggml_tensor * dst) {
  9267. int64_t t0 = ggml_perf_time_us();
  9268. UNUSED(t0);
  9269. GGML_TENSOR_BINARY_OP_LOCALS;
  9270. const int ith = params->ith;
  9271. const int nth = params->nth;
  9272. GGML_ASSERT(ne02 == ne12);
  9273. GGML_ASSERT(ne03 == ne13);
  9274. GGML_ASSERT(ne2 == ne12);
  9275. GGML_ASSERT(ne3 == ne13);
  9276. // we don't support permuted src0 or src1
  9277. GGML_ASSERT(nb00 == sizeof(float));
  9278. // dst cannot be transposed or permuted
  9279. GGML_ASSERT(nb0 == sizeof(float));
  9280. // GGML_ASSERT(nb0 <= nb1);
  9281. // GGML_ASSERT(nb1 <= nb2);
  9282. // GGML_ASSERT(nb2 <= nb3);
  9283. GGML_ASSERT(ne0 == ne00);
  9284. GGML_ASSERT(ne1 == ne10);
  9285. GGML_ASSERT(ne2 == ne02);
  9286. GGML_ASSERT(ne3 == ne03);
  9287. // nb01 >= nb00 - src0 is not transposed
  9288. // compute by src0 rows
  9289. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9290. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9291. if (params->type == GGML_TASK_INIT) {
  9292. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9293. return;
  9294. }
  9295. if (params->type == GGML_TASK_FINALIZE) {
  9296. return;
  9297. }
  9298. // parallelize by last three dimensions
  9299. // total rows in dst
  9300. const int64_t nr = ne1*ne2*ne3;
  9301. // rows per thread
  9302. const int64_t dr = (nr + nth - 1)/nth;
  9303. // row range for this thread
  9304. const int64_t ir0 = dr*ith;
  9305. const int64_t ir1 = MIN(ir0 + dr, nr);
  9306. // dst[:,:,:,:] = 0
  9307. // for i2,i3:
  9308. // for i1:
  9309. // for i01:
  9310. // for i0:
  9311. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9312. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9313. // dst indices
  9314. const int64_t i3 = ir/(ne2*ne1);
  9315. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9316. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9317. const int64_t i02 = i2;
  9318. const int64_t i03 = i3;
  9319. //const int64_t i10 = i1;
  9320. const int64_t i12 = i2;
  9321. const int64_t i13 = i3;
  9322. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9323. const int64_t i11 = i01;
  9324. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9325. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9326. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9327. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9328. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9329. // d[i0] += s0[i0] * s1[i1];
  9330. // }
  9331. }
  9332. }
  9333. //int64_t t1 = ggml_perf_time_us();
  9334. //static int64_t acc = 0;
  9335. //acc += t1 - t0;
  9336. //if (t1 - t0 > 10) {
  9337. // printf("\n");
  9338. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9339. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9340. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9341. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9342. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9343. //}
  9344. }
  9345. static void ggml_compute_forward_out_prod(
  9346. const struct ggml_compute_params * params,
  9347. const struct ggml_tensor * src0,
  9348. const struct ggml_tensor * src1,
  9349. struct ggml_tensor * dst) {
  9350. switch (src0->type) {
  9351. case GGML_TYPE_Q4_0:
  9352. case GGML_TYPE_Q4_1:
  9353. case GGML_TYPE_Q5_0:
  9354. case GGML_TYPE_Q5_1:
  9355. case GGML_TYPE_Q8_0:
  9356. case GGML_TYPE_Q8_1:
  9357. {
  9358. GGML_ASSERT(false); // todo
  9359. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9360. } break;
  9361. case GGML_TYPE_F16:
  9362. {
  9363. GGML_ASSERT(false); // todo
  9364. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9365. } break;
  9366. case GGML_TYPE_F32:
  9367. {
  9368. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9369. } break;
  9370. default:
  9371. {
  9372. GGML_ASSERT(false);
  9373. } break;
  9374. }
  9375. }
  9376. // ggml_compute_forward_scale
  9377. static void ggml_compute_forward_scale_f32(
  9378. const struct ggml_compute_params * params,
  9379. const struct ggml_tensor * src0,
  9380. const struct ggml_tensor * src1,
  9381. struct ggml_tensor * dst) {
  9382. GGML_ASSERT(ggml_is_contiguous(src0));
  9383. GGML_ASSERT(ggml_is_contiguous(dst));
  9384. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9385. GGML_ASSERT(ggml_is_scalar(src1));
  9386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9387. return;
  9388. }
  9389. // scale factor
  9390. const float v = *(float *) src1->data;
  9391. const int ith = params->ith;
  9392. const int nth = params->nth;
  9393. const int nc = src0->ne[0];
  9394. const int nr = ggml_nrows(src0);
  9395. // rows per thread
  9396. const int dr = (nr + nth - 1)/nth;
  9397. // row range for this thread
  9398. const int ir0 = dr*ith;
  9399. const int ir1 = MIN(ir0 + dr, nr);
  9400. const size_t nb01 = src0->nb[1];
  9401. const size_t nb1 = dst->nb[1];
  9402. for (int i1 = ir0; i1 < ir1; i1++) {
  9403. if (dst->data != src0->data) {
  9404. // src0 is same shape as dst => same indices
  9405. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9406. }
  9407. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9408. }
  9409. }
  9410. static void ggml_compute_forward_scale(
  9411. const struct ggml_compute_params * params,
  9412. const struct ggml_tensor * src0,
  9413. const struct ggml_tensor * src1,
  9414. struct ggml_tensor * dst) {
  9415. switch (src0->type) {
  9416. case GGML_TYPE_F32:
  9417. {
  9418. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9419. } break;
  9420. default:
  9421. {
  9422. GGML_ASSERT(false);
  9423. } break;
  9424. }
  9425. }
  9426. // ggml_compute_forward_set
  9427. static void ggml_compute_forward_set_f32(
  9428. const struct ggml_compute_params * params,
  9429. const struct ggml_tensor * src0,
  9430. const struct ggml_tensor * src1,
  9431. struct ggml_tensor * dst) {
  9432. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9433. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9434. // view src0 and dst with these strides and data offset inbytes during set
  9435. // nb0 is implicitely element_size because src0 and dst are contiguous
  9436. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9437. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9438. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9439. size_t offset = ((int32_t *) dst->op_params)[3];
  9440. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9441. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9442. // memcpy needs to be synchronized across threads to avoid race conditions.
  9443. // => do it in INIT phase
  9444. memcpy(
  9445. ((char *) dst->data),
  9446. ((char *) src0->data),
  9447. ggml_nbytes(dst));
  9448. }
  9449. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9450. return;
  9451. }
  9452. const int ith = params->ith;
  9453. const int nth = params->nth;
  9454. const int nr = ggml_nrows(src1);
  9455. const int nc = src1->ne[0];
  9456. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9457. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9458. // src0 and dst as viewed during set
  9459. const size_t nb0 = ggml_element_size(src0);
  9460. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9461. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9462. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9463. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9464. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9465. GGML_ASSERT(nb10 == sizeof(float));
  9466. // rows per thread
  9467. const int dr = (nr + nth - 1)/nth;
  9468. // row range for this thread
  9469. const int ir0 = dr*ith;
  9470. const int ir1 = MIN(ir0 + dr, nr);
  9471. for (int ir = ir0; ir < ir1; ++ir) {
  9472. // src0 and dst are viewed with shape of src1 and offset
  9473. // => same indices
  9474. const int i3 = ir/(ne12*ne11);
  9475. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9476. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9477. ggml_vec_cpy_f32(nc,
  9478. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9479. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9480. }
  9481. }
  9482. static void ggml_compute_forward_set(
  9483. const struct ggml_compute_params * params,
  9484. const struct ggml_tensor * src0,
  9485. const struct ggml_tensor * src1,
  9486. struct ggml_tensor * dst) {
  9487. switch (src0->type) {
  9488. case GGML_TYPE_F32:
  9489. {
  9490. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9491. } break;
  9492. case GGML_TYPE_F16:
  9493. case GGML_TYPE_Q4_0:
  9494. case GGML_TYPE_Q4_1:
  9495. case GGML_TYPE_Q5_0:
  9496. case GGML_TYPE_Q5_1:
  9497. case GGML_TYPE_Q8_0:
  9498. case GGML_TYPE_Q8_1:
  9499. case GGML_TYPE_Q2_K:
  9500. case GGML_TYPE_Q3_K:
  9501. case GGML_TYPE_Q4_K:
  9502. case GGML_TYPE_Q5_K:
  9503. case GGML_TYPE_Q6_K:
  9504. default:
  9505. {
  9506. GGML_ASSERT(false);
  9507. } break;
  9508. }
  9509. }
  9510. // ggml_compute_forward_cpy
  9511. static void ggml_compute_forward_cpy(
  9512. const struct ggml_compute_params * params,
  9513. const struct ggml_tensor * src0,
  9514. struct ggml_tensor * dst) {
  9515. ggml_compute_forward_dup(params, src0, dst);
  9516. }
  9517. // ggml_compute_forward_cont
  9518. static void ggml_compute_forward_cont(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * src0,
  9521. struct ggml_tensor * dst) {
  9522. ggml_compute_forward_dup(params, src0, dst);
  9523. }
  9524. // ggml_compute_forward_reshape
  9525. static void ggml_compute_forward_reshape(
  9526. const struct ggml_compute_params * params,
  9527. const struct ggml_tensor * src0,
  9528. struct ggml_tensor * dst) {
  9529. // NOP
  9530. UNUSED(params);
  9531. UNUSED(src0);
  9532. UNUSED(dst);
  9533. }
  9534. // ggml_compute_forward_view
  9535. static void ggml_compute_forward_view(
  9536. const struct ggml_compute_params * params,
  9537. const struct ggml_tensor * src0) {
  9538. // NOP
  9539. UNUSED(params);
  9540. UNUSED(src0);
  9541. }
  9542. // ggml_compute_forward_permute
  9543. static void ggml_compute_forward_permute(
  9544. const struct ggml_compute_params * params,
  9545. const struct ggml_tensor * src0) {
  9546. // NOP
  9547. UNUSED(params);
  9548. UNUSED(src0);
  9549. }
  9550. // ggml_compute_forward_transpose
  9551. static void ggml_compute_forward_transpose(
  9552. const struct ggml_compute_params * params,
  9553. const struct ggml_tensor * src0) {
  9554. // NOP
  9555. UNUSED(params);
  9556. UNUSED(src0);
  9557. }
  9558. // ggml_compute_forward_get_rows
  9559. static void ggml_compute_forward_get_rows_q(
  9560. const struct ggml_compute_params * params,
  9561. const struct ggml_tensor * src0,
  9562. const struct ggml_tensor * src1,
  9563. struct ggml_tensor * dst) {
  9564. assert(params->ith == 0);
  9565. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9566. return;
  9567. }
  9568. const int nc = src0->ne[0];
  9569. const int nr = ggml_nelements(src1);
  9570. const enum ggml_type type = src0->type;
  9571. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9572. assert( dst->ne[0] == nc);
  9573. assert( dst->ne[1] == nr);
  9574. assert(src0->nb[0] == ggml_type_size(type));
  9575. for (int i = 0; i < nr; ++i) {
  9576. const int r = ((int32_t *) src1->data)[i];
  9577. dequantize_row_q(
  9578. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9579. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9580. }
  9581. }
  9582. static void ggml_compute_forward_get_rows_f16(
  9583. const struct ggml_compute_params * params,
  9584. const struct ggml_tensor * src0,
  9585. const struct ggml_tensor * src1,
  9586. struct ggml_tensor * dst) {
  9587. assert(params->ith == 0);
  9588. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9589. return;
  9590. }
  9591. const int nc = src0->ne[0];
  9592. const int nr = ggml_nelements(src1);
  9593. assert( dst->ne[0] == nc);
  9594. assert( dst->ne[1] == nr);
  9595. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9596. for (int i = 0; i < nr; ++i) {
  9597. const int r = ((int32_t *) src1->data)[i];
  9598. for (int j = 0; j < nc; ++j) {
  9599. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9600. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9601. }
  9602. }
  9603. }
  9604. static void ggml_compute_forward_get_rows_f32(
  9605. const struct ggml_compute_params * params,
  9606. const struct ggml_tensor * src0,
  9607. const struct ggml_tensor * src1,
  9608. struct ggml_tensor * dst) {
  9609. assert(params->ith == 0);
  9610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9611. return;
  9612. }
  9613. const int nc = src0->ne[0];
  9614. const int nr = ggml_nelements(src1);
  9615. assert( dst->ne[0] == nc);
  9616. assert( dst->ne[1] == nr);
  9617. assert(src0->nb[0] == sizeof(float));
  9618. for (int i = 0; i < nr; ++i) {
  9619. const int r = ((int32_t *) src1->data)[i];
  9620. ggml_vec_cpy_f32(nc,
  9621. (float *) ((char *) dst->data + i*dst->nb[1]),
  9622. (float *) ((char *) src0->data + r*src0->nb[1]));
  9623. }
  9624. }
  9625. static void ggml_compute_forward_get_rows(
  9626. const struct ggml_compute_params * params,
  9627. const struct ggml_tensor * src0,
  9628. const struct ggml_tensor * src1,
  9629. struct ggml_tensor * dst) {
  9630. switch (src0->type) {
  9631. case GGML_TYPE_Q4_0:
  9632. case GGML_TYPE_Q4_1:
  9633. case GGML_TYPE_Q5_0:
  9634. case GGML_TYPE_Q5_1:
  9635. case GGML_TYPE_Q8_0:
  9636. case GGML_TYPE_Q8_1:
  9637. case GGML_TYPE_Q2_K:
  9638. case GGML_TYPE_Q3_K:
  9639. case GGML_TYPE_Q4_K:
  9640. case GGML_TYPE_Q5_K:
  9641. case GGML_TYPE_Q6_K:
  9642. {
  9643. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9644. } break;
  9645. case GGML_TYPE_F16:
  9646. {
  9647. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9648. } break;
  9649. case GGML_TYPE_F32:
  9650. {
  9651. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9652. } break;
  9653. default:
  9654. {
  9655. GGML_ASSERT(false);
  9656. } break;
  9657. }
  9658. //static bool first = true;
  9659. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9660. //if (first) {
  9661. // first = false;
  9662. //} else {
  9663. // for (int k = 0; k < dst->ne[1]; ++k) {
  9664. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9665. // for (int i = 0; i < 16; ++i) {
  9666. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9667. // }
  9668. // printf("\n");
  9669. // }
  9670. // printf("\n");
  9671. // }
  9672. // printf("\n");
  9673. // exit(0);
  9674. //}
  9675. }
  9676. // ggml_compute_forward_get_rows_back
  9677. static void ggml_compute_forward_get_rows_back_f32_f16(
  9678. const struct ggml_compute_params * params,
  9679. const struct ggml_tensor * src0,
  9680. const struct ggml_tensor * src1,
  9681. const struct ggml_tensor * opt0,
  9682. struct ggml_tensor * dst) {
  9683. GGML_ASSERT(params->ith == 0);
  9684. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9685. GGML_ASSERT(ggml_is_contiguous(opt0));
  9686. GGML_ASSERT(ggml_is_contiguous(dst));
  9687. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9689. return;
  9690. }
  9691. const int nc = src0->ne[0];
  9692. const int nr = ggml_nelements(src1);
  9693. GGML_ASSERT( dst->ne[0] == nc);
  9694. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9695. for (int i = 0; i < nr; ++i) {
  9696. const int r = ((int32_t *) src1->data)[i];
  9697. for (int j = 0; j < nc; ++j) {
  9698. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9699. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9700. }
  9701. }
  9702. }
  9703. static void ggml_compute_forward_get_rows_back_f32(
  9704. const struct ggml_compute_params * params,
  9705. const struct ggml_tensor * src0,
  9706. const struct ggml_tensor * src1,
  9707. const struct ggml_tensor * opt0,
  9708. struct ggml_tensor * dst) {
  9709. GGML_ASSERT(params->ith == 0);
  9710. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9711. GGML_ASSERT(ggml_is_contiguous(opt0));
  9712. GGML_ASSERT(ggml_is_contiguous(dst));
  9713. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9714. if (params->type == GGML_TASK_INIT) {
  9715. memset(dst->data, 0, ggml_nbytes(dst));
  9716. }
  9717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9718. return;
  9719. }
  9720. const int nc = src0->ne[0];
  9721. const int nr = ggml_nelements(src1);
  9722. GGML_ASSERT( dst->ne[0] == nc);
  9723. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9724. for (int i = 0; i < nr; ++i) {
  9725. const int r = ((int32_t *) src1->data)[i];
  9726. ggml_vec_add_f32(nc,
  9727. (float *) ((char *) dst->data + r*dst->nb[1]),
  9728. (float *) ((char *) dst->data + r*dst->nb[1]),
  9729. (float *) ((char *) src0->data + i*src0->nb[1]));
  9730. }
  9731. }
  9732. static void ggml_compute_forward_get_rows_back(
  9733. const struct ggml_compute_params * params,
  9734. const struct ggml_tensor * src0,
  9735. const struct ggml_tensor * src1,
  9736. const struct ggml_tensor * opt0,
  9737. struct ggml_tensor * dst) {
  9738. switch (src0->type) {
  9739. case GGML_TYPE_F16:
  9740. {
  9741. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9742. } break;
  9743. case GGML_TYPE_F32:
  9744. {
  9745. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9746. } break;
  9747. default:
  9748. {
  9749. GGML_ASSERT(false);
  9750. } break;
  9751. }
  9752. //static bool first = true;
  9753. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9754. //if (first) {
  9755. // first = false;
  9756. //} else {
  9757. // for (int k = 0; k < dst->ne[1]; ++k) {
  9758. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9759. // for (int i = 0; i < 16; ++i) {
  9760. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9761. // }
  9762. // printf("\n");
  9763. // }
  9764. // printf("\n");
  9765. // }
  9766. // printf("\n");
  9767. // exit(0);
  9768. //}
  9769. }
  9770. // ggml_compute_forward_diag
  9771. static void ggml_compute_forward_diag_f32(
  9772. const struct ggml_compute_params * params,
  9773. const struct ggml_tensor * src0,
  9774. struct ggml_tensor * dst) {
  9775. GGML_ASSERT(params->ith == 0);
  9776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9777. return;
  9778. }
  9779. // TODO: handle transposed/permuted matrices
  9780. GGML_TENSOR_UNARY_OP_LOCALS;
  9781. GGML_ASSERT(ne00 == ne0);
  9782. GGML_ASSERT(ne00 == ne1);
  9783. GGML_ASSERT(ne01 == 1);
  9784. GGML_ASSERT(ne02 == ne2);
  9785. GGML_ASSERT(ne03 == ne3);
  9786. GGML_ASSERT(nb00 == sizeof(float));
  9787. GGML_ASSERT(nb0 == sizeof(float));
  9788. for (int i3 = 0; i3 < ne3; i3++) {
  9789. for (int i2 = 0; i2 < ne2; i2++) {
  9790. for (int i1 = 0; i1 < ne1; i1++) {
  9791. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9792. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9793. for (int i0 = 0; i0 < i1; i0++) {
  9794. d[i0] = 0;
  9795. }
  9796. d[i1] = s[i1];
  9797. for (int i0 = i1+1; i0 < ne0; i0++) {
  9798. d[i0] = 0;
  9799. }
  9800. }
  9801. }
  9802. }
  9803. }
  9804. static void ggml_compute_forward_diag(
  9805. const struct ggml_compute_params * params,
  9806. const struct ggml_tensor * src0,
  9807. struct ggml_tensor * dst) {
  9808. switch (src0->type) {
  9809. case GGML_TYPE_F32:
  9810. {
  9811. ggml_compute_forward_diag_f32(params, src0, dst);
  9812. } break;
  9813. default:
  9814. {
  9815. GGML_ASSERT(false);
  9816. } break;
  9817. }
  9818. }
  9819. // ggml_compute_forward_diag_mask_inf
  9820. static void ggml_compute_forward_diag_mask_f32(
  9821. const struct ggml_compute_params * params,
  9822. const struct ggml_tensor * src0,
  9823. struct ggml_tensor * dst,
  9824. const float value) {
  9825. const int ith = params->ith;
  9826. const int nth = params->nth;
  9827. const int n_past = ((int32_t *) dst->op_params)[0];
  9828. const bool inplace = src0->data == dst->data;
  9829. GGML_ASSERT(n_past >= 0);
  9830. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9831. // memcpy needs to be synchronized across threads to avoid race conditions.
  9832. // => do it in INIT phase
  9833. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9834. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9835. memcpy(
  9836. ((char *) dst->data),
  9837. ((char *) src0->data),
  9838. ggml_nbytes(dst));
  9839. }
  9840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9841. return;
  9842. }
  9843. // TODO: handle transposed/permuted matrices
  9844. const int n = ggml_nrows(src0);
  9845. const int nc = src0->ne[0];
  9846. const int nr = src0->ne[1];
  9847. const int nz = n/nr;
  9848. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9849. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9850. for (int k = 0; k < nz; k++) {
  9851. for (int j = ith; j < nr; j += nth) {
  9852. for (int i = n_past; i < nc; i++) {
  9853. if (i > n_past + j) {
  9854. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9855. }
  9856. }
  9857. }
  9858. }
  9859. }
  9860. static void ggml_compute_forward_diag_mask_inf(
  9861. const struct ggml_compute_params * params,
  9862. const struct ggml_tensor * src0,
  9863. struct ggml_tensor * dst) {
  9864. switch (src0->type) {
  9865. case GGML_TYPE_F32:
  9866. {
  9867. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9868. } break;
  9869. default:
  9870. {
  9871. GGML_ASSERT(false);
  9872. } break;
  9873. }
  9874. }
  9875. static void ggml_compute_forward_diag_mask_zero(
  9876. const struct ggml_compute_params * params,
  9877. const struct ggml_tensor * src0,
  9878. struct ggml_tensor * dst) {
  9879. switch (src0->type) {
  9880. case GGML_TYPE_F32:
  9881. {
  9882. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9883. } break;
  9884. default:
  9885. {
  9886. GGML_ASSERT(false);
  9887. } break;
  9888. }
  9889. }
  9890. // ggml_compute_forward_soft_max
  9891. static void ggml_compute_forward_soft_max_f32(
  9892. const struct ggml_compute_params * params,
  9893. const struct ggml_tensor * src0,
  9894. struct ggml_tensor * dst) {
  9895. GGML_ASSERT(ggml_is_contiguous(src0));
  9896. GGML_ASSERT(ggml_is_contiguous(dst));
  9897. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9899. return;
  9900. }
  9901. // TODO: handle transposed/permuted matrices
  9902. const int ith = params->ith;
  9903. const int nth = params->nth;
  9904. const int nc = src0->ne[0];
  9905. const int nr = ggml_nrows(src0);
  9906. // rows per thread
  9907. const int dr = (nr + nth - 1)/nth;
  9908. // row range for this thread
  9909. const int ir0 = dr*ith;
  9910. const int ir1 = MIN(ir0 + dr, nr);
  9911. for (int i1 = ir0; i1 < ir1; i1++) {
  9912. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9913. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9914. #ifndef NDEBUG
  9915. for (int i = 0; i < nc; ++i) {
  9916. //printf("p[%d] = %f\n", i, p[i]);
  9917. assert(!isnan(sp[i]));
  9918. }
  9919. #endif
  9920. float max = -INFINITY;
  9921. ggml_vec_max_f32(nc, &max, sp);
  9922. ggml_float sum = 0.0;
  9923. uint16_t scvt;
  9924. for (int i = 0; i < nc; i++) {
  9925. if (sp[i] == -INFINITY) {
  9926. dp[i] = 0.0f;
  9927. } else {
  9928. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9929. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9930. memcpy(&scvt, &s, sizeof(scvt));
  9931. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9932. sum += (ggml_float)val;
  9933. dp[i] = val;
  9934. }
  9935. }
  9936. assert(sum > 0.0);
  9937. sum = 1.0/sum;
  9938. ggml_vec_scale_f32(nc, dp, sum);
  9939. #ifndef NDEBUG
  9940. for (int i = 0; i < nc; ++i) {
  9941. assert(!isnan(dp[i]));
  9942. assert(!isinf(dp[i]));
  9943. }
  9944. #endif
  9945. }
  9946. }
  9947. static void ggml_compute_forward_soft_max(
  9948. const struct ggml_compute_params * params,
  9949. const struct ggml_tensor * src0,
  9950. struct ggml_tensor * dst) {
  9951. switch (src0->type) {
  9952. case GGML_TYPE_F32:
  9953. {
  9954. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9955. } break;
  9956. default:
  9957. {
  9958. GGML_ASSERT(false);
  9959. } break;
  9960. }
  9961. }
  9962. // ggml_compute_forward_soft_max_back
  9963. static void ggml_compute_forward_soft_max_back_f32(
  9964. const struct ggml_compute_params * params,
  9965. const struct ggml_tensor * src0,
  9966. const struct ggml_tensor * src1,
  9967. struct ggml_tensor * dst) {
  9968. GGML_ASSERT(ggml_is_contiguous(src0));
  9969. GGML_ASSERT(ggml_is_contiguous(src1));
  9970. GGML_ASSERT(ggml_is_contiguous(dst));
  9971. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9972. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9974. return;
  9975. }
  9976. // TODO: handle transposed/permuted matrices
  9977. const int ith = params->ith;
  9978. const int nth = params->nth;
  9979. const int nc = src0->ne[0];
  9980. const int nr = ggml_nrows(src0);
  9981. // rows per thread
  9982. const int dr = (nr + nth - 1)/nth;
  9983. // row range for this thread
  9984. const int ir0 = dr*ith;
  9985. const int ir1 = MIN(ir0 + dr, nr);
  9986. for (int i1 = ir0; i1 < ir1; i1++) {
  9987. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9988. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9989. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9990. #ifndef NDEBUG
  9991. for (int i = 0; i < nc; ++i) {
  9992. //printf("p[%d] = %f\n", i, p[i]);
  9993. assert(!isnan(dy[i]));
  9994. assert(!isnan(y[i]));
  9995. }
  9996. #endif
  9997. // Jii = yi - yi*yi
  9998. // Jij = -yi*yj
  9999. // J = diag(y)-y.T*y
  10000. // dx = J * dy
  10001. // dxk = sum_i(Jki * dyi)
  10002. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10003. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10004. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10005. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10006. // dxk = -yk * dot(y, dy) + yk*dyk
  10007. // dxk = yk * (- dot(y, dy) + dyk)
  10008. // dxk = yk * (dyk - dot(y, dy))
  10009. //
  10010. // post-order:
  10011. // dot_y_dy := dot(y, dy)
  10012. // dx := dy
  10013. // dx := dx - dot_y_dy
  10014. // dx := dx * y
  10015. // linear runtime, no additional memory
  10016. float dot_y_dy = 0;
  10017. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10018. ggml_vec_cpy_f32 (nc, dx, dy);
  10019. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10020. ggml_vec_mul_f32 (nc, dx, dx, y);
  10021. #ifndef NDEBUG
  10022. for (int i = 0; i < nc; ++i) {
  10023. assert(!isnan(dx[i]));
  10024. assert(!isinf(dx[i]));
  10025. }
  10026. #endif
  10027. }
  10028. }
  10029. static void ggml_compute_forward_soft_max_back(
  10030. const struct ggml_compute_params * params,
  10031. const struct ggml_tensor * src0,
  10032. const struct ggml_tensor * src1,
  10033. struct ggml_tensor * dst) {
  10034. switch (src0->type) {
  10035. case GGML_TYPE_F32:
  10036. {
  10037. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10038. } break;
  10039. default:
  10040. {
  10041. GGML_ASSERT(false);
  10042. } break;
  10043. }
  10044. }
  10045. // ggml_compute_forward_alibi
  10046. static void ggml_compute_forward_alibi_f32(
  10047. const struct ggml_compute_params * params,
  10048. const struct ggml_tensor * src0,
  10049. struct ggml_tensor * dst) {
  10050. assert(params->ith == 0);
  10051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10052. return;
  10053. }
  10054. const int n_past = ((int32_t *) dst->op_params)[0];
  10055. const int n_head = ((int32_t *) dst->op_params)[1];
  10056. float max_bias;
  10057. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10058. assert(n_past >= 0);
  10059. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10060. const int ne1 = src0->ne[1]; // seq_len_without_past
  10061. const int ne2 = src0->ne[2]; // n_head -> this is k
  10062. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10063. const int n = ggml_nrows(src0);
  10064. const int ne2_ne3 = n/ne1; // ne2*ne3
  10065. const int nb0 = src0->nb[0];
  10066. const int nb1 = src0->nb[1];
  10067. const int nb2 = src0->nb[2];
  10068. //const int nb3 = src0->nb[3];
  10069. GGML_ASSERT(nb0 == sizeof(float));
  10070. GGML_ASSERT(ne1 + n_past == ne0);
  10071. GGML_ASSERT(n_head == ne2);
  10072. // add alibi to src0 (KQ_scaled)
  10073. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10074. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10075. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10076. for (int i = 0; i < ne0; i++) {
  10077. for (int j = 0; j < ne1; j++) {
  10078. for (int k = 0; k < ne2_ne3; k++) {
  10079. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10080. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10081. // TODO: k*nb2 or k*nb3
  10082. float m_k;
  10083. if (k < n_heads_log2_floor) {
  10084. m_k = powf(m0, k + 1);
  10085. } else {
  10086. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10087. }
  10088. pdst[0] = i * m_k + src[0];
  10089. }
  10090. }
  10091. }
  10092. }
  10093. static void ggml_compute_forward_alibi_f16(
  10094. const struct ggml_compute_params * params,
  10095. const struct ggml_tensor * src0,
  10096. struct ggml_tensor * dst) {
  10097. assert(params->ith == 0);
  10098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10099. return;
  10100. }
  10101. const int n_past = ((int32_t *) dst->op_params)[0];
  10102. const int n_head = ((int32_t *) dst->op_params)[1];
  10103. float max_bias;
  10104. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10105. assert(n_past >= 0);
  10106. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10107. const int ne1 = src0->ne[1]; // seq_len_without_past
  10108. const int ne2 = src0->ne[2]; // n_head -> this is k
  10109. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10110. const int n = ggml_nrows(src0);
  10111. const int ne2_ne3 = n/ne1; // ne2*ne3
  10112. const int nb0 = src0->nb[0];
  10113. const int nb1 = src0->nb[1];
  10114. const int nb2 = src0->nb[2];
  10115. //const int nb3 = src0->nb[3];
  10116. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10117. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10118. GGML_ASSERT(n_head == ne2);
  10119. // add alibi to src0 (KQ_scaled)
  10120. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10121. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10122. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10123. for (int i = 0; i < ne0; i++) {
  10124. for (int j = 0; j < ne1; j++) {
  10125. for (int k = 0; k < ne2_ne3; k++) {
  10126. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10127. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10128. // TODO: k*nb2 or k*nb3
  10129. float m_k;
  10130. if (k < n_heads_log2_floor) {
  10131. m_k = powf(m0, k + 1);
  10132. } else {
  10133. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10134. }
  10135. // we return F32
  10136. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10137. }
  10138. }
  10139. }
  10140. }
  10141. static void ggml_compute_forward_alibi(
  10142. const struct ggml_compute_params * params,
  10143. const struct ggml_tensor * src0,
  10144. struct ggml_tensor * dst) {
  10145. switch (src0->type) {
  10146. case GGML_TYPE_F16:
  10147. {
  10148. ggml_compute_forward_alibi_f16(params, src0, dst);
  10149. } break;
  10150. case GGML_TYPE_F32:
  10151. {
  10152. ggml_compute_forward_alibi_f32(params, src0, dst);
  10153. } break;
  10154. case GGML_TYPE_Q4_0:
  10155. case GGML_TYPE_Q4_1:
  10156. case GGML_TYPE_Q5_0:
  10157. case GGML_TYPE_Q5_1:
  10158. case GGML_TYPE_Q8_0:
  10159. case GGML_TYPE_Q8_1:
  10160. case GGML_TYPE_Q2_K:
  10161. case GGML_TYPE_Q3_K:
  10162. case GGML_TYPE_Q4_K:
  10163. case GGML_TYPE_Q5_K:
  10164. case GGML_TYPE_Q6_K:
  10165. case GGML_TYPE_Q8_K:
  10166. case GGML_TYPE_I8:
  10167. case GGML_TYPE_I16:
  10168. case GGML_TYPE_I32:
  10169. case GGML_TYPE_COUNT:
  10170. {
  10171. GGML_ASSERT(false);
  10172. } break;
  10173. }
  10174. }
  10175. // ggml_compute_forward_clamp
  10176. static void ggml_compute_forward_clamp_f32(
  10177. const struct ggml_compute_params * params,
