k_quants.c 169 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #else
  13. #ifdef __wasm_simd128__
  14. #include <wasm_simd128.h>
  15. #else
  16. #ifdef __POWER9_VECTOR__
  17. #include <altivec.h>
  18. #undef bool
  19. #define bool _Bool
  20. #else
  21. #if defined(_MSC_VER) || defined(__MINGW32__)
  22. #include <intrin.h>
  23. #else
  24. #if !defined(__riscv)
  25. #include <immintrin.h>
  26. #endif
  27. #endif
  28. #endif
  29. #endif
  30. #endif
  31. #undef MIN
  32. #undef MAX
  33. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  34. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  35. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  36. //
  37. // 2-6 bit quantization in super-blocks
  38. //
  39. //
  40. // ===================== Helper functions
  41. //
  42. static inline int nearest_int(float fval) {
  43. assert(fval <= 4194303.f);
  44. float val = fval + 12582912.f;
  45. int i; memcpy(&i, &val, sizeof(int));
  46. return (i & 0x007fffff) - 0x00400000;
  47. }
  48. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  49. float max = 0;
  50. float amax = 0;
  51. for (int i = 0; i < n; ++i) {
  52. float ax = fabsf(x[i]);
  53. if (ax > amax) { amax = ax; max = x[i]; }
  54. }
  55. if (!amax) { // all zero
  56. for (int i = 0; i < n; ++i) {
  57. L[i] = 0;
  58. }
  59. return 0.f;
  60. }
  61. float iscale = -nmax / max;
  62. if (rmse_type == 0) {
  63. for (int i = 0; i < n; ++i) {
  64. int l = nearest_int(iscale * x[i]);
  65. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  66. }
  67. return 1/iscale;
  68. }
  69. bool return_early = false;
  70. if (rmse_type < 0) {
  71. rmse_type = -rmse_type;
  72. return_early = true;
  73. }
  74. int weight_type = rmse_type%2;
  75. float sumlx = 0;
  76. float suml2 = 0;
  77. for (int i = 0; i < n; ++i) {
  78. int l = nearest_int(iscale * x[i]);
  79. l = MAX(-nmax, MIN(nmax-1, l));
  80. L[i] = l + nmax;
  81. float w = weight_type == 1 ? x[i] * x[i] : 1;
  82. sumlx += w*x[i]*l;
  83. suml2 += w*l*l;
  84. }
  85. float scale = sumlx/suml2;
  86. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  87. float best = scale * sumlx;
  88. for (int is = -9; is <= 9; ++is) {
  89. if (is == 0) {
  90. continue;
  91. }
  92. iscale = -(nmax + 0.1f*is) / max;
  93. sumlx = suml2 = 0;
  94. for (int i = 0; i < n; ++i) {
  95. int l = nearest_int(iscale * x[i]);
  96. l = MAX(-nmax, MIN(nmax-1, l));
  97. float w = weight_type == 1 ? x[i] * x[i] : 1;
  98. sumlx += w*x[i]*l;
  99. suml2 += w*l*l;
  100. }
  101. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  102. for (int i = 0; i < n; ++i) {
  103. int l = nearest_int(iscale * x[i]);
  104. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  105. }
  106. scale = sumlx/suml2; best = scale*sumlx;
  107. }
  108. }
  109. return scale;
  110. }
  111. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  112. float max = 0;
  113. float amax = 0;
  114. for (int i = 0; i < n; ++i) {
  115. float ax = fabsf(x[i]);
  116. if (ax > amax) { amax = ax; max = x[i]; }
  117. }
  118. if (!amax) { // all zero
  119. for (int i = 0; i < n; ++i) { L[i] = 0; }
  120. return 0.f;
  121. }
  122. float iscale = -nmax / max;
  123. if (do_rmse) {
  124. float sumlx = 0;
  125. float suml2 = 0;
  126. for (int i = 0; i < n; ++i) {
  127. int l = nearest_int(iscale * x[i]);
  128. l = MAX(-nmax, MIN(nmax-1, l));
  129. L[i] = l;
  130. float w = x[i]*x[i];
  131. sumlx += w*x[i]*l;
  132. suml2 += w*l*l;
  133. }
  134. for (int itry = 0; itry < 5; ++itry) {
  135. int n_changed = 0;
  136. for (int i = 0; i < n; ++i) {
  137. float w = x[i]*x[i];
  138. float slx = sumlx - w*x[i]*L[i];
  139. if (slx > 0) {
  140. float sl2 = suml2 - w*L[i]*L[i];
  141. int new_l = nearest_int(x[i] * sl2 / slx);
  142. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  143. if (new_l != L[i]) {
  144. slx += w*x[i]*new_l;
  145. sl2 += w*new_l*new_l;
  146. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  147. L[i] = new_l; sumlx = slx; suml2 = sl2;
  148. ++n_changed;
  149. }
  150. }
  151. }
  152. }
  153. if (!n_changed) {
  154. break;
  155. }
  156. }
  157. for (int i = 0; i < n; ++i) {
  158. L[i] += nmax;
  159. }
  160. return sumlx / suml2;
  161. }
  162. for (int i = 0; i < n; ++i) {
  163. int l = nearest_int(iscale * x[i]);
  164. l = MAX(-nmax, MIN(nmax-1, l));
  165. L[i] = l + nmax;
  166. }
  167. return 1/iscale;
  168. }
  169. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  170. int ntry, float alpha) {
  171. float min = x[0];
  172. float max = x[0];
  173. for (int i = 1; i < n; ++i) {
  174. if (x[i] < min) min = x[i];
  175. if (x[i] > max) max = x[i];
  176. }
  177. if (max == min) {
  178. for (int i = 0; i < n; ++i) L[i] = 0;
  179. *the_min = 0;
  180. return 0.f;
  181. }
  182. if (min > 0) min = 0;
  183. float iscale = nmax/(max - min);
  184. float scale = 1/iscale;
  185. for (int itry = 0; itry < ntry; ++itry) {
  186. float sumlx = 0; int suml2 = 0;
  187. bool did_change = false;
  188. for (int i = 0; i < n; ++i) {
  189. int l = nearest_int(iscale*(x[i] - min));
  190. l = MAX(0, MIN(nmax, l));
  191. if (l != L[i]) {
  192. L[i] = l;
  193. did_change = true;
  194. }
  195. sumlx += (x[i] - min)*l;
  196. suml2 += l*l;
  197. }
  198. scale = sumlx/suml2;
  199. float sum = 0;
  200. for (int i = 0; i < n; ++i) {
  201. sum += x[i] - scale*L[i];
  202. }
  203. min = alpha*min + (1 - alpha)*sum/n;
  204. if (min > 0) min = 0;
  205. iscale = 1/scale;
  206. if (!did_change) break;
  207. }
  208. *the_min = -min;
  209. return scale;
  210. }
  211. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  212. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  213. float rmin, float rdelta, int nstep, bool use_mad) {
  214. float min = x[0];
  215. float max = x[0];
  216. float sum_w = weights[0];
  217. float sum_x = sum_w * x[0];
  218. for (int i = 1; i < n; ++i) {
  219. if (x[i] < min) min = x[i];
  220. if (x[i] > max) max = x[i];
  221. float w = weights[i];
  222. sum_w += w;
  223. sum_x += w * x[i];
  224. }
  225. if (min > 0) min = 0;
  226. if (max == min) {
  227. for (int i = 0; i < n; ++i) L[i] = 0;
  228. *the_min = -min;
  229. return 0.f;
  230. }
  231. float iscale = nmax/(max - min);
  232. float scale = 1/iscale;
  233. float best_mad = 0;
  234. for (int i = 0; i < n; ++i) {
  235. int l = nearest_int(iscale*(x[i] - min));
  236. L[i] = MAX(0, MIN(nmax, l));
  237. float diff = scale * L[i] + min - x[i];
  238. diff = use_mad ? fabsf(diff) : diff * diff;
  239. float w = weights[i];
  240. best_mad += w * diff;
  241. }
  242. if (nstep < 1) {
  243. *the_min = -min;
  244. return scale;
  245. }
  246. for (int is = 0; is <= nstep; ++is) {
  247. iscale = (rmin + rdelta*is + nmax)/(max - min);
  248. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  249. for (int i = 0; i < n; ++i) {
  250. int l = nearest_int(iscale*(x[i] - min));
  251. l = MAX(0, MIN(nmax, l));
  252. Laux[i] = l;
  253. float w = weights[i];
  254. sum_l += w*l;
  255. sum_l2 += w*l*l;
  256. sum_xl += w*l*x[i];
  257. }
  258. float D = sum_w * sum_l2 - sum_l * sum_l;
  259. if (D > 0) {
  260. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  261. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  262. if (this_min > 0) {
  263. this_min = 0;
  264. this_scale = sum_xl / sum_l2;
  265. }
  266. float mad = 0;
  267. for (int i = 0; i < n; ++i) {
  268. float diff = this_scale * Laux[i] + this_min - x[i];
  269. diff = use_mad ? fabsf(diff) : diff * diff;
  270. float w = weights[i];
  271. mad += w * diff;
  272. }
  273. if (mad < best_mad) {
  274. for (int i = 0; i < n; ++i) {
  275. L[i] = Laux[i];
  276. }
  277. best_mad = mad;
  278. scale = this_scale;
  279. min = this_min;
  280. }
  281. }
  282. }
  283. *the_min = -min;
  284. return scale;
  285. }
  286. #if QK_K == 256
  287. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  288. if (j < 4) {
  289. *d = q[j] & 63; *m = q[j + 4] & 63;
  290. } else {
  291. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  292. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  293. }
  294. }
  295. #endif
  296. //========================- 2-bit (de)-quantization
  297. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  298. assert(k % QK_K == 0);
  299. const int nb = k / QK_K;
  300. uint8_t L[QK_K];
  301. uint8_t Laux[16];
  302. float weights[16];
  303. float mins[QK_K/16];
  304. float scales[QK_K/16];
  305. const float q4scale = 15.f;
  306. for (int i = 0; i < nb; i++) {
  307. float max_scale = 0; // as we are deducting the min, scales are always positive
  308. float max_min = 0;
  309. for (int j = 0; j < QK_K/16; ++j) {
  310. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  311. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  312. float scale = scales[j];
  313. if (scale > max_scale) {
  314. max_scale = scale;
  315. }
  316. float min = mins[j];
  317. if (min > max_min) {
  318. max_min = min;
  319. }
  320. }
  321. if (max_scale > 0) {
  322. float iscale = q4scale/max_scale;
  323. for (int j = 0; j < QK_K/16; ++j) {
  324. int l = nearest_int(iscale*scales[j]);
  325. y[i].scales[j] = l;
  326. }
  327. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  328. } else {
  329. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  330. y[i].d = ggml_fp32_to_fp16(0.f);
  331. }
  332. if (max_min > 0) {
  333. float iscale = q4scale/max_min;
  334. for (int j = 0; j < QK_K/16; ++j) {
  335. int l = nearest_int(iscale*mins[j]);
  336. y[i].scales[j] |= (l << 4);
  337. }
  338. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  339. } else {
  340. y[i].dmin = ggml_fp32_to_fp16(0.f);
  341. }
  342. for (int j = 0; j < QK_K/16; ++j) {
  343. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  344. if (!d) continue;
  345. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  346. for (int ii = 0; ii < 16; ++ii) {
  347. int l = nearest_int((x[16*j + ii] + dm)/d);
  348. l = MAX(0, MIN(3, l));
  349. L[16*j + ii] = l;
  350. }
  351. }
  352. #if QK_K == 256
  353. for (int j = 0; j < QK_K; j += 128) {
  354. for (int l = 0; l < 32; ++l) {
  355. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  356. }
  357. }
  358. #else
  359. for (int l = 0; l < 16; ++l) {
  360. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  361. }
  362. #endif
  363. x += QK_K;
  364. }
  365. }
  366. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  367. assert(k % QK_K == 0);
  368. const int nb = k / QK_K;
  369. for (int i = 0; i < nb; i++) {
  370. const float d = ggml_fp16_to_fp32(x[i].d);
  371. const float min = ggml_fp16_to_fp32(x[i].dmin);
  372. const uint8_t * q = x[i].qs;
  373. #if QK_K == 256
  374. int is = 0;
  375. float dl, ml;
  376. for (int n = 0; n < QK_K; n += 128) {
  377. int shift = 0;
  378. for (int j = 0; j < 4; ++j) {
  379. uint8_t sc = x[i].scales[is++];
  380. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  381. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  382. sc = x[i].scales[is++];
  383. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  384. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  385. shift += 2;
  386. }
  387. q += 32;
  388. }
  389. #else
  390. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  391. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  392. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  393. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  394. for (int l = 0; l < 16; ++l) {
  395. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  396. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  397. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  398. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  399. }
  400. y += QK_K;
  401. #endif
  402. }
  403. }
  404. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  405. quantize_row_q2_K_reference(x, vy, k);
  406. }
  407. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  408. const int nb = k / QK_K;
  409. // TODO - collect histograms - although, at a second thought, I don't really care about them
  410. (void)hist;
  411. for (int j = 0; j < nb; j += k) {
  412. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  413. quantize_row_q2_K_reference(src + j, y, k);
  414. }
  415. return (n/QK_K*sizeof(block_q2_K));
  416. }
  417. //========================= 3-bit (de)-quantization
  418. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  419. assert(k % QK_K == 0);
  420. const int nb = k / QK_K;
  421. int8_t L[QK_K];
  422. float scales[QK_K / 16];
  423. for (int i = 0; i < nb; i++) {
  424. float max_scale = 0;
  425. float amax = 0;
  426. for (int j = 0; j < QK_K/16; ++j) {
  427. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  428. float scale = fabsf(scales[j]);
  429. if (scale > amax) {
  430. amax = scale; max_scale = scales[j];
  431. }
  432. }
  433. #if QK_K == 256
  434. memset(y[i].scales, 0, 12);
  435. if (max_scale) {
  436. float iscale = -32.f/max_scale;
  437. for (int j = 0; j < QK_K/16; ++j) {
  438. int8_t l = nearest_int(iscale*scales[j]);
  439. l = MAX(-32, MIN(31, l)) + 32;
  440. if (j < 8) {
  441. y[i].scales[j] = l & 0xF;
  442. } else {
  443. y[i].scales[j-8] |= ((l & 0xF) << 4);
  444. }
  445. l >>= 4;
  446. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  447. }
  448. y[i].d = ggml_fp32_to_fp16(1/iscale);
  449. } else {
  450. y[i].d = ggml_fp32_to_fp16(0.f);
  451. }
  452. int8_t sc;
  453. for (int j = 0; j < QK_K/16; ++j) {
  454. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  455. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  456. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  457. if (!d) {
  458. continue;
  459. }
  460. for (int ii = 0; ii < 16; ++ii) {
  461. int l = nearest_int(x[16*j + ii]/d);
  462. l = MAX(-4, MIN(3, l));
  463. L[16*j + ii] = l + 4;
  464. }
  465. }
  466. #else
  467. if (max_scale) {
  468. float iscale = -8.f/max_scale;
  469. for (int j = 0; j < QK_K/16; j+=2) {
  470. int l1 = nearest_int(iscale*scales[j]);
  471. l1 = 8 + MAX(-8, MIN(7, l1));
  472. int l2 = nearest_int(iscale*scales[j+1]);
  473. l2 = 8 + MAX(-8, MIN(7, l2));
  474. y[i].scales[j/2] = l1 | (l2 << 4);
  475. }
  476. y[i].d = ggml_fp32_to_fp16(1/iscale);
  477. } else {
  478. for (int j = 0; j < QK_K/16; j+=2) {
  479. y[i].scales[j/2] = 0;
  480. }
  481. y[i].d = ggml_fp32_to_fp16(0.f);
  482. }
  483. for (int j = 0; j < QK_K/16; ++j) {
  484. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  485. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  486. if (!d) {
  487. continue;
  488. }
  489. for (int ii = 0; ii < 16; ++ii) {
  490. int l = nearest_int(x[16*j + ii]/d);
  491. l = MAX(-4, MIN(3, l));
  492. L[16*j + ii] = l + 4;
  493. }
  494. }
  495. #endif
  496. memset(y[i].hmask, 0, QK_K/8);
  497. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  498. int m = 0;
  499. uint8_t hm = 1;
  500. for (int j = 0; j < QK_K; ++j) {
  501. if (L[j] > 3) {
  502. y[i].hmask[m] |= hm;
  503. L[j] -= 4;
  504. }
  505. if (++m == QK_K/8) {
  506. m = 0; hm <<= 1;
  507. }
  508. }
  509. #if QK_K == 256
  510. for (int j = 0; j < QK_K; j += 128) {
  511. for (int l = 0; l < 32; ++l) {
  512. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  513. }
  514. }
  515. #else
  516. for (int l = 0; l < 16; ++l) {
  517. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  518. }
  519. #endif
  520. x += QK_K;
  521. }
  522. }
  523. #if QK_K == 256
  524. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  525. assert(k % QK_K == 0);
  526. const int nb = k / QK_K;
  527. const uint32_t kmask1 = 0x03030303;
  528. const uint32_t kmask2 = 0x0f0f0f0f;
  529. uint32_t aux[4];
  530. const int8_t * scales = (const int8_t*)aux;
  531. for (int i = 0; i < nb; i++) {
  532. const float d_all = ggml_fp16_to_fp32(x[i].d);
  533. const uint8_t * restrict q = x[i].qs;
  534. const uint8_t * restrict hm = x[i].hmask;
  535. uint8_t m = 1;
  536. memcpy(aux, x[i].scales, 12);
  537. uint32_t tmp = aux[2];
  538. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  539. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  540. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  541. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  542. int is = 0;
  543. float dl;
  544. for (int n = 0; n < QK_K; n += 128) {
  545. int shift = 0;
  546. for (int j = 0; j < 4; ++j) {
  547. dl = d_all * (scales[is++] - 32);
  548. for (int l = 0; l < 16; ++l) {
  549. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  550. }
  551. dl = d_all * (scales[is++] - 32);
  552. for (int l = 0; l < 16; ++l) {
  553. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  554. }
  555. shift += 2;
  556. m <<= 1;
  557. }
  558. q += 32;
  559. }
  560. }
  561. }
  562. #else
  563. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  564. assert(k % QK_K == 0);
  565. assert(QK_K == 64);
  566. const int nb = k / QK_K;
  567. for (int i = 0; i < nb; i++) {
  568. const float d_all = ggml_fp16_to_fp32(x[i].d);
  569. const uint8_t * restrict q = x[i].qs;
  570. const uint8_t * restrict hm = x[i].hmask;
  571. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  572. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  573. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  574. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  575. for (int l=0; l<8; ++l) {
  576. uint8_t h = hm[l];
  577. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  578. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  579. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  580. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  581. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  582. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  583. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  584. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  585. }
