llama.cpp 728 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_CLBLAST)
  13. # include "ggml-opencl.h"
  14. #elif defined(GGML_USE_VULKAN)
  15. # include "ggml-vulkan.h"
  16. #elif defined(GGML_USE_SYCL)
  17. # include "ggml-sycl.h"
  18. #elif defined(GGML_USE_KOMPUTE)
  19. # include "ggml-kompute.h"
  20. #endif
  21. #ifdef GGML_USE_METAL
  22. # include "ggml-metal.h"
  23. #endif
  24. #ifdef GGML_USE_MPI
  25. # include "ggml-mpi.h"
  26. #endif
  27. #ifndef QK_K
  28. # ifdef GGML_QKK_64
  29. # define QK_K 64
  30. # else
  31. # define QK_K 256
  32. # endif
  33. #endif
  34. #ifdef __has_include
  35. #if __has_include(<unistd.h>)
  36. #include <unistd.h>
  37. #if defined(_POSIX_MAPPED_FILES)
  38. #include <sys/mman.h>
  39. #include <fcntl.h>
  40. #endif
  41. #if defined(_POSIX_MEMLOCK_RANGE)
  42. #include <sys/resource.h>
  43. #endif
  44. #endif
  45. #endif
  46. #if defined(_WIN32)
  47. #define WIN32_LEAN_AND_MEAN
  48. #ifndef NOMINMAX
  49. #define NOMINMAX
  50. #endif
  51. #include <windows.h>
  52. #ifndef PATH_MAX
  53. #define PATH_MAX MAX_PATH
  54. #endif
  55. #include <io.h>
  56. #endif
  57. #include <algorithm>
  58. #include <array>
  59. #include <cassert>
  60. #include <cctype>
  61. #include <cfloat>
  62. #include <cinttypes>
  63. #include <climits>
  64. #include <cmath>
  65. #include <cstdarg>
  66. #include <cstddef>
  67. #include <cstdint>
  68. #include <cstdio>
  69. #include <cstring>
  70. #include <ctime>
  71. #include <forward_list>
  72. #include <fstream>
  73. #include <functional>
  74. #include <future>
  75. #include <initializer_list>
  76. #include <locale>
  77. #include <map>
  78. #include <memory>
  79. #include <mutex>
  80. #include <numeric>
  81. #include <queue>
  82. #include <random>
  83. #include <regex>
  84. #include <set>
  85. #include <sstream>
  86. #include <thread>
  87. #include <type_traits>
  88. #include <unordered_map>
  89. #if defined(_MSC_VER)
  90. #pragma warning(disable: 4244 4267) // possible loss of data
  91. #endif
  92. #ifdef __GNUC__
  93. #ifdef __MINGW32__
  94. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  95. #else
  96. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  97. #endif
  98. #else
  99. #define LLAMA_ATTRIBUTE_FORMAT(...)
  100. #endif
  101. #define LLAMA_MAX_NODES 8192
  102. #define LLAMA_MAX_EXPERTS 60
  103. //
  104. // logging
  105. //
  106. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  107. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  108. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  109. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  110. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  111. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  112. //
  113. // helpers
  114. //
  115. static size_t utf8_len(char src) {
  116. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  117. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  118. return lookup[highbits];
  119. }
  120. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  121. std::string result;
  122. for (size_t pos = 0; ; pos += search.length()) {
  123. auto new_pos = s.find(search, pos);
  124. if (new_pos == std::string::npos) {
  125. result += s.substr(pos, s.size() - pos);
  126. break;
  127. }
  128. result += s.substr(pos, new_pos - pos) + replace;
  129. pos = new_pos;
  130. }
  131. s = std::move(result);
  132. }
  133. static bool is_float_close(float a, float b, float abs_tol) {
  134. // Check for non-negative tolerance
  135. if (abs_tol < 0.0) {
  136. throw std::invalid_argument("Tolerance must be non-negative");
  137. }
  138. // Exact equality check
  139. if (a == b) {
  140. return true;
  141. }
  142. // Check for infinities
  143. if (std::isinf(a) || std::isinf(b)) {
  144. return false;
  145. }
  146. // Regular comparison using the provided absolute tolerance
  147. return std::fabs(b - a) <= abs_tol;
  148. }
  149. static void zeros(std::ofstream & file, size_t n) {
  150. char zero = 0;
  151. for (size_t i = 0; i < n; ++i) {
  152. file.write(&zero, 1);
  153. }
  154. }
  155. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  156. static std::string format(const char * fmt, ...) {
  157. va_list ap;
  158. va_list ap2;
  159. va_start(ap, fmt);
  160. va_copy(ap2, ap);
  161. int size = vsnprintf(NULL, 0, fmt, ap);
  162. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  163. std::vector<char> buf(size + 1);
  164. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  165. GGML_ASSERT(size2 == size);
  166. va_end(ap2);
  167. va_end(ap);
  168. return std::string(buf.data(), size);
  169. }
  170. //
  171. // gguf constants (sync with gguf.py)
  172. //
  173. enum llm_arch {
  174. LLM_ARCH_LLAMA,
  175. LLM_ARCH_FALCON,
  176. LLM_ARCH_BAICHUAN,
  177. LLM_ARCH_GROK,
  178. LLM_ARCH_GPT2,
  179. LLM_ARCH_GPTJ,
  180. LLM_ARCH_GPTNEOX,
  181. LLM_ARCH_MPT,
  182. LLM_ARCH_STARCODER,
  183. LLM_ARCH_PERSIMMON,
  184. LLM_ARCH_REFACT,
  185. LLM_ARCH_BERT,
  186. LLM_ARCH_NOMIC_BERT,
  187. LLM_ARCH_JINA_BERT_V2,
  188. LLM_ARCH_BLOOM,
  189. LLM_ARCH_STABLELM,
  190. LLM_ARCH_QWEN,
  191. LLM_ARCH_QWEN2,
  192. LLM_ARCH_QWEN2MOE,
  193. LLM_ARCH_PHI2,
  194. LLM_ARCH_PHI3,
  195. LLM_ARCH_PLAMO,
  196. LLM_ARCH_CODESHELL,
  197. LLM_ARCH_ORION,
  198. LLM_ARCH_INTERNLM2,
  199. LLM_ARCH_MINICPM,
  200. LLM_ARCH_GEMMA,
  201. LLM_ARCH_STARCODER2,
  202. LLM_ARCH_MAMBA,
  203. LLM_ARCH_XVERSE,
  204. LLM_ARCH_COMMAND_R,
  205. LLM_ARCH_DBRX,
  206. LLM_ARCH_OLMO,
  207. LLM_ARCH_UNKNOWN,
  208. };
  209. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  210. { LLM_ARCH_LLAMA, "llama" },
  211. { LLM_ARCH_FALCON, "falcon" },
  212. { LLM_ARCH_GROK, "grok" },
  213. { LLM_ARCH_GPT2, "gpt2" },
  214. { LLM_ARCH_GPTJ, "gptj" },
  215. { LLM_ARCH_GPTNEOX, "gptneox" },
  216. { LLM_ARCH_MPT, "mpt" },
  217. { LLM_ARCH_BAICHUAN, "baichuan" },
  218. { LLM_ARCH_STARCODER, "starcoder" },
  219. { LLM_ARCH_PERSIMMON, "persimmon" },
  220. { LLM_ARCH_REFACT, "refact" },
  221. { LLM_ARCH_BERT, "bert" },
  222. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  223. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  224. { LLM_ARCH_BLOOM, "bloom" },
  225. { LLM_ARCH_STABLELM, "stablelm" },
  226. { LLM_ARCH_QWEN, "qwen" },
  227. { LLM_ARCH_QWEN2, "qwen2" },
  228. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  229. { LLM_ARCH_PHI2, "phi2" },
  230. { LLM_ARCH_PHI3, "phi3" },
  231. { LLM_ARCH_PLAMO, "plamo" },
  232. { LLM_ARCH_CODESHELL, "codeshell" },
  233. { LLM_ARCH_ORION, "orion" },
  234. { LLM_ARCH_INTERNLM2, "internlm2" },
  235. { LLM_ARCH_MINICPM, "minicpm" },
  236. { LLM_ARCH_GEMMA, "gemma" },
  237. { LLM_ARCH_STARCODER2, "starcoder2" },
  238. { LLM_ARCH_MAMBA, "mamba" },
  239. { LLM_ARCH_XVERSE, "xverse" },
  240. { LLM_ARCH_COMMAND_R, "command-r" },
  241. { LLM_ARCH_DBRX, "dbrx" },
  242. { LLM_ARCH_OLMO, "olmo" },
  243. { LLM_ARCH_UNKNOWN, "(unknown)" },
  244. };
  245. enum llm_kv {
  246. LLM_KV_GENERAL_ARCHITECTURE,
  247. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  248. LLM_KV_GENERAL_ALIGNMENT,
  249. LLM_KV_GENERAL_NAME,
  250. LLM_KV_GENERAL_AUTHOR,
  251. LLM_KV_GENERAL_VERSION,
  252. LLM_KV_GENERAL_URL,
  253. LLM_KV_GENERAL_DESCRIPTION,
  254. LLM_KV_GENERAL_LICENSE,
  255. LLM_KV_GENERAL_SOURCE_URL,
  256. LLM_KV_GENERAL_SOURCE_HF_REPO,
  257. LLM_KV_VOCAB_SIZE,
  258. LLM_KV_CONTEXT_LENGTH,
  259. LLM_KV_EMBEDDING_LENGTH,
  260. LLM_KV_BLOCK_COUNT,
  261. LLM_KV_FEED_FORWARD_LENGTH,
  262. LLM_KV_USE_PARALLEL_RESIDUAL,
  263. LLM_KV_TENSOR_DATA_LAYOUT,
  264. LLM_KV_EXPERT_COUNT,
  265. LLM_KV_EXPERT_USED_COUNT,
  266. LLM_KV_POOLING_TYPE,
  267. LLM_KV_LOGIT_SCALE,
  268. LLM_KV_ATTENTION_HEAD_COUNT,
  269. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  270. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  271. LLM_KV_ATTENTION_CLAMP_KQV,
  272. LLM_KV_ATTENTION_KEY_LENGTH,
  273. LLM_KV_ATTENTION_VALUE_LENGTH,
  274. LLM_KV_ATTENTION_LAYERNORM_EPS,
  275. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  276. LLM_KV_ATTENTION_CAUSAL,
  277. LLM_KV_ROPE_DIMENSION_COUNT,
  278. LLM_KV_ROPE_FREQ_BASE,
  279. LLM_KV_ROPE_SCALE_LINEAR,
  280. LLM_KV_ROPE_SCALING_TYPE,
  281. LLM_KV_ROPE_SCALING_FACTOR,
  282. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  283. LLM_KV_ROPE_SCALING_FINETUNED,
  284. LLM_KV_SPLIT_NO,
  285. LLM_KV_SPLIT_COUNT,
  286. LLM_KV_SPLIT_TENSORS_COUNT,
  287. LLM_KV_SSM_INNER_SIZE,
  288. LLM_KV_SSM_CONV_KERNEL,
  289. LLM_KV_SSM_STATE_SIZE,
  290. LLM_KV_SSM_TIME_STEP_RANK,
  291. LLM_KV_TOKENIZER_MODEL,
  292. LLM_KV_TOKENIZER_PRE,
  293. LLM_KV_TOKENIZER_LIST,
  294. LLM_KV_TOKENIZER_TOKEN_TYPE,
  295. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  296. LLM_KV_TOKENIZER_SCORES,
  297. LLM_KV_TOKENIZER_MERGES,
  298. LLM_KV_TOKENIZER_BOS_ID,
  299. LLM_KV_TOKENIZER_EOS_ID,
  300. LLM_KV_TOKENIZER_UNK_ID,
  301. LLM_KV_TOKENIZER_SEP_ID,
  302. LLM_KV_TOKENIZER_PAD_ID,
  303. LLM_KV_TOKENIZER_CLS_ID,
  304. LLM_KV_TOKENIZER_MASK_ID,
  305. LLM_KV_TOKENIZER_ADD_BOS,
  306. LLM_KV_TOKENIZER_ADD_EOS,
  307. LLM_KV_TOKENIZER_ADD_PREFIX,
  308. LLM_KV_TOKENIZER_HF_JSON,
  309. LLM_KV_TOKENIZER_RWKV,
  310. LLM_KV_TOKENIZER_PREFIX_ID,
  311. LLM_KV_TOKENIZER_SUFFIX_ID,
  312. LLM_KV_TOKENIZER_MIDDLE_ID,
  313. LLM_KV_TOKENIZER_EOT_ID,
  314. };
  315. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  316. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  317. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  318. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  319. { LLM_KV_GENERAL_NAME, "general.name" },
  320. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  321. { LLM_KV_GENERAL_VERSION, "general.version" },
  322. { LLM_KV_GENERAL_URL, "general.url" },
  323. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  324. { LLM_KV_GENERAL_LICENSE, "general.license" },
  325. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  326. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  327. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  328. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  329. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  330. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  331. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  332. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  333. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  334. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  335. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  336. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  337. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  338. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  339. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  340. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  341. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  342. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  343. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  344. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  345. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  346. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  347. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  348. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  349. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  350. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  351. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  352. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  353. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  354. { LLM_KV_SPLIT_NO, "split.no" },
  355. { LLM_KV_SPLIT_COUNT, "split.count" },
  356. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  357. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  358. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  359. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  360. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  361. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  362. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  363. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  364. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  365. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  366. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  367. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  368. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  369. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  370. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  371. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  372. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  373. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  374. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  375. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  376. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  377. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  378. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  379. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  380. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  381. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  382. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  383. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  384. };
  385. struct LLM_KV {
  386. LLM_KV(llm_arch arch) : arch(arch) {}
  387. llm_arch arch;
  388. std::string operator()(llm_kv kv) const {
  389. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  390. }
  391. };
  392. enum llm_tensor {
  393. LLM_TENSOR_TOKEN_EMBD,
  394. LLM_TENSOR_TOKEN_EMBD_NORM,
  395. LLM_TENSOR_TOKEN_TYPES,
  396. LLM_TENSOR_POS_EMBD,
  397. LLM_TENSOR_OUTPUT,
  398. LLM_TENSOR_OUTPUT_NORM,
  399. LLM_TENSOR_ROPE_FREQS,
  400. LLM_TENSOR_ATTN_Q,
  401. LLM_TENSOR_ATTN_K,
  402. LLM_TENSOR_ATTN_V,
  403. LLM_TENSOR_ATTN_QKV,
  404. LLM_TENSOR_ATTN_OUT,
  405. LLM_TENSOR_ATTN_NORM,
  406. LLM_TENSOR_ATTN_NORM_2,
  407. LLM_TENSOR_ATTN_OUT_NORM,
  408. LLM_TENSOR_ATTN_ROT_EMBD,
  409. LLM_TENSOR_FFN_GATE_INP,
  410. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  411. LLM_TENSOR_FFN_NORM,
  412. LLM_TENSOR_FFN_GATE,
  413. LLM_TENSOR_FFN_DOWN,
  414. LLM_TENSOR_FFN_UP,
  415. LLM_TENSOR_FFN_ACT,
  416. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  417. LLM_TENSOR_FFN_GATE_EXP,
  418. LLM_TENSOR_FFN_UP_EXP,
  419. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  420. LLM_TENSOR_FFN_GATE_EXPS,
  421. LLM_TENSOR_FFN_UP_EXPS,
  422. LLM_TENSOR_FFN_DOWN_SHEXP,
  423. LLM_TENSOR_FFN_GATE_SHEXP,
  424. LLM_TENSOR_FFN_UP_SHEXP,
  425. LLM_TENSOR_ATTN_Q_NORM,
  426. LLM_TENSOR_ATTN_K_NORM,
  427. LLM_TENSOR_LAYER_OUT_NORM,
  428. LLM_TENSOR_SSM_IN,
  429. LLM_TENSOR_SSM_CONV1D,
  430. LLM_TENSOR_SSM_X,
  431. LLM_TENSOR_SSM_DT,
  432. LLM_TENSOR_SSM_A,
  433. LLM_TENSOR_SSM_D,
  434. LLM_TENSOR_SSM_OUT,
  435. };
  436. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  437. {
  438. LLM_ARCH_LLAMA,
  439. {
  440. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  441. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  442. { LLM_TENSOR_OUTPUT, "output" },
  443. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  444. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  445. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  446. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  447. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  448. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  449. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  450. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  451. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  452. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  453. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  454. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  455. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  456. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  457. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  458. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  459. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  460. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  461. },
  462. },
  463. {
  464. LLM_ARCH_BAICHUAN,
  465. {
  466. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  467. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  468. { LLM_TENSOR_OUTPUT, "output" },
  469. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  470. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  471. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  472. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  473. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  474. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  475. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  476. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  477. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  478. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  479. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  480. },
  481. },
  482. {
  483. LLM_ARCH_FALCON,
  484. {
  485. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  486. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  487. { LLM_TENSOR_OUTPUT, "output" },
  488. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  489. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  490. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  491. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  492. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  493. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  494. },
  495. },
  496. {
  497. LLM_ARCH_GROK,
  498. {
  499. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  500. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  501. { LLM_TENSOR_OUTPUT, "output" },
  502. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  503. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  504. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  505. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  506. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  507. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  508. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  509. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  510. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  511. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  512. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  513. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  514. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  515. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  516. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  517. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  518. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  519. },
  520. },
  521. {
  522. LLM_ARCH_GPT2,
  523. {
  524. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  525. { LLM_TENSOR_POS_EMBD, "position_embd" },
  526. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  527. { LLM_TENSOR_OUTPUT, "output" },
  528. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  529. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  530. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  531. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  532. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  533. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  534. },
  535. },
  536. {
  537. LLM_ARCH_GPTJ,
  538. {
  539. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  540. },
  541. },
  542. {
  543. LLM_ARCH_GPTNEOX,
  544. {
  545. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  546. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  547. { LLM_TENSOR_OUTPUT, "output" },
  548. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  549. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  550. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  551. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  552. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  553. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  554. },
  555. },
  556. {
  557. LLM_ARCH_PERSIMMON,
  558. {
  559. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  560. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  561. { LLM_TENSOR_OUTPUT, "output"},
  562. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  563. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  564. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  565. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  566. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  567. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  568. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  569. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  570. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  571. },
  572. },
  573. {
  574. LLM_ARCH_MPT,
  575. {
  576. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  577. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  578. { LLM_TENSOR_OUTPUT, "output"},
  579. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  580. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  581. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  582. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  583. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  584. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  585. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  586. { LLM_TENSOR_POS_EMBD, "position_embd" },
  587. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  588. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  589. },
  590. },
  591. {
  592. LLM_ARCH_STARCODER,
  593. {
  594. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  595. { LLM_TENSOR_POS_EMBD, "position_embd" },
  596. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  597. { LLM_TENSOR_OUTPUT, "output" },
  598. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  599. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  600. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  601. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  602. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  603. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  604. },
  605. },
  606. {
  607. LLM_ARCH_REFACT,
  608. {
  609. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  610. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  611. { LLM_TENSOR_OUTPUT, "output" },
  612. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  613. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  614. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  615. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  616. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  617. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  618. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  619. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  620. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  621. },
  622. },
  623. {
  624. LLM_ARCH_BERT,
  625. {
  626. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  627. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  628. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  629. { LLM_TENSOR_POS_EMBD, "position_embd" },
  630. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  631. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  632. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  633. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  634. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  635. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  636. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  637. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  638. },
  639. },
  640. {
  641. LLM_ARCH_NOMIC_BERT,
  642. {
  643. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  644. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  645. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  646. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  647. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  648. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  649. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  650. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  651. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  652. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  653. },
  654. },
  655. {
  656. LLM_ARCH_JINA_BERT_V2,
  657. {
  658. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  659. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  660. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  661. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  662. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  663. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  664. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  665. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  666. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  667. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  668. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  669. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  670. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  671. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  672. },
  673. },
  674. {
  675. LLM_ARCH_BLOOM,
  676. {
  677. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  678. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  679. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  680. { LLM_TENSOR_OUTPUT, "output" },
  681. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  682. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  683. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  684. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  685. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  686. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  687. },
  688. },
  689. {
  690. LLM_ARCH_STABLELM,
  691. {
  692. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  693. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  694. { LLM_TENSOR_OUTPUT, "output" },
  695. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  696. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  697. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  698. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  699. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  700. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  701. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  702. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  703. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  704. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  705. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  706. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  707. },
  708. },
  709. {
  710. LLM_ARCH_QWEN,
  711. {
  712. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  713. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  714. { LLM_TENSOR_OUTPUT, "output" },
  715. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  716. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  717. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  718. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  719. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  720. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  721. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  722. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  723. },
  724. },
  725. {
  726. LLM_ARCH_QWEN2,
  727. {
  728. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  729. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  730. { LLM_TENSOR_OUTPUT, "output" },
  731. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  732. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  733. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  734. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  735. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  736. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  737. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  738. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  739. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  740. },
  741. },
  742. {
  743. LLM_ARCH_QWEN2MOE,
  744. {
  745. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  746. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  747. { LLM_TENSOR_OUTPUT, "output" },
  748. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  749. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  750. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  751. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  752. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  753. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  754. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  755. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  756. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  757. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  758. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  759. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  760. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  761. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  762. },
  763. },
  764. {
  765. LLM_ARCH_PHI2,
  766. {
  767. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  768. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  769. { LLM_TENSOR_OUTPUT, "output" },
  770. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  771. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  772. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  773. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  774. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  775. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  776. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  777. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  778. },
  779. },
  780. {
  781. LLM_ARCH_PHI3,
  782. {
  783. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  784. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  785. { LLM_TENSOR_OUTPUT, "output" },
  786. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  787. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  788. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  789. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  790. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  791. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  792. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  793. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  794. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  795. },
  796. },
  797. {
  798. LLM_ARCH_PLAMO,
  799. {
  800. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  801. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  802. { LLM_TENSOR_OUTPUT, "output" },
  803. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  804. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  805. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  806. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  807. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  808. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  809. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  810. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  811. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  812. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  813. },
  814. },
  815. {
  816. LLM_ARCH_CODESHELL,
  817. {
  818. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  819. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  820. { LLM_TENSOR_OUTPUT, "output" },
  821. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  822. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  823. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  824. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  825. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  826. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  827. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  828. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  829. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  830. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  831. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  832. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  833. },
  834. },
  835. {
  836. LLM_ARCH_ORION,
  837. {
  838. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  839. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  840. { LLM_TENSOR_OUTPUT, "output" },
  841. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  842. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  843. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  844. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  845. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  846. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  847. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  848. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  849. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  850. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  851. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  852. },
  853. },
  854. {
  855. LLM_ARCH_INTERNLM2,
  856. {
  857. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  858. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  859. { LLM_TENSOR_OUTPUT, "output" },
  860. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  861. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  862. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  863. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  864. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  865. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  866. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  867. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  868. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  869. },
  870. },
  871. {
  872. LLM_ARCH_MINICPM,
  873. {
  874. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  875. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  876. { LLM_TENSOR_OUTPUT, "output" },
  877. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  878. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  879. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  880. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  881. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  882. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  883. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  884. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  885. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  886. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  887. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  888. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  889. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  890. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  891. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  892. },
  893. },
  894. {
  895. LLM_ARCH_GEMMA,
  896. {
  897. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  898. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  899. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  900. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  901. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  902. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  903. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  904. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  905. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  906. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  907. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  908. },
  909. },
  910. {
  911. LLM_ARCH_STARCODER2,
  912. {
  913. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  914. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  915. { LLM_TENSOR_OUTPUT, "output" },
  916. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  917. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  918. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  919. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  920. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  921. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  922. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  923. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  924. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  925. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  926. },
  927. },
  928. {
  929. LLM_ARCH_MAMBA,
  930. {
  931. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  932. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  933. { LLM_TENSOR_OUTPUT, "output" },
  934. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  935. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  936. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  937. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  938. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  939. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  940. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  941. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  942. },
  943. },
  944. {
  945. LLM_ARCH_XVERSE,
  946. {
  947. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  948. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  949. { LLM_TENSOR_OUTPUT, "output" },
  950. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  951. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  952. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  953. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  954. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  955. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  956. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  957. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  958. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  959. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  960. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  961. },
  962. },
  963. {
  964. LLM_ARCH_COMMAND_R,
  965. {
  966. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  967. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  968. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  969. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  970. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  971. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  972. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  973. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  974. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  975. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  976. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  977. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  978. },
  979. },
  980. {
  981. LLM_ARCH_DBRX,
  982. {
  983. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  984. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  985. { LLM_TENSOR_OUTPUT, "output" },
  986. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  987. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  988. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  989. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  990. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  991. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  992. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  993. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  994. },
  995. },
  996. {
  997. LLM_ARCH_OLMO,
  998. {
  999. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1000. { LLM_TENSOR_OUTPUT, "output" },
  1001. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1002. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1003. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1004. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1005. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1006. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1007. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1008. },
  1009. },
  1010. {
  1011. LLM_ARCH_UNKNOWN,
  1012. {
  1013. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1014. },
  1015. },
  1016. };
  1017. static llm_arch llm_arch_from_string(const std::string & name) {
  1018. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1019. if (kv.second == name) {
  1020. return kv.first;
  1021. }
  1022. }
  1023. return LLM_ARCH_UNKNOWN;
  1024. }
  1025. // helper to handle gguf constants
  1026. // usage:
  1027. //
  1028. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1029. //
  1030. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1031. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1032. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1033. //
  1034. struct LLM_TN {
  1035. LLM_TN(llm_arch arch) : arch(arch) {}
  1036. llm_arch arch;
  1037. std::string operator()(llm_tensor tensor) const {
  1038. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1039. return "__missing__";
  1040. }
  1041. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1042. }
  1043. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1044. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1045. return "__missing__";
  1046. }
  1047. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1048. }
  1049. std::string operator()(llm_tensor tensor, int bid) const {
  1050. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1051. return "__missing__";
  1052. }
  1053. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1054. }
  1055. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1056. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1057. return "__missing__";
  1058. }
  1059. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1060. }
  1061. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1062. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1063. return "__missing__";
  1064. }
  1065. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1066. }
  1067. };
  1068. //
  1069. // gguf helpers
  1070. //
  1071. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1072. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1073. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1074. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1075. };
  1076. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1077. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1078. if (kv.second == name) {
  1079. return (llama_rope_scaling_type) kv.first;
  1080. }
  1081. }
  1082. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1083. }
  1084. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1085. switch (type) {
  1086. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1087. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1088. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1089. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1090. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1091. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1092. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1093. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1094. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1095. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1096. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1097. default: return format("unknown type %d", type);
  1098. }
  1099. }
  1100. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1101. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1102. switch (type) {
  1103. case GGUF_TYPE_STRING:
  1104. return gguf_get_val_str(ctx_gguf, i);
  1105. case GGUF_TYPE_ARRAY:
  1106. {
  1107. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1108. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1109. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1110. std::stringstream ss;
  1111. ss << "[";
  1112. for (int j = 0; j < arr_n; j++) {
  1113. if (arr_type == GGUF_TYPE_STRING) {
  1114. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1115. // escape quotes
  1116. replace_all(val, "\\", "\\\\");
  1117. replace_all(val, "\"", "\\\"");
  1118. ss << '"' << val << '"';
  1119. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1120. ss << "???";
  1121. } else {
  1122. ss << gguf_data_to_str(arr_type, data, j);
  1123. }
  1124. if (j < arr_n - 1) {
  1125. ss << ", ";
  1126. }
  1127. }
  1128. ss << "]";
  1129. return ss.str();
  1130. }
  1131. default:
  1132. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1133. }
  1134. }
  1135. //
  1136. // llama helpers
  1137. //
  1138. #if defined(_WIN32)
  1139. static std::string llama_format_win_err(DWORD err) {
  1140. LPSTR buf;
  1141. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1142. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1143. if (!size) {
  1144. return "FormatMessageA failed";
  1145. }
  1146. std::string ret(buf, size);
  1147. LocalFree(buf);
  1148. return ret;
  1149. }
  1150. #endif
  1151. template <typename T>
  1152. struct no_init {
  1153. T value;
  1154. no_init() { /* do nothing */ }
  1155. };
  1156. struct llama_file {
  1157. // use FILE * so we don't have to re-open the file to mmap
  1158. FILE * fp;
  1159. size_t size;
  1160. llama_file(const char * fname, const char * mode) {
  1161. fp = ggml_fopen(fname, mode);
  1162. if (fp == NULL) {
  1163. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1164. }
  1165. seek(0, SEEK_END);
  1166. size = tell();
  1167. seek(0, SEEK_SET);
  1168. }
  1169. size_t tell() const {
  1170. #ifdef _WIN32
  1171. __int64 ret = _ftelli64(fp);
  1172. #else
  1173. long ret = std::ftell(fp);
  1174. #endif
  1175. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1176. return (size_t) ret;
  1177. }
  1178. void seek(size_t offset, int whence) const {
  1179. #ifdef _WIN32
  1180. int ret = _fseeki64(fp, (__int64) offset, whence);
  1181. #else
  1182. int ret = std::fseek(fp, (long) offset, whence);
  1183. #endif
  1184. GGML_ASSERT(ret == 0); // same
  1185. }
  1186. void read_raw(void * ptr, size_t len) const {
  1187. if (len == 0) {
  1188. return;
  1189. }
  1190. errno = 0;
  1191. std::size_t ret = std::fread(ptr, len, 1, fp);
  1192. if (ferror(fp)) {
  1193. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1194. }
  1195. if (ret != 1) {
  1196. throw std::runtime_error("unexpectedly reached end of file");
  1197. }
  1198. }
  1199. uint32_t read_u32() const {
  1200. uint32_t ret;
  1201. read_raw(&ret, sizeof(ret));
  1202. return ret;
  1203. }
  1204. void write_raw(const void * ptr, size_t len) const {
  1205. if (len == 0) {
  1206. return;
  1207. }
  1208. errno = 0;
  1209. size_t ret = std::fwrite(ptr, len, 1, fp);
  1210. if (ret != 1) {
  1211. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1212. }
  1213. }
  1214. void write_u32(std::uint32_t val) const {
  1215. write_raw(&val, sizeof(val));
  1216. }
  1217. ~llama_file() {
  1218. if (fp) {
  1219. std::fclose(fp);
  1220. }
  1221. }
  1222. };
  1223. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1224. struct llama_mmap {
  1225. void * addr;
  1226. size_t size;
  1227. llama_mmap(const llama_mmap &) = delete;
  1228. #ifdef _POSIX_MAPPED_FILES
  1229. static constexpr bool SUPPORTED = true;
  1230. // list of mapped fragments (first_offset, last_offset)
  1231. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1232. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1233. size = file->size;
  1234. int fd = fileno(file->fp);
  1235. int flags = MAP_SHARED;
  1236. // prefetch/readahead impairs performance on NUMA systems
  1237. if (numa) { prefetch = 0; }
  1238. #ifdef __linux__
  1239. // advise the kernel to read the file sequentially (increases readahead)
  1240. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1241. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1242. strerror(errno));
  1243. }
  1244. if (prefetch) { flags |= MAP_POPULATE; }
  1245. #endif
  1246. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1247. if (addr == MAP_FAILED) { // NOLINT
  1248. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1249. }
  1250. if (prefetch > 0) {
  1251. // advise the kernel to preload the mapped memory
  1252. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1253. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1254. strerror(errno));
  1255. }
  1256. }
  1257. if (numa) {
  1258. // advise the kernel not to use readahead
  1259. // (because the next page might not belong on the same node)
  1260. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1261. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1262. strerror(errno));
  1263. }
  1264. }
  1265. // initialize list of mapped_fragments
  1266. mapped_fragments.emplace_back(0, file->size);
  1267. }
  1268. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1269. // align first to the next page
  1270. size_t offset_in_page = *first & (page_size - 1);
  1271. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1272. *first += offset_to_page;
  1273. // align last to the previous page
  1274. *last = *last & ~(page_size - 1);
  1275. if (*last <= *first) {
  1276. *last = *first;
  1277. }
  1278. }
  1279. // partially unmap the file in the range [first, last)
  1280. void unmap_fragment(size_t first, size_t last) {
  1281. // note: this function must not be called multiple times with overlapping ranges
  1282. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1283. int page_size = sysconf(_SC_PAGESIZE);
  1284. align_range(&first, &last, page_size);
  1285. size_t len = last - first;
  1286. if (len == 0) {
  1287. return;
  1288. }
  1289. GGML_ASSERT(first % page_size == 0);
  1290. GGML_ASSERT(last % page_size == 0);
  1291. GGML_ASSERT(last > first);
  1292. void * next_page_start = (uint8_t *) addr + first;
  1293. // unmap the range
  1294. if (munmap(next_page_start, len)) {
  1295. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1296. }
  1297. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1298. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1299. for (const auto & frag : mapped_fragments) {
  1300. if (frag.first < first && frag.second > last) {
  1301. // the range is in the middle of the fragment, split it
  1302. new_mapped_fragments.emplace_back(frag.first, first);
  1303. new_mapped_fragments.emplace_back(last, frag.second);
  1304. } else if (frag.first < first && frag.second > first) {
  1305. // the range starts in the middle of the fragment
  1306. new_mapped_fragments.emplace_back(frag.first, first);
  1307. } else if (frag.first < last && frag.second > last) {
  1308. // the range ends in the middle of the fragment
  1309. new_mapped_fragments.emplace_back(last, frag.second);
  1310. } else if (frag.first >= first && frag.second <= last) {
  1311. // the range covers the entire fragment
  1312. } else {
  1313. // the range is outside the fragment
  1314. new_mapped_fragments.push_back(frag);
  1315. }
  1316. }
  1317. mapped_fragments = std::move(new_mapped_fragments);
  1318. }
  1319. ~llama_mmap() {
  1320. for (const auto & frag : mapped_fragments) {
  1321. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1322. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1323. }
  1324. }
  1325. }
  1326. #elif defined(_WIN32)
  1327. static constexpr bool SUPPORTED = true;
  1328. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1329. GGML_UNUSED(numa);
  1330. size = file->size;
  1331. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1332. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1333. if (hMapping == NULL) {
  1334. DWORD error = GetLastError();
  1335. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1336. }
  1337. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1338. DWORD error = GetLastError();
  1339. CloseHandle(hMapping);
  1340. if (addr == NULL) {
  1341. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1342. }
  1343. if (prefetch > 0) {
  1344. #if _WIN32_WINNT >= 0x602
  1345. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1346. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1347. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1348. // may fail on pre-Windows 8 systems
  1349. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1350. if (pPrefetchVirtualMemory) {
  1351. // advise the kernel to preload the mapped memory
  1352. WIN32_MEMORY_RANGE_ENTRY range;
  1353. range.VirtualAddress = addr;
  1354. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1355. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1356. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1357. llama_format_win_err(GetLastError()).c_str());
  1358. }
  1359. }
  1360. #else
  1361. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1362. #endif
  1363. }
  1364. }
  1365. void unmap_fragment(size_t first, size_t last) {
  1366. // not supported
  1367. GGML_UNUSED(first);
  1368. GGML_UNUSED(last);
  1369. }
  1370. ~llama_mmap() {
  1371. if (!UnmapViewOfFile(addr)) {
  1372. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1373. llama_format_win_err(GetLastError()).c_str());
  1374. }
  1375. }
  1376. #else
  1377. static constexpr bool SUPPORTED = false;
  1378. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1379. GGML_UNUSED(file);
  1380. GGML_UNUSED(prefetch);
  1381. GGML_UNUSED(numa);
  1382. throw std::runtime_error("mmap not supported");
  1383. }
  1384. void unmap_fragment(size_t first, size_t last) {
  1385. GGML_UNUSED(first);
  1386. GGML_UNUSED(last);
  1387. throw std::runtime_error("mmap not supported");
  1388. }
  1389. #endif
  1390. };
  1391. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1392. // Represents some region of memory being locked using mlock or VirtualLock;
  1393. // will automatically unlock on destruction.
  1394. struct llama_mlock {
  1395. void * addr = NULL;
  1396. size_t size = 0;
  1397. bool failed_already = false;
  1398. llama_mlock() {}
  1399. llama_mlock(const llama_mlock &) = delete;
  1400. ~llama_mlock() {
  1401. if (size) {
  1402. raw_unlock(addr, size);
  1403. }
  1404. }
  1405. void init(void * ptr) {
  1406. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1407. addr = ptr;
  1408. }
  1409. void grow_to(size_t target_size) {
  1410. GGML_ASSERT(addr);
  1411. if (failed_already) {
  1412. return;
  1413. }
  1414. size_t granularity = lock_granularity();
  1415. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1416. if (target_size > size) {
  1417. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1418. size = target_size;
  1419. } else {
  1420. failed_already = true;
  1421. }
  1422. }
  1423. }
  1424. #ifdef _POSIX_MEMLOCK_RANGE
  1425. static constexpr bool SUPPORTED = true;
  1426. static size_t lock_granularity() {
  1427. return (size_t) sysconf(_SC_PAGESIZE);
  1428. }
  1429. #ifdef __APPLE__
  1430. #define MLOCK_SUGGESTION \
  1431. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1432. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1433. #else
  1434. #define MLOCK_SUGGESTION \
  1435. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1436. #endif
  1437. bool raw_lock(const void * addr, size_t size) const {
  1438. if (!mlock(addr, size)) {
  1439. return true;
  1440. }
  1441. char* errmsg = std::strerror(errno);
  1442. bool suggest = (errno == ENOMEM);
  1443. // Check if the resource limit is fine after all
  1444. struct rlimit lock_limit;
  1445. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1446. suggest = false;
  1447. }
  1448. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1449. suggest = false;
  1450. }
  1451. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1452. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1453. return false;
  1454. }
  1455. #undef MLOCK_SUGGESTION
  1456. static void raw_unlock(void * addr, size_t size) {
  1457. if (munlock(addr, size)) {
  1458. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1459. }
  1460. }
  1461. #elif defined(_WIN32)
  1462. static constexpr bool SUPPORTED = true;
  1463. static size_t lock_granularity() {
  1464. SYSTEM_INFO si;
  1465. GetSystemInfo(&si);
  1466. return (size_t) si.dwPageSize;
  1467. }
  1468. bool raw_lock(void * ptr, size_t len) const {
  1469. for (int tries = 1; ; tries++) {
  1470. if (VirtualLock(ptr, len)) {
  1471. return true;
  1472. }
  1473. if (tries == 2) {
  1474. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1475. len, size, llama_format_win_err(GetLastError()).c_str());
  1476. return false;
  1477. }
  1478. // It failed but this was only the first try; increase the working
  1479. // set size and try again.
  1480. SIZE_T min_ws_size, max_ws_size;
  1481. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1482. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1483. llama_format_win_err(GetLastError()).c_str());
  1484. return false;
  1485. }
  1486. // Per MSDN: "The maximum number of pages that a process can lock
  1487. // is equal to the number of pages in its minimum working set minus
  1488. // a small overhead."
  1489. // Hopefully a megabyte is enough overhead:
  1490. size_t increment = len + 1048576;
  1491. // The minimum must be <= the maximum, so we need to increase both:
  1492. min_ws_size += increment;
  1493. max_ws_size += increment;
  1494. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1495. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1496. llama_format_win_err(GetLastError()).c_str());
  1497. return false;
  1498. }
  1499. }
  1500. }
  1501. static void raw_unlock(void * ptr, size_t len) {
  1502. if (!VirtualUnlock(ptr, len)) {
  1503. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1504. llama_format_win_err(GetLastError()).c_str());
  1505. }
  1506. }
  1507. #else
  1508. static constexpr bool SUPPORTED = false;
  1509. static size_t lock_granularity() {
  1510. return (size_t) 65536;
  1511. }
  1512. bool raw_lock(const void * addr, size_t len) const {
  1513. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1514. return false;
  1515. }
  1516. static void raw_unlock(const void * addr, size_t len) {}
  1517. #endif
  1518. };
  1519. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1520. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1521. std::vector<char> result(8, 0);
  1522. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1523. if (n_tokens < 0) {
  1524. result.resize(-n_tokens);
  1525. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1526. GGML_ASSERT(check == -n_tokens);
  1527. }
  1528. else {
  1529. result.resize(n_tokens);
  1530. }
  1531. return std::string(result.data(), result.size());
  1532. }
  1533. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1534. ggml_backend_buffer_type_t buft = nullptr;
  1535. #if defined(GGML_USE_CUDA)
  1536. // host buffers should only be used when data is expected to be copied to/from the GPU
  1537. if (host_buffer) {
  1538. buft = ggml_backend_cuda_host_buffer_type();
  1539. }
  1540. #elif defined(GGML_USE_SYCL)
  1541. if (host_buffer) {
  1542. buft = ggml_backend_sycl_host_buffer_type();
  1543. }
  1544. #elif defined(GGML_USE_CPU_HBM)
  1545. buft = ggml_backend_cpu_hbm_buffer_type();
  1546. #elif defined(GGML_USE_VULKAN)
  1547. if (host_buffer) {
  1548. buft = ggml_backend_vk_host_buffer_type();
  1549. }
  1550. #endif
  1551. if (buft == nullptr) {
  1552. buft = ggml_backend_cpu_buffer_type();
  1553. }
  1554. return buft;
  1555. GGML_UNUSED(host_buffer);
  1556. }
  1557. //
  1558. // globals
  1559. //
  1560. struct llama_state {
  1561. llama_state() {
  1562. #ifdef GGML_USE_METAL
  1563. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1564. #elif defined(GGML_USE_CUDA)
  1565. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1566. #endif
  1567. }
  1568. // We save the log callback globally
  1569. ggml_log_callback log_callback = llama_log_callback_default;
  1570. void * log_callback_user_data = nullptr;
  1571. };
  1572. static llama_state g_state;
  1573. // available llama models
  1574. enum e_model {
  1575. MODEL_UNKNOWN,
  1576. MODEL_17M,
  1577. MODEL_22M,
  1578. MODEL_33M,
  1579. MODEL_109M,
  1580. MODEL_137M,
  1581. MODEL_335M,
  1582. MODEL_0_5B,
  1583. MODEL_1B,
  1584. MODEL_2B,
  1585. MODEL_3B,
  1586. MODEL_4B,
  1587. MODEL_7B,
  1588. MODEL_8B,
  1589. MODEL_12B,
  1590. MODEL_13B,
  1591. MODEL_14B,
  1592. MODEL_15B,
  1593. MODEL_20B,
  1594. MODEL_30B,
  1595. MODEL_34B,
  1596. MODEL_35B,
  1597. MODEL_40B,
  1598. MODEL_65B,
  1599. MODEL_70B,
  1600. MODEL_314B,
  1601. MODEL_SMALL,
  1602. MODEL_MEDIUM,
  1603. MODEL_LARGE,
  1604. MODEL_XL,
  1605. MODEL_A2_7B,
  1606. MODEL_8x7B,
  1607. MODEL_8x22B,
  1608. MODEL_16x12B,
  1609. };
  1610. static const size_t kiB = 1024;
  1611. static const size_t MiB = 1024*kiB;
  1612. static const size_t GiB = 1024*MiB;
  1613. struct llama_hparams {
  1614. bool vocab_only;
  1615. bool rope_finetuned;
  1616. uint32_t n_vocab;
  1617. uint32_t n_ctx_train; // context size the model was trained on
  1618. uint32_t n_embd;
  1619. uint32_t n_head;
  1620. uint32_t n_head_kv;
  1621. uint32_t n_layer;
  1622. uint32_t n_rot;
  1623. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1624. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1625. uint32_t n_ff;
  1626. uint32_t n_expert = 0;
  1627. uint32_t n_expert_used = 0;
  1628. uint32_t n_vocab_type = 0; // for BERT-style token types
  1629. float f_norm_eps;
  1630. float f_norm_rms_eps;
  1631. float rope_freq_base_train;
  1632. float rope_freq_scale_train;
  1633. uint32_t n_yarn_orig_ctx;
  1634. // for State Space Models
  1635. uint32_t ssm_d_conv = 0;
  1636. uint32_t ssm_d_inner = 0;
  1637. uint32_t ssm_d_state = 0;
  1638. uint32_t ssm_dt_rank = 0;
  1639. float f_clamp_kqv = 0.0f;
  1640. float f_max_alibi_bias = 0.0f;
  1641. float f_logit_scale = 0.0f;
  1642. bool causal_attn = true;
  1643. bool use_alibi = false;
  1644. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1645. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1646. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1647. bool operator!=(const llama_hparams & other) const {
  1648. if (this->vocab_only != other.vocab_only) return true;
  1649. if (this->n_vocab != other.n_vocab) return true;
  1650. if (this->n_ctx_train != other.n_ctx_train) return true;
  1651. if (this->n_embd != other.n_embd) return true;
  1652. if (this->n_head != other.n_head) return true;
  1653. if (this->n_head_kv != other.n_head_kv) return true;
  1654. if (this->n_layer != other.n_layer) return true;
  1655. if (this->n_rot != other.n_rot) return true;
  1656. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1657. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1658. if (this->n_ff != other.n_ff) return true;
  1659. if (this->n_expert != other.n_expert) return true;
  1660. if (this->n_expert_used != other.n_expert_used) return true;
  1661. if (this->rope_finetuned != other.rope_finetuned) return true;
  1662. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1663. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1664. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1665. if (this->ssm_d_state != other.ssm_d_state) return true;
  1666. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1667. const float EPSILON = 1e-9f;
  1668. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1669. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1670. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1671. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1672. return false;
  1673. }
  1674. uint32_t n_gqa() const {
  1675. if (n_head_kv == 0) {
  1676. return 0;
  1677. }
  1678. return n_head/n_head_kv;
  1679. }
  1680. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1681. return n_embd_head_k * n_head_kv;
  1682. }
  1683. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1684. return n_embd_head_v * n_head_kv;
  1685. }
  1686. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1687. // corresponds to Mamba's conv_states size
  1688. // TODO: maybe support other convolution strides than 1
  1689. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1690. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1691. }
  1692. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1693. // corresponds to Mamba's ssm_states size
  1694. return ssm_d_state * ssm_d_inner;
  1695. }
  1696. };
  1697. struct llama_cparams {
  1698. uint32_t n_ctx; // context size used during inference
  1699. uint32_t n_batch;
  1700. uint32_t n_ubatch;
  1701. uint32_t n_seq_max;
  1702. uint32_t n_threads; // number of threads to use for generation
  1703. uint32_t n_threads_batch; // number of threads to use for batch processing
  1704. float rope_freq_base;
  1705. float rope_freq_scale;
  1706. uint32_t n_yarn_orig_ctx;
  1707. // These hyperparameters are not exposed in GGUF, because all
  1708. // existing YaRN models use the same values for them.