  10178. const struct ggml_tensor * src0,
  10179. struct ggml_tensor * dst) {
  10180. assert(params->ith == 0);
  10181. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10182. return;
  10183. }
  10184. float min;
  10185. float max;
  10186. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10187. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10188. const int ith = params->ith;
  10189. const int nth = params->nth;
  10190. const int n = ggml_nrows(src0);
  10191. const int nc = src0->ne[0];
  10192. const size_t nb00 = src0->nb[0];
  10193. const size_t nb01 = src0->nb[1];
  10194. const size_t nb0 = dst->nb[0];
  10195. const size_t nb1 = dst->nb[1];
  10196. GGML_ASSERT( nb0 == sizeof(float));
  10197. GGML_ASSERT(nb00 == sizeof(float));
  10198. for (int j = ith; j < n; j += nth) {
  10199. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10200. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10201. for (int i = 0; i < nc; i++) {
  10202. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10203. }
  10204. }
  10205. }
  10206. static void ggml_compute_forward_clamp(
  10207. const struct ggml_compute_params * params,
  10208. const struct ggml_tensor * src0,
  10209. struct ggml_tensor * dst) {
  10210. switch (src0->type) {
  10211. case GGML_TYPE_F32:
  10212. {
  10213. ggml_compute_forward_clamp_f32(params, src0, dst);
  10214. } break;
  10215. case GGML_TYPE_F16:
  10216. case GGML_TYPE_Q4_0:
  10217. case GGML_TYPE_Q4_1:
  10218. case GGML_TYPE_Q5_0:
  10219. case GGML_TYPE_Q5_1:
  10220. case GGML_TYPE_Q8_0:
  10221. case GGML_TYPE_Q8_1:
  10222. case GGML_TYPE_Q2_K:
  10223. case GGML_TYPE_Q3_K:
  10224. case GGML_TYPE_Q4_K:
  10225. case GGML_TYPE_Q5_K:
  10226. case GGML_TYPE_Q6_K:
  10227. case GGML_TYPE_Q8_K:
  10228. case GGML_TYPE_I8:
  10229. case GGML_TYPE_I16:
  10230. case GGML_TYPE_I32:
  10231. case GGML_TYPE_COUNT:
  10232. {
  10233. GGML_ASSERT(false);
  10234. } break;
  10235. }
  10236. }
  10237. // ggml_compute_forward_rope
  10238. static void ggml_compute_forward_rope_f32(
  10239. const struct ggml_compute_params * params,
  10240. const struct ggml_tensor * src0,
  10241. struct ggml_tensor * dst) {
  10242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10243. return;
  10244. }
  10245. float freq_base;
  10246. float freq_scale;
  10247. // these two only relevant for xPos RoPE:
  10248. float xpos_base;
  10249. bool xpos_down;
  10250. const int n_past = ((int32_t *) dst->op_params)[0];
  10251. const int n_dims = ((int32_t *) dst->op_params)[1];
  10252. const int mode = ((int32_t *) dst->op_params)[2];
  10253. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10254. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10255. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10256. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10257. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10258. assert(n_past >= 0);
  10259. GGML_TENSOR_UNARY_OP_LOCALS;
  10260. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10261. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10262. GGML_ASSERT(nb00 == sizeof(float));
  10263. const int ith = params->ith;
  10264. const int nth = params->nth;
  10265. const int nr = ggml_nrows(dst);
  10266. GGML_ASSERT(n_dims <= ne0);
  10267. GGML_ASSERT(n_dims % 2 == 0);
  10268. // rows per thread
  10269. const int dr = (nr + nth - 1)/nth;
  10270. // row range for this thread
  10271. const int ir0 = dr*ith;
  10272. const int ir1 = MIN(ir0 + dr, nr);
  10273. // row index used to determine which thread to use
  10274. int ir = 0;
  10275. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10276. const bool is_neox = mode & 2;
  10277. const bool is_glm = mode & 4;
  10278. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10279. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10280. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10281. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10282. if (ir++ < ir0) continue;
  10283. if (ir > ir1) break;
  10284. float theta = freq_scale * (float)p;
  10285. if (is_glm) {
  10286. theta = MIN(p, n_ctx - 2);
  10287. float block_theta = MAX(p - (n_ctx - 2), 0);
  10288. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10289. const float cos_theta = cosf(theta);
  10290. const float sin_theta = sinf(theta);
  10291. const float cos_block_theta = cosf(block_theta);
  10292. const float sin_block_theta = sinf(block_theta);
  10293. theta *= theta_scale;
  10294. block_theta *= theta_scale;
  10295. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10296. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10297. const float x0 = src[0];
  10298. const float x1 = src[n_dims/2];
  10299. const float x2 = src[n_dims];
  10300. const float x3 = src[n_dims/2*3];
  10301. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10302. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10303. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10304. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10305. }
  10306. } else if (!is_neox) {
  10307. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10308. const float cos_theta = cosf(theta);
  10309. const float sin_theta = sinf(theta);
  10310. // zeta scaling for xPos only:
  10311. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10312. if (xpos_down) zeta = 1.0f / zeta;
  10313. theta *= theta_scale;
  10314. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10315. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10316. const float x0 = src[0];
  10317. const float x1 = src[1];
  10318. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10319. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10320. }
  10321. } else {
  10322. // TODO: this might be wrong for ne0 != n_dims - need double check
  10323. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10324. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10325. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10326. const float cos_theta = cosf(theta);
  10327. const float sin_theta = sinf(theta);
  10328. theta *= theta_scale;
  10329. const int64_t i0 = ib*n_dims + ic/2;
  10330. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10331. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10332. const float x0 = src[0];
  10333. const float x1 = src[n_dims/2];
  10334. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10335. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10336. }
  10337. }
  10338. }
  10339. }
  10340. }
  10341. }
  10342. }
  10343. static void ggml_compute_forward_rope_f16(
  10344. const struct ggml_compute_params * params,
  10345. const struct ggml_tensor * src0,
  10346. struct ggml_tensor * dst) {
  10347. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10348. return;
  10349. }
  10350. float freq_base;
  10351. float freq_scale;
  10352. const int n_past = ((int32_t *) dst->op_params)[0];
  10353. const int n_dims = ((int32_t *) dst->op_params)[1];
  10354. const int mode = ((int32_t *) dst->op_params)[2];
  10355. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10356. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10357. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10358. assert(n_past >= 0);
  10359. GGML_TENSOR_UNARY_OP_LOCALS;
  10360. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10361. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10362. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10363. const int ith = params->ith;
  10364. const int nth = params->nth;
  10365. const int nr = ggml_nrows(dst);
  10366. GGML_ASSERT(n_dims <= ne0);
  10367. GGML_ASSERT(n_dims % 2 == 0);
  10368. // rows per thread
  10369. const int dr = (nr + nth - 1)/nth;
  10370. // row range for this thread
  10371. const int ir0 = dr*ith;
  10372. const int ir1 = MIN(ir0 + dr, nr);
  10373. // row index used to determine which thread to use
  10374. int ir = 0;
  10375. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10376. const bool is_neox = mode & 2;
  10377. const bool is_glm = mode & 4;
  10378. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10379. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10380. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10381. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10382. if (ir++ < ir0) continue;
  10383. if (ir > ir1) break;
  10384. float theta = freq_scale * (float)p;
  10385. if (is_glm) {
  10386. theta = MIN(p, n_ctx - 2);
  10387. float block_theta = MAX(p - (n_ctx - 2), 0);
  10388. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10389. const float cos_theta = cosf(theta);
  10390. const float sin_theta = sinf(theta);
  10391. const float cos_block_theta = cosf(block_theta);
  10392. const float sin_block_theta = sinf(block_theta);
  10393. theta *= theta_scale;
  10394. block_theta *= theta_scale;
  10395. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10396. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10397. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10398. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10399. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10400. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10401. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10402. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10403. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10404. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10405. }
  10406. } if (!is_neox) {
  10407. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10408. const float cos_theta = cosf(theta);
  10409. const float sin_theta = sinf(theta);
  10410. theta *= theta_scale;
  10411. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10412. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10413. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10414. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10415. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10416. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10417. }
  10418. } else {
  10419. // TODO: this might be wrong for ne0 != n_dims - need double check
  10420. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10421. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10422. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10423. const float cos_theta = cosf(theta);
  10424. const float sin_theta = sinf(theta);
  10425. theta *= theta_scale;
  10426. const int64_t i0 = ib*n_dims + ic/2;
  10427. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10428. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10429. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10430. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10431. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10432. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10433. }
  10434. }
  10435. }
  10436. }
  10437. }
  10438. }
  10439. }
  10440. static void ggml_compute_forward_rope(
  10441. const struct ggml_compute_params * params,
  10442. const struct ggml_tensor * src0,
  10443. struct ggml_tensor * dst) {
  10444. switch (src0->type) {
  10445. case GGML_TYPE_F16:
  10446. {
  10447. ggml_compute_forward_rope_f16(params, src0, dst);
  10448. } break;
  10449. case GGML_TYPE_F32:
  10450. {
  10451. ggml_compute_forward_rope_f32(params, src0, dst);
  10452. } break;
  10453. default:
  10454. {
  10455. GGML_ASSERT(false);
  10456. } break;
  10457. }
  10458. }
  10459. // ggml_compute_forward_rope_back
  10460. static void ggml_compute_forward_rope_back_f32(
  10461. const struct ggml_compute_params * params,
  10462. const struct ggml_tensor * src0,
  10463. struct ggml_tensor * dst) {
  10464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10465. return;
  10466. }
  10467. // y = rope(x, src1)
  10468. // dx = rope_back(dy, src1)
  10469. // src0 is dy, src1 contains options
  10470. float freq_base;
  10471. float freq_scale;
  10472. // these two only relevant for xPos RoPE:
  10473. float xpos_base;
  10474. bool xpos_down;
  10475. const int n_past = ((int32_t *) dst->op_params)[0];
  10476. const int n_dims = ((int32_t *) dst->op_params)[1];
  10477. const int mode = ((int32_t *) dst->op_params)[2];
  10478. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10479. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10480. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10481. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10482. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10483. assert(n_past >= 0);
  10484. GGML_TENSOR_UNARY_OP_LOCALS;
  10485. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10486. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10487. assert(nb0 == sizeof(float));
  10488. const int ith = params->ith;
  10489. const int nth = params->nth;
  10490. const int nr = ggml_nrows(dst);
  10491. // rows per thread
  10492. const int dr = (nr + nth - 1)/nth;
  10493. // row range for this thread
  10494. const int ir0 = dr*ith;
  10495. const int ir1 = MIN(ir0 + dr, nr);
  10496. // row index used to determine which thread to use
  10497. int ir = 0;
  10498. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10499. const bool is_neox = mode & 2;
  10500. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10501. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10502. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10503. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10504. if (ir++ < ir0) continue;
  10505. if (ir > ir1) break;
  10506. float theta = freq_scale * (float)p;
  10507. if (!is_neox) {
  10508. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10509. const float cos_theta = cosf(theta);
  10510. const float sin_theta = sinf(theta);
  10511. // zeta scaling for xPos only:
  10512. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10513. if (xpos_down) zeta = 1.0f / zeta;
  10514. theta *= theta_scale;
  10515. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10516. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10517. const float dy0 = dy[0];
  10518. const float dy1 = dy[1];
  10519. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10520. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10521. }
  10522. } else {
  10523. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10524. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10525. const float cos_theta = cosf(theta);
  10526. const float sin_theta = sinf(theta);
  10527. theta *= theta_scale;
  10528. const int64_t i0 = ib*n_dims + ic/2;
  10529. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10530. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10531. const float dy0 = dy[0];
  10532. const float dy1 = dy[n_dims/2];
  10533. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10534. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10535. }
  10536. }
  10537. }
  10538. }
  10539. }
  10540. }
  10541. }
  10542. static void ggml_compute_forward_rope_back_f16(
  10543. const struct ggml_compute_params * params,
  10544. const struct ggml_tensor * src0,
  10545. struct ggml_tensor * dst) {
  10546. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10547. return;
  10548. }
  10549. // y = rope(x, src1)
  10550. // dx = rope_back(dy, src1)
  10551. // src0 is dy, src1 contains options
  10552. const int n_past = ((int32_t *) dst->op_params)[0];
  10553. const int n_dims = ((int32_t *) dst->op_params)[1];
  10554. const int mode = ((int32_t *) dst->op_params)[2];
  10555. assert(n_past >= 0);
  10556. GGML_TENSOR_UNARY_OP_LOCALS;
  10557. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10558. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10559. assert(nb0 == sizeof(ggml_fp16_t));
  10560. const int ith = params->ith;
  10561. const int nth = params->nth;
  10562. const int nr = ggml_nrows(dst);
  10563. // rows per thread
  10564. const int dr = (nr + nth - 1)/nth;
  10565. // row range for this thread
  10566. const int ir0 = dr*ith;
  10567. const int ir1 = MIN(ir0 + dr, nr);
  10568. // row index used to determine which thread to use
  10569. int ir = 0;
  10570. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10571. const bool is_neox = mode & 2;
  10572. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10573. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10574. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10575. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10576. if (ir++ < ir0) continue;
  10577. if (ir > ir1) break;
  10578. float theta = (float)p;
  10579. if (!is_neox) {
  10580. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10581. const float cos_theta = cosf(theta);
  10582. const float sin_theta = sinf(theta);
  10583. theta *= theta_scale;
  10584. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10585. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10586. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10587. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10588. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10589. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10590. }
  10591. } else {
  10592. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10593. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10594. const float cos_theta = cosf(theta);
  10595. const float sin_theta = sinf(theta);
  10596. theta *= theta_scale;
  10597. const int64_t i0 = ib*n_dims + ic/2;
  10598. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10599. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10600. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10601. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10602. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10603. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10604. }
  10605. }
  10606. }
  10607. }
  10608. }
  10609. }
  10610. }
  10611. static void ggml_compute_forward_rope_back(
  10612. const struct ggml_compute_params * params,
  10613. const struct ggml_tensor * src0,
  10614. struct ggml_tensor * dst) {
  10615. switch (src0->type) {
  10616. case GGML_TYPE_F16:
  10617. {
  10618. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10619. } break;
  10620. case GGML_TYPE_F32:
  10621. {
  10622. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10623. } break;
  10624. default:
  10625. {
  10626. GGML_ASSERT(false);
  10627. } break;
  10628. }
  10629. }
  10630. // ggml_compute_forward_conv_1d
  10631. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10632. const struct ggml_compute_params * params,
  10633. const struct ggml_tensor * src0,
  10634. const struct ggml_tensor * src1,
  10635. struct ggml_tensor * dst) {
  10636. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10637. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10638. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10639. int64_t t0 = ggml_perf_time_us();
  10640. UNUSED(t0);
  10641. GGML_TENSOR_BINARY_OP_LOCALS;
  10642. const int ith = params->ith;
  10643. const int nth = params->nth;
  10644. const int nk = ne00;
  10645. const int nh = nk/2;
  10646. const int ew0 = ggml_up32(ne01);
  10647. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10648. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10649. GGML_ASSERT(nb10 == sizeof(float));
  10650. if (params->type == GGML_TASK_INIT) {
  10651. // TODO: fix this memset (wsize is overestimated)
  10652. memset(params->wdata, 0, params->wsize);
  10653. // prepare kernel data (src0)
  10654. {
  10655. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10657. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10658. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10659. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10660. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10661. dst_data[i00*ew0 + i01] = src[i00];
  10662. }
  10663. }
  10664. }
  10665. }
  10666. // prepare source data (src1)
  10667. {
  10668. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10669. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10670. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10671. ggml_fp16_t * dst_data = wdata;
  10672. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10673. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10674. }
  10675. }
  10676. }
  10677. return;
  10678. }
  10679. if (params->type == GGML_TASK_FINALIZE) {
  10680. return;
  10681. }
  10682. // total rows in dst
  10683. const int nr = ne02;
  10684. // rows per thread
  10685. const int dr = (nr + nth - 1)/nth;
  10686. // row range for this thread
  10687. const int ir0 = dr*ith;
  10688. const int ir1 = MIN(ir0 + dr, nr);
  10689. for (int i1 = ir0; i1 < ir1; i1++) {
  10690. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10691. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10692. dst_data[i0] = 0;
  10693. for (int k = -nh; k <= nh; k++) {
  10694. float v = 0.0f;
  10695. ggml_vec_dot_f16(ew0, &v,
  10696. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10697. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10698. dst_data[i0] += v;
  10699. }
  10700. }
  10701. }
  10702. }
  10703. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10704. const struct ggml_compute_params * params,
  10705. const struct ggml_tensor * src0,
  10706. const struct ggml_tensor * src1,
  10707. struct ggml_tensor * dst) {
  10708. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10709. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10710. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10711. int64_t t0 = ggml_perf_time_us();
  10712. UNUSED(t0);
  10713. GGML_TENSOR_BINARY_OP_LOCALS;
  10714. const int ith = params->ith;
  10715. const int nth = params->nth;
  10716. const int nk = ne00;
  10717. const int nh = nk/2;
  10718. const int ew0 = ggml_up32(ne01);
  10719. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10720. GGML_ASSERT(nb00 == sizeof(float));
  10721. GGML_ASSERT(nb10 == sizeof(float));
  10722. if (params->type == GGML_TASK_INIT) {
  10723. // TODO: fix this memset (wsize is overestimated)
  10724. memset(params->wdata, 0, params->wsize);
  10725. // prepare kernel data (src0)
  10726. {
  10727. float * const wdata = (float *) params->wdata + 0;
  10728. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10729. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10730. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10731. float * dst_data = wdata + i02*ew0*ne00;
  10732. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10733. dst_data[i00*ew0 + i01] = src[i00];
  10734. }
  10735. }
  10736. }
  10737. }
  10738. // prepare source data (src1)
  10739. {
  10740. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10741. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10742. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10743. float * dst_data = wdata;
  10744. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10745. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10746. }
  10747. }
  10748. }
  10749. return;
  10750. }
  10751. if (params->type == GGML_TASK_FINALIZE) {
  10752. return;
  10753. }
  10754. // total rows in dst
  10755. const int nr = ne02;
  10756. // rows per thread
  10757. const int dr = (nr + nth - 1)/nth;
  10758. // row range for this thread
  10759. const int ir0 = dr*ith;
  10760. const int ir1 = MIN(ir0 + dr, nr);
  10761. for (int i1 = ir0; i1 < ir1; i1++) {
  10762. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10763. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10764. dst_data[i0] = 0;
  10765. for (int k = -nh; k <= nh; k++) {
  10766. float v = 0.0f;
  10767. ggml_vec_dot_f32(ew0, &v,
  10768. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10769. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10770. dst_data[i0] += v;
  10771. }
  10772. }
  10773. }
  10774. }
  10775. static void ggml_compute_forward_conv_1d_s1_ph(
  10776. const struct ggml_compute_params * params,
  10777. const struct ggml_tensor * src0,
  10778. const struct ggml_tensor * src1,
  10779. struct ggml_tensor * dst) {
  10780. switch (src0->type) {
  10781. case GGML_TYPE_F16:
  10782. {
  10783. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10784. } break;
  10785. case GGML_TYPE_F32:
  10786. {
  10787. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10788. } break;
  10789. default:
  10790. {
  10791. GGML_ASSERT(false);
  10792. } break;
  10793. }
  10794. }
  10795. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10796. const struct ggml_compute_params * params,
  10797. const struct ggml_tensor * src0,
  10798. const struct ggml_tensor * src1,
  10799. struct ggml_tensor * dst) {
  10800. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10801. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10802. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10803. int64_t t0 = ggml_perf_time_us();
  10804. UNUSED(t0);
  10805. GGML_TENSOR_BINARY_OP_LOCALS;
  10806. const int ith = params->ith;
  10807. const int nth = params->nth;
  10808. const int nk = ne00;
  10809. const int nh = nk/2;
  10810. const int ew0 = ggml_up32(ne01);
  10811. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10812. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10813. GGML_ASSERT(nb10 == sizeof(float));
  10814. if (params->type == GGML_TASK_INIT) {
  10815. // TODO: fix this memset (wsize is overestimated)
  10816. memset(params->wdata, 0, params->wsize);
  10817. // prepare kernel data (src0)
  10818. {
  10819. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10820. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10821. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10822. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10823. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10824. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10825. dst_data[i00*ew0 + i01] = src[i00];
  10826. }
  10827. }
  10828. }
  10829. }
  10830. // prepare source data (src1)
  10831. {
  10832. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10833. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10834. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10835. ggml_fp16_t * dst_data = wdata;
  10836. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10837. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10838. }
  10839. }
  10840. }
  10841. return;
  10842. }
  10843. if (params->type == GGML_TASK_FINALIZE) {
  10844. return;
  10845. }
  10846. // total rows in dst
  10847. const int nr = ne02;
  10848. // rows per thread
  10849. const int dr = (nr + nth - 1)/nth;
  10850. // row range for this thread
  10851. const int ir0 = dr*ith;
  10852. const int ir1 = MIN(ir0 + dr, nr);
  10853. for (int i1 = ir0; i1 < ir1; i1++) {
  10854. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10855. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10856. dst_data[i0/2] = 0;
  10857. for (int k = -nh; k <= nh; k++) {
  10858. float v = 0.0f;
  10859. ggml_vec_dot_f16(ew0, &v,
  10860. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10861. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10862. dst_data[i0/2] += v;
  10863. }
  10864. }
  10865. }
  10866. }
  10867. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10868. const struct ggml_compute_params * params,
  10869. const struct ggml_tensor * src0,
  10870. const struct ggml_tensor * src1,
  10871. struct ggml_tensor * dst) {
  10872. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10873. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10874. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10875. int64_t t0 = ggml_perf_time_us();
  10876. UNUSED(t0);
  10877. GGML_TENSOR_BINARY_OP_LOCALS;
  10878. const int ith = params->ith;
  10879. const int nth = params->nth;
  10880. const int nk = ne00;
  10881. const int nh = nk/2;
  10882. const int ew0 = ggml_up32(ne01);
  10883. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10884. GGML_ASSERT(nb00 == sizeof(float));
  10885. GGML_ASSERT(nb10 == sizeof(float));
  10886. if (params->type == GGML_TASK_INIT) {
  10887. // TODO: fix this memset (wsize is overestimated)
  10888. memset(params->wdata, 0, params->wsize);
  10889. // prepare kernel data (src0)
  10890. {
  10891. float * const wdata = (float *) params->wdata + 0;
  10892. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10893. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10894. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10895. float * dst_data = wdata + i02*ew0*ne00;
  10896. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10897. dst_data[i00*ew0 + i01] = src[i00];
  10898. }
  10899. }
  10900. }
  10901. }
  10902. // prepare source data (src1)
  10903. {
  10904. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10905. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10906. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10907. float * dst_data = wdata;
  10908. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10909. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10910. }
  10911. }
  10912. }
  10913. return;
  10914. }
  10915. if (params->type == GGML_TASK_FINALIZE) {
  10916. return;
  10917. }
  10918. // total rows in dst
  10919. const int nr = ne02;
  10920. // rows per thread
  10921. const int dr = (nr + nth - 1)/nth;
  10922. // row range for this thread
  10923. const int ir0 = dr*ith;
  10924. const int ir1 = MIN(ir0 + dr, nr);
  10925. for (int i1 = ir0; i1 < ir1; i1++) {
  10926. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10927. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10928. dst_data[i0/2] = 0;
  10929. for (int k = -nh; k <= nh; k++) {
  10930. float v = 0.0f;
  10931. ggml_vec_dot_f32(ew0, &v,
  10932. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10933. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10934. dst_data[i0/2] += v;
  10935. }
  10936. }
  10937. }
  10938. }
  10939. static void ggml_compute_forward_conv_1d_s2_ph(
  10940. const struct ggml_compute_params * params,
  10941. const struct ggml_tensor * src0,
  10942. const struct ggml_tensor * src1,
  10943. struct ggml_tensor * dst) {
  10944. switch (src0->type) {
  10945. case GGML_TYPE_F16:
  10946. {
  10947. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10948. } break;
  10949. case GGML_TYPE_F32:
  10950. {
  10951. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10952. } break;
  10953. default:
  10954. {
  10955. GGML_ASSERT(false);
  10956. } break;
  10957. }
  10958. }
  10959. // ggml_compute_forward_conv_1d
  10960. static void ggml_compute_forward_conv_1d(
  10961. const struct ggml_compute_params * params,
  10962. const struct ggml_tensor * src0,
  10963. const struct ggml_tensor * src1,
  10964. struct ggml_tensor * dst) {
  10965. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10966. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10967. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10968. GGML_ASSERT(d0 == 1); // dilation not supported
  10969. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10970. if (s0 == 1) {
  10971. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10972. } else if (s0 == 2) {
  10973. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10974. } else {
  10975. GGML_ASSERT(false); // only stride 1 and 2 supported
  10976. };
  10977. }
  10978. // ggml_compute_forward_conv_2d
  10979. static void ggml_compute_forward_conv_2d_f16_f32(
  10980. const struct ggml_compute_params * params,
  10981. const struct ggml_tensor * src0,
  10982. const struct ggml_tensor * src1,
  10983. struct ggml_tensor * dst) {
  10984. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10985. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10986. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10987. int64_t t0 = ggml_perf_time_us();
  10988. UNUSED(t0);
  10989. GGML_TENSOR_BINARY_OP_LOCALS;
  10990. const int ith = params->ith;
  10991. const int nth = params->nth;
  10992. const int nk0 = ne00;
  10993. const int nk1 = ne01;
  10994. // size of the convolution row - the kernel size unrolled across all channels