  586. y += QK_K;
  587. }
  588. }
  589. #endif
  590. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  591. quantize_row_q3_K_reference(x, vy, k);
  592. }
  593. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  594. const int nb = k / QK_K;
  595. // TODO - collect histograms - although, at a second thought, I don't really care about them
  596. (void)hist;
  597. for (int j = 0; j < nb; j += k) {
  598. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  599. quantize_row_q3_K_reference(src + j, y, k);
  600. }
  601. return (n/QK_K*sizeof(block_q3_K));
  602. }
  603. // ====================== 4-bit (de)-quantization
  604. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  605. assert(k % QK_K == 0);
  606. const int nb = k / QK_K;
  607. uint8_t L[QK_K];
  608. uint8_t Laux[32];
  609. float weights[32];
  610. float mins[QK_K/32];
  611. float scales[QK_K/32];
  612. for (int i = 0; i < nb; i++) {
  613. float max_scale = 0; // as we are deducting the min, scales are always positive
  614. float max_min = 0;
  615. for (int j = 0; j < QK_K/32; ++j) {
  616. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  617. float sum_x2 = 0;
  618. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  619. float av_x = sqrtf(sum_x2/32);
  620. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  621. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  622. float scale = scales[j];
  623. if (scale > max_scale) {
  624. max_scale = scale;
  625. }
  626. float min = mins[j];
  627. if (min > max_min) {
  628. max_min = min;
  629. }
  630. }
  631. #if QK_K == 256
  632. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  633. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  634. for (int j = 0; j < QK_K/32; ++j) {
  635. uint8_t ls = nearest_int(inv_scale*scales[j]);
  636. uint8_t lm = nearest_int(inv_min*mins[j]);
  637. ls = MIN(63, ls);
  638. lm = MIN(63, lm);
  639. if (j < 4) {
  640. y[i].scales[j] = ls;
  641. y[i].scales[j+4] = lm;
  642. } else {
  643. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  644. y[i].scales[j-4] |= ((ls >> 4) << 6);
  645. y[i].scales[j-0] |= ((lm >> 4) << 6);
  646. }
  647. }
  648. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  649. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  650. uint8_t sc, m;
  651. for (int j = 0; j < QK_K/32; ++j) {
  652. get_scale_min_k4(j, y[i].scales, &sc, &m);
  653. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  654. if (!d) continue;
  655. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  656. for (int ii = 0; ii < 32; ++ii) {
  657. int l = nearest_int((x[32*j + ii] + dm)/d);
  658. l = MAX(0, MIN(15, l));
  659. L[32*j + ii] = l;
  660. }
  661. }
  662. #else
  663. const float s_factor = 15.f;
  664. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  665. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  666. int d1 = nearest_int(inv_scale*scales[0]);
  667. int m1 = nearest_int(inv_min*mins[0]);
  668. int d2 = nearest_int(inv_scale*scales[1]);
  669. int m2 = nearest_int(inv_min*mins[1]);
  670. y[i].scales[0] = d1 | (m1 << 4);
  671. y[i].scales[1] = d2 | (m2 << 4);
  672. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  673. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  674. float sumlx = 0;
  675. int suml2 = 0;
  676. for (int j = 0; j < QK_K/32; ++j) {
  677. const uint8_t sd = y[i].scales[j] & 0xF;
  678. const uint8_t sm = y[i].scales[j] >> 4;
  679. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  680. if (!d) continue;
  681. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  682. for (int ii = 0; ii < 32; ++ii) {
  683. int l = nearest_int((x[32*j + ii] + m)/d);
  684. l = MAX(0, MIN(15, l));
  685. L[32*j + ii] = l;
  686. sumlx += (x[32*j + ii] + m)*l*sd;
  687. suml2 += l*l*sd*sd;
  688. }
  689. }
  690. if (suml2) {
  691. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  692. }
  693. #endif
  694. uint8_t * q = y[i].qs;
  695. for (int j = 0; j < QK_K; j += 64) {
  696. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  697. q += 32;
  698. }
  699. x += QK_K;
  700. }
  701. }
  702. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  703. assert(k % QK_K == 0);
  704. const int nb = k / QK_K;
  705. for (int i = 0; i < nb; i++) {
  706. const uint8_t * q = x[i].qs;
  707. #if QK_K == 256
  708. const float d = ggml_fp16_to_fp32(x[i].d);
  709. const float min = ggml_fp16_to_fp32(x[i].dmin);
  710. int is = 0;
  711. uint8_t sc, m;
  712. for (int j = 0; j < QK_K; j += 64) {
  713. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  714. const float d1 = d * sc; const float m1 = min * m;
  715. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  716. const float d2 = d * sc; const float m2 = min * m;
  717. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  718. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  719. q += 32; is += 2;
  720. }
  721. #else
  722. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  723. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  724. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  725. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  726. for (int l = 0; l < 32; ++l) {
  727. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  728. y[l+32] = d2 * (q[l] >> 4) - m2;
  729. }
  730. y += QK_K;
  731. #endif
  732. }
  733. }
  734. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  735. assert(k % QK_K == 0);
  736. block_q4_K * restrict y = vy;
  737. quantize_row_q4_K_reference(x, y, k);
  738. }
  739. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  740. assert(k % QK_K == 0);
  741. const int nb = k / QK_K;
  742. (void)hist; // TODO: collect histograms
  743. for (int j = 0; j < nb; j += k) {
  744. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  745. quantize_row_q4_K_reference(src + j, y, k);
  746. }
  747. return (n/QK_K*sizeof(block_q4_K));
  748. }
  749. // ====================== 5-bit (de)-quantization
  750. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  751. assert(k % QK_K == 0);
  752. const int nb = k / QK_K;
  753. #if QK_K == 256
  754. uint8_t L[QK_K];
  755. float mins[QK_K/32];
  756. float scales[QK_K/32];
  757. float weights[32];
  758. uint8_t Laux[32];
  759. #else
  760. int8_t L[QK_K];
  761. float scales[QK_K/16];
  762. #endif
  763. for (int i = 0; i < nb; i++) {
  764. #if QK_K == 256
  765. float max_scale = 0; // as we are deducting the min, scales are always positive
  766. float max_min = 0;
  767. for (int j = 0; j < QK_K/32; ++j) {
  768. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  769. float sum_x2 = 0;
  770. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  771. float av_x = sqrtf(sum_x2/32);
  772. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  773. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  774. float scale = scales[j];
  775. if (scale > max_scale) {
  776. max_scale = scale;
  777. }
  778. float min = mins[j];
  779. if (min > max_min) {
  780. max_min = min;
  781. }
  782. }
  783. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  784. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  785. for (int j = 0; j < QK_K/32; ++j) {
  786. uint8_t ls = nearest_int(inv_scale*scales[j]);
  787. uint8_t lm = nearest_int(inv_min*mins[j]);
  788. ls = MIN(63, ls);
  789. lm = MIN(63, lm);
  790. if (j < 4) {
  791. y[i].scales[j] = ls;
  792. y[i].scales[j+4] = lm;
  793. } else {
  794. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  795. y[i].scales[j-4] |= ((ls >> 4) << 6);
  796. y[i].scales[j-0] |= ((lm >> 4) << 6);
  797. }
  798. }
  799. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  800. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  801. uint8_t sc, m;
  802. for (int j = 0; j < QK_K/32; ++j) {
  803. get_scale_min_k4(j, y[i].scales, &sc, &m);
  804. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  805. if (!d) continue;
  806. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  807. for (int ii = 0; ii < 32; ++ii) {
  808. int l = nearest_int((x[32*j + ii] + dm)/d);
  809. l = MAX(0, MIN(31, l));
  810. L[32*j + ii] = l;
  811. }
  812. }
  813. uint8_t * restrict qh = y[i].qh;
  814. uint8_t * restrict ql = y[i].qs;
  815. memset(qh, 0, QK_K/8);
  816. uint8_t m1 = 1, m2 = 2;
  817. for (int n = 0; n < QK_K; n += 64) {
  818. for (int j = 0; j < 32; ++j) {
  819. int l1 = L[n + j];
  820. if (l1 > 15) {
  821. l1 -= 16; qh[j] |= m1;
  822. }
  823. int l2 = L[n + j + 32];
  824. if (l2 > 15) {
  825. l2 -= 16; qh[j] |= m2;
  826. }
  827. ql[j] = l1 | (l2 << 4);
  828. }
  829. m1 <<= 2; m2 <<= 2;
  830. ql += 32;
  831. }
  832. #else
  833. float max_scale = 0, amax = 0;
  834. for (int j = 0; j < QK_K/16; ++j) {
  835. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  836. float abs_scale = fabsf(scales[j]);
  837. if (abs_scale > amax) {
  838. amax = abs_scale;
  839. max_scale = scales[j];
  840. }
  841. }
  842. float iscale = -128.f/max_scale;
  843. for (int j = 0; j < QK_K/16; ++j) {
  844. int l = nearest_int(iscale*scales[j]);
  845. y[i].scales[j] = MAX(-128, MIN(127, l));
  846. }
  847. y[i].d = ggml_fp32_to_fp16(1/iscale);
  848. for (int j = 0; j < QK_K/16; ++j) {
  849. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  850. if (!d) continue;
  851. for (int ii = 0; ii < 16; ++ii) {
  852. int l = nearest_int(x[16*j + ii]/d);
  853. l = MAX(-16, MIN(15, l));
  854. L[16*j + ii] = l + 16;
  855. }
  856. }
  857. uint8_t * restrict qh = y[i].qh;
  858. uint8_t * restrict ql = y[i].qs;
  859. memset(qh, 0, QK_K/8);
  860. for (int j = 0; j < 32; ++j) {
  861. int jm = j%8;
  862. int is = j/8;
  863. int l1 = L[j];
  864. if (l1 > 15) {
  865. l1 -= 16; qh[jm] |= (1 << is);
  866. }
  867. int l2 = L[j + 32];
  868. if (l2 > 15) {
  869. l2 -= 16; qh[jm] |= (1 << (4 + is));
  870. }
  871. ql[j] = l1 | (l2 << 4);
  872. }
  873. #endif
  874. x += QK_K;
  875. }
  876. }
  877. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  878. assert(k % QK_K == 0);
  879. const int nb = k / QK_K;
  880. for (int i = 0; i < nb; i++) {
  881. const uint8_t * ql = x[i].qs;
  882. const uint8_t * qh = x[i].qh;
  883. #if QK_K == 256
  884. const float d = ggml_fp16_to_fp32(x[i].d);
  885. const float min = ggml_fp16_to_fp32(x[i].dmin);
  886. int is = 0;
  887. uint8_t sc, m;
  888. uint8_t u1 = 1, u2 = 2;
  889. for (int j = 0; j < QK_K; j += 64) {
  890. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  891. const float d1 = d * sc; const float m1 = min * m;
  892. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  893. const float d2 = d * sc; const float m2 = min * m;
  894. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  895. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  896. ql += 32; is += 2;
  897. u1 <<= 2; u2 <<= 2;
  898. }
  899. #else
  900. float d = ggml_fp16_to_fp32(x[i].d);
  901. const int8_t * restrict s = x[i].scales;
  902. for (int l = 0; l < 8; ++l) {
  903. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  904. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  905. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  906. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  907. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  908. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  909. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  910. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  911. }
  912. y += QK_K;
  913. #endif
  914. }
  915. }
  916. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  917. assert(k % QK_K == 0);
  918. block_q5_K * restrict y = vy;
  919. quantize_row_q5_K_reference(x, y, k);
  920. }
  921. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  922. assert(k % QK_K == 0);
  923. const int nb = k / QK_K;
  924. (void)hist;
  925. for (int j = 0; j < nb; j += k) {
  926. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  927. quantize_row_q5_K_reference(src + j, y, k);
  928. }
  929. return (n/QK_K*sizeof(block_q5_K));
  930. }
  931. // ====================== 6-bit (de)-quantization
  932. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  933. assert(k % QK_K == 0);
  934. const int nb = k / QK_K;
  935. int8_t L[QK_K];
  936. float scales[QK_K/16];
  937. for (int i = 0; i < nb; i++) {
  938. float max_scale = 0;
  939. float max_abs_scale = 0;
  940. for (int ib = 0; ib < QK_K/16; ++ib) {
  941. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  942. scales[ib] = scale;
  943. const float abs_scale = fabsf(scale);
  944. if (abs_scale > max_abs_scale) {
  945. max_abs_scale = abs_scale;
  946. max_scale = scale;
  947. }
  948. }
  949. float iscale = -128.f/max_scale;
  950. y[i].d = ggml_fp32_to_fp16(1/iscale);
  951. for (int ib = 0; ib < QK_K/16; ++ib) {
  952. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  953. }
  954. for (int j = 0; j < QK_K/16; ++j) {
  955. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  956. if (!d) {
  957. continue;
  958. }
  959. for (int ii = 0; ii < 16; ++ii) {
  960. int l = nearest_int(x[16*j + ii]/d);
  961. l = MAX(-32, MIN(31, l));
  962. L[16*j + ii] = l + 32;
  963. }
  964. }
  965. uint8_t * restrict ql = y[i].ql;
  966. uint8_t * restrict qh = y[i].qh;
  967. #if QK_K == 256
  968. for (int j = 0; j < QK_K; j += 128) {
  969. for (int l = 0; l < 32; ++l) {
  970. const uint8_t q1 = L[j + l + 0] & 0xF;
  971. const uint8_t q2 = L[j + l + 32] & 0xF;
  972. const uint8_t q3 = L[j + l + 64] & 0xF;
  973. const uint8_t q4 = L[j + l + 96] & 0xF;
  974. ql[l+ 0] = q1 | (q3 << 4);
  975. ql[l+32] = q2 | (q4 << 4);
  976. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  977. }
  978. ql += 64;
  979. qh += 32;
  980. }
  981. #else
  982. for (int l = 0; l < 32; ++l) {
  983. const uint8_t q1 = L[l + 0] & 0xF;
  984. const uint8_t q2 = L[l + 32] & 0xF;
  985. ql[l] = q1 | (q2 << 4);
  986. }
  987. for (int l = 0; l < 16; ++l) {
  988. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  989. }
  990. #endif
  991. x += QK_K;
  992. }
  993. }
  994. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  995. assert(k % QK_K == 0);
  996. const int nb = k / QK_K;
  997. for (int i = 0; i < nb; i++) {
  998. const float d = ggml_fp16_to_fp32(x[i].d);
  999. const uint8_t * restrict ql = x[i].ql;
  1000. const uint8_t * restrict qh = x[i].qh;
  1001. const int8_t * restrict sc = x[i].scales;
  1002. #if QK_K == 256
  1003. for (int n = 0; n < QK_K; n += 128) {
  1004. for (int l = 0; l < 32; ++l) {
  1005. int is = l/16;
  1006. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1007. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1008. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1009. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1010. y[l + 0] = d * sc[is + 0] * q1;
  1011. y[l + 32] = d * sc[is + 2] * q2;
  1012. y[l + 64] = d * sc[is + 4] * q3;
  1013. y[l + 96] = d * sc[is + 6] * q4;
  1014. }
  1015. y += 128;
  1016. ql += 64;
  1017. qh += 32;
  1018. sc += 8;
  1019. }
  1020. #else
  1021. for (int l = 0; l < 16; ++l) {
  1022. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1023. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1024. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1025. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1026. y[l+ 0] = d * sc[0] * q1;
  1027. y[l+16] = d * sc[1] * q2;
  1028. y[l+32] = d * sc[2] * q3;
  1029. y[l+48] = d * sc[3] * q4;
  1030. }
  1031. y += 64;
  1032. #endif
  1033. }
  1034. }
  1035. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  1036. assert(k % QK_K == 0);
  1037. block_q6_K * restrict y = vy;
  1038. quantize_row_q6_K_reference(x, y, k);
  1039. }
  1040. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  1041. assert(k % QK_K == 0);
  1042. const int nb = k / QK_K;
  1043. (void)hist; // TODO
  1044. for (int j = 0; j < nb; j += k) {
  1045. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  1046. quantize_row_q6_K_reference(src + j, y, k);
  1047. }
  1048. return (n/QK_K*sizeof(block_q6_K));
  1049. }
  1050. //===================================== Q8_K ==============================================
  1051. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1052. assert(k % QK_K == 0);
  1053. const int nb = k / QK_K;
  1054. for (int i = 0; i < nb; i++) {
  1055. float max = 0;
  1056. float amax = 0;
  1057. for (int j = 0; j < QK_K; ++j) {
  1058. float ax = fabsf(x[j]);
  1059. if (ax > amax) {
  1060. amax = ax; max = x[j];
  1061. }
  1062. }
  1063. if (!amax) {
  1064. y[i].d = 0;
  1065. memset(y[i].qs, 0, QK_K);
  1066. x += QK_K;
  1067. continue;
  1068. }
  1069. const float iscale = -128.f/max;
  1070. for (int j = 0; j < QK_K; ++j) {
  1071. int v = nearest_int(iscale*x[j]);
  1072. y[i].qs[j] = MIN(127, v);
  1073. }
  1074. for (int j = 0; j < QK_K/16; ++j) {
  1075. int sum = 0;
  1076. for (int ii = 0; ii < 16; ++ii) {
  1077. sum += y[i].qs[j*16 + ii];
  1078. }
  1079. y[i].bsums[j] = sum;
  1080. }
  1081. y[i].d = 1/iscale;
  1082. x += QK_K;
  1083. }
  1084. }
  1085. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1086. assert(k % QK_K == 0);
  1087. const int nb = k / QK_K;
  1088. for (int i = 0; i < nb; i++) {
  1089. for (int j = 0; j < QK_K; ++j) {
  1090. *y++ = x[i].d * x[i].qs[j];
  1091. }
  1092. }
  1093. }
  1094. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1095. quantize_row_q8_K_reference(x, y, k);
  1096. }
  1097. //===================================== Dot ptoducts =================================
  1098. //
  1099. // Helper functions
  1100. //
  1101. #if __AVX__ || __AVX2__ || __AVX512F__
  1102. // horizontally add 8 floats
  1103. static inline float hsum_float_8(const __m256 x) {
  1104. __m128 res = _mm256_extractf128_ps(x, 1);