  1709. float yarn_ext_factor;
  1710. float yarn_attn_factor;
  1711. float yarn_beta_fast;
  1712. float yarn_beta_slow;
  1713. float defrag_thold;
  1714. bool embeddings;
  1715. bool causal_attn;
  1716. bool offload_kqv;
  1717. bool flash_attn;
  1718. enum llama_pooling_type pooling_type;
  1719. ggml_backend_sched_eval_callback cb_eval;
  1720. void * cb_eval_user_data;
  1721. };
  1722. struct llama_layer {
  1723. // normalization
  1724. struct ggml_tensor * attn_norm;
  1725. struct ggml_tensor * attn_norm_b;
  1726. struct ggml_tensor * attn_norm_2;
  1727. struct ggml_tensor * attn_norm_2_b;
  1728. struct ggml_tensor * attn_q_norm;
  1729. struct ggml_tensor * attn_q_norm_b;
  1730. struct ggml_tensor * attn_k_norm;
  1731. struct ggml_tensor * attn_k_norm_b;
  1732. struct ggml_tensor * attn_out_norm;
  1733. struct ggml_tensor * attn_out_norm_b;
  1734. // attention
  1735. struct ggml_tensor * wq;
  1736. struct ggml_tensor * wk;
  1737. struct ggml_tensor * wv;
  1738. struct ggml_tensor * wo;
  1739. struct ggml_tensor * wqkv;
  1740. // attention bias
  1741. struct ggml_tensor * bq;
  1742. struct ggml_tensor * bk;
  1743. struct ggml_tensor * bv;
  1744. struct ggml_tensor * bo;
  1745. struct ggml_tensor * bqkv;
  1746. // normalization
  1747. struct ggml_tensor * ffn_norm;
  1748. struct ggml_tensor * ffn_norm_b;
  1749. struct ggml_tensor * layer_out_norm;
  1750. struct ggml_tensor * layer_out_norm_b;
  1751. // ff
  1752. struct ggml_tensor * ffn_gate; // w1
  1753. struct ggml_tensor * ffn_down; // w2
  1754. struct ggml_tensor * ffn_up; // w3
  1755. // ff MoE
  1756. struct ggml_tensor * ffn_gate_inp;
  1757. struct ggml_tensor * ffn_gate_exps;
  1758. struct ggml_tensor * ffn_down_exps;
  1759. struct ggml_tensor * ffn_up_exps ;
  1760. // ff shared expert (shexp)
  1761. struct ggml_tensor * ffn_gate_inp_shexp;
  1762. struct ggml_tensor * ffn_gate_shexp;
  1763. struct ggml_tensor * ffn_down_shexp;
  1764. struct ggml_tensor * ffn_up_shexp;
  1765. // ff bias
  1766. struct ggml_tensor * ffn_down_b; // b2
  1767. struct ggml_tensor * ffn_up_b; // b3
  1768. struct ggml_tensor * ffn_act;
  1769. // mamba proj
  1770. struct ggml_tensor * ssm_in;
  1771. struct ggml_tensor * ssm_x;
  1772. struct ggml_tensor * ssm_dt;
  1773. struct ggml_tensor * ssm_out;
  1774. // mamba
  1775. struct ggml_tensor * ssm_conv1d;
  1776. struct ggml_tensor * ssm_a;
  1777. struct ggml_tensor * ssm_d;
  1778. // mamba bias
  1779. struct ggml_tensor * ssm_conv1d_b;
  1780. struct ggml_tensor * ssm_dt_b;
  1781. };
  1782. struct llama_kv_cell {
  1783. llama_pos pos = -1;
  1784. llama_pos delta = 0;
  1785. int32_t src = 0; // used by recurrent state models to copy states
  1786. std::set<llama_seq_id> seq_id;
  1787. bool has_seq_id(const llama_seq_id & id) const {
  1788. return seq_id.find(id) != seq_id.end();
  1789. }
  1790. bool is_empty() const {
  1791. return seq_id.empty();
  1792. }
  1793. bool is_same_seq(const llama_kv_cell & other) const {
  1794. return seq_id == other.seq_id;
  1795. }
  1796. };
  1797. // ring-buffer of cached KV data
  1798. struct llama_kv_cache {
  1799. bool has_shift = false;
  1800. bool do_defrag = false;
  1801. bool do_copy = false;
  1802. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1803. bool v_trans = true; // the value tensor is transposed
  1804. // Note: The value of head isn't only used to optimize searching
  1805. // for a free KV slot. llama_decode_internal also uses it, so it
  1806. // cannot be freely changed after a slot has been allocated.
  1807. uint32_t head = 0;
  1808. uint32_t size = 0;
  1809. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1810. // computed before each graph build
  1811. uint32_t n = 0;
  1812. ggml_type type_k = GGML_TYPE_F16;
  1813. ggml_type type_v = GGML_TYPE_F16;
  1814. std::vector<llama_kv_cell> cells;
  1815. std::vector<struct ggml_tensor *> k_l; // per layer
  1816. std::vector<struct ggml_tensor *> v_l;
  1817. std::vector<struct ggml_context *> ctxs;
  1818. std::vector<ggml_backend_buffer_t> bufs;
  1819. size_t total_size() const {
  1820. size_t size = 0;
  1821. for (ggml_backend_buffer_t buf : bufs) {
  1822. size += ggml_backend_buffer_get_size(buf);
  1823. }
  1824. return size;
  1825. }
  1826. ~llama_kv_cache() {
  1827. for (struct ggml_context * ctx : ctxs) {
  1828. ggml_free(ctx);
  1829. }
  1830. for (ggml_backend_buffer_t buf : bufs) {
  1831. ggml_backend_buffer_free(buf);
  1832. }
  1833. }
  1834. };
  1835. struct llama_control_vector {
  1836. std::vector<struct ggml_tensor *> tensors; // per layer
  1837. std::vector<struct ggml_context *> ctxs;
  1838. std::vector<ggml_backend_buffer_t> bufs;
  1839. int32_t layer_start = -1;
  1840. int32_t layer_end = -1;
  1841. ggml_tensor * tensor_for(int il) const {
  1842. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1843. return nullptr;
  1844. }
  1845. return tensors[il];
  1846. }
  1847. ~llama_control_vector() {
  1848. for (struct ggml_context * ctx : ctxs) {
  1849. ggml_free(ctx);
  1850. }
  1851. for (ggml_backend_buffer_t buf : bufs) {
  1852. ggml_backend_buffer_free(buf);
  1853. }
  1854. }
  1855. };
  1856. struct llama_vocab {
  1857. using id = int32_t;
  1858. using token = std::string;
  1859. using ttype = llama_token_type;
  1860. struct token_data {
  1861. token text;
  1862. float score;
  1863. ttype type;
  1864. };
  1865. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1866. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1867. std::unordered_map<token, id> token_to_id;
  1868. std::vector<token_data> id_to_token;
  1869. std::unordered_map<token, id> special_tokens_cache;
  1870. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1871. // default LLaMA special tokens
  1872. id special_bos_id = 1;
  1873. id special_eos_id = 2;
  1874. id special_unk_id = 0;
  1875. id special_sep_id = -1;
  1876. id special_pad_id = -1;
  1877. id special_cls_id = -1;
  1878. id special_mask_id = -1;
  1879. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1880. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1881. id linefeed_id = 13;
  1882. id special_prefix_id = -1;
  1883. id special_suffix_id = -1;
  1884. id special_middle_id = -1;
  1885. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1886. bool add_space_prefix = true;
  1887. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1888. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1889. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1890. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1891. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1892. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1893. if (it == bpe_ranks.end()) {
  1894. return -1;
  1895. }
  1896. return it->second;
  1897. }
  1898. };
  1899. struct llama_model {
  1900. e_model type = MODEL_UNKNOWN;
  1901. llm_arch arch = LLM_ARCH_UNKNOWN;
  1902. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1903. std::string name = "n/a";
  1904. llama_hparams hparams = {};
  1905. llama_vocab vocab;
  1906. struct ggml_tensor * tok_embd;
  1907. struct ggml_tensor * type_embd;
  1908. struct ggml_tensor * pos_embd;
  1909. struct ggml_tensor * tok_norm;
  1910. struct ggml_tensor * tok_norm_b;
  1911. struct ggml_tensor * output_norm;
  1912. struct ggml_tensor * output_norm_b;
  1913. struct ggml_tensor * output;
  1914. struct ggml_tensor * output_b;
  1915. std::vector<llama_layer> layers;
  1916. llama_split_mode split_mode;
  1917. int main_gpu;
  1918. int n_gpu_layers;
  1919. std::vector<std::string> rpc_servers;
  1920. // gguf metadata
  1921. std::unordered_map<std::string, std::string> gguf_kv;
  1922. // layer -> buffer type mapping
  1923. struct layer_buft {
  1924. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1925. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1926. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1927. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1928. ggml_backend_buffer_type_t buft; // everything else
  1929. };
  1930. layer_buft buft_input;
  1931. layer_buft buft_output;
  1932. std::vector<layer_buft> buft_layer;
  1933. // contexts where the model tensors metadata is stored
  1934. std::vector<struct ggml_context *> ctxs;
  1935. // the model memory buffers for the tensor data
  1936. std::vector<ggml_backend_buffer_t> bufs;
  1937. // model memory mapped files
  1938. llama_mmaps mappings;
  1939. // objects representing data potentially being locked in memory
  1940. llama_mlocks mlock_bufs;
  1941. llama_mlocks mlock_mmaps;
  1942. // for quantize-stats only
  1943. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1944. int64_t t_load_us = 0;
  1945. int64_t t_start_us = 0;
  1946. ~llama_model() {
  1947. for (struct ggml_context * ctx : ctxs) {
  1948. ggml_free(ctx);
  1949. }
  1950. for (ggml_backend_buffer_t buf : bufs) {
  1951. #ifdef GGML_USE_CUDA
  1952. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1953. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1954. }
  1955. #endif
  1956. ggml_backend_buffer_free(buf);
  1957. }
  1958. }
  1959. };
  1960. struct llama_context {
  1961. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1962. ~llama_context() {
  1963. ggml_backend_sched_free(sched);
  1964. for (ggml_backend_t backend : backends) {
  1965. ggml_backend_free(backend);
  1966. }
  1967. ggml_backend_buffer_free(buf_output);
  1968. }
  1969. llama_cparams cparams;
  1970. std::vector<ggml_backend_t> backends;
  1971. #ifdef GGML_USE_METAL
  1972. ggml_backend_t backend_metal = nullptr;
  1973. #endif
  1974. ggml_backend_t backend_cpu = nullptr;
  1975. const llama_model & model;
  1976. // key + value cache for the self attention
  1977. struct llama_kv_cache kv_self;
  1978. std::mt19937 rng;
  1979. bool has_evaluated_once = false;
  1980. int64_t t_start_us;
  1981. int64_t t_load_us;
  1982. int64_t t_sample_us = 0;
  1983. int64_t t_p_eval_us = 0;
  1984. int64_t t_eval_us = 0;
  1985. int64_t t_compute_start_us = 0;
  1986. int64_t n_queued_tokens = 0;
  1987. int32_t n_sample = 0; // number of tokens sampled
  1988. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1989. int32_t n_eval = 0; // number of eval calls
  1990. // host buffer for the model output (logits and embeddings)
  1991. ggml_backend_buffer_t buf_output = nullptr;
  1992. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1993. size_t logits_size = 0; // capacity (of floats) for logits
  1994. float * logits = nullptr;
  1995. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1996. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1997. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  1998. bool logits_all = false;
  1999. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2000. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2001. size_t embd_size = 0; // capacity (of floats) for embeddings
  2002. float * embd = nullptr;
  2003. // sequence embeddings output (map of [n_embd] vectors)
  2004. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2005. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2006. // memory buffers used to evaluate the model
  2007. std::vector<uint8_t> buf_compute_meta;
  2008. ggml_backend_sched_t sched = nullptr;
  2009. ggml_abort_callback abort_callback = nullptr;
  2010. void * abort_callback_data = nullptr;
  2011. // input tensors
  2012. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2013. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2014. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2015. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2016. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2017. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2018. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2019. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2020. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2021. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2022. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2023. // control vectors
  2024. struct llama_control_vector cvec;
  2025. #ifdef GGML_USE_MPI
  2026. ggml_mpi_context * ctx_mpi = NULL;
  2027. #endif
  2028. };
  2029. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2030. ggml_backend_buffer_type_t buft = nullptr;
  2031. #ifdef GGML_USE_RPC
  2032. std::string endpoint = model.rpc_servers[gpu];
  2033. buft = ggml_backend_rpc_buffer_type(endpoint.c_str());
  2034. #elif defined(GGML_USE_METAL)
  2035. buft = ggml_backend_metal_buffer_type();
  2036. #elif defined(GGML_USE_CUDA)
  2037. buft = ggml_backend_cuda_buffer_type(gpu);
  2038. #elif defined(GGML_USE_VULKAN)
  2039. buft = ggml_backend_vk_buffer_type(gpu);
  2040. #elif defined(GGML_USE_SYCL)
  2041. buft = ggml_backend_sycl_buffer_type(gpu);
  2042. #elif defined(GGML_USE_CLBLAST)
  2043. buft = ggml_backend_opencl_buffer_type();
  2044. #elif defined(GGML_USE_KOMPUTE)
  2045. buft = ggml_backend_kompute_buffer_type(gpu);
  2046. if (buft == nullptr) {
  2047. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2048. }
  2049. #endif
  2050. if (buft == nullptr) {
  2051. buft = llama_default_buffer_type_cpu(true);
  2052. }
  2053. return buft;
  2054. GGML_UNUSED(model);
  2055. GGML_UNUSED(gpu);
  2056. }
  2057. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2058. ggml_backend_buffer_type_t buft = nullptr;
  2059. #ifdef GGML_USE_CUDA
  2060. if (ggml_backend_cuda_get_device_count() > 1) {
  2061. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2062. }
  2063. #endif
  2064. #ifdef GGML_USE_SYCL
  2065. if (ggml_backend_sycl_get_device_count() > 1) {
  2066. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2067. }
  2068. #endif
  2069. if (buft == nullptr) {
  2070. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2071. }
  2072. return buft;
  2073. GGML_UNUSED(tensor_split);
  2074. }
  2075. static size_t llama_get_device_count(const llama_model & model) {
  2076. #if defined(GGML_USE_RPC)
  2077. return model.rpc_servers.size();
  2078. #elif defined(GGML_USE_CUDA)
  2079. return ggml_backend_cuda_get_device_count();
  2080. #elif defined(GGML_USE_SYCL)
  2081. return ggml_backend_sycl_get_device_count();
  2082. #elif defined(GGML_USE_VULKAN)
  2083. return ggml_backend_vk_get_device_count();
  2084. #else
  2085. return 1;
  2086. #endif
  2087. GGML_UNUSED(model);
  2088. }
  2089. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2090. #if defined(GGML_USE_RPC)
  2091. size_t total;
  2092. size_t free;
  2093. std::string endpoint = model.rpc_servers[device];
  2094. ggml_backend_rpc_get_device_memory(endpoint.c_str(), &free, &total);
  2095. return free;
  2096. #elif defined(GGML_USE_CUDA)
  2097. size_t total;
  2098. size_t free;
  2099. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2100. return free;
  2101. #elif defined(GGML_USE_SYCL)
  2102. size_t total;
  2103. size_t free;
  2104. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2105. return free;
  2106. #elif defined(GGML_USE_VULKAN)
  2107. size_t total;
  2108. size_t free;
  2109. ggml_backend_vk_get_device_memory(device, &free, &total);
  2110. return free;
  2111. #else
  2112. return 1;
  2113. #endif
  2114. GGML_UNUSED(model);
  2115. GGML_UNUSED(device);
  2116. }
  2117. //
  2118. // kv cache helpers
  2119. //
  2120. static bool llama_kv_cache_init(
  2121. struct llama_kv_cache & cache,
  2122. const llama_context * ctx,
  2123. ggml_type type_k,
  2124. ggml_type type_v,
  2125. uint32_t kv_size,
  2126. bool offload) {
  2127. const llama_model & model = ctx->model;
  2128. const llama_cparams & cparams = ctx->cparams;
  2129. const struct llama_hparams & hparams = model.hparams;
  2130. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2131. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2132. const int64_t n_layer = hparams.n_layer;
  2133. cache.has_shift = false;
  2134. // TODO: find a nicer way to add other recurrent model architectures
  2135. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2136. cache.v_trans = !cparams.flash_attn;
  2137. // TODO: support mixed recurrent Transformer architectures
  2138. // NOTE: (!a || b) is a logical implication (a -> b)
  2139. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2140. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2141. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2142. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2143. cache.head = 0;
  2144. cache.size = kv_size;
  2145. cache.used = 0;
  2146. cache.type_k = type_k;
  2147. cache.type_v = type_v;
  2148. cache.cells.clear();
  2149. cache.cells.resize(kv_size);
  2150. if (cache.recurrent) {
  2151. // init state copy sources
  2152. for (uint32_t i = 0; i < cache.size; ++i) {
  2153. cache.cells[i].src = i;
  2154. }
  2155. }
  2156. #ifdef GGML_USE_CLBLAST
  2157. offload = false;
  2158. #endif
  2159. // count used buffer types
  2160. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2161. if (offload) {
  2162. for (int64_t i = 0; i < n_layer; ++i) {
  2163. buft_layer_count[model.buft_layer[i].buft]++;
  2164. }
  2165. } else {
  2166. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2167. }
  2168. // create a context for each buffer type
  2169. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2170. for (auto & it : buft_layer_count) {
  2171. int n_layers = it.second;
  2172. struct ggml_init_params params = {
  2173. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2174. /*.mem_buffer =*/ NULL,
  2175. /*.no_alloc =*/ true,
  2176. };
  2177. ggml_context * ctx = ggml_init(params);
  2178. if (!ctx) {
  2179. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2180. return false;
  2181. }
  2182. ctx_map[it.first] = ctx;
  2183. cache.ctxs.push_back(ctx);
  2184. }
  2185. cache.k_l.reserve(n_layer);
  2186. cache.v_l.reserve(n_layer);
  2187. for (int i = 0; i < (int) n_layer; i++) {
  2188. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2189. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2190. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2191. ggml_format_name(k, "cache_k_l%d", i);
  2192. ggml_format_name(v, "cache_v_l%d", i);
  2193. cache.k_l.push_back(k);
  2194. cache.v_l.push_back(v);
  2195. }
  2196. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2197. for (auto it : ctx_map) {
  2198. ggml_backend_buffer_type_t buft = it.first;
  2199. ggml_context * ctx = it.second;
  2200. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2201. if (!buf) {
  2202. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2203. return false;
  2204. }
  2205. ggml_backend_buffer_clear(buf, 0);
  2206. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2207. cache.bufs.push_back(buf);
  2208. }
  2209. return true;
  2210. }
  2211. // find an empty slot of size "n_tokens" in the cache
  2212. // updates the cache head
  2213. // Note: On success, it's important that cache.head points
  2214. // to the first cell of the slot.
  2215. static bool llama_kv_cache_find_slot(
  2216. struct llama_kv_cache & cache,
  2217. const struct llama_batch & batch) {
  2218. const uint32_t n_ctx = cache.size;
  2219. const uint32_t n_tokens = batch.n_tokens;
  2220. if (cache.recurrent) {
  2221. // For recurrent state architectures (like Mamba),
  2222. // each KV cache cell can store the state for a whole sequence.
  2223. llama_seq_id min = cache.size - 1;
  2224. llama_seq_id max = 0;
  2225. for (uint32_t i = 0; i < n_tokens; ++i) {
  2226. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2227. llama_seq_id seq_id = batch.seq_id[i][j];
  2228. // make sure it's a valid seq_id
  2229. if ((uint32_t) seq_id < cache.size) {
  2230. if (seq_id > max) {
  2231. max = seq_id;
  2232. }
  2233. if (seq_id < min) {
  2234. min = seq_id;
  2235. }
  2236. // Assuming the tokens are in-order
  2237. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2238. // What should happen when the pos backtracks or skips a value?
  2239. // Clearing the state mid-batch would require special-casing which isn't done.
  2240. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2241. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2242. }
  2243. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2244. cache.used += 1;
  2245. }
  2246. cache.cells[seq_id].pos = batch.pos[i];
  2247. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2248. } else {
  2249. // too big seq_id
  2250. // TODO: would it be possible to resize the KV cache size instead?
  2251. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2252. return false;
  2253. }
  2254. }
  2255. }
  2256. // allow getting the range of used cells, from head to head + n
  2257. cache.head = min;
  2258. cache.n = max - min + 1;
  2259. // sanity check
  2260. return max >= min;
  2261. }
  2262. // otherwise, one cell per token.
  2263. if (n_tokens > n_ctx) {
  2264. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2265. return false;
  2266. }
  2267. uint32_t n_tested = 0;
  2268. while (true) {
  2269. if (cache.head + n_tokens > n_ctx) {
  2270. n_tested += n_ctx - cache.head;
  2271. cache.head = 0;
  2272. continue;
  2273. }
  2274. bool found = true;
  2275. for (uint32_t i = 0; i < n_tokens; i++) {
  2276. if (cache.cells[cache.head + i].pos >= 0) {
  2277. found = false;
  2278. cache.head += i + 1;
  2279. n_tested += i + 1;
  2280. break;
  2281. }
  2282. }
  2283. if (found) {
  2284. break;
  2285. }
  2286. if (n_tested >= n_ctx) {
  2287. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2288. return false;
  2289. }
  2290. }
  2291. for (uint32_t i = 0; i < n_tokens; i++) {
  2292. cache.cells[cache.head + i].pos = batch.pos[i];
  2293. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2294. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2295. }
  2296. }
  2297. cache.used += n_tokens;
  2298. return true;
  2299. }
  2300. // find how many cells are currently in use
  2301. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2302. for (uint32_t i = cache.size; i > 0; --i) {
  2303. const llama_kv_cell & cell = cache.cells[i - 1];
  2304. if (cell.pos >= 0 && !cell.is_empty()) {
  2305. return i;
  2306. }
  2307. }
  2308. return 0;
  2309. }
  2310. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2311. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2312. cache.cells[i].pos = -1;
  2313. cache.cells[i].seq_id.clear();
  2314. }
  2315. cache.head = 0;
  2316. cache.used = 0;
  2317. for (auto & buf : cache.bufs) {
  2318. ggml_backend_buffer_clear(buf, 0);
  2319. }
  2320. }
  2321. static bool llama_kv_cache_seq_rm(
  2322. struct llama_kv_cache & cache,
  2323. llama_seq_id seq_id,
  2324. llama_pos p0,
  2325. llama_pos p1) {
  2326. uint32_t new_head = cache.size;
  2327. if (p0 < 0) p0 = 0;
  2328. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2329. // models like Mamba can't have a state partially erased
  2330. if (cache.recurrent) {
  2331. if (seq_id >= (int64_t) cache.size) {
  2332. // could be fatal
  2333. return false;
  2334. }
  2335. if (0 <= seq_id) {
  2336. // partial intersection is invalid
  2337. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2338. return false;
  2339. }
  2340. } else {
  2341. // seq_id is negative, then the range should include everything or nothing
  2342. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2343. return false;
  2344. }
  2345. }
  2346. }
  2347. for (uint32_t i = 0; i < cache.size; ++i) {
  2348. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2349. if (seq_id < 0) {
  2350. cache.cells[i].seq_id.clear();
  2351. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2352. cache.cells[i].seq_id.erase(seq_id);
  2353. } else {
  2354. continue;
  2355. }
  2356. if (cache.cells[i].is_empty()) {
  2357. // keep count of the number of used cells
  2358. if (cache.cells[i].pos >= 0) cache.used--;
  2359. cache.cells[i].pos = -1;
  2360. if (new_head == cache.size) new_head = i;
  2361. }
  2362. }
  2363. }
  2364. // If we freed up a slot, set head to it so searching can start there.
  2365. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2366. return true;
  2367. }
  2368. static void llama_kv_cache_seq_cp(
  2369. struct llama_kv_cache & cache,
  2370. llama_seq_id seq_id_src,
  2371. llama_seq_id seq_id_dst,
  2372. llama_pos p0,
  2373. llama_pos p1) {
  2374. if (p0 < 0) p0 = 0;
  2375. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2376. if (cache.recurrent) {
  2377. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2378. seq_id_src = cache.cells[seq_id_src].src;
  2379. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2380. // intent to "copy from"
  2381. // supports copy chains thanks to taking the source of the source
  2382. cache.cells[seq_id_dst].src = seq_id_src;
  2383. // preserve the "keep or clear" status of the copied sequence
  2384. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2385. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2386. } else {
  2387. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2388. }
  2389. cache.do_copy = true;
  2390. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2391. }
  2392. return;
  2393. }
  2394. // otherwise, this is the KV cache of a Transformer-like model
  2395. cache.head = 0;
  2396. for (uint32_t i = 0; i < cache.size; ++i) {
  2397. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2398. cache.cells[i].seq_id.insert(seq_id_dst);
  2399. }
  2400. }
  2401. }
  2402. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2403. uint32_t new_head = cache.size;
  2404. for (uint32_t i = 0; i < cache.size; ++i) {
  2405. if (!cache.cells[i].has_seq_id(seq_id)) {
  2406. if (cache.cells[i].pos >= 0) cache.used--;
  2407. cache.cells[i].pos = -1;
  2408. cache.cells[i].seq_id.clear();
  2409. if (new_head == cache.size) new_head = i;
  2410. } else {
  2411. cache.cells[i].seq_id.clear();
  2412. cache.cells[i].seq_id.insert(seq_id);
  2413. }
  2414. }
  2415. // If we freed up a slot, set head to it so searching can start there.
  2416. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2417. }
  2418. static void llama_kv_cache_seq_add(
  2419. struct llama_kv_cache & cache,
  2420. llama_seq_id seq_id,
  2421. llama_pos p0,
  2422. llama_pos p1,
  2423. llama_pos delta) {
  2424. uint32_t new_head = cache.size;
  2425. if (p0 < 0) p0 = 0;
  2426. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2427. if (cache.recurrent) {
  2428. // for Mamba-like models, only the pos needs to be shifted
  2429. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2430. llama_kv_cell & cell = cache.cells[seq_id];
  2431. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2432. cell.pos += delta;
  2433. }
  2434. }
  2435. return;
  2436. }
  2437. for (uint32_t i = 0; i < cache.size; ++i) {
  2438. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2439. cache.has_shift = true;
  2440. cache.cells[i].pos += delta;
  2441. cache.cells[i].delta += delta;
  2442. if (cache.cells[i].pos < 0) {
  2443. if (!cache.cells[i].is_empty()) {
  2444. cache.used--;
  2445. }
  2446. cache.cells[i].pos = -1;
  2447. cache.cells[i].seq_id.clear();
  2448. if (new_head == cache.size) {
  2449. new_head = i;
  2450. }
  2451. }
  2452. }
  2453. }
  2454. // If we freed up a slot, set head to it so searching can start there.
  2455. // Otherwise we just start the next search from the beginning.
  2456. cache.head = new_head != cache.size ? new_head : 0;
  2457. }
  2458. static void llama_kv_cache_seq_div(
  2459. struct llama_kv_cache & cache,
  2460. llama_seq_id seq_id,
  2461. llama_pos p0,
  2462. llama_pos p1,
  2463. int d) {
  2464. if (p0 < 0) p0 = 0;
  2465. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2466. if (cache.recurrent) {
  2467. // for Mamba-like models, only the pos needs to be changed
  2468. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2469. llama_kv_cell & cell = cache.cells[seq_id];
  2470. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2471. cell.pos /= d;
  2472. }
  2473. }
  2474. return;
  2475. }
  2476. for (uint32_t i = 0; i < cache.size; ++i) {
  2477. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2478. cache.has_shift = true;
  2479. {
  2480. llama_pos p_old = cache.cells[i].pos;
  2481. cache.cells[i].pos /= d;
  2482. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2483. }
  2484. }
  2485. }
  2486. }
  2487. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2488. llama_pos result = 0;
  2489. for (uint32_t i = 0; i < cache.size; ++i) {
  2490. if (cache.cells[i].has_seq_id(seq_id)) {
  2491. result = std::max(result, cache.cells[i].pos);
  2492. }
  2493. }
  2494. return result;
  2495. }
  2496. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2497. cache.do_defrag = true;
  2498. }
  2499. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2500. // the FA kernels require padding to avoid extra runtime boundary checks
  2501. return cparams.flash_attn ? 256u : 32u;
  2502. }
  2503. //
  2504. // model loading and saving
  2505. //
  2506. enum llama_fver {
  2507. GGUF_FILE_VERSION_V1 = 1,
  2508. GGUF_FILE_VERSION_V2 = 2,
  2509. GGUF_FILE_VERSION_V3 = 3,
  2510. };
  2511. static const char * llama_file_version_name(llama_fver version) {
  2512. switch (version) {
  2513. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2514. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2515. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2516. }
  2517. return "unknown";
  2518. }
  2519. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2520. char buf[256];
  2521. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2522. for (size_t i = 1; i < ne.size(); i++) {
  2523. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2524. }
  2525. return buf;
  2526. }
  2527. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2528. char buf[256];
  2529. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2530. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2531. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2532. }
  2533. return buf;
  2534. }
  2535. namespace GGUFMeta {
  2536. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2537. struct GKV_Base_Type {
  2538. static constexpr gguf_type gt = gt_;
  2539. static T getter(const gguf_context * ctx, const int kid) {
  2540. return gfun(ctx, kid);
  2541. }
  2542. };
  2543. template<typename T> struct GKV_Base;
  2544. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2545. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2546. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2547. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2548. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2549. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2550. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2551. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2552. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2553. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2554. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2555. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2556. template<> struct GKV_Base<std::string> {
  2557. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2558. static std::string getter(const gguf_context * ctx, const int kid) {
  2559. return gguf_get_val_str(ctx, kid);
  2560. }
  2561. };
  2562. struct ArrayInfo {
  2563. const gguf_type gt;
  2564. const size_t length;
  2565. const void * data;
  2566. };
  2567. template<> struct GKV_Base<ArrayInfo> {
  2568. public:
  2569. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2570. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2571. return ArrayInfo {
  2572. gguf_get_arr_type(ctx, k),
  2573. size_t(gguf_get_arr_n(ctx, k)),
  2574. gguf_get_arr_data(ctx, k),
  2575. };
  2576. }
  2577. };
  2578. template<typename T>
  2579. class GKV : public GKV_Base<T> {
  2580. GKV() = delete;
  2581. public:
  2582. static T get_kv(const gguf_context * ctx, const int k) {
  2583. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2584. if (kt != GKV::gt) {
  2585. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2586. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2587. }
  2588. return GKV::getter(ctx, k);
  2589. }
  2590. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2591. switch (ty) {
  2592. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2593. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2594. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2595. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2596. }
  2597. return "unknown";
  2598. }
  2599. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2600. if (!ovrd) { return false; }
  2601. if (ovrd->tag == expected_type) {
  2602. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2603. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2604. switch (ovrd->tag) {
  2605. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2606. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2607. } break;
  2608. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2609. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2610. } break;
  2611. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2612. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2613. } break;
  2614. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2615. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2616. } break;
  2617. default:
  2618. // Shouldn't be possible to end up here, but just in case...
  2619. throw std::runtime_error(
  2620. format("Unsupported attempt to override %s type for metadata key %s\n",
  2621. override_type_to_str(ovrd->tag), ovrd->key));
  2622. }
  2623. return true;
  2624. }
  2625. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2626. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2627. return false;
  2628. }
  2629. template<typename OT>
  2630. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2631. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2632. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2633. target = ovrd->val_bool;
  2634. return true;
  2635. }
  2636. return false;
  2637. }
  2638. template<typename OT>
  2639. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2640. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2641. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2642. target = ovrd->val_i64;
  2643. return true;
  2644. }
  2645. return false;
  2646. }
  2647. template<typename OT>
  2648. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2649. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2650. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2651. target = ovrd->val_f64;
  2652. return true;
  2653. }
  2654. return false;
  2655. }
  2656. template<typename OT>
  2657. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2658. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2659. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2660. target = ovrd->val_str;
  2661. return true;
  2662. }
  2663. return false;
  2664. }
  2665. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2666. if (try_override<T>(target, ovrd)) {
  2667. return true;
  2668. }
  2669. if (k < 0) { return false; }
  2670. target = get_kv(ctx, k);
  2671. return true;
  2672. }
  2673. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2674. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2675. }
  2676. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2677. return set(ctx, key.c_str(), target, ovrd);
  2678. }
  2679. };
  2680. }
  2681. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2682. struct llama_model_loader {
  2683. int n_kv = 0;
  2684. int n_tensors = 0;
  2685. int n_created = 0;
  2686. int64_t n_elements = 0;
  2687. size_t n_bytes = 0;
  2688. bool use_mmap = false;
  2689. bool check_tensors;
  2690. llama_files files;
  2691. llama_ftype ftype;
  2692. llama_fver fver;
  2693. llama_mmaps mappings;
  2694. // Holds information on a model weight
  2695. struct llama_tensor_weight {
  2696. uint16_t idx; // source file index
  2697. size_t offs; // tensor data offset in the original file
  2698. ggml_tensor * tensor;
  2699. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2700. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2701. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2702. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2703. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2704. }
  2705. }
  2706. };
  2707. std::vector<llama_tensor_weight> weights;
  2708. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2709. struct gguf_context * meta = NULL;
  2710. std::vector<ggml_context *> contexts;
  2711. std::string arch_name;
  2712. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2713. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2714. int trace = 0;
  2715. if (getenv("LLAMA_TRACE")) {
  2716. trace = atoi(getenv("LLAMA_TRACE"));
  2717. }
  2718. if (param_overrides_p != nullptr) {
  2719. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2720. kv_overrides.insert({std::string(p->key), *p});
  2721. }
  2722. }
  2723. struct ggml_context * ctx = NULL;
  2724. struct gguf_init_params params = {
  2725. /*.no_alloc = */ true,
  2726. /*.ctx = */ &ctx,
  2727. };
  2728. meta = gguf_init_from_file(fname.c_str(), params);
  2729. if (!meta) {
  2730. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2731. }
  2732. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2733. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2734. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2735. contexts.emplace_back(ctx);
  2736. // Save tensors data offset of the main file.
  2737. // For subsidiary files, `meta` tensor data offset must not be used,
  2738. // so we build a unified tensors index for weights.
  2739. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2740. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2741. }
  2742. uint16_t n_split = 0;
  2743. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2744. // Load additional GGML contexts
  2745. if (n_split > 1) {
  2746. uint16_t idx = 0;
  2747. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2748. if (idx != 0) {
  2749. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2750. }
  2751. char split_prefix[PATH_MAX] = {0};
  2752. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2753. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2754. }
  2755. if (trace > 0) {
  2756. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2757. }
  2758. char split_path[PATH_MAX] = {0};
  2759. for (idx = 1; idx < n_split; idx++) {
  2760. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2761. struct gguf_init_params split_params = {
  2762. /*.no_alloc = */ true,
  2763. /*.ctx = */ &ctx,
  2764. };
  2765. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2766. if (!ctx_gguf) {
  2767. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2768. }
  2769. files.emplace_back(new llama_file(split_path, "rb"));
  2770. contexts.emplace_back(ctx);
  2771. // Save tensors data offset info of the shard.
  2772. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2773. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2774. }
  2775. gguf_free(ctx_gguf);
  2776. }
  2777. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2778. // sanity check
  2779. {
  2780. const int n_tensors_loaded = (int) weights.size();
  2781. if (n_tensors != n_tensors_loaded) {
  2782. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2783. }
  2784. }
  2785. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2786. }
  2787. n_kv = gguf_get_n_kv(meta);
  2788. n_tensors = weights.size();
  2789. fver = (enum llama_fver) gguf_get_version(meta);
  2790. std::set<std::string> tensor_names;
  2791. for (auto & w : weights) {
  2792. n_elements += ggml_nelements(w.tensor);
  2793. n_bytes += ggml_nbytes(w.tensor);
  2794. // make sure there is no duplicated tensor names
  2795. const std::string name(w.tensor->name);
  2796. auto found = tensor_names.find(name);
  2797. if (found != tensor_names.end()) {
  2798. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2799. }
  2800. tensor_names.insert(name);
  2801. }
  2802. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2803. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2804. // determine file type based on the number of tensors for each quantization and print meta data
  2805. // TODO: make optional
  2806. {
  2807. std::map<enum ggml_type, uint32_t> n_type;
  2808. uint32_t n_type_max = 0;
  2809. enum ggml_type type_max = GGML_TYPE_F32;
  2810. for (int i = 0; i < n_tensors; i++) {
  2811. const ggml_tensor * tensor = weights.at(i).tensor;
  2812. enum ggml_type type = tensor->type;
  2813. n_type[type]++;
  2814. if (n_type_max < n_type[type]) {
  2815. n_type_max = n_type[type];
  2816. type_max = type;
  2817. }
  2818. if (trace > 0) {
  2819. const uint16_t sid = weights.at(i).idx;
  2820. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2821. }
  2822. }
  2823. switch (type_max) {
  2824. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2825. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2826. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2827. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2828. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2829. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2830. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2831. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2832. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2833. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2834. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2835. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2836. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2837. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2838. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2839. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2840. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2841. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2842. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2843. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2844. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2845. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2846. default:
  2847. {
  2848. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2849. ftype = LLAMA_FTYPE_ALL_F32;
  2850. } break;
  2851. }
  2852. // this is a way to mark that we have "guessed" the file type
  2853. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2854. {
  2855. const int kid = gguf_find_key(meta, "general.file_type");
  2856. if (kid >= 0) {
  2857. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2858. }
  2859. }
  2860. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2861. for (int i = 0; i < n_kv; i++) {
  2862. const char * name = gguf_get_key(meta, i);
  2863. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2864. const std::string type_name =
  2865. type == GGUF_TYPE_ARRAY
  2866. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2867. : gguf_type_name(type);
  2868. std::string value = gguf_kv_to_str(meta, i);
  2869. const size_t MAX_VALUE_LEN = 40;
  2870. if (value.size() > MAX_VALUE_LEN) {
  2871. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2872. }
  2873. replace_all(value, "\n", "\\n");
  2874. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2875. }
  2876. // print type counts
  2877. for (auto & kv : n_type) {
  2878. if (kv.second == 0) {
  2879. continue;
  2880. }
  2881. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2882. }
  2883. }
  2884. if (!llama_mmap::SUPPORTED) {
  2885. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2886. use_mmap = false;
  2887. }
  2888. this->use_mmap = use_mmap;
  2889. this->check_tensors = check_tensors;
  2890. }
  2891. ~llama_model_loader() {
  2892. if (meta) {
  2893. gguf_free(meta);
  2894. }
  2895. for (auto * ctx : contexts) {
  2896. ggml_free(ctx);
  2897. }
  2898. }
  2899. template<typename T>
  2900. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2901. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2902. const int kid = gguf_find_key(meta, key.c_str());
  2903. if (kid < 0) {
  2904. if (required) {
  2905. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2906. }
  2907. return false;
  2908. }
  2909. struct GGUFMeta::ArrayInfo arr_info =
  2910. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2911. result = arr_info.length;
  2912. return true;
  2913. }
  2914. template<typename T>
  2915. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2916. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2917. return get_arr_n(llm_kv(kid), result, required);
  2918. }
  2919. template<typename T>
  2920. bool get_key(const std::string & key, T & result, const bool required = true) {
  2921. auto it = kv_overrides.find(key);
  2922. const struct llama_model_kv_override * override =
  2923. it != kv_overrides.end() ? &it->second : nullptr;
  2924. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2925. if (required && !found) {
  2926. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2927. }
  2928. return found;
  2929. }
  2930. template<typename T>
  2931. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2932. return get_key(llm_kv(kid), result, required);
  2933. }
  2934. std::string get_arch_name() const {
  2935. return arch_name;
  2936. }
  2937. enum llm_arch get_arch() const {
  2938. return llm_kv.arch;
  2939. }
  2940. const char * get_tensor_name(int i) const {
  2941. return weights.at(i).tensor->name;
  2942. }
  2943. const llama_tensor_weight * get_weight(const char * name) const {
  2944. for (const auto & weight : weights) {
  2945. if (strcmp(name, weight.tensor->name) == 0) {
  2946. return &weight;
  2947. }
  2948. }
  2949. return nullptr;
  2950. }
  2951. const llama_tensor_weight * get_weight(int i) const {
  2952. return get_weight(get_tensor_name(i));
  2953. }
  2954. const llama_tensor_weight & require_weight(const char * name) const {
  2955. const llama_tensor_weight * weight = get_weight(name);
  2956. if (!weight) {
  2957. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2958. }
  2959. return *weight;
  2960. }
  2961. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2962. const auto * weight = get_weight(name);
  2963. if (!weight) {
  2964. return nullptr;
  2965. }
  2966. return weight->tensor;
  2967. }
  2968. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2969. struct ggml_tensor * tensor = get_tensor_meta(name);
  2970. if (!tensor) {
  2971. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2972. }
  2973. return tensor;
  2974. }
  2975. struct ggml_tensor * get_tensor_meta(int i) const {
  2976. return get_tensor_meta(get_tensor_name(i));
  2977. }
  2978. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2979. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2980. ggml_set_name(tensor, ggml_get_name(cur));
  2981. n_created++;
  2982. return tensor;
  2983. }
  2984. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2985. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2986. if (cur == NULL) {
  2987. if (!required) {
  2988. return NULL;
  2989. }
  2990. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2991. }
  2992. {
  2993. bool is_ok = true;
  2994. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2995. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2996. is_ok = false;
  2997. break;
  2998. }
  2999. }
  3000. if (!is_ok) {
  3001. throw std::runtime_error(
  3002. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3003. __func__, name.c_str(),
  3004. llama_format_tensor_shape(ne).c_str(),
  3005. llama_format_tensor_shape(cur).c_str()));
  3006. }
  3007. }
  3008. return cur;
  3009. }
  3010. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  3011. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3012. if (cur == NULL) {
  3013. return NULL;
  3014. }
  3015. return create_tensor_for(ctx, cur);
  3016. }
  3017. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3018. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3019. if (cur == NULL) {
  3020. return NULL;
  3021. }
  3022. if (cur->type != base->type) {
  3023. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3024. }
  3025. std::array<int64_t, GGML_MAX_DIMS> dims;
  3026. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3027. dims[i] = i < ne.size() ? ne[i] : 1;
  3028. }
  3029. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3030. dims[0], dims[1], dims[2], dims[3],
  3031. cur->nb[1], cur->nb[2], cur->nb[3],
  3032. offset);
  3033. ggml_set_name(tensor, name.c_str());
  3034. n_created++;
  3035. return tensor;
  3036. }
  3037. void done_getting_tensors() const {
  3038. if (n_created != n_tensors) {
  3039. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3040. }
  3041. }
  3042. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3043. if (use_mmap) {
  3044. mappings.reserve(files.size());
  3045. mmaps_used.reserve(files.size());
  3046. for (const auto & file : files) {
  3047. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3048. mmaps_used.emplace_back(mapping->size, 0);
  3049. if (mlock_mmaps) {
  3050. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3051. mlock_mmap->init(mapping->addr);
  3052. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3053. }
  3054. mappings.emplace_back(std::move(mapping));
  3055. }
  3056. }
  3057. // compute the total size of all tensors for progress reporting
  3058. for (auto & w : weights) {
  3059. size_data += ggml_nbytes(w.tensor);
  3060. }
  3061. }
  3062. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3063. GGML_ASSERT(!mappings.empty());
  3064. const auto & mapping = mappings.at(idx);
  3065. *first = mapping->size;
  3066. *last = 0;
  3067. *addr = mapping->addr;
  3068. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3069. try {
  3070. const auto * weight = get_weight(ggml_get_name(tensor));
  3071. if (!weight) {
  3072. continue;
  3073. }
  3074. if (weight->idx != idx) {
  3075. continue;
  3076. }
  3077. *first = std::min(*first, weight->offs);
  3078. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3079. } catch(...) {
  3080. // the tensor is not in the model
  3081. }
  3082. }
  3083. }
  3084. // for backwards compatibility, does not support ggml-backend
  3085. void load_data_for(struct ggml_tensor * cur) const {
  3086. const auto & w = require_weight(ggml_get_name(cur));
  3087. if (use_mmap) {
  3088. const auto & mapping = mappings.at(w.idx);
  3089. if (cur->data == nullptr) {
  3090. cur->data = (uint8_t *)mapping->addr + w.offs;
  3091. } else {
  3092. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3093. }
  3094. } else {
  3095. GGML_ASSERT(cur->data != nullptr);
  3096. GGML_ASSERT(w.idx < files.size());
  3097. const auto & file = files.at(w.idx);
  3098. file->seek(w.offs, SEEK_SET);
  3099. file->read_raw(cur->data, ggml_nbytes(cur));
  3100. }
  3101. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3102. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3103. }
  3104. }
  3105. size_t size_done = 0;
  3106. size_t size_data = 0;
  3107. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3108. // Returns false if cancelled by progress_callback
  3109. bool load_all_data(
  3110. struct ggml_context * ctx,
  3111. llama_buf_map & bufs_mmap,
  3112. llama_mlocks * lmlocks,
  3113. llama_progress_callback progress_callback,
  3114. void * progress_callback_user_data) {
  3115. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3116. std::vector<no_init<uint8_t>> read_buf;
  3117. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3118. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3119. const auto * weight = get_weight(ggml_get_name(cur));
  3120. if (weight == nullptr) {
  3121. // this can happen with split experts models
  3122. continue;
  3123. }
  3124. if (progress_callback) {
  3125. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3126. return false;
  3127. }
  3128. }
  3129. size_t n_size = ggml_nbytes(cur);
  3130. if (use_mmap) {
  3131. const auto & mapping = mappings.at(weight->idx);
  3132. ggml_backend_buffer_t buf_mmap = nullptr;
  3133. if (bufs_mmap.count(weight->idx)) {
  3134. buf_mmap = bufs_mmap.at(weight->idx);
  3135. }
  3136. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3137. if (check_tensors) {
  3138. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3139. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3140. }));
  3141. }
  3142. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3143. if (buf_mmap && cur->data == nullptr) {
  3144. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3145. if (lmlocks) {
  3146. const auto & lmlock = lmlocks->at(weight->idx);
  3147. lmlock->grow_to(weight->offs + n_size);
  3148. }
  3149. auto & mmap_used = mmaps_used[weight->idx];
  3150. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3151. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3152. } else {
  3153. ggml_backend_tensor_set(cur, data, 0, n_size);
  3154. }
  3155. } else {
  3156. GGML_ASSERT(weight->idx < files.size());
  3157. const auto & file = files.at(weight->idx);
  3158. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3159. file->seek(weight->offs, SEEK_SET);
  3160. file->read_raw(cur->data, n_size);
  3161. if (check_tensors) {
  3162. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3163. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3164. }));
  3165. }
  3166. } else {
  3167. read_buf.resize(n_size);
  3168. file->seek(weight->offs, SEEK_SET);
  3169. file->read_raw(read_buf.data(), n_size);
  3170. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3171. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3172. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3173. }
  3174. }
  3175. }
  3176. size_done += n_size;
  3177. }
  3178. // check validation results
  3179. bool validation_failed = false;
  3180. for (auto & future : validation_result) {
  3181. auto result = future.get();
  3182. if (!result.second) {
  3183. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3184. validation_failed = true;
  3185. }
  3186. }
  3187. if (validation_failed) {
  3188. throw std::runtime_error("found tensors with invalid data");
  3189. }
  3190. // check if this is the last call and do final cleanup
  3191. if (size_done >= size_data) {
  3192. // unmap offloaded tensors and metadata
  3193. if (use_mmap) {
  3194. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3195. const auto & mmap_used = mmaps_used.at(idx);
  3196. auto & mapping = mappings.at(idx);
  3197. mapping->unmap_fragment(0, mmap_used.first);
  3198. if (mmap_used.second != 0) {
  3199. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3200. }
  3201. }
  3202. }
  3203. if (progress_callback) {
  3204. // Even though the model is done loading, we still honor
  3205. // cancellation since we need to free allocations.