  10995. const int ew0 = nk0*nk1*ne02;
  10996. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10997. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10998. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10999. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  11000. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  11001. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  11002. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11003. GGML_ASSERT(nb10 == sizeof(float));
  11004. if (params->type == GGML_TASK_INIT) {
  11005. memset(params->wdata, 0, params->wsize);
  11006. // prepare source data (src1)
  11007. {
  11008. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11009. for (int i12 = 0; i12 < ne12; i12++) {
  11010. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11011. ggml_fp16_t * dst_data = wdata;
  11012. for (int i1 = 0; i1 < ne1; i1++) {
  11013. for (int i0 = 0; i0 < ne0; i0++) {
  11014. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11015. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11016. const int idx0 = i0*s0 + ik0*d0 - p0;
  11017. const int idx1 = i1*s1 + ik1*d1 - p1;
  11018. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11019. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11020. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11021. }
  11022. }
  11023. }
  11024. }
  11025. }
  11026. }
  11027. }
  11028. return;
  11029. }
  11030. if (params->type == GGML_TASK_FINALIZE) {
  11031. return;
  11032. }
  11033. // total patches in dst
  11034. const int np = ne2;
  11035. // patches per thread
  11036. const int dp = (np + nth - 1)/nth;
  11037. // patch range for this thread
  11038. const int ip0 = dp*ith;
  11039. const int ip1 = MIN(ip0 + dp, np);
  11040. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11041. for (int i3 = 0; i3 < ne3; i3++) {
  11042. for (int i2 = ip0; i2 < ip1; i2++) {
  11043. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11044. for (int i1 = 0; i1 < ne1; ++i1) {
  11045. for (int i0 = 0; i0 < ne0; ++i0) {
  11046. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11047. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11048. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11049. }
  11050. }
  11051. }
  11052. }
  11053. }
  11054. static void ggml_compute_forward_conv_2d(
  11055. const struct ggml_compute_params * params,
  11056. const struct ggml_tensor * src0,
  11057. const struct ggml_tensor * src1,
  11058. struct ggml_tensor * dst) {
  11059. switch (src0->type) {
  11060. case GGML_TYPE_F16:
  11061. {
  11062. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11063. } break;
  11064. case GGML_TYPE_F32:
  11065. {
  11066. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11067. GGML_ASSERT(false);
  11068. } break;
  11069. default:
  11070. {
  11071. GGML_ASSERT(false);
  11072. } break;
  11073. }
  11074. }
  11075. // ggml_compute_forward_conv_transpose_2d
  11076. static void ggml_compute_forward_conv_transpose_2d(
  11077. const struct ggml_compute_params * params,
  11078. const struct ggml_tensor * src0,
  11079. const struct ggml_tensor * src1,
  11080. struct ggml_tensor * dst) {
  11081. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11082. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11083. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11084. int64_t t0 = ggml_perf_time_us();
  11085. UNUSED(t0);
  11086. GGML_TENSOR_BINARY_OP_LOCALS;
  11087. const int ith = params->ith;
  11088. const int nth = params->nth;
  11089. const int nk = ne00*ne01*ne02*ne03;
  11090. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11091. GGML_ASSERT(nb10 == sizeof(float));
  11092. if (params->type == GGML_TASK_INIT) {
  11093. memset(params->wdata, 0, params->wsize);
  11094. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11095. {
  11096. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11099. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11100. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11101. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11102. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11103. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11104. }
  11105. }
  11106. }
  11107. }
  11108. }
  11109. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11110. {
  11111. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11112. for (int i12 = 0; i12 < ne12; i12++) {
  11113. for (int i11 = 0; i11 < ne11; i11++) {
  11114. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11115. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11116. for (int i10 = 0; i10 < ne10; i10++) {
  11117. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11118. }
  11119. }
  11120. }
  11121. }
  11122. return;
  11123. }
  11124. if (params->type == GGML_TASK_FINALIZE) {
  11125. return;
  11126. }
  11127. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11128. // total patches in dst
  11129. const int np = ne2;
  11130. // patches per thread
  11131. const int dp = (np + nth - 1)/nth;
  11132. // patch range for this thread
  11133. const int ip0 = dp*ith;
  11134. const int ip1 = MIN(ip0 + dp, np);
  11135. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11136. ggml_fp16_t * const wdata_src = wdata + nk;
  11137. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11138. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11139. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11140. for (int i11 = 0; i11 < ne11; i11++) {
  11141. for (int i10 = 0; i10 < ne10; i10++) {
  11142. const int i1n = i11*ne10*ne12 + i10*ne12;
  11143. for (int i01 = 0; i01 < ne01; i01++) {
  11144. for (int i00 = 0; i00 < ne00; i00++) {
  11145. float v = 0;
  11146. ggml_vec_dot_f16(ne03, &v,
  11147. wdata_src + i1n,
  11148. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11149. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11150. }
  11151. }
  11152. }
  11153. }
  11154. }
  11155. }
  11156. // ggml_compute_forward_pool_1d_sk_p0
  11157. static void ggml_compute_forward_pool_1d_sk_p0(
  11158. const struct ggml_compute_params * params,
  11159. const enum ggml_op_pool op,
  11160. const struct ggml_tensor * src,
  11161. const int k,
  11162. struct ggml_tensor * dst) {
  11163. assert(src->type == GGML_TYPE_F32);
  11164. assert(params->ith == 0);
  11165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11166. return;
  11167. }
  11168. const char * cdata = (const char *)src->data;
  11169. const char * const data_end = cdata + ggml_nbytes(src);
  11170. float * drow = (float *)dst->data;
  11171. const int64_t rs = dst->ne[0];
  11172. while (cdata < data_end) {
  11173. const float * const srow = (const float *)cdata;
  11174. int j = 0;
  11175. for (int64_t i = 0; i < rs; ++i) {
  11176. switch (op) {
  11177. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11178. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11179. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11180. }
  11181. for (int ki = 0; ki < k; ++ki) {
  11182. switch (op) {
  11183. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11184. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11185. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11186. }
  11187. ++j;
  11188. }
  11189. switch (op) {
  11190. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11191. case GGML_OP_POOL_MAX: break;
  11192. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11193. }
  11194. }
  11195. cdata += src->nb[1];
  11196. drow += rs;
  11197. }
  11198. }
  11199. // ggml_compute_forward_pool_1d
  11200. static void ggml_compute_forward_pool_1d(
  11201. const struct ggml_compute_params * params,
  11202. const struct ggml_tensor * src0,
  11203. struct ggml_tensor * dst) {
  11204. const int32_t * opts = (const int32_t *)dst->op_params;
  11205. enum ggml_op_pool op = opts[0];
  11206. const int k0 = opts[1];
  11207. const int s0 = opts[2];
  11208. const int p0 = opts[3];
  11209. GGML_ASSERT(p0 == 0); // padding not supported
  11210. GGML_ASSERT(k0 == s0); // only s = k supported
  11211. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11212. }
  11213. // ggml_compute_forward_pool_2d_sk_p0
  11214. static void ggml_compute_forward_pool_2d_sk_p0(
  11215. const struct ggml_compute_params * params,
  11216. const enum ggml_op_pool op,
  11217. const struct ggml_tensor * src,
  11218. const int k0,
  11219. const int k1,
  11220. struct ggml_tensor * dst) {
  11221. assert(src->type == GGML_TYPE_F32);
  11222. assert(params->ith == 0);
  11223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11224. return;
  11225. }
  11226. const char * cdata = (const char*)src->data;
  11227. const char * const data_end = cdata + ggml_nbytes(src);
  11228. const int64_t px = dst->ne[0];
  11229. const int64_t py = dst->ne[1];
  11230. const int64_t pa = px * py;
  11231. float * dplane = (float *)dst->data;
  11232. const int ka = k0 * k1;
  11233. while (cdata < data_end) {
  11234. for (int oy = 0; oy < py; ++oy) {
  11235. float * const drow = dplane + oy * px;
  11236. for (int ox = 0; ox < px; ++ox) {
  11237. float * const out = drow + ox;
  11238. switch (op) {
  11239. case GGML_OP_POOL_AVG: *out = 0; break;
  11240. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11241. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11242. }
  11243. const int ix = ox * k0;
  11244. const int iy = oy * k1;
  11245. for (int ky = 0; ky < k1; ++ky) {
  11246. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11247. for (int kx = 0; kx < k0; ++kx) {
  11248. int j = ix + kx;
  11249. switch (op) {
  11250. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11251. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11252. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11253. }
  11254. }
  11255. }
  11256. switch (op) {
  11257. case GGML_OP_POOL_AVG: *out /= ka; break;
  11258. case GGML_OP_POOL_MAX: break;
  11259. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11260. }
  11261. }
  11262. }
  11263. cdata += src->nb[2];
  11264. dplane += pa;
  11265. }
  11266. }
  11267. // ggml_compute_forward_pool_2d
  11268. static void ggml_compute_forward_pool_2d(
  11269. const struct ggml_compute_params * params,
  11270. const struct ggml_tensor * src0,
  11271. struct ggml_tensor * dst) {
  11272. const int32_t * opts = (const int32_t *)dst->op_params;
  11273. enum ggml_op_pool op = opts[0];
  11274. const int k0 = opts[1];
  11275. const int k1 = opts[2];
  11276. const int s0 = opts[3];
  11277. const int s1 = opts[4];
  11278. const int p0 = opts[5];
  11279. const int p1 = opts[6];
  11280. GGML_ASSERT(p0 == 0);
  11281. GGML_ASSERT(p1 == 0); // padding not supported
  11282. GGML_ASSERT(k0 == s0);
  11283. GGML_ASSERT(k1 == s1); // only s = k supported
  11284. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11285. }
  11286. // ggml_compute_forward_upscale
  11287. static void ggml_compute_forward_upscale_f32(
  11288. const struct ggml_compute_params * params,
  11289. const struct ggml_tensor * src0,
  11290. struct ggml_tensor * dst) {
  11291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11292. return;
  11293. }
  11294. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11295. const int ith = params->ith;
  11296. GGML_TENSOR_UNARY_OP_LOCALS;
  11297. const int scale_factor = dst->op_params[0];
  11298. // TODO: optimize
  11299. for (int i03 = 0; i03 < ne03; i03++) {
  11300. for (int i02 = ith; i02 < ne02; i02++) {
  11301. for (int m = 0; m < dst->ne[1]; m++) {
  11302. int i01 = m / scale_factor;
  11303. for (int n = 0; n < dst->ne[0]; n++) {
  11304. int i00 = n / scale_factor;
  11305. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11306. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11307. *y = *x;
  11308. }
  11309. }
  11310. }
  11311. }
  11312. }
  11313. static void ggml_compute_forward_upscale(
  11314. const struct ggml_compute_params * params,
  11315. const struct ggml_tensor * src0,
  11316. struct ggml_tensor * dst) {
  11317. switch (src0->type) {
  11318. case GGML_TYPE_F32:
  11319. {
  11320. ggml_compute_forward_upscale_f32(params, src0, dst);
  11321. } break;
  11322. default:
  11323. {
  11324. GGML_ASSERT(false);
  11325. } break;
  11326. }
  11327. }
  11328. // ggml_compute_forward_flash_attn
  11329. static void ggml_compute_forward_flash_attn_f32(
  11330. const struct ggml_compute_params * params,
  11331. const struct ggml_tensor * q,
  11332. const struct ggml_tensor * k,
  11333. const struct ggml_tensor * v,
  11334. const bool masked,
  11335. struct ggml_tensor * dst) {
  11336. int64_t t0 = ggml_perf_time_us();
  11337. UNUSED(t0);
  11338. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11339. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11340. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11341. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11342. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11343. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11344. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11345. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11346. const int ith = params->ith;
  11347. const int nth = params->nth;
  11348. const int64_t D = neq0;
  11349. const int64_t N = neq1;
  11350. const int64_t P = nek1 - N;
  11351. const int64_t M = P + N;
  11352. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11353. GGML_ASSERT(ne0 == D);
  11354. GGML_ASSERT(ne1 == N);
  11355. GGML_ASSERT(P >= 0);
  11356. GGML_ASSERT(nbq0 == sizeof(float));
  11357. GGML_ASSERT(nbk0 == sizeof(float));
  11358. GGML_ASSERT(nbv0 == sizeof(float));
  11359. GGML_ASSERT(neq0 == D);
  11360. GGML_ASSERT(nek0 == D);
  11361. GGML_ASSERT(nev1 == D);
  11362. GGML_ASSERT(neq1 == N);
  11363. GGML_ASSERT(nek1 == N + P);
  11364. GGML_ASSERT(nev1 == D);
  11365. // dst cannot be transposed or permuted
  11366. GGML_ASSERT(nb0 == sizeof(float));
  11367. GGML_ASSERT(nb0 <= nb1);
  11368. GGML_ASSERT(nb1 <= nb2);
  11369. GGML_ASSERT(nb2 <= nb3);
  11370. if (params->type == GGML_TASK_INIT) {
  11371. return;
  11372. }
  11373. if (params->type == GGML_TASK_FINALIZE) {
  11374. return;
  11375. }
  11376. // parallelize by q rows using ggml_vec_dot_f32
  11377. // total rows in q
  11378. const int nr = neq1*neq2*neq3;
  11379. // rows per thread
  11380. const int dr = (nr + nth - 1)/nth;
  11381. // row range for this thread
  11382. const int ir0 = dr*ith;
  11383. const int ir1 = MIN(ir0 + dr, nr);
  11384. const float scale = 1.0f/sqrtf(D);
  11385. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11386. for (int ir = ir0; ir < ir1; ++ir) {
  11387. // q indices
  11388. const int iq3 = ir/(neq2*neq1);
  11389. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11390. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11391. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11392. for (int i = M; i < Mup; ++i) {
  11393. S[i] = -INFINITY;
  11394. }
  11395. for (int64_t ic = 0; ic < nek1; ++ic) {
  11396. // k indices
  11397. const int ik3 = iq3;
  11398. const int ik2 = iq2;
  11399. const int ik1 = ic;
  11400. // S indices
  11401. const int i1 = ik1;
  11402. ggml_vec_dot_f32(neq0,
  11403. S + i1,
  11404. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11405. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11406. }
  11407. // scale
  11408. ggml_vec_scale_f32(nek1, S, scale);
  11409. if (masked) {
  11410. for (int64_t i = P; i < M; i++) {
  11411. if (i > P + iq1) {
  11412. S[i] = -INFINITY;
  11413. }
  11414. }
  11415. }
  11416. // softmax
  11417. {
  11418. float max = -INFINITY;
  11419. ggml_vec_max_f32(M, &max, S);
  11420. ggml_float sum = 0.0;
  11421. {
  11422. #ifdef GGML_SOFT_MAX_ACCELERATE
  11423. max = -max;
  11424. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11425. vvexpf(S, S, &Mup);
  11426. ggml_vec_sum_f32(Mup, &sum, S);
  11427. #else
  11428. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11429. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11430. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11431. float * SS = S + i;
  11432. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11433. if (SS[j] == -INFINITY) {
  11434. SS[j] = 0.0f;
  11435. } else {
  11436. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11437. const float val = expf(SS[j] - max);
  11438. #else
  11439. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11440. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11441. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11442. #endif
  11443. sump[j] += (ggml_float)val;
  11444. SS[j] = val;
  11445. }
  11446. }
  11447. }
  11448. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11449. sum += sump[i];
  11450. }
  11451. #endif
  11452. }
  11453. assert(sum > 0.0);
  11454. sum = 1.0/sum;
  11455. ggml_vec_scale_f32(M, S, sum);
  11456. #ifndef NDEBUG
  11457. for (int i = 0; i < M; ++i) {
  11458. assert(!isnan(S[i]));
  11459. assert(!isinf(S[i]));
  11460. }
  11461. #endif
  11462. }
  11463. for (int64_t ic = 0; ic < nev1; ++ic) {
  11464. // dst indices
  11465. const int i1 = iq1;
  11466. const int i2 = iq2;
  11467. const int i3 = iq3;
  11468. ggml_vec_dot_f32(nek1,
  11469. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11470. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11471. S);
  11472. }
  11473. }
  11474. }
  11475. static void ggml_compute_forward_flash_attn_f16(
  11476. const struct ggml_compute_params * params,
  11477. const struct ggml_tensor * q,
  11478. const struct ggml_tensor * k,
  11479. const struct ggml_tensor * v,
  11480. const bool masked,
  11481. struct ggml_tensor * dst) {
  11482. int64_t t0 = ggml_perf_time_us();
  11483. UNUSED(t0);
  11484. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11485. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11486. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11487. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11488. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11489. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11490. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11491. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11492. const int ith = params->ith;
  11493. const int nth = params->nth;
  11494. const int64_t D = neq0;
  11495. const int64_t N = neq1;
  11496. const int64_t P = nek1 - N;
  11497. const int64_t M = P + N;
  11498. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11499. GGML_ASSERT(ne0 == D);
  11500. GGML_ASSERT(ne1 == N);
  11501. GGML_ASSERT(P >= 0);
  11502. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11503. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11504. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11505. GGML_ASSERT(neq0 == D);
  11506. GGML_ASSERT(nek0 == D);
  11507. GGML_ASSERT(nev1 == D);
  11508. GGML_ASSERT(neq1 == N);
  11509. GGML_ASSERT(nek1 == N + P);
  11510. GGML_ASSERT(nev1 == D);
  11511. // dst cannot be transposed or permuted
  11512. GGML_ASSERT(nb0 == sizeof(float));
  11513. GGML_ASSERT(nb0 <= nb1);
  11514. GGML_ASSERT(nb1 <= nb2);
  11515. GGML_ASSERT(nb2 <= nb3);
  11516. if (params->type == GGML_TASK_INIT) {
  11517. return;
  11518. }
  11519. if (params->type == GGML_TASK_FINALIZE) {
  11520. return;
  11521. }
  11522. // parallelize by q rows using ggml_vec_dot_f32
  11523. // total rows in q
  11524. const int nr = neq1*neq2*neq3;
  11525. // rows per thread
  11526. const int dr = (nr + nth - 1)/nth;
  11527. // row range for this thread
  11528. const int ir0 = dr*ith;
  11529. const int ir1 = MIN(ir0 + dr, nr);
  11530. const float scale = 1.0f/sqrtf(D);
  11531. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11532. for (int ir = ir0; ir < ir1; ++ir) {
  11533. // q indices
  11534. const int iq3 = ir/(neq2*neq1);
  11535. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11536. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11537. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11538. for (int i = M; i < Mup; ++i) {
  11539. S[i] = -INFINITY;
  11540. }
  11541. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11542. for (int64_t ic = 0; ic < nek1; ++ic) {
  11543. // k indices
  11544. const int ik3 = iq3;
  11545. const int ik2 = iq2;
  11546. const int ik1 = ic;
  11547. // S indices
  11548. const int i1 = ik1;
  11549. ggml_vec_dot_f16(neq0,
  11550. S + i1,
  11551. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11552. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11553. }
  11554. } else {
  11555. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11556. // k indices
  11557. const int ik3 = iq3;
  11558. const int ik2 = iq2;
  11559. const int ik1 = ic;
  11560. // S indices
  11561. const int i1 = ik1;
  11562. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11563. S + i1,
  11564. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11565. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11566. }
  11567. }
  11568. // scale
  11569. ggml_vec_scale_f32(nek1, S, scale);
  11570. if (masked) {
  11571. for (int64_t i = P; i < M; i++) {
  11572. if (i > P + iq1) {
  11573. S[i] = -INFINITY;
  11574. }
  11575. }
  11576. }
  11577. // softmax
  11578. {
  11579. float max = -INFINITY;
  11580. ggml_vec_max_f32(M, &max, S);
  11581. ggml_float sum = 0.0;
  11582. {
  11583. #ifdef GGML_SOFT_MAX_ACCELERATE
  11584. max = -max;
  11585. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11586. vvexpf(S, S, &Mup);
  11587. ggml_vec_sum_f32(Mup, &sum, S);
  11588. #else
  11589. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11590. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11591. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11592. float * SS = S + i;
  11593. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11594. if (SS[j] == -INFINITY) {
  11595. SS[j] = 0.0f;
  11596. } else {
  11597. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11598. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11599. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11600. sump[j] += (ggml_float)val;
  11601. SS[j] = val;
  11602. }
  11603. }
  11604. }
  11605. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11606. sum += sump[i];
  11607. }
  11608. #endif
  11609. }
  11610. assert(sum > 0.0);
  11611. sum = 1.0/sum;
  11612. ggml_vec_scale_f32(M, S, sum);
  11613. #ifndef NDEBUG
  11614. for (int i = 0; i < M; ++i) {
  11615. assert(!isnan(S[i]));
  11616. assert(!isinf(S[i]));
  11617. }
  11618. #endif
  11619. }
  11620. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11621. for (int64_t i = 0; i < M; i++) {
  11622. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11623. }
  11624. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11625. for (int64_t ic = 0; ic < nev1; ++ic) {
  11626. // dst indices
  11627. const int i1 = iq1;
  11628. const int i2 = iq2;
  11629. const int i3 = iq3;
  11630. ggml_vec_dot_f16(nek1,
  11631. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11632. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11633. S16);
  11634. }
  11635. } else {
  11636. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11637. // dst indices
  11638. const int i1 = iq1;
  11639. const int i2 = iq2;
  11640. const int i3 = iq3;
  11641. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11642. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11643. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11644. S16);
  11645. }
  11646. }
  11647. }
  11648. }
  11649. static void ggml_compute_forward_flash_attn(
  11650. const struct ggml_compute_params * params,
  11651. const struct ggml_tensor * q,
  11652. const struct ggml_tensor * k,
  11653. const struct ggml_tensor * v,
  11654. const bool masked,
  11655. struct ggml_tensor * dst) {
  11656. switch (q->type) {
  11657. case GGML_TYPE_F16:
  11658. {
  11659. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11660. } break;
  11661. case GGML_TYPE_F32:
  11662. {
  11663. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11664. } break;
  11665. default:
  11666. {
  11667. GGML_ASSERT(false);
  11668. } break;
  11669. }
  11670. }
  11671. // ggml_compute_forward_flash_ff
  11672. static void ggml_compute_forward_flash_ff_f16(
  11673. const struct ggml_compute_params * params,
  11674. const struct ggml_tensor * a, // F16
  11675. const struct ggml_tensor * b0, // F16 fc_w
  11676. const struct ggml_tensor * b1, // F32 fc_b
  11677. const struct ggml_tensor * c0, // F16 proj_w
  11678. const struct ggml_tensor * c1, // F32 proj_b
  11679. struct ggml_tensor * dst) {
  11680. int64_t t0 = ggml_perf_time_us();
  11681. UNUSED(t0);
  11682. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11683. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11684. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11685. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11686. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11687. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11688. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11689. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11690. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11691. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11692. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11693. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11694. const int ith = params->ith;
  11695. const int nth = params->nth;
  11696. const int64_t D = nea0;
  11697. //const int64_t N = nea1;
  11698. const int64_t M = neb01;
  11699. GGML_ASSERT(ne0 == nea0);
  11700. GGML_ASSERT(ne1 == nea1);
  11701. GGML_ASSERT(ne2 == nea2);
  11702. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11703. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11704. GGML_ASSERT(nbb10 == sizeof(float));
  11705. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11706. GGML_ASSERT(nbc10 == sizeof(float));
  11707. GGML_ASSERT(neb00 == D);
  11708. GGML_ASSERT(neb01 == M);
  11709. GGML_ASSERT(neb10 == M);
  11710. GGML_ASSERT(neb11 == 1);
  11711. GGML_ASSERT(nec00 == M);
  11712. GGML_ASSERT(nec01 == D);
  11713. GGML_ASSERT(nec10 == D);
  11714. GGML_ASSERT(nec11 == 1);
  11715. // dst cannot be transposed or permuted
  11716. GGML_ASSERT(nb0 == sizeof(float));
  11717. GGML_ASSERT(nb0 <= nb1);
  11718. GGML_ASSERT(nb1 <= nb2);
  11719. GGML_ASSERT(nb2 <= nb3);
  11720. if (params->type == GGML_TASK_INIT) {
  11721. return;
  11722. }
  11723. if (params->type == GGML_TASK_FINALIZE) {
  11724. return;
  11725. }
  11726. // parallelize by a rows using ggml_vec_dot_f32
  11727. // total rows in a
  11728. const int nr = nea1*nea2*nea3;
  11729. // rows per thread
  11730. const int dr = (nr + nth - 1)/nth;
  11731. // row range for this thread
  11732. const int ir0 = dr*ith;
  11733. const int ir1 = MIN(ir0 + dr, nr);
  11734. for (int ir = ir0; ir < ir1; ++ir) {
  11735. // a indices
  11736. const int ia3 = ir/(nea2*nea1);
  11737. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11738. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11739. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11740. for (int64_t ic = 0; ic < neb01; ++ic) {
  11741. // b0 indices
  11742. const int ib03 = ia3;
  11743. const int ib02 = ia2;
  11744. const int ib01 = ic;
  11745. // S indices
  11746. const int i1 = ib01;
  11747. ggml_vec_dot_f16(nea0,
  11748. S + i1,
  11749. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11750. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11751. }
  11752. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11753. //ggml_vec_gelu_f32(neb01, S, S);
  11754. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11755. for (int64_t i = 0; i < M; i++) {
  11756. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11757. }
  11758. ggml_vec_gelu_f16(neb01, S16, S16);
  11759. {
  11760. // dst indices
  11761. const int i1 = ia1;
  11762. const int i2 = ia2;
  11763. const int i3 = ia3;
  11764. for (int64_t ic = 0; ic < nec01; ++ic) {
  11765. ggml_vec_dot_f16(neb01,
  11766. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11767. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11768. S16);
  11769. }
  11770. ggml_vec_add_f32(nec01,
  11771. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11772. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11773. (float *) c1->data);
  11774. }
  11775. }
  11776. }
  11777. static void ggml_compute_forward_flash_ff(
  11778. const struct ggml_compute_params * params,
  11779. const struct ggml_tensor * a,
  11780. const struct ggml_tensor * b0,
  11781. const struct ggml_tensor * b1,
  11782. const struct ggml_tensor * c0,
  11783. const struct ggml_tensor * c1,
  11784. struct ggml_tensor * dst) {
  11785. switch (b0->type) {
  11786. case GGML_TYPE_F16:
  11787. {
  11788. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11789. } break;
  11790. case GGML_TYPE_F32:
  11791. {
  11792. GGML_ASSERT(false); // TODO
  11793. } break;
  11794. default:
  11795. {
  11796. GGML_ASSERT(false);
  11797. } break;
  11798. }
  11799. }
  11800. // ggml_compute_forward_flash_attn_back
  11801. static void ggml_compute_forward_flash_attn_back_f32(
  11802. const struct ggml_compute_params * params,
  11803. const struct ggml_tensor * q,
  11804. const struct ggml_tensor * k,
  11805. const struct ggml_tensor * v,
  11806. const struct ggml_tensor * d,
  11807. const bool masked,
  11808. struct ggml_tensor * dst) {
  11809. int64_t t0 = ggml_perf_time_us();
  11810. UNUSED(t0);
  11811. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11812. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11813. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11814. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11815. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11816. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11817. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11818. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11819. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11820. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11821. const int ith = params->ith;
  11822. const int nth = params->nth;
  11823. const int64_t D = neq0;
  11824. const int64_t N = neq1;
  11825. const int64_t P = nek1 - N;
  11826. const int64_t M = P + N;
  11827. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11828. const int mxDM = MAX(D, Mup);
  11829. // GGML_ASSERT(ne0 == D);
  11830. // GGML_ASSERT(ne1 == N);
  11831. GGML_ASSERT(P >= 0);
  11832. GGML_ASSERT(nbq0 == sizeof(float));
  11833. GGML_ASSERT(nbk0 == sizeof(float));
  11834. GGML_ASSERT(nbv0 == sizeof(float));
  11835. GGML_ASSERT(neq0 == D);
  11836. GGML_ASSERT(nek0 == D);
  11837. GGML_ASSERT(nev1 == D);
  11838. GGML_ASSERT(ned0 == D);
  11839. GGML_ASSERT(neq1 == N);
  11840. GGML_ASSERT(nek1 == N + P);
  11841. GGML_ASSERT(nev1 == D);
  11842. GGML_ASSERT(ned1 == N);
  11843. // dst cannot be transposed or permuted
  11844. GGML_ASSERT(nb0 == sizeof(float));
  11845. GGML_ASSERT(nb0 <= nb1);
  11846. GGML_ASSERT(nb1 <= nb2);
  11847. GGML_ASSERT(nb2 <= nb3);
  11848. if (params->type == GGML_TASK_INIT) {
  11849. if (ith == 0) {
  11850. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11851. }
  11852. return;
  11853. }
  11854. if (params->type == GGML_TASK_FINALIZE) {
  11855. return;
  11856. }
  11857. // parallelize by q rows using ggml_vec_dot_f32
  11858. // total rows in q
  11859. const int nr = neq2*neq3;
  11860. // rows per thread
  11861. const int dr = (nr + nth - 1)/nth;
  11862. // row range for this thread
  11863. const int ir0 = dr*ith;
  11864. const int ir1 = MIN(ir0 + dr, nr);
  11865. const float scale = 1.0f/sqrtf(D);
  11866. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11867. for (int ir = ir0; ir < ir1; ++ir) {
  11868. // q indices
  11869. const int iq3 = ir/(neq2);
  11870. const int iq2 = ir - iq3*neq2;
  11871. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11872. // not sure about CACHE_LINE_SIZE_F32..