  1105. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1106. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1107. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1108. return _mm_cvtss_f32(res);
  1109. }
  1110. // shuffles to pick the required scales in dot products
  1111. static inline __m256i get_scale_shuffle_q3k(int i) {
  1112. static const uint8_t k_shuffle[128] = {
  1113. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1114. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1115. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1116. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1117. };
  1118. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1119. }
  1120. static inline __m256i get_scale_shuffle_k4(int i) {
  1121. static const uint8_t k_shuffle[256] = {
  1122. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1123. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1124. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1125. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1126. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1127. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1128. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1129. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1130. };
  1131. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1132. }
  1133. static inline __m128i get_scale_shuffle(int i) {
  1134. static const uint8_t k_shuffle[128] = {
  1135. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1136. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1137. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1138. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1139. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1140. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1141. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1142. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1143. };
  1144. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1145. }
  1146. #endif
  1147. #if QK_K == 256
  1148. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1149. const block_q2_K * restrict x = vx;
  1150. const block_q8_K * restrict y = vy;
  1151. const int nb = n / QK_K;
  1152. #ifdef __ARM_NEON
  1153. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1154. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1155. const int32x4_t vzero = vdupq_n_s32(0);
  1156. int8x16x2_t q2bytes;
  1157. uint8_t aux[16];
  1158. float sum = 0;
  1159. for (int i = 0; i < nb; ++i) {
  1160. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1161. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1162. const uint8_t * restrict q2 = x[i].qs;
  1163. const int8_t * restrict q8 = y[i].qs;
  1164. const uint8_t * restrict sc = x[i].scales;
  1165. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1166. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1167. vst1q_u8(aux, scales);
  1168. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1169. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1170. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1171. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1172. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1173. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1174. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1175. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1176. int isum = 0;
  1177. int is = 0;
  1178. // We use this macro instead of a function call because for some reason
  1179. // the code runs 2-3% slower, even if the function is declared inline
  1180. #if defined(__ARM_FEATURE_DOTPROD)
  1181. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1182. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1183. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1184. #else
  1185. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1186. {\
  1187. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1188. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1189. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1190. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1191. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1192. }
  1193. #endif
  1194. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1195. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1196. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1197. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1198. MULTIPLY_ACCUM_WITH_SCALE((index));
  1199. for (int j = 0; j < QK_K/128; ++j) {
  1200. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1201. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1202. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1203. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1204. MULTIPLY_ACCUM_WITH_SCALE(0);
  1205. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1206. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1207. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1208. is += 8;
  1209. }
  1210. sum += d * isum;
  1211. }
  1212. *s = sum;
  1213. #elif defined __AVX2__
  1214. const __m256i m3 = _mm256_set1_epi8(3);
  1215. const __m128i m4 = _mm_set1_epi8(0xF);
  1216. __m256 acc = _mm256_setzero_ps();
  1217. for (int i = 0; i < nb; ++i) {
  1218. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1219. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1220. const uint8_t * restrict q2 = x[i].qs;
  1221. const int8_t * restrict q8 = y[i].qs;
  1222. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1223. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1224. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1225. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1226. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1227. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1228. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1229. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1230. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1231. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1232. __m256i sumi = _mm256_setzero_si256();
  1233. for (int j = 0; j < QK_K/128; ++j) {
  1234. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1235. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1236. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1237. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1238. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1239. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1240. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1241. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1242. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1243. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1244. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1245. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1246. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1247. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1248. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1249. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1250. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1251. p0 = _mm256_add_epi32(p0, p1);
  1252. p2 = _mm256_add_epi32(p2, p3);
  1253. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1254. }
  1255. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1256. }
  1257. *s = hsum_float_8(acc);
  1258. #elif defined __AVX__
  1259. const __m128i m3 = _mm_set1_epi8(0x3);
  1260. const __m128i m4 = _mm_set1_epi8(0xF);
  1261. const __m128i m2 = _mm_set1_epi8(0x2);
  1262. __m256 acc = _mm256_setzero_ps();
  1263. for (int i = 0; i < nb; ++i) {
  1264. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1265. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1266. const uint8_t * restrict q2 = x[i].qs;
  1267. const int8_t * restrict q8 = y[i].qs;
  1268. // load mins and scales from block_q2_K.scales[QK_K/16]
  1269. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1270. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1271. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1272. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1273. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1274. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1275. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1276. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1277. // sumf += -dmin * summs in 32bits*8
  1278. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  1279. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1280. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1281. const __m128i scales[2] = { scales_0, scales_1 };
  1282. __m128i sumi_0 = _mm_setzero_si128();
  1283. __m128i sumi_1 = _mm_setzero_si128();
  1284. for (int j = 0; j < QK_K/128; ++j) {
  1285. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1286. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1287. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1288. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1289. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1290. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1291. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1292. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1293. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1294. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1295. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1296. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1297. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1298. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1299. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1300. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1301. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1302. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1303. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1304. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1305. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1306. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1307. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1308. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1309. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1310. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1311. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1312. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1313. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1314. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1315. __m128i shuffle = _mm_set1_epi16(0x0100);
  1316. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1317. shuffle = _mm_add_epi16(shuffle, m2);
  1318. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1319. shuffle = _mm_add_epi16(shuffle, m2);
  1320. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1321. shuffle = _mm_add_epi16(shuffle, m2);
  1322. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1323. shuffle = _mm_add_epi16(shuffle, m2);
  1324. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1325. shuffle = _mm_add_epi16(shuffle, m2);
  1326. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1327. shuffle = _mm_add_epi16(shuffle, m2);
  1328. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1329. shuffle = _mm_add_epi16(shuffle, m2);
  1330. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1331. p0 = _mm_add_epi32(p0, p1);
  1332. p2 = _mm_add_epi32(p2, p3);
  1333. p4 = _mm_add_epi32(p4, p5);
  1334. p6 = _mm_add_epi32(p6, p7);
  1335. // isum in 32bits*4*2
  1336. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1337. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1338. }
  1339. // sumf += dall * isum - dmin * summs in 32bits
  1340. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1341. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1342. }
  1343. *s = hsum_float_8(acc);
  1344. #else
  1345. float sumf = 0;
  1346. for (int i = 0; i < nb; ++i) {
  1347. const uint8_t * q2 = x[i].qs;
  1348. const int8_t * q8 = y[i].qs;
  1349. const uint8_t * sc = x[i].scales;
  1350. int summs = 0;
  1351. for (int j = 0; j < 16; ++j) {
  1352. summs += y[i].bsums[j] * (sc[j] >> 4);
  1353. }
  1354. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1355. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1356. int isum = 0;
  1357. int is = 0;
  1358. int d;
  1359. for (int k = 0; k < QK_K/128; ++k) {
  1360. int shift = 0;
  1361. for (int j = 0; j < 4; ++j) {
  1362. d = sc[is++] & 0xF;
  1363. int isuml = 0;
  1364. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1365. isum += d * isuml;
  1366. d = sc[is++] & 0xF;
  1367. isuml = 0;
  1368. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1369. isum += d * isuml;
  1370. shift += 2;
  1371. q8 += 32;
  1372. }
  1373. q2 += 32;
  1374. }
  1375. sumf += dall * isum - dmin * summs;
  1376. }
  1377. *s = sumf;
  1378. #endif
  1379. }
  1380. #else
  1381. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1382. const block_q2_K * restrict x = vx;
  1383. const block_q8_K * restrict y = vy;
  1384. const int nb = n / QK_K;
  1385. #ifdef __ARM_NEON
  1386. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1387. const int32x4_t vzero = vdupq_n_s32(0);
  1388. int8x16x4_t q2bytes;
  1389. uint32_t aux32[2];
  1390. const uint8_t * scales = (const uint8_t *)aux32;
  1391. float sum = 0;
  1392. for (int i = 0; i < nb; ++i) {
  1393. const float d = y[i].d * (float)x[i].d;
  1394. const float dmin = -y[i].d * (float)x[i].dmin;
  1395. const uint8_t * restrict q2 = x[i].qs;
  1396. const int8_t * restrict q8 = y[i].qs;
  1397. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1398. aux32[0] = sc[0] & 0x0f0f0f0f;
  1399. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1400. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1401. int isum1 = 0, isum2 = 0;
  1402. const uint8x16_t q2bits = vld1q_u8(q2);
  1403. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1404. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1405. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1406. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1407. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1408. #if defined(__ARM_FEATURE_DOTPROD)
  1409. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1410. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1411. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1412. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1413. #else
  1414. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1415. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1416. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1417. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1418. isum1 += vaddvq_s16(p1) * scales[0];
  1419. isum2 += vaddvq_s16(p2) * scales[1];
  1420. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1421. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1422. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1423. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1424. isum1 += vaddvq_s16(p3) * scales[2];
  1425. isum2 += vaddvq_s16(p4) * scales[3];
  1426. #endif
  1427. sum += d * (isum1 + isum2);
  1428. }
  1429. *s = sum;
  1430. #elif defined __AVX2__
  1431. const __m256i m3 = _mm256_set1_epi8(3);
  1432. __m256 acc = _mm256_setzero_ps();
  1433. uint32_t ud, um;
  1434. const uint8_t * restrict db = (const uint8_t *)&ud;
  1435. const uint8_t * restrict mb = (const uint8_t *)&um;
  1436. float summs = 0;
  1437. // TODO: optimize this
  1438. for (int i = 0; i < nb; ++i) {
  1439. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1440. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1441. const uint8_t * restrict q2 = x[i].qs;
  1442. const int8_t * restrict q8 = y[i].qs;
  1443. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1444. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1445. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1446. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1447. summs += dmin * smin;
  1448. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1449. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1450. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1451. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1452. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1453. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1454. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1455. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1456. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1457. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1458. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1459. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1460. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1461. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1462. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1463. }
  1464. *s = hsum_float_8(acc) + summs;
  1465. #elif defined __AVX__
  1466. const __m128i m3 = _mm_set1_epi8(3);
  1467. __m256 acc = _mm256_setzero_ps();
  1468. uint32_t ud, um;
  1469. const uint8_t * restrict db = (const uint8_t *)&ud;
  1470. const uint8_t * restrict mb = (const uint8_t *)&um;
  1471. float summs = 0;
  1472. // TODO: optimize this
  1473. for (int i = 0; i < nb; ++i) {
  1474. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1475. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1476. const uint8_t * restrict q2 = x[i].qs;
  1477. const int8_t * restrict q8 = y[i].qs;
  1478. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1479. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1480. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1481. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1482. summs += dmin * smin;