  3206. return progress_callback(1.0f, progress_callback_user_data);
  3207. }
  3208. }
  3209. return true;
  3210. }
  3211. };
  3212. template<>
  3213. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3214. uint32_t tmp;
  3215. const bool found = get_key(kid, tmp, required);
  3216. if (found) {
  3217. result = (enum llama_pooling_type) tmp;
  3218. } else {
  3219. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3220. }
  3221. return found;
  3222. }
  3223. //
  3224. // load LLaMA models
  3225. //
  3226. static const char * llama_model_arch_name(llm_arch arch) {
  3227. auto it = LLM_ARCH_NAMES.find(arch);
  3228. if (it == LLM_ARCH_NAMES.end()) {
  3229. return "unknown";
  3230. }
  3231. return it->second;
  3232. }
  3233. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3234. if (ftype & LLAMA_FTYPE_GUESSED) {
  3235. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3236. }
  3237. switch (ftype) {
  3238. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3239. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3240. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3241. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3242. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3243. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3244. return "Q4_1, some F16";
  3245. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3246. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3247. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3248. // K-quants
  3249. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3250. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3251. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3252. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3253. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3254. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3255. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3256. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3257. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3258. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3259. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3260. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3261. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3262. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3263. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3264. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3265. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3266. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3267. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3268. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3269. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3270. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3271. default: return "unknown, may not work";
  3272. }
  3273. }
  3274. static const char * llama_model_type_name(e_model type) {
  3275. switch (type) {
  3276. case MODEL_22M: return "22M";
  3277. case MODEL_33M: return "33M";
  3278. case MODEL_109M: return "109M";
  3279. case MODEL_137M: return "137M";
  3280. case MODEL_0_5B: return "0.5B";
  3281. case MODEL_1B: return "1B";
  3282. case MODEL_2B: return "2B";
  3283. case MODEL_3B: return "3B";
  3284. case MODEL_7B: return "7B";
  3285. case MODEL_8B: return "8B";
  3286. case MODEL_12B: return "12B";
  3287. case MODEL_13B: return "13B";
  3288. case MODEL_14B: return "14B";
  3289. case MODEL_15B: return "15B";
  3290. case MODEL_20B: return "20B";
  3291. case MODEL_30B: return "30B";
  3292. case MODEL_34B: return "34B";
  3293. case MODEL_35B: return "35B";
  3294. case MODEL_40B: return "40B";
  3295. case MODEL_65B: return "65B";
  3296. case MODEL_70B: return "70B";
  3297. case MODEL_314B: return "314B";
  3298. case MODEL_SMALL: return "0.1B";
  3299. case MODEL_MEDIUM: return "0.4B";
  3300. case MODEL_LARGE: return "0.8B";
  3301. case MODEL_XL: return "1.5B";
  3302. case MODEL_A2_7B: return "A2.7B";
  3303. case MODEL_8x7B: return "8x7B";
  3304. case MODEL_8x22B: return "8x22B";
  3305. case MODEL_16x12B: return "16x12B";
  3306. default: return "?B";
  3307. }
  3308. }
  3309. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3310. switch (type) {
  3311. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3312. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3313. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3314. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3315. default: return "unknown";
  3316. }
  3317. }
  3318. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3319. model.arch = ml.get_arch();
  3320. if (model.arch == LLM_ARCH_UNKNOWN) {
  3321. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3322. }
  3323. }
  3324. static void llm_load_hparams(
  3325. llama_model_loader & ml,
  3326. llama_model & model) {
  3327. auto & hparams = model.hparams;
  3328. const gguf_context * ctx = ml.meta;
  3329. // get metadata as string
  3330. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3331. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3332. if (type == GGUF_TYPE_ARRAY) {
  3333. continue;
  3334. }
  3335. const char * name = gguf_get_key(ctx, i);
  3336. const std::string value = gguf_kv_to_str(ctx, i);
  3337. model.gguf_kv.emplace(name, value);
  3338. }
  3339. // get general kv
  3340. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3341. // get hparams kv
  3342. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3343. // everything past this point is not vocab-related
  3344. if (hparams.vocab_only) {
  3345. return;
  3346. }
  3347. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3348. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3349. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3350. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3351. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3352. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3353. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3354. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3355. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3356. if (hparams.n_expert > 0) {
  3357. GGML_ASSERT(hparams.n_expert_used > 0);
  3358. } else {
  3359. GGML_ASSERT(hparams.n_expert_used == 0);
  3360. }
  3361. // n_head_kv is optional, default to n_head
  3362. hparams.n_head_kv = hparams.n_head;
  3363. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3364. bool rope_finetuned = false;
  3365. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3366. hparams.rope_finetuned = rope_finetuned;
  3367. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3368. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3369. // rope_freq_base (optional)
  3370. hparams.rope_freq_base_train = 10000.0f;
  3371. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3372. std::string rope_scaling("linear");
  3373. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3374. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3375. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3376. // rope_freq_scale (inverse of the kv) is optional
  3377. float ropescale = 0.0f;
  3378. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3379. // try the old key name
  3380. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3381. }
  3382. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3383. // sanity check for n_rot (optional)
  3384. {
  3385. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3386. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3387. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3388. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3389. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3390. }
  3391. }
  3392. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3393. // gpt-j n_rot = rotary_dim
  3394. }
  3395. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3396. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3397. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3398. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3399. // arch-specific KVs
  3400. switch (model.arch) {
  3401. case LLM_ARCH_LLAMA:
  3402. {
  3403. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3404. if (hparams.n_expert == 8) {
  3405. switch (hparams.n_layer) {
  3406. case 32: model.type = e_model::MODEL_8x7B; break;
  3407. case 56: model.type = e_model::MODEL_8x22B; break;
  3408. default: model.type = e_model::MODEL_UNKNOWN;
  3409. }
  3410. } else {
  3411. switch (hparams.n_layer) {
  3412. case 22: model.type = e_model::MODEL_1B; break;
  3413. case 26: model.type = e_model::MODEL_3B; break;
  3414. case 32: model.type = hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B; break;
  3415. case 40: model.type = e_model::MODEL_13B; break;
  3416. case 48: model.type = e_model::MODEL_34B; break;
  3417. case 60: model.type = e_model::MODEL_30B; break;
  3418. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3419. default: model.type = e_model::MODEL_UNKNOWN;
  3420. }
  3421. }
  3422. } break;
  3423. case LLM_ARCH_MINICPM:
  3424. {
  3425. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3426. switch (hparams.n_layer) {
  3427. case 40: model.type = e_model::MODEL_2B; break;
  3428. default: model.type = e_model::MODEL_UNKNOWN;
  3429. }
  3430. } break;
  3431. case LLM_ARCH_GROK:
  3432. {
  3433. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3434. switch (hparams.n_layer) {
  3435. case 64: model.type = e_model::MODEL_314B; break;
  3436. default: model.type = e_model::MODEL_UNKNOWN;
  3437. }
  3438. } break;
  3439. case LLM_ARCH_FALCON:
  3440. {
  3441. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3442. switch (hparams.n_layer) {
  3443. case 32: model.type = e_model::MODEL_7B; break;
  3444. case 60: model.type = e_model::MODEL_40B; break;
  3445. default: model.type = e_model::MODEL_UNKNOWN;
  3446. }
  3447. } break;
  3448. case LLM_ARCH_BAICHUAN:
  3449. {
  3450. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3451. switch (hparams.n_layer) {
  3452. case 32: model.type = e_model::MODEL_7B; break;
  3453. case 40: model.type = e_model::MODEL_13B; break;
  3454. default: model.type = e_model::MODEL_UNKNOWN;
  3455. }
  3456. if (model.type == e_model::MODEL_13B) {
  3457. // TODO: become GGUF KV parameter
  3458. hparams.f_max_alibi_bias = 8.0f;
  3459. }
  3460. } break;
  3461. case LLM_ARCH_STARCODER:
  3462. {
  3463. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3464. switch (hparams.n_layer) {
  3465. case 24: model.type = e_model::MODEL_1B; break;
  3466. case 36: model.type = e_model::MODEL_3B; break;
  3467. case 42: model.type = e_model::MODEL_7B; break;
  3468. case 40: model.type = e_model::MODEL_15B; break;
  3469. default: model.type = e_model::MODEL_UNKNOWN;
  3470. }
  3471. } break;
  3472. case LLM_ARCH_PERSIMMON:
  3473. {
  3474. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3475. switch (hparams.n_layer) {
  3476. case 36: model.type = e_model::MODEL_8B; break;
  3477. default: model.type = e_model::MODEL_UNKNOWN;
  3478. }
  3479. } break;
  3480. case LLM_ARCH_REFACT:
  3481. {
  3482. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3483. switch (hparams.n_layer) {
  3484. case 32: model.type = e_model::MODEL_1B; break;
  3485. default: model.type = e_model::MODEL_UNKNOWN;
  3486. }
  3487. // TODO: become GGUF KV parameter
  3488. hparams.f_max_alibi_bias = 8.0f;
  3489. } break;
  3490. case LLM_ARCH_BERT:
  3491. {
  3492. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3493. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3494. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3495. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3496. switch (hparams.n_layer) {
  3497. case 3:
  3498. model.type = e_model::MODEL_17M; break; // bge-micro
  3499. case 6:
  3500. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3501. case 12:
  3502. switch (hparams.n_embd) {
  3503. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3504. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3505. } break;
  3506. case 24:
  3507. model.type = e_model::MODEL_335M; break; // bge-large
  3508. }
  3509. } break;
  3510. case LLM_ARCH_JINA_BERT_V2:
  3511. {
  3512. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3513. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3514. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3515. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3516. hparams.f_max_alibi_bias = 8.0f;
  3517. switch (hparams.n_layer) {
  3518. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3519. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3520. }
  3521. } break;
  3522. case LLM_ARCH_NOMIC_BERT:
  3523. {
  3524. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3525. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3526. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3527. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3528. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3529. model.type = e_model::MODEL_137M;
  3530. }
  3531. } break;
  3532. case LLM_ARCH_BLOOM:
  3533. {
  3534. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3535. switch (hparams.n_layer) {
  3536. case 24: model.type = e_model::MODEL_1B; break;
  3537. case 30:
  3538. switch (hparams.n_embd) {
  3539. case 2560: model.type = e_model::MODEL_3B; break;
  3540. case 4096: model.type = e_model::MODEL_7B; break;
  3541. } break;
  3542. }
  3543. // TODO: become GGUF KV parameter
  3544. hparams.f_max_alibi_bias = 8.0f;
  3545. } break;
  3546. case LLM_ARCH_MPT:
  3547. {
  3548. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3549. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3550. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3551. switch (hparams.n_layer) {
  3552. case 32: model.type = e_model::MODEL_7B; break;
  3553. case 48: model.type = e_model::MODEL_30B; break;
  3554. default: model.type = e_model::MODEL_UNKNOWN;
  3555. }
  3556. } break;
  3557. case LLM_ARCH_STABLELM:
  3558. {
  3559. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3560. switch (hparams.n_layer) {
  3561. case 24: model.type = e_model::MODEL_1B; break;
  3562. case 32: model.type = e_model::MODEL_3B; break;
  3563. case 40: model.type = e_model::MODEL_12B; break;
  3564. default: model.type = e_model::MODEL_UNKNOWN;
  3565. }
  3566. } break;
  3567. case LLM_ARCH_QWEN:
  3568. {
  3569. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3570. switch (hparams.n_layer) {
  3571. case 32: model.type = e_model::MODEL_7B; break;
  3572. case 40: model.type = e_model::MODEL_13B; break;
  3573. default: model.type = e_model::MODEL_UNKNOWN;
  3574. }
  3575. } break;
  3576. case LLM_ARCH_QWEN2:
  3577. {
  3578. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3579. switch (hparams.n_layer) {
  3580. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3581. case 32: model.type = e_model::MODEL_7B; break;
  3582. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3583. case 80: model.type = e_model::MODEL_70B; break;
  3584. default: model.type = e_model::MODEL_UNKNOWN;
  3585. }
  3586. } break;
  3587. case LLM_ARCH_QWEN2MOE:
  3588. {
  3589. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3590. switch (hparams.n_layer) {
  3591. case 24: model.type = e_model::MODEL_A2_7B; break;
  3592. default: model.type = e_model::MODEL_UNKNOWN;
  3593. }
  3594. } break;
  3595. case LLM_ARCH_PHI2:
  3596. {
  3597. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3598. switch (hparams.n_layer) {
  3599. case 24: model.type = e_model::MODEL_1B; break;
  3600. case 32: model.type = e_model::MODEL_3B; break;
  3601. default: model.type = e_model::MODEL_UNKNOWN;
  3602. }
  3603. } break;
  3604. case LLM_ARCH_PHI3:
  3605. {
  3606. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3607. switch (hparams.n_layer) {
  3608. case 24: model.type = e_model::MODEL_1B; break;
  3609. case 32: model.type = e_model::MODEL_3B; break;
  3610. default: model.type = e_model::MODEL_UNKNOWN;
  3611. }
  3612. } break;
  3613. case LLM_ARCH_PLAMO:
  3614. {
  3615. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3616. switch (hparams.n_layer) {
  3617. case 40: model.type = e_model::MODEL_13B; break;
  3618. default: model.type = e_model::MODEL_UNKNOWN;
  3619. }
  3620. } break;
  3621. case LLM_ARCH_GPT2:
  3622. {
  3623. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3624. switch (hparams.n_layer) {
  3625. case 12: model.type = e_model::MODEL_SMALL; break;
  3626. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3627. case 36: model.type = e_model::MODEL_LARGE; break;
  3628. case 48: model.type = e_model::MODEL_XL; break;
  3629. default: model.type = e_model::MODEL_UNKNOWN;
  3630. }
  3631. } break;
  3632. case LLM_ARCH_CODESHELL:
  3633. {
  3634. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3635. switch (hparams.n_layer) {
  3636. case 42: model.type = e_model::MODEL_SMALL; break;
  3637. default: model.type = e_model::MODEL_UNKNOWN;
  3638. }
  3639. } break;
  3640. case LLM_ARCH_ORION:
  3641. {
  3642. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3643. switch (hparams.n_layer) {
  3644. case 40: model.type = e_model::MODEL_14B; break;
  3645. default: model.type = e_model::MODEL_UNKNOWN;
  3646. }
  3647. } break;
  3648. case LLM_ARCH_INTERNLM2:
  3649. {
  3650. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3651. switch (hparams.n_layer) {
  3652. case 32: model.type = e_model::MODEL_7B; break;
  3653. case 48: model.type = e_model::MODEL_20B; break;
  3654. default: model.type = e_model::MODEL_UNKNOWN;
  3655. }
  3656. } break;
  3657. case LLM_ARCH_GEMMA:
  3658. {
  3659. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3660. switch (hparams.n_layer) {
  3661. case 18: model.type = e_model::MODEL_2B; break;
  3662. case 28: model.type = e_model::MODEL_7B; break;
  3663. default: model.type = e_model::MODEL_UNKNOWN;
  3664. }
  3665. } break;
  3666. case LLM_ARCH_STARCODER2:
  3667. {
  3668. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3669. switch (hparams.n_layer) {
  3670. case 30: model.type = e_model::MODEL_3B; break;
  3671. case 32: model.type = e_model::MODEL_7B; break;
  3672. case 40: model.type = e_model::MODEL_15B; break;
  3673. default: model.type = e_model::MODEL_UNKNOWN;
  3674. }
  3675. } break;
  3676. case LLM_ARCH_MAMBA:
  3677. {
  3678. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3679. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3680. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3681. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3683. switch (hparams.n_layer) {
  3684. case 24:
  3685. switch (hparams.n_embd) {
  3686. case 768: model.type = e_model::MODEL_SMALL; break;
  3687. default: model.type = e_model::MODEL_UNKNOWN;
  3688. } break;
  3689. case 48:
  3690. switch (hparams.n_embd) {
  3691. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3692. case 1536: model.type = e_model::MODEL_LARGE; break;
  3693. case 2048: model.type = e_model::MODEL_XL; break;
  3694. default: model.type = e_model::MODEL_UNKNOWN;
  3695. } break;
  3696. case 64:
  3697. switch (hparams.n_embd) {
  3698. case 2560: model.type = e_model::MODEL_3B; break;
  3699. default: model.type = e_model::MODEL_UNKNOWN;
  3700. } break;
  3701. default: model.type = e_model::MODEL_UNKNOWN;
  3702. }
  3703. } break;
  3704. case LLM_ARCH_XVERSE:
  3705. {
  3706. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3707. switch (hparams.n_layer) {
  3708. case 32: model.type = e_model::MODEL_7B; break;
  3709. case 40: model.type = e_model::MODEL_13B; break;
  3710. case 80: model.type = e_model::MODEL_65B; break;
  3711. default: model.type = e_model::MODEL_UNKNOWN;
  3712. }
  3713. } break;
  3714. case LLM_ARCH_COMMAND_R:
  3715. {
  3716. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3717. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3718. switch (hparams.n_layer) {
  3719. case 40: model.type = e_model::MODEL_35B; break;
  3720. default: model.type = e_model::MODEL_UNKNOWN;
  3721. }
  3722. } break;
  3723. case LLM_ARCH_DBRX:
  3724. {
  3725. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3726. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3727. switch (hparams.n_layer) {
  3728. case 40: model.type = e_model::MODEL_16x12B; break;
  3729. default: model.type = e_model::MODEL_UNKNOWN;
  3730. }
  3731. } break;
  3732. case LLM_ARCH_OLMO:
  3733. {
  3734. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3735. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3736. switch (hparams.n_layer) {
  3737. case 22: model.type = e_model::MODEL_1B; break;
  3738. case 32: model.type = e_model::MODEL_7B; break;
  3739. case 80: model.type = e_model::MODEL_70B; break;
  3740. default: model.type = e_model::MODEL_UNKNOWN;
  3741. }
  3742. } break;
  3743. default: (void)0;
  3744. }
  3745. model.ftype = ml.ftype;
  3746. if (hparams.f_max_alibi_bias > 0.0f) {
  3747. hparams.use_alibi = true;
  3748. }
  3749. hparams.rope_type = llama_rope_type(&model);
  3750. }
  3751. // TODO: This should probably be in llama.h
  3752. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3753. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3754. );
  3755. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3756. static void llm_load_vocab(
  3757. llama_model_loader & ml,
  3758. llama_model & model) {
  3759. auto & vocab = model.vocab;
  3760. struct gguf_context * ctx = ml.meta;
  3761. const auto kv = LLM_KV(model.arch);
  3762. // determine vocab type
  3763. {
  3764. std::string tokenizer_model;
  3765. std::string tokenizer_pre;
  3766. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3767. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3768. if (tokenizer_model == "no_vocab") {
  3769. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3770. // default special tokens
  3771. vocab.special_bos_id = -1;
  3772. vocab.special_eos_id = -1;
  3773. vocab.special_unk_id = -1;
  3774. vocab.special_sep_id = -1;
  3775. vocab.special_pad_id = -1;
  3776. vocab.special_cls_id = -1;
  3777. vocab.special_mask_id = -1;
  3778. vocab.linefeed_id = -1;
  3779. return;
  3780. } else if (tokenizer_model == "llama") {
  3781. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3782. // default special tokens
  3783. vocab.special_bos_id = 1;
  3784. vocab.special_eos_id = 2;
  3785. vocab.special_unk_id = 0;
  3786. vocab.special_sep_id = -1;
  3787. vocab.special_pad_id = -1;
  3788. vocab.special_cls_id = -1;
  3789. vocab.special_mask_id = -1;
  3790. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3791. // prior to support of FIM special tokens in GGUF, the following
  3792. // will allow those models to continue to work. The general names
  3793. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3794. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3795. // new versions of these models have been published.
  3796. std::string gen_name;
  3797. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3798. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3799. [](unsigned char c){ return std::tolower(c); });
  3800. if (gen_name.find("code") != std::string::npos) {
  3801. if (model.arch == LLM_ARCH_LLAMA) {
  3802. vocab.special_prefix_id = 32007;
  3803. vocab.special_suffix_id = 32008;
  3804. vocab.special_middle_id = 32009;
  3805. vocab.special_eot_id = 32010;
  3806. } else if (model.arch == LLM_ARCH_GEMMA) {
  3807. vocab.special_prefix_id = 67;
  3808. vocab.special_suffix_id = 69;
  3809. vocab.special_middle_id = 68;
  3810. // TODO: this is not EOT, it is "file separator" token, needs fix
  3811. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3812. //vocab.special_eot_id = 70;
  3813. vocab.special_eot_id = 107;
  3814. }
  3815. }
  3816. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3817. if (add_space_prefix_keyidx != -1) {
  3818. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3819. } // The default value of add_space_prefix is true.
  3820. } else if (tokenizer_model == "bert") {
  3821. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3822. // default special tokens
  3823. vocab.special_bos_id = -1;
  3824. vocab.special_eos_id = -1;
  3825. vocab.special_unk_id = 100;
  3826. vocab.special_sep_id = 102;
  3827. vocab.special_pad_id = 0;
  3828. vocab.special_cls_id = 101;
  3829. vocab.special_mask_id = 103;
  3830. vocab.add_space_prefix = false;
  3831. } else {
  3832. if (tokenizer_model == "gpt2") {
  3833. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3834. } else {
  3835. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
  3836. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3837. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3838. return;
  3839. }
  3840. // read bpe merges and populate bpe ranks
  3841. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3842. if (merges_keyidx == -1) {
  3843. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3844. }
  3845. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3846. for (int i = 0; i < n_merges; i++) {
  3847. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3848. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3849. std::string first;
  3850. std::string second;
  3851. const size_t pos = word.find(' ', 1);
  3852. if (pos != std::string::npos) {
  3853. first = word.substr(0, pos);
  3854. second = word.substr(pos + 1);
  3855. }
  3856. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3857. }
  3858. // default special tokens
  3859. vocab.special_bos_id = 11;
  3860. vocab.special_eos_id = 11;
  3861. vocab.special_unk_id = -1;
  3862. vocab.special_sep_id = -1;
  3863. vocab.special_pad_id = -1;
  3864. vocab.special_cls_id = -1;
  3865. vocab.special_mask_id = -1;
  3866. }
  3867. // for now, only BPE models have pre-tokenizers
  3868. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  3869. if (tokenizer_pre.empty()) {
  3870. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  3871. LLAMA_LOG_WARN("%s: \n", __func__);
  3872. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3873. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  3874. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  3875. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  3876. LLAMA_LOG_WARN("%s: \n", __func__);
  3877. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3878. } else if (
  3879. tokenizer_pre == "default") {
  3880. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3881. } else if (
  3882. tokenizer_pre == "llama3" ||
  3883. tokenizer_pre == "llama-v3" ||
  3884. tokenizer_pre == "llama-bpe") {
  3885. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  3886. } else if (
  3887. tokenizer_pre == "deepseek-llm") {
  3888. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  3889. } else if (
  3890. tokenizer_pre == "deepseek-coder") {
  3891. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  3892. } else if (
  3893. tokenizer_pre == "falcon") {
  3894. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  3895. } else if (
  3896. tokenizer_pre == "mpt") {
  3897. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  3898. } else if (
  3899. tokenizer_pre == "starcoder") {
  3900. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  3901. } else if (
  3902. tokenizer_pre == "gpt-2" ||
  3903. tokenizer_pre == "jina-es" ||
  3904. tokenizer_pre == "jina-de" ||
  3905. tokenizer_pre == "jina-v2-es" ||
  3906. tokenizer_pre == "jina-v2-de") {
  3907. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  3908. } else if (
  3909. tokenizer_pre == "refact") {
  3910. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  3911. } else if (
  3912. tokenizer_pre == "command-r") {
  3913. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  3914. } else if (
  3915. tokenizer_pre == "qwen2") {
  3916. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  3917. } else if (
  3918. tokenizer_pre == "stablelm2") {
  3919. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  3920. } else if (
  3921. tokenizer_pre == "olmo") {
  3922. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  3923. } else if (
  3924. tokenizer_pre == "dbrx") {
  3925. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  3926. } else {
  3927. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  3928. }
  3929. } else {
  3930. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  3931. }
  3932. }
  3933. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3934. if (token_idx == -1) {
  3935. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3936. }
  3937. const float * scores = nullptr;
  3938. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3939. if (score_idx != -1) {
  3940. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3941. }
  3942. const int * toktypes = nullptr;
  3943. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3944. if (toktype_idx != -1) {
  3945. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3946. }
  3947. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3948. vocab.id_to_token.resize(n_vocab);
  3949. for (uint32_t i = 0; i < n_vocab; i++) {
  3950. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3951. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3952. vocab.token_to_id[word] = i;
  3953. auto & token_data = vocab.id_to_token[i];
  3954. token_data.text = std::move(word);
  3955. token_data.score = scores ? scores[i] : 0.0f;
  3956. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3957. }
  3958. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3959. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3960. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3961. try {
  3962. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3963. } catch (const std::exception & e) {
  3964. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3965. vocab.linefeed_id = vocab.special_pad_id;
  3966. }
  3967. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3968. vocab.linefeed_id = vocab.special_pad_id;
  3969. } else {
  3970. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3971. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3972. vocab.linefeed_id = ids[0];
  3973. }
  3974. // special tokens
  3975. {
  3976. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3977. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3978. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3979. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3980. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3981. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3982. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3983. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3984. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3985. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3986. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3987. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3988. };
  3989. for (const auto & it : special_token_types) {
  3990. const std::string & key = kv(std::get<0>(it));
  3991. int32_t & id = std::get<1>(it);
  3992. uint32_t new_id;
  3993. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3994. continue;
  3995. }
  3996. if (new_id >= vocab.id_to_token.size()) {
  3997. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3998. __func__, key.c_str(), new_id, id);
  3999. } else {
  4000. id = new_id;
  4001. }
  4002. }
  4003. // Handle add_bos_token and add_eos_token
  4004. {
  4005. bool temp = true;
  4006. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4007. vocab.special_add_bos = int(temp);
  4008. }
  4009. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4010. vocab.special_add_eos = int(temp);
  4011. }
  4012. }
  4013. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4014. //
  4015. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4016. // for now, we apply this workaround to find the EOT token based on its text
  4017. if (vocab.special_eot_id == -1) {
  4018. for (const auto & t : vocab.token_to_id) {
  4019. if (
  4020. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4021. // need to fix convert script
  4022. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4023. (t.first == "<|eot_id|>" ||
  4024. t.first == "<|im_end|>" ||
  4025. t.first == "<|end|>" ||
  4026. t.first == "<end_of_turn>"
  4027. )
  4028. ) {
  4029. vocab.special_eot_id = t.second;
  4030. break;
  4031. }
  4032. }
  4033. }
  4034. }
  4035. // build special tokens cache
  4036. {
  4037. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  4038. // and will always be correctly labeled in 'added_tokens.json' etc.
  4039. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  4040. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  4041. // are special tokens.
  4042. // From testing, this appears to correlate 1:1 with special tokens.
  4043. //
  4044. // Counting special tokens and verifying in only one direction
  4045. // is sufficient to detect difference in those two sets.
  4046. //
  4047. uint32_t special_tokens_count_by_type = 0;
  4048. uint32_t special_tokens_count_from_verification = 0;
  4049. bool special_tokens_definition_mismatch = false;
  4050. for (const auto & t : vocab.token_to_id) {
  4051. const auto & token = t.first;
  4052. const auto & id = t.second;
  4053. // Count all non-normal tokens in the vocab while iterating
  4054. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  4055. special_tokens_count_by_type++;
  4056. }
  4057. // Skip single character tokens
  4058. if (token.length() > 1) {
  4059. bool is_tokenizable = false;
  4060. // Split token string representation in two, in all possible ways
  4061. // and check if both halves can be matched to a valid token
  4062. for (unsigned i = 1; i < token.length();) {
  4063. const auto left = token.substr(0, i);
  4064. const auto right = token.substr(i);
  4065. // check if we didnt partition in the middle of a utf sequence
  4066. auto utf = utf8_len(left.at(left.length() - 1));
  4067. if (utf == 1) {
  4068. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  4069. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  4070. is_tokenizable = true;
  4071. break;
  4072. }
  4073. i++;
  4074. } else {
  4075. // skip over the rest of multibyte utf sequence
  4076. i += utf - 1;
  4077. }
  4078. }
  4079. if (!is_tokenizable) {
  4080. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  4081. // it's faster to re-filter them here, since there are way less candidates now
  4082. // Calculate a total "utf" length of a token string representation
  4083. size_t utf8_str_len = 0;
  4084. for (unsigned i = 0; i < token.length();) {
  4085. utf8_str_len++;
  4086. i += utf8_len(token.at(i));
  4087. }
  4088. // And skip the ones which are one character
  4089. if (utf8_str_len > 1) {
  4090. // At this point what we have left are special tokens only
  4091. vocab.special_tokens_cache[token] = id;
  4092. // Count manually found special tokens
  4093. special_tokens_count_from_verification++;
  4094. // If this manually found special token is not marked as such, flag a mismatch
  4095. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  4096. special_tokens_definition_mismatch = true;
  4097. }
  4098. }
  4099. }
  4100. }
  4101. }
  4102. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  4103. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  4104. __func__,
  4105. special_tokens_count_from_verification, vocab.id_to_token.size(),
  4106. special_tokens_count_by_type, vocab.id_to_token.size()
  4107. );
  4108. } else {
  4109. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  4110. __func__,
  4111. special_tokens_count_from_verification, vocab.id_to_token.size()
  4112. );
  4113. }
  4114. }
  4115. }
  4116. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4117. const auto & hparams = model.hparams;
  4118. const auto & vocab = model.vocab;
  4119. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4120. // hparams
  4121. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4122. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4123. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4124. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4125. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4126. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4127. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4128. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4129. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4130. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4131. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4132. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4133. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4134. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4135. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4136. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4137. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4138. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4139. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4140. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4141. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4142. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4143. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4144. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4145. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4146. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4147. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4148. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4149. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4150. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4151. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  4152. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4153. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4154. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4155. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4156. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4157. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4158. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4159. if (ml.n_elements >= 1e12) {
  4160. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4161. } else if (ml.n_elements >= 1e9) {
  4162. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4163. } else if (ml.n_elements >= 1e6) {
  4164. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4165. } else {
  4166. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4167. }
  4168. if (ml.n_bytes < GiB) {
  4169. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4170. } else {
  4171. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4172. }
  4173. // general kv
  4174. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4175. // special tokens
  4176. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4177. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4178. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4179. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4180. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4181. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4182. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4183. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4184. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4185. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4186. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4187. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4188. }
  4189. // Returns false if cancelled by progress_callback
  4190. static bool llm_load_tensors(
  4191. llama_model_loader & ml,
  4192. llama_model & model,
  4193. int n_gpu_layers,
  4194. enum llama_split_mode split_mode,
  4195. int main_gpu,
  4196. const float * tensor_split,
  4197. bool use_mlock,
  4198. llama_progress_callback progress_callback,
  4199. void * progress_callback_user_data) {
  4200. model.t_start_us = ggml_time_us();
  4201. auto & hparams = model.hparams;
  4202. #ifdef GGML_USE_SYCL
  4203. // disable MoE with SYCL until mul_mat_id is updated
  4204. if (hparams.n_expert > 0) {
  4205. n_gpu_layers = 0;
  4206. }
  4207. #endif
  4208. model.split_mode = split_mode;
  4209. model.main_gpu = main_gpu;
  4210. model.n_gpu_layers = n_gpu_layers;
  4211. const int64_t n_layer = hparams.n_layer;
  4212. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4213. bool use_mmap_buffer = true;
  4214. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4215. model.buft_input = llama_default_buffer_type_cpu(true);
  4216. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4217. model.buft_layer.resize(n_layer);
  4218. // assign cpu layers
  4219. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4220. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4221. }
  4222. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4223. // calculate the split points
  4224. int device_count = llama_get_device_count(model);
  4225. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4226. std::vector<float> splits(device_count);
  4227. if (all_zero) {
  4228. // default split, by free memory
  4229. for (int i = 0; i < device_count; ++i) {
  4230. splits[i] = llama_get_device_memory(model, i);
  4231. }
  4232. } else {
  4233. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4234. }
  4235. // sum and normalize the splits to get the split points
  4236. float split_sum = 0.0f;
  4237. for (int i = 0; i < device_count; ++i) {
  4238. split_sum += splits[i];
  4239. splits[i] = split_sum;
  4240. }
  4241. for (int i = 0; i < device_count; ++i) {
  4242. splits[i] /= split_sum;
  4243. }
  4244. // assign the repeating layers to the devices according to the splits
  4245. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4246. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4247. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4248. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4249. }
  4250. // assign the output layer
  4251. if (n_gpu_layers > n_layer) {
  4252. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4253. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4254. } else {
  4255. model.buft_output = llama_default_buffer_type_cpu(true);
  4256. }
  4257. } else {
  4258. ggml_backend_buffer_type_t split_buft;
  4259. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4260. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4261. } else {
  4262. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4263. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4264. }
  4265. // assign the repeating layers
  4266. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4267. model.buft_layer[i] = {
  4268. split_buft,
  4269. llama_default_buffer_type_offload(model, main_gpu)
  4270. };
  4271. }
  4272. // assign the output layer
  4273. if (n_gpu_layers > n_layer) {
  4274. model.buft_output = {
  4275. split_buft,
  4276. llama_default_buffer_type_offload(model, main_gpu)
  4277. };
  4278. } else {
  4279. model.buft_output = llama_default_buffer_type_cpu(true);
  4280. }
  4281. }
  4282. // count used buffer types
  4283. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4284. buft_layer_count[model.buft_input.buft]++;
  4285. buft_layer_count[model.buft_input.buft_matrix]++;
  4286. buft_layer_count[model.buft_output.buft]++;
  4287. buft_layer_count[model.buft_output.buft_matrix]++;
  4288. for (int64_t i = 0; i < n_layer; ++i) {
  4289. buft_layer_count[model.buft_layer[i].buft]++;
  4290. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4291. }
  4292. // create one context per buffer type
  4293. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4294. // for moe merged tensors
  4295. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4296. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4297. for (auto & it : buft_layer_count) {
  4298. struct ggml_init_params params = {
  4299. /*.mem_size =*/ ctx_size,
  4300. /*.mem_buffer =*/ NULL,
  4301. /*.no_alloc =*/ true,
  4302. };
  4303. ggml_context * ctx = ggml_init(params);
  4304. if (!ctx) {
  4305. throw std::runtime_error(format("failed to create context"));
  4306. }
  4307. ctx_map[it.first] = ctx;
  4308. model.ctxs.push_back(ctx);
  4309. }
  4310. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4311. // create tensors for the weights
  4312. {
  4313. const int64_t n_embd = hparams.n_embd;
  4314. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4315. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4316. const int64_t n_embd_gqa = n_embd_v_gqa;
  4317. const int64_t n_vocab = hparams.n_vocab;
  4318. const int64_t n_vocab_type = hparams.n_vocab_type;
  4319. const int64_t n_ff = hparams.n_ff;
  4320. const int64_t n_expert = hparams.n_expert;
  4321. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4322. throw std::runtime_error("model has expert layers but no expert layers are used");
  4323. }
  4324. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4325. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4326. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4327. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4328. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4329. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4330. model.layers.resize(n_layer);
  4331. const auto tn = LLM_TN(model.arch);
  4332. switch (model.arch) {
  4333. case LLM_ARCH_LLAMA:
  4334. case LLM_ARCH_REFACT:
  4335. case LLM_ARCH_MINICPM:
  4336. {
  4337. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4338. // output
  4339. {
  4340. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4341. if (model.arch != LLM_ARCH_MINICPM){
  4342. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4343. // if output is NULL, init from the input tok embed
  4344. if (model.output == NULL) {
  4345. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4346. ml.n_created--; // artificial tensor
  4347. ml.size_data += ggml_nbytes(model.output);
  4348. }
  4349. }
  4350. }
  4351. for (int i = 0; i < n_layer; ++i) {
  4352. ggml_context * ctx_layer = ctx_for_layer(i);
  4353. ggml_context * ctx_split = ctx_for_layer_split(i);
  4354. auto & layer = model.layers[i];
  4355. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4356. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4357. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4358. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4359. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4360. // optional bias tensors
  4361. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4362. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4363. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4364. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4365. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4366. if (n_expert == 0) {
  4367. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4368. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4369. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4370. } else {
  4371. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4372. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4373. if (layer.ffn_gate_exps) {
  4374. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4375. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4376. } else {
  4377. // merge split expert into a single tensor for compatibility with older models
  4378. // requires disabling mmap
  4379. use_mmap_buffer = false;
  4380. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4381. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4382. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4383. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4384. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4385. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4386. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4387. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4388. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4389. for (uint32_t x = 0; x < n_expert; ++x) {
  4390. // the individual experts are loaded into a view of the merged tensor
  4391. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4392. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4393. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4394. }
  4395. }
  4396. }
  4397. }
  4398. } break;
  4399. case LLM_ARCH_GROK:
  4400. {
  4401. if (n_expert == 0) {
  4402. throw std::runtime_error("Grok model cannot have zero experts");
  4403. }
  4404. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4405. // output
  4406. {
  4407. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4408. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4409. // if output is NULL, init from the input tok embed
  4410. if (model.output == NULL) {
  4411. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4412. ml.n_created--; // artificial tensor
  4413. ml.size_data += ggml_nbytes(model.output);
  4414. }
  4415. }
  4416. for (int i = 0; i < n_layer; ++i) {
  4417. ggml_context * ctx_layer = ctx_for_layer(i);
  4418. ggml_context * ctx_split = ctx_for_layer_split(i);
  4419. auto & layer = model.layers[i];
  4420. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4421. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4422. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4423. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4424. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4425. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4426. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4427. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4428. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4429. if (layer.ffn_gate_exps) {
  4430. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4431. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4432. } else {
  4433. // merge split expert into a single tensor for compatibility with older models
  4434. // requires disabling mmap
  4435. use_mmap_buffer = false;
  4436. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4437. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4438. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4439. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4440. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4441. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4442. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4443. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4444. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4445. for (uint32_t x = 0; x < n_expert; ++x) {
  4446. // the individual experts are loaded into a view of the merged tensor
  4447. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4448. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4449. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4450. }
  4451. }
  4452. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4453. }
  4454. } break;
  4455. case LLM_ARCH_DBRX:
  4456. {
  4457. if (n_expert == 0) {
  4458. throw std::runtime_error("DBRX model cannot have zero experts");
  4459. }
  4460. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4461. // output
  4462. {
  4463. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4464. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4465. }
  4466. for (int i = 0; i < n_layer; ++i) {
  4467. ggml_context * ctx_layer = ctx_for_layer(i);
  4468. ggml_context * ctx_split = ctx_for_layer_split(i);
  4469. auto & layer = model.layers[i];
  4470. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4471. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4472. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4473. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4474. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4475. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4476. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4477. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4478. }
  4479. } break;
  4480. case LLM_ARCH_BAICHUAN:
  4481. {
  4482. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4483. {
  4484. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4485. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4486. }
  4487. for (int i = 0; i < n_layer; ++i) {
  4488. ggml_context * ctx_layer = ctx_for_layer(i);
  4489. ggml_context * ctx_split = ctx_for_layer_split(i);
  4490. auto & layer = model.layers[i];
  4491. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4492. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4493. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4494. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4495. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4496. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4497. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4498. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4499. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4500. }
  4501. } break;
  4502. case LLM_ARCH_FALCON:
  4503. {
  4504. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4505. // output
  4506. {
  4507. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4508. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4509. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4510. if (!model.output) {
  4511. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4512. ml.n_created--; // artificial tensor
  4513. ml.size_data += ggml_nbytes(model.output);
  4514. }
  4515. }
  4516. for (int i = 0; i < n_layer; ++i) {
  4517. ggml_context * ctx_layer = ctx_for_layer(i);
  4518. ggml_context * ctx_split = ctx_for_layer_split(i);
  4519. auto & layer = model.layers[i];
  4520. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4521. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4522. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4523. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4524. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4525. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4526. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4527. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4528. }
  4529. } break;
  4530. case LLM_ARCH_STARCODER:
  4531. {
  4532. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4533. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4534. // output
  4535. {
  4536. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4537. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4538. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4539. if (!model.output) {
  4540. // needs to be on GPU
  4541. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4542. ml.n_created--; // artificial tensor
  4543. ml.size_data += ggml_nbytes(model.output);
  4544. }
  4545. }
  4546. for (int i = 0; i < n_layer; ++i) {
  4547. ggml_context * ctx_layer = ctx_for_layer(i);
  4548. ggml_context * ctx_split = ctx_for_layer_split(i);
  4549. auto & layer = model.layers[i];
  4550. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4551. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4552. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4553. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4554. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4555. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4556. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4557. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4558. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4559. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4560. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4561. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4562. }
  4563. } break;
  4564. case LLM_ARCH_PERSIMMON:
  4565. {
  4566. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4567. {
  4568. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4569. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4570. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4571. }
  4572. for (int i = 0; i < n_layer; ++i) {
  4573. ggml_context * ctx_layer = ctx_for_layer(i);
  4574. ggml_context * ctx_split = ctx_for_layer_split(i);
  4575. auto & layer = model.layers[i];
  4576. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4577. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4578. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4579. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4580. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4581. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4582. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4583. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4584. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4585. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4586. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4587. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4588. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4589. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4590. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4591. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4592. }
  4593. } break;
  4594. case LLM_ARCH_BERT:
  4595. case LLM_ARCH_NOMIC_BERT:
  4596. {
  4597. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4598. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4599. if (model.arch == LLM_ARCH_BERT) {
  4600. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4601. }
  4602. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4603. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4604. for (int i = 0; i < n_layer; ++i) {
  4605. ggml_context * ctx_layer = ctx_for_layer(i);
  4606. ggml_context * ctx_split = ctx_for_layer_split(i);
  4607. auto & layer = model.layers[i];
  4608. if (model.arch == LLM_ARCH_BERT) {
  4609. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4610. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4611. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4612. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4613. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4614. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4615. } else {
  4616. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4617. }
  4618. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4619. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4620. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4621. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4622. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4623. if (model.arch == LLM_ARCH_BERT) {
  4624. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4625. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4626. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4627. } else {
  4628. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4629. }
  4630. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4631. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4632. }
  4633. } break;
  4634. case LLM_ARCH_JINA_BERT_V2:
  4635. {
  4636. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4637. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4638. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4639. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4640. for (int i = 0; i < n_layer; ++i) {
  4641. ggml_context * ctx_layer = ctx_for_layer(i);
  4642. ggml_context * ctx_split = ctx_for_layer_split(i);
  4643. auto & layer = model.layers[i]; // JinaBertLayer