  11873. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11874. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11875. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11876. for (int i = M; i < Mup; ++i) {
  11877. S[i] = -INFINITY;
  11878. }
  11879. for (int64_t ic = 0; ic < nek1; ++ic) {
  11880. // k indices
  11881. const int ik3 = iq3;
  11882. const int ik2 = iq2;
  11883. const int ik1 = ic;
  11884. // S indices
  11885. const int i1 = ik1;
  11886. ggml_vec_dot_f32(neq0,
  11887. S + i1,
  11888. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11889. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11890. }
  11891. // scale
  11892. ggml_vec_scale_f32(nek1, S, scale);
  11893. if (masked) {
  11894. for (int64_t i = P; i < M; i++) {
  11895. if (i > P + iq1) {
  11896. S[i] = -INFINITY;
  11897. }
  11898. }
  11899. }
  11900. // softmax
  11901. {
  11902. float max = -INFINITY;
  11903. ggml_vec_max_f32(M, &max, S);
  11904. ggml_float sum = 0.0;
  11905. {
  11906. #ifdef GGML_SOFT_MAX_ACCELERATE
  11907. max = -max;
  11908. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11909. vvexpf(SM, SM, &Mup);
  11910. ggml_vec_sum_f32(Mup, &sum, SM);
  11911. #else
  11912. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11913. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11914. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11915. float * SR = S + i;
  11916. float * SW = SM + i;
  11917. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11918. if (SR[j] == -INFINITY) {
  11919. SW[j] = 0.0f;
  11920. } else {
  11921. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11922. const float val = expf(SR[j] - max);
  11923. #else
  11924. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11925. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11926. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11927. #endif
  11928. sump[j] += (ggml_float)val;
  11929. SW[j] = val;
  11930. }
  11931. }
  11932. }
  11933. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11934. sum += sump[i];
  11935. }
  11936. #endif
  11937. }
  11938. assert(sum > 0.0);
  11939. sum = 1.0/sum;
  11940. ggml_vec_scale_f32(M, SM, sum);
  11941. }
  11942. // step-by-step explanation
  11943. {
  11944. // forward-process shape grads from backward process
  11945. // parallel_for iq2,iq3:
  11946. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11947. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11948. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11949. // for iq1:
  11950. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11951. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11952. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11953. // S0 = -Inf [D,1,1,1]
  11954. // ~S1[i] = dot(kcur[:D,i], qcur)
  11955. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11956. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11957. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11958. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11959. // ~S5[i] = dot(vcur[:,i], S4)
  11960. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11961. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11962. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11963. // dst backward-/ grad[dst] = d
  11964. //
  11965. // output gradients with their dependencies:
  11966. //
  11967. // grad[kcur] = grad[S1].T @ qcur
  11968. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11969. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11970. // grad[S4] = grad[S5] @ vcur
  11971. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11972. // grad[qcur] = grad[S1] @ kcur
  11973. // grad[vcur] = grad[S5].T @ S4
  11974. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11975. //
  11976. // in post-order:
  11977. //
  11978. // S1 = qcur @ kcur.T
  11979. // S2 = S1 * scale
  11980. // S3 = diag_mask_inf(S2, P)
  11981. // S4 = softmax(S3)
  11982. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11983. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11984. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11985. // grad[qcur] = grad[S1] @ kcur
  11986. // grad[kcur] = grad[S1].T @ qcur
  11987. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11988. //
  11989. // using less variables (SM=S4):
  11990. //
  11991. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11992. // SM = softmax(S)
  11993. // S = d[:D,iq1,iq2,iq3] @ vcur
  11994. // dot_SM_gradSM = dot(SM, S)
  11995. // S = SM * (S - dot(SM, S))
  11996. // S = diag_mask_zero(S, P) * scale
  11997. //
  11998. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11999. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12000. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12001. }
  12002. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  12003. // S = d[:D,iq1,iq2,iq3] @ vcur
  12004. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  12005. ggml_vec_set_f32(M, S, 0);
  12006. for (int64_t ic = 0; ic < D; ++ic) {
  12007. // dst indices
  12008. const int i1 = iq1;
  12009. const int i2 = iq2;
  12010. const int i3 = iq3;
  12011. ggml_vec_mad_f32(M,
  12012. S,
  12013. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  12014. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12015. }
  12016. // S = SM * (S - dot(SM, S))
  12017. float dot_SM_gradSM = 0;
  12018. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  12019. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12020. ggml_vec_mul_f32 (M, S, S, SM);
  12021. // S = diag_mask_zero(S, P) * scale
  12022. if (masked) {
  12023. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  12024. // S[i] = 0;
  12025. // }
  12026. for (int64_t i = P; i < M; i++) {
  12027. if (i > P + iq1) {
  12028. S[i] = 0;
  12029. }
  12030. }
  12031. }
  12032. ggml_vec_scale_f32(M, S, scale);
  12033. void * grad_q = (char *) dst->data;
  12034. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  12035. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  12036. const size_t nbgq1 = nb0*neq0;
  12037. const size_t nbgq2 = nb0*neq0*neq1;
  12038. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12039. const size_t nbgk1 = nb0*nek0;
  12040. const size_t nbgk2 = nb0*nek0*nek1;
  12041. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12042. const size_t nbgv1 = nb0*nev0;
  12043. const size_t nbgv2 = nb0*nev0*nev1;
  12044. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12045. // S shape [M,1]
  12046. // SM shape [M,1]
  12047. // kcur shape [D,M]
  12048. // qcur shape [D,1]
  12049. // vcur shape [M,D]
  12050. //
  12051. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12052. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12053. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  12054. //
  12055. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  12056. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  12057. for (int64_t ic = 0; ic < M; ++ic) {
  12058. // dst indices
  12059. const int i1 = iq1;
  12060. const int i2 = iq2;
  12061. const int i3 = iq3;
  12062. ggml_vec_mad_f32(D,
  12063. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  12064. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  12065. S[ic]);
  12066. }
  12067. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12068. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12069. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12070. for (int64_t ic = 0; ic < M; ++ic) {
  12071. // dst indices
  12072. const int i1 = iq1;
  12073. const int i2 = iq2;
  12074. const int i3 = iq3;
  12075. // ggml_vec_set_f32(D,
  12076. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12077. // 0);
  12078. ggml_vec_mad_f32(D,
  12079. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12080. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  12081. S[ic]);
  12082. }
  12083. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12084. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  12085. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  12086. for (int64_t ic = 0; ic < D; ++ic) {
  12087. // dst indices
  12088. const int i1 = iq1;
  12089. const int i2 = iq2;
  12090. const int i3 = iq3;
  12091. // ggml_vec_set_f32(M,
  12092. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12093. // 0);
  12094. ggml_vec_mad_f32(M,
  12095. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12096. SM,
  12097. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12098. }
  12099. }
  12100. }
  12101. }
  12102. static void ggml_compute_forward_flash_attn_back(
  12103. const struct ggml_compute_params * params,
  12104. const struct ggml_tensor * q,
  12105. const struct ggml_tensor * k,
  12106. const struct ggml_tensor * v,
  12107. const struct ggml_tensor * d,
  12108. const bool masked,
  12109. struct ggml_tensor * dst) {
  12110. switch (q->type) {
  12111. case GGML_TYPE_F32:
  12112. {
  12113. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12114. } break;
  12115. default:
  12116. {
  12117. GGML_ASSERT(false);
  12118. } break;
  12119. }
  12120. }
  12121. // ggml_compute_forward_win_part
  12122. static void ggml_compute_forward_win_part_f32(
  12123. const struct ggml_compute_params * params,
  12124. const struct ggml_tensor * src0,
  12125. struct ggml_tensor * dst) {
  12126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12127. return;
  12128. }
  12129. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12130. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12131. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12132. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12133. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12134. assert(ne00 == ne0);
  12135. assert(ne3 == nep0*nep1);
  12136. // TODO: optimize / multi-thread
  12137. for (int py = 0; py < nep1; ++py) {
  12138. for (int px = 0; px < nep0; ++px) {
  12139. const int64_t i3 = py*nep0 + px;
  12140. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12141. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12142. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12143. const int64_t i02 = py*w + i2;
  12144. const int64_t i01 = px*w + i1;
  12145. const int64_t i00 = i0;
  12146. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12147. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12148. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12149. ((float *) dst->data)[i] = 0.0f;
  12150. } else {
  12151. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12152. }
  12153. }
  12154. }
  12155. }
  12156. }
  12157. }
  12158. }
  12159. static void ggml_compute_forward_win_part(
  12160. const struct ggml_compute_params * params,
  12161. const struct ggml_tensor * src0,
  12162. struct ggml_tensor * dst) {
  12163. switch (src0->type) {
  12164. case GGML_TYPE_F32:
  12165. {
  12166. ggml_compute_forward_win_part_f32(params, src0, dst);
  12167. } break;
  12168. default:
  12169. {
  12170. GGML_ASSERT(false);
  12171. } break;
  12172. }
  12173. }
  12174. // ggml_compute_forward_win_unpart
  12175. static void ggml_compute_forward_win_unpart_f32(
  12176. const struct ggml_compute_params * params,
  12177. const struct ggml_tensor * src0,
  12178. struct ggml_tensor * dst) {
  12179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12180. return;
  12181. }
  12182. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12183. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12184. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12185. // padding
  12186. const int px = (w - ne1%w)%w;
  12187. //const int py = (w - ne2%w)%w;
  12188. const int npx = (px + ne1)/w;
  12189. //const int npy = (py + ne2)/w;
  12190. assert(ne0 == ne00);
  12191. // TODO: optimize / multi-thread
  12192. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12193. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12194. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12195. const int ip2 = i2/w;
  12196. const int ip1 = i1/w;
  12197. const int64_t i02 = i2%w;
  12198. const int64_t i01 = i1%w;
  12199. const int64_t i00 = i0;
  12200. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12201. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12202. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12203. }
  12204. }
  12205. }
  12206. }
  12207. static void ggml_compute_forward_win_unpart(
  12208. const struct ggml_compute_params * params,
  12209. const struct ggml_tensor * src0,
  12210. struct ggml_tensor * dst) {
  12211. switch (src0->type) {
  12212. case GGML_TYPE_F32:
  12213. {
  12214. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12215. } break;
  12216. default:
  12217. {
  12218. GGML_ASSERT(false);
  12219. } break;
  12220. }
  12221. }
  12222. //gmml_compute_forward_unary
  12223. static void ggml_compute_forward_unary(
  12224. const struct ggml_compute_params * params,
  12225. const struct ggml_tensor * src0,
  12226. struct ggml_tensor * dst) {
  12227. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12228. switch (op) {
  12229. case GGML_UNARY_OP_ABS:
  12230. {
  12231. ggml_compute_forward_abs(params, src0, dst);
  12232. } break;
  12233. case GGML_UNARY_OP_SGN:
  12234. {
  12235. ggml_compute_forward_sgn(params, src0, dst);
  12236. } break;
  12237. case GGML_UNARY_OP_NEG:
  12238. {
  12239. ggml_compute_forward_neg(params, src0, dst);
  12240. } break;
  12241. case GGML_UNARY_OP_STEP:
  12242. {
  12243. ggml_compute_forward_step(params, src0, dst);
  12244. } break;
  12245. case GGML_UNARY_OP_TANH:
  12246. {
  12247. ggml_compute_forward_tanh(params, src0, dst);
  12248. } break;
  12249. case GGML_UNARY_OP_ELU:
  12250. {
  12251. ggml_compute_forward_elu(params, src0, dst);
  12252. } break;
  12253. case GGML_UNARY_OP_RELU:
  12254. {
  12255. ggml_compute_forward_relu(params, src0, dst);
  12256. } break;
  12257. case GGML_UNARY_OP_GELU:
  12258. {
  12259. ggml_compute_forward_gelu(params, src0, dst);
  12260. } break;
  12261. case GGML_UNARY_OP_GELU_QUICK:
  12262. {
  12263. ggml_compute_forward_gelu_quick(params, src0, dst);
  12264. } break;
  12265. case GGML_UNARY_OP_SILU:
  12266. {
  12267. ggml_compute_forward_silu(params, src0, dst);
  12268. } break;
  12269. default:
  12270. {
  12271. GGML_ASSERT(false);
  12272. } break;
  12273. }
  12274. }
  12275. // ggml_compute_forward_get_rel_pos
  12276. static void ggml_compute_forward_get_rel_pos_f16(
  12277. const struct ggml_compute_params * params,
  12278. const struct ggml_tensor * src0,
  12279. struct ggml_tensor * dst) {
  12280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12281. return;
  12282. }
  12283. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12284. GGML_TENSOR_UNARY_OP_LOCALS;
  12285. const int64_t w = ne1;
  12286. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12287. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12288. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12289. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12290. const int64_t pos = (w - i1 - 1) + i2;
  12291. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12292. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12293. }
  12294. }
  12295. }
  12296. }
  12297. static void ggml_compute_forward_get_rel_pos(
  12298. const struct ggml_compute_params * params,
  12299. const struct ggml_tensor * src0,
  12300. struct ggml_tensor * dst) {
  12301. switch (src0->type) {
  12302. case GGML_TYPE_F16:
  12303. {
  12304. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12305. } break;
  12306. default:
  12307. {
  12308. GGML_ASSERT(false);
  12309. } break;
  12310. }
  12311. }
  12312. // ggml_compute_forward_add_rel_pos
  12313. static void ggml_compute_forward_add_rel_pos_f32(
  12314. const struct ggml_compute_params * params,
  12315. const struct ggml_tensor * src0,
  12316. const struct ggml_tensor * src1,
  12317. const struct ggml_tensor * src2,
  12318. struct ggml_tensor * dst) {
  12319. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12320. if (!inplace && params->type == GGML_TASK_INIT) {
  12321. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12322. return;
  12323. }
  12324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12325. return;
  12326. }
  12327. int64_t t0 = ggml_perf_time_us();
  12328. UNUSED(t0);
  12329. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12330. float * src1_data = (float *) src1->data;
  12331. float * src2_data = (float *) src2->data;
  12332. float * dst_data = (float *) dst->data;
  12333. const int64_t ne10 = src1->ne[0];
  12334. const int64_t ne11 = src1->ne[1];
  12335. const int64_t ne12 = src1->ne[2];
  12336. const int64_t ne13 = src1->ne[3];
  12337. const int ith = params->ith;
  12338. const int nth = params->nth;
  12339. // total patches in dst
  12340. const int np = ne13;
  12341. // patches per thread
  12342. const int dp = (np + nth - 1)/nth;
  12343. // patch range for this thread
  12344. const int ip0 = dp*ith;
  12345. const int ip1 = MIN(ip0 + dp, np);
  12346. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12347. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12348. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12349. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12350. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12351. const int64_t jp0 = jp1 + i10;
  12352. const float src1_e = src1_data[jp0];
  12353. const float src2_e = src2_data[jp0];
  12354. const int64_t jdh = jp0 * ne10;
  12355. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12356. for (int64_t j = 0; j < ne10; ++j) {
  12357. dst_data[jdh + j ] += src2_e;
  12358. dst_data[jdw + j*ne10] += src1_e;
  12359. }
  12360. }
  12361. }
  12362. }
  12363. }
  12364. }
  12365. static void ggml_compute_forward_add_rel_pos(
  12366. const struct ggml_compute_params * params,
  12367. const struct ggml_tensor * src0,
  12368. const struct ggml_tensor * src1,
  12369. const struct ggml_tensor * src2,
  12370. struct ggml_tensor * dst) {
  12371. switch (src0->type) {
  12372. case GGML_TYPE_F32:
  12373. {
  12374. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12375. } break;
  12376. default:
  12377. {
  12378. GGML_ASSERT(false);
  12379. } break;
  12380. }
  12381. }
  12382. // ggml_compute_forward_map_unary
  12383. static void ggml_compute_forward_map_unary_f32(
  12384. const struct ggml_compute_params * params,
  12385. const struct ggml_tensor * src0,
  12386. struct ggml_tensor * dst,
  12387. const ggml_unary_op_f32_t fun) {
  12388. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12390. return;
  12391. }
  12392. const int n = ggml_nrows(src0);
  12393. const int nc = src0->ne[0];
  12394. assert( dst->nb[0] == sizeof(float));
  12395. assert(src0->nb[0] == sizeof(float));
  12396. for (int i = 0; i < n; i++) {
  12397. fun(nc,
  12398. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12399. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12400. }
  12401. }
  12402. static void ggml_compute_forward_map_unary(
  12403. const struct ggml_compute_params * params,
  12404. const struct ggml_tensor * src0,
  12405. struct ggml_tensor * dst,
  12406. const ggml_unary_op_f32_t fun) {
  12407. switch (src0->type) {
  12408. case GGML_TYPE_F32:
  12409. {
  12410. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12411. } break;
  12412. default:
  12413. {
  12414. GGML_ASSERT(false);
  12415. } break;
  12416. }
  12417. }
  12418. // ggml_compute_forward_map_binary
  12419. static void ggml_compute_forward_map_binary_f32(
  12420. const struct ggml_compute_params * params,
  12421. const struct ggml_tensor * src0,
  12422. const struct ggml_tensor * src1,
  12423. struct ggml_tensor * dst,
  12424. const ggml_binary_op_f32_t fun) {
  12425. assert(params->ith == 0);
  12426. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12428. return;
  12429. }
  12430. const int n = ggml_nrows(src0);
  12431. const int nc = src0->ne[0];
  12432. assert( dst->nb[0] == sizeof(float));
  12433. assert(src0->nb[0] == sizeof(float));
  12434. assert(src1->nb[0] == sizeof(float));
  12435. for (int i = 0; i < n; i++) {
  12436. fun(nc,
  12437. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12438. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12439. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12440. }
  12441. }
  12442. static void ggml_compute_forward_map_binary(
  12443. const struct ggml_compute_params * params,
  12444. const struct ggml_tensor * src0,
  12445. const struct ggml_tensor * src1,
  12446. struct ggml_tensor * dst,
  12447. const ggml_binary_op_f32_t fun) {
  12448. switch (src0->type) {
  12449. case GGML_TYPE_F32:
  12450. {
  12451. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12452. } break;
  12453. default:
  12454. {
  12455. GGML_ASSERT(false);
  12456. } break;
  12457. }
  12458. }
  12459. // ggml_compute_forward_map_custom1
  12460. static void ggml_compute_forward_map_custom1_f32(
  12461. const struct ggml_compute_params * params,
  12462. const struct ggml_tensor * a,
  12463. struct ggml_tensor * dst,
  12464. const ggml_custom1_op_f32_t fun) {
  12465. assert(params->ith == 0);
  12466. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12467. return;
  12468. }
  12469. fun(dst, a);
  12470. }
  12471. // ggml_compute_forward_map_custom2
  12472. static void ggml_compute_forward_map_custom2_f32(
  12473. const struct ggml_compute_params * params,
  12474. const struct ggml_tensor * a,
  12475. const struct ggml_tensor * b,
  12476. struct ggml_tensor * dst,
  12477. const ggml_custom2_op_f32_t fun) {
  12478. assert(params->ith == 0);
  12479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12480. return;
  12481. }
  12482. fun(dst, a, b);
  12483. }
  12484. // ggml_compute_forward_map_custom3
  12485. static void ggml_compute_forward_map_custom3_f32(
  12486. const struct ggml_compute_params * params,
  12487. const struct ggml_tensor * a,
  12488. const struct ggml_tensor * b,
  12489. const struct ggml_tensor * c,
  12490. struct ggml_tensor * dst,
  12491. const ggml_custom3_op_f32_t fun) {
  12492. assert(params->ith == 0);
  12493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12494. return;
  12495. }
  12496. fun(dst, a, b, c);
  12497. }
  12498. // ggml_compute_forward_map_custom1
  12499. static void ggml_compute_forward_map_custom1(
  12500. const struct ggml_compute_params * params,
  12501. const struct ggml_tensor * a,
  12502. struct ggml_tensor * dst) {
  12503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12504. return;
  12505. }
  12506. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12507. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12508. }
  12509. // ggml_compute_forward_map_custom2
  12510. static void ggml_compute_forward_map_custom2(
  12511. const struct ggml_compute_params * params,
  12512. const struct ggml_tensor * a,
  12513. const struct ggml_tensor * b,
  12514. struct ggml_tensor * dst) {
  12515. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12516. return;
  12517. }
  12518. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12519. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12520. }
  12521. // ggml_compute_forward_map_custom3
  12522. static void ggml_compute_forward_map_custom3(
  12523. const struct ggml_compute_params * params,
  12524. const struct ggml_tensor * a,
  12525. const struct ggml_tensor * b,
  12526. const struct ggml_tensor * c,
  12527. struct ggml_tensor * dst) {
  12528. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12529. return;
  12530. }
  12531. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12532. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12533. }
  12534. // ggml_compute_forward_cross_entropy_loss
  12535. static void ggml_compute_forward_cross_entropy_loss_f32(
  12536. const struct ggml_compute_params * params,
  12537. const struct ggml_tensor * src0,
  12538. const struct ggml_tensor * src1,
  12539. struct ggml_tensor * dst) {
  12540. GGML_ASSERT(ggml_is_contiguous(src0));
  12541. GGML_ASSERT(ggml_is_contiguous(src1));
  12542. GGML_ASSERT(ggml_is_scalar(dst));
  12543. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12544. const int ith = params->ith;
  12545. const int nth = params->nth;
  12546. float * sums = (float *) params->wdata;
  12547. // TODO: handle transposed/permuted matrices
  12548. const int nc = src0->ne[0];
  12549. const int nr = ggml_nrows(src0);
  12550. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12551. if (params->type == GGML_TASK_INIT) {
  12552. if (ith == 0) {
  12553. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12554. }
  12555. return;
  12556. }
  12557. if (params->type == GGML_TASK_FINALIZE) {
  12558. if (ith == 0) {
  12559. float * dp = (float *) dst->data;
  12560. ggml_vec_sum_f32(nth, dp, sums);
  12561. dp[0] *= -1.0f / (float) nr;
  12562. }
  12563. return;
  12564. }
  12565. const double eps = 1e-9;
  12566. // rows per thread
  12567. const int dr = (nr + nth - 1)/nth;
  12568. // row range for this thread
  12569. const int ir0 = dr*ith;
  12570. const int ir1 = MIN(ir0 + dr, nr);
  12571. for (int i1 = ir0; i1 < ir1; i1++) {
  12572. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12573. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12574. float * st = ((float *) params->wdata) + nth + ith*nc;
  12575. #ifndef NDEBUG
  12576. for (int i = 0; i < nc; ++i) {
  12577. //printf("p[%d] = %f\n", i, p[i]);
  12578. assert(!isnan(s0[i]));
  12579. assert(!isnan(s1[i]));
  12580. }
  12581. #endif
  12582. // soft_max
  12583. ggml_float sum = 0.0;
  12584. {
  12585. float max = -INFINITY;
  12586. ggml_vec_max_f32(nc, &max, s0);
  12587. uint16_t scvt; UNUSED(scvt);
  12588. for (int i = 0; i < nc; i++) {
  12589. if (s0[i] == -INFINITY) {
  12590. st[i] = 0.0f;
  12591. } else {
  12592. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12593. const float s = s0[i] - max;
  12594. const float val = expf(s);
  12595. #else
  12596. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12597. memcpy(&scvt, &s, sizeof(scvt));
  12598. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12599. #endif
  12600. sum += (ggml_float)val;
  12601. st[i] = val;
  12602. }
  12603. }
  12604. assert(sum > 0.0);
  12605. // sum = 1.0/sum;
  12606. }
  12607. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12608. sum = (1.0 - eps) / sum;
  12609. ggml_vec_scale_f32(nc, st, sum);
  12610. ggml_vec_add1_f32(nc, st, st, eps);
  12611. ggml_vec_log_f32(nc, st, st);
  12612. ggml_vec_mul_f32(nc, st, st, s1);
  12613. float st_sum = 0;
  12614. ggml_vec_sum_f32(nc, &st_sum, st);
  12615. sums[ith] += st_sum;
  12616. #ifndef NDEBUG
  12617. for (int i = 0; i < nc; ++i) {
  12618. assert(!isnan(st[i]));
  12619. assert(!isinf(st[i]));
  12620. }
  12621. #endif
  12622. }
  12623. }
  12624. static void ggml_compute_forward_cross_entropy_loss(
  12625. const struct ggml_compute_params * params,
  12626. const struct ggml_tensor * src0,
  12627. const struct ggml_tensor * src1,
  12628. struct ggml_tensor * dst) {
  12629. switch (src0->type) {
  12630. case GGML_TYPE_F32:
  12631. {
  12632. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12633. } break;
  12634. default:
  12635. {
  12636. GGML_ASSERT(false);
  12637. } break;
  12638. }
  12639. }
  12640. // ggml_compute_forward_cross_entropy_loss_back
  12641. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12642. const struct ggml_compute_params * params,
  12643. const struct ggml_tensor * src0,
  12644. const struct ggml_tensor * src1,
  12645. const struct ggml_tensor * opt0,
  12646. struct ggml_tensor * dst) {
  12647. GGML_ASSERT(ggml_is_contiguous(dst));
  12648. GGML_ASSERT(ggml_is_contiguous(src0));
  12649. GGML_ASSERT(ggml_is_contiguous(src1));
  12650. GGML_ASSERT(ggml_is_contiguous(opt0));
  12651. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12652. const int64_t ith = params->ith;
  12653. const int64_t nth = params->nth;
  12654. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12655. return;
  12656. }
  12657. const double eps = 1e-9;
  12658. // TODO: handle transposed/permuted matrices
  12659. const int64_t nc = src0->ne[0];
  12660. const int64_t nr = ggml_nrows(src0);
  12661. // rows per thread
  12662. const int64_t dr = (nr + nth - 1)/nth;
  12663. // row range for this thread
  12664. const int64_t ir0 = dr*ith;
  12665. const int64_t ir1 = MIN(ir0 + dr, nr);
  12666. float * d = (float *) opt0->data;
  12667. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12668. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12669. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12670. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12671. #ifndef NDEBUG
  12672. for (int i = 0; i < nc; ++i) {
  12673. //printf("p[%d] = %f\n", i, p[i]);
  12674. assert(!isnan(s0[i]));
  12675. assert(!isnan(s1[i]));
  12676. }
  12677. #endif
  12678. // soft_max
  12679. ggml_float sum = 0.0;
  12680. {
  12681. float max = -INFINITY;
  12682. ggml_vec_max_f32(nc, &max, s0);
  12683. uint16_t scvt; UNUSED(scvt);
  12684. for (int i = 0; i < nc; i++) {
  12685. if (s0[i] == -INFINITY) {
  12686. ds0[i] = 0.0f;
  12687. } else {
  12688. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12689. const float s = s0[i] - max;
  12690. const float val = expf(s);
  12691. #else
  12692. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12693. memcpy(&scvt, &s, sizeof(scvt));
  12694. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12695. #endif
  12696. sum += (ggml_float)val;
  12697. ds0[i] = val;
  12698. }
  12699. }
  12700. assert(sum > 0.0);
  12701. sum = (1.0 - eps)/sum;
  12702. }
  12703. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12704. ggml_vec_scale_f32(nc, ds0, sum);
  12705. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12706. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12707. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12708. #ifndef NDEBUG
  12709. for (int i = 0; i < nc; ++i) {
  12710. assert(!isnan(ds0[i]));
  12711. assert(!isinf(ds0[i]));
  12712. }
  12713. #endif
  12714. }
  12715. }
  12716. static void ggml_compute_forward_cross_entropy_loss_back(
  12717. const struct ggml_compute_params * params,
  12718. const struct ggml_tensor * src0,
  12719. const struct ggml_tensor * src1,
  12720. const struct ggml_tensor * opt0,
  12721. struct ggml_tensor * dst) {
  12722. switch (src0->type) {
  12723. case GGML_TYPE_F32:
  12724. {
  12725. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12726. } break;
  12727. default:
  12728. {
  12729. GGML_ASSERT(false);
  12730. } break;
  12731. }
  12732. }
  12733. /////////////////////////////////
  12734. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12735. GGML_ASSERT(params);
  12736. #ifdef GGML_USE_CUBLAS
  12737. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12738. if (skip_cpu) {
  12739. return;
  12740. }
  12741. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12742. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12743. #endif // GGML_USE_CUBLAS
  12744. switch (tensor->op) {
  12745. case GGML_OP_DUP:
  12746. {
  12747. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12748. } break;
  12749. case GGML_OP_ADD:
  12750. {
  12751. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12752. } break;
  12753. case GGML_OP_ADD1:
  12754. {
  12755. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12756. } break;
  12757. case GGML_OP_ACC:
  12758. {
  12759. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12760. } break;
  12761. case GGML_OP_SUB:
  12762. {
  12763. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12764. } break;
  12765. case GGML_OP_MUL:
  12766. {
  12767. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12768. } break;
  12769. case GGML_OP_DIV:
  12770. {
  12771. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12772. } break;
  12773. case GGML_OP_SQR:
  12774. {
  12775. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12776. } break;
  12777. case GGML_OP_SQRT:
  12778. {
  12779. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12780. } break;
  12781. case GGML_OP_LOG:
  12782. {
  12783. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12784. } break;
  12785. case GGML_OP_SUM:
  12786. {
  12787. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12788. } break;
  12789. case GGML_OP_SUM_ROWS:
  12790. {
  12791. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12792. } break;
  12793. case GGML_OP_MEAN:
  12794. {
  12795. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12796. } break;
  12797. case GGML_OP_ARGMAX:
  12798. {
  12799. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12800. } break;
  12801. case GGML_OP_REPEAT:
  12802. {
  12803. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12804. } break;
  12805. case GGML_OP_REPEAT_BACK:
  12806. {
  12807. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12808. } break;
  12809. case GGML_OP_CONCAT:
  12810. {
  12811. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12812. } break;
  12813. case GGML_OP_SILU_BACK:
  12814. {
  12815. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12816. } break;
  12817. case GGML_OP_NORM:
  12818. {
  12819. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12820. } break;
  12821. case GGML_OP_RMS_NORM:
  12822. {
  12823. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12824. } break;
  12825. case GGML_OP_RMS_NORM_BACK:
  12826. {
  12827. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12828. } break;
  12829. case GGML_OP_GROUP_NORM:
  12830. {
  12831. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12832. } break;
  12833. case GGML_OP_MUL_MAT:
  12834. {
  12835. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12836. } break;
  12837. case GGML_OP_OUT_PROD:
  12838. {
  12839. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12840. } break;
  12841. case GGML_OP_SCALE:
  12842. {
  12843. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12844. } break;
  12845. case GGML_OP_SET:
  12846. {
  12847. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12848. } break;
  12849. case GGML_OP_CPY:
  12850. {
  12851. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12852. } break;
  12853. case GGML_OP_CONT:
  12854. {
  12855. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12856. } break;
  12857. case GGML_OP_RESHAPE:
  12858. {
  12859. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12860. } break;
  12861. case GGML_OP_VIEW:
  12862. {
  12863. ggml_compute_forward_view(params, tensor->src[0]);
  12864. } break;
  12865. case GGML_OP_PERMUTE:
  12866. {
  12867. ggml_compute_forward_permute(params, tensor->src[0]);
  12868. } break;
  12869. case GGML_OP_TRANSPOSE:
  12870. {
  12871. ggml_compute_forward_transpose(params, tensor->src[0]);
  12872. } break;
  12873. case GGML_OP_GET_ROWS:
  12874. {
  12875. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12876. } break;
  12877. case GGML_OP_GET_ROWS_BACK:
  12878. {
  12879. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12880. } break;
  12881. case GGML_OP_DIAG:
  12882. {
  12883. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12884. } break;
  12885. case GGML_OP_DIAG_MASK_INF:
  12886. {
  12887. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12888. } break;
  12889. case GGML_OP_DIAG_MASK_ZERO:
  12890. {
  12891. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12892. } break;
  12893. case GGML_OP_SOFT_MAX:
  12894. {
  12895. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12896. } break;
  12897. case GGML_OP_SOFT_MAX_BACK:
  12898. {
  12899. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12900. } break;
  12901. case GGML_OP_ROPE:
  12902. {
  12903. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12904. } break;
  12905. case GGML_OP_ROPE_BACK:
  12906. {
  12907. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12908. } break;
  12909. case GGML_OP_ALIBI:
  12910. {
  12911. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12912. } break;