  1483. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1484. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1485. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1486. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1487. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1488. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1489. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1490. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  1491. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  1492. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  1493. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  1494. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  1495. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  1496. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  1497. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  1498. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  1499. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  1500. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  1501. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  1502. }
  1503. *s = hsum_float_8(acc) + summs;
  1504. #else
  1505. float sumf = 0;
  1506. int isum[4];
  1507. for (int i = 0; i < nb; ++i) {
  1508. const uint8_t * q2 = x[i].qs;
  1509. const int8_t * q8 = y[i].qs;
  1510. const uint8_t * sc = x[i].scales;
  1511. int summs = 0;
  1512. for (int j = 0; j < QK_K/16; ++j) {
  1513. summs += y[i].bsums[j] * (sc[j] >> 4);
  1514. }
  1515. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1516. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1517. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1518. for (int l = 0; l < 16; ++l) {
  1519. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1520. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1521. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1522. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1523. }
  1524. for (int l = 0; l < 4; ++l) {
  1525. isum[l] *= (sc[l] & 0xF);
  1526. }
  1527. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1528. }
  1529. *s = sumf;
  1530. #endif
  1531. }
  1532. #endif
  1533. #if QK_K == 256
  1534. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1535. assert(n % QK_K == 0);
  1536. const uint32_t kmask1 = 0x03030303;
  1537. const uint32_t kmask2 = 0x0f0f0f0f;
  1538. const block_q3_K * restrict x = vx;
  1539. const block_q8_K * restrict y = vy;
  1540. const int nb = n / QK_K;
  1541. #ifdef __ARM_NEON
  1542. uint32_t aux[3];
  1543. uint32_t utmp[4];
  1544. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1545. #ifdef __ARM_FEATURE_DOTPROD
  1546. const int32x4_t vzero = vdupq_n_s32(0);
  1547. #endif
  1548. const uint8x16_t m0 = vdupq_n_u8(1);
  1549. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1550. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1551. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1552. const int8_t m32 = 32;
  1553. int8x16x4_t q3bytes;
  1554. float sum = 0;
  1555. for (int i = 0; i < nb; ++i) {
  1556. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1557. const uint8_t * restrict q3 = x[i].qs;
  1558. const uint8_t * restrict qh = x[i].hmask;
  1559. const int8_t * restrict q8 = y[i].qs;
  1560. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1561. uint8x16x4_t q3h;
  1562. int32_t isum = 0;
  1563. // Set up scales
  1564. memcpy(aux, x[i].scales, 12);
  1565. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1566. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1567. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1568. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1569. int8_t * scale = (int8_t *)utmp;
  1570. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1571. for (int j = 0; j < QK_K/128; ++j) {
  1572. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1573. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1574. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1575. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1576. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1577. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1578. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1579. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1580. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1581. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1582. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1583. #if defined(__ARM_FEATURE_DOTPROD)
  1584. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1585. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1586. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1587. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1588. #else
  1589. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1590. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1591. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1592. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1593. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1594. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1595. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1596. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1597. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1598. #endif
  1599. scale += 4;
  1600. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1601. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1602. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1603. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1604. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1605. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1606. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1607. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1608. #if defined(__ARM_FEATURE_DOTPROD)
  1609. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1610. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1611. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1612. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1613. #else
  1614. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1615. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1616. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1617. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1618. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1619. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1620. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1621. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1622. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1623. #endif
  1624. scale += 4;
  1625. if (j == 0) {
  1626. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1627. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1628. }
  1629. }
  1630. sum += d * isum;
  1631. }
  1632. *s = sum;
  1633. #elif defined __AVX2__
  1634. const __m256i m3 = _mm256_set1_epi8(3);
  1635. const __m256i mone = _mm256_set1_epi8(1);
  1636. const __m128i m32 = _mm_set1_epi8(32);
  1637. __m256 acc = _mm256_setzero_ps();
  1638. uint32_t aux[3];
  1639. for (int i = 0; i < nb; ++i) {
  1640. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1641. const uint8_t * restrict q3 = x[i].qs;
  1642. const int8_t * restrict q8 = y[i].qs;
  1643. // Set up scales
  1644. memcpy(aux, x[i].scales, 12);
  1645. __m128i scales128 = _mm_set_epi32(
  1646. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1647. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1648. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1649. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1650. scales128 = _mm_sub_epi8(scales128, m32);
  1651. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1652. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1653. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1654. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1655. // high bit
  1656. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1657. // integer accumulator
  1658. __m256i sumi = _mm256_setzero_si256();
  1659. int bit = 0;
  1660. int is = 0;
  1661. for (int j = 0; j < QK_K/128; ++j) {
  1662. // load low 2 bits
  1663. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1664. // prepare low and high bits
  1665. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1666. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1667. ++bit;
  1668. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1669. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1670. ++bit;
  1671. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1672. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1673. ++bit;
  1674. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1675. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1676. ++bit;
  1677. // load Q8 quants
  1678. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1679. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1680. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1681. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1682. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1683. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1684. // and 2 if the high bit was set)
  1685. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1686. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1687. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1688. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1689. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1690. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1691. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1692. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1693. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1694. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1695. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1696. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1697. // multiply with scales
  1698. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1699. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1700. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1701. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1702. // accumulate
  1703. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1704. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1705. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1706. }
  1707. // multiply with block scale and accumulate
  1708. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1709. }
  1710. *s = hsum_float_8(acc);
  1711. #elif defined __AVX__
  1712. const __m128i m3 = _mm_set1_epi8(3);
  1713. const __m128i mone = _mm_set1_epi8(1);
  1714. const __m128i m32 = _mm_set1_epi8(32);
  1715. const __m128i m2 = _mm_set1_epi8(2);
  1716. __m256 acc = _mm256_setzero_ps();
  1717. const uint32_t *aux;
  1718. for (int i = 0; i < nb; ++i) {
  1719. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1720. const uint8_t * restrict q3 = x[i].qs;
  1721. const int8_t * restrict q8 = y[i].qs;
  1722. // Set up scales
  1723. aux = (const uint32_t *)x[i].scales;
  1724. __m128i scales128 = _mm_set_epi32(
  1725. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1726. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1727. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1728. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1729. scales128 = _mm_sub_epi8(scales128, m32);
  1730. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1731. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1732. const __m128i scales[2] = { scales_0, scales_1 };
  1733. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1734. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1735. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1736. // integer accumulator
  1737. __m128i sumi_0 = _mm_setzero_si128();
  1738. __m128i sumi_1 = _mm_setzero_si128();
  1739. for (int j = 0; j < QK_K/128; ++j) {
  1740. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1741. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1742. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1743. // prepare low and high bits
  1744. const int bit = j << 2;
  1745. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1746. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1747. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1748. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1749. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1750. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1751. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1752. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1753. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1754. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1755. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1756. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1757. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1758. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1759. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1760. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1761. // load Q8 quants from block_q8_K.qs[QK_K]
  1762. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1763. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1764. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1765. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1766. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1767. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1768. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1769. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1770. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1771. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1772. // and 2 if the high bit was set)
  1773. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1774. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1775. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1776. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1777. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1778. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1779. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1780. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1781. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1782. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1783. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1784. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1785. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1786. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1787. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1788. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1789. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1790. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1791. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1792. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1793. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1794. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1795. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1796. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1797. // multiply with scales
  1798. __m128i shuffle = _mm_set1_epi16(0x0100);
  1799. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1800. shuffle = _mm_add_epi16(shuffle, m2);
  1801. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1802. shuffle = _mm_add_epi16(shuffle, m2);
  1803. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1804. shuffle = _mm_add_epi16(shuffle, m2);
  1805. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1806. shuffle = _mm_add_epi16(shuffle, m2);
  1807. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1808. shuffle = _mm_add_epi16(shuffle, m2);
  1809. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1810. shuffle = _mm_add_epi16(shuffle, m2);
  1811. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1812. shuffle = _mm_add_epi16(shuffle, m2);
  1813. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1814. // accumulate
  1815. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1816. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1817. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1818. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1819. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1820. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1821. }
  1822. // multiply with block scale and accumulate
  1823. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1824. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1825. }
  1826. *s = hsum_float_8(acc);
  1827. #else
  1828. // scalar version
  1829. // This function is written like this so the compiler can manage to vectorize most of it
  1830. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1831. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1832. // The ideal situation would be if we could just write the code once, and the compiler would
  1833. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1834. // write vectorized versions for AVX, ARM_NEON, etc.
  1835. int8_t aux8[QK_K];
  1836. int16_t aux16[8];
  1837. float sums [8];
  1838. int32_t aux32[8];
  1839. memset(sums, 0, 8*sizeof(float));
  1840. uint32_t auxs[4];
  1841. const int8_t * scales = (const int8_t*)auxs;
  1842. float sumf = 0;
  1843. for (int i = 0; i < nb; ++i) {
  1844. const uint8_t * restrict q3 = x[i].qs;
  1845. const uint8_t * restrict hm = x[i].hmask;
  1846. const int8_t * restrict q8 = y[i].qs;
  1847. memset(aux32, 0, 8*sizeof(int32_t));
  1848. int8_t * restrict a = aux8;
  1849. uint8_t m = 1;
  1850. for (int j = 0; j < QK_K; j += 128) {
  1851. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1852. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1853. a += 32; m <<= 1;
  1854. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1855. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1856. a += 32; m <<= 1;
  1857. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1858. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1859. a += 32; m <<= 1;