  4644. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4645. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4646. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4647. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4648. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4649. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4650. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4651. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4652. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4653. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4654. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4655. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4656. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4657. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4658. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4659. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4660. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4661. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4662. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4663. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4664. }
  4665. } break;
  4666. case LLM_ARCH_BLOOM:
  4667. {
  4668. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4669. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4670. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4671. // output
  4672. {
  4673. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4674. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4675. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4676. }
  4677. for (int i = 0; i < n_layer; ++i) {
  4678. ggml_context * ctx_layer = ctx_for_layer(i);
  4679. ggml_context * ctx_split = ctx_for_layer_split(i);
  4680. auto & layer = model.layers[i];
  4681. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4682. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4683. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4684. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4685. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4686. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4687. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4688. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4689. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4690. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4691. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4692. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4693. }
  4694. } break;
  4695. case LLM_ARCH_MPT:
  4696. {
  4697. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4698. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4699. // output
  4700. {
  4701. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4702. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4703. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4704. if (!model.output) {
  4705. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4706. ml.n_created--; // artificial tensor
  4707. ml.size_data += ggml_nbytes(model.output);
  4708. }
  4709. }
  4710. for (int i = 0; i < n_layer; ++i) {
  4711. ggml_context * ctx_layer = ctx_for_layer(i);
  4712. ggml_context * ctx_split = ctx_for_layer_split(i);
  4713. auto & layer = model.layers[i];
  4714. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4715. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4716. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4717. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4718. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4719. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4720. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4721. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4722. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4723. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4724. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4725. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4726. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4727. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4728. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4729. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4730. // AWQ ScaleActivation layer
  4731. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4732. }
  4733. } break;
  4734. case LLM_ARCH_STABLELM:
  4735. {
  4736. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4737. // output
  4738. {
  4739. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4740. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4741. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4742. }
  4743. for (int i = 0; i < n_layer; ++i) {
  4744. ggml_context * ctx_layer = ctx_for_layer(i);
  4745. ggml_context * ctx_split = ctx_for_layer_split(i);
  4746. auto & layer = model.layers[i];
  4747. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4748. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4749. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4750. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4751. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4752. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4753. // optional bias tensors, present in Stable LM 2 1.6B
  4754. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4755. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4756. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4757. // optional q and k layernorms, present in StableLM 2 12B
  4758. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4759. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4760. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4761. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4762. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4763. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4764. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4765. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4766. }
  4767. } break;
  4768. case LLM_ARCH_QWEN:
  4769. {
  4770. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4771. // output
  4772. {
  4773. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4774. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4775. }
  4776. for (int i = 0; i < n_layer; ++i) {
  4777. ggml_context * ctx_layer = ctx_for_layer(i);
  4778. ggml_context * ctx_split = ctx_for_layer_split(i);
  4779. auto & layer = model.layers[i];
  4780. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4781. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4782. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4783. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4784. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4785. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4786. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4787. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4788. }
  4789. } break;
  4790. case LLM_ARCH_QWEN2:
  4791. {
  4792. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4793. // output
  4794. {
  4795. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4796. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4797. // if output is NULL, init from the input tok embed
  4798. if (model.output == NULL) {
  4799. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4800. ml.n_created--; // artificial tensor
  4801. ml.size_data += ggml_nbytes(model.output);
  4802. }
  4803. }
  4804. for (int i = 0; i < n_layer; ++i) {
  4805. ggml_context * ctx_layer = ctx_for_layer(i);
  4806. ggml_context * ctx_split = ctx_for_layer_split(i);
  4807. auto & layer = model.layers[i];
  4808. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4809. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4810. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4811. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4812. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4813. // optional bias tensors
  4814. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4815. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4816. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4817. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4818. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4819. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4820. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4821. }
  4822. } break;
  4823. case LLM_ARCH_QWEN2MOE:
  4824. {
  4825. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4826. // output
  4827. {
  4828. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4829. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4830. }
  4831. for (int i = 0; i < n_layer; ++i) {
  4832. ggml_context * ctx_layer = ctx_for_layer(i);
  4833. ggml_context * ctx_split = ctx_for_layer_split(i);
  4834. auto & layer = model.layers[i];
  4835. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4836. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4837. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4838. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4839. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4840. // optional bias tensors
  4841. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4842. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4843. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4844. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4845. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4846. GGML_ASSERT(hparams.n_expert > 0);
  4847. GGML_ASSERT(hparams.n_expert_used > 0);
  4848. // MoE branch
  4849. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4850. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4851. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4852. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4853. // Shared expert branch
  4854. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4855. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4856. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4857. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4858. }
  4859. } break;
  4860. case LLM_ARCH_PHI2:
  4861. {
  4862. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4863. // output
  4864. {
  4865. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4866. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4867. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4868. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4869. }
  4870. for (int i = 0; i < n_layer; ++i) {
  4871. ggml_context * ctx_layer = ctx_for_layer(i);
  4872. ggml_context * ctx_split = ctx_for_layer_split(i);
  4873. auto & layer = model.layers[i];
  4874. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4875. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4876. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4877. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4878. if (layer.wqkv == nullptr) {
  4879. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4880. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4881. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4882. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4883. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4884. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4885. }
  4886. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4887. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4888. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4889. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4890. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4891. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4892. }
  4893. } break;
  4894. case LLM_ARCH_PHI3:
  4895. {
  4896. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4897. // output
  4898. {
  4899. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4900. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4901. }
  4902. for (int i = 0; i < n_layer; ++i) {
  4903. ggml_context* ctx_layer = ctx_for_layer(i);
  4904. ggml_context* ctx_split = ctx_for_layer_split(i);
  4905. auto& layer = model.layers[i];
  4906. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4907. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4908. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4909. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4910. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4911. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4912. }
  4913. } break;
  4914. case LLM_ARCH_PLAMO:
  4915. {
  4916. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4917. // output
  4918. {
  4919. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4920. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4921. }
  4922. for (int i = 0; i < n_layer; ++i) {
  4923. ggml_context * ctx_layer = ctx_for_layer(i);
  4924. ggml_context * ctx_split = ctx_for_layer_split(i);
  4925. auto & layer = model.layers[i];
  4926. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4927. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4928. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4929. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4930. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4931. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4932. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4933. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4934. }
  4935. } break;
  4936. case LLM_ARCH_GPT2:
  4937. {
  4938. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4939. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4940. // output
  4941. {
  4942. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4943. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4944. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4945. }
  4946. for (int i = 0; i < n_layer; ++i) {
  4947. ggml_context * ctx_layer = ctx_for_layer(i);
  4948. ggml_context * ctx_split = ctx_for_layer_split(i);
  4949. auto & layer = model.layers[i];
  4950. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4951. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4952. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4953. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4954. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4955. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4956. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4957. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4958. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4959. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4960. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4961. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4962. }
  4963. } break;
  4964. case LLM_ARCH_CODESHELL:
  4965. {
  4966. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4967. // output
  4968. {
  4969. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4970. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4971. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4972. }
  4973. for (int i = 0; i < n_layer; ++i) {
  4974. ggml_context * ctx_layer = ctx_for_layer(i);
  4975. ggml_context * ctx_split = ctx_for_layer_split(i);
  4976. auto & layer = model.layers[i];
  4977. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4978. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4979. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4980. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4981. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4982. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4983. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4984. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4985. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4986. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4987. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4988. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4989. }
  4990. } break;
  4991. case LLM_ARCH_ORION:
  4992. {
  4993. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4994. {
  4995. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4996. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4997. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4998. }
  4999. for (int i = 0; i < n_layer; ++i) {
  5000. ggml_context * ctx_layer = ctx_for_layer(i);
  5001. ggml_context * ctx_split = ctx_for_layer_split(i);
  5002. auto & layer = model.layers[i];
  5003. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5004. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5005. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5006. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5007. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5008. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5009. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5010. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5011. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5012. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5013. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5014. }
  5015. } break;
  5016. case LLM_ARCH_INTERNLM2:
  5017. {
  5018. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5019. // output
  5020. {
  5021. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5022. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5023. }
  5024. for (int i = 0; i < n_layer; ++i) {
  5025. ggml_context * ctx_layer = ctx_for_layer(i);
  5026. ggml_context * ctx_split = ctx_for_layer_split(i);
  5027. auto & layer = model.layers[i];
  5028. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5029. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5030. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5031. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5032. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5033. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5034. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5035. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5036. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5037. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5038. }
  5039. } break;
  5040. case LLM_ARCH_GEMMA:
  5041. {
  5042. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5043. // output
  5044. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5045. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  5046. ml.n_created--; // artificial tensor
  5047. ml.size_data += ggml_nbytes(model.output);
  5048. const int64_t n_ff = hparams.n_ff;
  5049. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5050. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5051. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5052. for (uint32_t i = 0; i < n_layer; ++i) {
  5053. ggml_context * ctx_layer = ctx_for_layer(i);
  5054. ggml_context * ctx_split = ctx_for_layer_split(i);
  5055. auto & layer = model.layers[i];
  5056. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5057. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5058. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5059. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5060. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5061. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5062. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5063. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5064. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5065. }
  5066. } break;
  5067. case LLM_ARCH_STARCODER2:
  5068. {
  5069. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5070. // output
  5071. {
  5072. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5073. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5074. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5075. // if output is NULL, init from the input tok embed
  5076. if (model.output == NULL) {
  5077. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5078. ml.n_created--; // artificial tensor
  5079. ml.size_data += ggml_nbytes(model.output);
  5080. }
  5081. }
  5082. for (int i = 0; i < n_layer; ++i) {
  5083. ggml_context * ctx_layer = ctx_for_layer(i);
  5084. ggml_context * ctx_split = ctx_for_layer_split(i);
  5085. auto & layer = model.layers[i];
  5086. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5087. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5088. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5089. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5090. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5091. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5092. // optional bias tensors
  5093. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5094. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5095. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5096. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5097. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5098. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5099. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5100. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5101. // optional bias tensors
  5102. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5103. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5104. }
  5105. } break;
  5106. case LLM_ARCH_MAMBA:
  5107. {
  5108. const int64_t d_conv = hparams.ssm_d_conv;
  5109. const int64_t d_inner = hparams.ssm_d_inner;
  5110. const int64_t d_state = hparams.ssm_d_state;
  5111. const int64_t dt_rank = hparams.ssm_dt_rank;
  5112. // only an expansion factor of 2 is supported for now
  5113. GGML_ASSERT(2 * n_embd == d_inner);
  5114. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5115. // output
  5116. {
  5117. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5118. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5119. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5120. if (model.output == NULL) {
  5121. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5122. ml.n_created--; // artificial tensor
  5123. ml.size_data += ggml_nbytes(model.output);
  5124. }
  5125. }
  5126. for (int i = 0; i < n_layer; ++i) {
  5127. ggml_context * ctx_layer = ctx_for_layer(i);
  5128. ggml_context * ctx_split = ctx_for_layer_split(i);
  5129. auto & layer = model.layers[i];
  5130. // norm
  5131. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5132. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5133. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5134. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5135. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5136. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5137. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5138. // no "weight" suffix for these
  5139. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5140. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5141. // out_proj
  5142. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5143. }
  5144. } break;
  5145. case LLM_ARCH_XVERSE:
  5146. {
  5147. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5148. {
  5149. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5150. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5151. }
  5152. for (int i = 0; i < n_layer; ++i) {
  5153. ggml_context * ctx_layer = ctx_for_layer(i);
  5154. ggml_context * ctx_split = ctx_for_layer_split(i);
  5155. auto & layer = model.layers[i];
  5156. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5157. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5158. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5159. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5160. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5161. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5162. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5163. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5164. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5165. }
  5166. } break;
  5167. case LLM_ARCH_COMMAND_R:
  5168. {
  5169. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5170. // output
  5171. {
  5172. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5173. // init output from the input tok embed
  5174. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5175. ml.n_created--; // artificial tensor
  5176. ml.size_data += ggml_nbytes(model.output);
  5177. }
  5178. for (int i = 0; i < n_layer; ++i) {
  5179. ggml_context * ctx_layer = ctx_for_layer(i);
  5180. ggml_context * ctx_split = ctx_for_layer_split(i);
  5181. auto & layer = model.layers[i];
  5182. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5183. if (n_layer >= 64){
  5184. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5185. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5186. }
  5187. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5188. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5189. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5190. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5191. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5192. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5193. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5194. }
  5195. } break;
  5196. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5197. {
  5198. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5199. // output
  5200. {
  5201. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  5202. // if output is NULL, init from the input tok embed
  5203. if (model.output == NULL) {
  5204. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5205. ml.n_created--; // artificial tensor
  5206. ml.size_data += ggml_nbytes(model.output);
  5207. }
  5208. }
  5209. for (int i = 0; i < n_layer; ++i) {
  5210. ggml_context * ctx_split = ctx_for_layer_split(i);
  5211. auto & layer = model.layers[i];
  5212. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5213. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5214. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5215. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5216. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5217. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5218. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5219. }
  5220. } break;
  5221. default:
  5222. throw std::runtime_error("unknown architecture");
  5223. }
  5224. }
  5225. ml.done_getting_tensors();
  5226. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5227. model.mappings.reserve(ml.mappings.size());
  5228. // create the backend buffers
  5229. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5230. ctx_bufs.reserve(ctx_map.size());
  5231. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5232. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5233. model.bufs.reserve(n_max_backend_buffer);
  5234. for (auto & it : ctx_map) {
  5235. ggml_backend_buffer_type_t buft = it.first;
  5236. ggml_context * ctx = it.second;
  5237. llama_buf_map bufs;
  5238. bufs.reserve(n_max_backend_buffer);
  5239. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5240. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5241. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5242. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5243. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5244. void * addr = nullptr;
  5245. size_t first, last;
  5246. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5247. if (first >= last) {
  5248. continue;
  5249. }
  5250. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5251. if (buf == nullptr) {
  5252. throw std::runtime_error("unable to allocate backend CPU buffer");
  5253. }
  5254. model.bufs.push_back(buf);
  5255. bufs.emplace(idx, buf);
  5256. #ifdef GGML_USE_CUDA
  5257. if (n_layer >= n_gpu_layers) {
  5258. ggml_backend_cuda_register_host_buffer(
  5259. ggml_backend_buffer_get_base(buf),
  5260. ggml_backend_buffer_get_size(buf));
  5261. }
  5262. #endif
  5263. }
  5264. }
  5265. #ifdef GGML_USE_METAL
  5266. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5267. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5268. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5269. void * addr = nullptr;
  5270. size_t first, last;
  5271. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5272. if (first >= last) {
  5273. continue;
  5274. }
  5275. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5276. if (buf == nullptr) {
  5277. throw std::runtime_error("unable to allocate backend metal buffer");
  5278. }
  5279. model.bufs.push_back(buf);
  5280. bufs.emplace(idx, buf);
  5281. }
  5282. }
  5283. #endif
  5284. else {
  5285. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5286. if (buf == nullptr) {
  5287. throw std::runtime_error("unable to allocate backend buffer");
  5288. }
  5289. model.bufs.push_back(buf);
  5290. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5291. model.mlock_bufs.emplace_back(new llama_mlock);
  5292. auto & mlock_buf = model.mlock_bufs.back();
  5293. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5294. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5295. }
  5296. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5297. bufs.emplace(idx, buf);
  5298. }
  5299. }
  5300. if (bufs.empty()) {
  5301. throw std::runtime_error("failed to allocate buffer");
  5302. }
  5303. for (auto & buf : bufs) {
  5304. // indicate that this buffer contains weights
  5305. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5306. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5307. }
  5308. ctx_bufs.emplace_back(ctx, bufs);
  5309. }
  5310. if (llama_supports_gpu_offload()) {
  5311. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5312. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5313. if (n_gpu_layers > (int) hparams.n_layer) {
  5314. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5315. }
  5316. const int max_backend_supported_layers = hparams.n_layer + 1;
  5317. const int max_offloadable_layers = hparams.n_layer + 1;
  5318. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5319. }
  5320. // print memory requirements
  5321. for (ggml_backend_buffer_t buf : model.bufs) {
  5322. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5323. }
  5324. // populate tensors_by_name
  5325. for (ggml_context * ctx : model.ctxs) {
  5326. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5327. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5328. }
  5329. }
  5330. // load tensor data
  5331. for (auto & it : ctx_bufs) {
  5332. ggml_context * ctx = it.first;
  5333. auto & bufs = it.second;
  5334. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5335. return false;
  5336. }
  5337. }
  5338. if (use_mmap_buffer) {
  5339. for (auto & mapping : ml.mappings) {
  5340. model.mappings.emplace_back(std::move(mapping));
  5341. }
  5342. }
  5343. // loading time will be recalculate after the first eval, so
  5344. // we take page faults deferred by mmap() into consideration
  5345. model.t_load_us = ggml_time_us() - model.t_start_us;
  5346. return true;
  5347. }
  5348. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5349. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5350. try {
  5351. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5352. model.hparams.vocab_only = params.vocab_only;
  5353. try {
  5354. llm_load_arch(ml, model);
  5355. } catch(const std::exception & e) {
  5356. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5357. }
  5358. try {
  5359. llm_load_hparams(ml, model);
  5360. } catch(const std::exception & e) {
  5361. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5362. }
  5363. try {
  5364. llm_load_vocab(ml, model);
  5365. } catch(const std::exception & e) {
  5366. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5367. }
  5368. llm_load_print_meta(ml, model);
  5369. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5370. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5371. throw std::runtime_error("vocab size mismatch");
  5372. }
  5373. if (params.vocab_only) {
  5374. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5375. return 0;
  5376. }
  5377. #ifdef GGML_USE_KOMPUTE
  5378. if (params.n_gpu_layers > 0 && (
  5379. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5380. || !(
  5381. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5382. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5383. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5384. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5385. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5386. )
  5387. )) {
  5388. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5389. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5390. params.n_gpu_layers = 0;
  5391. }
  5392. #endif
  5393. #ifdef GGML_USE_SYCL
  5394. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5395. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5396. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5397. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5398. } else {
  5399. ggml_backend_sycl_set_mul_device_mode();
  5400. }
  5401. #endif
  5402. if (!llm_load_tensors(
  5403. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5404. params.progress_callback, params.progress_callback_user_data
  5405. )) {
  5406. return -2;
  5407. }
  5408. } catch (const std::exception & err) {
  5409. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5410. return -1;
  5411. }
  5412. return 0;
  5413. }
  5414. //
  5415. // llm_build
  5416. //
  5417. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5418. enum llm_ffn_op_type {
  5419. LLM_FFN_SILU,
  5420. LLM_FFN_GELU,
  5421. LLM_FFN_RELU,
  5422. LLM_FFN_RELU_SQR,
  5423. };
  5424. enum llm_ffn_gate_type {
  5425. LLM_FFN_SEQ,
  5426. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5427. };
  5428. enum llm_norm_type {
  5429. LLM_NORM,
  5430. LLM_NORM_RMS,
  5431. };
  5432. static struct ggml_tensor * llm_build_inp_embd(
  5433. struct ggml_context * ctx,
  5434. struct llama_context & lctx,
  5435. const llama_hparams & hparams,
  5436. const llama_batch & batch,
  5437. struct ggml_tensor * tok_embd,
  5438. const llm_build_cb & cb) {
  5439. const int64_t n_embd = hparams.n_embd;
  5440. struct ggml_tensor * inpL;
  5441. if (batch.token) {
  5442. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5443. cb(lctx.inp_tokens, "inp_tokens", -1);
  5444. ggml_set_input(lctx.inp_tokens);
  5445. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5446. } else {
  5447. #ifdef GGML_USE_MPI
  5448. GGML_ASSERT(false && "not implemented");
  5449. #endif
  5450. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5451. inpL = lctx.inp_embd;
  5452. ggml_set_input(lctx.inp_embd);
  5453. }
  5454. cb(inpL, "inp_embd", -1);
  5455. return inpL;
  5456. }
  5457. static void llm_build_kv_store(
  5458. struct ggml_context * ctx,
  5459. const llama_hparams & hparams,
  5460. const llama_cparams & cparams,
  5461. const llama_kv_cache & kv,
  5462. struct ggml_cgraph * graph,
  5463. struct ggml_tensor * k_cur,
  5464. struct ggml_tensor * v_cur,
  5465. int32_t n_tokens,
  5466. int32_t kv_head,
  5467. const llm_build_cb & cb,
  5468. int64_t il) {
  5469. const int64_t n_ctx = cparams.n_ctx;
  5470. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5471. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5472. GGML_ASSERT(kv.size == n_ctx);
  5473. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5474. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5475. cb(k_cache_view, "k_cache_view", il);
  5476. // note: storing RoPE-ed version of K in the KV cache
  5477. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5478. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5479. struct ggml_tensor * v_cache_view = nullptr;
  5480. if (cparams.flash_attn) {
  5481. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5482. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5483. } else {
  5484. // note: the V cache is transposed when not using flash attention
  5485. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5486. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5487. (kv_head)*ggml_element_size(kv.v_l[il]));
  5488. v_cur = ggml_transpose(ctx, v_cur);
  5489. }
  5490. cb(v_cache_view, "v_cache_view", il);
  5491. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5492. }
  5493. static struct ggml_tensor * llm_build_norm(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * cur,
  5496. const llama_hparams & hparams,
  5497. struct ggml_tensor * mw,
  5498. struct ggml_tensor * mb,
  5499. llm_norm_type type,
  5500. const llm_build_cb & cb,
  5501. int il) {
  5502. switch (type) {
  5503. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5504. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5505. }
  5506. if (mw || mb) {
  5507. cb(cur, "norm", il);
  5508. }
  5509. if (mw) {
  5510. cur = ggml_mul(ctx, cur, mw);
  5511. if (mb) {
  5512. cb(cur, "norm_w", il);
  5513. }
  5514. }
  5515. if (mb) {
  5516. cur = ggml_add(ctx, cur, mb);
  5517. }
  5518. return cur;
  5519. }
  5520. static struct ggml_tensor * llm_build_ffn(
  5521. struct ggml_context * ctx,
  5522. struct ggml_tensor * cur,
  5523. struct ggml_tensor * up,
  5524. struct ggml_tensor * up_b,
  5525. struct ggml_tensor * gate,
  5526. struct ggml_tensor * gate_b,
  5527. struct ggml_tensor * down,
  5528. struct ggml_tensor * down_b,
  5529. struct ggml_tensor * act_scales,
  5530. llm_ffn_op_type type_op,
  5531. llm_ffn_gate_type type_gate,
  5532. const llm_build_cb & cb,
  5533. int il) {
  5534. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5535. cb(tmp, "ffn_up", il);
  5536. if (up_b) {
  5537. tmp = ggml_add(ctx, tmp, up_b);
  5538. cb(tmp, "ffn_up_b", il);
  5539. }
  5540. if (gate) {
  5541. switch (type_gate) {
  5542. case LLM_FFN_SEQ:
  5543. {
  5544. cur = ggml_mul_mat(ctx, gate, tmp);
  5545. cb(cur, "ffn_gate", il);
  5546. } break;
  5547. case LLM_FFN_PAR:
  5548. {
  5549. cur = ggml_mul_mat(ctx, gate, cur);
  5550. cb(cur, "ffn_gate", il);
  5551. } break;
  5552. }
  5553. if (gate_b) {
  5554. cur = ggml_add(ctx, cur, gate_b);
  5555. cb(cur, "ffn_gate_b", il);
  5556. }
  5557. } else {
  5558. cur = tmp;
  5559. }
  5560. switch (type_op) {
  5561. case LLM_FFN_SILU:
  5562. {
  5563. cur = ggml_silu(ctx, cur);
  5564. cb(cur, "ffn_silu", il);
  5565. } break;
  5566. case LLM_FFN_GELU:
  5567. {
  5568. cur = ggml_gelu(ctx, cur);
  5569. cb(cur, "ffn_gelu", il);
  5570. if (act_scales != NULL) {
  5571. cur = ggml_div(ctx, cur, act_scales);
  5572. cb(cur, "ffn_act", il);
  5573. }
  5574. } break;
  5575. case LLM_FFN_RELU:
  5576. {
  5577. cur = ggml_relu(ctx, cur);
  5578. cb(cur, "ffn_relu", il);
  5579. } break;
  5580. case LLM_FFN_RELU_SQR:
  5581. {
  5582. cur = ggml_relu(ctx, cur);
  5583. cb(cur, "ffn_relu", il);
  5584. cur = ggml_sqr(ctx, cur);
  5585. cb(cur, "ffn_sqr(relu)", il);
  5586. } break;
  5587. }
  5588. if (type_gate == LLM_FFN_PAR) {
  5589. cur = ggml_mul(ctx, cur, tmp);
  5590. cb(cur, "ffn_gate_par", il);
  5591. }
  5592. cur = ggml_mul_mat(ctx, down, cur);
  5593. if (down_b) {
  5594. cb(cur, "ffn_down", il);
  5595. }
  5596. if (down_b) {
  5597. cur = ggml_add(ctx, cur, down_b);
  5598. }
  5599. return cur;
  5600. }
  5601. static struct ggml_tensor * llm_build_moe_ffn(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * cur,
  5604. struct ggml_tensor * gate_inp,
  5605. struct ggml_tensor * up_exps,
  5606. struct ggml_tensor * gate_exps,
  5607. struct ggml_tensor * down_exps,
  5608. int64_t n_expert,
  5609. int64_t n_expert_used,
  5610. llm_ffn_op_type type_op,
  5611. bool norm_w,
  5612. const llm_build_cb & cb,
  5613. int il) {
  5614. int64_t n_embd = cur->ne[0];
  5615. int64_t n_tokens = cur->ne[1];
  5616. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5617. cb(logits, "ffn_moe_logits", il);
  5618. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5619. cb(probs, "ffn_moe_probs", il);
  5620. // select experts
  5621. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5622. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5623. cb(selected_experts, "ffn_moe_topk", il);
  5624. ggml_tensor * weights = ggml_get_rows(ctx,
  5625. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5626. cb(weights, "ffn_moe_weights", il);
  5627. if (norm_w) {
  5628. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5629. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5630. cb(weights_sum, "ffn_moe_weights_sum", il);
  5631. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5632. cb(weights, "ffn_moe_weights_norm", il);
  5633. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5634. }
  5635. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5636. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5637. cb(up, "ffn_moe_up", il);
  5638. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5639. cb(gate, "ffn_moe_gate", il);
  5640. switch (type_op) {
  5641. case LLM_FFN_SILU:
  5642. {
  5643. gate = ggml_silu(ctx, gate);
  5644. cb(gate, "ffn_moe_silu", il);
  5645. } break;
  5646. case LLM_FFN_GELU:
  5647. {
  5648. gate = ggml_gelu(ctx, gate);
  5649. cb(gate, "ffn_moe_gelu", il);
  5650. } break;
  5651. default:
  5652. GGML_ASSERT(false);
  5653. }
  5654. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5655. cb(par, "ffn_moe_gate_par", il);
  5656. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5657. cb(experts, "ffn_moe_down", il);
  5658. experts = ggml_mul(ctx, experts, weights);
  5659. // aggregate experts
  5660. ggml_tensor * moe_out = nullptr;
  5661. for (int i = 0; i < n_expert_used; ++i) {
  5662. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5663. experts->nb[2], i*experts->nb[1]);
  5664. if (i == 0) {
  5665. moe_out = cur_expert;
  5666. } else {
  5667. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5668. }
  5669. }
  5670. if (n_expert_used == 1) {
  5671. // avoid returning a non-contiguous tensor
  5672. moe_out = ggml_cont(ctx, moe_out);
  5673. }
  5674. return moe_out;
  5675. }
  5676. static struct ggml_tensor * llm_build_kqv(
  5677. struct ggml_context * ctx,
  5678. const llama_model & model,
  5679. const llama_hparams & hparams,
  5680. const llama_cparams & cparams,
  5681. const llama_kv_cache & kv,
  5682. struct ggml_cgraph * graph,
  5683. struct ggml_tensor * wo,
  5684. struct ggml_tensor * wo_b,
  5685. struct ggml_tensor * q_cur,
  5686. struct ggml_tensor * kq_mask,
  5687. int32_t n_tokens,
  5688. int32_t n_kv,
  5689. float kq_scale,
  5690. const llm_build_cb & cb,
  5691. int il) {
  5692. const int64_t n_ctx = cparams.n_ctx;
  5693. const int64_t n_head = hparams.n_head;
  5694. const int64_t n_head_kv = hparams.n_head_kv;
  5695. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5696. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5697. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5698. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5699. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5700. cb(q, "q", il);
  5701. struct ggml_tensor * k =
  5702. ggml_view_3d(ctx, kv.k_l[il],
  5703. n_embd_head_k, n_kv, n_head_kv,
  5704. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5705. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5706. 0);
  5707. cb(k, "k", il);
  5708. struct ggml_tensor * cur;
  5709. if (cparams.flash_attn) {
  5710. GGML_UNUSED(model);
  5711. GGML_UNUSED(n_ctx);
  5712. // split cached v into n_head heads (not transposed)
  5713. struct ggml_tensor * v =
  5714. ggml_view_3d(ctx, kv.v_l[il],
  5715. n_embd_head_v, n_kv, n_head_kv,
  5716. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  5717. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  5718. 0);
  5719. cb(v, "v", il);
  5720. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5721. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5722. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  5723. }
  5724. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  5725. } else {
  5726. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5727. cb(kq, "kq", il);
  5728. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5729. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5730. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5731. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5732. }
  5733. if (model.arch == LLM_ARCH_GROK) {
  5734. // need to do the following:
  5735. // multiply by attn_output_multiplyer of 0.08838834764831845
  5736. // and then :
  5737. // kq = 30 * tanh(kq / 30)
  5738. // before the softmax below
  5739. //try from phi2
  5740. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5741. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5742. kq = ggml_scale(ctx, kq, 30);
  5743. }
  5744. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  5745. cb(kq, "kq_soft_max_ext", il);
  5746. GGML_ASSERT(kv.size == n_ctx);
  5747. // split cached v into n_head heads
  5748. struct ggml_tensor * v =
  5749. ggml_view_3d(ctx, kv.v_l[il],
  5750. n_kv, n_embd_head_v, n_head_kv,
  5751. ggml_element_size(kv.v_l[il])*n_ctx,
  5752. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5753. 0);
  5754. cb(v, "v", il);
  5755. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5756. cb(kqv, "kqv", il);
  5757. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5758. cb(kqv_merged, "kqv_merged", il);
  5759. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  5760. cb(cur, "kqv_merged_cont", il);
  5761. }
  5762. ggml_build_forward_expand(graph, cur);
  5763. cur = ggml_mul_mat(ctx, wo, cur);
  5764. if (wo_b) {
  5765. cb(cur, "kqv_wo", il);
  5766. }
  5767. if (wo_b) {
  5768. cur = ggml_add(ctx, cur, wo_b);
  5769. }
  5770. return cur;
  5771. }
  5772. static struct ggml_tensor * llm_build_kv(
  5773. struct ggml_context * ctx,
  5774. const llama_model & model,
  5775. const llama_hparams & hparams,
  5776. const llama_cparams & cparams,
  5777. const llama_kv_cache & kv,
  5778. struct ggml_cgraph * graph,
  5779. struct ggml_tensor * wo,
  5780. struct ggml_tensor * wo_b,
  5781. struct ggml_tensor * k_cur,
  5782. struct ggml_tensor * v_cur,
  5783. struct ggml_tensor * q_cur,
  5784. struct ggml_tensor * kq_mask,
  5785. int32_t n_tokens,
  5786. int32_t kv_head,
  5787. int32_t n_kv,
  5788. float kq_scale,
  5789. const llm_build_cb & cb,
  5790. int il) {
  5791. // these nodes are added to the graph together so that they are not reordered
  5792. // by doing so, the number of splits in the graph is reduced
  5793. ggml_build_forward_expand(graph, q_cur);
  5794. ggml_build_forward_expand(graph, k_cur);
  5795. ggml_build_forward_expand(graph, v_cur);
  5796. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  5797. struct ggml_tensor * cur;
  5798. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  5799. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  5800. cb(cur, "kqv_out", il);
  5801. return cur;
  5802. }
  5803. struct llm_build_context {
  5804. const llama_model & model;
  5805. llama_context & lctx;
  5806. const llama_hparams & hparams;
  5807. const llama_cparams & cparams;
  5808. const llama_batch & batch;
  5809. const llama_kv_cache & kv_self;
  5810. const int64_t n_embd;
  5811. const int64_t n_layer;
  5812. const int64_t n_rot;
  5813. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5814. const int64_t n_head;
  5815. const int64_t n_head_kv;
  5816. const int64_t n_embd_head_k;
  5817. const int64_t n_embd_k_gqa;
  5818. const int64_t n_embd_head_v;
  5819. const int64_t n_embd_v_gqa;
  5820. const int64_t n_expert;
  5821. const int64_t n_expert_used;
  5822. const float freq_base;
  5823. const float freq_scale;
  5824. const float ext_factor;
  5825. const float attn_factor;
  5826. const float beta_fast;
  5827. const float beta_slow;
  5828. const float norm_eps;
  5829. const float norm_rms_eps;
  5830. const int32_t n_tokens;
  5831. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5832. const int32_t n_outputs;
  5833. const int32_t kv_head; // index of where we store new KV data in the cache
  5834. const int32_t n_orig_ctx;
  5835. const bool flash_attn;
  5836. const enum llama_pooling_type pooling_type;
  5837. const enum llama_rope_type rope_type;
  5838. const llm_build_cb & cb;
  5839. std::vector<uint8_t> & buf_compute_meta;
  5840. struct ggml_context * ctx0 = nullptr;
  5841. // TODO: consider making the entire interface noexcept
  5842. llm_build_context(
  5843. llama_context & lctx,
  5844. const llama_batch & batch,
  5845. const llm_build_cb & cb,
  5846. bool worst_case) :
  5847. model (lctx.model),
  5848. lctx (lctx),
  5849. hparams (model.hparams),
  5850. cparams (lctx.cparams),
  5851. batch (batch),
  5852. kv_self (lctx.kv_self),
  5853. n_embd (hparams.n_embd),
  5854. n_layer (hparams.n_layer),
  5855. n_rot (hparams.n_rot),
  5856. n_ctx (cparams.n_ctx),
  5857. n_head (hparams.n_head),
  5858. n_head_kv (hparams.n_head_kv),
  5859. n_embd_head_k (hparams.n_embd_head_k),
  5860. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5861. n_embd_head_v (hparams.n_embd_head_v),
  5862. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5863. n_expert (hparams.n_expert),
  5864. n_expert_used (hparams.n_expert_used),
  5865. freq_base (cparams.rope_freq_base),
  5866. freq_scale (cparams.rope_freq_scale),
  5867. ext_factor (cparams.yarn_ext_factor),
  5868. attn_factor (cparams.yarn_attn_factor),
  5869. beta_fast (cparams.yarn_beta_fast),
  5870. beta_slow (cparams.yarn_beta_slow),
  5871. norm_eps (hparams.f_norm_eps),
  5872. norm_rms_eps (hparams.f_norm_rms_eps),
  5873. n_tokens (batch.n_tokens),
  5874. n_kv (worst_case ? kv_self.size : kv_self.n),
  5875. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5876. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5877. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5878. flash_attn (cparams.flash_attn),
  5879. pooling_type (cparams.pooling_type),
  5880. rope_type (hparams.rope_type),
  5881. cb (cb),
  5882. buf_compute_meta (lctx.buf_compute_meta) {
  5883. // all initializations should be done in init()
  5884. }
  5885. void init() {
  5886. struct ggml_init_params params = {
  5887. /*.mem_size =*/ buf_compute_meta.size(),
  5888. /*.mem_buffer =*/ buf_compute_meta.data(),
  5889. /*.no_alloc =*/ true,
  5890. };
  5891. ctx0 = ggml_init(params);
  5892. lctx.inp_tokens = nullptr;
  5893. lctx.inp_embd = nullptr;
  5894. lctx.inp_pos = nullptr;
  5895. lctx.inp_out_ids = nullptr;
  5896. lctx.inp_KQ_mask = nullptr;
  5897. lctx.inp_K_shift = nullptr;
  5898. lctx.inp_mean = nullptr;
  5899. lctx.inp_cls = nullptr;
  5900. lctx.inp_s_copy = nullptr;
  5901. lctx.inp_s_mask = nullptr;
  5902. lctx.inp_s_seq = nullptr;
  5903. }
  5904. void free() {
  5905. if (ctx0) {
  5906. ggml_free(ctx0);
  5907. ctx0 = nullptr;
  5908. }
  5909. }
  5910. struct ggml_cgraph * build_k_shift() {
  5911. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5912. GGML_ASSERT(kv_self.size == n_ctx);
  5913. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5914. cb(lctx.inp_K_shift, "K_shift", -1);
  5915. ggml_set_input(lctx.inp_K_shift);
  5916. for (int il = 0; il < n_layer; ++il) {
  5917. struct ggml_tensor * tmp =
  5918. // we rotate only the first n_rot dimensions
  5919. ggml_rope_custom_inplace(ctx0,
  5920. ggml_view_3d(ctx0, kv_self.k_l[il],
  5921. n_embd_head_k, n_head_kv, n_ctx,
  5922. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5923. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5924. 0),
  5925. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5926. ext_factor, attn_factor, beta_fast, beta_slow);
  5927. cb(tmp, "K_shifted", il);
  5928. ggml_build_forward_expand(gf, tmp);
  5929. }
  5930. return gf;
  5931. }
  5932. struct ggml_cgraph * build_s_copy() {
  5933. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5934. GGML_ASSERT(kv_self.recurrent);
  5935. struct ggml_tensor * state_copy = build_inp_s_copy();
  5936. for (int il = 0; il < n_layer; ++il) {
  5937. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5938. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5939. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5940. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5941. // TODO: name the intermediate tensors with cb()
  5942. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5943. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5944. }
  5945. return gf;
  5946. }
  5947. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5948. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5949. for (uint32_t i = 0; i < ids.size(); ++i) {
  5950. const uint32_t id = ids[i];
  5951. if (i == id || id == ids.size()) {
  5952. continue;
  5953. }
  5954. uint32_t nm = 1;
  5955. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5956. nm++;
  5957. }
  5958. for (int il = 0; il < n_layer; ++il) {
  5959. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5960. n_embd_k_gqa, nm,
  5961. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5962. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5963. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5964. n_embd_k_gqa, nm,
  5965. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5966. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5967. ggml_tensor * view_v_src;
  5968. ggml_tensor * view_v_dst;
  5969. if (flash_attn) {
  5970. // NOTE: the V cache is not transposed when using flash attention
  5971. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5972. n_embd_v_gqa, nm,
  5973. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5974. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  5975. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5976. n_embd_v_gqa, nm,
  5977. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  5978. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  5979. } else {
  5980. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5981. nm, n_embd_v_gqa,
  5982. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5983. ggml_row_size(kv_self.v_l[il]->type, i));
  5984. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5985. nm, n_embd_v_gqa,
  5986. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5987. ggml_row_size(kv_self.v_l[il]->type, id));
  5988. }
  5989. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5990. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5991. }
  5992. i += nm - 1;
  5993. }
  5994. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5995. return gf;
  5996. }
  5997. struct ggml_tensor * build_inp_pos() {
  5998. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5999. cb(lctx.inp_pos, "inp_pos", -1);
  6000. ggml_set_input(lctx.inp_pos);
  6001. return lctx.inp_pos;
  6002. }
  6003. struct ggml_tensor * build_inp_out_ids() {
  6004. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6005. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6006. ggml_set_input(lctx.inp_out_ids);
  6007. return lctx.inp_out_ids;
  6008. }
  6009. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6010. if (causal) {
  6011. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6012. } else {
  6013. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6014. }
  6015. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6016. ggml_set_input(lctx.inp_KQ_mask);
  6017. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6018. }
  6019. struct ggml_tensor * build_inp_mean() {
  6020. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6021. cb(lctx.inp_mean, "inp_mean", -1);
  6022. ggml_set_input(lctx.inp_mean);
  6023. return lctx.inp_mean;
  6024. }
  6025. struct ggml_tensor * build_inp_cls() {
  6026. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6027. cb(lctx.inp_cls, "inp_cls", -1);
  6028. ggml_set_input(lctx.inp_cls);
  6029. return lctx.inp_cls;
  6030. }
  6031. struct ggml_tensor * build_inp_s_copy() {
  6032. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6033. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6034. ggml_set_input(lctx.inp_s_copy);
  6035. return lctx.inp_s_copy;
  6036. }
  6037. struct ggml_tensor * build_inp_s_mask() {
  6038. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6039. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6040. ggml_set_input(lctx.inp_s_mask);
  6041. return lctx.inp_s_mask;
  6042. }
  6043. struct ggml_tensor * build_inp_s_seq() {
  6044. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6045. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6046. ggml_set_input(lctx.inp_s_seq);
  6047. return lctx.inp_s_seq;
  6048. }
  6049. struct ggml_cgraph * build_llama() {
  6050. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6051. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6052. int32_t n_tokens = this->n_tokens;
  6053. const int64_t n_embd_head = hparams.n_embd_head_v;
  6054. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6055. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6056. struct ggml_tensor * cur;
  6057. struct ggml_tensor * inpL;
  6058. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6059. // inp_pos - contains the positions
  6060. struct ggml_tensor * inp_pos = build_inp_pos();
  6061. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6062. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6063. for (int il = 0; il < n_layer; ++il) {
  6064. struct ggml_tensor * inpSA = inpL;
  6065. // norm
  6066. cur = llm_build_norm(ctx0, inpL, hparams,
  6067. model.layers[il].attn_norm, NULL,
  6068. LLM_NORM_RMS, cb, il);
  6069. cb(cur, "attn_norm", il);
  6070. // self-attention
  6071. {
  6072. // compute Q and K and RoPE them
  6073. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6074. cb(Qcur, "Qcur", il);
  6075. if (model.layers[il].bq) {
  6076. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6077. cb(Qcur, "Qcur", il);
  6078. }
  6079. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6080. cb(Kcur, "Kcur", il);
  6081. if (model.layers[il].bk) {
  6082. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6083. cb(Kcur, "Kcur", il);
  6084. }
  6085. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6086. cb(Vcur, "Vcur", il);
  6087. if (model.layers[il].bv) {
  6088. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6089. cb(Vcur, "Vcur", il);
  6090. }
  6091. Qcur = ggml_rope_custom(
  6092. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6093. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6094. ext_factor, attn_factor, beta_fast, beta_slow
  6095. );
  6096. cb(Qcur, "Qcur", il);
  6097. Kcur = ggml_rope_custom(
  6098. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6099. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6100. ext_factor, attn_factor, beta_fast, beta_slow
  6101. );
  6102. cb(Kcur, "Kcur", il);
  6103. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6104. model.layers[il].wo, model.layers[il].bo,
  6105. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6106. }
  6107. if (il == n_layer - 1) {
  6108. // skip computing output for unused tokens
  6109. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6110. n_tokens = n_outputs;
  6111. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6112. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6113. }
  6114. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6115. cb(ffn_inp, "ffn_inp", il);
  6116. // feed-forward network
  6117. if (model.layers[il].ffn_gate_inp == nullptr) {
  6118. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6119. model.layers[il].ffn_norm, NULL,
  6120. LLM_NORM_RMS, cb, il);
  6121. cb(cur, "ffn_norm", il);
  6122. cur = llm_build_ffn(ctx0, cur,
  6123. model.layers[il].ffn_up, NULL,
  6124. model.layers[il].ffn_gate, NULL,
  6125. model.layers[il].ffn_down, NULL,
  6126. NULL,
  6127. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6128. cb(cur, "ffn_out", il);
  6129. } else {
  6130. // MoE branch
  6131. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6132. model.layers[il].ffn_norm, NULL,
  6133. LLM_NORM_RMS, cb, il);
  6134. cb(cur, "ffn_norm", il);
  6135. cur = llm_build_moe_ffn(ctx0, cur,
  6136. model.layers[il].ffn_gate_inp,
  6137. model.layers[il].ffn_up_exps,
  6138. model.layers[il].ffn_gate_exps,
  6139. model.layers[il].ffn_down_exps,
  6140. n_expert, n_expert_used,
  6141. LLM_FFN_SILU, true,
  6142. cb, il);
  6143. cb(cur, "ffn_moe_out", il);