  12913. case GGML_OP_CLAMP:
  12914. {
  12915. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12916. } break;
  12917. case GGML_OP_CONV_1D:
  12918. {
  12919. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12920. } break;
  12921. case GGML_OP_CONV_2D:
  12922. {
  12923. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12924. } break;
  12925. case GGML_OP_CONV_TRANSPOSE_2D:
  12926. {
  12927. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12928. } break;
  12929. case GGML_OP_POOL_1D:
  12930. {
  12931. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12932. } break;
  12933. case GGML_OP_POOL_2D:
  12934. {
  12935. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12936. } break;
  12937. case GGML_OP_UPSCALE:
  12938. {
  12939. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12940. } break;
  12941. case GGML_OP_FLASH_ATTN:
  12942. {
  12943. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12944. GGML_ASSERT(t == 0 || t == 1);
  12945. const bool masked = t != 0;
  12946. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12947. } break;
  12948. case GGML_OP_FLASH_FF:
  12949. {
  12950. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12951. } break;
  12952. case GGML_OP_FLASH_ATTN_BACK:
  12953. {
  12954. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12955. GGML_ASSERT(t == 0 || t == 1);
  12956. bool masked = t != 0;
  12957. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12958. } break;
  12959. case GGML_OP_WIN_PART:
  12960. {
  12961. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12962. } break;
  12963. case GGML_OP_WIN_UNPART:
  12964. {
  12965. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12966. } break;
  12967. case GGML_OP_UNARY:
  12968. {
  12969. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12970. } break;
  12971. case GGML_OP_GET_REL_POS:
  12972. {
  12973. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12974. } break;
  12975. case GGML_OP_ADD_REL_POS:
  12976. {
  12977. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12978. } break;
  12979. case GGML_OP_MAP_UNARY:
  12980. {
  12981. ggml_unary_op_f32_t fun;
  12982. memcpy(&fun, tensor->op_params, sizeof(fun));
  12983. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12984. }
  12985. break;
  12986. case GGML_OP_MAP_BINARY:
  12987. {
  12988. ggml_binary_op_f32_t fun;
  12989. memcpy(&fun, tensor->op_params, sizeof(fun));
  12990. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12991. }
  12992. break;
  12993. case GGML_OP_MAP_CUSTOM1_F32:
  12994. {
  12995. ggml_custom1_op_f32_t fun;
  12996. memcpy(&fun, tensor->op_params, sizeof(fun));
  12997. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12998. }
  12999. break;
  13000. case GGML_OP_MAP_CUSTOM2_F32:
  13001. {
  13002. ggml_custom2_op_f32_t fun;
  13003. memcpy(&fun, tensor->op_params, sizeof(fun));
  13004. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  13005. }
  13006. break;
  13007. case GGML_OP_MAP_CUSTOM3_F32:
  13008. {
  13009. ggml_custom3_op_f32_t fun;
  13010. memcpy(&fun, tensor->op_params, sizeof(fun));
  13011. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13012. }
  13013. break;
  13014. case GGML_OP_MAP_CUSTOM1:
  13015. {
  13016. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13017. }
  13018. break;
  13019. case GGML_OP_MAP_CUSTOM2:
  13020. {
  13021. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13022. }
  13023. break;
  13024. case GGML_OP_MAP_CUSTOM3:
  13025. {
  13026. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13027. }
  13028. break;
  13029. case GGML_OP_CROSS_ENTROPY_LOSS:
  13030. {
  13031. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13032. }
  13033. break;
  13034. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13035. {
  13036. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13037. }
  13038. break;
  13039. case GGML_OP_NONE:
  13040. {
  13041. // nop
  13042. } break;
  13043. case GGML_OP_COUNT:
  13044. {
  13045. GGML_ASSERT(false);
  13046. } break;
  13047. }
  13048. }
  13049. ////////////////////////////////////////////////////////////////////////////////
  13050. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  13051. struct ggml_tensor * src0 = tensor->src[0];
  13052. struct ggml_tensor * src1 = tensor->src[1];
  13053. switch (tensor->op) {
  13054. case GGML_OP_DUP:
  13055. {
  13056. if (src0->grad) {
  13057. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13058. }
  13059. } break;
  13060. case GGML_OP_ADD:
  13061. {
  13062. if (src0->grad) {
  13063. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13064. }
  13065. if (src1->grad) {
  13066. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  13067. }
  13068. } break;
  13069. case GGML_OP_ADD1:
  13070. {
  13071. if (src0->grad) {
  13072. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13073. }
  13074. if (src1->grad) {
  13075. src1->grad = ggml_add_impl(ctx,
  13076. src1->grad,
  13077. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13078. inplace);
  13079. }
  13080. } break;
  13081. case GGML_OP_ACC:
  13082. {
  13083. if (src0->grad) {
  13084. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13085. }
  13086. if (src1->grad) {
  13087. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13088. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13089. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13090. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13091. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13092. tensor->grad,
  13093. src1->grad->ne[0],
  13094. src1->grad->ne[1],
  13095. src1->grad->ne[2],
  13096. src1->grad->ne[3],
  13097. nb1, nb2, nb3, offset);
  13098. src1->grad =
  13099. ggml_add_impl(ctx,
  13100. src1->grad,
  13101. ggml_reshape(ctx,
  13102. ggml_cont(ctx, tensor_grad_view),
  13103. src1->grad),
  13104. inplace);
  13105. }
  13106. } break;
  13107. case GGML_OP_SUB:
  13108. {
  13109. if (src0->grad) {
  13110. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13111. }
  13112. if (src1->grad) {
  13113. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13114. }
  13115. } break;
  13116. case GGML_OP_MUL:
  13117. {
  13118. if (src0->grad) {
  13119. src0->grad =
  13120. ggml_add_impl(ctx,
  13121. src0->grad,
  13122. ggml_mul(ctx, src1, tensor->grad),
  13123. inplace);
  13124. }
  13125. if (src1->grad) {
  13126. src1->grad =
  13127. ggml_add_impl(ctx,
  13128. src1->grad,
  13129. ggml_mul(ctx, src0, tensor->grad),
  13130. inplace);
  13131. }
  13132. } break;
  13133. case GGML_OP_DIV:
  13134. {
  13135. if (src0->grad) {
  13136. src0->grad =
  13137. ggml_add_impl(ctx,
  13138. src0->grad,
  13139. ggml_div(ctx, tensor->grad, src1),
  13140. inplace);
  13141. }
  13142. if (src1->grad) {
  13143. src1->grad =
  13144. ggml_sub_impl(ctx,
  13145. src1->grad,
  13146. ggml_mul(ctx,
  13147. tensor->grad,
  13148. ggml_div(ctx, tensor, src1)),
  13149. inplace);
  13150. }
  13151. } break;
  13152. case GGML_OP_SQR:
  13153. {
  13154. if (src0->grad) {
  13155. src0->grad =
  13156. ggml_add_impl(ctx,
  13157. src0->grad,
  13158. ggml_scale(ctx,
  13159. ggml_mul(ctx, src0, tensor->grad),
  13160. ggml_new_f32(ctx, 2.0f)),
  13161. inplace);
  13162. }
  13163. } break;
  13164. case GGML_OP_SQRT:
  13165. {
  13166. if (src0->grad) {
  13167. src0->grad =
  13168. ggml_add_impl(ctx,
  13169. src0->grad,
  13170. ggml_scale(ctx,
  13171. ggml_div(ctx,
  13172. tensor->grad,
  13173. tensor),
  13174. ggml_new_f32(ctx, 0.5f)),
  13175. inplace);
  13176. }
  13177. } break;
  13178. case GGML_OP_LOG:
  13179. {
  13180. if (src0->grad) {
  13181. src0->grad =
  13182. ggml_add_impl(ctx,
  13183. src0->grad,
  13184. ggml_div(ctx,
  13185. tensor->grad,
  13186. src0),
  13187. inplace);
  13188. }
  13189. } break;
  13190. case GGML_OP_SUM:
  13191. {
  13192. if (src0->grad) {
  13193. src0->grad =
  13194. ggml_add1_impl(ctx,
  13195. src0->grad,
  13196. tensor->grad,
  13197. inplace);
  13198. }
  13199. } break;
  13200. case GGML_OP_SUM_ROWS:
  13201. {
  13202. if (src0->grad) {
  13203. src0->grad =
  13204. ggml_add_impl(ctx,
  13205. src0->grad,
  13206. ggml_repeat(ctx,
  13207. tensor->grad,
  13208. src0->grad),
  13209. inplace);
  13210. }
  13211. } break;
  13212. case GGML_OP_MEAN:
  13213. case GGML_OP_ARGMAX:
  13214. {
  13215. GGML_ASSERT(false); // TODO: implement
  13216. } break;
  13217. case GGML_OP_REPEAT:
  13218. {
  13219. // necessary for llama
  13220. if (src0->grad) {
  13221. src0->grad = ggml_add_impl(ctx,
  13222. src0->grad,
  13223. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13224. inplace);
  13225. }
  13226. } break;
  13227. case GGML_OP_REPEAT_BACK:
  13228. {
  13229. if (src0->grad) {
  13230. // TODO: test this
  13231. src0->grad = ggml_add_impl(ctx,
  13232. src0->grad,
  13233. ggml_repeat(ctx, tensor->grad, src0->grad),
  13234. inplace);
  13235. }
  13236. } break;
  13237. case GGML_OP_CONCAT:
  13238. {
  13239. GGML_ASSERT(false); // TODO: implement
  13240. } break;
  13241. case GGML_OP_SILU_BACK:
  13242. {
  13243. GGML_ASSERT(false); // TODO: not implemented
  13244. } break;
  13245. case GGML_OP_NORM:
  13246. {
  13247. GGML_ASSERT(false); // TODO: not implemented
  13248. } break;
  13249. case GGML_OP_RMS_NORM:
  13250. {
  13251. // necessary for llama
  13252. if (src0->grad) {
  13253. float eps;
  13254. memcpy(&eps, tensor->op_params, sizeof(float));
  13255. src0->grad = ggml_add_impl(ctx,
  13256. src0->grad,
  13257. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13258. inplace);
  13259. }
  13260. } break;
  13261. case GGML_OP_RMS_NORM_BACK:
  13262. {
  13263. GGML_ASSERT(false); // TODO: not implemented
  13264. } break;
  13265. case GGML_OP_GROUP_NORM:
  13266. {
  13267. GGML_ASSERT(false); // TODO: not implemented
  13268. } break;
  13269. case GGML_OP_MUL_MAT:
  13270. {
  13271. // https://cs231n.github.io/optimization-2/#staged
  13272. // # forward pass
  13273. // s0 = np.random.randn(5, 10)
  13274. // s1 = np.random.randn(10, 3)
  13275. // t = s0.dot(s1)
  13276. // # now suppose we had the gradient on t from above in the circuit
  13277. // dt = np.random.randn(*t.shape) # same shape as t
  13278. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13279. // ds1 = t.T.dot(dt)
  13280. // tensor.shape [m,p]
  13281. // src0.shape [n,m]
  13282. // src1.shape [n,p]
  13283. // necessary for llama
  13284. if (src0->grad) {
  13285. src0->grad =
  13286. ggml_add_impl(ctx,
  13287. src0->grad,
  13288. ggml_out_prod(ctx, // [n,m]
  13289. src1, // [n,p]
  13290. tensor->grad), // [m,p]
  13291. inplace);
  13292. }
  13293. if (src1->grad) {
  13294. src1->grad =
  13295. ggml_add_impl(ctx,
  13296. src1->grad,
  13297. // ggml_mul_mat(ctx, // [n,p]
  13298. // ggml_cont(ctx, // [m,n]
  13299. // ggml_transpose(ctx, src0)), // [m,n]
  13300. // tensor->grad), // [m,p]
  13301. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13302. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13303. // // and then use ggml_out_prod
  13304. ggml_out_prod(ctx, // [n,p]
  13305. src0, // [n,m]
  13306. ggml_transpose(ctx, // [p,m]
  13307. tensor->grad)), // [m,p]
  13308. inplace);
  13309. }
  13310. } break;
  13311. case GGML_OP_OUT_PROD:
  13312. {
  13313. GGML_ASSERT(false); // TODO: not implemented
  13314. } break;
  13315. case GGML_OP_SCALE:
  13316. {
  13317. // necessary for llama
  13318. if (src0->grad) {
  13319. src0->grad =
  13320. ggml_add_impl(ctx,
  13321. src0->grad,
  13322. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13323. inplace);
  13324. }
  13325. if (src1->grad) {
  13326. src1->grad =
  13327. ggml_add_impl(ctx,
  13328. src1->grad,
  13329. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13330. inplace);
  13331. }
  13332. } break;
  13333. case GGML_OP_SET:
  13334. {
  13335. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13336. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13337. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13338. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13339. struct ggml_tensor * tensor_grad_view = NULL;
  13340. if (src0->grad || src1->grad) {
  13341. GGML_ASSERT(src0->type == tensor->type);
  13342. GGML_ASSERT(tensor->grad->type == tensor->type);
  13343. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13344. tensor_grad_view = ggml_view_4d(ctx,
  13345. tensor->grad,
  13346. src1->grad->ne[0],
  13347. src1->grad->ne[1],
  13348. src1->grad->ne[2],
  13349. src1->grad->ne[3],
  13350. nb1, nb2, nb3, offset);
  13351. }
  13352. if (src0->grad) {
  13353. src0->grad = ggml_add_impl(ctx,
  13354. src0->grad,
  13355. ggml_acc_impl(ctx,
  13356. tensor->grad,
  13357. ggml_neg(ctx, tensor_grad_view),
  13358. nb1, nb2, nb3, offset, false),
  13359. inplace);
  13360. }
  13361. if (src1->grad) {
  13362. src1->grad =
  13363. ggml_add_impl(ctx,
  13364. src1->grad,
  13365. ggml_reshape(ctx,
  13366. ggml_cont(ctx, tensor_grad_view),
  13367. src1->grad),
  13368. inplace);
  13369. }
  13370. } break;
  13371. case GGML_OP_CPY:
  13372. {
  13373. // necessary for llama
  13374. // cpy overwrites value of src1 by src0 and returns view(src1)
  13375. // the overwriting is mathematically equivalent to:
  13376. // tensor = src0 * 1 + src1 * 0
  13377. if (src0->grad) {
  13378. // dsrc0 = dtensor * 1
  13379. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13380. }
  13381. if (src1->grad) {
  13382. // dsrc1 = dtensor * 0 -> noop
  13383. }
  13384. } break;
  13385. case GGML_OP_CONT:
  13386. {
  13387. // same as cpy
  13388. if (src0->grad) {
  13389. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13390. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13391. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13392. }
  13393. } break;
  13394. case GGML_OP_RESHAPE:
  13395. {
  13396. // necessary for llama
  13397. if (src0->grad) {
  13398. src0->grad =
  13399. ggml_add_impl(ctx, src0->grad,
  13400. ggml_reshape(ctx, tensor->grad, src0->grad),
  13401. inplace);
  13402. }
  13403. } break;
  13404. case GGML_OP_VIEW:
  13405. {
  13406. // necessary for llama
  13407. if (src0->grad) {
  13408. size_t offset;
  13409. memcpy(&offset, tensor->op_params, sizeof(offset));
  13410. size_t nb1 = tensor->nb[1];
  13411. size_t nb2 = tensor->nb[2];
  13412. size_t nb3 = tensor->nb[3];
  13413. if (src0->type != src0->grad->type) {
  13414. // gradient is typically F32, but src0 could be other type
  13415. size_t ng = ggml_element_size(src0->grad);
  13416. size_t n0 = ggml_element_size(src0);
  13417. GGML_ASSERT(offset % n0 == 0);
  13418. GGML_ASSERT(nb1 % n0 == 0);
  13419. GGML_ASSERT(nb2 % n0 == 0);
  13420. GGML_ASSERT(nb3 % n0 == 0);
  13421. offset = (offset / n0) * ng;
  13422. nb1 = (nb1 / n0) * ng;
  13423. nb2 = (nb2 / n0) * ng;
  13424. nb3 = (nb3 / n0) * ng;
  13425. }
  13426. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13427. }
  13428. } break;
  13429. case GGML_OP_PERMUTE:
  13430. {
  13431. // necessary for llama
  13432. if (src0->grad) {
  13433. int32_t * axes = (int32_t *) tensor->op_params;
  13434. int axis0 = axes[0] & 0x3;
  13435. int axis1 = axes[1] & 0x3;
  13436. int axis2 = axes[2] & 0x3;
  13437. int axis3 = axes[3] & 0x3;
  13438. int axes_backward[4] = {0,0,0,0};
  13439. axes_backward[axis0] = 0;
  13440. axes_backward[axis1] = 1;
  13441. axes_backward[axis2] = 2;
  13442. axes_backward[axis3] = 3;
  13443. src0->grad =
  13444. ggml_add_impl(ctx, src0->grad,
  13445. ggml_permute(ctx,
  13446. tensor->grad,
  13447. axes_backward[0],
  13448. axes_backward[1],
  13449. axes_backward[2],
  13450. axes_backward[3]),
  13451. inplace);
  13452. }
  13453. } break;
  13454. case GGML_OP_TRANSPOSE:
  13455. {
  13456. // necessary for llama
  13457. if (src0->grad) {
  13458. src0->grad =
  13459. ggml_add_impl(ctx, src0->grad,
  13460. ggml_transpose(ctx, tensor->grad),
  13461. inplace);
  13462. }
  13463. } break;
  13464. case GGML_OP_GET_ROWS:
  13465. {
  13466. // necessary for llama (only for tokenizer)
  13467. if (src0->grad) {
  13468. src0->grad =
  13469. ggml_add_impl(ctx, src0->grad,
  13470. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13471. inplace);
  13472. }
  13473. if (src1->grad) {
  13474. // noop
  13475. }
  13476. } break;
  13477. case GGML_OP_GET_ROWS_BACK:
  13478. {
  13479. GGML_ASSERT(false); // TODO: not implemented
  13480. } break;
  13481. case GGML_OP_DIAG:
  13482. {
  13483. GGML_ASSERT(false); // TODO: not implemented
  13484. } break;
  13485. case GGML_OP_DIAG_MASK_INF:
  13486. {
  13487. // necessary for llama
  13488. if (src0->grad) {
  13489. const int n_past = ((int32_t *) tensor->op_params)[0];
  13490. src0->grad =
  13491. ggml_add_impl(ctx, src0->grad,
  13492. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13493. inplace);
  13494. }
  13495. } break;
  13496. case GGML_OP_DIAG_MASK_ZERO:
  13497. {
  13498. // necessary for llama
  13499. if (src0->grad) {
  13500. const int n_past = ((int32_t *) tensor->op_params)[0];
  13501. src0->grad =
  13502. ggml_add_impl(ctx, src0->grad,
  13503. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13504. inplace);
  13505. }
  13506. } break;
  13507. case GGML_OP_SOFT_MAX:
  13508. {
  13509. // necessary for llama
  13510. if (src0->grad) {
  13511. src0->grad =
  13512. ggml_add_impl(ctx, src0->grad,
  13513. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13514. inplace);
  13515. }
  13516. } break;
  13517. case GGML_OP_SOFT_MAX_BACK:
  13518. {
  13519. GGML_ASSERT(false); // TODO: not implemented
  13520. } break;
  13521. case GGML_OP_ROPE:
  13522. {
  13523. // necessary for llama
  13524. if (src0->grad) {
  13525. const int n_past = ((int32_t *) tensor->op_params)[0];
  13526. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13527. const int mode = ((int32_t *) tensor->op_params)[2];
  13528. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13529. float freq_base;
  13530. float freq_scale;
  13531. float xpos_base;
  13532. bool xpos_down;
  13533. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13534. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13535. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13536. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13537. src0->grad = ggml_add_impl(ctx,
  13538. src0->grad,
  13539. ggml_rope_back(ctx,
  13540. tensor->grad,
  13541. n_past,
  13542. n_dims,
  13543. mode,
  13544. n_ctx,
  13545. freq_base,
  13546. freq_scale,
  13547. xpos_base,
  13548. xpos_down),
  13549. inplace);
  13550. }
  13551. } break;
  13552. case GGML_OP_ROPE_BACK:
  13553. {
  13554. if (src0->grad) {
  13555. const int n_past = ((int32_t *) tensor->op_params)[0];
  13556. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13557. const int mode = ((int32_t *) tensor->op_params)[2];
  13558. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13559. float freq_base;
  13560. float freq_scale;
  13561. float xpos_base;
  13562. bool xpos_down;
  13563. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13564. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13565. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13566. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13567. src0->grad = ggml_add_impl(ctx,
  13568. src0->grad,
  13569. ggml_rope_impl(ctx,
  13570. tensor->grad,
  13571. n_past,
  13572. n_dims,
  13573. mode,
  13574. n_ctx,
  13575. freq_base,
  13576. freq_scale,
  13577. xpos_base,
  13578. xpos_down,
  13579. false),
  13580. inplace);
  13581. }
  13582. } break;
  13583. case GGML_OP_ALIBI:
  13584. {
  13585. GGML_ASSERT(false); // TODO: not implemented
  13586. } break;
  13587. case GGML_OP_CLAMP:
  13588. {
  13589. GGML_ASSERT(false); // TODO: not implemented
  13590. } break;
  13591. case GGML_OP_CONV_1D:
  13592. {
  13593. GGML_ASSERT(false); // TODO: not implemented
  13594. } break;
  13595. case GGML_OP_CONV_2D:
  13596. {
  13597. GGML_ASSERT(false); // TODO: not implemented
  13598. } break;
  13599. case GGML_OP_CONV_TRANSPOSE_2D:
  13600. {
  13601. GGML_ASSERT(false); // TODO: not implemented
  13602. } break;
  13603. case GGML_OP_POOL_1D:
  13604. {
  13605. GGML_ASSERT(false); // TODO: not implemented
  13606. } break;
  13607. case GGML_OP_POOL_2D:
  13608. {
  13609. GGML_ASSERT(false); // TODO: not implemented
  13610. } break;
  13611. case GGML_OP_UPSCALE:
  13612. {
  13613. GGML_ASSERT(false); // TODO: not implemented
  13614. } break;
  13615. case GGML_OP_FLASH_ATTN:
  13616. {
  13617. struct ggml_tensor * flash_grad = NULL;
  13618. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13619. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13620. GGML_ASSERT(t == 0 || t == 1);
  13621. bool masked = t != 0;
  13622. flash_grad =
  13623. ggml_flash_attn_back(ctx,
  13624. src0,
  13625. src1,
  13626. tensor->src[2],
  13627. tensor->grad,
  13628. masked);
  13629. }
  13630. if (src0->grad) {
  13631. struct ggml_tensor * grad_q = NULL;
  13632. const size_t nb0 = flash_grad->nb[0];
  13633. const size_t offset = 0;
  13634. switch(src0->n_dims) {
  13635. case 2:
  13636. {
  13637. grad_q = ggml_view_2d(ctx,
  13638. flash_grad,
  13639. src0->ne[0],
  13640. src0->ne[1],
  13641. nb0*src0->ne[0],
  13642. offset);
  13643. } break;
  13644. case 3:
  13645. {
  13646. grad_q = ggml_view_3d(ctx,
  13647. flash_grad,
  13648. src0->ne[0],
  13649. src0->ne[1],
  13650. src0->ne[2],
  13651. nb0*src0->ne[0],
  13652. nb0*src0->ne[0]*src0->ne[1],
  13653. offset);
  13654. } break;
  13655. case 4:
  13656. {
  13657. grad_q = ggml_view_4d(ctx,
  13658. flash_grad,
  13659. src0->ne[0],
  13660. src0->ne[1],
  13661. src0->ne[2],
  13662. src0->ne[3],
  13663. nb0*src0->ne[0],
  13664. nb0*src0->ne[0]*src0->ne[1],
  13665. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13666. offset);
  13667. } break;
  13668. }
  13669. src0->grad = ggml_add_impl(ctx,
  13670. src0->grad,
  13671. grad_q,
  13672. inplace);
  13673. }
  13674. if (src1->grad) {
  13675. struct ggml_tensor * grad_k = NULL;
  13676. const size_t nb0 = flash_grad->nb[0];
  13677. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13678. switch(src1->n_dims) {
  13679. case 2:
  13680. {
  13681. grad_k = ggml_view_2d(ctx,
  13682. flash_grad,
  13683. src1->ne[0],
  13684. src1->ne[1],
  13685. nb0*src1->ne[0],
  13686. offset);
  13687. } break;
  13688. case 3:
  13689. {
  13690. grad_k = ggml_view_3d(ctx,
  13691. flash_grad,
  13692. src1->ne[0],
  13693. src1->ne[1],
  13694. src1->ne[2],
  13695. nb0*src1->ne[0],
  13696. nb0*src1->ne[0]*src1->ne[1],
  13697. offset);
  13698. } break;
  13699. case 4:
  13700. {
  13701. grad_k = ggml_view_4d(ctx,
  13702. flash_grad,
  13703. src1->ne[0],
  13704. src1->ne[1],
  13705. src1->ne[2],
  13706. src1->ne[3],
  13707. nb0*src1->ne[0],
  13708. nb0*src1->ne[0]*src1->ne[1],
  13709. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13710. offset);
  13711. } break;
  13712. }
  13713. src1->grad = ggml_add_impl(ctx,
  13714. src1->grad,
  13715. grad_k,
  13716. inplace);
  13717. }
  13718. struct ggml_tensor * opt0 = tensor->src[2];
  13719. if (opt0->grad) {
  13720. struct ggml_tensor * grad_v = NULL;
  13721. const size_t nb0 = flash_grad->nb[0];
  13722. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13723. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13724. switch(opt0->n_dims) {
  13725. case 2:
  13726. {
  13727. grad_v = ggml_view_2d(ctx,
  13728. flash_grad,
  13729. opt0->ne[0],
  13730. opt0->ne[1],
  13731. nb0*opt0->ne[0],
  13732. offset);
  13733. } break;
  13734. case 3:
  13735. {
  13736. grad_v = ggml_view_3d(ctx,
  13737. flash_grad,
  13738. opt0->ne[0],
  13739. opt0->ne[1],
  13740. opt0->ne[2],
  13741. nb0*opt0->ne[0],
  13742. nb0*opt0->ne[0]*opt0->ne[1],
  13743. offset);
  13744. } break;
  13745. case 4:
  13746. {
  13747. grad_v = ggml_view_4d(ctx,
  13748. flash_grad,
  13749. opt0->ne[0],
  13750. opt0->ne[1],
  13751. opt0->ne[2],
  13752. opt0->ne[3],
  13753. nb0*opt0->ne[0],
  13754. nb0*opt0->ne[0]*opt0->ne[1],
  13755. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13756. offset);
  13757. } break;
  13758. }
  13759. opt0->grad = ggml_add_impl(ctx,
  13760. opt0->grad,
  13761. grad_v,
  13762. inplace);
  13763. }
  13764. } break;
  13765. case GGML_OP_FLASH_FF:
  13766. {
  13767. GGML_ASSERT(false); // not supported
  13768. } break;
  13769. case GGML_OP_FLASH_ATTN_BACK:
  13770. {
  13771. GGML_ASSERT(false); // not supported
  13772. } break;
  13773. case GGML_OP_WIN_PART:
  13774. case GGML_OP_WIN_UNPART:
  13775. case GGML_OP_UNARY:
  13776. {
  13777. switch (ggml_get_unary_op(tensor)) {
  13778. case GGML_UNARY_OP_ABS:
  13779. {
  13780. if (src0->grad) {
  13781. src0->grad =
  13782. ggml_add_impl(ctx,
  13783. src0->grad,
  13784. ggml_mul(ctx,
  13785. ggml_sgn(ctx, src0),
  13786. tensor->grad),
  13787. inplace);
  13788. }
  13789. } break;
  13790. case GGML_UNARY_OP_SGN:
  13791. {
  13792. if (src0->grad) {
  13793. // noop
  13794. }
  13795. } break;
  13796. case GGML_UNARY_OP_NEG:
  13797. {
  13798. if (src0->grad) {
  13799. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13800. }
  13801. } break;
  13802. case GGML_UNARY_OP_STEP:
  13803. {
  13804. if (src0->grad) {
  13805. // noop
  13806. }
  13807. } break;
  13808. case GGML_UNARY_OP_TANH:
  13809. {
  13810. GGML_ASSERT(false); // TODO: not implemented
  13811. } break;
  13812. case GGML_UNARY_OP_ELU:
  13813. {
  13814. GGML_ASSERT(false); // TODO: not implemented
  13815. } break;
  13816. case GGML_UNARY_OP_RELU:
  13817. {
  13818. if (src0->grad) {
  13819. src0->grad = ggml_add_impl(ctx,
  13820. src0->grad,
  13821. ggml_mul(ctx,
  13822. ggml_step(ctx, src0),
  13823. tensor->grad),
  13824. inplace);
  13825. }
  13826. } break;
  13827. case GGML_UNARY_OP_GELU:
  13828. {
  13829. GGML_ASSERT(false); // TODO: not implemented
  13830. } break;
  13831. case GGML_UNARY_OP_GELU_QUICK:
  13832. {
  13833. GGML_ASSERT(false); // TODO: not implemented
  13834. } break;
  13835. case GGML_UNARY_OP_SILU:
  13836. {
  13837. // necessary for llama
  13838. if (src0->grad) {
  13839. src0->grad = ggml_add_impl(ctx,
  13840. src0->grad,
  13841. ggml_silu_back(ctx, src0, tensor->grad),
  13842. inplace);
  13843. }
  13844. } break;
  13845. default:
  13846. GGML_ASSERT(false);
  13847. }
  13848. } break;
  13849. case GGML_OP_GET_REL_POS:
  13850. case GGML_OP_ADD_REL_POS:
  13851. case GGML_OP_MAP_UNARY:
  13852. case GGML_OP_MAP_BINARY:
  13853. case GGML_OP_MAP_CUSTOM1_F32:
  13854. case GGML_OP_MAP_CUSTOM2_F32:
  13855. case GGML_OP_MAP_CUSTOM3_F32:
  13856. case GGML_OP_MAP_CUSTOM1:
  13857. case GGML_OP_MAP_CUSTOM2:
  13858. case GGML_OP_MAP_CUSTOM3:
  13859. {
  13860. GGML_ASSERT(false); // not supported
  13861. } break;
  13862. case GGML_OP_CROSS_ENTROPY_LOSS:
  13863. {
  13864. if (src0->grad) {
  13865. src0->grad = ggml_add_impl(ctx,
  13866. src0->grad,
  13867. ggml_cross_entropy_loss_back(ctx,
  13868. src0,
  13869. src1,
  13870. tensor->grad),
  13871. inplace);
  13872. }
  13873. } break;
  13874. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13875. {
  13876. GGML_ASSERT(false); // not supported
  13877. } break;
  13878. case GGML_OP_NONE:
  13879. {
  13880. // nop
  13881. } break;
  13882. case GGML_OP_COUNT:
  13883. {
  13884. GGML_ASSERT(false);
  13885. } break;
  13886. }
  13887. }
  13888. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13889. static size_t hash(void * p) {
  13890. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13891. }
  13892. static bool hash_insert(void * hash_table[], void * p) {
  13893. size_t h = hash(p);
  13894. // linear probing
  13895. size_t i = h;
  13896. while (hash_table[i] != NULL && hash_table[i] != p) {
  13897. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13898. if (i == h) {
  13899. // hash table is full
  13900. GGML_ASSERT(false);
  13901. }
  13902. }
  13903. if (hash_table[i] == p) {
  13904. return true;
  13905. }
  13906. // insert
  13907. hash_table[i] = p;
  13908. return false;
  13909. }
  13910. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13911. if (node->grad == NULL) {
  13912. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13913. // it can also happen during forward pass, if the user performs computations with constants
  13914. if (node->op != GGML_OP_NONE) {
  13915. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13916. }
  13917. }
  13918. // check if already visited
  13919. if (hash_insert(cgraph->visited_hash_table, node)) {
  13920. return;
  13921. }
  13922. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13923. if (node->src[i]) {
  13924. ggml_visit_parents(cgraph, node->src[i]);
  13925. }
  13926. }
  13927. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13928. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13929. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13930. if (strlen(node->name) == 0) {
  13931. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13932. }
  13933. cgraph->leafs[cgraph->n_leafs] = node;
  13934. cgraph->n_leafs++;
  13935. } else {
  13936. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13937. if (strlen(node->name) == 0) {
  13938. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13939. }
  13940. cgraph->nodes[cgraph->n_nodes] = node;
  13941. cgraph->grads[cgraph->n_nodes] = node->grad;
  13942. cgraph->n_nodes++;
  13943. }
  13944. }
  13945. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13946. if (!expand) {
  13947. cgraph->n_nodes = 0;
  13948. cgraph->n_leafs = 0;
  13949. }
  13950. const int n0 = cgraph->n_nodes;
  13951. UNUSED(n0);
  13952. ggml_visit_parents(cgraph, tensor);
  13953. const int n_new = cgraph->n_nodes - n0;
  13954. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13955. if (n_new > 0) {
  13956. // the last added node should always be starting point
  13957. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13958. }
  13959. }
  13960. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13961. ggml_build_forward_impl(cgraph, tensor, true);
  13962. }
  13963. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13964. struct ggml_cgraph result = {
  13965. /*.n_nodes =*/ 0,
  13966. /*.n_leafs =*/ 0,
  13967. /*.nodes =*/ { NULL },
  13968. /*.grads =*/ { NULL },
  13969. /*.leafs =*/ { NULL },
  13970. /*.hash_table =*/ { NULL },
  13971. /*.perf_runs =*/ 0,
  13972. /*.perf_cycles =*/ 0,
  13973. /*.perf_time_us =*/ 0,
  13974. };
  13975. ggml_build_forward_impl(&result, tensor, false);
  13976. return result;
  13977. }
  13978. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13979. GGML_ASSERT(gf->n_nodes > 0);
  13980. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13981. if (keep) {
  13982. for (int i = 0; i < gf->n_nodes; i++) {
  13983. struct ggml_tensor * node = gf->nodes[i];
  13984. if (node->grad) {
  13985. node->grad = ggml_dup_tensor(ctx, node);
  13986. gf->grads[i] = node->grad;
  13987. }
  13988. }
  13989. }
  13990. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13991. struct ggml_tensor * node = gf->nodes[i];
  13992. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13993. if (node->grad) {
  13994. ggml_compute_backward(ctx, node, keep);
  13995. }
  13996. }
  13997. for (int i = 0; i < gf->n_nodes; i++) {
  13998. struct ggml_tensor * node = gf->nodes[i];
  13999. if (node->is_param) {
  14000. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14001. ggml_build_forward_expand(gb, node->grad);
  14002. }
  14003. }
  14004. }
  14005. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  14006. struct ggml_cgraph result = *gf;
  14007. ggml_build_backward_expand(ctx, gf, &result, keep);
  14008. return result;
  14009. }
  14010. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14011. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14012. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14013. *cgraph = (struct ggml_cgraph) {
  14014. /*.n_nodes =*/ 0,
  14015. /*.n_leafs =*/ 0,
  14016. /*.nodes =*/ { NULL },
  14017. /*.grads =*/ { NULL },
  14018. /*.leafs =*/ { NULL },
  14019. /*.hash_table =*/ { NULL },
  14020. /*.perf_runs =*/ 0,
  14021. /*.perf_cycles =*/ 0,
  14022. /*.perf_time_us =*/ 0,
  14023. };
  14024. return cgraph;
  14025. }
  14026. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14027. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14028. ggml_build_forward_impl(cgraph, tensor, false);
  14029. return cgraph;
  14030. }
  14031. size_t ggml_graph_overhead(void) {
  14032. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14033. }
  14034. //
  14035. // thread data
  14036. //
  14037. // synchronization is done via busy loops
  14038. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14039. //
  14040. #ifdef __APPLE__
  14041. //#include <os/lock.h>
  14042. //
  14043. //typedef os_unfair_lock ggml_lock_t;
  14044. //
  14045. //#define ggml_lock_init(x) UNUSED(x)
  14046. //#define ggml_lock_destroy(x) UNUSED(x)
  14047. //#define ggml_lock_lock os_unfair_lock_lock
  14048. //#define ggml_lock_unlock os_unfair_lock_unlock
  14049. //
  14050. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14051. typedef int ggml_lock_t;
  14052. #define ggml_lock_init(x) UNUSED(x)
  14053. #define ggml_lock_destroy(x) UNUSED(x)
  14054. #define ggml_lock_lock(x) UNUSED(x)
  14055. #define ggml_lock_unlock(x) UNUSED(x)
  14056. #define GGML_LOCK_INITIALIZER 0
  14057. typedef pthread_t ggml_thread_t;
  14058. #define ggml_thread_create pthread_create
  14059. #define ggml_thread_join pthread_join
  14060. #else
  14061. //typedef pthread_spinlock_t ggml_lock_t;
  14062. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14063. //#define ggml_lock_destroy pthread_spin_destroy
  14064. //#define ggml_lock_lock pthread_spin_lock
  14065. //#define ggml_lock_unlock pthread_spin_unlock
  14066. typedef int ggml_lock_t;
  14067. #define ggml_lock_init(x) UNUSED(x)
  14068. #define ggml_lock_destroy(x) UNUSED(x)
  14069. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14070. #define ggml_lock_lock(x) _mm_pause()
  14071. #else
  14072. #define ggml_lock_lock(x) UNUSED(x)
  14073. #endif
  14074. #define ggml_lock_unlock(x) UNUSED(x)
  14075. #define GGML_LOCK_INITIALIZER 0
  14076. typedef pthread_t ggml_thread_t;
  14077. #define ggml_thread_create pthread_create
  14078. #define ggml_thread_join pthread_join
  14079. #endif
  14080. // Android's libc implementation "bionic" does not support setting affinity
  14081. #if defined(__linux__) && !defined(__BIONIC__)
  14082. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14083. if (!ggml_is_numa()) {
  14084. return;
  14085. }
  14086. // run thread on node_num thread_n / (threads per node)
  14087. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14088. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14089. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14090. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14091. CPU_ZERO_S(setsize, cpus);
  14092. for (size_t i = 0; i < node->n_cpus; ++i) {
  14093. CPU_SET_S(node->cpus[i], setsize, cpus);
  14094. }
  14095. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14096. if (rv) {
  14097. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14098. strerror(rv));
  14099. }
  14100. CPU_FREE(cpus);
  14101. }
  14102. static void clear_numa_thread_affinity(void) {
  14103. if (!ggml_is_numa()) {
  14104. return;
  14105. }
  14106. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14107. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14108. CPU_ZERO_S(setsize, cpus);
  14109. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14110. CPU_SET_S(i, setsize, cpus);
  14111. }
  14112. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14113. if (rv) {
  14114. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14115. strerror(rv));
  14116. }
  14117. CPU_FREE(cpus);
  14118. }
  14119. #else
  14120. // TODO: Windows etc.