  1860. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1861. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1862. a += 32; m <<= 1;
  1863. q3 += 32;
  1864. }
  1865. a = aux8;
  1866. memcpy(auxs, x[i].scales, 12);
  1867. uint32_t tmp = auxs[2];
  1868. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1869. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1870. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1871. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1872. for (int j = 0; j < QK_K/16; ++j) {
  1873. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1874. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1875. q8 += 8; a += 8;
  1876. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1877. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1878. q8 += 8; a += 8;
  1879. }
  1880. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1881. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1882. }
  1883. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1884. *s = sumf;
  1885. #endif
  1886. }
  1887. #else
  1888. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1889. assert(n % QK_K == 0);
  1890. const block_q3_K * restrict x = vx;
  1891. const block_q8_K * restrict y = vy;
  1892. const int nb = n / QK_K;
  1893. #ifdef __ARM_NEON
  1894. #ifdef __ARM_FEATURE_DOTPROD
  1895. const int32x4_t vzero = vdupq_n_s32(0);
  1896. #endif
  1897. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1898. const uint8x16_t mh = vdupq_n_u8(4);
  1899. int8x16x4_t q3bytes;
  1900. uint16_t aux16[2];
  1901. int8_t * scales = (int8_t *)aux16;
  1902. float sum = 0;
  1903. for (int i = 0; i < nb; ++i) {
  1904. uint8x16x4_t q3h;
  1905. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1906. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1907. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1908. const uint16_t a = *(const uint16_t *)x[i].scales;
  1909. aux16[0] = a & 0x0f0f;
  1910. aux16[1] = (a >> 4) & 0x0f0f;
  1911. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1912. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1913. const float d = y[i].d * (float)x[i].d;
  1914. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1915. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1916. q3h.val[1] = vandq_u8(mh, htmp);
  1917. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1918. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1919. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1920. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1921. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1922. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1923. #if defined(__ARM_FEATURE_DOTPROD)
  1924. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1925. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1926. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1927. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1928. #else
  1929. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1930. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1931. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1932. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1933. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1934. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1935. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1936. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1937. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1938. #endif
  1939. sum += d * isum;
  1940. }
  1941. *s = sum;
  1942. #elif defined __AVX2__
  1943. const __m256i m3 = _mm256_set1_epi8(3);
  1944. const __m256i m1 = _mm256_set1_epi8(1);
  1945. __m256 acc = _mm256_setzero_ps();
  1946. uint64_t aux64;
  1947. uint16_t aux16[2];
  1948. const int8_t * aux8 = (const int8_t *)aux16;
  1949. for (int i = 0; i < nb; ++i) {
  1950. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1951. const uint8_t * restrict q3 = x[i].qs;
  1952. const int8_t * restrict q8 = y[i].qs;
  1953. const uint16_t a = *(const uint16_t *)x[i].scales;
  1954. aux16[0] = a & 0x0f0f;
  1955. aux16[1] = (a >> 4) & 0x0f0f;
  1956. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1957. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1958. memcpy(&aux64, x[i].hmask, 8);
  1959. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1960. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  1961. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1962. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1963. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1964. // load low 2 bits
  1965. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1966. // prepare low and high bits
  1967. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  1968. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1969. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1970. // load Q8 quants
  1971. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1972. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1973. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1974. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1975. // and 2 if the high bit was set)
  1976. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1977. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1978. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1979. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1980. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1981. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1982. // multiply with scales
  1983. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  1984. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  1985. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1986. // multiply with block scale and accumulate
  1987. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  1988. }
  1989. *s = hsum_float_8(acc);
  1990. #elif defined __AVX__
  1991. const __m128i m3 = _mm_set1_epi8(3);
  1992. const __m128i m1 = _mm_set1_epi8(1);
  1993. __m256 acc = _mm256_setzero_ps();
  1994. uint64_t aux64;
  1995. uint16_t aux16[2];
  1996. const int8_t * aux8 = (const int8_t *)aux16;
  1997. for (int i = 0; i < nb; ++i) {
  1998. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1999. const uint8_t * restrict q3 = x[i].qs;
  2000. const int8_t * restrict q8 = y[i].qs;
  2001. const uint16_t a = *(const uint16_t *)x[i].scales;
  2002. aux16[0] = a & 0x0f0f;
  2003. aux16[1] = (a >> 4) & 0x0f0f;
  2004. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  2005. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  2006. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  2007. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  2008. memcpy(&aux64, x[i].hmask, 8);
  2009. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  2010. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  2011. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  2012. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  2013. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  2014. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  2015. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  2016. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  2017. // load low 2 bits
  2018. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  2019. // prepare low and high bits
  2020. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  2021. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  2022. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  2023. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  2024. // load Q8 quants
  2025. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2026. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2027. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  2028. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  2029. // and 2 if the high bit was set)
  2030. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  2031. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  2032. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  2033. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  2034. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  2035. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  2036. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  2037. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  2038. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2039. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2040. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2041. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2042. // multiply with scales
  2043. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2044. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  2045. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  2046. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  2047. p16_0 = _mm_add_epi32(p16_0, p16_2);
  2048. p16_1 = _mm_add_epi32(p16_1, p16_3);
  2049. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  2050. // multiply with block scale and accumulate
  2051. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  2052. }
  2053. *s = hsum_float_8(acc);
  2054. #else
  2055. int8_t aux8[QK_K];
  2056. int16_t aux16[8];
  2057. float sums [8];
  2058. int32_t aux32[8];
  2059. int32_t scales[4];
  2060. memset(sums, 0, 8*sizeof(float));
  2061. float sumf = 0;
  2062. for (int i = 0; i < nb; ++i) {
  2063. const uint8_t * restrict q3 = x[i].qs;
  2064. const uint8_t * restrict hm = x[i].hmask;
  2065. const int8_t * restrict q8 = y[i].qs;
  2066. int8_t * restrict a = aux8;
  2067. for (int l = 0; l < 8; ++l) {
  2068. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  2069. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  2070. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  2071. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  2072. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  2073. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  2074. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  2075. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  2076. }
  2077. scales[0] = (x[i].scales[0] & 0xF) - 8;
  2078. scales[1] = (x[i].scales[0] >> 4) - 8;
  2079. scales[2] = (x[i].scales[1] & 0xF) - 8;
  2080. scales[3] = (x[i].scales[1] >> 4) - 8;
  2081. memset(aux32, 0, 8*sizeof(int32_t));
  2082. for (int j = 0; j < QK_K/16; ++j) {
  2083. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2084. q8 += 8; a += 8;
  2085. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  2086. q8 += 8; a += 8;
  2087. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  2088. }
  2089. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2090. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2091. }
  2092. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2093. *s = sumf;
  2094. #endif
  2095. }
  2096. #endif
  2097. #if QK_K == 256
  2098. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2099. assert(n % QK_K == 0);
  2100. const block_q4_K * restrict x = vx;
  2101. const block_q8_K * restrict y = vy;
  2102. const int nb = n / QK_K;
  2103. static const uint32_t kmask1 = 0x3f3f3f3f;
  2104. static const uint32_t kmask2 = 0x0f0f0f0f;
  2105. static const uint32_t kmask3 = 0x03030303;
  2106. uint32_t utmp[4];
  2107. #ifdef __ARM_NEON
  2108. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2109. #ifdef __ARM_FEATURE_DOTPROD
  2110. const int32x4_t mzero = vdupq_n_s32(0);
  2111. #endif
  2112. int8x16x2_t q4bytes;
  2113. int8x16x2_t q8bytes;
  2114. float sumf = 0;
  2115. for (int i = 0; i < nb; ++i) {
  2116. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2117. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2118. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2119. memcpy(utmp, x[i].scales, 12);
  2120. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  2121. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2122. utmp[0] &= kmask1;
  2123. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  2124. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2125. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2126. sumf -= dmin * vaddvq_s32(prod);
  2127. const uint8_t * scales = (const uint8_t *)utmp;
  2128. const uint8_t * restrict q4 = x[i].qs;
  2129. const int8_t * restrict q8 = y[i].qs;
  2130. //int32x4_t isum = mzero;
  2131. int32_t sumi1 = 0;
  2132. int32_t sumi2 = 0;
  2133. for (int j = 0; j < QK_K/64; ++j) {
  2134. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2135. #ifdef __ARM_FEATURE_DOTPROD
  2136. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2137. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2138. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2139. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2140. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2141. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2142. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2143. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2144. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2145. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2146. #else
  2147. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2148. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2149. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2150. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2151. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2152. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2153. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2154. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2155. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2156. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2157. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2158. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2159. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2160. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2161. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2162. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2163. #endif
  2164. }
  2165. sumf += d * (sumi1 + sumi2);
  2166. }
  2167. *s = sumf;
  2168. #elif defined __AVX2__
  2169. const __m256i m4 = _mm256_set1_epi8(0xF);
  2170. __m256 acc = _mm256_setzero_ps();
  2171. __m128 acc_m = _mm_setzero_ps();
  2172. for (int i = 0; i < nb; ++i) {
  2173. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2174. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2175. memcpy(utmp, x[i].scales, 12);
  2176. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2177. const uint32_t uaux = utmp[1] & kmask1;
  2178. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2179. utmp[2] = uaux;
  2180. utmp[0] &= kmask1;
  2181. const uint8_t * restrict q4 = x[i].qs;
  2182. const int8_t * restrict q8 = y[i].qs;
  2183. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2184. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2185. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2186. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2187. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2188. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2189. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2190. __m256i sumi = _mm256_setzero_si256();
  2191. for (int j = 0; j < QK_K/64; ++j) {
  2192. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2193. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2194. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2195. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2196. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2197. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2198. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2199. p16l = _mm256_madd_epi16(scale_l, p16l);
  2200. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2201. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2202. p16h = _mm256_madd_epi16(scale_h, p16h);
  2203. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  2204. sumi = _mm256_add_epi32(sumi, sumj);
  2205. }
  2206. __m256 vd = _mm256_set1_ps(d);
  2207. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2208. }
  2209. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2210. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2211. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2212. #elif defined __AVX__
  2213. const __m128i m4 = _mm_set1_epi8(0xF);
  2214. const __m128i m2 = _mm_set1_epi8(0x2);
  2215. __m256 acc = _mm256_setzero_ps();
  2216. __m128 acc_m = _mm_setzero_ps();
  2217. for (int i = 0; i < nb; ++i) {
  2218. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2219. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2220. const uint8_t * restrict q4 = x[i].qs;
  2221. const int8_t * restrict q8 = y[i].qs;
  2222. memcpy(utmp, x[i].scales, 12);
  2223. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2224. const uint32_t uaux = utmp[1] & kmask1;
  2225. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2226. utmp[2] = uaux;
  2227. utmp[0] &= kmask1;
  2228. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2229. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2230. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2231. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2232. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2233. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2234. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2235. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2236. __m128i sumi_0 = _mm_setzero_si128();
  2237. __m128i sumi_1 = _mm_setzero_si128();
  2238. __m128i shuffle = _mm_set1_epi16(0x0100);
  2239. for (int j = 0; j < QK_K/64; ++j) {
  2240. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2241. shuffle = _mm_add_epi16(shuffle, m2);
  2242. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2243. shuffle = _mm_add_epi16(shuffle, m2);