  6144. }
  6145. cur = ggml_add(ctx0, cur, ffn_inp);
  6146. cb(cur, "ffn_out", il);
  6147. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6148. if (layer_dir != nullptr) {
  6149. cur = ggml_add(ctx0, cur, layer_dir);
  6150. }
  6151. cb(cur, "l_out", il);
  6152. // input for next layer
  6153. inpL = cur;
  6154. }
  6155. cur = inpL;
  6156. cur = llm_build_norm(ctx0, cur, hparams,
  6157. model.output_norm, NULL,
  6158. LLM_NORM_RMS, cb, -1);
  6159. cb(cur, "result_norm", -1);
  6160. // lm_head
  6161. cur = ggml_mul_mat(ctx0, model.output, cur);
  6162. cb(cur, "result_output", -1);
  6163. ggml_build_forward_expand(gf, cur);
  6164. return gf;
  6165. }
  6166. struct ggml_cgraph * build_baichuan() {
  6167. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6168. const int64_t n_embd_head = hparams.n_embd_head_v;
  6169. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6170. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6171. struct ggml_tensor * cur;
  6172. struct ggml_tensor * inpL;
  6173. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6174. // inp_pos - contains the positions
  6175. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6176. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6177. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6178. for (int il = 0; il < n_layer; ++il) {
  6179. struct ggml_tensor * inpSA = inpL;
  6180. cur = llm_build_norm(ctx0, inpL, hparams,
  6181. model.layers[il].attn_norm, NULL,
  6182. LLM_NORM_RMS, cb, il);
  6183. cb(cur, "attn_norm", il);
  6184. // self-attention
  6185. {
  6186. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6187. cb(Qcur, "Qcur", il);
  6188. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6189. cb(Kcur, "Kcur", il);
  6190. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6191. cb(Vcur, "Vcur", il);
  6192. switch (model.type) {
  6193. case MODEL_7B:
  6194. Qcur = ggml_rope_custom(
  6195. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6196. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6197. ext_factor, attn_factor, beta_fast, beta_slow
  6198. );
  6199. Kcur = ggml_rope_custom(
  6200. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6201. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6202. ext_factor, attn_factor, beta_fast, beta_slow
  6203. );
  6204. break;
  6205. case MODEL_13B:
  6206. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6207. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6208. break;
  6209. default:
  6210. GGML_ASSERT(false);
  6211. }
  6212. cb(Qcur, "Qcur", il);
  6213. cb(Kcur, "Kcur", il);
  6214. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6215. model.layers[il].wo, NULL,
  6216. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6217. }
  6218. if (il == n_layer - 1) {
  6219. // skip computing output for unused tokens
  6220. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6221. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6222. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6223. }
  6224. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6225. cb(ffn_inp, "ffn_inp", il);
  6226. // feed-forward network
  6227. {
  6228. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6229. model.layers[il].ffn_norm, NULL,
  6230. LLM_NORM_RMS, cb, il);
  6231. cb(cur, "ffn_norm", il);
  6232. cur = llm_build_ffn(ctx0, cur,
  6233. model.layers[il].ffn_up, NULL,
  6234. model.layers[il].ffn_gate, NULL,
  6235. model.layers[il].ffn_down, NULL,
  6236. NULL,
  6237. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6238. cb(cur, "ffn_out", il);
  6239. }
  6240. cur = ggml_add(ctx0, cur, ffn_inp);
  6241. cb(cur, "l_out", il);
  6242. // input for next layer
  6243. inpL = cur;
  6244. }
  6245. cur = inpL;
  6246. cur = llm_build_norm(ctx0, cur, hparams,
  6247. model.output_norm, NULL,
  6248. LLM_NORM_RMS, cb, -1);
  6249. cb(cur, "result_norm", -1);
  6250. // lm_head
  6251. cur = ggml_mul_mat(ctx0, model.output, cur);
  6252. cb(cur, "result_output", -1);
  6253. ggml_build_forward_expand(gf, cur);
  6254. return gf;
  6255. }
  6256. struct ggml_cgraph * build_xverse() {
  6257. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6258. const int64_t n_embd_head = hparams.n_embd_head_v;
  6259. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6260. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6261. struct ggml_tensor * cur;
  6262. struct ggml_tensor * inpL;
  6263. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6264. // inp_pos - contains the positions
  6265. struct ggml_tensor * inp_pos = build_inp_pos();
  6266. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6267. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6268. for (int il = 0; il < n_layer; ++il) {
  6269. struct ggml_tensor * inpSA = inpL;
  6270. cur = llm_build_norm(ctx0, inpL, hparams,
  6271. model.layers[il].attn_norm, NULL,
  6272. LLM_NORM_RMS, cb, il);
  6273. cb(cur, "attn_norm", il);
  6274. // self-attention
  6275. {
  6276. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6277. cb(Qcur, "Qcur", il);
  6278. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6279. cb(Kcur, "Kcur", il);
  6280. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6281. cb(Vcur, "Vcur", il);
  6282. Qcur = ggml_rope_custom(
  6283. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6284. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6285. ext_factor, attn_factor, beta_fast, beta_slow
  6286. );
  6287. cb(Qcur, "Qcur", il);
  6288. Kcur = ggml_rope_custom(
  6289. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6290. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6291. ext_factor, attn_factor, beta_fast, beta_slow
  6292. );
  6293. cb(Kcur, "Kcur", il);
  6294. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6295. model.layers[il].wo, NULL,
  6296. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6297. }
  6298. if (il == n_layer - 1) {
  6299. // skip computing output for unused tokens
  6300. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6301. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6302. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6303. }
  6304. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6305. cb(ffn_inp, "ffn_inp", il);
  6306. // feed-forward network
  6307. {
  6308. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6309. model.layers[il].ffn_norm, NULL,
  6310. LLM_NORM_RMS, cb, il);
  6311. cb(cur, "ffn_norm", il);
  6312. cur = llm_build_ffn(ctx0, cur,
  6313. model.layers[il].ffn_up, NULL,
  6314. model.layers[il].ffn_gate, NULL,
  6315. model.layers[il].ffn_down, NULL,
  6316. NULL,
  6317. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6318. cb(cur, "ffn_out", il);
  6319. }
  6320. cur = ggml_add(ctx0, cur, ffn_inp);
  6321. cb(cur, "l_out", il);
  6322. // input for next layer
  6323. inpL = cur;
  6324. }
  6325. cur = inpL;
  6326. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6327. cb(cur, "result_norm", -1);
  6328. // lm_head
  6329. cur = ggml_mul_mat(ctx0, model.output, cur);
  6330. cb(cur, "result_output", -1);
  6331. ggml_build_forward_expand(gf, cur);
  6332. return gf;
  6333. }
  6334. struct ggml_cgraph * build_falcon() {
  6335. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6336. const int64_t n_embd_head = hparams.n_embd_head_v;
  6337. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6338. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6339. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6340. struct ggml_tensor * cur;
  6341. struct ggml_tensor * inpL;
  6342. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6343. // inp_pos - contains the positions
  6344. struct ggml_tensor * inp_pos = build_inp_pos();
  6345. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6346. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6347. for (int il = 0; il < n_layer; ++il) {
  6348. struct ggml_tensor * attn_norm;
  6349. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6350. model.layers[il].attn_norm,
  6351. model.layers[il].attn_norm_b,
  6352. LLM_NORM, cb, il);
  6353. cb(attn_norm, "attn_norm", il);
  6354. // self-attention
  6355. {
  6356. if (model.layers[il].attn_norm_2) {
  6357. // Falcon-40B
  6358. cur = llm_build_norm(ctx0, inpL, hparams,
  6359. model.layers[il].attn_norm_2,
  6360. model.layers[il].attn_norm_2_b,
  6361. LLM_NORM, cb, il);
  6362. cb(cur, "attn_norm_2", il);
  6363. } else {
  6364. cur = attn_norm;
  6365. }
  6366. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6367. cb(cur, "wqkv", il);
  6368. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6369. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6370. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6371. cb(Qcur, "Qcur", il);
  6372. cb(Kcur, "Kcur", il);
  6373. cb(Vcur, "Vcur", il);
  6374. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6375. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6376. // using mode = 2 for neox mode
  6377. Qcur = ggml_rope_custom(
  6378. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6379. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6380. );
  6381. cb(Qcur, "Qcur", il);
  6382. Kcur = ggml_rope_custom(
  6383. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6384. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6385. );
  6386. cb(Kcur, "Kcur", il);
  6387. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6388. model.layers[il].wo, NULL,
  6389. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6390. }
  6391. if (il == n_layer - 1) {
  6392. // skip computing output for unused tokens
  6393. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6394. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6395. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6396. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6397. }
  6398. struct ggml_tensor * ffn_inp = cur;
  6399. // feed forward
  6400. {
  6401. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6402. model.layers[il].ffn_up, NULL,
  6403. NULL, NULL,
  6404. model.layers[il].ffn_down, NULL,
  6405. NULL,
  6406. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6407. cb(cur, "ffn_out", il);
  6408. }
  6409. cur = ggml_add(ctx0, cur, ffn_inp);
  6410. cb(cur, "l_out", il);
  6411. cur = ggml_add(ctx0, cur, inpL);
  6412. cb(cur, "l_out", il);
  6413. // input for next layer
  6414. inpL = cur;
  6415. }
  6416. cur = inpL;
  6417. // norm
  6418. cur = llm_build_norm(ctx0, cur, hparams,
  6419. model.output_norm,
  6420. model.output_norm_b,
  6421. LLM_NORM, cb, -1);
  6422. cb(cur, "result_norm", -1);
  6423. cur = ggml_mul_mat(ctx0, model.output, cur);
  6424. cb(cur, "result_output", -1);
  6425. ggml_build_forward_expand(gf, cur);
  6426. return gf;
  6427. }
  6428. struct ggml_cgraph * build_grok() {
  6429. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6430. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6431. int32_t n_tokens = this->n_tokens;
  6432. const int64_t n_embd_head = hparams.n_embd_head_v;
  6433. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6434. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6435. struct ggml_tensor * cur;
  6436. struct ggml_tensor * inpL;
  6437. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6438. // multiply by embedding_multiplier_scale of 78.38367176906169
  6439. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6440. // inp_pos - contains the positions
  6441. struct ggml_tensor * inp_pos = build_inp_pos();
  6442. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6443. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6444. for (int il = 0; il < n_layer; ++il) {
  6445. struct ggml_tensor * inpSA = inpL;
  6446. // norm
  6447. cur = llm_build_norm(ctx0, inpL, hparams,
  6448. model.layers[il].attn_norm, NULL,
  6449. LLM_NORM_RMS, cb, il);
  6450. cb(cur, "attn_norm", il);
  6451. // self-attention
  6452. {
  6453. // compute Q and K and RoPE them
  6454. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6455. cb(Qcur, "Qcur", il);
  6456. if (model.layers[il].bq) {
  6457. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6458. cb(Qcur, "Qcur", il);
  6459. }
  6460. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6461. cb(Kcur, "Kcur", il);
  6462. if (model.layers[il].bk) {
  6463. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6464. cb(Kcur, "Kcur", il);
  6465. }
  6466. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6467. cb(Vcur, "Vcur", il);
  6468. if (model.layers[il].bv) {
  6469. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6470. cb(Vcur, "Vcur", il);
  6471. }
  6472. Qcur = ggml_rope_custom(
  6473. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6474. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6475. ext_factor, attn_factor, beta_fast, beta_slow
  6476. );
  6477. cb(Qcur, "Qcur", il);
  6478. Kcur = ggml_rope_custom(
  6479. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6480. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6481. ext_factor, attn_factor, beta_fast, beta_slow
  6482. );
  6483. cb(Kcur, "Kcur", il);
  6484. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6485. model.layers[il].wo, model.layers[il].bo,
  6486. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6487. }
  6488. if (il == n_layer - 1) {
  6489. // skip computing output for unused tokens
  6490. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6491. n_tokens = n_outputs;
  6492. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6493. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6494. }
  6495. // Grok
  6496. // if attn_out_norm is present then apply it before adding the input
  6497. if (model.layers[il].attn_out_norm) {
  6498. cur = llm_build_norm(ctx0, cur, hparams,
  6499. model.layers[il].attn_out_norm, NULL,
  6500. LLM_NORM_RMS, cb, il);
  6501. cb(cur, "attn_out_norm", il);
  6502. }
  6503. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6504. cb(ffn_inp, "ffn_inp", il);
  6505. // feed-forward network
  6506. // MoE branch
  6507. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6508. model.layers[il].ffn_norm, NULL,
  6509. LLM_NORM_RMS, cb, il);
  6510. cb(cur, "ffn_norm", il);
  6511. cur = llm_build_moe_ffn(ctx0, cur,
  6512. model.layers[il].ffn_gate_inp,
  6513. model.layers[il].ffn_up_exps,
  6514. model.layers[il].ffn_gate_exps,
  6515. model.layers[il].ffn_down_exps,
  6516. n_expert, n_expert_used,
  6517. LLM_FFN_GELU, true,
  6518. cb, il);
  6519. cb(cur, "ffn_moe_out", il);
  6520. // Grok
  6521. // if layer_out_norm is present then apply it before adding the input
  6522. // Idea: maybe ffn_out_norm is a better name
  6523. if (model.layers[il].layer_out_norm) {
  6524. cur = llm_build_norm(ctx0, cur, hparams,
  6525. model.layers[il].layer_out_norm, NULL,
  6526. LLM_NORM_RMS, cb, il);
  6527. cb(cur, "layer_out_norm", il);
  6528. }
  6529. cur = ggml_add(ctx0, cur, ffn_inp);
  6530. cb(cur, "ffn_out", il);
  6531. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6532. if (layer_dir != nullptr) {
  6533. cur = ggml_add(ctx0, cur, layer_dir);
  6534. }
  6535. cb(cur, "l_out", il);
  6536. // input for next layer
  6537. inpL = cur;
  6538. }
  6539. cur = inpL;
  6540. cur = llm_build_norm(ctx0, cur, hparams,
  6541. model.output_norm, NULL,
  6542. LLM_NORM_RMS, cb, -1);
  6543. cb(cur, "result_norm", -1);
  6544. // lm_head
  6545. cur = ggml_mul_mat(ctx0, model.output, cur);
  6546. // Grok
  6547. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6548. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6549. cb(cur, "result_output", -1);
  6550. ggml_build_forward_expand(gf, cur);
  6551. return gf;
  6552. }
  6553. struct ggml_cgraph * build_dbrx() {
  6554. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6555. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6556. int32_t n_tokens = this->n_tokens;
  6557. const int64_t n_embd_head = hparams.n_embd_head_v;
  6558. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6559. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6560. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6561. struct ggml_tensor * cur;
  6562. struct ggml_tensor * inpL;
  6563. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6564. // inp_pos - contains the positions
  6565. struct ggml_tensor * inp_pos = build_inp_pos();
  6566. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6567. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6568. for (int il = 0; il < n_layer; ++il) {
  6569. struct ggml_tensor * inpSA = inpL;
  6570. // norm
  6571. cur = llm_build_norm(ctx0, inpL, hparams,
  6572. model.layers[il].attn_norm, NULL,
  6573. LLM_NORM, cb, il);
  6574. cb(cur, "attn_norm", il);
  6575. // self-attention
  6576. {
  6577. struct ggml_tensor * Qcur = nullptr;
  6578. struct ggml_tensor * Kcur = nullptr;
  6579. struct ggml_tensor * Vcur = nullptr;
  6580. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6581. cb(cur, "wqkv", il);
  6582. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6583. cb(cur, "wqkv_clamped", il);
  6584. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6585. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6586. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6587. cb(Qcur, "Qcur", il);
  6588. cb(Kcur, "Kcur", il);
  6589. cb(Vcur, "Vcur", il);
  6590. Qcur = ggml_rope_custom(
  6591. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6592. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6593. ext_factor, attn_factor, beta_fast, beta_slow
  6594. );
  6595. cb(Qcur, "Qcur", il);
  6596. Kcur = ggml_rope_custom(
  6597. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6598. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6599. ext_factor, attn_factor, beta_fast, beta_slow
  6600. );
  6601. cb(Kcur, "Kcur", il);
  6602. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6603. model.layers[il].wo, NULL,
  6604. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6605. }
  6606. if (il == n_layer - 1) {
  6607. // skip computing output for unused tokens
  6608. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6609. n_tokens = n_outputs;
  6610. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6611. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6612. }
  6613. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6614. cb(ffn_inp, "ffn_inp", il);
  6615. // feed-forward network
  6616. // MoE branch
  6617. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6618. model.layers[il].attn_out_norm, NULL,
  6619. LLM_NORM, cb, il);
  6620. cb(cur, "attn_out_norm", il);
  6621. cur = llm_build_moe_ffn(ctx0, cur,
  6622. model.layers[il].ffn_gate_inp,
  6623. model.layers[il].ffn_up_exps,
  6624. model.layers[il].ffn_gate_exps,
  6625. model.layers[il].ffn_down_exps,
  6626. n_expert, n_expert_used,
  6627. LLM_FFN_SILU, true,
  6628. cb, il);
  6629. cb(cur, "ffn_moe_out", il);
  6630. cur = ggml_add(ctx0, cur, ffn_inp);
  6631. cb(cur, "ffn_out", il);
  6632. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6633. if (layer_dir != nullptr) {
  6634. cur = ggml_add(ctx0, cur, layer_dir);
  6635. }
  6636. cb(cur, "l_out", il);
  6637. // input for next layer
  6638. inpL = cur;
  6639. }
  6640. cur = inpL;
  6641. cur = llm_build_norm(ctx0, cur, hparams,
  6642. model.output_norm, NULL,
  6643. LLM_NORM, cb, -1);
  6644. cb(cur, "result_norm", -1);
  6645. // lm_head
  6646. cur = ggml_mul_mat(ctx0, model.output, cur);
  6647. cb(cur, "result_output", -1);
  6648. ggml_build_forward_expand(gf, cur);
  6649. return gf;
  6650. }
  6651. struct ggml_cgraph * build_starcoder() {
  6652. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6653. const int64_t n_embd_head = hparams.n_embd_head_v;
  6654. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6655. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6656. struct ggml_tensor * cur;
  6657. struct ggml_tensor * inpL;
  6658. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6659. // inp_pos - contains the positions
  6660. struct ggml_tensor * inp_pos = build_inp_pos();
  6661. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6662. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6663. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6664. cb(pos, "pos_embd", -1);
  6665. inpL = ggml_add(ctx0, inpL, pos);
  6666. cb(inpL, "inpL", -1);
  6667. for (int il = 0; il < n_layer; ++il) {
  6668. cur = llm_build_norm(ctx0, inpL, hparams,
  6669. model.layers[il].attn_norm,
  6670. model.layers[il].attn_norm_b,
  6671. LLM_NORM, cb, il);
  6672. cb(cur, "attn_norm", il);
  6673. // self-attention
  6674. {
  6675. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6676. cb(cur, "wqkv", il);
  6677. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6678. cb(cur, "bqkv", il);
  6679. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6680. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6681. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6682. cb(Qcur, "Qcur", il);
  6683. cb(Kcur, "Kcur", il);
  6684. cb(Vcur, "Vcur", il);
  6685. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6686. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6687. model.layers[il].wo, model.layers[il].bo,
  6688. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6689. }
  6690. if (il == n_layer - 1) {
  6691. // skip computing output for unused tokens
  6692. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6693. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6694. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6695. }
  6696. // add the input
  6697. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6698. cb(ffn_inp, "ffn_inp", il);
  6699. // FF
  6700. {
  6701. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6702. model.layers[il].ffn_norm,
  6703. model.layers[il].ffn_norm_b,
  6704. LLM_NORM, cb, il);
  6705. cb(cur, "ffn_norm", il);
  6706. cur = llm_build_ffn(ctx0, cur,
  6707. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6708. NULL, NULL,
  6709. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6710. NULL,
  6711. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6712. cb(cur, "ffn_out", il);
  6713. }
  6714. inpL = ggml_add(ctx0, cur, ffn_inp);
  6715. cb(inpL, "l_out", il);
  6716. }
  6717. cur = llm_build_norm(ctx0, inpL, hparams,
  6718. model.output_norm,
  6719. model.output_norm_b,
  6720. LLM_NORM, cb, -1);
  6721. cb(cur, "result_norm", -1);
  6722. cur = ggml_mul_mat(ctx0, model.output, cur);
  6723. cb(cur, "result_output", -1);
  6724. ggml_build_forward_expand(gf, cur);
  6725. return gf;
  6726. }
  6727. struct ggml_cgraph * build_persimmon() {
  6728. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6729. const int64_t n_embd_head = hparams.n_embd_head_v;
  6730. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6731. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6732. struct ggml_tensor * cur;
  6733. struct ggml_tensor * inpL;
  6734. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6735. // inp_pos - contains the positions
  6736. struct ggml_tensor * inp_pos = build_inp_pos();
  6737. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6738. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6739. for (int il = 0; il < n_layer; ++il) {
  6740. struct ggml_tensor * residual = inpL;
  6741. cur = llm_build_norm(ctx0, inpL, hparams,
  6742. model.layers[il].attn_norm,
  6743. model.layers[il].attn_norm_b,
  6744. LLM_NORM, cb, il);
  6745. cb(cur, "attn_norm", il);
  6746. // self attention
  6747. {
  6748. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6749. cb(cur, "wqkv", il);
  6750. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6751. cb(cur, "bqkv", il);
  6752. // split qkv
  6753. GGML_ASSERT(n_head_kv == n_head);
  6754. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6755. cb(tmpqkv, "tmpqkv", il);
  6756. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6757. cb(tmpqkv_perm, "tmpqkv", il);
  6758. struct ggml_tensor * tmpq = ggml_view_3d(
  6759. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6760. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6761. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6762. 0
  6763. );
  6764. cb(tmpq, "tmpq", il);
  6765. struct ggml_tensor * tmpk = ggml_view_3d(
  6766. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6767. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6768. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6769. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6770. );
  6771. cb(tmpk, "tmpk", il);
  6772. // Q/K Layernorm
  6773. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6774. model.layers[il].attn_q_norm,
  6775. model.layers[il].attn_q_norm_b,
  6776. LLM_NORM, cb, il);
  6777. cb(tmpq, "tmpq", il);
  6778. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6779. model.layers[il].attn_k_norm,
  6780. model.layers[il].attn_k_norm_b,
  6781. LLM_NORM, cb, il);
  6782. cb(tmpk, "tmpk", il);
  6783. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6784. struct ggml_tensor * qrot = ggml_view_3d(
  6785. ctx0, tmpq, n_rot, n_head, n_tokens,
  6786. ggml_element_size(tmpq) * n_embd_head,
  6787. ggml_element_size(tmpq) * n_embd_head * n_head,
  6788. 0
  6789. );
  6790. cb(qrot, "qrot", il);
  6791. struct ggml_tensor * krot = ggml_view_3d(
  6792. ctx0, tmpk, n_rot, n_head, n_tokens,
  6793. ggml_element_size(tmpk) * n_embd_head,
  6794. ggml_element_size(tmpk) * n_embd_head * n_head,
  6795. 0
  6796. );
  6797. cb(krot, "krot", il);
  6798. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6799. struct ggml_tensor * qpass = ggml_view_3d(
  6800. ctx0, tmpq, n_rot, n_head, n_tokens,
  6801. ggml_element_size(tmpq) * n_embd_head,
  6802. ggml_element_size(tmpq) * n_embd_head * n_head,
  6803. ggml_element_size(tmpq) * n_rot
  6804. );
  6805. cb(qpass, "qpass", il);
  6806. struct ggml_tensor * kpass = ggml_view_3d(
  6807. ctx0, tmpk, n_rot, n_head, n_tokens,
  6808. ggml_element_size(tmpk) * n_embd_head,
  6809. ggml_element_size(tmpk) * n_embd_head * n_head,
  6810. ggml_element_size(tmpk) * n_rot
  6811. );
  6812. cb(kpass, "kpass", il);
  6813. struct ggml_tensor * qrotated = ggml_rope_custom(
  6814. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6815. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6816. );
  6817. cb(qrotated, "qrotated", il);
  6818. struct ggml_tensor * krotated = ggml_rope_custom(
  6819. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6820. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6821. );
  6822. cb(krotated, "krotated", il);
  6823. // ggml currently only supports concatenation on dim=2
  6824. // so we need to permute qrot, qpass, concat, then permute back.
  6825. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6826. cb(qrotated, "qrotated", il);
  6827. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6828. cb(krotated, "krotated", il);
  6829. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6830. cb(qpass, "qpass", il);
  6831. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6832. cb(kpass, "kpass", il);
  6833. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6834. cb(Qcur, "Qcur", il);
  6835. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6836. cb(Kcur, "Kcur", il);
  6837. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6838. cb(Q, "Q", il);
  6839. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6840. cb(Kcur, "Kcur", il);
  6841. struct ggml_tensor * Vcur = ggml_view_3d(
  6842. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6843. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6844. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6845. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6846. );
  6847. cb(Vcur, "Vcur", il);
  6848. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6849. model.layers[il].wo, model.layers[il].bo,
  6850. Kcur, Vcur, Q, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6851. }
  6852. if (il == n_layer - 1) {
  6853. // skip computing output for unused tokens
  6854. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6855. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6856. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6857. }
  6858. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6859. cb(ffn_inp, "ffn_inp", il);
  6860. // feed-forward network
  6861. {
  6862. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6863. model.layers[il].ffn_norm,
  6864. model.layers[il].ffn_norm_b,
  6865. LLM_NORM, cb, il);
  6866. cb(cur, "ffn_norm", il);
  6867. cur = llm_build_ffn(ctx0, cur,
  6868. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6869. NULL, NULL,
  6870. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6871. NULL,
  6872. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6873. cb(cur, "ffn_out", il);
  6874. }
  6875. cur = ggml_add(ctx0, cur, ffn_inp);
  6876. cb(cur, "l_out", il);
  6877. inpL = cur;
  6878. }
  6879. cur = inpL;
  6880. cur = llm_build_norm(ctx0, cur, hparams,
  6881. model.output_norm,
  6882. model.output_norm_b,
  6883. LLM_NORM, cb, -1);
  6884. cb(cur, "result_norm", -1);
  6885. cur = ggml_mul_mat(ctx0, model.output, cur);
  6886. cb(cur, "result_output", -1);
  6887. ggml_build_forward_expand(gf, cur);
  6888. return gf;
  6889. }
  6890. struct ggml_cgraph * build_refact() {
  6891. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6892. const int64_t n_embd_head = hparams.n_embd_head_v;
  6893. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6894. struct ggml_tensor * cur;
  6895. struct ggml_tensor * inpL;
  6896. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6897. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6898. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6899. for (int il = 0; il < n_layer; ++il) {
  6900. struct ggml_tensor * inpSA = inpL;
  6901. cur = llm_build_norm(ctx0, inpL, hparams,
  6902. model.layers[il].attn_norm, NULL,
  6903. LLM_NORM_RMS, cb, il);
  6904. cb(cur, "attn_norm", il);
  6905. // self-attention
  6906. {
  6907. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6908. cb(Qcur, "Qcur", il);
  6909. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6910. cb(Kcur, "Kcur", il);
  6911. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6912. cb(Vcur, "Vcur", il);
  6913. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6914. cb(Kcur, "Kcur", il);
  6915. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6916. cb(Qcur, "Qcur", il);
  6917. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6918. model.layers[il].wo, NULL,
  6919. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6920. }
  6921. if (il == n_layer - 1) {
  6922. // skip computing output for unused tokens
  6923. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6924. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6925. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6926. }
  6927. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6928. cb(ffn_inp, "ffn_inp", il);
  6929. // feed-forward network
  6930. {
  6931. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6932. model.layers[il].ffn_norm, NULL,
  6933. LLM_NORM_RMS, cb, il);
  6934. cb(cur, "ffn_norm", il);
  6935. cur = llm_build_ffn(ctx0, cur,
  6936. model.layers[il].ffn_up, NULL,
  6937. model.layers[il].ffn_gate, NULL,
  6938. model.layers[il].ffn_down, NULL,
  6939. NULL,
  6940. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6941. cb(cur, "ffn_out", il);
  6942. }
  6943. cur = ggml_add(ctx0, cur, ffn_inp);
  6944. cb(cur, "l_out", il);
  6945. // input for next layer
  6946. inpL = cur;
  6947. }
  6948. cur = inpL;
  6949. cur = llm_build_norm(ctx0, cur, hparams,
  6950. model.output_norm, NULL,
  6951. LLM_NORM_RMS, cb, -1);
  6952. cb(cur, "result_norm", -1);
  6953. // lm_head
  6954. cur = ggml_mul_mat(ctx0, model.output, cur);
  6955. cb(cur, "result_output", -1);
  6956. ggml_build_forward_expand(gf, cur);
  6957. return gf;
  6958. }
  6959. struct ggml_cgraph * build_bert() {
  6960. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6961. const int64_t n_embd_head = hparams.n_embd_head_v;
  6962. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6963. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6964. struct ggml_tensor * cur;
  6965. struct ggml_tensor * inpL;
  6966. struct ggml_tensor * inp_pos = nullptr;
  6967. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  6968. inp_pos = build_inp_pos();
  6969. }
  6970. struct ggml_tensor * inp_mean = build_inp_mean();
  6971. struct ggml_tensor * inp_cls = build_inp_cls();
  6972. // construct input embeddings (token, type, position)
  6973. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6974. // token types are hardcoded to zero ("Sentence A")
  6975. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6976. inpL = ggml_add(ctx0, inpL, type_row0);
  6977. if (model.arch == LLM_ARCH_BERT) {
  6978. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6979. }
  6980. cb(inpL, "inp_embd", -1);
  6981. // embed layer norm
  6982. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6983. cb(inpL, "inp_norm", -1);
  6984. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6985. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6986. // iterate layers
  6987. for (int il = 0; il < n_layer; ++il) {
  6988. struct ggml_tensor * cur = inpL;
  6989. struct ggml_tensor * Qcur;
  6990. struct ggml_tensor * Kcur;
  6991. struct ggml_tensor * Vcur;
  6992. // self-attention
  6993. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  6994. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6995. cb(Qcur, "Qcur", il);
  6996. if (model.layers[il].attn_q_norm) {
  6997. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  6998. model.layers[il].attn_q_norm,
  6999. model.layers[il].attn_q_norm_b,
  7000. LLM_NORM, cb, il);
  7001. }
  7002. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7003. cb(Kcur, "Kcur", il);
  7004. if (model.layers[il].attn_k_norm) {
  7005. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7006. model.layers[il].attn_k_norm,
  7007. model.layers[il].attn_k_norm_b,
  7008. LLM_NORM, cb, il);
  7009. }
  7010. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7011. cb(Vcur, "Vcur", il);
  7012. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7013. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7014. } else {
  7015. // compute Q and K and RoPE them
  7016. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7017. cb(cur, "wqkv", il);
  7018. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7019. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7020. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7021. cb(Qcur, "Qcur", il);
  7022. cb(Kcur, "Kcur", il);
  7023. cb(Vcur, "Vcur", il);
  7024. Qcur = ggml_rope_custom(
  7025. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7026. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7027. ext_factor, attn_factor, beta_fast, beta_slow
  7028. );
  7029. cb(Qcur, "Qcur", il);
  7030. Kcur = ggml_rope_custom(
  7031. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7032. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7033. ext_factor, attn_factor, beta_fast, beta_slow
  7034. );
  7035. cb(Kcur, "Kcur", il);
  7036. }
  7037. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7038. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7039. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7040. cb(kq, "kq", il);
  7041. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7042. cb(kq, "kq_soft_max_ext", il);
  7043. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7044. cb(v, "v", il);
  7045. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7046. cb(kqv, "kqv", il);
  7047. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7048. cb(kqv_merged, "kqv_merged", il);
  7049. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7050. cb(cur, "kqv_merged_cont", il);
  7051. ggml_build_forward_expand(gf, cur);
  7052. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7053. if (model.layers[il].bo) {
  7054. cb(cur, "kqv_wo", il);
  7055. }
  7056. if (model.layers[il].bo) {
  7057. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7058. }
  7059. cb(cur, "kqv_out", il);
  7060. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7061. // skip computing output for unused tokens
  7062. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7063. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7064. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7065. }
  7066. // re-add the layer input
  7067. cur = ggml_add(ctx0, cur, inpL);
  7068. // attention layer norm
  7069. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7070. struct ggml_tensor * ffn_inp = cur;
  7071. cb(ffn_inp, "ffn_inp", il);
  7072. // feed-forward network
  7073. if (model.arch == LLM_ARCH_BERT) {
  7074. cur = llm_build_ffn(ctx0, cur,
  7075. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7076. NULL, NULL,
  7077. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7078. NULL,
  7079. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7080. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7081. cur = llm_build_ffn(ctx0, cur,
  7082. model.layers[il].ffn_up, NULL,
  7083. model.layers[il].ffn_gate, NULL,
  7084. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7085. NULL,
  7086. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7087. } else {
  7088. cur = llm_build_ffn(ctx0, cur,
  7089. model.layers[il].ffn_up, NULL,
  7090. model.layers[il].ffn_gate, NULL,
  7091. model.layers[il].ffn_down, NULL,
  7092. NULL,
  7093. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7094. }
  7095. cb(cur, "ffn_out", il);
  7096. // attentions bypass the intermediate layer
  7097. cur = ggml_add(ctx0, cur, ffn_inp);
  7098. // output layer norm
  7099. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7100. // input for next layer
  7101. inpL = cur;
  7102. }
  7103. // final output
  7104. cur = inpL;
  7105. cb(cur, "result_embd", -1);
  7106. // pooling layer
  7107. switch (pooling_type) {
  7108. case LLAMA_POOLING_TYPE_NONE:
  7109. {
  7110. // nop
  7111. } break;
  7112. case LLAMA_POOLING_TYPE_MEAN:
  7113. {
  7114. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7115. cb(cur, "result_embd_pooled", -1);
  7116. } break;
  7117. case LLAMA_POOLING_TYPE_CLS:
  7118. {
  7119. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7120. cb(cur, "result_embd_pooled", -1);
  7121. } break;
  7122. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7123. {
  7124. GGML_ASSERT(false && "Invalid pooling type");
  7125. } break;
  7126. }
  7127. ggml_build_forward_expand(gf, cur);
  7128. return gf;
  7129. }
  7130. struct ggml_cgraph * build_bloom() {
  7131. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7132. const int64_t n_embd_head = hparams.n_embd_head_v;
  7133. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7134. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7135. struct ggml_tensor * cur;
  7136. struct ggml_tensor * inpL;
  7137. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7138. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7139. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7140. inpL = llm_build_norm(ctx0, inpL, hparams,
  7141. model.tok_norm,
  7142. model.tok_norm_b,
  7143. LLM_NORM, cb, -1);
  7144. cb(inpL, "inp_norm", -1);
  7145. for (int il = 0; il < n_layer; ++il) {
  7146. cur = llm_build_norm(ctx0, inpL, hparams,
  7147. model.layers[il].attn_norm,
  7148. model.layers[il].attn_norm_b,
  7149. LLM_NORM, cb, il);
  7150. cb(cur, "attn_norm", il);
  7151. // self-attention
  7152. {
  7153. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7154. cb(cur, "wqkv", il);
  7155. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7156. cb(cur, "bqkv", il);
  7157. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7158. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7159. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7160. cb(Qcur, "Qcur", il);
  7161. cb(Kcur, "Kcur", il);
  7162. cb(Vcur, "Vcur", il);
  7163. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7164. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7165. model.layers[il].wo, model.layers[il].bo,
  7166. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7167. }
  7168. if (il == n_layer - 1) {
  7169. // skip computing output for unused tokens
  7170. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7171. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7172. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7173. }
  7174. // Add the input
  7175. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7176. cb(ffn_inp, "ffn_inp", il);
  7177. // FF
  7178. {
  7179. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7180. model.layers[il].ffn_norm,
  7181. model.layers[il].ffn_norm_b,
  7182. LLM_NORM, cb, il);
  7183. cb(cur, "ffn_norm", il);
  7184. cur = llm_build_ffn(ctx0, cur,
  7185. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7186. NULL, NULL,
  7187. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7188. NULL,
  7189. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7190. cb(cur, "ffn_out", il);
  7191. }
  7192. inpL = ggml_add(ctx0, cur, ffn_inp);
  7193. cb(inpL, "l_out", il);
  7194. }
  7195. cur = llm_build_norm(ctx0, inpL, hparams,
  7196. model.output_norm,
  7197. model.output_norm_b,
  7198. LLM_NORM, cb, -1);
  7199. cb(cur, "result_norm", -1);
  7200. cur = ggml_mul_mat(ctx0, model.output, cur);
  7201. cb(cur, "result_output", -1);
  7202. ggml_build_forward_expand(gf, cur);
  7203. return gf;
  7204. }
  7205. struct ggml_cgraph * build_mpt() {
  7206. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7207. const int64_t n_embd_head = hparams.n_embd_head_v;
  7208. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7209. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7210. struct ggml_tensor * cur;
  7211. struct ggml_tensor * pos;
  7212. struct ggml_tensor * inpL;
  7213. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7214. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7215. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7216. if (model.pos_embd) {
  7217. // inp_pos - contains the positions
  7218. struct ggml_tensor * inp_pos = build_inp_pos();
  7219. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7220. cb(pos, "pos_embd", -1);
  7221. inpL = ggml_add(ctx0, inpL, pos);
  7222. cb(inpL, "inpL", -1);
  7223. }
  7224. for (int il = 0; il < n_layer; ++il) {
  7225. struct ggml_tensor * attn_norm;
  7226. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7227. model.layers[il].attn_norm,
  7228. model.layers[il].attn_norm_b,
  7229. LLM_NORM, cb, il);
  7230. cb(attn_norm, "attn_norm", il);
  7231. // self-attention
  7232. {
  7233. cur = attn_norm;
  7234. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7235. cb(cur, "wqkv", il);
  7236. if (model.layers[il].bqkv){
  7237. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7238. cb(cur, "bqkv", il);
  7239. }
  7240. if (hparams.f_clamp_kqv > 0.0f) {
  7241. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7242. cb(cur, "wqkv_clamped", il);
  7243. }
  7244. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7245. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7246. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7247. cb(Qcur, "Qcur", il);
  7248. cb(Kcur, "Kcur", il);
  7249. cb(Vcur, "Vcur", il);
  7250. // Q/K Layernorm
  7251. if (model.layers[il].attn_q_norm) {
  7252. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7253. model.layers[il].attn_q_norm,
  7254. model.layers[il].attn_q_norm_b,
  7255. LLM_NORM, cb, il);
  7256. cb(Qcur, "Qcur", il);
  7257. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7258. model.layers[il].attn_k_norm,
  7259. model.layers[il].attn_k_norm_b,
  7260. LLM_NORM, cb, il);
  7261. cb(Kcur, "Kcur", il);
  7262. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7263. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7264. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7265. model.layers[il].wo, model.layers[il].bo,
  7266. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7267. } else {
  7268. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7269. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7270. model.layers[il].wo, model.layers[il].bo,
  7271. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7272. }
  7273. }
  7274. if (il == n_layer - 1) {
  7275. // skip computing output for unused tokens
  7276. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7277. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7278. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7279. }
  7280. // Add the input
  7281. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7282. cb(ffn_inp, "ffn_inp", il);
  7283. // feed forward
  7284. {
  7285. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7286. model.layers[il].ffn_norm,
  7287. model.layers[il].ffn_norm_b,
  7288. LLM_NORM, cb, il);
  7289. cb(cur, "ffn_norm", il);
  7290. cur = llm_build_ffn(ctx0, cur,
  7291. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7292. NULL, NULL,
  7293. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7294. model.layers[il].ffn_act,
  7295. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7296. cb(cur, "ffn_out", il);
  7297. }
  7298. cur = ggml_add(ctx0, cur, ffn_inp);
  7299. cb(cur, "l_out", il);
  7300. // input for next layer
  7301. inpL = cur;
  7302. }
  7303. cur = inpL;
  7304. cur = llm_build_norm(ctx0, cur, hparams,
  7305. model.output_norm,
  7306. model.output_norm_b,
  7307. LLM_NORM, cb, -1);
  7308. cb(cur, "result_norm", -1);
  7309. cur = ggml_mul_mat(ctx0, model.output, cur);
  7310. cb(cur, "result_output", -1);
  7311. ggml_build_forward_expand(gf, cur);
  7312. return gf;
  7313. }
  7314. struct ggml_cgraph * build_stablelm() {
  7315. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7316. const int64_t n_embd_head = hparams.n_embd_head_v;
  7317. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7318. struct ggml_tensor * cur;
  7319. struct ggml_tensor * inpL;
  7320. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7321. // inp_pos - contains the positions
  7322. struct ggml_tensor * inp_pos = build_inp_pos();
  7323. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7324. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7325. for (int il = 0; il < n_layer; ++il) {
  7326. // norm
  7327. cur = llm_build_norm(ctx0, inpL, hparams,
  7328. model.layers[il].attn_norm,
  7329. model.layers[il].attn_norm_b,
  7330. LLM_NORM, cb, il);
  7331. cb(cur, "attn_norm", il);
  7332. struct ggml_tensor * inpSA = cur;
  7333. // self-attention
  7334. {
  7335. // compute Q and K and RoPE them
  7336. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7337. cb(Qcur, "Qcur", il);
  7338. if (model.layers[il].bq) {
  7339. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7340. cb(Qcur, "Qcur", il);
  7341. }
  7342. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7343. cb(Kcur, "Kcur", il);
  7344. if (model.layers[il].bk) {
  7345. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7346. cb(Kcur, "Kcur", il);
  7347. }
  7348. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7349. cb(Vcur, "Vcur", il);
  7350. if (model.layers[il].bv) {
  7351. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7352. cb(Vcur, "Vcur", il);
  7353. }
  7354. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7355. cb(Qcur, "Qcur", il);
  7356. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7357. cb(Kcur, "Kcur", il);
  7358. if (model.layers[il].attn_q_norm) {
  7359. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7360. model.layers[il].attn_q_norm,
  7361. NULL,
  7362. LLM_NORM, cb, il);
  7363. cb(Qcur, "Qcur", il);
  7364. }
  7365. if (model.layers[il].attn_k_norm) {
  7366. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7367. model.layers[il].attn_k_norm,
  7368. NULL,
  7369. LLM_NORM, cb, il);
  7370. cb(Kcur, "Kcur", il);
  7371. }
  7372. Qcur = ggml_rope_custom(
  7373. ctx0, Qcur, inp_pos,
  7374. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7375. ext_factor, attn_factor, beta_fast, beta_slow
  7376. );
  7377. cb(Qcur, "Qcur", il);
  7378. Kcur = ggml_rope_custom(
  7379. ctx0, Kcur, inp_pos,
  7380. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7381. ext_factor, attn_factor, beta_fast, beta_slow
  7382. );
  7383. cb(Kcur, "Kcur", il);
  7384. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7385. model.layers[il].wo, NULL,
  7386. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7387. }
  7388. if (il == n_layer - 1) {
  7389. // skip computing output for unused tokens
  7390. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7391. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7392. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7393. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7394. }
  7395. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7396. cb(ffn_inp, "ffn_inp", il);
  7397. // feed-forward network
  7398. {
  7399. if (model.layers[il].ffn_norm) {
  7400. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7401. model.layers[il].ffn_norm,
  7402. model.layers[il].ffn_norm_b,
  7403. LLM_NORM, cb, il);
  7404. cb(cur, "ffn_norm", il);
  7405. } else {
  7406. // parallel residual
  7407. cur = inpSA;
  7408. }
  7409. cur = llm_build_ffn(ctx0, cur,
  7410. model.layers[il].ffn_up, NULL,
  7411. model.layers[il].ffn_gate, NULL,
  7412. model.layers[il].ffn_down, NULL,
  7413. NULL,
  7414. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7415. cb(cur, "ffn_out", il);
  7416. }
  7417. cur = ggml_add(ctx0, cur, ffn_inp);
  7418. cb(cur, "l_out", il);
  7419. // input for next layer
  7420. inpL = cur;
  7421. }
  7422. cur = inpL;
  7423. cur = llm_build_norm(ctx0, cur, hparams,
  7424. model.output_norm,
  7425. model.output_norm_b,
  7426. LLM_NORM, cb, -1);
  7427. cb(cur, "result_norm", -1);
  7428. // lm_head
  7429. cur = ggml_mul_mat(ctx0, model.output, cur);
  7430. cb(cur, "result_output", -1);
  7431. ggml_build_forward_expand(gf, cur);
  7432. return gf;
  7433. }
  7434. struct ggml_cgraph * build_qwen() {
  7435. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7436. const int64_t n_embd_head = hparams.n_embd_head_v;
  7437. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7438. struct ggml_tensor * cur;
  7439. struct ggml_tensor * inpL;
  7440. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7441. // inp_pos - contains the positions
  7442. struct ggml_tensor * inp_pos = build_inp_pos();
  7443. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7444. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7445. for (int il = 0; il < n_layer; ++il) {
  7446. struct ggml_tensor * inpSA = inpL;
  7447. cur = llm_build_norm(ctx0, inpL, hparams,
  7448. model.layers[il].attn_norm, NULL,
  7449. LLM_NORM_RMS, cb, il);
  7450. cb(cur, "attn_norm", il);
  7451. // self-attention
  7452. {
  7453. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7454. cb(cur, "wqkv", il);
  7455. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7456. cb(cur, "bqkv", il);
  7457. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7458. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7459. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7460. cb(Qcur, "Qcur", il);
  7461. cb(Kcur, "Kcur", il);
  7462. cb(Vcur, "Vcur", il);
  7463. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7464. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7465. // using mode = 2 for neox mode
  7466. Qcur = ggml_rope_custom(
  7467. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7468. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7469. );
  7470. cb(Qcur, "Qcur", il);
  7471. Kcur = ggml_rope_custom(
  7472. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7473. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7474. );
  7475. cb(Kcur, "Kcur", il);
  7476. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7477. model.layers[il].wo, NULL,
  7478. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7479. }
  7480. if (il == n_layer - 1) {
  7481. // skip computing output for unused tokens
  7482. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7483. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7484. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7485. }
  7486. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7487. cb(ffn_inp, "ffn_inp", il);
  7488. // feed-forward forward
  7489. {
  7490. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7491. model.layers[il].ffn_norm, NULL,
  7492. LLM_NORM_RMS, cb, il);
  7493. cb(cur, "ffn_norm", il);
  7494. cur = llm_build_ffn(ctx0, cur,
  7495. model.layers[il].ffn_up, NULL,
  7496. model.layers[il].ffn_gate, NULL,
  7497. model.layers[il].ffn_down, NULL,
  7498. NULL,
  7499. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7500. cb(cur, "ffn_out", il);
  7501. }
  7502. cur = ggml_add(ctx0, cur, ffn_inp);
  7503. cb(cur, "l_out", il);
  7504. // input for next layer
  7505. inpL = cur;
  7506. }
  7507. cur = inpL;
  7508. cur = llm_build_norm(ctx0, cur, hparams,
  7509. model.output_norm, NULL,
  7510. LLM_NORM_RMS, cb, -1);
  7511. cb(cur, "result_norm", -1);
  7512. // lm_head
  7513. cur = ggml_mul_mat(ctx0, model.output, cur);
  7514. cb(cur, "result_output", -1);
  7515. ggml_build_forward_expand(gf, cur);
  7516. return gf;
  7517. }
  7518. struct ggml_cgraph * build_qwen2() {
  7519. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7520. const int64_t n_embd_head = hparams.n_embd_head_v;
  7521. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7522. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7523. struct ggml_tensor * cur;
  7524. struct ggml_tensor * inpL;
  7525. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7526. // inp_pos - contains the positions
  7527. struct ggml_tensor * inp_pos = build_inp_pos();
  7528. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7529. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7530. for (int il = 0; il < n_layer; ++il) {
  7531. struct ggml_tensor * inpSA = inpL;
  7532. // norm
  7533. cur = llm_build_norm(ctx0, inpL, hparams,
  7534. model.layers[il].attn_norm, NULL,
  7535. LLM_NORM_RMS, cb, il);
  7536. cb(cur, "attn_norm", il);
  7537. // self-attention
  7538. {
  7539. // compute Q and K and RoPE them
  7540. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7541. cb(Qcur, "Qcur", il);
  7542. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7543. cb(Qcur, "Qcur", il);
  7544. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7545. cb(Kcur, "Kcur", il);
  7546. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7547. cb(Kcur, "Kcur", il);
  7548. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7549. cb(Vcur, "Vcur", il);
  7550. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7551. cb(Vcur, "Vcur", il);
  7552. Qcur = ggml_rope_custom(
  7553. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7554. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7555. ext_factor, attn_factor, beta_fast, beta_slow
  7556. );
  7557. cb(Qcur, "Qcur", il);
  7558. Kcur = ggml_rope_custom(
  7559. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7560. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7561. ext_factor, attn_factor, beta_fast, beta_slow
  7562. );
  7563. cb(Kcur, "Kcur", il);
  7564. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7565. model.layers[il].wo, model.layers[il].bo,
  7566. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7567. }
  7568. if (il == n_layer - 1) {
  7569. // skip computing output for unused tokens
  7570. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7571. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7572. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7573. }
  7574. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7575. cb(ffn_inp, "ffn_inp", il);
  7576. // feed-forward network
  7577. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7578. model.layers[il].ffn_norm, NULL,
  7579. LLM_NORM_RMS, cb, il);
  7580. cb(cur, "ffn_norm", il);
  7581. cur = llm_build_ffn(ctx0, cur,
  7582. model.layers[il].ffn_up, NULL,
  7583. model.layers[il].ffn_gate, NULL,
  7584. model.layers[il].ffn_down, NULL,
  7585. NULL,
  7586. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7587. cb(cur, "ffn_out", il);
  7588. cur = ggml_add(ctx0, cur, ffn_inp);
  7589. cb(cur, "l_out", il);
  7590. // input for next layer
  7591. inpL = cur;
  7592. }
  7593. cur = inpL;
  7594. cur = llm_build_norm(ctx0, cur, hparams,
  7595. model.output_norm, NULL,
  7596. LLM_NORM_RMS, cb, -1);
  7597. cb(cur, "result_norm", -1);
  7598. // lm_head
  7599. cur = ggml_mul_mat(ctx0, model.output, cur);
  7600. cb(cur, "result_output", -1);
  7601. ggml_build_forward_expand(gf, cur);
  7602. return gf;
  7603. }
  7604. struct ggml_cgraph * build_qwen2moe() {
  7605. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7606. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7607. int32_t n_tokens = this->n_tokens;
  7608. const int64_t n_embd_head = hparams.n_embd_head_v;
  7609. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7610. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7611. struct ggml_tensor * cur;
  7612. struct ggml_tensor * inpL;
  7613. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7614. // inp_pos - contains the positions
  7615. struct ggml_tensor * inp_pos = build_inp_pos();
  7616. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7617. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7618. for (int il = 0; il < n_layer; ++il) {
  7619. struct ggml_tensor * inpSA = inpL;
  7620. // norm
  7621. cur = llm_build_norm(ctx0, inpL, hparams,
  7622. model.layers[il].attn_norm, NULL,
  7623. LLM_NORM_RMS, cb, il);
  7624. cb(cur, "attn_norm", il);
  7625. // self_attention
  7626. {
  7627. // compute Q and K and RoPE them
  7628. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7629. cb(Qcur, "Qcur", il);
  7630. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7631. cb(Qcur, "Qcur", il);
  7632. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7633. cb(Kcur, "Kcur", il);
  7634. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7635. cb(Kcur, "Kcur", il);
  7636. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7637. cb(Vcur, "Vcur", il);
  7638. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7639. cb(Vcur, "Vcur", il);
  7640. Qcur = ggml_rope_custom(
  7641. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7642. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7643. ext_factor, attn_factor, beta_fast, beta_slow
  7644. );
  7645. cb(Qcur, "Qcur", il);
  7646. Kcur = ggml_rope_custom(
  7647. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7648. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7649. ext_factor, attn_factor, beta_fast, beta_slow
  7650. );
  7651. cb(Kcur, "Kcur", il);
  7652. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7653. model.layers[il].wo, model.layers[il].bo,
  7654. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7655. }
  7656. if (il == n_layer - 1) {
  7657. // skip computing output for unused tokens
  7658. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7659. n_tokens = n_outputs;
  7660. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7661. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7662. }
  7663. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7664. cb(ffn_inp, "ffn_inp", il);
  7665. // MoE branch
  7666. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7667. model.layers[il].ffn_norm, NULL,
  7668. LLM_NORM_RMS, cb, il);
  7669. cb(cur, "ffn_norm", il);
  7670. ggml_tensor * moe_out =
  7671. llm_build_moe_ffn(ctx0, cur,
  7672. model.layers[il].ffn_gate_inp,
  7673. model.layers[il].ffn_up_exps,