  14121. // (the linux implementation may also work on BSD, someone should test)
  14122. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14123. static void clear_numa_thread_affinity(void) {}
  14124. #endif
  14125. struct ggml_compute_state_shared {
  14126. const struct ggml_cgraph * cgraph;
  14127. const struct ggml_cplan * cplan;
  14128. int64_t perf_node_start_cycles;
  14129. int64_t perf_node_start_time_us;
  14130. const int n_threads;
  14131. // synchronization primitives
  14132. atomic_int n_active; // num active threads
  14133. atomic_int node_n; // active graph node
  14134. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14135. void * abort_callback_data;
  14136. };
  14137. struct ggml_compute_state {
  14138. ggml_thread_t thrd;
  14139. int ith;
  14140. struct ggml_compute_state_shared * shared;
  14141. };
  14142. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14143. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14144. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14145. node->perf_runs++;
  14146. node->perf_cycles += cycles_cur;
  14147. node->perf_time_us += time_us_cur;
  14148. }
  14149. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14150. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14151. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14152. const struct ggml_cplan * cplan = state->shared->cplan;
  14153. const int * n_tasks_arr = cplan->n_tasks;
  14154. const int n_threads = state->shared->n_threads;
  14155. set_numa_thread_affinity(state->ith, n_threads);
  14156. int node_n = -1;
  14157. while (true) {
  14158. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14159. state->shared->node_n += 1;
  14160. return (thread_ret_t) GGML_EXIT_ABORTED;
  14161. }
  14162. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14163. // all other threads are finished and spinning
  14164. // do finalize and init here so we don't have synchronize again
  14165. struct ggml_compute_params params = {
  14166. /*.type =*/ GGML_TASK_FINALIZE,
  14167. /*.ith =*/ 0,
  14168. /*.nth =*/ 0,
  14169. /*.wsize =*/ cplan->work_size,
  14170. /*.wdata =*/ cplan->work_data,
  14171. };
  14172. if (node_n != -1) {
  14173. /* FINALIZE */
  14174. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14175. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14176. params.nth = n_tasks_arr[node_n];
  14177. ggml_compute_forward(&params, node);
  14178. }
  14179. ggml_graph_compute_perf_stats_node(node, state->shared);
  14180. }
  14181. // distribute new work or execute it direct if 1T
  14182. while (++node_n < cgraph->n_nodes) {
  14183. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14184. struct ggml_tensor * node = cgraph->nodes[node_n];
  14185. const int n_tasks = n_tasks_arr[node_n];
  14186. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14187. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14188. params.nth = n_tasks;
  14189. /* INIT */
  14190. if (GGML_OP_HAS_INIT[node->op]) {
  14191. params.type = GGML_TASK_INIT;
  14192. ggml_compute_forward(&params, node);
  14193. }
  14194. if (n_tasks == 1) {
  14195. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14196. // they do something more efficient than spinning (?)
  14197. params.type = GGML_TASK_COMPUTE;
  14198. ggml_compute_forward(&params, node);
  14199. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14200. params.type = GGML_TASK_FINALIZE;
  14201. ggml_compute_forward(&params, node);
  14202. }
  14203. ggml_graph_compute_perf_stats_node(node, state->shared);
  14204. } else {
  14205. break;
  14206. }
  14207. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14208. break;
  14209. }
  14210. }
  14211. atomic_store(&state->shared->n_active, n_threads);
  14212. atomic_store(&state->shared->node_n, node_n);
  14213. } else {
  14214. // wait for other threads to finish
  14215. const int last = node_n;
  14216. do {
  14217. //sched_yield();
  14218. node_n = atomic_load(&state->shared->node_n);
  14219. } while (node_n == last);
  14220. }
  14221. // check if we should stop
  14222. if (node_n >= cgraph->n_nodes) break;
  14223. /* COMPUTE */
  14224. struct ggml_tensor * node = cgraph->nodes[node_n];
  14225. const int n_tasks = n_tasks_arr[node_n];
  14226. struct ggml_compute_params params = {
  14227. /*.type =*/ GGML_TASK_COMPUTE,
  14228. /*.ith =*/ state->ith,
  14229. /*.nth =*/ n_tasks,
  14230. /*.wsize =*/ cplan->work_size,
  14231. /*.wdata =*/ cplan->work_data,
  14232. };
  14233. if (state->ith < n_tasks) {
  14234. ggml_compute_forward(&params, node);
  14235. }
  14236. }
  14237. return GGML_EXIT_SUCCESS;
  14238. }
  14239. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14240. if (n_threads <= 0) {
  14241. n_threads = GGML_DEFAULT_N_THREADS;
  14242. }
  14243. size_t work_size = 0;
  14244. struct ggml_cplan cplan;
  14245. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14246. // thread scheduling for the different operations + work buffer size estimation
  14247. for (int i = 0; i < cgraph->n_nodes; i++) {
  14248. int n_tasks = 1;
  14249. struct ggml_tensor * node = cgraph->nodes[i];
  14250. switch (node->op) {
  14251. case GGML_OP_CPY:
  14252. case GGML_OP_DUP:
  14253. {
  14254. n_tasks = n_threads;
  14255. size_t cur = 0;
  14256. if (ggml_is_quantized(node->type)) {
  14257. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14258. }
  14259. work_size = MAX(work_size, cur);
  14260. } break;
  14261. case GGML_OP_ADD:
  14262. case GGML_OP_ADD1:
  14263. {
  14264. n_tasks = n_threads;
  14265. size_t cur = 0;
  14266. if (ggml_is_quantized(node->src[0]->type)) {
  14267. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14268. }
  14269. work_size = MAX(work_size, cur);
  14270. } break;
  14271. case GGML_OP_ACC:
  14272. {
  14273. n_tasks = n_threads;
  14274. size_t cur = 0;
  14275. if (ggml_is_quantized(node->src[0]->type)) {
  14276. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14277. }
  14278. work_size = MAX(work_size, cur);
  14279. } break;
  14280. case GGML_OP_SUB:
  14281. case GGML_OP_DIV:
  14282. case GGML_OP_SQR:
  14283. case GGML_OP_SQRT:
  14284. case GGML_OP_LOG:
  14285. case GGML_OP_SUM:
  14286. case GGML_OP_SUM_ROWS:
  14287. case GGML_OP_MEAN:
  14288. case GGML_OP_ARGMAX:
  14289. case GGML_OP_REPEAT:
  14290. case GGML_OP_REPEAT_BACK:
  14291. {
  14292. n_tasks = 1;
  14293. } break;
  14294. case GGML_OP_UNARY:
  14295. {
  14296. switch (ggml_get_unary_op(node)) {
  14297. case GGML_UNARY_OP_ABS:
  14298. case GGML_UNARY_OP_SGN:
  14299. case GGML_UNARY_OP_NEG:
  14300. case GGML_UNARY_OP_STEP:
  14301. case GGML_UNARY_OP_TANH:
  14302. case GGML_UNARY_OP_ELU:
  14303. case GGML_UNARY_OP_RELU:
  14304. {
  14305. n_tasks = 1;
  14306. } break;
  14307. case GGML_UNARY_OP_GELU:
  14308. case GGML_UNARY_OP_GELU_QUICK:
  14309. case GGML_UNARY_OP_SILU:
  14310. {
  14311. n_tasks = n_threads;
  14312. } break;
  14313. }
  14314. } break;
  14315. case GGML_OP_SILU_BACK:
  14316. case GGML_OP_MUL:
  14317. case GGML_OP_NORM:
  14318. case GGML_OP_RMS_NORM:
  14319. case GGML_OP_RMS_NORM_BACK:
  14320. case GGML_OP_GROUP_NORM:
  14321. {
  14322. n_tasks = n_threads;
  14323. } break;
  14324. case GGML_OP_CONCAT:
  14325. case GGML_OP_MUL_MAT:
  14326. case GGML_OP_OUT_PROD:
  14327. {
  14328. n_tasks = n_threads;
  14329. // TODO: use different scheduling for different matrix sizes
  14330. //const int nr0 = ggml_nrows(node->src[0]);
  14331. //const int nr1 = ggml_nrows(node->src[1]);
  14332. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14333. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14334. size_t cur = 0;
  14335. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14336. #if defined(GGML_USE_CUBLAS)
  14337. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14338. n_tasks = 1; // TODO: this actually is doing nothing
  14339. // the threads are still spinning
  14340. } else
  14341. #elif defined(GGML_USE_CLBLAST)
  14342. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14343. n_tasks = 1; // TODO: this actually is doing nothing
  14344. // the threads are still spinning
  14345. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14346. } else
  14347. #endif
  14348. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14349. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14350. n_tasks = 1; // TODO: this actually is doing nothing
  14351. // the threads are still spinning
  14352. if (node->src[0]->type != GGML_TYPE_F32) {
  14353. // here we need memory just for single 2D matrix from src0
  14354. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14355. }
  14356. } else
  14357. #endif
  14358. if (node->src[1]->type != vec_dot_type) {
  14359. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14360. } else {
  14361. cur = 0;
  14362. }
  14363. work_size = MAX(work_size, cur);
  14364. } break;
  14365. case GGML_OP_SCALE:
  14366. {
  14367. n_tasks = 1;
  14368. } break;
  14369. case GGML_OP_SET:
  14370. case GGML_OP_CONT:
  14371. case GGML_OP_RESHAPE:
  14372. case GGML_OP_VIEW:
  14373. case GGML_OP_PERMUTE:
  14374. case GGML_OP_TRANSPOSE:
  14375. case GGML_OP_GET_ROWS:
  14376. case GGML_OP_GET_ROWS_BACK:
  14377. case GGML_OP_DIAG:
  14378. {
  14379. n_tasks = 1;
  14380. } break;
  14381. case GGML_OP_DIAG_MASK_ZERO:
  14382. case GGML_OP_DIAG_MASK_INF:
  14383. case GGML_OP_SOFT_MAX:
  14384. case GGML_OP_SOFT_MAX_BACK:
  14385. case GGML_OP_ROPE:
  14386. case GGML_OP_ROPE_BACK:
  14387. case GGML_OP_ADD_REL_POS:
  14388. {
  14389. n_tasks = n_threads;
  14390. } break;
  14391. case GGML_OP_ALIBI:
  14392. {
  14393. n_tasks = 1; //TODO
  14394. } break;
  14395. case GGML_OP_CLAMP:
  14396. {
  14397. n_tasks = 1; //TODO
  14398. } break;
  14399. case GGML_OP_CONV_1D:
  14400. {
  14401. n_tasks = n_threads;
  14402. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14403. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14404. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14405. size_t cur = 0;
  14406. const int nk = node->src[0]->ne[0];
  14407. if (node->src[0]->type == GGML_TYPE_F16 &&
  14408. node->src[1]->type == GGML_TYPE_F32) {
  14409. cur = sizeof(ggml_fp16_t)*(
  14410. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14411. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14412. );
  14413. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14414. node->src[1]->type == GGML_TYPE_F32) {
  14415. cur = sizeof(float)*(
  14416. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14417. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14418. );
  14419. } else {
  14420. GGML_ASSERT(false);
  14421. }
  14422. work_size = MAX(work_size, cur);
  14423. } break;
  14424. case GGML_OP_CONV_2D:
  14425. {
  14426. n_tasks = n_threads;
  14427. const int64_t ne00 = node->src[0]->ne[0]; // W
  14428. const int64_t ne01 = node->src[0]->ne[1]; // H
  14429. const int64_t ne02 = node->src[0]->ne[2]; // C
  14430. const int64_t ne03 = node->src[0]->ne[3]; // N
  14431. const int64_t ne10 = node->src[1]->ne[0]; // W
  14432. const int64_t ne11 = node->src[1]->ne[1]; // H
  14433. const int64_t ne12 = node->src[1]->ne[2]; // C
  14434. const int64_t ne0 = node->ne[0];
  14435. const int64_t ne1 = node->ne[1];
  14436. const int64_t ne2 = node->ne[2];
  14437. const int64_t nk = ne00*ne01;
  14438. const int64_t ew0 = nk * ne02;
  14439. UNUSED(ne03);
  14440. UNUSED(ne2);
  14441. size_t cur = 0;
  14442. if (node->src[0]->type == GGML_TYPE_F16 &&
  14443. node->src[1]->type == GGML_TYPE_F32) {
  14444. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14445. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14446. node->src[1]->type == GGML_TYPE_F32) {
  14447. cur = sizeof(float)* (ne10*ne11*ne12);
  14448. } else {
  14449. GGML_ASSERT(false);
  14450. }
  14451. work_size = MAX(work_size, cur);
  14452. } break;
  14453. case GGML_OP_CONV_TRANSPOSE_2D:
  14454. {
  14455. n_tasks = n_threads;
  14456. const int64_t ne00 = node->src[0]->ne[0]; // W
  14457. const int64_t ne01 = node->src[0]->ne[1]; // H
  14458. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14459. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14460. const int64_t ne10 = node->src[1]->ne[0]; // W
  14461. const int64_t ne11 = node->src[1]->ne[1]; // H
  14462. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14463. size_t cur = 0;
  14464. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14465. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14466. work_size = MAX(work_size, cur);
  14467. } break;
  14468. case GGML_OP_POOL_1D:
  14469. case GGML_OP_POOL_2D:
  14470. {
  14471. n_tasks = 1;
  14472. } break;
  14473. case GGML_OP_UPSCALE:
  14474. {
  14475. n_tasks = n_threads;
  14476. } break;
  14477. case GGML_OP_FLASH_ATTN:
  14478. {
  14479. n_tasks = n_threads;
  14480. size_t cur = 0;
  14481. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14482. if (node->src[1]->type == GGML_TYPE_F32) {
  14483. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14484. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14485. }
  14486. if (node->src[1]->type == GGML_TYPE_F16) {
  14487. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14488. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14489. }
  14490. work_size = MAX(work_size, cur);
  14491. } break;
  14492. case GGML_OP_FLASH_FF:
  14493. {
  14494. n_tasks = n_threads;
  14495. size_t cur = 0;
  14496. if (node->src[1]->type == GGML_TYPE_F32) {
  14497. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14498. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14499. }
  14500. if (node->src[1]->type == GGML_TYPE_F16) {
  14501. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14502. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14503. }
  14504. work_size = MAX(work_size, cur);
  14505. } break;
  14506. case GGML_OP_FLASH_ATTN_BACK:
  14507. {
  14508. n_tasks = n_threads;
  14509. size_t cur = 0;
  14510. const int64_t D = node->src[0]->ne[0];
  14511. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14512. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14513. if (node->src[1]->type == GGML_TYPE_F32) {
  14514. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14515. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14516. }
  14517. if (node->src[1]->type == GGML_TYPE_F16) {
  14518. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14519. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14520. }
  14521. work_size = MAX(work_size, cur);
  14522. } break;
  14523. case GGML_OP_WIN_PART:
  14524. case GGML_OP_WIN_UNPART:
  14525. case GGML_OP_GET_REL_POS:
  14526. case GGML_OP_MAP_UNARY:
  14527. case GGML_OP_MAP_BINARY:
  14528. case GGML_OP_MAP_CUSTOM1_F32:
  14529. case GGML_OP_MAP_CUSTOM2_F32:
  14530. case GGML_OP_MAP_CUSTOM3_F32:
  14531. {
  14532. n_tasks = 1;
  14533. } break;
  14534. case GGML_OP_MAP_CUSTOM1:
  14535. {
  14536. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14537. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14538. n_tasks = n_threads;
  14539. } else {
  14540. n_tasks = MIN(p->n_tasks, n_threads);
  14541. }
  14542. } break;
  14543. case GGML_OP_MAP_CUSTOM2:
  14544. {
  14545. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14546. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14547. n_tasks = n_threads;
  14548. } else {
  14549. n_tasks = MIN(p->n_tasks, n_threads);
  14550. }
  14551. } break;
  14552. case GGML_OP_MAP_CUSTOM3:
  14553. {
  14554. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14555. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14556. n_tasks = n_threads;
  14557. } else {
  14558. n_tasks = MIN(p->n_tasks, n_threads);
  14559. }
  14560. } break;
  14561. case GGML_OP_CROSS_ENTROPY_LOSS:
  14562. {
  14563. n_tasks = n_threads;
  14564. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14565. work_size = MAX(work_size, cur);
  14566. } break;
  14567. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14568. {
  14569. n_tasks = n_threads;
  14570. } break;
  14571. case GGML_OP_NONE:
  14572. {
  14573. n_tasks = 1;
  14574. } break;
  14575. case GGML_OP_COUNT:
  14576. {
  14577. GGML_ASSERT(false);
  14578. } break;
  14579. }
  14580. cplan.n_tasks[i] = n_tasks;
  14581. }
  14582. if (work_size > 0) {
  14583. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14584. }
  14585. cplan.n_threads = n_threads;
  14586. cplan.work_size = work_size;
  14587. cplan.work_data = NULL;
  14588. return cplan;
  14589. }
  14590. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14591. {
  14592. GGML_ASSERT(cplan);
  14593. GGML_ASSERT(cplan->n_threads > 0);
  14594. if (cplan->work_size > 0) {
  14595. GGML_ASSERT(cplan->work_data);
  14596. }
  14597. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14598. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14599. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14600. }
  14601. }
  14602. }
  14603. const int n_threads = cplan->n_threads;
  14604. struct ggml_compute_state_shared state_shared = {
  14605. /*.cgraph =*/ cgraph,
  14606. /*.cgraph_plan =*/ cplan,
  14607. /*.perf_node_start_cycles =*/ 0,
  14608. /*.perf_node_start_time_us =*/ 0,
  14609. /*.n_threads =*/ n_threads,
  14610. /*.n_active =*/ n_threads,
  14611. /*.node_n =*/ -1,
  14612. /*.abort_callback =*/ NULL,
  14613. /*.abort_callback_data =*/ NULL,
  14614. };
  14615. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14616. // create thread pool
  14617. if (n_threads > 1) {
  14618. for (int j = 1; j < n_threads; ++j) {
  14619. workers[j] = (struct ggml_compute_state) {
  14620. .thrd = 0,
  14621. .ith = j,
  14622. .shared = &state_shared,
  14623. };
  14624. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14625. GGML_ASSERT(rc == 0);
  14626. UNUSED(rc);
  14627. }
  14628. }
  14629. workers[0].ith = 0;
  14630. workers[0].shared = &state_shared;
  14631. const int64_t perf_start_cycles = ggml_perf_cycles();
  14632. const int64_t perf_start_time_us = ggml_perf_time_us();
  14633. // this is a work thread too
  14634. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14635. // don't leave affinity set on the main thread
  14636. clear_numa_thread_affinity();
  14637. // join or kill thread pool
  14638. if (n_threads > 1) {
  14639. for (int j = 1; j < n_threads; j++) {
  14640. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14641. GGML_ASSERT(rc == 0);
  14642. }
  14643. }
  14644. // performance stats (graph)
  14645. {
  14646. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14647. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14648. cgraph->perf_runs++;
  14649. cgraph->perf_cycles += perf_cycles_cur;
  14650. cgraph->perf_time_us += perf_time_us_cur;
  14651. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14652. __func__, cgraph->perf_runs,
  14653. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14654. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14655. (double) perf_time_us_cur / 1000.0,
  14656. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14657. }
  14658. return compute_status;
  14659. }
  14660. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14661. for (int i = 0; i < cgraph->n_nodes; i++) {
  14662. struct ggml_tensor * grad = cgraph->grads[i];
  14663. if (grad) {
  14664. ggml_set_zero(grad);
  14665. }
  14666. }
  14667. }
  14668. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14669. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14670. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14671. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14672. ggml_graph_compute(cgraph, &cplan);
  14673. }
  14674. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14675. for (int i = 0; i < cgraph->n_leafs; i++) {
  14676. struct ggml_tensor * leaf = cgraph->leafs[i];
  14677. if (strcmp(leaf->name, name) == 0) {
  14678. return leaf;
  14679. }
  14680. }
  14681. for (int i = 0; i < cgraph->n_nodes; i++) {
  14682. struct ggml_tensor * node = cgraph->nodes[i];
  14683. if (strcmp(node->name, name) == 0) {
  14684. return node;
  14685. }
  14686. }
  14687. return NULL;
  14688. }
  14689. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14690. const int64_t * ne = tensor->ne;
  14691. const size_t * nb = tensor->nb;
  14692. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14693. ggml_type_name(tensor->type),
  14694. ggml_op_name (tensor->op),
  14695. tensor->n_dims,
  14696. ne[0], ne[1], ne[2], ne[3],
  14697. nb[0], nb[1], nb[2], nb[3],
  14698. tensor->data,
  14699. tensor->name);
  14700. }
  14701. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14702. const int64_t * ne = tensor->ne;
  14703. const size_t * nb = tensor->nb;
  14704. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14705. arg,
  14706. ggml_type_name(tensor->type),
  14707. ggml_op_name (tensor->op),
  14708. tensor->n_dims,
  14709. ne[0], ne[1], ne[2], ne[3],
  14710. nb[0], nb[1], nb[2], nb[3],
  14711. tensor->data,
  14712. tensor->name);
  14713. }
  14714. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14715. uint64_t size_eval = 0;
  14716. // compute size of intermediate results
  14717. // TODO: does not take into account scratch buffers !!!!
  14718. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14719. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14720. }
  14721. // print
  14722. {
  14723. FILE * fout = stdout;
  14724. fprintf(fout, "\n");
  14725. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14726. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14727. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14728. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14729. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14730. // header
  14731. fprintf(fout, "\n");
  14732. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14733. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14734. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14735. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14736. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14737. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14738. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14739. }
  14740. // header
  14741. fprintf(fout, "\n");
  14742. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14743. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14744. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14745. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14746. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14747. if (cgraph->nodes[i]->src[j]) {
  14748. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14749. }
  14750. }
  14751. fprintf(fout, "\n");
  14752. }
  14753. fprintf(fout, "\n");
  14754. }
  14755. // write binary data
  14756. {
  14757. FILE * fout = fopen(fname, "wb");
  14758. if (!fout) {
  14759. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14760. return;
  14761. }
  14762. // header
  14763. {
  14764. const uint32_t magic = GGML_FILE_MAGIC;
  14765. const uint32_t version = GGML_FILE_VERSION;
  14766. const uint32_t n_leafs = cgraph->n_leafs;
  14767. const uint32_t nodes = cgraph->n_nodes;
  14768. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14769. fwrite(&version, sizeof(uint32_t), 1, fout);
  14770. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14771. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14772. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14773. }
  14774. // leafs
  14775. {
  14776. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14777. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14778. const uint32_t type = tensor->type;
  14779. const uint32_t op = tensor->op;
  14780. const uint32_t n_dims = tensor->n_dims;
  14781. fwrite(&type, sizeof(uint32_t), 1, fout);
  14782. fwrite(&op, sizeof(uint32_t), 1, fout);
  14783. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14784. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14785. const uint64_t ne = tensor->ne[j];
  14786. const uint64_t nb = tensor->nb[j];
  14787. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14788. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14789. }
  14790. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14791. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14792. // dump the data
  14793. // TODO: pad this to 32 byte boundary
  14794. {
  14795. const size_t size = ggml_nbytes(tensor);
  14796. fwrite(tensor->data, sizeof(char), size, fout);
  14797. }
  14798. }
  14799. }
  14800. // nodes
  14801. {
  14802. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14803. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14804. const uint32_t type = tensor->type;
  14805. const uint32_t op = tensor->op;
  14806. const uint32_t n_dims = tensor->n_dims;
  14807. fwrite(&type, sizeof(uint32_t), 1, fout);
  14808. fwrite(&op, sizeof(uint32_t), 1, fout);
  14809. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14810. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14811. const uint64_t ne = tensor->ne[j];
  14812. const uint64_t nb = tensor->nb[j];
  14813. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14814. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14815. }
  14816. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14817. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14818. // output the op arguments
  14819. {
  14820. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14821. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14822. args[j] = tensor->src[j];
  14823. }
  14824. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14825. if (args[j]) {
  14826. int32_t idx = -1;
  14827. // check if leaf
  14828. {
  14829. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14830. if (args[j] == cgraph->leafs[k]) {
  14831. idx = k;
  14832. break;
  14833. }
  14834. }
  14835. }
  14836. // check if node
  14837. if (idx == -1) {
  14838. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14839. if (args[j] == cgraph->nodes[k]) {
  14840. idx = GGML_MAX_NODES + k;
  14841. break;
  14842. }
  14843. }
  14844. }
  14845. if (idx == -1) {
  14846. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14847. return;
  14848. }
  14849. fwrite(&idx, sizeof(int32_t), 1, fout);
  14850. } else {
  14851. const int32_t nul = -1;
  14852. fwrite(&nul, sizeof(int32_t), 1, fout);
  14853. }
  14854. }
  14855. }
  14856. }
  14857. }
  14858. fclose(fout);
  14859. }
  14860. }
  14861. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14862. assert(*ctx_data == NULL);
  14863. assert(*ctx_eval == NULL);
  14864. struct ggml_cgraph result = { 0 };
  14865. struct ggml_tensor * data = NULL;
  14866. // read file into data
  14867. {
  14868. FILE * fin = fopen(fname, "rb");
  14869. if (!fin) {
  14870. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14871. return result;
  14872. }
  14873. size_t fsize = 0;
  14874. fseek(fin, 0, SEEK_END);
  14875. fsize = ftell(fin);
  14876. fseek(fin, 0, SEEK_SET);
  14877. // create the data context
  14878. {
  14879. const size_t overhead = 1*ggml_tensor_overhead();
  14880. struct ggml_init_params params = {
  14881. .mem_size = fsize + overhead,
  14882. .mem_buffer = NULL,
  14883. .no_alloc = false,
  14884. };
  14885. *ctx_data = ggml_init(params);
  14886. if (!*ctx_data) {
  14887. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14888. fclose(fin);
  14889. return result;
  14890. }
  14891. }
  14892. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14893. {
  14894. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14895. if (ret != fsize) {
  14896. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14897. fclose(fin);
  14898. return result;
  14899. }
  14900. }
  14901. fclose(fin);
  14902. }
  14903. // populate result
  14904. {
  14905. char * ptr = (char *) data->data;
  14906. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14907. if (magic != GGML_FILE_MAGIC) {
  14908. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14909. return result;
  14910. }
  14911. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14912. if (version != GGML_FILE_VERSION) {
  14913. fprintf(stderr, "%s: invalid version number\n", __func__);
  14914. return result;
  14915. }
  14916. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14917. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14918. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14919. result.n_leafs = n_leafs;
  14920. result.n_nodes = n_nodes;
  14921. // create the data context
  14922. {
  14923. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14924. struct ggml_init_params params = {
  14925. .mem_size = size_eval + overhead,
  14926. .mem_buffer = NULL,
  14927. .no_alloc = true,
  14928. };
  14929. *ctx_eval = ggml_init(params);
  14930. if (!*ctx_eval) {
  14931. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14932. return result;
  14933. }
  14934. }
  14935. // leafs
  14936. {
  14937. uint32_t type;
  14938. uint32_t op;
  14939. uint32_t n_dims;
  14940. for (uint32_t i = 0; i < n_leafs; ++i) {
  14941. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14942. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14943. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14944. int64_t ne[GGML_MAX_DIMS];
  14945. size_t nb[GGML_MAX_DIMS];
  14946. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14947. uint64_t ne_cur;
  14948. uint64_t nb_cur;
  14949. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14950. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14951. ne[j] = ne_cur;
  14952. nb[j] = nb_cur;
  14953. }
  14954. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14955. tensor->op = (enum ggml_op) op;
  14956. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14957. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14958. tensor->data = (void *) ptr;
  14959. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14960. tensor->nb[j] = nb[j];
  14961. }
  14962. result.leafs[i] = tensor;
  14963. ptr += ggml_nbytes(tensor);
  14964. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14965. }
  14966. }
  14967. ggml_set_no_alloc(*ctx_eval, false);
  14968. // nodes
  14969. {
  14970. uint32_t type;
  14971. uint32_t op;
  14972. uint32_t n_dims;
  14973. for (uint32_t i = 0; i < n_nodes; ++i) {
  14974. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14975. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14976. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14977. enum ggml_op eop = (enum ggml_op) op;
  14978. int64_t ne[GGML_MAX_DIMS];
  14979. size_t nb[GGML_MAX_DIMS];
  14980. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14981. uint64_t ne_cur;
  14982. uint64_t nb_cur;
  14983. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14984. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14985. ne[j] = ne_cur;
  14986. nb[j] = nb_cur;
  14987. }
  14988. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14989. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14990. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14991. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14992. // parse args
  14993. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14994. const int32_t arg_idx = ptr_arg_idx[j];
  14995. if (arg_idx == -1) {
  14996. continue;
  14997. }
  14998. if (arg_idx < GGML_MAX_NODES) {
  14999. args[j] = result.leafs[arg_idx];
  15000. } else {
  15001. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  15002. }
  15003. }
  15004. // create the tensor
  15005. // "view" operations are handled differently
  15006. // TODO: handle inplace ops - currently a copy is always made
  15007. struct ggml_tensor * tensor = NULL;
  15008. switch (eop) {
  15009. // TODO: implement other view ops
  15010. case GGML_OP_RESHAPE:
  15011. {
  15012. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15013. } break;
  15014. case GGML_OP_VIEW:
  15015. {
  15016. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15017. size_t offs;
  15018. memcpy(&offs, ptr_op_params, sizeof(offs));
  15019. tensor->data = ((char *) tensor->data) + offs;
  15020. } break;
  15021. case GGML_OP_TRANSPOSE:
  15022. {
  15023. tensor = ggml_transpose(*ctx_eval, args[0]);
  15024. } break;
  15025. case GGML_OP_PERMUTE:
  15026. {
  15027. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15028. } break;
  15029. default:
  15030. {
  15031. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15032. tensor->op = eop;
  15033. } break;
  15034. }
  15035. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15036. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15037. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15038. tensor->nb[j] = nb[j];
  15039. }
  15040. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15041. tensor->src[j] = args[j];
  15042. }
  15043. result.nodes[i] = tensor;
  15044. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15045. }
  15046. }
  15047. }
  15048. return result;
  15049. }
  15050. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15051. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15052. GGML_PRINT("=== GRAPH ===\n");
  15053. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15054. for (int i = 0; i < cgraph->n_nodes; i++) {
  15055. struct ggml_tensor * node = cgraph->nodes[i];
  15056. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15057. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15058. i,
  15059. node->ne[0], node->ne[1], node->ne[2],
  15060. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15061. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15062. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15063. (double) node->perf_time_us / 1000.0,
  15064. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15065. }
  15066. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15067. for (int i = 0; i < cgraph->n_leafs; i++) {
  15068. struct ggml_tensor * node = cgraph->leafs[i];
  15069. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  15070. i,
  15071. node->ne[0], node->ne[1],
  15072. ggml_op_name(node->op));
  15073. }
  15074. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15075. if (perf_total_per_op_us[i] == 0) {
  15076. continue;
  15077. }
  15078. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15079. }
  15080. GGML_PRINT("========================================\n");
  15081. }
  15082. // check if node is part of the graph
  15083. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15084. if (cgraph == NULL) {
  15085. return true;
  15086. }
  15087. for (int i = 0; i < cgraph->n_nodes; i++) {
  15088. if (cgraph->nodes[i] == node) {
  15089. return true;
  15090. }
  15091. }
  15092. return false;
  15093. }
  15094. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15095. for (int i = 0; i < cgraph->n_nodes; i++) {
  15096. struct ggml_tensor * parent = cgraph->nodes[i];
  15097. if (parent->grad == node) {