  2244. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2245. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2246. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2247. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2248. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2249. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2250. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2251. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2252. p16l = _mm_madd_epi16(scale_l, p16l);
  2253. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2254. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2255. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2256. p16l = _mm_madd_epi16(scale_l, p16l);
  2257. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2258. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2259. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2260. p16h = _mm_madd_epi16(scale_h, p16h);
  2261. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2262. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2263. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2264. p16h = _mm_madd_epi16(scale_h, p16h);
  2265. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2266. }
  2267. __m256 vd = _mm256_set1_ps(d);
  2268. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2269. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2270. }
  2271. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2272. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2273. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2274. #else
  2275. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2276. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2277. int8_t aux8[QK_K];
  2278. int16_t aux16[8];
  2279. float sums [8];
  2280. int32_t aux32[8];
  2281. memset(sums, 0, 8*sizeof(float));
  2282. float sumf = 0;
  2283. for (int i = 0; i < nb; ++i) {
  2284. const uint8_t * restrict q4 = x[i].qs;
  2285. const int8_t * restrict q8 = y[i].qs;
  2286. memset(aux32, 0, 8*sizeof(int32_t));
  2287. int8_t * restrict a = aux8;
  2288. for (int j = 0; j < QK_K/64; ++j) {
  2289. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2290. a += 32;
  2291. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2292. a += 32; q4 += 32;
  2293. }
  2294. memcpy(utmp, x[i].scales, 12);
  2295. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2296. const uint32_t uaux = utmp[1] & kmask1;
  2297. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2298. utmp[2] = uaux;
  2299. utmp[0] &= kmask1;
  2300. int sumi = 0;
  2301. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2302. a = aux8;
  2303. int is = 0;
  2304. for (int j = 0; j < QK_K/32; ++j) {
  2305. int32_t scale = scales[is++];
  2306. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2307. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2308. q8 += 8; a += 8;
  2309. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2310. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2311. q8 += 8; a += 8;
  2312. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2313. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2314. q8 += 8; a += 8;
  2315. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2316. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2317. q8 += 8; a += 8;
  2318. }
  2319. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2320. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2321. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2322. sumf -= dmin * sumi;
  2323. }
  2324. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2325. *s = sumf;
  2326. #endif
  2327. }
  2328. #else
  2329. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2330. assert(n % QK_K == 0);
  2331. const block_q4_K * restrict x = vx;
  2332. const block_q8_K * restrict y = vy;
  2333. const int nb = n / QK_K;
  2334. #ifdef __ARM_NEON
  2335. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2336. #ifdef __ARM_FEATURE_DOTPROD
  2337. const int32x4_t mzero = vdupq_n_s32(0);
  2338. #endif
  2339. float sumf = 0;
  2340. int8x16x2_t q4bytes;
  2341. int8x16x4_t q8bytes;
  2342. float sum_mins = 0.f;
  2343. uint16_t aux16[2];
  2344. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2345. for (int i = 0; i < nb; ++i) {
  2346. const uint8_t * restrict q4 = x[i].qs;
  2347. const int8_t * restrict q8 = y[i].qs;
  2348. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2349. aux16[0] = a[0] & 0x0f0f;
  2350. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2351. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2352. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2353. const float d = y[i].d * (float)x[i].d[0];
  2354. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2355. #ifdef __ARM_FEATURE_DOTPROD
  2356. q8bytes = vld1q_s8_x4(q8);
  2357. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2358. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2359. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2360. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2361. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2362. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2363. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2364. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2365. #else
  2366. q8bytes = vld1q_s8_x4(q8);
  2367. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2368. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2369. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2370. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2371. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2372. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2373. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2374. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2375. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2376. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2377. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2378. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2379. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2380. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2381. #endif
  2382. sumf += d * (sumi1 + sumi2);
  2383. }
  2384. *s = sumf - sum_mins;
  2385. #elif defined __AVX2__
  2386. const __m256i m4 = _mm256_set1_epi8(0xF);
  2387. __m256 acc = _mm256_setzero_ps();
  2388. float summs = 0;
  2389. uint16_t aux16[2];
  2390. const uint8_t * scales = (const uint8_t *)aux16;
  2391. for (int i = 0; i < nb; ++i) {
  2392. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2393. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2394. const __m256 vd = _mm256_set1_ps(d);
  2395. const uint16_t * a = (const uint16_t *)x[i].scales;
  2396. aux16[0] = a[0] & 0x0f0f;
  2397. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2398. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2399. const uint8_t * restrict q4 = x[i].qs;
  2400. const int8_t * restrict q8 = y[i].qs;
  2401. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2402. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2403. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2404. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2405. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2406. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2407. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2408. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2409. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2410. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2411. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2412. }
  2413. *s = hsum_float_8(acc) - summs;
  2414. #elif defined __AVX__
  2415. const __m128i m4 = _mm_set1_epi8(0xF);
  2416. __m256 acc = _mm256_setzero_ps();
  2417. float summs = 0;
  2418. uint16_t aux16[2];
  2419. const uint8_t * scales = (const uint8_t *)aux16;
  2420. for (int i = 0; i < nb; ++i) {
  2421. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2422. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2423. const __m256 vd = _mm256_set1_ps(d);
  2424. const uint16_t * a = (const uint16_t *)x[i].scales;
  2425. aux16[0] = a[0] & 0x0f0f;
  2426. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2427. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2428. const uint8_t * restrict q4 = x[i].qs;
  2429. const int8_t * restrict q8 = y[i].qs;
  2430. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2431. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  2432. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  2433. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  2434. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  2435. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  2436. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  2437. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2438. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2439. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  2440. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  2441. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  2442. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  2443. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  2444. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  2445. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  2446. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  2447. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  2448. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  2449. }
  2450. *s = hsum_float_8(acc) - summs;
  2451. #else
  2452. uint8_t aux8[QK_K];
  2453. int16_t aux16[16];
  2454. float sums [8];
  2455. memset(sums, 0, 8*sizeof(float));
  2456. uint16_t s16[2];
  2457. const uint8_t * restrict scales = (const uint8_t *)s16;
  2458. float sumf = 0;
  2459. for (int i = 0; i < nb; ++i) {
  2460. const uint8_t * restrict q4 = x[i].qs;
  2461. const int8_t * restrict q8 = y[i].qs;
  2462. uint8_t * restrict a = aux8;
  2463. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2464. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2465. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2466. s16[0] = b[0] & 0x0f0f;
  2467. s16[1] = (b[0] >> 4) & 0x0f0f;
  2468. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2469. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2470. for (int j = 0; j < QK_K/32; ++j) {
  2471. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2472. q8 += 16; a += 16;
  2473. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2474. q8 += 16; a += 16;
  2475. const float dl = d * scales[j];
  2476. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2477. }
  2478. }
  2479. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2480. *s = sumf;
  2481. #endif
  2482. }
  2483. #endif
  2484. #if QK_K == 256
  2485. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2486. assert(n % QK_K == 0);
  2487. const block_q5_K * restrict x = vx;
  2488. const block_q8_K * restrict y = vy;
  2489. const int nb = n / QK_K;
  2490. static const uint32_t kmask1 = 0x3f3f3f3f;
  2491. static const uint32_t kmask2 = 0x0f0f0f0f;
  2492. static const uint32_t kmask3 = 0x03030303;
  2493. uint32_t utmp[4];
  2494. #ifdef __ARM_NEON
  2495. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2496. const int32x4_t mzero = vdupq_n_s32(0);
  2497. const uint8x16_t mone = vdupq_n_u8(1);
  2498. const uint8x16_t mtwo = vdupq_n_u8(2);
  2499. int8x16x4_t q5bytes;
  2500. float sumf = 0;
  2501. for (int i = 0; i < nb; ++i) {
  2502. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2503. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2504. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2505. memcpy(utmp, x[i].scales, 12);
  2506. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2507. const uint32_t uaux = utmp[1] & kmask1;
  2508. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2509. utmp[2] = uaux;
  2510. utmp[0] &= kmask1;
  2511. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2512. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2513. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2514. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2515. int32_t sumi_mins = vaddvq_s32(prod);
  2516. const uint8_t * scales = (const uint8_t *)utmp;
  2517. const uint8_t * restrict q5 = x[i].qs;
  2518. const uint8_t * restrict qh = x[i].qh;
  2519. const int8_t * restrict q8 = y[i].qs;
  2520. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2521. uint8x16x4_t q5h;
  2522. int32_t sumi = 0;
  2523. for (int j = 0; j < QK_K/64; ++j) {
  2524. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2525. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2526. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2527. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2528. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2529. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2530. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2531. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2532. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2533. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2534. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2535. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2536. #if defined(__ARM_FEATURE_DOTPROD)
  2537. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2538. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2539. #else
  2540. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2541. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2542. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2543. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2544. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2545. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2546. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2547. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2548. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2549. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2550. #endif
  2551. }
  2552. sumf += d * sumi - dmin * sumi_mins;
  2553. }
  2554. *s = sumf;
  2555. #elif defined __AVX2__
  2556. const __m256i m4 = _mm256_set1_epi8(0xF);
  2557. const __m128i mzero = _mm_setzero_si128();
  2558. const __m256i mone = _mm256_set1_epi8(1);
  2559. __m256 acc = _mm256_setzero_ps();
  2560. float summs = 0.f;
  2561. for (int i = 0; i < nb; ++i) {
  2562. const uint8_t * restrict q5 = x[i].qs;
  2563. const int8_t * restrict q8 = y[i].qs;
  2564. #if QK_K == 256
  2565. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2566. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2567. memcpy(utmp, x[i].scales, 12);
  2568. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2569. const uint32_t uaux = utmp[1] & kmask1;
  2570. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2571. utmp[2] = uaux;
  2572. utmp[0] &= kmask1;
  2573. #else
  2574. // TODO
  2575. const float d = 0, dmin = 0;
  2576. #endif
  2577. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2578. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2579. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2580. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2581. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2582. summs += dmin * _mm_extract_epi32(hsum, 0);
  2583. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2584. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2585. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2586. __m256i hmask = mone;
  2587. __m256i sumi = _mm256_setzero_si256();
  2588. int bit = 0;
  2589. for (int j = 0; j < QK_K/64; ++j) {
  2590. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2591. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2592. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2593. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2594. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2595. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2596. hmask = _mm256_slli_epi16(hmask, 1);
  2597. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2598. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2599. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2600. hmask = _mm256_slli_epi16(hmask, 1);
  2601. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2602. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2603. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2604. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2605. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2606. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2607. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2608. }
  2609. __m256 vd = _mm256_set1_ps(d);
  2610. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2611. }
  2612. *s = hsum_float_8(acc) + summs;
  2613. #elif defined __AVX__
  2614. const __m128i m4 = _mm_set1_epi8(0xF);
  2615. const __m128i mzero = _mm_setzero_si128();
  2616. const __m128i mone = _mm_set1_epi8(1);
  2617. const __m128i m2 = _mm_set1_epi8(2);
  2618. __m256 acc = _mm256_setzero_ps();
  2619. float summs = 0.f;
  2620. for (int i = 0; i < nb; ++i) {
  2621. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2622. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2623. const uint8_t * restrict q5 = x[i].qs;
  2624. const int8_t * restrict q8 = y[i].qs;
  2625. memcpy(utmp, x[i].scales, 12);
  2626. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2627. const uint32_t uaux = utmp[1] & kmask1;
  2628. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2629. utmp[2] = uaux;
  2630. utmp[0] &= kmask1;
  2631. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2632. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2633. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2634. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2635. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2636. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2637. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2638. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2639. summs += dmin * _mm_extract_epi32(hsum, 0);