  7674. model.layers[il].ffn_gate_exps,
  7675. model.layers[il].ffn_down_exps,
  7676. n_expert, n_expert_used,
  7677. LLM_FFN_SILU, false,
  7678. cb, il);
  7679. cb(cur, "ffn_moe_out", il);
  7680. // FFN shared expert
  7681. {
  7682. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7683. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7684. // sigmoid
  7685. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7686. cb(cur_gate, "ffn_shexp_gate", il);
  7687. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7688. model.layers[il].ffn_up_shexp, NULL,
  7689. model.layers[il].ffn_gate_shexp, NULL,
  7690. model.layers[il].ffn_down_shexp, NULL,
  7691. NULL,
  7692. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7693. cb(cur_ffn, "ffn_shexp", il);
  7694. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7695. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7696. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7697. cb(moe_out, "ffn_out", il);
  7698. cur = moe_out;
  7699. }
  7700. cur = ggml_add(ctx0, cur, ffn_inp);
  7701. cb(cur, "l_out", il);
  7702. // input for next layer
  7703. inpL = cur;
  7704. }
  7705. cur = inpL;
  7706. cur = llm_build_norm(ctx0, cur, hparams,
  7707. model.output_norm, NULL,
  7708. LLM_NORM_RMS, cb, -1);
  7709. cb(cur, "result_norm", -1);
  7710. // lm_head
  7711. cur = ggml_mul_mat(ctx0, model.output, cur);
  7712. cb(cur, "result_output", -1);
  7713. ggml_build_forward_expand(gf, cur);
  7714. return gf;
  7715. }
  7716. struct ggml_cgraph * build_phi2() {
  7717. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7718. const int64_t n_embd_head = hparams.n_embd_head_v;
  7719. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7720. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7721. struct ggml_tensor * cur;
  7722. struct ggml_tensor * attn_norm_output;
  7723. struct ggml_tensor * ffn_output;
  7724. struct ggml_tensor * inpL;
  7725. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7726. // inp_pos - contains the positions
  7727. struct ggml_tensor * inp_pos = build_inp_pos();
  7728. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7729. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7730. for (int il = 0; il < n_layer; ++il) {
  7731. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7732. model.layers[il].attn_norm,
  7733. model.layers[il].attn_norm_b,
  7734. LLM_NORM, cb, il);
  7735. cb(attn_norm_output, "attn_norm", il);
  7736. // self-attention
  7737. {
  7738. struct ggml_tensor * Qcur = nullptr;
  7739. struct ggml_tensor * Kcur = nullptr;
  7740. struct ggml_tensor * Vcur = nullptr;
  7741. if (model.layers[il].wqkv) {
  7742. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7743. cb(cur, "wqkv", il);
  7744. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7745. cb(cur, "bqkv", il);
  7746. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7747. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7748. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7749. } else {
  7750. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7751. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7752. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7753. }
  7754. cb(Qcur, "Qcur", il);
  7755. cb(Kcur, "Kcur", il);
  7756. cb(Vcur, "Vcur", il);
  7757. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7758. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7759. Qcur = ggml_rope_custom(
  7760. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7761. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7762. );
  7763. cb(Qcur, "Qcur", il);
  7764. // with phi2, we scale the Q to avoid precision issues
  7765. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7766. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7767. cb(Qcur, "Qcur", il);
  7768. Kcur = ggml_rope_custom(
  7769. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7770. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7771. );
  7772. cb(Kcur, "Kcur", il);
  7773. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7774. model.layers[il].wo, model.layers[il].bo,
  7775. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7776. }
  7777. if (il == n_layer - 1) {
  7778. // skip computing output for unused tokens
  7779. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7780. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7781. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7782. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7783. }
  7784. // FF
  7785. {
  7786. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7787. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7788. NULL, NULL,
  7789. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7790. NULL,
  7791. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7792. cb(ffn_output, "ffn_out", il);
  7793. }
  7794. cur = ggml_add(ctx0, cur, ffn_output);
  7795. cb(cur, "l_out", il);
  7796. cur = ggml_add(ctx0, cur, inpL);
  7797. cb(cur, "l_out", il);
  7798. inpL = cur;
  7799. }
  7800. cur = llm_build_norm(ctx0, inpL, hparams,
  7801. model.output_norm,
  7802. model.output_norm_b,
  7803. LLM_NORM, cb, -1);
  7804. cb(cur, "result_norm", -1);
  7805. cur = ggml_mul_mat(ctx0, model.output, cur);
  7806. cb(cur, "result_output_no_bias", -1);
  7807. cur = ggml_add(ctx0, cur, model.output_b);
  7808. cb(cur, "result_output", -1);
  7809. ggml_build_forward_expand(gf, cur);
  7810. return gf;
  7811. }
  7812. struct ggml_cgraph * build_phi3() {
  7813. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7814. const int64_t n_embd_head = hparams.n_embd_head_v;
  7815. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7816. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7817. struct ggml_tensor * cur;
  7818. struct ggml_tensor * inpL;
  7819. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7820. // inp_pos - contains the positions
  7821. struct ggml_tensor * inp_pos = build_inp_pos();
  7822. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7823. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7824. for (int il = 0; il < n_layer; ++il) {
  7825. auto residual = inpL;
  7826. // self-attention
  7827. {
  7828. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7829. model.layers[il].attn_norm,
  7830. NULL,
  7831. LLM_NORM_RMS, cb, il);
  7832. cb(attn_norm_output, "attn_norm", il);
  7833. struct ggml_tensor * Qcur = nullptr;
  7834. struct ggml_tensor * Kcur = nullptr;
  7835. struct ggml_tensor * Vcur = nullptr;
  7836. if (model.layers[il].wqkv) {
  7837. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7838. cb(cur, "wqkv", il);
  7839. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7840. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7841. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7842. }
  7843. else {
  7844. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7845. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7846. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7847. }
  7848. cb(Qcur, "Qcur", il);
  7849. cb(Kcur, "Kcur", il);
  7850. cb(Vcur, "Vcur", il);
  7851. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7852. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7853. Qcur = ggml_rope_custom(
  7854. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7855. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7856. );
  7857. cb(Qcur, "Qcur", il);
  7858. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7859. cb(Qcur, "Qcur", il);
  7860. Kcur = ggml_rope_custom(
  7861. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7862. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7863. );
  7864. cb(Kcur, "Kcur", il);
  7865. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7866. model.layers[il].wo, model.layers[il].bo,
  7867. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7868. }
  7869. if (il == n_layer - 1) {
  7870. // skip computing output for unused tokens
  7871. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7872. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7873. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7874. }
  7875. cur = ggml_add(ctx0, cur, residual);
  7876. residual = cur;
  7877. cur = llm_build_norm(ctx0, cur, hparams,
  7878. model.layers[il].ffn_norm, NULL,
  7879. LLM_NORM_RMS, cb, il);
  7880. cb(cur, "ffn_norm", il);
  7881. // FF
  7882. // special-case: the up and gate tensors are merged into a single tensor
  7883. // TOOD: support into llm_build_ffn
  7884. {
  7885. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7886. cb(up, "ffn_up", il);
  7887. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7888. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7889. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7890. cb(y, "ffn_gate", il);
  7891. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7892. cb(down, "ffn_down", il);
  7893. cur = down;
  7894. cb(cur, "ffn_out", il);
  7895. }
  7896. cur = ggml_add(ctx0, residual, cur);
  7897. cb(cur, "l_out", il);
  7898. inpL = cur;
  7899. }
  7900. cur = llm_build_norm(ctx0, inpL, hparams,
  7901. model.output_norm,
  7902. NULL,
  7903. LLM_NORM_RMS, cb, -1);
  7904. cb(cur, "result_norm", -1);
  7905. cur = ggml_mul_mat(ctx0, model.output, cur);
  7906. cb(cur, "result_output", -1);
  7907. ggml_build_forward_expand(gf, cur);
  7908. return gf;
  7909. }
  7910. struct ggml_cgraph * build_plamo() {
  7911. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7912. const int64_t n_embd_head = hparams.n_embd_head_v;
  7913. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7914. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7915. struct ggml_tensor * cur;
  7916. struct ggml_tensor * inpL;
  7917. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7918. // inp_pos - contains the positions
  7919. struct ggml_tensor * inp_pos = build_inp_pos();
  7920. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7921. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7922. for (int il = 0; il < n_layer; ++il) {
  7923. // norm
  7924. cur = llm_build_norm(ctx0, inpL, hparams,
  7925. model.layers[il].attn_norm, NULL,
  7926. LLM_NORM_RMS, cb, il);
  7927. cb(cur, "attn_norm", il);
  7928. struct ggml_tensor * attention_norm = cur;
  7929. // self-attention
  7930. {
  7931. // compute Q and K and RoPE them
  7932. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7933. cb(Qcur, "Qcur", il);
  7934. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7935. cb(Kcur, "Kcur", il);
  7936. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7937. cb(Vcur, "Vcur", il);
  7938. Qcur = ggml_rope_custom(
  7939. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7940. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7941. ext_factor, attn_factor, beta_fast, beta_slow);
  7942. cb(Qcur, "Qcur", il);
  7943. Kcur = ggml_rope_custom(
  7944. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7945. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7946. ext_factor, attn_factor, beta_fast, beta_slow);
  7947. cb(Kcur, "Kcur", il);
  7948. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7949. model.layers[il].wo, NULL,
  7950. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7951. }
  7952. struct ggml_tensor * sa_out = cur;
  7953. cur = attention_norm;
  7954. if (il == n_layer - 1) {
  7955. // skip computing output for unused tokens
  7956. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7957. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7958. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7959. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7960. }
  7961. // feed-forward network
  7962. {
  7963. cur = llm_build_ffn(ctx0, cur,
  7964. model.layers[il].ffn_up, NULL,
  7965. model.layers[il].ffn_gate, NULL,
  7966. model.layers[il].ffn_down, NULL,
  7967. NULL,
  7968. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7969. cb(cur, "ffn_out", il);
  7970. }
  7971. cur = ggml_add(ctx0, cur, sa_out);
  7972. cb(cur, "l_out", il);
  7973. cur = ggml_add(ctx0, cur, inpL);
  7974. cb(cur, "l_out", il);
  7975. // input for next layer
  7976. inpL = cur;
  7977. }
  7978. cur = inpL;
  7979. cur = llm_build_norm(ctx0, cur, hparams,
  7980. model.output_norm, NULL,
  7981. LLM_NORM_RMS, cb, -1);
  7982. cb(cur, "result_norm", -1);
  7983. // lm_head
  7984. cur = ggml_mul_mat(ctx0, model.output, cur);
  7985. cb(cur, "result_output", -1);
  7986. ggml_build_forward_expand(gf, cur);
  7987. return gf;
  7988. }
  7989. struct ggml_cgraph * build_gpt2() {
  7990. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7991. const int64_t n_embd_head = hparams.n_embd_head_v;
  7992. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7993. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7994. struct ggml_tensor * cur;
  7995. struct ggml_tensor * pos;
  7996. struct ggml_tensor * inpL;
  7997. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7998. // inp_pos - contains the positions
  7999. struct ggml_tensor * inp_pos = build_inp_pos();
  8000. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8001. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8002. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8003. cb(pos, "pos_embd", -1);
  8004. inpL = ggml_add(ctx0, inpL, pos);
  8005. cb(inpL, "inpL", -1);
  8006. for (int il = 0; il < n_layer; ++il) {
  8007. cur = llm_build_norm(ctx0, inpL, hparams,
  8008. model.layers[il].attn_norm,
  8009. model.layers[il].attn_norm_b,
  8010. LLM_NORM, cb, il);
  8011. cb(cur, "attn_norm", il);
  8012. // self-attention
  8013. {
  8014. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8015. cb(cur, "wqkv", il);
  8016. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8017. cb(cur, "bqkv", il);
  8018. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8019. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8020. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8021. cb(Qcur, "Qcur", il);
  8022. cb(Kcur, "Kcur", il);
  8023. cb(Vcur, "Vcur", il);
  8024. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8025. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8026. model.layers[il].wo, model.layers[il].bo,
  8027. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8028. }
  8029. if (il == n_layer - 1) {
  8030. // skip computing output for unused tokens
  8031. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8032. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8033. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8034. }
  8035. // add the input
  8036. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8037. cb(ffn_inp, "ffn_inp", il);
  8038. // FF
  8039. {
  8040. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8041. model.layers[il].ffn_norm,
  8042. model.layers[il].ffn_norm_b,
  8043. LLM_NORM, cb, il);
  8044. cb(cur, "ffn_norm", il);
  8045. cur = llm_build_ffn(ctx0, cur,
  8046. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8047. NULL, NULL,
  8048. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8049. NULL,
  8050. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8051. cb(cur, "ffn_out", il);
  8052. }
  8053. inpL = ggml_add(ctx0, cur, ffn_inp);
  8054. cb(inpL, "l_out", il);
  8055. }
  8056. cur = llm_build_norm(ctx0, inpL, hparams,
  8057. model.output_norm,
  8058. model.output_norm_b,
  8059. LLM_NORM, cb, -1);
  8060. cb(cur, "result_norm", -1);
  8061. cur = ggml_mul_mat(ctx0, model.output, cur);
  8062. cb(cur, "result_output", -1);
  8063. ggml_build_forward_expand(gf, cur);
  8064. return gf;
  8065. }
  8066. struct ggml_cgraph * build_codeshell() {
  8067. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8068. const int64_t n_embd_head = hparams.n_embd_head_v;
  8069. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8070. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8071. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8072. struct ggml_tensor * cur;
  8073. struct ggml_tensor * inpL;
  8074. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8075. // inp_pos - contains the positions
  8076. struct ggml_tensor * inp_pos = build_inp_pos();
  8077. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8078. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8079. for (int il = 0; il < n_layer; ++il) {
  8080. cur = llm_build_norm(ctx0, inpL, hparams,
  8081. model.layers[il].attn_norm,
  8082. model.layers[il].attn_norm_b,
  8083. LLM_NORM, cb, il);
  8084. cb(cur, "attn_norm", il);
  8085. // self-attention
  8086. {
  8087. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8088. cb(cur, "wqkv", il);
  8089. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8090. cb(cur, "bqkv", il);
  8091. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8092. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8093. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8094. cb(tmpq, "tmpq", il);
  8095. cb(tmpk, "tmpk", il);
  8096. cb(Vcur, "Vcur", il);
  8097. struct ggml_tensor * Qcur = ggml_rope_custom(
  8098. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  8099. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8100. ext_factor, attn_factor, beta_fast, beta_slow
  8101. );
  8102. cb(Qcur, "Qcur", il);
  8103. struct ggml_tensor * Kcur = ggml_rope_custom(
  8104. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8105. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8106. ext_factor, attn_factor, beta_fast, beta_slow
  8107. );
  8108. cb(Kcur, "Kcur", il);
  8109. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8110. model.layers[il].wo, model.layers[il].bo,
  8111. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8112. }
  8113. if (il == n_layer - 1) {
  8114. // skip computing output for unused tokens
  8115. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8116. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8117. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8118. }
  8119. // add the input
  8120. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8121. cb(ffn_inp, "ffn_inp", il);
  8122. // FF
  8123. {
  8124. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8125. model.layers[il].ffn_norm,
  8126. model.layers[il].ffn_norm_b,
  8127. LLM_NORM, cb, il);
  8128. cb(cur, "ffn_norm", il);
  8129. cur = llm_build_ffn(ctx0, cur,
  8130. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8131. NULL, NULL,
  8132. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8133. NULL,
  8134. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8135. cb(cur, "ffn_out", il);
  8136. }
  8137. inpL = ggml_add(ctx0, cur, ffn_inp);
  8138. cb(inpL, "l_out", il);
  8139. }
  8140. cur = llm_build_norm(ctx0, inpL, hparams,
  8141. model.output_norm,
  8142. model.output_norm_b,
  8143. LLM_NORM, cb, -1);
  8144. cb(cur, "result_norm", -1);
  8145. cur = ggml_mul_mat(ctx0, model.output, cur);
  8146. cb(cur, "result_output", -1);
  8147. ggml_build_forward_expand(gf, cur);
  8148. return gf;
  8149. }
  8150. struct ggml_cgraph * build_orion() {
  8151. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8152. const int64_t n_embd_head = hparams.n_embd_head_v;
  8153. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8154. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8155. struct ggml_tensor * cur;
  8156. struct ggml_tensor * inpL;
  8157. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8158. // inp_pos - contains the positions
  8159. struct ggml_tensor * inp_pos = build_inp_pos();
  8160. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8161. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8162. for (int il = 0; il < n_layer; ++il) {
  8163. struct ggml_tensor * inpSA = inpL;
  8164. // norm
  8165. cur = llm_build_norm(ctx0, inpL, hparams,
  8166. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8167. LLM_NORM, cb, il);
  8168. cb(cur, "attn_norm", il);
  8169. // self-attention
  8170. {
  8171. // compute Q and K and RoPE them
  8172. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8173. cb(Qcur, "Qcur", il);
  8174. // if (model.layers[il].bq) {
  8175. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8176. // cb(Qcur, "Qcur", il);
  8177. // }
  8178. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8179. cb(Kcur, "Kcur", il);
  8180. // if (model.layers[il].bk) {
  8181. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8182. // cb(Kcur, "Kcur", il);
  8183. // }
  8184. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8185. cb(Vcur, "Vcur", il);
  8186. // if (model.layers[il].bv) {
  8187. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8188. // cb(Vcur, "Vcur", il);
  8189. // }
  8190. Qcur = ggml_rope_custom(
  8191. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8192. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8193. ext_factor, attn_factor, beta_fast, beta_slow
  8194. );
  8195. cb(Qcur, "Qcur", il);
  8196. Kcur = ggml_rope_custom(
  8197. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8198. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8199. ext_factor, attn_factor, beta_fast, beta_slow
  8200. );
  8201. cb(Kcur, "Kcur", il);
  8202. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8203. model.layers[il].wo, NULL,
  8204. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8205. }
  8206. if (il == n_layer - 1) {
  8207. // skip computing output for unused tokens
  8208. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8209. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8210. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8211. }
  8212. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8213. cb(ffn_inp, "ffn_inp", il);
  8214. // feed-forward network
  8215. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8216. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8217. LLM_NORM, cb, il);
  8218. cb(cur, "ffn_norm", il);
  8219. cur = llm_build_ffn(ctx0, cur,
  8220. model.layers[il].ffn_up, NULL,
  8221. model.layers[il].ffn_gate, NULL,
  8222. model.layers[il].ffn_down, NULL,
  8223. NULL,
  8224. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8225. cb(cur, "ffn_out", il);
  8226. cur = ggml_add(ctx0, cur, ffn_inp);
  8227. cb(cur, "l_out", il);
  8228. // input for next layer
  8229. inpL = cur;
  8230. }
  8231. cur = inpL;
  8232. cur = llm_build_norm(ctx0, cur, hparams,
  8233. model.output_norm, model.output_norm_b,
  8234. LLM_NORM, cb, -1);
  8235. cb(cur, "result_norm", -1);
  8236. // lm_head
  8237. cur = ggml_mul_mat(ctx0, model.output, cur);
  8238. cb(cur, "result_output", -1);
  8239. ggml_build_forward_expand(gf, cur);
  8240. return gf;
  8241. }
  8242. struct ggml_cgraph * build_internlm2() {
  8243. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8244. const int64_t n_embd_head = hparams.n_embd_head_v;
  8245. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8246. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8247. struct ggml_tensor * cur;
  8248. struct ggml_tensor * inpL;
  8249. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8250. // inp_pos - contains the positions
  8251. struct ggml_tensor * inp_pos = build_inp_pos();
  8252. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8253. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8254. for (int il = 0; il < n_layer; ++il) {
  8255. struct ggml_tensor * inpSA = inpL;
  8256. // norm
  8257. cur = llm_build_norm(ctx0, inpL, hparams,
  8258. model.layers[il].attn_norm, NULL,
  8259. LLM_NORM_RMS, cb, il);
  8260. cb(cur, "attn_norm", il);
  8261. // self-attention
  8262. {
  8263. // compute Q and K and RoPE them
  8264. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8265. cb(Qcur, "Qcur", il);
  8266. if (model.layers[il].bq) {
  8267. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8268. cb(Qcur, "Qcur", il);
  8269. }
  8270. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8271. cb(Kcur, "Kcur", il);
  8272. if (model.layers[il].bk) {
  8273. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8274. cb(Kcur, "Kcur", il);
  8275. }
  8276. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8277. cb(Vcur, "Vcur", il);
  8278. if (model.layers[il].bv) {
  8279. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8280. cb(Vcur, "Vcur", il);
  8281. }
  8282. Qcur = ggml_rope_custom(
  8283. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8284. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8285. ext_factor, attn_factor, beta_fast, beta_slow
  8286. );
  8287. cb(Qcur, "Qcur", il);
  8288. Kcur = ggml_rope_custom(
  8289. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8290. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8291. ext_factor, attn_factor, beta_fast, beta_slow
  8292. );
  8293. cb(Kcur, "Kcur", il);
  8294. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8295. model.layers[il].wo, model.layers[il].bo,
  8296. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8297. }
  8298. if (il == n_layer - 1) {
  8299. // skip computing output for unused tokens
  8300. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8301. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8302. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8303. }
  8304. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8305. cb(ffn_inp, "ffn_inp", il);
  8306. // feed-forward network
  8307. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8308. model.layers[il].ffn_norm, NULL,
  8309. LLM_NORM_RMS, cb, il);
  8310. cb(cur, "ffn_norm", il);
  8311. cur = llm_build_ffn(ctx0, cur,
  8312. model.layers[il].ffn_up, NULL,
  8313. model.layers[il].ffn_gate, NULL,
  8314. model.layers[il].ffn_down, NULL,
  8315. NULL,
  8316. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8317. cb(cur, "ffn_out", il);
  8318. cur = ggml_add(ctx0, cur, ffn_inp);
  8319. cb(cur, "l_out", il);
  8320. // input for next layer
  8321. inpL = cur;
  8322. }
  8323. cur = inpL;
  8324. cur = llm_build_norm(ctx0, cur, hparams,
  8325. model.output_norm, NULL,
  8326. LLM_NORM_RMS, cb, -1);
  8327. cb(cur, "result_norm", -1);
  8328. // lm_head
  8329. cur = ggml_mul_mat(ctx0, model.output, cur);
  8330. cb(cur, "result_output", -1);
  8331. ggml_build_forward_expand(gf, cur);
  8332. return gf;
  8333. }
  8334. // ref: https://arxiv.org/abs/2203.03466
  8335. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8336. // based on the original build_llama() function
  8337. struct ggml_cgraph * build_minicpm() {
  8338. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8339. const int64_t n_embd_head = hparams.n_embd_head_v;
  8340. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8341. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8342. const int64_t n_embd = hparams.n_embd;
  8343. //TODO: if the model varies, these parameters need to be read from the model
  8344. const int64_t n_embd_base = 256;
  8345. const float scale_embd = 12.0f;
  8346. const float scale_depth = 1.4f;
  8347. struct ggml_tensor * cur;
  8348. struct ggml_tensor * inpL;
  8349. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8350. // scale the input embeddings
  8351. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8352. cb(inpL, "inp_scaled", -1);
  8353. // inp_pos - contains the positions
  8354. struct ggml_tensor * inp_pos = build_inp_pos();
  8355. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8356. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8357. for (int il = 0; il < n_layer; ++il) {
  8358. struct ggml_tensor * inpSA = inpL;
  8359. // norm
  8360. cur = llm_build_norm(ctx0, inpL, hparams,
  8361. model.layers[il].attn_norm, NULL,
  8362. LLM_NORM_RMS, cb, il);
  8363. cb(cur, "attn_norm", il);
  8364. // self-attention
  8365. {
  8366. // compute Q and K and RoPE them
  8367. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8368. cb(Qcur, "Qcur", il);
  8369. if (model.layers[il].bq) {
  8370. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8371. cb(Qcur, "Qcur", il);
  8372. }
  8373. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8374. cb(Kcur, "Kcur", il);
  8375. if (model.layers[il].bk) {
  8376. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8377. cb(Kcur, "Kcur", il);
  8378. }
  8379. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8380. cb(Vcur, "Vcur", il);
  8381. if (model.layers[il].bv) {
  8382. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8383. cb(Vcur, "Vcur", il);
  8384. }
  8385. Qcur = ggml_rope_custom(
  8386. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8387. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8388. ext_factor, attn_factor, beta_fast, beta_slow
  8389. );
  8390. cb(Qcur, "Qcur", il);
  8391. Kcur = ggml_rope_custom(
  8392. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8393. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8394. ext_factor, attn_factor, beta_fast, beta_slow
  8395. );
  8396. cb(Kcur, "Kcur", il);
  8397. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8398. model.layers[il].wo, model.layers[il].bo,
  8399. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8400. }
  8401. if (il == n_layer - 1) {
  8402. // skip computing output for unused tokens
  8403. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8404. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8405. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8406. }
  8407. // scale_res - scale the hidden states for residual connection
  8408. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8409. cur = ggml_scale(ctx0, cur, scale_res);
  8410. cb(cur, "hidden_scaled", -1);
  8411. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8412. cb(ffn_inp, "ffn_inp", il);
  8413. // feed-forward network
  8414. {
  8415. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8416. model.layers[il].ffn_norm, NULL,
  8417. LLM_NORM_RMS, cb, il);
  8418. cb(cur, "ffn_norm", il);
  8419. cur = llm_build_ffn(ctx0, cur,
  8420. model.layers[il].ffn_up, NULL,
  8421. model.layers[il].ffn_gate, NULL,
  8422. model.layers[il].ffn_down, NULL,
  8423. NULL,
  8424. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8425. cb(cur, "ffn_out", il);
  8426. }
  8427. // scale the hidden states for residual connection
  8428. cur = ggml_scale(ctx0, cur, scale_res);
  8429. cb(cur, "hidden_scaled_ffn", -1);
  8430. cur = ggml_add(ctx0, cur, ffn_inp);
  8431. cb(cur, "l_out", il);
  8432. // input for next layer
  8433. inpL = cur;
  8434. }
  8435. cur = inpL;
  8436. cur = llm_build_norm(ctx0, cur, hparams,
  8437. model.output_norm, NULL,
  8438. LLM_NORM_RMS, cb, -1);
  8439. cb(cur, "result_norm", -1);
  8440. // lm_head scaling
  8441. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8442. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8443. cb(cur, "lmhead_scaling", -1);
  8444. // lm_head
  8445. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8446. cb(cur, "result_output", -1);
  8447. ggml_build_forward_expand(gf, cur);
  8448. return gf;
  8449. }
  8450. struct ggml_cgraph * build_gemma() {
  8451. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8452. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8453. struct ggml_tensor * cur;
  8454. struct ggml_tensor * inpL;
  8455. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8456. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8457. cb(inpL, "inp_scaled", -1);
  8458. // inp_pos - contains the positions
  8459. struct ggml_tensor * inp_pos = build_inp_pos();
  8460. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8461. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8462. for (int il = 0; il < n_layer; ++il) {
  8463. // norm
  8464. cur = llm_build_norm(ctx0, inpL, hparams,
  8465. model.layers[il].attn_norm, NULL,
  8466. LLM_NORM_RMS, cb, il);
  8467. cb(cur, "attn_norm", il);
  8468. // self-attention
  8469. {
  8470. // compute Q and K and RoPE them
  8471. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8472. cb(Qcur, "Qcur", il);
  8473. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8474. cb(Kcur, "Kcur", il);
  8475. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8476. cb(Vcur, "Vcur", il);
  8477. Qcur = ggml_rope_custom(
  8478. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8479. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8480. ext_factor, attn_factor, beta_fast, beta_slow);
  8481. cb(Qcur, "Qcur", il);
  8482. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8483. cb(Qcur, "Qcur_scaled", il);
  8484. Kcur = ggml_rope_custom(
  8485. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8486. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8487. ext_factor, attn_factor, beta_fast, beta_slow);
  8488. cb(Kcur, "Kcur", il);
  8489. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8490. model.layers[il].wo, NULL,
  8491. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8492. }
  8493. if (il == n_layer - 1) {
  8494. // skip computing output for unused tokens
  8495. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8496. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8497. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8498. }
  8499. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8500. cb(sa_out, "sa_out", il);
  8501. cur = llm_build_norm(ctx0, sa_out, hparams,
  8502. model.layers[il].ffn_norm, NULL,
  8503. LLM_NORM_RMS, cb, il);
  8504. cb(cur, "ffn_norm", il);
  8505. // feed-forward network
  8506. {
  8507. cur = llm_build_ffn(ctx0, cur,
  8508. model.layers[il].ffn_up, NULL,
  8509. model.layers[il].ffn_gate, NULL,
  8510. model.layers[il].ffn_down, NULL,
  8511. NULL,
  8512. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8513. cb(cur, "ffn_out", il);
  8514. }
  8515. cur = ggml_add(ctx0, cur, sa_out);
  8516. cb(cur, "l_out", il);
  8517. // input for next layer
  8518. inpL = cur;
  8519. }
  8520. cur = inpL;
  8521. cur = llm_build_norm(ctx0, cur, hparams,
  8522. model.output_norm, NULL,
  8523. LLM_NORM_RMS, cb, -1);
  8524. cb(cur, "result_norm", -1);
  8525. // lm_head
  8526. cur = ggml_mul_mat(ctx0, model.output, cur);
  8527. cb(cur, "result_output", -1);
  8528. ggml_build_forward_expand(gf, cur);
  8529. return gf;
  8530. }
  8531. struct ggml_cgraph * build_starcoder2() {
  8532. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8533. const int64_t n_embd_head = hparams.n_embd_head_v;
  8534. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8535. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8536. struct ggml_tensor * cur;
  8537. struct ggml_tensor * inpL;
  8538. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8539. // inp_pos - contains the positions
  8540. struct ggml_tensor * inp_pos = build_inp_pos();
  8541. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8542. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8543. for (int il = 0; il < n_layer; ++il) {
  8544. struct ggml_tensor * inpSA = inpL;
  8545. // norm
  8546. cur = llm_build_norm(ctx0, inpL, hparams,
  8547. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8548. LLM_NORM, cb, il);
  8549. cb(cur, "attn_norm", il);
  8550. // self-attention
  8551. {
  8552. // compute Q and K and RoPE them
  8553. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8554. cb(Qcur, "Qcur", il);
  8555. if (model.layers[il].bq) {
  8556. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8557. cb(Qcur, "Qcur", il);
  8558. }
  8559. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8560. cb(Kcur, "Kcur", il);
  8561. if (model.layers[il].bk) {
  8562. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8563. cb(Kcur, "Kcur", il);
  8564. }
  8565. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8566. cb(Vcur, "Vcur", il);
  8567. if (model.layers[il].bv) {
  8568. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8569. cb(Vcur, "Vcur", il);
  8570. }
  8571. Qcur = ggml_rope_custom(
  8572. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8573. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8574. ext_factor, attn_factor, beta_fast, beta_slow
  8575. );
  8576. cb(Qcur, "Qcur", il);
  8577. Kcur = ggml_rope_custom(
  8578. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8579. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8580. ext_factor, attn_factor, beta_fast, beta_slow
  8581. );
  8582. cb(Kcur, "Kcur", il);
  8583. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8584. model.layers[il].wo, model.layers[il].bo,
  8585. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8586. }
  8587. if (il == n_layer - 1) {
  8588. // skip computing output for unused tokens
  8589. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8590. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8591. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8592. }
  8593. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8594. cb(ffn_inp, "ffn_inp", il);
  8595. // feed-forward network
  8596. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8597. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8598. LLM_NORM, cb, il);
  8599. cb(cur, "ffn_norm", il);
  8600. cur = llm_build_ffn(ctx0, cur,
  8601. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8602. NULL, NULL,
  8603. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8604. NULL,
  8605. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8606. cb(cur, "ffn_out", il);
  8607. cur = ggml_add(ctx0, cur, ffn_inp);
  8608. cb(cur, "l_out", il);
  8609. // input for next layer
  8610. inpL = cur;
  8611. }
  8612. cur = inpL;
  8613. cur = llm_build_norm(ctx0, cur, hparams,
  8614. model.output_norm, model.output_norm_b,
  8615. LLM_NORM, cb, -1);
  8616. cb(cur, "result_norm", -1);
  8617. // lm_head
  8618. cur = ggml_mul_mat(ctx0, model.output, cur);
  8619. cb(cur, "result_output", -1);
  8620. ggml_build_forward_expand(gf, cur);
  8621. return gf;
  8622. }
  8623. struct ggml_cgraph * build_mamba() {
  8624. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8625. const int64_t d_model = n_embd;
  8626. const int64_t d_conv = hparams.ssm_d_conv;
  8627. const int64_t d_inner = hparams.ssm_d_inner;
  8628. GGML_ASSERT(2 * d_model == d_inner);
  8629. const int64_t d_state = hparams.ssm_d_state;
  8630. const int64_t dt_rank = hparams.ssm_dt_rank;
  8631. struct ggml_tensor * cur;
  8632. struct ggml_tensor * inpL;
  8633. // {n_embd, n_tokens}
  8634. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8635. struct ggml_tensor * state_mask = build_inp_s_mask();
  8636. struct ggml_tensor * state_seq = build_inp_s_seq();
  8637. for (int il = 0; il < n_layer; ++il) {
  8638. // (ab)using the KV cache to store the states
  8639. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8640. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8641. // clear states of sequences which are starting at the beginning of this batch
  8642. {
  8643. conv_states = ggml_mul(ctx0,
  8644. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8645. state_mask);
  8646. ssm_states = ggml_mul(ctx0,
  8647. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8648. state_mask);
  8649. }
  8650. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8651. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8652. // norm
  8653. cur = llm_build_norm(ctx0, inpL, hparams,
  8654. model.layers[il].attn_norm, NULL,
  8655. LLM_NORM_RMS, cb, il);
  8656. cb(cur, "attn_norm", il);
  8657. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8658. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8659. // split the above in two
  8660. // => {d_inner, n_tokens}
  8661. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8662. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8663. // conv
  8664. {
  8665. // Custom operator which is needed only to ease simultaneous sequence processing.
  8666. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8667. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8668. // then element-wise multiply that with the conv1d weigth,
  8669. // then sum the elements of each row,
  8670. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8671. // then permute away the ne[0] dimension,
  8672. // and then you're left with the resulting x tensor.
  8673. // The new conv_states is the last (d_conv - 1) columns
  8674. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8675. // For simultaneous sequences, it's more complicated.
  8676. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8677. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8678. ggml_build_forward_expand(gf,
  8679. ggml_cpy(ctx0,
  8680. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8681. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8682. // extract x from x_conv
  8683. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8684. // bias
  8685. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8686. x = ggml_silu(ctx0, x);
  8687. }
  8688. // ssm
  8689. {
  8690. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8691. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8692. // split
  8693. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8694. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8695. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8696. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8697. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8698. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8699. // Custom operator to optimize the parallel associative scan
  8700. // as described in the Annex D of the Mamba paper.
  8701. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8702. // because only a single tensor can be returned.
  8703. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8704. // store last states (the second part of y_ssm_states)
  8705. ggml_build_forward_expand(gf,
  8706. ggml_cpy(ctx0,
  8707. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8708. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8709. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8710. if (il == n_layer - 1) {
  8711. // skip computing output for unused tokens
  8712. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8713. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8714. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8715. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8716. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8717. }
  8718. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8719. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8720. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8721. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8722. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8723. }
  8724. // residual
  8725. cur = ggml_add(ctx0, cur, inpL);
  8726. cb(cur, "l_out", il);
  8727. // input for next layer
  8728. inpL = cur;
  8729. }
  8730. // final rmsnorm
  8731. cur = llm_build_norm(ctx0, inpL, hparams,
  8732. model.output_norm, NULL,
  8733. LLM_NORM_RMS, cb, -1);
  8734. cb(cur, "result_norm", -1);
  8735. // lm_head
  8736. cur = ggml_mul_mat(ctx0, model.output, cur);
  8737. cb(cur, "result_output", -1);
  8738. ggml_build_forward_expand(gf, cur);
  8739. return gf;
  8740. }
  8741. struct ggml_cgraph * build_command_r() {
  8742. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8743. const int64_t n_embd_head = hparams.n_embd_head_v;
  8744. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8745. const float f_logit_scale = hparams.f_logit_scale;
  8746. struct ggml_tensor * cur;
  8747. struct ggml_tensor * inpL;
  8748. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8749. // inp_pos - contains the positions
  8750. struct ggml_tensor * inp_pos = build_inp_pos();
  8751. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8752. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8753. for (int il = 0; il < n_layer; ++il) {
  8754. // norm
  8755. cur = llm_build_norm(ctx0, inpL, hparams,
  8756. model.layers[il].attn_norm, NULL,
  8757. LLM_NORM, cb, il);
  8758. cb(cur, "attn_norm", il);
  8759. struct ggml_tensor * ffn_inp = cur;
  8760. // self-attention
  8761. {
  8762. // compute Q and K and RoPE them
  8763. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8764. cb(Qcur, "Qcur", il);
  8765. if (model.layers[il].bq) {
  8766. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8767. cb(Qcur, "Qcur", il);
  8768. }
  8769. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8770. cb(Kcur, "Kcur", il);
  8771. if (model.layers[il].bk) {
  8772. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8773. cb(Kcur, "Kcur", il);
  8774. }
  8775. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8776. cb(Vcur, "Vcur", il);
  8777. if (model.layers[il].bv) {
  8778. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8779. cb(Vcur, "Vcur", il);
  8780. }
  8781. if (model.layers[il].attn_q_norm) {
  8782. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8783. ggml_element_size(Qcur) * n_embd_head,
  8784. ggml_element_size(Qcur) * n_embd_head * n_head,
  8785. 0);
  8786. cb(Qcur, "Qcur", il);
  8787. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8788. ggml_element_size(Kcur) * n_embd_head,
  8789. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8790. 0);
  8791. cb(Kcur, "Kcur", il);
  8792. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8793. model.layers[il].attn_q_norm,
  8794. NULL,
  8795. LLM_NORM, cb, il);
  8796. cb(Qcur, "Qcur", il);
  8797. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8798. model.layers[il].attn_k_norm,
  8799. NULL,
  8800. LLM_NORM, cb, il);
  8801. cb(Kcur, "Kcur", il);
  8802. }
  8803. Qcur = ggml_rope_custom(
  8804. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8805. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8806. ext_factor, attn_factor, beta_fast, beta_slow
  8807. );
  8808. cb(Qcur, "Qcur", il);
  8809. Kcur = ggml_rope_custom(
  8810. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8811. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8812. ext_factor, attn_factor, beta_fast, beta_slow
  8813. );
  8814. cb(Kcur, "Kcur", il);
  8815. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8816. model.layers[il].wo, model.layers[il].bo,
  8817. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8818. }
  8819. if (il == n_layer - 1) {
  8820. // skip computing output for unused tokens
  8821. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8822. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8823. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8824. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8825. }
  8826. struct ggml_tensor * attn_out = cur;
  8827. // feed-forward network
  8828. {
  8829. cur = llm_build_ffn(ctx0, ffn_inp,
  8830. model.layers[il].ffn_up, NULL,
  8831. model.layers[il].ffn_gate, NULL,
  8832. model.layers[il].ffn_down, NULL,
  8833. NULL,
  8834. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8835. cb(cur, "ffn_out", il);
  8836. }
  8837. // add together residual + FFN + self-attention
  8838. cur = ggml_add(ctx0, cur, inpL);
  8839. cur = ggml_add(ctx0, cur, attn_out);
  8840. cb(cur, "l_out", il);
  8841. // input for next layer
  8842. inpL = cur;
  8843. }
  8844. cur = inpL;
  8845. cur = llm_build_norm(ctx0, cur, hparams,
  8846. model.output_norm, NULL,
  8847. LLM_NORM, cb, -1);
  8848. cb(cur, "result_norm", -1);
  8849. // lm_head
  8850. cur = ggml_mul_mat(ctx0, model.output, cur);
  8851. if (f_logit_scale) {
  8852. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8853. }
  8854. cb(cur, "result_output", -1);
  8855. ggml_build_forward_expand(gf, cur);
  8856. return gf;
  8857. }
  8858. // ref: https://allenai.org/olmo
  8859. // based on the original build_llama() function, changes:
  8860. // * non-parametric layer norm
  8861. // * clamp qkv
  8862. // * removed bias
  8863. // * removed MoE
  8864. struct ggml_cgraph * build_olmo() {
  8865. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8866. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8867. int32_t n_tokens = this->n_tokens;
  8868. const int64_t n_embd_head = hparams.n_embd_head_v;
  8869. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8870. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8871. struct ggml_tensor * cur;
  8872. struct ggml_tensor * inpL;
  8873. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8874. // inp_pos - contains the positions
  8875. struct ggml_tensor * inp_pos = build_inp_pos();
  8876. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8877. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8878. for (int il = 0; il < n_layer; ++il) {
  8879. struct ggml_tensor * inpSA = inpL;
  8880. // norm
  8881. cur = llm_build_norm(ctx0, inpL, hparams,
  8882. NULL, NULL,
  8883. LLM_NORM, cb, il);
  8884. cb(cur, "attn_norm", il);
  8885. // self-attention
  8886. {
  8887. // compute Q and K and RoPE them
  8888. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8889. cb(Qcur, "Qcur", il);
  8890. if (hparams.f_clamp_kqv > 0.0f) {
  8891. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8892. cb(Qcur, "Qcur", il);
  8893. }
  8894. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8895. cb(Kcur, "Kcur", il);
  8896. if (hparams.f_clamp_kqv > 0.0f) {
  8897. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8898. cb(Kcur, "Kcur", il);
  8899. }
  8900. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8901. cb(Vcur, "Vcur", il);
  8902. if (hparams.f_clamp_kqv > 0.0f) {
  8903. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8904. cb(Vcur, "Vcur", il);
  8905. }
  8906. Qcur = ggml_rope_custom(
  8907. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8908. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8909. ext_factor, attn_factor, beta_fast, beta_slow
  8910. );
  8911. cb(Qcur, "Qcur", il);
  8912. Kcur = ggml_rope_custom(
  8913. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8914. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8915. ext_factor, attn_factor, beta_fast, beta_slow
  8916. );
  8917. cb(Kcur, "Kcur", il);
  8918. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8919. model.layers[il].wo, nullptr,
  8920. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8921. }
  8922. if (il == n_layer - 1) {
  8923. // skip computing output for unused tokens
  8924. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8925. n_tokens = n_outputs;
  8926. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8927. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8928. }
  8929. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8930. cb(ffn_inp, "ffn_inp", il);
  8931. // feed-forward network
  8932. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8933. NULL, NULL,
  8934. LLM_NORM, cb, il);
  8935. cb(cur, "ffn_norm", il);
  8936. cur = llm_build_ffn(ctx0, cur,
  8937. model.layers[il].ffn_up, NULL,
  8938. model.layers[il].ffn_gate, NULL,
  8939. model.layers[il].ffn_down, NULL,
  8940. NULL,
  8941. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8942. cb(cur, "ffn_out", il);
  8943. cur = ggml_add(ctx0, cur, ffn_inp);
  8944. cb(cur, "ffn_out", il);
  8945. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8946. if (layer_dir != nullptr) {
  8947. cur = ggml_add(ctx0, cur, layer_dir);
  8948. }
  8949. cb(cur, "l_out", il);
  8950. // input for next layer
  8951. inpL = cur;
  8952. }
  8953. cur = inpL;
  8954. cur = llm_build_norm(ctx0, cur, hparams,
  8955. NULL, NULL,
  8956. LLM_NORM, cb, -1);
  8957. cb(cur, "result_norm", -1);
  8958. // lm_head
  8959. cur = ggml_mul_mat(ctx0, model.output, cur);
  8960. cb(cur, "result_output", -1);
  8961. ggml_build_forward_expand(gf, cur);
  8962. return gf;
  8963. }
  8964. };
  8965. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8966. llama_batch dummy;
  8967. dummy.n_tokens = 0;
  8968. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8969. struct llm_build_context llm(lctx, dummy, cb, false);
  8970. llm.init();
  8971. struct ggml_cgraph * result = llm.build_defrag(ids);
  8972. llm.free();
  8973. return result;
  8974. }
  8975. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8976. llama_batch dummy;
  8977. dummy.n_tokens = 0;
  8978. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8979. struct llm_build_context llm(lctx, dummy, cb, false);
  8980. llm.init();
  8981. struct ggml_cgraph * result = llm.build_k_shift();
  8982. llm.free();
  8983. return result;
  8984. }
  8985. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8986. llama_batch dummy;
  8987. dummy.n_tokens = 0;
  8988. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8989. struct llm_build_context llm(lctx, dummy, cb, false);
  8990. llm.init();
  8991. struct ggml_cgraph * result = llm.build_s_copy();
  8992. llm.free();
  8993. return result;
  8994. }
  8995. static struct ggml_cgraph * llama_build_graph(
  8996. llama_context & lctx,
  8997. const llama_batch & batch,
  8998. bool worst_case) {
  8999. const auto & model = lctx.model;
  9000. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9001. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9002. if (il >= 0) {
  9003. ggml_format_name(cur, "%s-%d", name, il);
  9004. } else {
  9005. ggml_set_name(cur, name);
  9006. }
  9007. if (!lctx.cparams.offload_kqv) {
  9008. if (strcmp(name, "kqv_merged_cont") == 0) {
  9009. // all nodes between the KV store and the attention output are run on the CPU
  9010. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9011. }
  9012. }
  9013. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9014. // FIXME: fix in ggml_backend_sched
  9015. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9016. if (batch.n_tokens < 32 || full_offload) {
  9017. if (il != -1 && strcmp(name, "norm") == 0) {
  9018. for (auto * backend : lctx.backends) {
  9019. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9020. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9021. break;
  9022. }
  9023. }
  9024. }
  9025. }
  9026. };
  9027. struct ggml_cgraph * result = NULL;
  9028. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9029. llm.init();
  9030. switch (model.arch) {
  9031. case LLM_ARCH_LLAMA:
  9032. {
  9033. result = llm.build_llama();
  9034. } break;
  9035. case LLM_ARCH_BAICHUAN:
  9036. {
  9037. result = llm.build_baichuan();
  9038. } break;
  9039. case LLM_ARCH_FALCON:
  9040. {
  9041. result = llm.build_falcon();
  9042. } break;
  9043. case LLM_ARCH_GROK:
  9044. {
  9045. result = llm.build_grok();
  9046. } break;
  9047. case LLM_ARCH_STARCODER:
  9048. {
  9049. result = llm.build_starcoder();
  9050. } break;
  9051. case LLM_ARCH_PERSIMMON:
  9052. {
  9053. result = llm.build_persimmon();
  9054. } break;
  9055. case LLM_ARCH_REFACT:
  9056. {
  9057. result = llm.build_refact();
  9058. } break;
  9059. case LLM_ARCH_BERT:
  9060. case LLM_ARCH_JINA_BERT_V2:
  9061. case LLM_ARCH_NOMIC_BERT:
  9062. {
  9063. result = llm.build_bert();
  9064. } break;
  9065. case LLM_ARCH_BLOOM:
  9066. {
  9067. result = llm.build_bloom();
  9068. } break;
  9069. case LLM_ARCH_MPT:
  9070. {
  9071. result = llm.build_mpt();
  9072. } break;
  9073. case LLM_ARCH_STABLELM:
  9074. {
  9075. result = llm.build_stablelm();
  9076. } break;
  9077. case LLM_ARCH_QWEN:
  9078. {
  9079. result = llm.build_qwen();
  9080. } break;
  9081. case LLM_ARCH_QWEN2:
  9082. {
  9083. result = llm.build_qwen2();
  9084. } break;
  9085. case LLM_ARCH_QWEN2MOE:
  9086. {
  9087. result = llm.build_qwen2moe();
  9088. } break;
  9089. case LLM_ARCH_PHI2:
  9090. {
  9091. result = llm.build_phi2();
  9092. } break;
  9093. case LLM_ARCH_PHI3:
  9094. {
  9095. result = llm.build_phi3();
  9096. } break;
  9097. case LLM_ARCH_PLAMO:
  9098. {
  9099. result = llm.build_plamo();
  9100. } break;
  9101. case LLM_ARCH_GPT2:
  9102. {
  9103. result = llm.build_gpt2();
  9104. } break;
  9105. case LLM_ARCH_CODESHELL:
  9106. {
  9107. result = llm.build_codeshell();
  9108. } break;
  9109. case LLM_ARCH_ORION:
  9110. {
  9111. result = llm.build_orion();
  9112. } break;
  9113. case LLM_ARCH_INTERNLM2:
  9114. {
  9115. result = llm.build_internlm2();
  9116. } break;
  9117. case LLM_ARCH_MINICPM:
  9118. {
  9119. result = llm.build_minicpm();
  9120. } break;
  9121. case LLM_ARCH_GEMMA:
  9122. {
  9123. result = llm.build_gemma();
  9124. } break;
  9125. case LLM_ARCH_STARCODER2:
  9126. {
  9127. result = llm.build_starcoder2();
  9128. } break;
  9129. case LLM_ARCH_MAMBA:
  9130. {
  9131. result = llm.build_mamba();
  9132. } break;
  9133. case LLM_ARCH_XVERSE:
  9134. {
  9135. result = llm.build_xverse();
  9136. } break;
  9137. case LLM_ARCH_COMMAND_R:
  9138. {
  9139. result = llm.build_command_r();
  9140. } break;
  9141. case LLM_ARCH_DBRX:
  9142. {
  9143. result = llm.build_dbrx();
  9144. } break;
  9145. case LLM_ARCH_OLMO:
  9146. {
  9147. result = llm.build_olmo();
  9148. } break;
  9149. default:
  9150. GGML_ASSERT(false);
  9151. }
  9152. llm.free();
  9153. return result;
  9154. }
  9155. static void llama_set_k_shift(llama_context & lctx) {
  9156. const int64_t kv_size = lctx.kv_self.size;
  9157. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9158. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9159. for (int i = 0; i < kv_size; ++i) {
  9160. data[i] = lctx.kv_self.cells[i].delta;
  9161. }
  9162. }
  9163. static void llama_set_s_copy(llama_context & lctx) {
  9164. const int64_t kv_size = lctx.kv_self.size;
  9165. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9166. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9167. for (int i = 0; i < kv_size; ++i) {
  9168. data[i] = lctx.kv_self.cells[i].src;
  9169. }
  9170. }
  9171. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9172. //
  9173. // set input data
  9174. //
  9175. const auto & hparams = lctx.model.hparams;
  9176. const auto & cparams = lctx.cparams;
  9177. const auto & kv_self = lctx.kv_self;
  9178. if (batch.token) {
  9179. const int64_t n_tokens = batch.n_tokens;
  9180. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9181. }
  9182. if (batch.embd) {
  9183. const int64_t n_embd = hparams.n_embd;
  9184. const int64_t n_tokens = batch.n_tokens;
  9185. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9186. }
  9187. if (batch.pos && lctx.inp_pos) {
  9188. const int64_t n_tokens = batch.n_tokens;
  9189. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9190. }
  9191. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9192. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9193. const int64_t n_tokens = batch.n_tokens;
  9194. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9195. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9196. if (lctx.n_outputs == n_tokens) {
  9197. for (int i = 0; i < n_tokens; ++i) {
  9198. data[i] = i;
  9199. }
  9200. } else if (batch.logits) {
  9201. int32_t n_outputs = 0;
  9202. for (int i = 0; i < n_tokens; ++i) {
  9203. if (batch.logits[i]) {
  9204. data[n_outputs++] = i;
  9205. }
  9206. }
  9207. // the graph needs to have been passed the correct number of outputs
  9208. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9209. } else if (lctx.n_outputs == 1) {
  9210. // only keep last output
  9211. data[0] = n_tokens - 1;
  9212. } else {
  9213. GGML_ASSERT(lctx.n_outputs == 0);
  9214. }
  9215. }
  9216. GGML_ASSERT(
  9217. // (!a || b) is a logical implication (a -> b)
  9218. // !hparams.causal_attn -> !cparams.causal_attn
  9219. (hparams.causal_attn || !cparams.causal_attn) &&
  9220. "causal attention with embedding models is not supported"
  9221. );
  9222. if (lctx.inp_KQ_mask) {
  9223. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9224. if (cparams.causal_attn) {
  9225. const int64_t n_kv = kv_self.n;
  9226. const int64_t n_tokens = batch.n_tokens;
  9227. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9228. float * data = (float *) lctx.inp_KQ_mask->data;
  9229. // For causal attention, use only the previous KV cells
  9230. // of the correct sequence for each token of the batch.