  15098. return parent;
  15099. }
  15100. }
  15101. return NULL;
  15102. }
  15103. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15104. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15105. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15106. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15107. gparent0 ? (void *) gparent0 : (void *) parent,
  15108. gparent0 ? "g" : "x",
  15109. gparent ? (void *) gparent : (void *) node,
  15110. gparent ? "g" : "x",
  15111. gparent ? "empty" : "vee",
  15112. gparent ? "dashed" : "solid",
  15113. label);
  15114. }
  15115. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15116. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15117. (void *) parent, "x",
  15118. (void *) node, "x",
  15119. label);
  15120. }
  15121. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15122. char color[16];
  15123. FILE * fp = fopen(filename, "w");
  15124. GGML_ASSERT(fp);
  15125. fprintf(fp, "digraph G {\n");
  15126. fprintf(fp, " newrank = true;\n");
  15127. fprintf(fp, " rankdir = LR;\n");
  15128. for (int i = 0; i < gb->n_nodes; i++) {
  15129. struct ggml_tensor * node = gb->nodes[i];
  15130. if (ggml_graph_get_parent(gb, node) != NULL) {
  15131. continue;
  15132. }
  15133. if (node->is_param) {
  15134. snprintf(color, sizeof(color), "yellow");
  15135. } else if (node->grad) {
  15136. if (ggml_graph_find(gf, node)) {
  15137. snprintf(color, sizeof(color), "green");
  15138. } else {
  15139. snprintf(color, sizeof(color), "lightblue");
  15140. }
  15141. } else {
  15142. snprintf(color, sizeof(color), "white");
  15143. }
  15144. fprintf(fp, " \"%p\" [ "
  15145. "style = filled; fillcolor = %s; shape = record; "
  15146. "label=\"",
  15147. (void *) node, color);
  15148. if (strlen(node->name) > 0) {
  15149. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15150. } else {
  15151. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15152. }
  15153. if (node->n_dims == 2) {
  15154. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15155. } else {
  15156. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15157. }
  15158. if (node->grad) {
  15159. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15160. } else {
  15161. fprintf(fp, "\"; ]\n");
  15162. }
  15163. }
  15164. for (int i = 0; i < gb->n_leafs; i++) {
  15165. struct ggml_tensor * node = gb->leafs[i];
  15166. snprintf(color, sizeof(color), "pink");
  15167. fprintf(fp, " \"%p\" [ "
  15168. "style = filled; fillcolor = %s; shape = record; "
  15169. "label=\"<x>",
  15170. (void *) node, color);
  15171. if (strlen(node->name) > 0) {
  15172. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15173. } else {
  15174. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15175. }
  15176. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15177. if (ggml_nelements(node) < 5) {
  15178. fprintf(fp, " | (");
  15179. for (int j = 0; j < ggml_nelements(node); j++) {
  15180. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15181. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15182. }
  15183. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15184. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15185. }
  15186. else {
  15187. fprintf(fp, "#");
  15188. }
  15189. if (j < ggml_nelements(node) - 1) {
  15190. fprintf(fp, ", ");
  15191. }
  15192. }
  15193. fprintf(fp, ")");
  15194. }
  15195. fprintf(fp, "\"; ]\n");
  15196. }
  15197. for (int i = 0; i < gb->n_nodes; i++) {
  15198. struct ggml_tensor * node = gb->nodes[i];
  15199. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15200. if (node->src[j]) {
  15201. char label[16];
  15202. snprintf(label, sizeof(label), "src %d", j);
  15203. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15204. }
  15205. }
  15206. }
  15207. for (int i = 0; i < gb->n_leafs; i++) {
  15208. struct ggml_tensor * node = gb->leafs[i];
  15209. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15210. if (node->src[j]) {
  15211. char label[16];
  15212. snprintf(label, sizeof(label), "src %d", j);
  15213. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15214. }
  15215. }
  15216. }
  15217. fprintf(fp, "}\n");
  15218. fclose(fp);
  15219. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15220. }
  15221. ////////////////////////////////////////////////////////////////////////////////
  15222. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15223. int i = 0;
  15224. for (int p = 0; p < np; ++p) {
  15225. const int64_t ne = ggml_nelements(ps[p]) ;
  15226. // TODO: add function to set tensor from array
  15227. for (int64_t j = 0; j < ne; ++j) {
  15228. ggml_set_f32_1d(ps[p], j, x[i++]);
  15229. }
  15230. }
  15231. }
  15232. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15233. int i = 0;
  15234. for (int p = 0; p < np; ++p) {
  15235. const int64_t ne = ggml_nelements(ps[p]) ;
  15236. // TODO: add function to get all elements at once
  15237. for (int64_t j = 0; j < ne; ++j) {
  15238. x[i++] = ggml_get_f32_1d(ps[p], j);
  15239. }
  15240. }
  15241. }
  15242. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15243. int i = 0;
  15244. for (int p = 0; p < np; ++p) {
  15245. const int64_t ne = ggml_nelements(ps[p]) ;
  15246. // TODO: add function to get all elements at once
  15247. for (int64_t j = 0; j < ne; ++j) {
  15248. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15249. }
  15250. }
  15251. }
  15252. //
  15253. // ADAM
  15254. //
  15255. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15256. //
  15257. static enum ggml_opt_result ggml_opt_adam(
  15258. struct ggml_context * ctx,
  15259. struct ggml_opt_context * opt,
  15260. struct ggml_opt_params params,
  15261. struct ggml_tensor * f,
  15262. struct ggml_cgraph * gf,
  15263. struct ggml_cgraph * gb,
  15264. ggml_opt_callback callback,
  15265. void * callback_data) {
  15266. GGML_ASSERT(ggml_is_scalar(f));
  15267. // these will store the parameters we want to optimize
  15268. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15269. int np = 0;
  15270. int64_t nx = 0;
  15271. for (int i = 0; i < gf->n_nodes; ++i) {
  15272. if (gf->nodes[i]->is_param) {
  15273. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15274. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15275. ps[np++] = gf->nodes[i];
  15276. nx += ggml_nelements(gf->nodes[i]);
  15277. }
  15278. }
  15279. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15280. int iter = opt->iter;
  15281. ggml_opt_init(opt->ctx, opt, params, nx);
  15282. opt->iter = iter;
  15283. }
  15284. // constants
  15285. float sched = params.adam.sched;
  15286. const float alpha = params.adam.alpha;
  15287. const float decay = params.adam.decay * alpha;
  15288. const float beta1 = params.adam.beta1;
  15289. const float beta2 = params.adam.beta2;
  15290. const float eps = params.adam.eps;
  15291. const float gclip = params.adam.gclip;
  15292. const int decay_min_ndim = params.adam.decay_min_ndim;
  15293. float * m = opt->adam.m->data; // first moment
  15294. float * v = opt->adam.v->data; // second moment
  15295. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15296. if (callback) {
  15297. callback(callback_data, &sched);
  15298. }
  15299. // compute the function value
  15300. ggml_graph_reset (gf);
  15301. ggml_set_f32 (f->grad, 1.0f);
  15302. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15303. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15304. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15305. ggml_graph_compute(gb, &cplan);
  15306. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15307. opt->adam.fx_best = opt->adam.fx_prev;
  15308. if (pf) {
  15309. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15310. }
  15311. opt->loss_before = opt->adam.fx_prev;
  15312. opt->loss_after = opt->adam.fx_prev;
  15313. // initialize
  15314. if (opt->just_initialized) {
  15315. opt->adam.n_no_improvement = 0;
  15316. opt->just_initialized = false;
  15317. }
  15318. float * fx_best = &opt->adam.fx_best;
  15319. float * fx_prev = &opt->adam.fx_prev;
  15320. int * n_no_improvement = &opt->adam.n_no_improvement;
  15321. int iter0 = opt->iter;
  15322. // run the optimizer
  15323. for (int t = 0; t < params.adam.n_iter; ++t) {
  15324. opt->iter = iter0 + t + 1;
  15325. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15326. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15327. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15328. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15329. for (int i = 0; i < np; ++i) {
  15330. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15331. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15332. }
  15333. const int64_t t_start_wall = ggml_time_us();
  15334. const int64_t t_start_cpu = ggml_cycles();
  15335. UNUSED(t_start_wall);
  15336. UNUSED(t_start_cpu);
  15337. {
  15338. float gnorm = 1.0f;
  15339. if (gclip > 0.0f) {
  15340. // gradient clipping
  15341. ggml_float sum = 0.0;
  15342. for (int p = 0; p < np; ++p) {
  15343. const int64_t ne = ggml_nelements(ps[p]);
  15344. for (int64_t j = 0; j < ne; ++j) {
  15345. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15346. sum += (ggml_float)(g*g);
  15347. }
  15348. }
  15349. ggml_float norm = sqrt(sum);
  15350. if (norm > (ggml_float) gclip) {
  15351. gnorm = (float) ((ggml_float) gclip / norm);
  15352. }
  15353. }
  15354. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15355. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15356. int64_t i = 0;
  15357. for (int p = 0; p < np; ++p) {
  15358. const int64_t ne = ggml_nelements(ps[p]);
  15359. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15360. for (int64_t j = 0; j < ne; ++j) {
  15361. float x = ggml_get_f32_1d(ps[p], j);
  15362. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15363. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15364. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15365. float mh = m[i]*beta1h;
  15366. float vh = v[i]*beta2h;
  15367. vh = sqrtf(vh) + eps;
  15368. x = x*(1.0f - p_decay) - mh/vh;
  15369. ggml_set_f32_1d(ps[p], j, x);
  15370. ++i;
  15371. }
  15372. }
  15373. }
  15374. if (callback) {
  15375. callback(callback_data, &sched);
  15376. }
  15377. ggml_graph_reset (gf);
  15378. ggml_set_f32 (f->grad, 1.0f);
  15379. ggml_graph_compute(gb, &cplan);
  15380. const float fx = ggml_get_f32_1d(f, 0);
  15381. opt->loss_after = fx;
  15382. // check convergence
  15383. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15384. GGML_PRINT_DEBUG("converged\n");
  15385. return GGML_OPT_OK;
  15386. }
  15387. // delta-based convergence test
  15388. if (pf != NULL) {
  15389. // need at least params.past iterations to start checking for convergence
  15390. if (params.past <= iter0 + t) {
  15391. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15392. if (fabsf(rate) < params.delta) {
  15393. return GGML_OPT_OK;
  15394. }
  15395. }
  15396. pf[(iter0 + t)%params.past] = fx;
  15397. }
  15398. // check for improvement
  15399. if (params.max_no_improvement > 0) {
  15400. if (fx_best[0] > fx) {
  15401. fx_best[0] = fx;
  15402. n_no_improvement[0] = 0;
  15403. } else {
  15404. ++n_no_improvement[0];
  15405. if (n_no_improvement[0] >= params.max_no_improvement) {
  15406. return GGML_OPT_OK;
  15407. }
  15408. }
  15409. }
  15410. fx_prev[0] = fx;
  15411. {
  15412. const int64_t t_end_cpu = ggml_cycles();
  15413. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15414. UNUSED(t_end_cpu);
  15415. const int64_t t_end_wall = ggml_time_us();
  15416. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15417. UNUSED(t_end_wall);
  15418. }
  15419. }
  15420. return GGML_OPT_DID_NOT_CONVERGE;
  15421. }
  15422. //
  15423. // L-BFGS
  15424. //
  15425. // the L-BFGS implementation below is based on the following implementation:
  15426. //
  15427. // https://github.com/chokkan/liblbfgs
  15428. //
  15429. struct ggml_lbfgs_iteration_data {
  15430. float alpha;
  15431. float ys;
  15432. float * s;
  15433. float * y;
  15434. };
  15435. static enum ggml_opt_result linesearch_backtracking(
  15436. const struct ggml_opt_params * params,
  15437. int nx,
  15438. float * x,
  15439. float * fx,
  15440. float * g,
  15441. float * d,
  15442. float * step,
  15443. const float * xp,
  15444. struct ggml_tensor * f,
  15445. struct ggml_cgraph * gf,
  15446. struct ggml_cgraph * gb,
  15447. struct ggml_cplan * cplan,
  15448. const int np,
  15449. struct ggml_tensor * ps[],
  15450. ggml_opt_callback callback,
  15451. void * callback_data) {
  15452. int count = 0;
  15453. float width = 0.0f;
  15454. float dg = 0.0f;
  15455. float finit = 0.0f;
  15456. float dginit = 0.0f;
  15457. float dgtest = 0.0f;
  15458. const float dec = 0.5f;
  15459. const float inc = 2.1f;
  15460. if (*step <= 0.f) {
  15461. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15462. }
  15463. // compute the initial gradient in the search direction
  15464. ggml_vec_dot_f32(nx, &dginit, g, d);
  15465. // make sure that d points to a descent direction
  15466. if (0 < dginit) {
  15467. return GGML_LINESEARCH_FAIL;
  15468. }
  15469. // initialize local variables
  15470. finit = *fx;
  15471. dgtest = params->lbfgs.ftol*dginit;
  15472. while (true) {
  15473. if (callback) {
  15474. // LBFG-S does not support learning rate -> ignore learning schedule
  15475. float sched = 0;
  15476. callback(callback_data, &sched);
  15477. }
  15478. ggml_vec_cpy_f32(nx, x, xp);
  15479. ggml_vec_mad_f32(nx, x, d, *step);
  15480. // evaluate the function and gradient values
  15481. {
  15482. ggml_opt_set_params(np, ps, x);
  15483. ggml_graph_reset (gf);
  15484. ggml_set_f32 (f->grad, 1.0f);
  15485. ggml_graph_compute(gb, cplan);
  15486. ggml_opt_get_grad(np, ps, g);
  15487. *fx = ggml_get_f32_1d(f, 0);
  15488. }
  15489. ++count;
  15490. if (*fx > finit + (*step)*dgtest) {
  15491. width = dec;
  15492. } else {
  15493. // Armijo condition is satisfied
  15494. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15495. return count;
  15496. }
  15497. ggml_vec_dot_f32(nx, &dg, g, d);
  15498. // check the Wolfe condition
  15499. if (dg < params->lbfgs.wolfe * dginit) {
  15500. width = inc;
  15501. } else {
  15502. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15503. // regular Wolfe conditions
  15504. return count;
  15505. }
  15506. if(dg > -params->lbfgs.wolfe*dginit) {
  15507. width = dec;
  15508. } else {
  15509. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15510. return count;
  15511. }
  15512. return count;
  15513. }
  15514. }
  15515. if (*step < params->lbfgs.min_step) {
  15516. return GGML_LINESEARCH_MINIMUM_STEP;
  15517. }
  15518. if (*step > params->lbfgs.max_step) {
  15519. return GGML_LINESEARCH_MAXIMUM_STEP;
  15520. }
  15521. if (params->lbfgs.max_linesearch <= count) {
  15522. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15523. }
  15524. (*step) *= width;
  15525. }
  15526. return GGML_LINESEARCH_FAIL;
  15527. }
  15528. static enum ggml_opt_result ggml_opt_lbfgs(
  15529. struct ggml_context * ctx,
  15530. struct ggml_opt_context * opt,
  15531. struct ggml_opt_params params,
  15532. struct ggml_tensor * f,
  15533. struct ggml_cgraph * gf,
  15534. struct ggml_cgraph * gb,
  15535. ggml_opt_callback callback,
  15536. void * callback_data) {
  15537. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15538. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15539. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15540. return GGML_OPT_INVALID_WOLFE;
  15541. }
  15542. }
  15543. const int m = params.lbfgs.m;
  15544. // these will store the parameters we want to optimize
  15545. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15546. int np = 0;
  15547. int nx = 0;
  15548. for (int i = 0; i < gf->n_nodes; ++i) {
  15549. if (gf->nodes[i]->is_param) {
  15550. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15551. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15552. ps[np++] = gf->nodes[i];
  15553. nx += ggml_nelements(gf->nodes[i]);
  15554. }
  15555. }
  15556. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15557. int iter = opt->iter;
  15558. ggml_opt_init(ctx, opt, params, nx);
  15559. opt->iter = iter;
  15560. }
  15561. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15562. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15563. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15564. float * x = opt->lbfgs.x->data; // current parameters
  15565. float * xp = opt->lbfgs.xp->data; // previous parameters
  15566. float * g = opt->lbfgs.g->data; // current gradient
  15567. float * gp = opt->lbfgs.gp->data; // previous gradient
  15568. float * d = opt->lbfgs.d->data; // search direction
  15569. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15570. float fx = 0.0f; // cost function value
  15571. float xnorm = 0.0f; // ||x||
  15572. float gnorm = 0.0f; // ||g||
  15573. // initialize x from the graph nodes
  15574. ggml_opt_get_params(np, ps, x);
  15575. // the L-BFGS memory
  15576. float * lm_alpha = opt->lbfgs.lmal->data;
  15577. float * lm_ys = opt->lbfgs.lmys->data;
  15578. float * lm_s = opt->lbfgs.lms->data;
  15579. float * lm_y = opt->lbfgs.lmy->data;
  15580. if (callback) {
  15581. // LBFG-S does not support learning rate -> ignore learning schedule
  15582. float sched = 0;
  15583. callback(callback_data, &sched);
  15584. }
  15585. // evaluate the function value and its gradient
  15586. {
  15587. ggml_opt_set_params(np, ps, x);
  15588. ggml_graph_reset (gf);
  15589. ggml_set_f32 (f->grad, 1.0f);
  15590. ggml_graph_compute(gb, &cplan);
  15591. ggml_opt_get_grad(np, ps, g);
  15592. fx = ggml_get_f32_1d(f, 0);
  15593. opt->loss_before = fx;
  15594. opt->loss_after = fx;
  15595. }
  15596. // search direction = -gradient
  15597. ggml_vec_neg_f32(nx, d, g);
  15598. // ||x||, ||g||
  15599. ggml_vec_norm_f32(nx, &xnorm, x);
  15600. ggml_vec_norm_f32(nx, &gnorm, g);
  15601. if (xnorm < 1.0f) {
  15602. xnorm = 1.0f;
  15603. }
  15604. // already optimized
  15605. if (gnorm/xnorm <= params.lbfgs.eps) {
  15606. return GGML_OPT_OK;
  15607. }
  15608. if (opt->just_initialized) {
  15609. if (pf) {
  15610. pf[0] = fx;
  15611. }
  15612. opt->lbfgs.fx_best = fx;
  15613. // initial step
  15614. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15615. opt->lbfgs.j = 0;
  15616. opt->lbfgs.k = 1;
  15617. opt->lbfgs.end = 0;
  15618. opt->lbfgs.n_no_improvement = 0;
  15619. opt->just_initialized = false;
  15620. }
  15621. float * fx_best = &opt->lbfgs.fx_best;
  15622. float * step = &opt->lbfgs.step;
  15623. int * j = &opt->lbfgs.j;
  15624. int * k = &opt->lbfgs.k;
  15625. int * end = &opt->lbfgs.end;
  15626. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15627. int ls = 0;
  15628. int bound = 0;
  15629. float ys = 0.0f;
  15630. float yy = 0.0f;
  15631. float beta = 0.0f;
  15632. int it = 0;
  15633. while (true) {
  15634. // store the current position and gradient vectors
  15635. ggml_vec_cpy_f32(nx, xp, x);
  15636. ggml_vec_cpy_f32(nx, gp, g);
  15637. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15638. if (ls < 0) {
  15639. // linesearch failed - go back to the previous point and return
  15640. ggml_vec_cpy_f32(nx, x, xp);
  15641. ggml_vec_cpy_f32(nx, g, gp);
  15642. return ls;
  15643. }
  15644. opt->loss_after = fx;
  15645. ggml_vec_norm_f32(nx, &xnorm, x);
  15646. ggml_vec_norm_f32(nx, &gnorm, g);
  15647. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15648. if (xnorm < 1.0f) {
  15649. xnorm = 1.0f;
  15650. }
  15651. if (gnorm/xnorm <= params.lbfgs.eps) {
  15652. // converged
  15653. return GGML_OPT_OK;
  15654. }
  15655. // delta-based convergence test
  15656. if (pf != NULL) {
  15657. // need at least params.past iterations to start checking for convergence
  15658. if (params.past <= k[0]) {
  15659. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15660. if (fabsf(rate) < params.delta) {
  15661. return GGML_OPT_OK;
  15662. }
  15663. }
  15664. pf[k[0]%params.past] = fx;
  15665. }
  15666. // check for improvement
  15667. if (params.max_no_improvement > 0) {
  15668. if (fx < fx_best[0]) {
  15669. fx_best[0] = fx;
  15670. n_no_improvement[0] = 0;
  15671. } else {
  15672. n_no_improvement[0]++;
  15673. if (n_no_improvement[0] >= params.max_no_improvement) {
  15674. return GGML_OPT_OK;
  15675. }
  15676. }
  15677. }
  15678. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15679. // reached the maximum number of iterations
  15680. return GGML_OPT_DID_NOT_CONVERGE;
  15681. }
  15682. // update vectors s and y:
  15683. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15684. // y_{k+1} = g_{k+1} - g_{k}.
  15685. //
  15686. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15687. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15688. // compute scalars ys and yy:
  15689. // ys = y^t \cdot s -> 1 / \rho.
  15690. // yy = y^t \cdot y.
  15691. //
  15692. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15693. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15694. lm_ys[end[0]] = ys;
  15695. // find new search direction
  15696. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15697. bound = (m <= k[0]) ? m : k[0];
  15698. k[0]++;
  15699. it++;
  15700. end[0] = (end[0] + 1)%m;
  15701. // initialize search direction with -g
  15702. ggml_vec_neg_f32(nx, d, g);
  15703. j[0] = end[0];
  15704. for (int i = 0; i < bound; ++i) {
  15705. j[0] = (j[0] + m - 1) % m;
  15706. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15707. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15708. lm_alpha[j[0]] /= lm_ys[j[0]];
  15709. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15710. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15711. }
  15712. ggml_vec_scale_f32(nx, d, ys/yy);
  15713. for (int i = 0; i < bound; ++i) {
  15714. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15715. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15716. beta /= lm_ys[j[0]];
  15717. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15718. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15719. j[0] = (j[0] + 1)%m;
  15720. }
  15721. step[0] = 1.0;
  15722. }
  15723. return GGML_OPT_DID_NOT_CONVERGE;
  15724. }
  15725. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15726. struct ggml_opt_params result;
  15727. switch (type) {
  15728. case GGML_OPT_ADAM:
  15729. {
  15730. result = (struct ggml_opt_params) {
  15731. .type = GGML_OPT_ADAM,
  15732. .n_threads = 1,
  15733. .past = 0,
  15734. .delta = 1e-5f,
  15735. .max_no_improvement = 100,
  15736. .print_forward_graph = true,
  15737. .print_backward_graph = true,
  15738. .adam = {
  15739. .n_iter = 10000,
  15740. .sched = 1.000f,
  15741. .decay = 0.0f,
  15742. .decay_min_ndim = 2,
  15743. .alpha = 0.001f,
  15744. .beta1 = 0.9f,
  15745. .beta2 = 0.999f,
  15746. .eps = 1e-8f,
  15747. .eps_f = 1e-5f,
  15748. .eps_g = 1e-3f,
  15749. .gclip = 0.0f,
  15750. },
  15751. };
  15752. } break;
  15753. case GGML_OPT_LBFGS:
  15754. {
  15755. result = (struct ggml_opt_params) {
  15756. .type = GGML_OPT_LBFGS,
  15757. .n_threads = 1,
  15758. .past = 0,
  15759. .delta = 1e-5f,
  15760. .max_no_improvement = 0,
  15761. .print_forward_graph = true,
  15762. .print_backward_graph = true,
  15763. .lbfgs = {
  15764. .m = 6,
  15765. .n_iter = 100,
  15766. .max_linesearch = 20,
  15767. .eps = 1e-5f,
  15768. .ftol = 1e-4f,
  15769. .wolfe = 0.9f,
  15770. .min_step = 1e-20f,
  15771. .max_step = 1e+20f,
  15772. .linesearch = GGML_LINESEARCH_DEFAULT,
  15773. },
  15774. };
  15775. } break;
  15776. }
  15777. return result;
  15778. }
  15779. GGML_API void ggml_opt_init(
  15780. struct ggml_context * ctx,
  15781. struct ggml_opt_context * opt,
  15782. struct ggml_opt_params params,
  15783. int64_t nx) {
  15784. opt->ctx = ctx;
  15785. opt->params = params;
  15786. opt->iter = 0;
  15787. opt->nx = nx;
  15788. opt->just_initialized = true;
  15789. switch (opt->params.type) {
  15790. case GGML_OPT_ADAM:
  15791. {
  15792. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15793. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15794. opt->adam.pf = params.past > 0
  15795. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15796. : NULL;
  15797. ggml_set_zero(opt->adam.m);
  15798. ggml_set_zero(opt->adam.v);
  15799. if (opt->adam.pf) {
  15800. ggml_set_zero(opt->adam.pf);
  15801. }
  15802. } break;
  15803. case GGML_OPT_LBFGS:
  15804. {
  15805. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15806. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15807. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15808. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15809. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15810. opt->lbfgs.pf = params.past > 0
  15811. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15812. : NULL;
  15813. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15814. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15815. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15816. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15817. ggml_set_zero(opt->lbfgs.x);
  15818. ggml_set_zero(opt->lbfgs.xp);
  15819. ggml_set_zero(opt->lbfgs.g);
  15820. ggml_set_zero(opt->lbfgs.gp);
  15821. ggml_set_zero(opt->lbfgs.d);
  15822. if (opt->lbfgs.pf) {
  15823. ggml_set_zero(opt->lbfgs.pf);
  15824. }
  15825. ggml_set_zero(opt->lbfgs.lmal);
  15826. ggml_set_zero(opt->lbfgs.lmys);
  15827. ggml_set_zero(opt->lbfgs.lms);
  15828. ggml_set_zero(opt->lbfgs.lmy);
  15829. } break;
  15830. }
  15831. }
  15832. enum ggml_opt_result ggml_opt(
  15833. struct ggml_context * ctx,
  15834. struct ggml_opt_params params,
  15835. struct ggml_tensor * f) {
  15836. bool free_ctx = false;
  15837. if (ctx == NULL) {
  15838. struct ggml_init_params params_ctx = {
  15839. .mem_size = 16*1024*1024,
  15840. .mem_buffer = NULL,
  15841. .no_alloc = false,
  15842. };
  15843. ctx = ggml_init(params_ctx);
  15844. if (ctx == NULL) {
  15845. return GGML_OPT_NO_CONTEXT;
  15846. }
  15847. free_ctx = true;
  15848. }
  15849. enum ggml_opt_result result = GGML_OPT_OK;
  15850. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15851. ggml_opt_init(ctx, opt, params, 0);
  15852. result = ggml_opt_resume(ctx, opt, f);
  15853. if (free_ctx) {
  15854. ggml_free(ctx);
  15855. }
  15856. return result;
  15857. }
  15858. enum ggml_opt_result ggml_opt_resume(
  15859. struct ggml_context * ctx,
  15860. struct ggml_opt_context * opt,
  15861. struct ggml_tensor * f) {
  15862. // build forward + backward compute graphs
  15863. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15864. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15865. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15866. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15867. *gf = ggml_build_forward (f);
  15868. *gb = ggml_build_backward(ctx, gf, true);
  15869. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15870. }
  15871. enum ggml_opt_result ggml_opt_resume_g(
  15872. struct ggml_context * ctx,
  15873. struct ggml_opt_context * opt,
  15874. struct ggml_tensor * f,
  15875. struct ggml_cgraph * gf,
  15876. struct ggml_cgraph * gb,
  15877. ggml_opt_callback callback,
  15878. void * callback_data) {
  15879. // build forward + backward compute graphs
  15880. enum ggml_opt_result result = GGML_OPT_OK;
  15881. switch (opt->params.type) {
  15882. case GGML_OPT_ADAM:
  15883. {
  15884. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15885. } break;
  15886. case GGML_OPT_LBFGS:
  15887. {
  15888. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15889. } break;
  15890. }
  15891. if (opt->params.print_forward_graph) {
  15892. ggml_graph_print (gf);
  15893. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15894. }
  15895. if (opt->params.print_backward_graph) {
  15896. ggml_graph_print (gb);
  15897. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15898. }
  15899. return result;
  15900. }
  15901. ////////////////////////////////////////////////////////////////////////////////
  15902. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15903. assert(k % QK4_0 == 0);
  15904. const int nb = k / QK4_0;
  15905. for (int b = 0; b < n; b += k) {
  15906. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15907. quantize_row_q4_0_reference(src + b, y, k);
  15908. for (int i = 0; i < nb; i++) {
  15909. for (int j = 0; j < QK4_0; j += 2) {
  15910. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15911. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15912. hist[vi0]++;
  15913. hist[vi1]++;
  15914. }
  15915. }
  15916. }
  15917. return (n/QK4_0*sizeof(block_q4_0));
  15918. }
  15919. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15920. assert(k % QK4_1 == 0);
  15921. const int nb = k / QK4_1;
  15922. for (int b = 0; b < n; b += k) {
  15923. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15924. quantize_row_q4_1_reference(src + b, y, k);
  15925. for (int i = 0; i < nb; i++) {
  15926. for (int j = 0; j < QK4_1; j += 2) {
  15927. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15928. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15929. hist[vi0]++;
  15930. hist[vi1]++;
  15931. }
  15932. }
  15933. }
  15934. return (n/QK4_1*sizeof(block_q4_1));
  15935. }
  15936. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15937. assert(k % QK5_0 == 0);
  15938. const int nb = k / QK5_0;
  15939. for (int b = 0; b < n; b += k) {
  15940. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15941. quantize_row_q5_0_reference(src + b, y, k);
  15942. for (int i = 0; i < nb; i++) {
  15943. uint32_t qh;
  15944. memcpy(&qh, &y[i].qh, sizeof(qh));
  15945. for (int j = 0; j < QK5_0; j += 2) {
  15946. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15947. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15948. // cast to 16 bins
  15949. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15950. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15951. hist[vi0]++;
  15952. hist[vi1]++;
  15953. }
  15954. }
  15955. }
  15956. return (n/QK5_0*sizeof(block_q5_0));
  15957. }
  15958. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15959. assert(k % QK5_1 == 0);
  15960. const int nb = k / QK5_1;
  15961. for (int b = 0; b < n; b += k) {
  15962. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15963. quantize_row_q5_1_reference(src + b, y, k);
  15964. for (int i = 0; i < nb; i++) {
  15965. uint32_t qh;
  15966. memcpy(&qh, &y[i].qh, sizeof(qh));
  15967. for (int j = 0; j < QK5_1; j += 2) {
  15968. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15969. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15970. // cast to 16 bins
  15971. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15972. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15973. hist[vi0]++;
  15974. hist[vi1]++;
  15975. }
  15976. }
  15977. }
  15978. return (n/QK5_1*sizeof(block_q5_1));
  15979. }
  15980. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15981. assert(k % QK8_0 == 0);
  15982. const int nb = k / QK8_0;
  15983. for (int b = 0; b < n; b += k) {
  15984. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15985. quantize_row_q8_0_reference(src + b, y, k);
  15986. for (int i = 0; i < nb; i++) {
  15987. for (int j = 0; j < QK8_0; ++j) {
  15988. const int8_t vi = y[i].qs[j];
  15989. hist[vi/16 + 8]++;
  15990. }
  15991. }
  15992. }
  15993. return (n/QK8_0*sizeof(block_q8_0));
  15994. }
  15995. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15996. size_t result = 0;
  15997. switch (type) {
  15998. case GGML_TYPE_Q4_0:
  15999. {
  16000. GGML_ASSERT(start % QK4_0 == 0);
  16001. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  16002. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16003. } break;
  16004. case GGML_TYPE_Q4_1:
  16005. {
  16006. GGML_ASSERT(start % QK4_1 == 0);
  16007. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16008. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16009. } break;
  16010. case GGML_TYPE_Q5_0:
  16011. {
  16012. GGML_ASSERT(start % QK5_0 == 0);
  16013. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16014. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16015. } break;
  16016. case GGML_TYPE_Q5_1:
  16017. {
  16018. GGML_ASSERT(start % QK5_1 == 0);
  16019. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16020. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16021. } break;
  16022. case GGML_TYPE_Q8_0:
  16023. {
  16024. GGML_ASSERT(start % QK8_0 == 0);
  16025. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16026. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16027. } break;
  16028. #ifdef GGML_USE_K_QUANTS
  16029. case GGML_TYPE_Q2_K:
  16030. {
  16031. GGML_ASSERT(start % QK_K == 0);
  16032. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16033. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16034. } break;
  16035. case GGML_TYPE_Q3_K:
  16036. {
  16037. GGML_ASSERT(start % QK_K == 0);
  16038. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16039. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16040. } break;
  16041. case GGML_TYPE_Q4_K:
  16042. {
  16043. GGML_ASSERT(start % QK_K == 0);
  16044. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16045. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16046. } break;
  16047. case GGML_TYPE_Q5_K:
  16048. {
  16049. GGML_ASSERT(start % QK_K == 0);
  16050. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16051. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16052. } break;
  16053. case GGML_TYPE_Q6_K:
  16054. {
  16055. GGML_ASSERT(start % QK_K == 0);
  16056. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16057. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16058. } break;
  16059. #endif
  16060. case GGML_TYPE_F16:
  16061. {
  16062. int elemsize = sizeof(ggml_fp16_t);
  16063. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16064. result = n * elemsize;
  16065. } break;
  16066. case GGML_TYPE_F32:
  16067. {
  16068. int elemsize = sizeof(float);
  16069. result = n * elemsize;
  16070. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16071. } break;
  16072. default:
  16073. assert(false);
  16074. }
  16075. return result;
  16076. }
  16077. ////////////////////////////////////////////////////////////////////////////////
  16078. struct gguf_str {
  16079. uint64_t n; // GGUFv2
  16080. char * data;
  16081. };
  16082. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16083. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16084. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16085. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16086. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16087. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16088. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16089. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16090. [GGUF_TYPE_BOOL] = sizeof(bool),