  2640. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2641. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2642. __m128i hmask = mone;
  2643. __m128i sumi_0 = _mm_setzero_si128();
  2644. __m128i sumi_1 = _mm_setzero_si128();
  2645. int bit = 0;
  2646. __m128i shuffle = _mm_set1_epi16(0x0100);
  2647. for (int j = 0; j < QK_K/64; ++j) {
  2648. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2649. shuffle = _mm_add_epi16(shuffle, m2);
  2650. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2651. shuffle = _mm_add_epi16(shuffle, m2);
  2652. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2653. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2654. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2655. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2656. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2657. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2658. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2659. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2660. hmask = _mm_slli_epi16(hmask, 1);
  2661. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2662. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2663. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2664. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2665. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2666. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2667. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2668. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2669. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2670. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2671. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2672. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2673. hmask = _mm_slli_epi16(hmask, 1);
  2674. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2675. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2676. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2677. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2678. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2679. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2680. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2681. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2682. }
  2683. __m256 vd = _mm256_set1_ps(d);
  2684. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2685. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2686. }
  2687. *s = hsum_float_8(acc) + summs;
  2688. #else
  2689. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2690. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2691. int8_t aux8[QK_K];
  2692. int16_t aux16[8];
  2693. float sums [8];
  2694. int32_t aux32[8];
  2695. memset(sums, 0, 8*sizeof(float));
  2696. float sumf = 0;
  2697. for (int i = 0; i < nb; ++i) {
  2698. const uint8_t * restrict q4 = x[i].qs;
  2699. const uint8_t * restrict hm = x[i].qh;
  2700. const int8_t * restrict q8 = y[i].qs;
  2701. memset(aux32, 0, 8*sizeof(int32_t));
  2702. int8_t * restrict a = aux8;
  2703. uint8_t m = 1;
  2704. for (int j = 0; j < QK_K/64; ++j) {
  2705. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2706. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2707. a += 32; m <<= 1;
  2708. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2709. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2710. a += 32; m <<= 1;
  2711. q4 += 32;
  2712. }
  2713. memcpy(utmp, x[i].scales, 12);
  2714. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2715. const uint32_t uaux = utmp[1] & kmask1;
  2716. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2717. utmp[2] = uaux;
  2718. utmp[0] &= kmask1;
  2719. int sumi = 0;
  2720. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2721. a = aux8;
  2722. int is = 0;
  2723. for (int j = 0; j < QK_K/32; ++j) {
  2724. int32_t scale = scales[is++];
  2725. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2726. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2727. q8 += 8; a += 8;
  2728. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2729. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2730. q8 += 8; a += 8;
  2731. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2732. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2733. q8 += 8; a += 8;
  2734. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2735. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2736. q8 += 8; a += 8;
  2737. }
  2738. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2739. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2740. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2741. sumf -= dmin * sumi;
  2742. }
  2743. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2744. *s = sumf;
  2745. #endif
  2746. }
  2747. #else
  2748. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2749. assert(n % QK_K == 0);
  2750. const block_q5_K * restrict x = vx;
  2751. const block_q8_K * restrict y = vy;
  2752. const int nb = n / QK_K;
  2753. #ifdef __ARM_NEON
  2754. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2755. const int32x4_t mzero = vdupq_n_s32(0);
  2756. const uint8x16_t mh = vdupq_n_u8(16);
  2757. int8x16x4_t q5bytes;
  2758. uint8x16x4_t q5h;
  2759. float sumf = 0;
  2760. for (int i = 0; i < nb; ++i) {
  2761. const float d = y[i].d * (float)x[i].d;
  2762. const int8_t * sc = x[i].scales;
  2763. const uint8_t * restrict q5 = x[i].qs;
  2764. const uint8_t * restrict qh = x[i].qh;
  2765. const int8_t * restrict q8 = y[i].qs;
  2766. const uint8x8_t qhbits = vld1_u8(qh);
  2767. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2768. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2769. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2770. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2771. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2772. q5h.val[2] = vbicq_u8(mh, htmp);
  2773. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2774. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2775. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2776. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2777. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2778. #if defined(__ARM_FEATURE_DOTPROD)
  2779. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2780. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2781. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2782. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2783. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2784. #else
  2785. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2786. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2787. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2788. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2789. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2790. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2791. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2792. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2793. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2794. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2795. sumf += d*sumi;
  2796. #endif
  2797. }
  2798. *s = sumf;
  2799. #elif defined __AVX2__
  2800. const __m256i m4 = _mm256_set1_epi8(0xF);
  2801. const __m256i mone = _mm256_set1_epi8(1);
  2802. __m256 acc = _mm256_setzero_ps();
  2803. for (int i = 0; i < nb; ++i) {
  2804. const uint8_t * restrict q5 = x[i].qs;
  2805. const int8_t * restrict q8 = y[i].qs;
  2806. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2807. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2808. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2809. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2810. int64_t aux64;
  2811. memcpy(&aux64, x[i].qh, 8);
  2812. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2813. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  2814. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2815. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2816. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2817. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2818. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2819. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2820. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2821. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2822. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2823. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2824. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2825. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2826. }
  2827. *s = hsum_float_8(acc);
  2828. #elif defined __AVX__
  2829. const __m128i m4 = _mm_set1_epi8(0xF);
  2830. const __m128i mone = _mm_set1_epi8(1);
  2831. __m256 acc = _mm256_setzero_ps();
  2832. for (int i = 0; i < nb; ++i) {
  2833. const uint8_t * restrict q5 = x[i].qs;
  2834. const int8_t * restrict q8 = y[i].qs;
  2835. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2836. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2837. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  2838. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  2839. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  2840. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  2841. int64_t aux64;
  2842. memcpy(&aux64, x[i].qh, 8);
  2843. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  2844. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  2845. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  2846. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  2847. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  2848. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  2849. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  2850. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  2851. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  2852. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  2853. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2854. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2855. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  2856. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  2857. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  2858. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  2859. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  2860. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  2861. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  2862. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  2863. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  2864. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  2865. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  2866. }
  2867. *s = hsum_float_8(acc);
  2868. #else
  2869. int8_t aux8[QK_K];
  2870. int16_t aux16[16];
  2871. float sums [8];
  2872. memset(sums, 0, 8*sizeof(float));
  2873. float sumf = 0;
  2874. for (int i = 0; i < nb; ++i) {
  2875. const uint8_t * restrict q4 = x[i].qs;
  2876. const uint8_t * restrict hm = x[i].qh;
  2877. const int8_t * restrict q8 = y[i].qs;
  2878. int8_t * restrict a = aux8;
  2879. for (int l = 0; l < 32; ++l) {
  2880. a[l+ 0] = q4[l] & 0xF;
  2881. a[l+32] = q4[l] >> 4;
  2882. }
  2883. for (int is = 0; is < 8; ++is) {
  2884. uint8_t m = 1 << is;
  2885. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2886. }
  2887. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2888. const int8_t * restrict sc = x[i].scales;
  2889. for (int j = 0; j < QK_K/16; ++j) {
  2890. const float dl = d * sc[j];
  2891. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2892. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2893. q8 += 16; a += 16;
  2894. }
  2895. }
  2896. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2897. *s = sumf;
  2898. #endif
  2899. }
  2900. #endif
  2901. #if QK_K == 256
  2902. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2903. assert(n % QK_K == 0);
  2904. const block_q6_K * restrict x = vx;
  2905. const block_q8_K * restrict y = vy;
  2906. const int nb = n / QK_K;
  2907. #ifdef __ARM_NEON
  2908. float sum = 0;
  2909. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2910. const int32x4_t vzero = vdupq_n_s32(0);
  2911. //const int8x16_t m32s = vdupq_n_s8(32);
  2912. const uint8x16_t mone = vdupq_n_u8(3);
  2913. int8x16x4_t q6bytes;
  2914. uint8x16x4_t q6h;
  2915. for (int i = 0; i < nb; ++i) {
  2916. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2917. const uint8_t * restrict q6 = x[i].ql;
  2918. const uint8_t * restrict qh = x[i].qh;
  2919. const int8_t * restrict q8 = y[i].qs;
  2920. const int8_t * restrict scale = x[i].scales;
  2921. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2922. const int8x16_t scales = vld1q_s8(scale);
  2923. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2924. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2925. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2926. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2927. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2928. int32_t isum_mins = vaddvq_s32(prod);
  2929. int32_t isum = 0;
  2930. for (int j = 0; j < QK_K/128; ++j) {
  2931. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2932. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2933. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2934. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2935. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2936. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2937. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2938. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2939. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2940. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2941. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2942. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2943. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2944. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2945. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2946. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2947. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2948. #if defined(__ARM_FEATURE_DOTPROD)
  2949. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2950. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2951. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2952. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2953. scale += 4;
  2954. #else
  2955. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2956. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2957. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2958. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2959. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2960. scale += 2;
  2961. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2962. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2963. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2964. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2965. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2966. scale += 2;
  2967. #endif
  2968. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2969. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2970. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2971. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2972. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2973. shifted = vshrq_n_u8(qhbits.val[0], 6);
  2974. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2975. shifted = vshrq_n_u8(qhbits.val[1], 6);
  2976. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2977. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  2978. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  2979. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  2980. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  2981. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  2982. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  2983. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  2984. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  2985. #if defined(__ARM_FEATURE_DOTPROD)
  2986. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2987. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2988. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2989. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2990. scale += 4;
  2991. //for (int l = 0; l < 4; ++l) {
  2992. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  2993. // isum += vaddvq_s32(p) * *scale++;
  2994. //}
  2995. #else
  2996. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2997. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2998. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2999. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3000. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3001. scale += 2;
  3002. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3003. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3004. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3005. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3006. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  3007. scale += 2;
  3008. #endif
  3009. }
  3010. //sum += isum * d_all * y[i].d;
  3011. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  3012. }
  3013. *s = sum;
  3014. #elif defined __AVX2__
  3015. const __m256i m4 = _mm256_set1_epi8(0xF);
  3016. const __m256i m2 = _mm256_set1_epi8(3);
  3017. const __m256i m32s = _mm256_set1_epi8(32);
  3018. __m256 acc = _mm256_setzero_ps();
  3019. for (int i = 0; i < nb; ++i) {
  3020. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3021. const uint8_t * restrict q4 = x[i].ql;