  9231. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9232. for (int h = 0; h < 1; ++h) {
  9233. for (int j = 0; j < n_tokens; ++j) {
  9234. const llama_pos pos = batch.pos[j];
  9235. const llama_seq_id seq_id = batch.seq_id[j][0];
  9236. for (int i = 0; i < n_kv; ++i) {
  9237. float f;
  9238. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9239. f = -INFINITY;
  9240. } else {
  9241. if (hparams.use_alibi) {
  9242. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9243. } else {
  9244. f = 0.0f;
  9245. }
  9246. }
  9247. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9248. }
  9249. }
  9250. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9251. for (int j = 0; j < n_kv; ++j) {
  9252. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9253. }
  9254. }
  9255. }
  9256. } else {
  9257. // when using kv cache, the mask needs to match the kv cache size
  9258. const int64_t n_tokens = batch.n_tokens;
  9259. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9260. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9261. float * data = (float *) lctx.inp_KQ_mask->data;
  9262. for (int h = 0; h < 1; ++h) {
  9263. for (int j = 0; j < n_tokens; ++j) {
  9264. const llama_seq_id seq_id = batch.seq_id[j][0];
  9265. for (int i = 0; i < n_tokens; ++i) {
  9266. float f = -INFINITY;
  9267. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9268. if (batch.seq_id[i][s] == seq_id) {
  9269. if (hparams.use_alibi) {
  9270. f = -fabs(batch.pos[i] - batch.pos[j]);
  9271. } else {
  9272. f = 0.0f;
  9273. }
  9274. break;
  9275. }
  9276. }
  9277. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9278. }
  9279. for (int i = n_tokens; i < n_stride; ++i) {
  9280. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9281. }
  9282. }
  9283. }
  9284. }
  9285. }
  9286. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9287. const int64_t n_tokens = batch.n_tokens;
  9288. GGML_ASSERT(lctx.inp_mean);
  9289. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9290. float * data = (float *) lctx.inp_mean->data;
  9291. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9292. std::vector<uint64_t> sum(n_tokens, 0);
  9293. for (int i = 0; i < n_tokens; ++i) {
  9294. const llama_seq_id seq_id = batch.seq_id[i][0];
  9295. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9296. sum[seq_id] += 1;
  9297. }
  9298. std::vector<float> div(n_tokens, 0.0f);
  9299. for (int i = 0; i < n_tokens; ++i) {
  9300. const uint64_t s = sum[i];
  9301. if (s > 0) {
  9302. div[i] = 1.0f/float(s);
  9303. }
  9304. }
  9305. for (int i = 0; i < n_tokens; ++i) {
  9306. const llama_seq_id seq_id = batch.seq_id[i][0];
  9307. data[seq_id*n_tokens + i] = div[seq_id];
  9308. }
  9309. }
  9310. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9311. const int64_t n_tokens = batch.n_tokens;
  9312. GGML_ASSERT(lctx.inp_cls);
  9313. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9314. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9315. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9316. for (int i = 0; i < n_tokens; ++i) {
  9317. const llama_seq_id seq_id = batch.seq_id[i][0];
  9318. const llama_pos pos = batch.pos[i];
  9319. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9320. if (pos == 0) {
  9321. data[seq_id] = i;
  9322. }
  9323. }
  9324. }
  9325. if (kv_self.recurrent) {
  9326. const int64_t n_kv = kv_self.n;
  9327. if (lctx.inp_s_mask) {
  9328. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9329. float * data = (float *) lctx.inp_s_mask->data;
  9330. // states which are not affected by the current batch are left untouched
  9331. for (int i = 0; i < n_kv; ++i) {
  9332. llama_seq_id seq_id = i + lctx.kv_self.head;
  9333. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9334. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9335. data[i] = (float) has_self_seq;
  9336. // ensure current sequences will be kept
  9337. if (!has_self_seq && kv_cell.pos >= 0) {
  9338. kv_cell.seq_id.insert(seq_id);
  9339. }
  9340. }
  9341. }
  9342. // For Mamba (and other recurrent architectures),
  9343. // update the correct state(s)/sequence(s) for each token of the batch.
  9344. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9345. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9346. if (lctx.inp_s_seq) {
  9347. const int64_t n_tokens = batch.n_tokens;
  9348. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9349. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9350. for (int j = 0; j < n_tokens; ++j) {
  9351. const int32_t n_seq = batch.n_seq_id[j];
  9352. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9353. for (int i = 0; i < n_kv; ++i) {
  9354. if (i < n_seq) {
  9355. // for this type of model, the head is the minimum seq_id of the batch
  9356. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9357. } else {
  9358. data[j*n_kv + i] = -1;
  9359. }
  9360. }
  9361. }
  9362. }
  9363. }
  9364. }
  9365. // Make sure enough space is available for outputs.
  9366. // Returns max number of outputs for which space was reserved.
  9367. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9368. const auto & cparams = lctx.cparams;
  9369. const auto & hparams = lctx.model.hparams;
  9370. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9371. const auto n_batch = cparams.n_batch;
  9372. const auto n_vocab = hparams.n_vocab;
  9373. const auto n_embd = hparams.n_embd;
  9374. // TODO: use a per-batch flag for logits presence instead
  9375. const bool has_logits = cparams.causal_attn;
  9376. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9377. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9378. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9379. if (lctx.output_ids.empty()) {
  9380. // init, never resized afterwards
  9381. lctx.output_ids.resize(n_batch);
  9382. }
  9383. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9384. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9385. // alloc only when more than the current capacity is required
  9386. // TODO: also consider shrinking the buffer
  9387. if (!lctx.buf_output || prev_size < new_size) {
  9388. if (lctx.buf_output) {
  9389. #ifndef NDEBUG
  9390. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9391. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9392. #endif
  9393. ggml_backend_buffer_free(lctx.buf_output);
  9394. lctx.buf_output = nullptr;
  9395. lctx.logits = nullptr;
  9396. lctx.embd = nullptr;
  9397. }
  9398. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9399. if (lctx.buf_output == nullptr) {
  9400. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9401. return 0;
  9402. }
  9403. }
  9404. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9405. lctx.logits = has_logits ? output_base : nullptr;
  9406. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9407. lctx.output_size = n_outputs_max;
  9408. lctx.logits_size = logits_size;
  9409. lctx.embd_size = embd_size;
  9410. // set all ids as invalid (negative)
  9411. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9412. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9413. lctx.n_outputs = 0;
  9414. return n_outputs_max;
  9415. }
  9416. static void llama_graph_compute(
  9417. llama_context & lctx,
  9418. ggml_cgraph * gf,
  9419. int n_threads) {
  9420. #ifdef GGML_USE_MPI
  9421. const int64_t n_layer = lctx.model.hparams.n_layer;
  9422. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9423. #endif
  9424. #ifdef GGML_USE_METAL
  9425. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9426. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9427. }
  9428. #endif
  9429. if (lctx.backend_cpu != nullptr) {
  9430. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9431. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9432. }
  9433. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9434. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9435. #ifdef GGML_USE_MPI
  9436. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9437. #endif
  9438. }
  9439. // decode a batch of tokens by evaluating the transformer
  9440. //
  9441. // - lctx: llama context
  9442. // - batch: batch to evaluate
  9443. //
  9444. // return 0 on success
  9445. // return positive int on warning
  9446. // return negative int on error
  9447. //
  9448. static int llama_decode_internal(
  9449. llama_context & lctx,
  9450. llama_batch batch_all) { // TODO: rename back to batch
  9451. const uint32_t n_tokens_all = batch_all.n_tokens;
  9452. if (n_tokens_all == 0) {
  9453. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9454. return -1;
  9455. }
  9456. const auto & model = lctx.model;
  9457. const auto & hparams = model.hparams;
  9458. const auto & cparams = lctx.cparams;
  9459. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9460. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9461. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9462. if (lctx.t_compute_start_us == 0) {
  9463. lctx.t_compute_start_us = ggml_time_us();
  9464. }
  9465. lctx.n_queued_tokens += n_tokens_all;
  9466. #ifdef GGML_USE_MPI
  9467. // TODO: needs fix after #3228
  9468. GGML_ASSERT(false && "not implemented");
  9469. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9470. #endif
  9471. auto & kv_self = lctx.kv_self;
  9472. const int64_t n_embd = hparams.n_embd;
  9473. const int64_t n_vocab = hparams.n_vocab;
  9474. uint32_t n_outputs = 0;
  9475. uint32_t n_outputs_prev = 0;
  9476. const auto n_ubatch = cparams.n_ubatch;
  9477. std::vector<llama_pos> pos;
  9478. std::vector<int32_t> n_seq_id;
  9479. std::vector<llama_seq_id *> seq_id_arr;
  9480. std::vector<std::vector<llama_seq_id>> seq_id;
  9481. // count outputs
  9482. if (batch_all.logits) {
  9483. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9484. n_outputs += batch_all.logits[i] != 0;
  9485. }
  9486. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9487. n_outputs = n_tokens_all;
  9488. } else {
  9489. // keep last output only
  9490. n_outputs = 1;
  9491. }
  9492. // reserve output buffer
  9493. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9494. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9495. return -2;
  9496. };
  9497. // set output mappings
  9498. if (batch_all.logits) {
  9499. int32_t i_logits = 0;
  9500. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9501. if (batch_all.logits[i]) {
  9502. lctx.output_ids[i] = i_logits++;
  9503. }
  9504. }
  9505. } else {
  9506. for (uint32_t i = 0; i < n_outputs; ++i) {
  9507. lctx.output_ids[i] = i;
  9508. }
  9509. }
  9510. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9511. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9512. llama_batch u_batch = {
  9513. /* .n_tokens = */ (int32_t) n_tokens,
  9514. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9515. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9516. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9517. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9518. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9519. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9520. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9521. /* .all_pos_1 = */ batch_all.all_pos_1,
  9522. /* .all_seq_id = */ batch_all.all_seq_id,
  9523. };
  9524. // count the outputs in this u_batch
  9525. {
  9526. int32_t n_outputs_new = 0;
  9527. if (u_batch.logits) {
  9528. for (uint32_t i = 0; i < n_tokens; i++) {
  9529. n_outputs_new += u_batch.logits[i] != 0;
  9530. }
  9531. } else if (n_outputs == n_tokens_all) {
  9532. n_outputs_new = n_tokens;
  9533. } else {
  9534. // keep last output only
  9535. if (cur_token + n_tokens >= n_tokens_all) {
  9536. n_outputs_new = 1;
  9537. }
  9538. }
  9539. // needs to happen before the graph is built
  9540. lctx.n_outputs = n_outputs_new;
  9541. }
  9542. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9543. GGML_ASSERT(n_threads > 0);
  9544. // helpers for smoother batch API transition
  9545. // after deprecating the llama_eval calls, these will be removed
  9546. if (u_batch.pos == nullptr) {
  9547. pos.resize(n_tokens);
  9548. for (uint32_t i = 0; i < n_tokens; i++) {
  9549. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9550. }
  9551. u_batch.pos = pos.data();
  9552. }
  9553. if (u_batch.seq_id == nullptr) {
  9554. n_seq_id.resize(n_tokens);
  9555. seq_id.resize(n_tokens);
  9556. seq_id_arr.resize(n_tokens);
  9557. for (uint32_t i = 0; i < n_tokens; i++) {
  9558. n_seq_id[i] = 1;
  9559. seq_id[i].resize(1);
  9560. seq_id[i][0] = u_batch.all_seq_id;
  9561. seq_id_arr[i] = seq_id[i].data();
  9562. }
  9563. u_batch.n_seq_id = n_seq_id.data();
  9564. u_batch.seq_id = seq_id_arr.data();
  9565. }
  9566. // non-causal masks do not use the KV cache
  9567. if (hparams.causal_attn) {
  9568. llama_kv_cache_update(&lctx);
  9569. // if we have enough unused cells before the current head ->
  9570. // better to start searching from the beginning of the cache, hoping to fill it
  9571. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9572. kv_self.head = 0;
  9573. }
  9574. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9575. return 1;
  9576. }
  9577. if (!kv_self.recurrent) {
  9578. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9579. // after enough generations, the benefit from this heuristic disappears
  9580. // if we start defragmenting the cache, the benefit from this will be more important
  9581. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  9582. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  9583. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9584. }
  9585. }
  9586. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9587. ggml_backend_sched_reset(lctx.sched);
  9588. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9589. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9590. // the output is always the last tensor in the graph
  9591. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9592. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9593. if (lctx.n_outputs == 0) {
  9594. // no output
  9595. res = nullptr;
  9596. embd = nullptr;
  9597. } else if (!hparams.causal_attn) {
  9598. res = nullptr; // do not extract logits for embedding models such as BERT
  9599. // token or sequence embeddings
  9600. embd = gf->nodes[gf->n_nodes - 1];
  9601. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9602. } else if (cparams.embeddings) {
  9603. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9604. int i_embd = gf->n_nodes - 2;
  9605. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9606. i_embd = gf->n_nodes - i;
  9607. if (i_embd < 0) { break; }
  9608. embd = gf->nodes[i_embd];
  9609. }
  9610. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9611. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9612. if (!cparams.causal_attn) {
  9613. res = nullptr; // do not extract logits when not needed
  9614. // skip computing logits
  9615. // TODO: is this safe?
  9616. gf->n_nodes = i_embd + 1;
  9617. }
  9618. } else {
  9619. embd = nullptr; // do not extract embeddings when not needed
  9620. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9621. }
  9622. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9623. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9624. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9625. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9626. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9627. // with the BLAS calls. need a better solution
  9628. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9629. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9630. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9631. n_threads = std::min(4, n_threads);
  9632. }
  9633. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9634. llama_set_inputs(lctx, u_batch);
  9635. llama_graph_compute(lctx, gf, n_threads);
  9636. // update the kv ring buffer
  9637. {
  9638. kv_self.head += n_tokens;
  9639. // Ensure kv cache head points to a valid index.
  9640. if (kv_self.head >= kv_self.size) {
  9641. kv_self.head = 0;
  9642. }
  9643. }
  9644. #ifdef GGML_PERF
  9645. // print timing information per ggml operation (for debugging purposes)
  9646. // requires GGML_PERF to be defined
  9647. ggml_graph_print(gf);
  9648. #endif
  9649. // plot the computation graph in dot format (for debugging purposes)
  9650. //if (n_past%100 == 0) {
  9651. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9652. //}
  9653. // extract logits
  9654. if (res) {
  9655. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9656. GGML_ASSERT(backend_res != nullptr);
  9657. GGML_ASSERT(lctx.logits != nullptr);
  9658. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9659. const int32_t n_outputs_new = lctx.n_outputs;
  9660. if (n_outputs_new) {
  9661. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9662. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9663. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9664. }
  9665. }
  9666. // extract embeddings
  9667. if (embd) {
  9668. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9669. GGML_ASSERT(backend_embd != nullptr);
  9670. switch (cparams.pooling_type) {
  9671. case LLAMA_POOLING_TYPE_NONE:
  9672. {
  9673. // extract token embeddings
  9674. GGML_ASSERT(lctx.embd != nullptr);
  9675. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9676. const int32_t n_outputs_new = lctx.n_outputs;
  9677. if (n_outputs_new) {
  9678. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9679. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9680. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9681. }
  9682. } break;
  9683. case LLAMA_POOLING_TYPE_CLS:
  9684. case LLAMA_POOLING_TYPE_MEAN:
  9685. {
  9686. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9687. // extract sequence embeddings
  9688. auto & embd_seq_out = lctx.embd_seq;
  9689. embd_seq_out.clear();
  9690. for (uint32_t i = 0; i < n_tokens; i++) {
  9691. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9692. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9693. continue;
  9694. }
  9695. embd_seq_out[seq_id].resize(n_embd);
  9696. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9697. }
  9698. } break;
  9699. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9700. {
  9701. GGML_ASSERT(false && "unknown pooling type");
  9702. } break;
  9703. }
  9704. }
  9705. n_outputs_prev += lctx.n_outputs;
  9706. }
  9707. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9708. lctx.n_outputs = n_outputs;
  9709. // wait for the computation to finish (automatically done when obtaining the model output)
  9710. //llama_synchronize(&lctx);
  9711. // decide if we need to defrag the kv cache
  9712. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9713. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9714. // queue defragmentation for next llama_kv_cache_update
  9715. if (fragmentation > cparams.defrag_thold) {
  9716. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9717. llama_kv_cache_defrag(kv_self);
  9718. }
  9719. }
  9720. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  9721. // overlap with device computation.
  9722. ggml_backend_sched_reset(lctx.sched);
  9723. return 0;
  9724. }
  9725. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9726. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9727. auto & kv_self = lctx.kv_self;
  9728. const auto & hparams = lctx.model.hparams;
  9729. const uint32_t n_layer = hparams.n_layer;
  9730. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9731. const uint32_t n_used = kv_self.used;
  9732. assert(n_used <= n_kv);
  9733. //const int64_t t_start = ggml_time_us();
  9734. // number of cells moved
  9735. uint32_t n_moves = 0;
  9736. // each move requires 6*n_layer tensors (see build_defrag)
  9737. // - source view, destination view, copy operation
  9738. // - x2 for keys and values
  9739. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9740. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  9741. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  9742. // determine which KV cells to move where
  9743. //
  9744. // cell i moves to ids[i]
  9745. //
  9746. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9747. //
  9748. std::vector<uint32_t> ids(n_kv, n_kv);
  9749. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9750. const auto & cell0 = kv_self.cells[i0];
  9751. if (!cell0.is_empty()) {
  9752. ids[i0] = i0;
  9753. continue;
  9754. }
  9755. // found a hole - fill it with data from the end of the cache
  9756. uint32_t nh = 1;
  9757. // determine the size of the hole
  9758. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9759. nh++;
  9760. }
  9761. uint32_t nf = 0;
  9762. uint32_t is = n_kv - 1;
  9763. // starting from the end, find nh non-empty cells
  9764. for (; is > i0; --is) {
  9765. const auto & cell1 = kv_self.cells[is];
  9766. if (cell1.is_empty() || ids[is] != n_kv) {
  9767. continue;
  9768. }
  9769. // non-empty cell which is not yet moved
  9770. nf++;
  9771. if (nf == nh) {
  9772. break;
  9773. }
  9774. }
  9775. // this can only happen if `n_used` is not accurate, which would be a bug
  9776. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9777. nf = 0;
  9778. uint32_t i1 = is;
  9779. // are we moving a continuous block of memory?
  9780. bool cont = false;
  9781. // should we stop searching for the next move?
  9782. bool stop = false;
  9783. // go back and move the nf cells to the hole
  9784. for (; i1 < n_kv; ++i1) {
  9785. auto & cell1 = kv_self.cells[i1];
  9786. if (cell1.is_empty() || ids[i1] != n_kv) {
  9787. if (n_moves == max_moves) {
  9788. stop = true;
  9789. break;
  9790. }
  9791. cont = false;
  9792. continue;
  9793. }
  9794. // this cell goes to (i0 + nf)
  9795. ids[i1] = i0 + nf;
  9796. // move the cell meta data
  9797. kv_self.cells[i0 + nf] = cell1;
  9798. // clear the old cell and move the head there
  9799. cell1 = llama_kv_cell();
  9800. kv_self.head = n_used;
  9801. if (!cont) {
  9802. n_moves++;
  9803. cont = true;
  9804. }
  9805. nf++;
  9806. if (nf == nh) {
  9807. break;
  9808. }
  9809. }
  9810. if (stop || n_moves == max_moves) {
  9811. break;
  9812. }
  9813. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9814. i0 += nh - 1;
  9815. }
  9816. if (n_moves == 0) {
  9817. return;
  9818. }
  9819. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9820. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9821. #if 0
  9822. // CPU defrag
  9823. //
  9824. // TODO: optimizations are possible:
  9825. // - multiple threads
  9826. // - avoid copying to the host memory when already there
  9827. //
  9828. // likely not worth the effort, as we have ggml_graph based defrag
  9829. //
  9830. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9831. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9832. const uint32_t kv_size = kv_self.size;
  9833. std::vector<uint8_t> buf_k;
  9834. std::vector<uint8_t> buf_v;
  9835. for (uint32_t il = 0; il < n_layer; ++il) {
  9836. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9837. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9838. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9839. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9840. buf_k.resize(k_size);
  9841. buf_v.resize(v_size);
  9842. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9843. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9844. // batch move [i, i+nm) to [id, id+nm)
  9845. // note: cells can move only to a lower index
  9846. for (uint32_t i = 0; i < n_kv; ++i) {
  9847. const uint32_t id = ids[i];
  9848. if (i == id || id == n_kv) {
  9849. continue;
  9850. }
  9851. uint32_t nm = 1;
  9852. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9853. nm++;
  9854. }
  9855. // move keys
  9856. {
  9857. const int64_t os = i*k_size_row;
  9858. const int64_t od = id*k_size_row;
  9859. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9860. }
  9861. // move values (note: they are transposed)
  9862. {
  9863. const int64_t os = i;
  9864. const int64_t od = id;
  9865. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9866. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9867. }
  9868. }
  9869. i += nm - 1;
  9870. }
  9871. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9872. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9873. }
  9874. #else
  9875. // ggml_graph defrag
  9876. ggml_backend_sched_reset(lctx.sched);
  9877. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9878. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9879. #endif
  9880. //const int64_t t_end = ggml_time_us();
  9881. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9882. }
  9883. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9884. bool need_reserve = false;
  9885. // apply K-shift if needed
  9886. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9887. {
  9888. ggml_backend_sched_reset(lctx.sched);
  9889. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9890. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9891. llama_set_k_shift(lctx);
  9892. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9893. need_reserve = true;
  9894. }
  9895. {
  9896. auto & kv_self = lctx.kv_self;
  9897. kv_self.has_shift = false;
  9898. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9899. kv_self.cells[i].delta = 0;
  9900. }
  9901. }
  9902. }
  9903. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9904. {
  9905. ggml_backend_sched_reset(lctx.sched);
  9906. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9907. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9908. llama_set_s_copy(lctx);
  9909. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9910. need_reserve = true;
  9911. }
  9912. {
  9913. auto & kv_self = lctx.kv_self;
  9914. kv_self.do_copy = false;
  9915. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9916. kv_self.cells[i].src = i;
  9917. }
  9918. }
  9919. }
  9920. // defragment the KV cache if needed
  9921. if (lctx.kv_self.do_defrag) {
  9922. llama_kv_cache_defrag_internal(lctx);
  9923. need_reserve = true;
  9924. lctx.kv_self.do_defrag = false;
  9925. }
  9926. // reserve a worst case graph again
  9927. if (need_reserve) {
  9928. // TODO: extract to a function
  9929. // build worst-case graph
  9930. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9931. int n_past = lctx.cparams.n_ctx - n_tokens;
  9932. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9933. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9934. // initialize scheduler with the worst-case graph
  9935. ggml_backend_sched_reset(lctx.sched);
  9936. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9937. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9938. }
  9939. }
  9940. }
  9941. //
  9942. // tokenizer
  9943. //
  9944. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9945. return vocab.type;
  9946. }
  9947. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9948. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9949. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9950. }
  9951. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9952. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9953. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9954. }
  9955. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9956. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9957. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9958. }
  9959. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9960. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9961. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9962. }
  9963. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9964. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9965. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9966. }
  9967. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9968. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9969. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9970. const auto & token_data = vocab.id_to_token.at(id);
  9971. switch (llama_vocab_get_type(vocab)) {
  9972. case LLAMA_VOCAB_TYPE_SPM: {
  9973. auto buf = token_data.text.substr(3, 2);
  9974. return strtol(buf.c_str(), NULL, 16);
  9975. }
  9976. case LLAMA_VOCAB_TYPE_BPE: {
  9977. GGML_ASSERT(false);
  9978. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  9979. }
  9980. case LLAMA_VOCAB_TYPE_WPM: {
  9981. GGML_ASSERT(false);
  9982. }
  9983. default:
  9984. GGML_ASSERT(false);
  9985. }
  9986. }
  9987. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9988. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9989. static const char * hex = "0123456789ABCDEF";
  9990. switch (llama_vocab_get_type(vocab)) {
  9991. case LLAMA_VOCAB_TYPE_SPM: {
  9992. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9993. auto token = vocab.token_to_id.find(buf);
  9994. if (token != vocab.token_to_id.end()) {
  9995. return (*token).second;
  9996. }
  9997. // Try to fall back to just the byte as a string
  9998. const char buf2[2] = { (char)ch, 0 };
  9999. return vocab.token_to_id.at(buf2);
  10000. }
  10001. case LLAMA_VOCAB_TYPE_WPM:
  10002. case LLAMA_VOCAB_TYPE_BPE: {
  10003. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10004. }
  10005. default:
  10006. GGML_ASSERT(false);
  10007. }
  10008. }
  10009. static void llama_escape_whitespace(std::string & text) {
  10010. replace_all(text, " ", "\xe2\x96\x81");
  10011. }
  10012. static void llama_unescape_whitespace(std::string & word) {
  10013. replace_all(word, "\xe2\x96\x81", " ");
  10014. }
  10015. struct llm_symbol {
  10016. using index = int;
  10017. index prev;
  10018. index next;
  10019. const char * text;
  10020. size_t n;
  10021. };
  10022. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10023. // SPM tokenizer
  10024. // original implementation:
  10025. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10026. struct llm_bigram_spm {
  10027. struct comparator {
  10028. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10029. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10030. }
  10031. };
  10032. using queue_storage = std::vector<llm_bigram_spm>;
  10033. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10034. llm_symbol::index left;
  10035. llm_symbol::index right;
  10036. float score;
  10037. size_t size;
  10038. };
  10039. struct llm_tokenizer_spm {
  10040. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10041. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10042. // split string into utf8 chars
  10043. int index = 0;
  10044. size_t offs = 0;
  10045. while (offs < text.size()) {
  10046. llm_symbol sym;
  10047. size_t len = utf8_len(text[offs]);
  10048. sym.text = text.c_str() + offs;
  10049. sym.n = std::min(len, text.size() - offs);
  10050. offs += sym.n;
  10051. sym.prev = index - 1;
  10052. sym.next = offs == text.size() ? -1 : index + 1;
  10053. index++;
  10054. symbols.emplace_back(sym);
  10055. }
  10056. // seed the work queue with all possible 2-character tokens.
  10057. for (size_t i = 1; i < symbols.size(); ++i) {
  10058. try_add_bigram(i - 1, i);
  10059. }
  10060. // keep substituting the highest frequency pairs for as long as we can.
  10061. while (!work_queue.empty()) {
  10062. auto bigram = work_queue.top();
  10063. work_queue.pop();
  10064. auto & left_sym = symbols[bigram.left];
  10065. auto & right_sym = symbols[bigram.right];
  10066. // if one of the symbols already got merged, skip it.
  10067. if (left_sym.n == 0 || right_sym.n == 0 ||
  10068. left_sym.n + right_sym.n != bigram.size) {
  10069. continue;
  10070. }
  10071. // merge the right sym into the left one
  10072. left_sym.n += right_sym.n;
  10073. right_sym.n = 0;
  10074. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10075. // remove the right sym from the chain
  10076. left_sym.next = right_sym.next;
  10077. if (right_sym.next >= 0) {
  10078. symbols[right_sym.next].prev = bigram.left;
  10079. }
  10080. // find more substitutions
  10081. try_add_bigram(left_sym.prev, bigram.left);
  10082. try_add_bigram(bigram.left, left_sym.next);
  10083. }
  10084. for (int i = 0; i != -1; i = symbols[i].next) {
  10085. auto & symbol = symbols[i];
  10086. resegment(symbol, output);
  10087. }
  10088. }
  10089. private:
  10090. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10091. auto text = std::string(symbol.text, symbol.n);
  10092. auto token = vocab.token_to_id.find(text);
  10093. // Do we need to support is_unused?
  10094. if (token != vocab.token_to_id.end()) {
  10095. output.push_back((*token).second);
  10096. return;
  10097. }
  10098. const auto p = rev_merge.find(text);
  10099. if (p == rev_merge.end()) {
  10100. // output any symbols that did not form tokens as bytes.
  10101. output.reserve(output.size() + symbol.n);
  10102. for (int j = 0; j < (int)symbol.n; ++j) {
  10103. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10104. output.push_back(token_id);
  10105. }
  10106. return;
  10107. }
  10108. resegment(symbols[p->second.first], output);
  10109. resegment(symbols[p->second.second], output);
  10110. }
  10111. void try_add_bigram(int left, int right) {
  10112. if (left == -1 || right == -1) {
  10113. return;
  10114. }
  10115. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10116. auto token = vocab.token_to_id.find(text);
  10117. if (token == vocab.token_to_id.end()) {
  10118. return;
  10119. }
  10120. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10121. return;
  10122. }
  10123. const auto & tok_data = vocab.id_to_token[(*token).second];
  10124. llm_bigram_spm bigram;
  10125. bigram.left = left;
  10126. bigram.right = right;
  10127. bigram.score = tok_data.score;
  10128. bigram.size = text.size();
  10129. work_queue.push(bigram);
  10130. // Do we need to support is_unused?
  10131. rev_merge[text] = std::make_pair(left, right);
  10132. }
  10133. const llama_vocab & vocab;
  10134. std::vector<llm_symbol> symbols;
  10135. llm_bigram_spm::queue work_queue;
  10136. std::map<std::string, std::pair<int, int>> rev_merge;
  10137. };
  10138. // BPE tokenizer
  10139. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10140. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10141. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10142. struct llm_bigram_bpe {
  10143. struct comparator {
  10144. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10145. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10146. }
  10147. };
  10148. using queue_storage = std::vector<llm_bigram_bpe>;
  10149. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10150. llm_symbol::index left;
  10151. llm_symbol::index right;
  10152. std::string text;
  10153. int rank;
  10154. size_t size;
  10155. };
  10156. struct llm_tokenizer_bpe {
  10157. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10158. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10159. int final_prev_index = -1;
  10160. bool ignore_merges = false;
  10161. std::vector<std::string> word_collection;
  10162. switch (vocab.type) {
  10163. case LLAMA_VOCAB_TYPE_BPE:
  10164. switch (vocab.type_pre) {
  10165. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10166. ignore_merges = true;
  10167. word_collection = unicode_regex_split(text, {
  10168. // original regex from tokenizer.json
  10169. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10170. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10171. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10172. });
  10173. break;
  10174. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10175. word_collection = unicode_regex_split(text, {
  10176. // same as llama3
  10177. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10178. });
  10179. break;
  10180. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10181. word_collection = unicode_regex_split(text, {
  10182. "[\r\n]",
  10183. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10184. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10185. "\\s+$",
  10186. "[一-龥ࠀ-一가-퟿]+",
  10187. "\\p{N}+",
  10188. });
  10189. break;
  10190. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10191. word_collection = unicode_regex_split(text, {
  10192. "[\r\n]",
  10193. "\\s?\\p{L}+",
  10194. "\\s?\\p{P}+",
  10195. "[一-龥ࠀ-一가-퟿]+",
  10196. "\\p{N}",
  10197. });
  10198. break;
  10199. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10200. word_collection = unicode_regex_split(text, {
  10201. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10202. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10203. "[0-9][0-9][0-9]",
  10204. });
  10205. break;
  10206. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10207. // TODO: MPT pre-tokenization regexes are unknown
  10208. // the following are close, but not exact. run the following:
  10209. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10210. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10211. word_collection = unicode_regex_split(text, {
  10212. "\\s?\\p{L}+",
  10213. "\\s?\\p{P}+",
  10214. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10215. });
  10216. break;
  10217. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10218. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10219. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10220. word_collection = unicode_regex_split(text, {
  10221. "\\p{N}",
  10222. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10223. });
  10224. break;
  10225. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10226. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10227. word_collection = unicode_regex_split(text, {
  10228. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10229. });
  10230. break;
  10231. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10232. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10233. word_collection = unicode_regex_split(text, {
  10234. // original regex from tokenizer.json
  10235. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10236. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10237. });
  10238. break;
  10239. default:
  10240. // default regex for BPE tokenization pre-processing
  10241. word_collection = unicode_regex_split(text, {
  10242. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10243. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10244. "\\p{N}+",
  10245. "[0-9][0-9][0-9]",
  10246. });
  10247. break;
  10248. }
  10249. break;
  10250. default:
  10251. GGML_ASSERT(false);
  10252. break;
  10253. }
  10254. symbols_final.clear();
  10255. for (auto & word : word_collection) {
  10256. work_queue = llm_bigram_bpe::queue();
  10257. symbols.clear();
  10258. int index = 0;
  10259. size_t offset = 0;
  10260. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10261. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10262. offset = word.size();
  10263. }
  10264. while (offset < word.size()) {
  10265. llm_symbol sym;
  10266. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10267. sym.text = word.c_str() + offset;
  10268. sym.n = char_len;
  10269. offset += sym.n;
  10270. sym.prev = index - 1;
  10271. sym.next = offset == word.size() ? -1 : index + 1;
  10272. index++;
  10273. symbols.emplace_back(sym);
  10274. }
  10275. for (size_t i = 1; i < symbols.size(); ++i) {
  10276. add_new_bigram(i - 1, i);
  10277. }
  10278. // build token(s)
  10279. while (!work_queue.empty()) {
  10280. auto bigram = work_queue.top();
  10281. work_queue.pop();
  10282. auto & left_symbol = symbols[bigram.left];
  10283. auto & right_symbol = symbols[bigram.right];
  10284. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10285. continue;
  10286. }
  10287. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10288. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10289. if (left_token + right_token != bigram.text) {
  10290. continue; // Skip this bigram if it's outdated
  10291. }
  10292. // merge the right sym into the left one
  10293. left_symbol.n += right_symbol.n;
  10294. right_symbol.n = 0;
  10295. // remove the right sym from the chain
  10296. left_symbol.next = right_symbol.next;
  10297. if (right_symbol.next >= 0) {
  10298. symbols[right_symbol.next].prev = bigram.left;
  10299. }
  10300. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10301. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10302. }
  10303. // add the finished tokens to the final list keeping correct order for next and prev
  10304. for (auto & sym : symbols) {
  10305. if (sym.n > 0) {
  10306. sym.prev = final_prev_index;
  10307. sym.next = -1;
  10308. if (final_prev_index != -1) {
  10309. symbols_final[final_prev_index].next = symbols_final.size();
  10310. }
  10311. symbols_final.emplace_back(sym);
  10312. final_prev_index = symbols_final.size() - 1;
  10313. }
  10314. }
  10315. }
  10316. symbols = symbols_final;
  10317. if (!symbols.empty()) {
  10318. for (int i = 0; i != -1; i = symbols[i].next) {
  10319. auto & symbol = symbols[i];
  10320. if (symbol.n == 0) {
  10321. continue;
  10322. }
  10323. const std::string str = std::string(symbol.text, symbol.n);
  10324. const auto token = vocab.token_to_id.find(str);
  10325. if (token == vocab.token_to_id.end()) {
  10326. for (auto j = str.begin(); j != str.end(); ++j) {
  10327. std::string byte_str(1, *j);
  10328. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10329. if (token_multibyte == vocab.token_to_id.end()) {
  10330. throw std::runtime_error("ERROR: byte not found in vocab");
  10331. }
  10332. output.push_back((*token_multibyte).second);
  10333. }
  10334. } else {
  10335. output.push_back((*token).second);
  10336. }
  10337. }
  10338. }
  10339. }
  10340. private:
  10341. void add_new_bigram(int left, int right) {
  10342. if (left == -1 || right == -1) {
  10343. return;
  10344. }
  10345. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10346. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10347. int rank_found = -1;
  10348. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10349. if (rank_found < 0) {
  10350. return;
  10351. }
  10352. llm_bigram_bpe bigram;
  10353. bigram.left = left;
  10354. bigram.right = right;
  10355. bigram.text = left_token + right_token;
  10356. bigram.size = left_token.size() + right_token.size();
  10357. bigram.rank = rank_found;
  10358. work_queue.push(bigram);
  10359. }
  10360. const llama_vocab & vocab;
  10361. std::vector<llm_symbol> symbols;
  10362. std::vector<llm_symbol> symbols_final;
  10363. llm_bigram_bpe::queue work_queue;
  10364. };
  10365. struct llm_tokenizer_wpm {
  10366. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10367. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10368. auto * token_map = &vocab.token_to_id;
  10369. // normalize and split by whitespace
  10370. std::vector<std::string> words = preprocess(text);
  10371. // bos token prepended already
  10372. // find the longest tokens that form the words
  10373. for (const std::string &word : words) {
  10374. // skip empty words
  10375. if (word.size() == 0) {
  10376. continue;
  10377. }
  10378. // prepend phantom space
  10379. std::string word1 = "\xe2\x96\x81" + word;
  10380. int n = word1.size();
  10381. // we're at the start of a new word
  10382. int i = 0;
  10383. bool match_any = false;
  10384. // move through character position in word
  10385. while (i < n) {
  10386. // loop through possible match length
  10387. bool match = false;
  10388. for (int j = n; j > i; j--) {
  10389. auto it = token_map->find(word1.substr(i, j - i));
  10390. if (it != token_map->end()) {
  10391. output.push_back(it->second);
  10392. match = true;
  10393. match_any = true;
  10394. i = j;
  10395. break;
  10396. }
  10397. }
  10398. // must be an unknown character
  10399. if (!match) {
  10400. i++;
  10401. }
  10402. }
  10403. // we didn't find any matches for this word
  10404. if (!match_any) {
  10405. output.push_back(vocab.special_unk_id);
  10406. }
  10407. }
  10408. }
  10409. std::vector<std::string> preprocess(const std::string & text) {
  10410. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10411. // strip accents, strip control, uniformize whitespace,
  10412. // to lowercase, pad chinese characters, pad punctuation
  10413. std::string new_str = "";
  10414. for (uint32_t code : cpts_nfd) {
  10415. const codepoint_flags flags = unicode_cpt_flags(code);
  10416. if (flags.is_accent_mark || flags.is_control) {
  10417. continue;
  10418. }
  10419. code = unicode_tolower(code);
  10420. if (flags.is_separator || flags.is_whitespace) { //####FIXME: is_separator ?