  16091. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16092. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16093. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16094. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16095. [GGUF_TYPE_ARRAY] = 0, // undefined
  16096. };
  16097. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16098. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16099. [GGUF_TYPE_UINT8] = "u8",
  16100. [GGUF_TYPE_INT8] = "i8",
  16101. [GGUF_TYPE_UINT16] = "u16",
  16102. [GGUF_TYPE_INT16] = "i16",
  16103. [GGUF_TYPE_UINT32] = "u32",
  16104. [GGUF_TYPE_INT32] = "i32",
  16105. [GGUF_TYPE_FLOAT32] = "f32",
  16106. [GGUF_TYPE_BOOL] = "bool",
  16107. [GGUF_TYPE_STRING] = "str",
  16108. [GGUF_TYPE_ARRAY] = "arr",
  16109. [GGUF_TYPE_UINT64] = "u64",
  16110. [GGUF_TYPE_INT64] = "i64",
  16111. [GGUF_TYPE_FLOAT64] = "f64",
  16112. };
  16113. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16114. union gguf_value {
  16115. uint8_t uint8;
  16116. int8_t int8;
  16117. uint16_t uint16;
  16118. int16_t int16;
  16119. uint32_t uint32;
  16120. int32_t int32;
  16121. float float32;
  16122. uint64_t uint64;
  16123. int64_t int64;
  16124. double float64;
  16125. bool bool_;
  16126. struct gguf_str str;
  16127. struct {
  16128. enum gguf_type type;
  16129. uint64_t n; // GGUFv2
  16130. void * data;
  16131. } arr;
  16132. };
  16133. struct gguf_kv {
  16134. struct gguf_str key;
  16135. enum gguf_type type;
  16136. union gguf_value value;
  16137. };
  16138. struct gguf_header {
  16139. uint32_t magic;
  16140. uint32_t version;
  16141. uint64_t n_tensors; // GGUFv2
  16142. uint64_t n_kv; // GGUFv2
  16143. };
  16144. struct gguf_tensor_info {
  16145. struct gguf_str name;
  16146. uint32_t n_dims;
  16147. uint64_t ne[GGML_MAX_DIMS];
  16148. enum ggml_type type;
  16149. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16150. // for writing API
  16151. const void * data;
  16152. size_t size;
  16153. };
  16154. struct gguf_context {
  16155. struct gguf_header header;
  16156. struct gguf_kv * kv;
  16157. struct gguf_tensor_info * infos;
  16158. size_t alignment;
  16159. size_t offset; // offset of `data` from beginning of file
  16160. size_t size; // size of `data` in bytes
  16161. //uint8_t * padding;
  16162. void * data;
  16163. };
  16164. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16165. const size_t n = fread(dst, 1, size, file);
  16166. *offset += n;
  16167. return n == size;
  16168. }
  16169. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16170. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16171. p->n = 0;
  16172. p->data = NULL;
  16173. bool ok = true;
  16174. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16175. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16176. return ok;
  16177. }
  16178. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16179. p->n = 0;
  16180. p->data = NULL;
  16181. bool ok = true;
  16182. uint32_t n = 0;
  16183. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16184. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16185. return ok;
  16186. }
  16187. struct gguf_context * gguf_init_empty(void) {
  16188. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16189. ctx->header.magic = GGUF_MAGIC;
  16190. ctx->header.version = GGUF_VERSION;
  16191. ctx->header.n_tensors = 0;
  16192. ctx->header.n_kv = 0;
  16193. ctx->kv = NULL;
  16194. ctx->infos = NULL;
  16195. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16196. ctx->offset = 0;
  16197. ctx->size = 0;
  16198. ctx->data = NULL;
  16199. return ctx;
  16200. }
  16201. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16202. FILE * file = fopen(fname, "rb");
  16203. if (!file) {
  16204. return NULL;
  16205. }
  16206. // offset from start of file
  16207. size_t offset = 0;
  16208. uint32_t magic = 0;
  16209. // check the magic before making allocations
  16210. {
  16211. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16212. if (magic != GGUF_MAGIC) {
  16213. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16214. fclose(file);
  16215. return NULL;
  16216. }
  16217. }
  16218. bool ok = true;
  16219. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16220. // read the header
  16221. {
  16222. ctx->header.magic = magic;
  16223. ctx->kv = NULL;
  16224. ctx->infos = NULL;
  16225. ctx->data = NULL;
  16226. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16227. if (ctx->header.version == 1) {
  16228. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16229. uint32_t n_tensors = 0;
  16230. uint32_t n_kv = 0;
  16231. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16232. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16233. ctx->header.n_tensors = n_tensors;
  16234. ctx->header.n_kv = n_kv;
  16235. } else {
  16236. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16237. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16238. }
  16239. if (!ok) {
  16240. fprintf(stderr, "%s: failed to read header\n", __func__);
  16241. fclose(file);
  16242. gguf_free(ctx);
  16243. return NULL;
  16244. }
  16245. }
  16246. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16247. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16248. if (ctx->header.version == 1) {
  16249. gguf_fread_str = gguf_fread_str_v1;
  16250. }
  16251. // read the kv pairs
  16252. {
  16253. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16254. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16255. struct gguf_kv * kv = &ctx->kv[i];
  16256. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16257. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16258. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16259. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16260. switch (kv->type) {
  16261. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16262. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16263. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16264. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16265. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16266. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16267. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16268. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16269. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16270. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16271. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16272. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16273. case GGUF_TYPE_ARRAY:
  16274. {
  16275. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16276. if (ctx->header.version == 1) {
  16277. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16278. uint32_t n = 0;
  16279. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16280. kv->value.arr.n = n;
  16281. } else {
  16282. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16283. }
  16284. switch (kv->value.arr.type) {
  16285. case GGUF_TYPE_UINT8:
  16286. case GGUF_TYPE_INT8:
  16287. case GGUF_TYPE_UINT16:
  16288. case GGUF_TYPE_INT16:
  16289. case GGUF_TYPE_UINT32:
  16290. case GGUF_TYPE_INT32:
  16291. case GGUF_TYPE_FLOAT32:
  16292. case GGUF_TYPE_UINT64:
  16293. case GGUF_TYPE_INT64:
  16294. case GGUF_TYPE_FLOAT64:
  16295. case GGUF_TYPE_BOOL:
  16296. {
  16297. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16298. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16299. } break;
  16300. case GGUF_TYPE_STRING:
  16301. {
  16302. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16303. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16304. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16305. }
  16306. } break;
  16307. case GGUF_TYPE_ARRAY:
  16308. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16309. };
  16310. } break;
  16311. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16312. };
  16313. if (!ok) {
  16314. break;
  16315. }
  16316. }
  16317. if (!ok) {
  16318. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16319. fclose(file);
  16320. gguf_free(ctx);
  16321. return NULL;
  16322. }
  16323. }
  16324. // read the tensor infos
  16325. {
  16326. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16327. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16328. struct gguf_tensor_info * info = &ctx->infos[i];
  16329. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16330. info->ne[j] = 1;
  16331. }
  16332. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16333. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16334. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16335. if (ctx->header.version == 1) {
  16336. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16337. uint32_t t = 0;
  16338. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16339. info->ne[j] = t;
  16340. } else {
  16341. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16342. }
  16343. }
  16344. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16345. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16346. if (!ok) {
  16347. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16348. fclose(file);
  16349. gguf_free(ctx);
  16350. return NULL;
  16351. }
  16352. }
  16353. }
  16354. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16355. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16356. if (alignment_idx != -1) {
  16357. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16358. }
  16359. // we require the data section to be aligned, so take into account any padding
  16360. {
  16361. const size_t offset_pad = offset % ctx->alignment;
  16362. if (offset_pad != 0) {
  16363. offset += ctx->alignment - offset_pad;
  16364. fseek(file, offset, SEEK_SET);
  16365. }
  16366. }
  16367. // store the current file offset - this is where the data section starts
  16368. ctx->offset = offset;
  16369. // compute the total size of the data section, taking into account the alignment
  16370. {
  16371. ctx->size = 0;
  16372. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16373. struct gguf_tensor_info * info = &ctx->infos[i];
  16374. const int64_t ne =
  16375. (int64_t) info->ne[0] *
  16376. (int64_t) info->ne[1] *
  16377. (int64_t) info->ne[2] *
  16378. (int64_t) info->ne[3];
  16379. if (ne % ggml_blck_size(info->type) != 0) {
  16380. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16381. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16382. fclose(file);
  16383. gguf_free(ctx);
  16384. return NULL;
  16385. }
  16386. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16387. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16388. }
  16389. }
  16390. // load the tensor data only if requested
  16391. if (params.ctx != NULL) {
  16392. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16393. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16394. // the ggml_tensor structs to the appropriate locations in the binary blob
  16395. // compute the exact size needed for the new ggml_context
  16396. const size_t mem_size =
  16397. params.no_alloc ?
  16398. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16399. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16400. struct ggml_init_params pdata = {
  16401. .mem_size = mem_size,
  16402. .mem_buffer = NULL,
  16403. .no_alloc = params.no_alloc,
  16404. };
  16405. *params.ctx = ggml_init(pdata);
  16406. struct ggml_context * ctx_data = *params.ctx;
  16407. struct ggml_tensor * data = NULL;
  16408. if (params.no_alloc == false) {
  16409. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16410. ok = ok && data != NULL;
  16411. // read the binary blob with the tensor data
  16412. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16413. if (!ok) {
  16414. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16415. fclose(file);
  16416. ggml_free(ctx_data);
  16417. gguf_free(ctx);
  16418. return NULL;
  16419. }
  16420. ctx->data = data->data;
  16421. }
  16422. ggml_set_no_alloc(ctx_data, true);
  16423. // create the tensors
  16424. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16425. const int64_t ne[GGML_MAX_DIMS] = {
  16426. ctx->infos[i].ne[0],
  16427. ctx->infos[i].ne[1],
  16428. ctx->infos[i].ne[2],
  16429. ctx->infos[i].ne[3],
  16430. };
  16431. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16432. ok = ok && cur != NULL;
  16433. ggml_set_name(cur, ctx->infos[i].name.data);
  16434. if (!ok) {
  16435. break;
  16436. }
  16437. // point the data member to the appropriate location in the binary blob using the tensor infos
  16438. if (params.no_alloc == false) {
  16439. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16440. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16441. }
  16442. }
  16443. if (!ok) {
  16444. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16445. fclose(file);
  16446. ggml_free(ctx_data);
  16447. gguf_free(ctx);
  16448. return NULL;
  16449. }
  16450. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16451. }
  16452. fclose(file);
  16453. return ctx;
  16454. }
  16455. void gguf_free(struct gguf_context * ctx) {
  16456. if (ctx == NULL) {
  16457. return;
  16458. }
  16459. if (ctx->kv) {
  16460. // free string memory - not great..
  16461. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16462. struct gguf_kv * kv = &ctx->kv[i];
  16463. if (kv->key.data) {
  16464. free(kv->key.data);
  16465. }
  16466. if (kv->type == GGUF_TYPE_STRING) {
  16467. if (kv->value.str.data) {
  16468. free(kv->value.str.data);
  16469. }
  16470. }
  16471. if (kv->type == GGUF_TYPE_ARRAY) {
  16472. if (kv->value.arr.data) {
  16473. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16474. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16475. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16476. if (str->data) {
  16477. free(str->data);
  16478. }
  16479. }
  16480. }
  16481. free(kv->value.arr.data);
  16482. }
  16483. }
  16484. }
  16485. free(ctx->kv);
  16486. }
  16487. if (ctx->infos) {
  16488. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16489. struct gguf_tensor_info * info = &ctx->infos[i];
  16490. if (info->name.data) {
  16491. free(info->name.data);
  16492. }
  16493. }
  16494. free(ctx->infos);
  16495. }
  16496. GGML_ALIGNED_FREE(ctx);
  16497. }
  16498. const char * gguf_type_name(enum gguf_type type) {
  16499. return GGUF_TYPE_NAME[type];
  16500. }
  16501. int gguf_get_version(struct gguf_context * ctx) {
  16502. return ctx->header.version;
  16503. }
  16504. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16505. return ctx->alignment;
  16506. }
  16507. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16508. return ctx->offset;
  16509. }
  16510. void * gguf_get_data(struct gguf_context * ctx) {
  16511. return ctx->data;
  16512. }
  16513. int gguf_get_n_kv(struct gguf_context * ctx) {
  16514. return ctx->header.n_kv;
  16515. }
  16516. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16517. // return -1 if key not found
  16518. int keyfound = -1;
  16519. const int n_kv = gguf_get_n_kv(ctx);
  16520. for (int i = 0; i < n_kv; ++i) {
  16521. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16522. keyfound = i;
  16523. break;
  16524. }
  16525. }
  16526. return keyfound;
  16527. }
  16528. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16529. return ctx->kv[i].key.data;
  16530. }
  16531. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16532. return ctx->kv[i].type;
  16533. }
  16534. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16535. return ctx->kv[i].value.arr.type;
  16536. }
  16537. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16538. return ctx->kv[i].value.arr.data;
  16539. }
  16540. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16541. struct gguf_kv * kv = &ctx->kv[key_id];
  16542. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16543. return str->data;
  16544. }
  16545. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16546. return ctx->kv[i].value.arr.n;
  16547. }
  16548. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16549. return ctx->kv[i].value.uint8;
  16550. }
  16551. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16552. return ctx->kv[i].value.int8;
  16553. }
  16554. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16555. return ctx->kv[i].value.uint16;
  16556. }
  16557. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16558. return ctx->kv[i].value.int16;
  16559. }
  16560. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16561. return ctx->kv[i].value.uint32;
  16562. }
  16563. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16564. return ctx->kv[i].value.int32;
  16565. }
  16566. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16567. return ctx->kv[i].value.float32;
  16568. }
  16569. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16570. return ctx->kv[i].value.uint64;
  16571. }
  16572. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16573. return ctx->kv[i].value.int64;
  16574. }
  16575. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16576. return ctx->kv[i].value.float64;
  16577. }
  16578. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16579. return ctx->kv[i].value.bool_;
  16580. }
  16581. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16582. return ctx->kv[i].value.str.data;
  16583. }
  16584. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16585. return ctx->header.n_tensors;
  16586. }
  16587. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16588. // return -1 if tensor not found
  16589. int tensorfound = -1;
  16590. const int n_tensors = gguf_get_n_tensors(ctx);
  16591. for (int i = 0; i < n_tensors; ++i) {
  16592. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16593. tensorfound = i;
  16594. break;
  16595. }
  16596. }
  16597. return tensorfound;
  16598. }
  16599. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16600. return ctx->infos[i].offset;
  16601. }
  16602. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16603. return ctx->infos[i].name.data;
  16604. }
  16605. // returns the index
  16606. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16607. const int idx = gguf_find_key(ctx, key);
  16608. if (idx >= 0) {
  16609. return idx;
  16610. }
  16611. const int n_kv = gguf_get_n_kv(ctx);
  16612. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16613. ctx->kv[n_kv].key.n = strlen(key);
  16614. ctx->kv[n_kv].key.data = strdup(key);
  16615. ctx->header.n_kv++;
  16616. return n_kv;
  16617. }
  16618. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16619. const int idx = gguf_get_or_add_key(ctx, key);
  16620. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16621. ctx->kv[idx].value.uint8 = val;
  16622. }
  16623. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16624. const int idx = gguf_get_or_add_key(ctx, key);
  16625. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16626. ctx->kv[idx].value.int8 = val;
  16627. }
  16628. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16629. const int idx = gguf_get_or_add_key(ctx, key);
  16630. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16631. ctx->kv[idx].value.uint16 = val;
  16632. }
  16633. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16634. const int idx = gguf_get_or_add_key(ctx, key);
  16635. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16636. ctx->kv[idx].value.int16 = val;
  16637. }
  16638. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16639. const int idx = gguf_get_or_add_key(ctx, key);
  16640. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16641. ctx->kv[idx].value.uint32 = val;
  16642. }
  16643. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16644. const int idx = gguf_get_or_add_key(ctx, key);
  16645. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16646. ctx->kv[idx].value.int32 = val;
  16647. }
  16648. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16649. const int idx = gguf_get_or_add_key(ctx, key);
  16650. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16651. ctx->kv[idx].value.float32 = val;
  16652. }
  16653. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16654. const int idx = gguf_get_or_add_key(ctx, key);
  16655. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16656. ctx->kv[idx].value.uint64 = val;
  16657. }
  16658. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16659. const int idx = gguf_get_or_add_key(ctx, key);
  16660. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16661. ctx->kv[idx].value.int64 = val;
  16662. }
  16663. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16664. const int idx = gguf_get_or_add_key(ctx, key);
  16665. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16666. ctx->kv[idx].value.float64 = val;
  16667. }
  16668. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16669. const int idx = gguf_get_or_add_key(ctx, key);
  16670. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16671. ctx->kv[idx].value.bool_ = val;
  16672. }
  16673. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16674. const int idx = gguf_get_or_add_key(ctx, key);
  16675. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16676. ctx->kv[idx].value.str.n = strlen(val);
  16677. ctx->kv[idx].value.str.data = strdup(val);
  16678. }
  16679. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16680. const int idx = gguf_get_or_add_key(ctx, key);
  16681. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16682. ctx->kv[idx].value.arr.type = type;
  16683. ctx->kv[idx].value.arr.n = n;
  16684. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16685. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16686. }
  16687. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16688. const int idx = gguf_get_or_add_key(ctx, key);
  16689. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16690. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16691. ctx->kv[idx].value.arr.n = n;
  16692. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16693. for (int i = 0; i < n; i++) {
  16694. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16695. str->n = strlen(data[i]);
  16696. str->data = strdup(data[i]);
  16697. }
  16698. }
  16699. // set or add KV pairs from another context
  16700. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16701. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16702. switch (src->kv[i].type) {
  16703. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16704. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16705. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16706. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16707. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16708. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16709. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16710. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16711. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16712. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16713. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16714. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16715. case GGUF_TYPE_ARRAY:
  16716. {
  16717. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16718. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16719. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16720. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16721. }
  16722. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16723. free(data);
  16724. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16725. GGML_ASSERT(false && "nested arrays not supported");
  16726. } else {
  16727. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16728. }
  16729. } break;
  16730. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16731. }
  16732. }
  16733. }
  16734. void gguf_add_tensor(
  16735. struct gguf_context * ctx,
  16736. const struct ggml_tensor * tensor) {
  16737. const int idx = ctx->header.n_tensors;
  16738. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16739. ctx->infos[idx].name.n = strlen(tensor->name);
  16740. ctx->infos[idx].name.data = strdup(tensor->name);
  16741. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16742. ctx->infos[idx].ne[i] = 1;
  16743. }
  16744. ctx->infos[idx].n_dims = tensor->n_dims;
  16745. for (int i = 0; i < tensor->n_dims; i++) {
  16746. ctx->infos[idx].ne[i] = tensor->ne[i];
  16747. }
  16748. ctx->infos[idx].type = tensor->type;
  16749. ctx->infos[idx].offset = 0;
  16750. ctx->infos[idx].data = tensor->data;
  16751. ctx->infos[idx].size = ggml_nbytes(tensor);
  16752. if (ctx->header.n_tensors > 0) {
  16753. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16754. }
  16755. ctx->header.n_tensors++;
  16756. }
  16757. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16758. const int idx = gguf_find_tensor(ctx, name);
  16759. if (idx < 0) {
  16760. GGML_ASSERT(false && "tensor not found");
  16761. }
  16762. ctx->infos[idx].type = type;
  16763. }
  16764. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16765. const int idx = gguf_find_tensor(ctx, name);
  16766. if (idx < 0) {
  16767. GGML_ASSERT(false && "tensor not found");
  16768. }
  16769. ctx->infos[idx].data = data;
  16770. ctx->infos[idx].size = size;
  16771. // update offsets
  16772. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16773. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16774. }
  16775. }
  16776. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16777. // fwrite(&val->n, sizeof(val->n), 1, file);
  16778. // fwrite(val->data, sizeof(char), val->n, file);
  16779. //}
  16780. //
  16781. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16782. // fwrite(val, sizeof(char), size, file);
  16783. //}
  16784. struct gguf_buf {
  16785. void * data;
  16786. size_t size;
  16787. size_t offset;
  16788. };
  16789. static struct gguf_buf gguf_buf_init(size_t size) {
  16790. struct gguf_buf buf = {
  16791. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16792. /*buf.size =*/ size,
  16793. /*buf.offset =*/ 0,
  16794. };
  16795. return buf;
  16796. }
  16797. static void gguf_buf_free(struct gguf_buf buf) {
  16798. if (buf.data) {
  16799. free(buf.data);
  16800. }
  16801. }
  16802. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16803. if (buf->offset + size > buf->size) {
  16804. buf->size = 1.5*(buf->offset + size);
  16805. if (buf->data) {
  16806. buf->data = realloc(buf->data, buf->size);
  16807. }
  16808. }
  16809. }
  16810. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16811. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16812. if (buf->data) {
  16813. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16814. }
  16815. buf->offset += sizeof(val->n);
  16816. if (buf->data) {
  16817. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16818. }
  16819. buf->offset += val->n;
  16820. }
  16821. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16822. gguf_buf_grow(buf, el_size);
  16823. if (buf->data) {
  16824. memcpy((char *) buf->data + buf->offset, val, el_size);
  16825. }
  16826. buf->offset += el_size;
  16827. }
  16828. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16829. // write header
  16830. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16831. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16832. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16833. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16834. // write key-value pairs
  16835. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16836. struct gguf_kv * kv = &ctx->kv[i];
  16837. gguf_bwrite_str(buf, &kv->key);
  16838. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16839. switch (kv->type) {
  16840. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16841. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16842. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16843. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16844. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16845. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16846. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16847. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16848. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16849. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16850. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16851. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16852. case GGUF_TYPE_ARRAY:
  16853. {
  16854. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16855. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16856. switch (kv->value.arr.type) {
  16857. case GGUF_TYPE_UINT8:
  16858. case GGUF_TYPE_INT8:
  16859. case GGUF_TYPE_UINT16:
  16860. case GGUF_TYPE_INT16:
  16861. case GGUF_TYPE_UINT32:
  16862. case GGUF_TYPE_INT32:
  16863. case GGUF_TYPE_FLOAT32:
  16864. case GGUF_TYPE_UINT64:
  16865. case GGUF_TYPE_INT64:
  16866. case GGUF_TYPE_FLOAT64:
  16867. case GGUF_TYPE_BOOL:
  16868. {
  16869. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16870. } break;
  16871. case GGUF_TYPE_STRING:
  16872. {
  16873. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16874. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16875. }
  16876. } break;
  16877. case GGUF_TYPE_ARRAY:
  16878. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16879. };
  16880. } break;
  16881. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16882. };
  16883. }
  16884. // write tensor infos
  16885. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16886. struct gguf_tensor_info * info = &ctx->infos[i];
  16887. gguf_bwrite_str(buf, &info->name);
  16888. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16889. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16890. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16891. }
  16892. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16893. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16894. }
  16895. // we require the data section to be aligned, so take into account any padding
  16896. {
  16897. const size_t offset = buf->offset;
  16898. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16899. if (offset_pad != offset) {
  16900. uint8_t pad = 0;
  16901. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16902. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16903. }
  16904. }
  16905. }
  16906. if (only_meta) {
  16907. return;
  16908. }
  16909. size_t offset = 0;
  16910. // write tensor data
  16911. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16912. struct gguf_tensor_info * info = &ctx->infos[i];
  16913. const size_t size = info->size;
  16914. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16915. gguf_bwrite_el(buf, info->data, size);
  16916. if (size_pad != size) {
  16917. uint8_t pad = 0;
  16918. for (size_t j = 0; j < size_pad - size; ++j) {
  16919. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16920. }
  16921. }
  16922. GGML_ASSERT(offset == info->offset);
  16923. offset += size_pad;
  16924. }
  16925. }
  16926. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16927. FILE * file = fopen(fname, "wb");
  16928. if (!file) {
  16929. GGML_ASSERT(false && "failed to open file for writing");
  16930. }
  16931. struct gguf_buf buf = gguf_buf_init(16*1024);
  16932. gguf_write_to_buf(ctx, &buf, only_meta);
  16933. fwrite(buf.data, 1, buf.offset, file);
  16934. gguf_buf_free(buf);
  16935. fclose(file);
  16936. }
  16937. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16938. // no allocs - only compute size
  16939. struct gguf_buf buf = gguf_buf_init(0);
  16940. gguf_write_to_buf(ctx, &buf, true);
  16941. return buf.offset;
  16942. }
  16943. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16944. struct gguf_buf buf = gguf_buf_init(16*1024);
  16945. gguf_write_to_buf(ctx, &buf, true);
  16946. memcpy(data, buf.data, buf.offset);
  16947. gguf_buf_free(buf);
  16948. }
  16949. ////////////////////////////////////////////////////////////////////////////////
  16950. int ggml_cpu_has_avx(void) {
  16951. #if defined(__AVX__)
  16952. return 1;
  16953. #else
  16954. return 0;
  16955. #endif
  16956. }
  16957. int ggml_cpu_has_avx2(void) {
  16958. #if defined(__AVX2__)
  16959. return 1;
  16960. #else
  16961. return 0;
  16962. #endif
  16963. }
  16964. int ggml_cpu_has_avx512(void) {
  16965. #if defined(__AVX512F__)
  16966. return 1;
  16967. #else
  16968. return 0;
  16969. #endif
  16970. }
  16971. int ggml_cpu_has_avx512_vbmi(void) {
  16972. #if defined(__AVX512VBMI__)
  16973. return 1;
  16974. #else
  16975. return 0;
  16976. #endif
  16977. }
  16978. int ggml_cpu_has_avx512_vnni(void) {
  16979. #if defined(__AVX512VNNI__)
  16980. return 1;
  16981. #else
  16982. return 0;
  16983. #endif
  16984. }
  16985. int ggml_cpu_has_fma(void) {
  16986. #if defined(__FMA__)
  16987. return 1;
  16988. #else
  16989. return 0;
  16990. #endif
  16991. }
  16992. int ggml_cpu_has_neon(void) {
  16993. #if defined(__ARM_NEON)
  16994. return 1;
  16995. #else
  16996. return 0;
  16997. #endif
  16998. }
  16999. int ggml_cpu_has_arm_fma(void) {
  17000. #if defined(__ARM_FEATURE_FMA)
  17001. return 1;
  17002. #else
  17003. return 0;
  17004. #endif
  17005. }
  17006. int ggml_cpu_has_f16c(void) {
  17007. #if defined(__F16C__)
  17008. return 1;
  17009. #else
  17010. return 0;
  17011. #endif
  17012. }
  17013. int ggml_cpu_has_fp16_va(void) {
  17014. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17015. return 1;
  17016. #else
  17017. return 0;
  17018. #endif
  17019. }
  17020. int ggml_cpu_has_wasm_simd(void) {
  17021. #if defined(__wasm_simd128__)
  17022. return 1;
  17023. #else
  17024. return 0;
  17025. #endif
  17026. }
  17027. int ggml_cpu_has_blas(void) {
  17028. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17029. return 1;
  17030. #else
  17031. return 0;
  17032. #endif
  17033. }
  17034. int ggml_cpu_has_cublas(void) {
  17035. #if defined(GGML_USE_CUBLAS)
  17036. return 1;
  17037. #else
  17038. return 0;
  17039. #endif
  17040. }
  17041. int ggml_cpu_has_clblast(void) {
  17042. #if defined(GGML_USE_CLBLAST)
  17043. return 1;
  17044. #else
  17045. return 0;
  17046. #endif
  17047. }
  17048. int ggml_cpu_has_gpublas(void) {
  17049. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17050. }
  17051. int ggml_cpu_has_sse3(void) {
  17052. #if defined(__SSE3__)
  17053. return 1;
  17054. #else
  17055. return 0;
  17056. #endif
  17057. }
  17058. int ggml_cpu_has_ssse3(void) {
  17059. #if defined(__SSSE3__)
  17060. return 1;
  17061. #else
  17062. return 0;
  17063. #endif
  17064. }
  17065. int ggml_cpu_has_vsx(void) {
  17066. #if defined(__POWER9_VECTOR__)
  17067. return 1;
  17068. #else
  17069. return 0;
  17070. #endif
  17071. }
  17072. ////////////////////////////////////////////////////////////////////////////////