  3022. const uint8_t * restrict qh = x[i].qh;
  3023. const int8_t * restrict q8 = y[i].qs;
  3024. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3025. __m256i sumi = _mm256_setzero_si256();
  3026. int is = 0;
  3027. for (int j = 0; j < QK_K/128; ++j) {
  3028. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  3029. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  3030. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  3031. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  3032. is += 4;
  3033. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3034. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3035. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  3036. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  3037. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  3038. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  3039. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  3040. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3041. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  3042. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  3043. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  3044. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3045. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3046. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3047. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3048. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3049. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3050. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  3051. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  3052. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3053. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3054. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  3055. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  3056. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3057. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3058. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3059. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3060. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3061. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3062. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  3063. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  3064. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3065. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  3066. }
  3067. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3068. }
  3069. *s = hsum_float_8(acc);
  3070. #elif defined __AVX__
  3071. const __m128i m4 = _mm_set1_epi8(0xF);
  3072. const __m128i m3 = _mm_set1_epi8(3);
  3073. const __m128i m32s = _mm_set1_epi8(32);
  3074. const __m128i m2 = _mm_set1_epi8(2);
  3075. __m256 acc = _mm256_setzero_ps();
  3076. for (int i = 0; i < nb; ++i) {
  3077. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3078. const uint8_t * restrict q4 = x[i].ql;
  3079. const uint8_t * restrict qh = x[i].qh;
  3080. const int8_t * restrict q8 = y[i].qs;
  3081. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3082. __m128i sumi_0 = _mm_setzero_si128();
  3083. __m128i sumi_1 = _mm_setzero_si128();
  3084. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  3085. for (int j = 0; j < QK_K/128; ++j) {
  3086. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3087. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3088. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  3089. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  3090. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  3091. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  3092. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  3093. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  3094. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  3095. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  3096. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3097. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3098. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3099. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3100. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  3101. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  3102. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  3103. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  3104. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  3105. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  3106. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  3107. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  3108. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3109. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3110. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3111. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3112. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3113. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3114. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3115. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3116. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  3117. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  3118. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  3119. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  3120. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  3121. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  3122. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  3123. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  3124. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  3125. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  3126. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  3127. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  3128. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  3129. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  3130. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  3131. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  3132. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3133. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3134. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3135. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3136. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  3137. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  3138. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  3139. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  3140. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  3141. shuffle = _mm_add_epi8(shuffle, m2);
  3142. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  3143. shuffle = _mm_add_epi8(shuffle, m2);
  3144. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  3145. shuffle = _mm_add_epi8(shuffle, m2);
  3146. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  3147. shuffle = _mm_add_epi8(shuffle, m2);
  3148. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3149. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3150. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3151. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3152. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  3153. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  3154. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  3155. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  3156. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3157. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3158. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  3159. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  3160. }
  3161. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3162. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  3163. }
  3164. *s = hsum_float_8(acc);
  3165. #else
  3166. int8_t aux8[QK_K];
  3167. int16_t aux16[8];
  3168. float sums [8];
  3169. int32_t aux32[8];
  3170. memset(sums, 0, 8*sizeof(float));
  3171. float sumf = 0;
  3172. for (int i = 0; i < nb; ++i) {
  3173. const uint8_t * restrict q4 = x[i].ql;
  3174. const uint8_t * restrict qh = x[i].qh;
  3175. const int8_t * restrict q8 = y[i].qs;
  3176. memset(aux32, 0, 8*sizeof(int32_t));
  3177. int8_t * restrict a = aux8;
  3178. for (int j = 0; j < QK_K; j += 128) {
  3179. for (int l = 0; l < 32; ++l) {
  3180. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3181. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3182. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3183. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3184. }
  3185. a += 128;
  3186. q4 += 64;
  3187. qh += 32;
  3188. }
  3189. a = aux8;
  3190. int is = 0;
  3191. for (int j = 0; j < QK_K/16; ++j) {
  3192. int scale = x[i].scales[is++];
  3193. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3194. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3195. q8 += 8; a += 8;
  3196. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3197. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3198. q8 += 8; a += 8;
  3199. }
  3200. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3201. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3202. }
  3203. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3204. *s = sumf;
  3205. #endif
  3206. }
  3207. #else
  3208. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3209. assert(n % QK_K == 0);
  3210. const block_q6_K * restrict x = vx;
  3211. const block_q8_K * restrict y = vy;
  3212. const int nb = n / QK_K;
  3213. #ifdef __ARM_NEON
  3214. float sum = 0;
  3215. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3216. const int32x4_t vzero = vdupq_n_s32(0);
  3217. const int8x16_t m32s = vdupq_n_s8(32);
  3218. const uint8x16_t mone = vdupq_n_u8(3);
  3219. int8x16x4_t q6bytes;
  3220. uint8x16x4_t q6h;
  3221. for (int i = 0; i < nb; ++i) {
  3222. const float d_all = (float)x[i].d;
  3223. const uint8_t * restrict q6 = x[i].ql;
  3224. const uint8_t * restrict qh = x[i].qh;
  3225. const int8_t * restrict q8 = y[i].qs;
  3226. const int8_t * restrict scale = x[i].scales;
  3227. int32_t isum = 0;
  3228. uint8x16_t qhbits = vld1q_u8(qh);
  3229. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3230. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3231. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3232. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3233. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3234. shifted = vshrq_n_u8(qhbits, 4);
  3235. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3236. shifted = vshrq_n_u8(qhbits, 6);
  3237. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3238. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3239. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3240. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3241. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3242. #if defined(__ARM_FEATURE_DOTPROD)
  3243. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3244. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3245. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3246. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3247. #else
  3248. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3249. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3250. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3251. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3252. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3253. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3254. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3255. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3256. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3257. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3258. #endif
  3259. sum += isum * d_all * y[i].d;
  3260. }
  3261. *s = sum;
  3262. #elif defined __AVX2__
  3263. const __m256i m4 = _mm256_set1_epi8(0xF);
  3264. const __m256i m2 = _mm256_set1_epi8(3);
  3265. const __m256i m32s = _mm256_set1_epi8(32);
  3266. __m256 acc = _mm256_setzero_ps();
  3267. for (int i = 0; i < nb; ++i) {
  3268. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3269. const uint8_t * restrict q4 = x[i].ql;
  3270. const uint8_t * restrict qh = x[i].qh;
  3271. const int8_t * restrict q8 = y[i].qs;
  3272. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3273. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3274. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3275. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3276. __m256i sumi = _mm256_setzero_si256();
  3277. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3278. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3279. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3280. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3281. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3282. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3283. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3284. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3285. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3286. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3287. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3288. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3289. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3290. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3291. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3292. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3293. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3294. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3295. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3296. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3297. }
  3298. *s = hsum_float_8(acc);
  3299. #elif defined __AVX__
  3300. const __m128i m4 = _mm_set1_epi8(0xF);
  3301. const __m128i m2 = _mm_set1_epi8(3);
  3302. const __m128i m32s = _mm_set1_epi8(32);
  3303. __m256 acc = _mm256_setzero_ps();
  3304. for (int i = 0; i < nb; ++i) {
  3305. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3306. const uint8_t * restrict q4 = x[i].ql;
  3307. const uint8_t * restrict qh = x[i].qh;
  3308. const int8_t * restrict q8 = y[i].qs;
  3309. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3310. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3311. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3312. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3313. __m128i sumi_0 = _mm_setzero_si128();
  3314. __m128i sumi_1 = _mm_setzero_si128();
  3315. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3316. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3317. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3318. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3319. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  3320. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  3321. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  3322. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  3323. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  3324. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  3325. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  3326. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  3327. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3328. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3329. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  3330. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  3331. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  3332. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  3333. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  3334. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  3335. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  3336. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  3337. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3338. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3339. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3340. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3341. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3342. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3343. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3344. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3345. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3346. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3347. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  3348. }
  3349. *s = hsum_float_8(acc);
  3350. #else
  3351. int8_t aux8[QK_K];
  3352. int16_t aux16[8];
  3353. float sums [8];
  3354. int32_t aux32[8];
  3355. memset(sums, 0, 8*sizeof(float));
  3356. float sumf = 0;
  3357. for (int i = 0; i < nb; ++i) {
  3358. const uint8_t * restrict q4 = x[i].ql;
  3359. const uint8_t * restrict qh = x[i].qh;
  3360. const int8_t * restrict q8 = y[i].qs;
  3361. memset(aux32, 0, 8*sizeof(int32_t));
  3362. int8_t * restrict a = aux8;
  3363. for (int l = 0; l < 16; ++l) {
  3364. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3365. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3366. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3367. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3368. }
  3369. int is = 0;
  3370. for (int j = 0; j < QK_K/16; ++j) {
  3371. int scale = x[i].scales[is++];
  3372. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3373. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3374. q8 += 8; a += 8;
  3375. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3376. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3377. q8 += 8; a += 8;
  3378. }
  3379. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3380. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3381. }
  3382. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3383. *s = sumf;
  3384. #endif
  3385. }
  3386. #endif