| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- # Convert a LLaMA model checkpoint to a ggml compatible file
- #
- # Load the model using Torch
- # Iterate over all variables and write them to a binary file.
- #
- # For each variable, write the following:
- # - Number of dimensions (int)
- # - Name length (int)
- # - Dimensions (int[n_dims])
- # - Name (char[name_length])
- # - Data (float[n_dims])
- #
- # By default, the bigger matrices are converted to 16-bit floats.
- # This can be disabled by adding the "use-f32" CLI argument.
- #
- # At the start of the ggml file we write the model parameters
- # and vocabulary.
- #
- import sys
- import json
- import struct
- import numpy as np
- import torch
- from sentencepiece import SentencePieceProcessor
- if len(sys.argv) < 3:
- print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
- print(" ftype == 0 -> float32")
- print(" ftype == 1 -> float16")
- sys.exit(1)
- # output in the same directory as the model
- dir_model = sys.argv[1]
- fname_hparams = sys.argv[1] + "/params.json"
- fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
- def get_n_parts(dim):
- if dim == 4096:
- return 1
- elif dim == 5120:
- return 2
- elif dim == 6656:
- return 4
- elif dim == 8192:
- return 8
- else:
- print("Invalid dim: " + str(dim))
- sys.exit(1)
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if len(sys.argv) > 2:
- ftype = int(sys.argv[2])
- if ftype < 0 or ftype > 1:
- print("Invalid ftype: " + str(ftype))
- sys.exit(1)
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
- with open(fname_hparams, "r") as f:
- hparams = json.load(f)
- tokenizer = SentencePieceProcessor(fname_tokenizer)
- hparams.update({"vocab_size": tokenizer.vocab_size()})
- n_parts = get_n_parts(hparams["dim"])
- print(hparams)
- print('n_parts = ', n_parts)
- for p in range(n_parts):
- print('Processing part ', p)
- #fname_model = sys.argv[1] + "/consolidated.00.pth"
- fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
- if (p > 0):
- fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
- model = torch.load(fname_model, map_location="cpu")
- fout = open(fname_out, "wb")
- fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
- fout.write(struct.pack("i", hparams["vocab_size"]))
- fout.write(struct.pack("i", hparams["dim"]))
- fout.write(struct.pack("i", hparams["multiple_of"]))
- fout.write(struct.pack("i", hparams["n_heads"]))
- fout.write(struct.pack("i", hparams["n_layers"]))
- fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
- fout.write(struct.pack("i", ftype))
- # Is this correct??
- for i in range(32000):
- # TODO: this is probably wrong - not sure how this tokenizer works
- text = tokenizer.decode([29889, i]).encode('utf-8')
- # remove the first byte (it's always '.')
- text = text[1:]
- fout.write(struct.pack("i", len(text)))
- fout.write(text)
- for k, v in model.items():
- name = k
- shape = v.shape
- # skip layers.X.attention.inner_attention.rope.freqs
- if name[-5:] == "freqs":
- continue
- print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
- #data = tf.train.load_variable(dir_model, name).squeeze()
- data = v.numpy().squeeze()
- n_dims = len(data.shape);
- # for efficiency - transpose some matrices
- # "model/h.*/attn/c_attn/w"
- # "model/h.*/attn/c_proj/w"
- # "model/h.*/mlp/c_fc/w"
- # "model/h.*/mlp/c_proj/w"
- #if name[-14:] == "/attn/c_attn/w" or \
- # name[-14:] == "/attn/c_proj/w" or \
- # name[-11:] == "/mlp/c_fc/w" or \
- # name[-13:] == "/mlp/c_proj/w":
- # print(" Transposing")
- # data = data.transpose()
- dshape = data.shape
- # default type is fp16
- ftype_cur = 1
- if ftype == 0 or n_dims == 1:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- # header
- sname = name.encode('utf-8')
- fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
- for i in range(n_dims):
- fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
- fout.write(sname);
- # data
- data.tofile(fout)
- # I hope this deallocates the memory ..
- model = None
- fout.close()
- print("Done. Output file: " + fname_out + ", (part ", p, ")")
- print("")
|