  10421. code = ' ';
  10422. }
  10423. std::string s = unicode_cpt_to_utf8(code);
  10424. if (flags.is_punctuation || is_ascii_punct(code) || is_chinese_char(code)) {
  10425. new_str += " ";
  10426. new_str += s;
  10427. new_str += " ";
  10428. } else {
  10429. new_str += s;
  10430. }
  10431. }
  10432. // split by whitespace
  10433. uint64_t l = 0;
  10434. uint64_t r = 0;
  10435. std::vector<std::string> words;
  10436. while (r < new_str.size()) {
  10437. // if is whitespace
  10438. if (isspace(new_str[r], std::locale::classic())) {
  10439. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10440. l = r + 1;
  10441. r = l;
  10442. } else {
  10443. r += 1;
  10444. }
  10445. }
  10446. if (r > l) {
  10447. words.push_back(new_str.substr(l, (r - l)));
  10448. }
  10449. return words;
  10450. }
  10451. bool is_ascii_punct(uint32_t code) {
  10452. if (code > 0xFF) {
  10453. return false;
  10454. }
  10455. auto c = char(static_cast<unsigned char>(code));
  10456. return ispunct(c, std::locale::classic());
  10457. }
  10458. bool is_chinese_char(uint32_t cpt) {
  10459. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10460. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10461. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10462. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10463. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10464. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10465. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10466. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10467. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10468. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10469. return true; // NOLINT
  10470. }
  10471. return false;
  10472. }
  10473. const llama_vocab & vocab;
  10474. };
  10475. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10476. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10477. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10478. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10479. struct fragment_buffer_variant {
  10480. fragment_buffer_variant(llama_vocab::id _token)
  10481. :
  10482. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10483. token(_token),
  10484. raw_text(_dummy),
  10485. offset(0),
  10486. length(0) {}
  10487. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10488. :
  10489. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10490. token((llama_vocab::id) - 1),
  10491. raw_text(_raw_text),
  10492. offset(_offset),
  10493. length(_length){
  10494. GGML_ASSERT(_offset >= 0);
  10495. GGML_ASSERT(_length >= 1);
  10496. GGML_ASSERT(offset + length <= raw_text.length());
  10497. }
  10498. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10499. const llama_vocab::id token;
  10500. const std::string _dummy;
  10501. const std::string & raw_text;
  10502. const uint64_t offset;
  10503. const uint64_t length;
  10504. };
  10505. // #define PRETOKENIZERDEBUG
  10506. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10507. // for each special token
  10508. for (const auto & st: vocab.special_tokens_cache) {
  10509. const auto & special_token = st.first;
  10510. const auto & special_id = st.second;
  10511. // for each text fragment
  10512. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10513. while (it != buffer.end()) {
  10514. auto & fragment = (*it);
  10515. // if a fragment is text ( not yet processed )
  10516. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10517. auto * raw_text = &(fragment.raw_text);
  10518. auto raw_text_base_offset = fragment.offset;
  10519. auto raw_text_base_length = fragment.length;
  10520. // loop over the text
  10521. while (true) {
  10522. // find the first occurrence of a given special token in this fragment
  10523. // passing offset argument only limit the "search area" but match coordinates
  10524. // are still relative to the source full raw_text
  10525. auto match = raw_text->find(special_token, raw_text_base_offset);
  10526. // no occurrences found, stop processing this fragment for a given special token
  10527. if (match == std::string::npos) break;
  10528. // check if match is within bounds of offset <-> length
  10529. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10530. #ifdef PRETOKENIZERDEBUG
  10531. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10532. #endif
  10533. auto source = std::distance(buffer.begin(), it);
  10534. // if match is further than base offset
  10535. // then we have some text to the left of it
  10536. if (match > raw_text_base_offset) {
  10537. // left
  10538. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10539. const int64_t left_reminder_length = match - raw_text_base_offset;
  10540. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10541. #ifdef PRETOKENIZERDEBUG
  10542. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10543. #endif
  10544. it++;
  10545. }
  10546. // special token
  10547. buffer.emplace_after(it, special_id);
  10548. it++;
  10549. // right
  10550. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10551. const int64_t right_reminder_offset = match + special_token.length();
  10552. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10553. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10554. #ifdef PRETOKENIZERDEBUG
  10555. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10556. #endif
  10557. it++;
  10558. if (source == 0) {
  10559. buffer.erase_after(buffer.before_begin());
  10560. } else {
  10561. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10562. }
  10563. // repeat for the right side
  10564. raw_text_base_offset = right_reminder_offset;
  10565. raw_text_base_length = right_reminder_length;
  10566. #ifdef PRETOKENIZERDEBUG
  10567. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10568. #endif
  10569. } else {
  10570. if (source == 0) {
  10571. buffer.erase_after(buffer.before_begin());
  10572. } else {
  10573. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10574. }
  10575. break;
  10576. }
  10577. }
  10578. }
  10579. it++;
  10580. }
  10581. }
  10582. }
  10583. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10584. std::vector<llama_vocab::id> output;
  10585. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10586. if (!raw_text.empty()) {
  10587. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10588. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10589. }
  10590. switch (vocab.type) {
  10591. case LLAMA_VOCAB_TYPE_SPM:
  10592. {
  10593. // OG tokenizer behavior:
  10594. //
  10595. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10596. // tokenizer.encode('', add_special_tokens=False) returns []
  10597. if (add_special && vocab.special_add_bos != 0) {
  10598. GGML_ASSERT(vocab.special_bos_id != -1);
  10599. output.push_back(vocab.special_bos_id);
  10600. }
  10601. for (const auto & fragment : fragment_buffer) {
  10602. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10603. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10604. // TODO: It's likely possible to get rid of this string copy entirely
  10605. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10606. // and passing 'add space prefix' as bool argument
  10607. //
  10608. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10609. if (&fragment == &fragment_buffer.front()) {
  10610. if (vocab.add_space_prefix) {
  10611. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10612. }
  10613. }
  10614. #ifdef PRETOKENIZERDEBUG
  10615. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10616. #endif
  10617. llm_tokenizer_spm tokenizer(vocab);
  10618. llama_escape_whitespace(raw_text);
  10619. tokenizer.tokenize(raw_text, output);
  10620. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10621. output.push_back(fragment.token);
  10622. }
  10623. }
  10624. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10625. LLAMA_LOG_WARN(
  10626. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10627. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10628. "Are you sure this is what you want?\n", __FUNCTION__);
  10629. }
  10630. if (add_special && vocab.special_add_eos == 1) {
  10631. GGML_ASSERT(vocab.special_eos_id != -1);
  10632. output.push_back(vocab.special_eos_id);
  10633. }
  10634. } break;
  10635. case LLAMA_VOCAB_TYPE_BPE:
  10636. {
  10637. if (add_special && vocab.special_add_bos != 0) {
  10638. GGML_ASSERT(vocab.special_bos_id != -1);
  10639. output.push_back(vocab.special_bos_id);
  10640. }
  10641. for (const auto & fragment : fragment_buffer) {
  10642. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10643. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10644. #ifdef PRETOKENIZERDEBUG
  10645. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10646. #endif
  10647. llm_tokenizer_bpe tokenizer(vocab);
  10648. tokenizer.tokenize(raw_text, output);
  10649. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10650. output.push_back(fragment.token);
  10651. }
  10652. }
  10653. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  10654. LLAMA_LOG_WARN(
  10655. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  10656. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  10657. "Are you sure this is what you want?\n", __FUNCTION__);
  10658. }
  10659. if (add_special && vocab.special_add_eos == 1) {
  10660. GGML_ASSERT(vocab.special_add_eos != -1);
  10661. output.push_back(vocab.special_eos_id);
  10662. }
  10663. } break;
  10664. case LLAMA_VOCAB_TYPE_WPM:
  10665. {
  10666. if (add_special) {
  10667. GGML_ASSERT(vocab.special_cls_id != -1);
  10668. output.push_back(vocab.special_cls_id);
  10669. }
  10670. for (const auto & fragment : fragment_buffer) {
  10671. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10672. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10673. #ifdef PRETOKENIZERDEBUG
  10674. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10675. #endif
  10676. llm_tokenizer_wpm tokenizer(vocab);
  10677. tokenizer.tokenize(raw_text, output);
  10678. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10679. output.push_back(fragment.token);
  10680. }
  10681. }
  10682. if (add_special) {
  10683. GGML_ASSERT(vocab.special_sep_id != -1);
  10684. output.push_back(vocab.special_sep_id);
  10685. }
  10686. } break;
  10687. case LLAMA_VOCAB_TYPE_NONE:
  10688. GGML_ASSERT(false);
  10689. }
  10690. return output;
  10691. }
  10692. //
  10693. // grammar - internal
  10694. //
  10695. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10696. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10697. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10698. const std::string & src,
  10699. llama_partial_utf8 partial_start) {
  10700. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10701. const char * pos = src.c_str();
  10702. std::vector<uint32_t> code_points;
  10703. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10704. code_points.reserve(src.size() + 1);
  10705. uint32_t value = partial_start.value;
  10706. int n_remain = partial_start.n_remain;
  10707. // continue previous decode, if applicable
  10708. while (*pos != 0 && n_remain > 0) {
  10709. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10710. if ((next_byte >> 6) != 2) {
  10711. // invalid sequence, abort
  10712. code_points.push_back(0);
  10713. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10714. }
  10715. value = (value << 6) + (next_byte & 0x3F);
  10716. ++pos;
  10717. --n_remain;
  10718. }
  10719. if (partial_start.n_remain > 0 && n_remain == 0) {
  10720. code_points.push_back(value);
  10721. }
  10722. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10723. while (*pos != 0) {
  10724. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10725. uint8_t highbits = first_byte >> 4;
  10726. n_remain = lookup[highbits] - 1;
  10727. if (n_remain < 0) {
  10728. // invalid sequence, abort
  10729. code_points.clear();
  10730. code_points.push_back(0);
  10731. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10732. }
  10733. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10734. value = first_byte & mask;
  10735. ++pos;
  10736. while (*pos != 0 && n_remain > 0) {
  10737. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10738. ++pos;
  10739. --n_remain;
  10740. }
  10741. if (n_remain == 0) {
  10742. code_points.push_back(value);
  10743. }
  10744. }
  10745. code_points.push_back(0);
  10746. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10747. }
  10748. // returns true iff pos points to the end of one of the definitions of a rule
  10749. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10750. switch (pos->type) {
  10751. case LLAMA_GRETYPE_END: return true; // NOLINT
  10752. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10753. default: return false;
  10754. }
  10755. }
  10756. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10757. // asserts that pos is pointing to a char range element
  10758. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10759. const llama_grammar_element * pos,
  10760. const uint32_t chr) {
  10761. bool found = false;
  10762. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10763. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10764. do {
  10765. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10766. // inclusive range, e.g. [a-z]
  10767. found = found || (pos->value <= chr && chr <= pos[1].value);
  10768. pos += 2;
  10769. } else {
  10770. // exact char match, e.g. [a] or "a"
  10771. found = found || pos->value == chr;
  10772. pos += 1;
  10773. }
  10774. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10775. return std::make_pair(found == is_positive_char, pos);
  10776. }
  10777. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10778. // range at pos (regular or inverse range)
  10779. // asserts that pos is pointing to a char range element
  10780. static bool llama_grammar_match_partial_char(
  10781. const llama_grammar_element * pos,
  10782. const llama_partial_utf8 partial_utf8) {
  10783. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10784. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10785. uint32_t partial_value = partial_utf8.value;
  10786. int n_remain = partial_utf8.n_remain;
  10787. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10788. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10789. return false;
  10790. }
  10791. // range of possible code points this partial UTF-8 sequence could complete to
  10792. uint32_t low = partial_value << (n_remain * 6);
  10793. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10794. if (low == 0) {
  10795. if (n_remain == 2) {
  10796. low = 1 << 11;
  10797. } else if (n_remain == 3) {
  10798. low = 1 << 16;
  10799. }
  10800. }
  10801. do {
  10802. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10803. // inclusive range, e.g. [a-z]
  10804. if (pos->value <= high && low <= pos[1].value) {
  10805. return is_positive_char;
  10806. }
  10807. pos += 2;
  10808. } else {
  10809. // exact char match, e.g. [a] or "a"
  10810. if (low <= pos->value && pos->value <= high) {
  10811. return is_positive_char;
  10812. }
  10813. pos += 1;
  10814. }
  10815. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10816. return !is_positive_char;
  10817. }
  10818. // transforms a grammar pushdown stack into N possible stacks, all ending
  10819. // at a character range (terminal element)
  10820. static void llama_grammar_advance_stack(
  10821. const std::vector<std::vector<llama_grammar_element>> & rules,
  10822. const std::vector<const llama_grammar_element *> & stack,
  10823. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10824. if (stack.empty()) {
  10825. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10826. new_stacks.emplace_back(stack);
  10827. }
  10828. return;
  10829. }
  10830. const llama_grammar_element * pos = stack.back();
  10831. switch (pos->type) {
  10832. case LLAMA_GRETYPE_RULE_REF: {
  10833. const size_t rule_id = static_cast<size_t>(pos->value);
  10834. const llama_grammar_element * subpos = rules[rule_id].data();
  10835. do {
  10836. // init new stack without the top (pos)
  10837. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10838. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10839. // if this rule ref is followed by another element, add that to stack
  10840. new_stack.push_back(pos + 1);
  10841. }
  10842. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10843. // if alternate is nonempty, add to stack
  10844. new_stack.push_back(subpos);
  10845. }
  10846. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10847. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10848. // scan to end of alternate def
  10849. subpos++;
  10850. }
  10851. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10852. // there's another alternate def of this rule to process
  10853. subpos++;
  10854. } else {
  10855. break;
  10856. }
  10857. } while (true);
  10858. break;
  10859. }
  10860. case LLAMA_GRETYPE_CHAR:
  10861. case LLAMA_GRETYPE_CHAR_NOT:
  10862. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10863. // only add the stack if it's not a duplicate of one we already have
  10864. new_stacks.emplace_back(stack);
  10865. }
  10866. break;
  10867. default:
  10868. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10869. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10870. // those
  10871. GGML_ASSERT(false);
  10872. }
  10873. }
  10874. // takes a set of possible pushdown stacks on a grammar, which are required to
  10875. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10876. // produces the N possible stacks if the given char is accepted at those
  10877. // positions
  10878. void llama_grammar_accept(
  10879. const std::vector<std::vector<llama_grammar_element>> & rules,
  10880. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10881. const uint32_t chr,
  10882. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10883. new_stacks.clear();
  10884. for (const auto & stack : stacks) {
  10885. if (stack.empty()) {
  10886. continue;
  10887. }
  10888. auto match = llama_grammar_match_char(stack.back(), chr);
  10889. if (match.first) {
  10890. const llama_grammar_element * pos = match.second;
  10891. // update top of stack to next element, if any
  10892. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10893. if (!llama_grammar_is_end_of_sequence(pos)) {
  10894. new_stack.push_back(pos);
  10895. }
  10896. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10897. }
  10898. }
  10899. }
  10900. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10901. const std::vector<std::vector<llama_grammar_element>> & rules,
  10902. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10903. const std::vector<llama_grammar_candidate> & candidates);
  10904. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10905. const std::vector<std::vector<llama_grammar_element>> & rules,
  10906. const std::vector<const llama_grammar_element *> & stack,
  10907. const std::vector<llama_grammar_candidate> & candidates) {
  10908. std::vector<llama_grammar_candidate> rejects;
  10909. rejects.reserve(candidates.size());
  10910. if (stack.empty()) {
  10911. for (const auto & tok : candidates) {
  10912. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10913. rejects.push_back(tok);
  10914. }
  10915. }
  10916. return rejects;
  10917. }
  10918. const llama_grammar_element * stack_pos = stack.back();
  10919. std::vector<llama_grammar_candidate> next_candidates;
  10920. next_candidates.reserve(candidates.size());
  10921. for (const auto & tok : candidates) {
  10922. if (*tok.code_points == 0) {
  10923. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10924. // that cannot satisfy this position in grammar
  10925. if (tok.partial_utf8.n_remain != 0 &&
  10926. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10927. rejects.push_back(tok);
  10928. }
  10929. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10930. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10931. } else {
  10932. rejects.push_back(tok);
  10933. }
  10934. }
  10935. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10936. // update top of stack to next element, if any
  10937. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10938. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10939. stack_after.push_back(stack_pos_after);
  10940. }
  10941. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10942. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10943. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10944. for (const auto & tok : next_rejects) {
  10945. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10946. }
  10947. return rejects;
  10948. }
  10949. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10950. const std::vector<std::vector<llama_grammar_element>> & rules,
  10951. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10952. const std::vector<llama_grammar_candidate> & candidates) {
  10953. GGML_ASSERT(!stacks.empty()); // REVIEW
  10954. if (candidates.empty()) {
  10955. return std::vector<llama_grammar_candidate>();
  10956. }
  10957. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10958. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10959. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10960. }
  10961. return rejects;
  10962. }
  10963. static bool llama_grammar_detect_left_recursion(
  10964. const std::vector<std::vector<llama_grammar_element>> & rules,
  10965. size_t rule_index,
  10966. std::vector<bool> * rules_visited,
  10967. std::vector<bool> * rules_in_progress,
  10968. std::vector<bool> * rules_may_be_empty) {
  10969. if ((*rules_in_progress)[rule_index]) {
  10970. return true;
  10971. }
  10972. (*rules_in_progress)[rule_index] = true;
  10973. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  10974. // First check if the rule might produce the empty string. This could be done combined with the second
  10975. // step but it's more readable as two steps.
  10976. bool at_rule_start = true;
  10977. for (size_t i = 0; i < rule.size(); i++) {
  10978. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  10979. if (at_rule_start) {
  10980. (*rules_may_be_empty)[rule_index] = true;
  10981. break;
  10982. }
  10983. at_rule_start = true;
  10984. } else {
  10985. at_rule_start = false;
  10986. }
  10987. }
  10988. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  10989. // be empty)
  10990. bool recurse_into_nonterminal = true;
  10991. for (size_t i = 0; i < rule.size(); i++) {
  10992. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  10993. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  10994. return true;
  10995. }
  10996. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  10997. recurse_into_nonterminal = false;
  10998. }
  10999. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11000. recurse_into_nonterminal = true;
  11001. } else {
  11002. recurse_into_nonterminal = false;
  11003. }
  11004. }
  11005. (*rules_in_progress)[rule_index] = false;
  11006. (*rules_visited)[rule_index] = true;
  11007. return false;
  11008. }
  11009. //
  11010. // grammar - external
  11011. //
  11012. struct llama_grammar * llama_grammar_init(
  11013. const llama_grammar_element ** rules,
  11014. size_t n_rules,
  11015. size_t start_rule_index) {
  11016. const llama_grammar_element * pos;
  11017. // copy rule definitions into vectors
  11018. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11019. for (size_t i = 0; i < n_rules; i++) {
  11020. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11021. vec_rules[i].push_back(*pos);
  11022. }
  11023. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11024. }
  11025. // Check for left recursion
  11026. std::vector<bool> rules_visited(n_rules);
  11027. std::vector<bool> rules_in_progress(n_rules);
  11028. std::vector<bool> rules_may_be_empty(n_rules);
  11029. for (size_t i = 0; i < n_rules; i++) {
  11030. if (rules_visited[i]) {
  11031. continue;
  11032. }
  11033. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11034. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11035. }
  11036. }
  11037. // loop over alternates of start rule to build initial stacks
  11038. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11039. pos = vec_rules[start_rule_index].data();
  11040. do {
  11041. std::vector<const llama_grammar_element *> stack;
  11042. if (!llama_grammar_is_end_of_sequence(pos)) {
  11043. // if alternate is nonempty, add to stack
  11044. stack.push_back(pos);
  11045. }
  11046. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11047. while (!llama_grammar_is_end_of_sequence(pos)) {
  11048. // scan to end of alternate def
  11049. pos++;
  11050. }
  11051. if (pos->type == LLAMA_GRETYPE_ALT) {
  11052. // there's another alternate def of this rule to process
  11053. pos++;
  11054. } else {
  11055. break;
  11056. }
  11057. } while (true);
  11058. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11059. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11060. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11061. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11062. }
  11063. void llama_grammar_free(struct llama_grammar * grammar) {
  11064. delete grammar;
  11065. }
  11066. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11067. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11068. // redirect elements in stacks to point to new rules
  11069. for (size_t is = 0; is < result->stacks.size(); is++) {
  11070. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11071. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11072. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11073. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11074. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11075. }
  11076. }
  11077. }
  11078. }
  11079. }
  11080. return result;
  11081. }
  11082. //
  11083. // sampling
  11084. //
  11085. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11086. if (seed == LLAMA_DEFAULT_SEED) {
  11087. seed = time(NULL);
  11088. }
  11089. ctx->rng.seed(seed);
  11090. }
  11091. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11092. GGML_ASSERT(candidates->size > 0);
  11093. const int64_t t_start_sample_us = ggml_time_us();
  11094. // Sort the logits in descending order
  11095. if (!candidates->sorted) {
  11096. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11097. return a.logit > b.logit;
  11098. });
  11099. candidates->sorted = true;
  11100. }
  11101. float max_l = candidates->data[0].logit;
  11102. float cum_sum = 0.0f;
  11103. for (size_t i = 0; i < candidates->size; ++i) {
  11104. float p = expf(candidates->data[i].logit - max_l);
  11105. candidates->data[i].p = p;
  11106. cum_sum += p;
  11107. }
  11108. for (size_t i = 0; i < candidates->size; ++i) {
  11109. candidates->data[i].p /= cum_sum;
  11110. }
  11111. if (ctx) {
  11112. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11113. }
  11114. }
  11115. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11116. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11117. // if (k >= (int32_t)candidates->size) {
  11118. // return;
  11119. // }
  11120. const int64_t t_start_sample_us = ggml_time_us();
  11121. if (k <= 0) {
  11122. k = candidates->size;
  11123. }
  11124. k = std::max(k, (int) min_keep);
  11125. k = std::min(k, (int) candidates->size);
  11126. // Sort scores in descending order
  11127. if (!candidates->sorted) {
  11128. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11129. return a.logit > b.logit;
  11130. };
  11131. if (k <= 128) {
  11132. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11133. } else {
  11134. constexpr int nbuckets = 128;
  11135. constexpr float bucket_low = -10.0f;
  11136. constexpr float bucket_high = 10.0f;
  11137. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11138. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11139. std::vector<int> bucket_idx(candidates->size);
  11140. std::vector<int> histo(nbuckets, 0);
  11141. for (int i = 0; i < (int)candidates->size; ++i) {
  11142. const float val = candidates->data[i].logit;
  11143. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11144. ib = std::max(0, std::min(nbuckets-1, ib));
  11145. bucket_idx[i] = ib;
  11146. ++histo[ib];
  11147. }
  11148. int nhave = 0;
  11149. int ib = nbuckets - 1;
  11150. for ( ; ib >= 0; --ib) {
  11151. nhave += histo[ib];
  11152. if (nhave >= k) break;
  11153. }
  11154. std::vector<llama_token_data> tmp_tokens(nhave);
  11155. auto ptr = tmp_tokens.data();
  11156. std::vector<llama_token_data*> bucket_ptrs;
  11157. bucket_ptrs.reserve(nbuckets - ib);
  11158. for (int j = nbuckets - 1; j >= ib; --j) {
  11159. bucket_ptrs.push_back(ptr);
  11160. ptr += histo[j];
  11161. }
  11162. for (int i = 0; i < (int)candidates->size; ++i) {
  11163. int j = bucket_idx[i];
  11164. if (j >= ib) {
  11165. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11166. }
  11167. }
  11168. ptr = tmp_tokens.data();
  11169. int ndone = 0;
  11170. for (int j = nbuckets-1; j > ib; --j) {
  11171. std::sort(ptr, ptr + histo[j], comp);
  11172. ptr += histo[j];
  11173. ndone += histo[j];
  11174. }
  11175. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11176. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11177. }
  11178. candidates->sorted = true;
  11179. }
  11180. candidates->size = k;
  11181. if (ctx) {
  11182. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11183. }
  11184. }
  11185. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11186. if (p >= 1.0f) {
  11187. return;
  11188. }
  11189. llama_sample_softmax(ctx, candidates);
  11190. const int64_t t_start_sample_us = ggml_time_us();
  11191. // Compute the cumulative probabilities
  11192. float cum_sum = 0.0f;
  11193. size_t last_idx = candidates->size;
  11194. for (size_t i = 0; i < candidates->size; ++i) {
  11195. cum_sum += candidates->data[i].p;
  11196. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11197. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11198. if (cum_sum >= p && i + 1 >= min_keep) {
  11199. last_idx = i + 1;
  11200. break;
  11201. }
  11202. }
  11203. // Resize the output vector to keep only the top-p tokens
  11204. candidates->size = last_idx;
  11205. if (ctx) {
  11206. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11207. }
  11208. }
  11209. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11210. if (p <= 0.0f || !candidates->size) {
  11211. return;
  11212. }
  11213. const int64_t t_start_sample_us = ggml_time_us();
  11214. bool min_p_applied = false;
  11215. // if the candidates aren't sorted, try the unsorted implementation first
  11216. if (!candidates->sorted) {
  11217. std::vector<llama_token_data> filtered_tokens;
  11218. float max_logit = -FLT_MAX;
  11219. for (size_t i = 0; i < candidates->size; ++i) {
  11220. max_logit = std::max(max_logit, candidates->data[i].logit);
  11221. }
  11222. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11223. for (size_t i = 0; i < candidates->size; ++i) {
  11224. if (candidates->data[i].logit >= min_logit) {
  11225. filtered_tokens.push_back(candidates->data[i]);
  11226. }
  11227. }
  11228. // if we have enough values the operation was a success
  11229. if (filtered_tokens.size() >= min_keep) {
  11230. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11231. candidates->size = filtered_tokens.size();
  11232. min_p_applied = true;
  11233. }
  11234. }
  11235. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11236. if (!min_p_applied) {
  11237. // Sort the logits in descending order
  11238. if (!candidates->sorted) {
  11239. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11240. return a.logit > b.logit;
  11241. });
  11242. candidates->sorted = true;
  11243. }
  11244. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11245. size_t i = 1; // first token always matches
  11246. for (; i < candidates->size; ++i) {
  11247. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11248. break; // prob too small
  11249. }
  11250. }
  11251. // Resize the output vector to keep only the matching tokens
  11252. candidates->size = i;
  11253. }
  11254. if (ctx) {
  11255. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11256. }
  11257. }
  11258. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11259. if (z >= 1.0f || candidates->size <= 2) {
  11260. return;
  11261. }
  11262. llama_sample_softmax(nullptr, candidates);
  11263. const int64_t t_start_sample_us = ggml_time_us();
  11264. // Compute the first and second derivatives
  11265. std::vector<float> first_derivatives(candidates->size - 1);
  11266. std::vector<float> second_derivatives(candidates->size - 2);
  11267. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11268. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11269. }
  11270. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11271. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11272. }
  11273. // Calculate absolute value of second derivatives
  11274. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11275. second_derivatives[i] = std::abs(second_derivatives[i]);
  11276. }
  11277. // Normalize the second derivatives
  11278. {
  11279. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11280. if (second_derivatives_sum > 1e-6f) {
  11281. for (float & value : second_derivatives) {
  11282. value /= second_derivatives_sum;
  11283. }
  11284. } else {
  11285. for (float & value : second_derivatives) {
  11286. value = 1.0f / second_derivatives.size();
  11287. }
  11288. }
  11289. }
  11290. float cum_sum = 0.0f;
  11291. size_t last_idx = candidates->size;
  11292. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11293. cum_sum += second_derivatives[i];
  11294. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11295. if (cum_sum > z && i >= min_keep) {
  11296. last_idx = i;
  11297. break;
  11298. }
  11299. }
  11300. // Resize the output vector to keep only the tokens above the tail location
  11301. candidates->size = last_idx;
  11302. if (ctx) {
  11303. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11304. }
  11305. }
  11306. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11307. // Reference implementation:
  11308. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11309. if (p >= 1.0f) {
  11310. return;
  11311. }
  11312. // Compute the softmax of logits and calculate entropy
  11313. llama_sample_softmax(nullptr, candidates);
  11314. const int64_t t_start_sample_us = ggml_time_us();
  11315. float entropy = 0.0f;
  11316. for (size_t i = 0; i < candidates->size; ++i) {
  11317. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11318. }
  11319. // Compute the absolute difference between negative log probability and entropy for each candidate
  11320. std::vector<float> shifted_scores;
  11321. for (size_t i = 0; i < candidates->size; ++i) {
  11322. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11323. shifted_scores.push_back(shifted_score);
  11324. }
  11325. // Sort tokens based on the shifted_scores and their corresponding indices
  11326. std::vector<size_t> indices(candidates->size);
  11327. std::iota(indices.begin(), indices.end(), 0);
  11328. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11329. return shifted_scores[a] < shifted_scores[b];
  11330. });
  11331. // Compute the cumulative probabilities
  11332. float cum_sum = 0.0f;
  11333. size_t last_idx = indices.size();
  11334. for (size_t i = 0; i < indices.size(); ++i) {
  11335. size_t idx = indices[i];
  11336. cum_sum += candidates->data[idx].p;
  11337. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11338. if (cum_sum > p && i >= min_keep - 1) {
  11339. last_idx = i + 1;
  11340. break;
  11341. }
  11342. }
  11343. // Resize the output vector to keep only the locally typical tokens
  11344. std::vector<llama_token_data> new_candidates;
  11345. for (size_t i = 0; i < last_idx; ++i) {
  11346. size_t idx = indices[i];
  11347. new_candidates.push_back(candidates->data[idx]);
  11348. }
  11349. // Replace the data in candidates with the new_candidates data
  11350. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11351. candidates->size = new_candidates.size();
  11352. candidates->sorted = false;
  11353. if (ctx) {
  11354. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11355. }
  11356. }
  11357. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11358. const int64_t t_start_sample_us = ggml_time_us();
  11359. // no need to do anything if there is only one (or zero) candidates
  11360. if(candidates_p->size <= 1) {
  11361. return;
  11362. }
  11363. // Calculate maximum possible entropy
  11364. float max_entropy = -logf(1.0f / candidates_p->size);
  11365. llama_sample_softmax(nullptr, candidates_p);
  11366. // Calculate entropy of the softmax probabilities
  11367. float entropy = 0.0f;
  11368. for (size_t i = 0; i < candidates_p->size; ++i) {
  11369. float prob = candidates_p->data[i].p;
  11370. if (prob > 0.0f) { // Ensure no log(0)
  11371. entropy -= prob * logf(prob);
  11372. }
  11373. }
  11374. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11375. float normalized_entropy = entropy / max_entropy;
  11376. // Map the normalized entropy to the desired temperature range using the power function
  11377. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11378. #ifdef DEBUG
  11379. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11380. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11381. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11382. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11383. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11384. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11385. #endif
  11386. // Apply the dynamically calculated temperature scaling
  11387. for (size_t i = 0; i < candidates_p->size; ++i) {
  11388. candidates_p->data[i].logit /= dyn_temp;
  11389. }
  11390. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11391. double max_l_double = candidates_p->data[0].logit;
  11392. double cum_sum_double = 0.0;
  11393. for (size_t i = 0; i < candidates_p->size; ++i) {
  11394. double p = exp(candidates_p->data[i].logit - max_l_double);
  11395. candidates_p->data[i].p = p; // Store the scaled probability
  11396. cum_sum_double += p;
  11397. }
  11398. for (size_t i = 0; i < candidates_p->size; ++i) {
  11399. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11400. }
  11401. #ifdef DEBUG
  11402. // Print the updated top 25 probabilities after temperature scaling
  11403. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11404. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11405. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11406. }
  11407. #endif
  11408. if (ctx) {
  11409. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11410. }
  11411. }
  11412. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11413. const int64_t t_start_sample_us = ggml_time_us();
  11414. for (size_t i = 0; i < candidates_p->size; ++i) {
  11415. candidates_p->data[i].logit /= temp;
  11416. }
  11417. if (ctx) {
  11418. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11419. }
  11420. }
  11421. void llama_sample_repetition_penalties(
  11422. struct llama_context * ctx,
  11423. llama_token_data_array * candidates,
  11424. const llama_token * last_tokens,
  11425. size_t penalty_last_n,
  11426. float penalty_repeat,
  11427. float penalty_freq,
  11428. float penalty_present) {
  11429. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11430. return;
  11431. }
  11432. const int64_t t_start_sample_us = ggml_time_us();
  11433. // Create a frequency map to count occurrences of each token in last_tokens
  11434. std::unordered_map<llama_token, int> token_count;
  11435. for (size_t i = 0; i < penalty_last_n; ++i) {
  11436. token_count[last_tokens[i]]++;
  11437. }
  11438. // Apply frequency and presence penalties to the candidates
  11439. for (size_t i = 0; i < candidates->size; ++i) {
  11440. const auto token_iter = token_count.find(candidates->data[i].id);
  11441. if (token_iter == token_count.end()) {
  11442. continue;
  11443. }
  11444. const int count = token_iter->second;
  11445. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11446. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11447. if (candidates->data[i].logit <= 0) {
  11448. candidates->data[i].logit *= penalty_repeat;
  11449. } else {
  11450. candidates->data[i].logit /= penalty_repeat;
  11451. }
  11452. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11453. }
  11454. candidates->sorted = false;
  11455. if (ctx) {
  11456. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11457. }
  11458. }
  11459. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11460. GGML_ASSERT(ctx);
  11461. const int64_t t_start_sample_us = ggml_time_us();
  11462. bool allow_eog = false;
  11463. for (const auto & stack : grammar->stacks) {
  11464. if (stack.empty()) {
  11465. allow_eog = true;
  11466. break;
  11467. }
  11468. }
  11469. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11470. candidates_decoded.reserve(candidates->size);
  11471. std::vector<llama_grammar_candidate> candidates_grammar;
  11472. candidates_grammar.reserve(candidates->size);
  11473. for (size_t i = 0; i < candidates->size; ++i) {
  11474. const llama_token id = candidates->data[i].id;
  11475. const std::string piece = llama_token_to_piece(ctx, id, false);
  11476. if (llama_token_is_eog(&ctx->model, id)) {
  11477. if (!allow_eog) {
  11478. candidates->data[i].logit = -INFINITY;
  11479. }
  11480. } else if (piece.empty() || piece[0] == 0) {
  11481. candidates->data[i].logit = -INFINITY;
  11482. } else {
  11483. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11484. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11485. }
  11486. }
  11487. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11488. for (const auto & reject : rejects) {
  11489. candidates->data[reject.index].logit = -INFINITY;
  11490. }
  11491. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11492. }
  11493. static void llama_log_softmax(float * array, size_t size) {
  11494. float max_l = *std::max_element(array, array + size);
  11495. float sum = 0.f;
  11496. for (size_t i = 0; i < size; ++i) {
  11497. float p = expf(array[i] - max_l);
  11498. sum += p;
  11499. array[i] = p;
  11500. }
  11501. for (size_t i = 0; i < size; ++i) {
  11502. array[i] = logf(array[i] / sum);
  11503. }
  11504. }
  11505. void llama_sample_apply_guidance(
  11506. struct llama_context * ctx,
  11507. float * logits,
  11508. float * logits_guidance,
  11509. float scale) {
  11510. GGML_ASSERT(ctx);
  11511. const auto t_start_sample_us = ggml_time_us();
  11512. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11513. llama_log_softmax(logits, n_vocab);
  11514. llama_log_softmax(logits_guidance, n_vocab);
  11515. for (int i = 0; i < n_vocab; ++i) {
  11516. auto & l = logits[i];
  11517. const auto & g = logits_guidance[i];
  11518. l = scale * (l - g) + g;
  11519. }
  11520. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11521. }
  11522. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11523. GGML_ASSERT(ctx);
  11524. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11525. int64_t t_start_sample_us;
  11526. t_start_sample_us = ggml_time_us();
  11527. llama_sample_softmax(nullptr, candidates);
  11528. // Estimate s_hat using the most probable m tokens
  11529. float s_hat = 0.0;
  11530. float sum_ti_bi = 0.0;
  11531. float sum_ti_sq = 0.0;
  11532. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11533. float t_i = logf(float(i + 2) / float(i + 1));
  11534. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11535. sum_ti_bi += t_i * b_i;
  11536. sum_ti_sq += t_i * t_i;
  11537. }
  11538. s_hat = sum_ti_bi / sum_ti_sq;
  11539. // Compute k from the estimated s_hat and target surprise value
  11540. float epsilon_hat = s_hat - 1;
  11541. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11542. // Sample the next word X using top-k sampling
  11543. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11544. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11545. llama_token X = llama_sample_token(ctx, candidates);
  11546. t_start_sample_us = ggml_time_us();
  11547. // Compute error as the difference between observed surprise and target surprise value
  11548. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11549. return candidate.id == X;
  11550. }));
  11551. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11552. float e = observed_surprise - tau;
  11553. // Update mu using the learning rate and error
  11554. *mu = *mu - eta * e;
  11555. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11556. return X;
  11557. }
  11558. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11559. int64_t t_start_sample_us;
  11560. t_start_sample_us = ggml_time_us();
  11561. llama_sample_softmax(ctx, candidates);
  11562. // Truncate the words with surprise values greater than mu
  11563. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11564. return -log2f(candidate.p) > *mu;
  11565. }));
  11566. if (candidates->size == 0) {
  11567. candidates->size = 1;
  11568. }
  11569. if (ctx) {
  11570. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11571. }
  11572. // Normalize the probabilities of the remaining words
  11573. llama_sample_softmax(ctx, candidates);
  11574. // Sample the next word X from the remaining words
  11575. llama_token X = llama_sample_token(ctx, candidates);
  11576. t_start_sample_us = ggml_time_us();
  11577. // Compute error as the difference between observed surprise and target surprise value
  11578. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11579. return candidate.id == X;
  11580. }));
  11581. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11582. float e = observed_surprise - tau;
  11583. // Update mu using the learning rate and error
  11584. *mu = *mu - eta * e;
  11585. if (ctx) {
  11586. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11587. }
  11588. return X;
  11589. }
  11590. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11591. const int64_t t_start_sample_us = ggml_time_us();
  11592. // Find max element
  11593. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11594. return a.logit < b.logit;
  11595. });
  11596. llama_token result = max_iter->id;
  11597. if (ctx) {
  11598. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11599. ctx->n_sample++;
  11600. }
  11601. return result;
  11602. }
  11603. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11604. GGML_ASSERT(ctx);
  11605. const int64_t t_start_sample_us = ggml_time_us();
  11606. llama_sample_softmax(nullptr, candidates);
  11607. std::vector<float> probs;
  11608. probs.reserve(candidates->size);
  11609. for (size_t i = 0; i < candidates->size; ++i) {
  11610. probs.push_back(candidates->data[i].p);
  11611. }
  11612. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11613. int idx = dist(rng);
  11614. llama_token result = candidates->data[idx].id;
  11615. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11616. ctx->n_sample++;
  11617. return result;
  11618. }
  11619. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11620. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11621. }
  11622. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11623. const int64_t t_start_sample_us = ggml_time_us();
  11624. if (llama_token_is_eog(&ctx->model, token)) {
  11625. for (const auto & stack : grammar->stacks) {
  11626. if (stack.empty()) {
  11627. return;
  11628. }
  11629. }
  11630. GGML_ASSERT(false);
  11631. }
  11632. const std::string piece = llama_token_to_piece(ctx, token, false);
  11633. // Note terminating 0 in decoded string
  11634. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11635. const auto & code_points = decoded.first;
  11636. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11637. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11638. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11639. grammar->stacks = tmp_new_stacks;
  11640. }
  11641. grammar->partial_utf8 = decoded.second;
  11642. GGML_ASSERT(!grammar->stacks.empty());
  11643. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11644. }
  11645. //
  11646. // Beam search
  11647. //
  11648. struct llama_beam {
  11649. std::vector<llama_token> tokens;
  11650. float p; // Cumulative beam probability (renormalized relative to all beams)
  11651. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11652. // Sort beams by probability. In case of ties, prefer beams at eob.
  11653. bool operator<(const llama_beam & rhs) const {
  11654. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11655. }
  11656. // Shift off first n tokens and discard them.
  11657. void shift_tokens(const size_t n) {
  11658. if (n) {
  11659. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11660. tokens.resize(tokens.size() - n);
  11661. }
  11662. }
  11663. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11664. };
  11665. // A struct for calculating logit-related info.
  11666. struct llama_logit_info {
  11667. const float * const logits;
  11668. const int n_vocab;
  11669. const float max_l;
  11670. const float normalizer;
  11671. struct sum_exp {
  11672. float max_l;
  11673. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11674. };
  11675. llama_logit_info(llama_context * ctx)
  11676. : logits(llama_get_logits(ctx))
  11677. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11678. , max_l(*std::max_element(logits, logits + n_vocab))
  11679. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11680. { }
  11681. llama_token_data get_token_data(const llama_token token_id) const {
  11682. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11683. return {token_id, logits[token_id], p};
  11684. }
  11685. // Return top k token_data by logit.
  11686. std::vector<llama_token_data> top_k(size_t k) {
  11687. std::vector<llama_token_data> min_heap; // min-heap by logit
  11688. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11689. min_heap.reserve(k_min);
  11690. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11691. min_heap.push_back(get_token_data(token_id));
  11692. }
  11693. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11694. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11695. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11696. if (min_heap.front().logit < logits[token_id]) {
  11697. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11698. min_heap.back().id = token_id;
  11699. min_heap.back().logit = logits[token_id];
  11700. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11701. }
  11702. }
  11703. return min_heap;
  11704. }
  11705. float probability_from_logit(float logit) const {
  11706. return normalizer * std::exp(logit - max_l);
  11707. }
  11708. };
  11709. struct llama_beam_search_data {
  11710. llama_context * ctx;
  11711. size_t n_beams;
  11712. int n_past;
  11713. int n_predict;
  11714. std::vector<llama_beam> beams;
  11715. std::vector<llama_beam> next_beams;
  11716. // Re-calculated on each loop iteration
  11717. size_t common_prefix_length;
  11718. // Used to communicate to/from callback on beams state.
  11719. std::vector<llama_beam_view> beam_views;
  11720. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11721. : ctx(ctx)
  11722. , n_beams(n_beams)
  11723. , n_past(n_past)
  11724. , n_predict(n_predict)
  11725. , beam_views(n_beams) {
  11726. beams.reserve(n_beams);
  11727. next_beams.reserve(n_beams);
  11728. }
  11729. // Collapse beams to a single beam given by index.
  11730. void collapse_beams(const size_t beam_idx) {
  11731. if (0u < beam_idx) {
  11732. std::swap(beams[0], beams[beam_idx]);
  11733. }
  11734. beams.resize(1);
  11735. }
  11736. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11737. // The repetitive patterns below reflect the 2 stages of heaps:
  11738. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11739. // * If the heap is full and a new element is found that should be included, pop the
  11740. // least element to the back(), replace it with the new, then push it into the heap.
  11741. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11742. // Min-heaps use a greater-than comparator.
  11743. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11744. if (beam.eob) {
  11745. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11746. if (next_beams.size() < n_beams) {
  11747. next_beams.push_back(std::move(beam));
  11748. if (next_beams.size() == n_beams) {
  11749. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11750. }
  11751. } else if (next_beams.front().p < beam.p) {
  11752. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11753. next_beams.back() = std::move(beam);
  11754. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11755. }
  11756. } else {
  11757. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11758. if (!beam.tokens.empty()) {
  11759. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11760. }
  11761. llama_logit_info logit_info(ctx);
  11762. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11763. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11764. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11765. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11766. size_t i=0;
  11767. if (next_beams.size() < n_beams) {
  11768. for (; next_beams.size() < n_beams ; ++i) {
  11769. llama_beam next_beam = beam;
  11770. next_beam.tokens.push_back(next_tokens[i].id);
  11771. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11772. next_beams.push_back(std::move(next_beam));
  11773. }
  11774. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11775. } else {
  11776. for (; next_beams.front().p == 0.0f ; ++i) {
  11777. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11778. next_beams.back() = beam;
  11779. next_beams.back().tokens.push_back(next_tokens[i].id);
  11780. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11781. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11782. }
  11783. }
  11784. for (; i < n_beams ; ++i) {
  11785. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11786. if (next_beams.front().p < next_p) {
  11787. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11788. next_beams.back() = beam;
  11789. next_beams.back().tokens.push_back(next_tokens[i].id);
  11790. next_beams.back().p = next_p;
  11791. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11792. }
  11793. }
  11794. }
  11795. }
  11796. // Find common_prefix_length based on beams.
  11797. // Requires beams is not empty.
  11798. size_t find_common_prefix_length() {
  11799. size_t common_prefix_length = beams[0].tokens.size();
  11800. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11801. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11802. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11803. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11804. common_prefix_length = j;
  11805. break;
  11806. }
  11807. }
  11808. }
  11809. return common_prefix_length;
  11810. }
  11811. // Construct beams_state to send back to caller via the callback function.
  11812. // Side effect: set common_prefix_length = find_common_prefix_length();
  11813. llama_beams_state get_beams_state(const bool last_call) {
  11814. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11815. beam_views[i] = beams[i].view();
  11816. }
  11817. common_prefix_length = find_common_prefix_length();
  11818. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11819. }
  11820. // Loop:
  11821. // * while i < n_predict, AND
  11822. // * any of the beams have not yet reached end-of-beam (eob), AND
  11823. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11824. // (since all other beam probabilities can only decrease)
  11825. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11826. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11827. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11828. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11829. !beams[top_beam_index()].eob ; ++i) {
  11830. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11831. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11832. if (common_prefix_length) {
  11833. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11834. n_past += common_prefix_length;
  11835. }
  11836. // Zero-out next_beam probabilities to place them last in following min-heap.
  11837. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11838. for (llama_beam & beam : beams) {
  11839. beam.shift_tokens(common_prefix_length);
  11840. fill_next_beams_by_top_probabilities(beam);
  11841. }
  11842. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11843. beams.swap(next_beams);
  11844. renormalize_beam_probabilities(beams);
  11845. }
  11846. collapse_beams(top_beam_index());
  11847. callback(callback_data, get_beams_state(true));
  11848. }
  11849. // As beams grow, the cumulative probabilities decrease.
  11850. // Renormalize them to avoid floating point underflow.
  11851. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11852. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11853. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11854. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11855. }
  11856. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11857. size_t top_beam_index() {
  11858. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11859. }
  11860. // Copy (p,eob) for each beam which may have been changed by the callback.
  11861. void update_beams_from_beam_views() {
  11862. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11863. beams[i].p = beam_views[i].p;
  11864. beams[i].eob = beam_views[i].eob;
  11865. }
  11866. }
  11867. };
  11868. void llama_beam_search(llama_context * ctx,
  11869. llama_beam_search_callback_fn_t callback, void * callback_data,
  11870. size_t n_beams, int n_past, int n_predict) {
  11871. assert(ctx);
  11872. const int64_t t_start_sample_us = ggml_time_us();
  11873. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11874. beam_search_data.loop(callback, callback_data);
  11875. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11876. ctx->n_sample++;
  11877. }
  11878. //
  11879. // quantization
  11880. //
  11881. struct quantize_state_internal {
  11882. const llama_model & model;
  11883. const llama_model_quantize_params * params;
  11884. int n_attention_wv = 0;
  11885. int n_ffn_down = 0;
  11886. int n_ffn_gate = 0;
  11887. int n_ffn_up = 0;
  11888. int i_attention_wv = 0;
  11889. int i_ffn_down = 0;
  11890. int i_ffn_gate = 0;
  11891. int i_ffn_up = 0;
  11892. int n_k_quantized = 0;
  11893. int n_fallback = 0;
  11894. bool has_imatrix = false;
  11895. // used to figure out if a model shares tok_embd with the output weight
  11896. bool has_output = false;
  11897. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11898. : model(model)
  11899. , params(params)
  11900. {}
  11901. };
  11902. static void llama_tensor_dequantize_internal(
  11903. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11904. const size_t nelements, const int nthread
  11905. ) {
  11906. if (output.size() < nelements) {
  11907. output.resize(nelements);
  11908. }
  11909. float * f32_output = (float *) output.data();
  11910. ggml_type_traits_t qtype;
  11911. if (ggml_is_quantized(tensor->type)) {
  11912. qtype = ggml_internal_get_type_traits(tensor->type);
  11913. if (qtype.to_float == NULL) {
  11914. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11915. }
  11916. } else if (tensor->type != GGML_TYPE_F16 &&
  11917. tensor->type != GGML_TYPE_BF16) {
  11918. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11919. }
  11920. if (nthread < 2) {
  11921. if (tensor->type == GGML_TYPE_F16) {
  11922. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11923. } else if (tensor->type == GGML_TYPE_BF16) {
  11924. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  11925. } else if (ggml_is_quantized(tensor->type)) {
  11926. qtype.to_float(tensor->data, f32_output, nelements);
  11927. } else {
  11928. GGML_ASSERT(false); // unreachable
  11929. }
  11930. return;
  11931. }
  11932. size_t block_size;
  11933. if (tensor->type == GGML_TYPE_F16 ||
  11934. tensor->type == GGML_TYPE_BF16) {
  11935. block_size = 1;
  11936. } else {
  11937. block_size = (size_t)ggml_blck_size(tensor->type);
  11938. }
  11939. size_t block_size_bytes = ggml_type_size(tensor->type);
  11940. GGML_ASSERT(nelements % block_size == 0);
  11941. size_t nblocks = nelements / block_size;
  11942. size_t blocks_per_thread = nblocks / nthread;
  11943. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11944. size_t in_buff_offs = 0;
  11945. size_t out_buff_offs = 0;
  11946. for (int tnum = 0; tnum < nthread; tnum++) {
  11947. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11948. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11949. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11950. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11951. if (typ == GGML_TYPE_F16) {
  11952. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11953. } else if (typ == GGML_TYPE_BF16) {
  11954. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  11955. } else {
  11956. qtype.to_float(inbuf, outbuf, nels);
  11957. }
  11958. };
  11959. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11960. in_buff_offs += thr_block_bytes;
  11961. out_buff_offs += thr_elems;
  11962. }
  11963. for (auto & w : workers) { w.join(); }
  11964. workers.clear();
  11965. }
  11966. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11967. const std::string name = ggml_get_name(tensor);
  11968. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11969. const llm_arch arch = qs.model.arch;
  11970. const auto tn = LLM_TN(arch);
  11971. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11972. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11973. };
  11974. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11975. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11976. if (n_expert > 1) {
  11977. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11978. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11979. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11980. // tensor name.
  11981. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11982. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11983. }
  11984. if (i_layer < 0 || i_layer >= n_layer) {
  11985. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11986. }
  11987. }
  11988. return std::make_pair(i_layer, n_layer);
  11989. };
  11990. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11991. // with the quantization of the output tensor
  11992. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11993. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11994. new_type = qs.params->output_tensor_type;
  11995. } else {
  11996. int nx = tensor->ne[0];
  11997. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11998. new_type = GGML_TYPE_Q8_0;
  11999. }
  12000. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12001. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12002. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12003. new_type = GGML_TYPE_Q5_K;
  12004. }
  12005. else if (new_type != GGML_TYPE_Q8_0) {
  12006. new_type = GGML_TYPE_Q6_K;
  12007. }
  12008. }
  12009. } else if (name == "token_embd.weight") {
  12010. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12011. new_type = qs.params->token_embedding_type;
  12012. } else {
  12013. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12014. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12015. new_type = GGML_TYPE_Q2_K;
  12016. }
  12017. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12018. new_type = GGML_TYPE_IQ3_S;
  12019. }
  12020. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12021. new_type = GGML_TYPE_IQ3_S;
  12022. }
  12023. }
  12024. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12025. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12026. if (name.find("attn_v.weight") != std::string::npos) {
  12027. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12028. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12029. ++qs.i_attention_wv;
  12030. }
  12031. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12032. new_type = GGML_TYPE_Q4_K;
  12033. }
  12034. else if (name.find("ffn_down") != std::string::npos) {
  12035. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12036. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12037. }
  12038. ++qs.i_ffn_down;
  12039. }
  12040. else if (name.find("attn_output.weight") != std::string::npos) {
  12041. if (qs.model.hparams.n_expert == 8) {
  12042. new_type = GGML_TYPE_Q5_K;
  12043. } else {
  12044. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12045. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12046. }
  12047. }
  12048. } else if (name.find("attn_v.weight") != std::string::npos) {
  12049. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12050. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12051. }
  12052. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12053. new_type = GGML_TYPE_Q4_K;
  12054. }
  12055. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12056. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12057. }
  12058. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12059. new_type = GGML_TYPE_Q4_K;
  12060. }
  12061. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12062. new_type = GGML_TYPE_Q4_K;
  12063. }
  12064. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12065. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12066. }
  12067. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12068. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12069. new_type = GGML_TYPE_Q5_K;
  12070. }
  12071. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12072. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12073. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12074. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  12075. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  12076. if (qs.model.type == MODEL_70B) {
  12077. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12078. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12079. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12080. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12081. }
  12082. if (qs.model.hparams.n_expert == 8) {
  12083. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12084. // TODO: explore better strategies
  12085. new_type = GGML_TYPE_Q8_0;
  12086. }
  12087. ++qs.i_attention_wv;
  12088. } else if (name.find("attn_k.weight") != std::string::npos) {
  12089. if (qs.model.hparams.n_expert == 8) {
  12090. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12091. // TODO: explore better strategies
  12092. new_type = GGML_TYPE_Q8_0;
  12093. }
  12094. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12095. new_type = GGML_TYPE_IQ3_XXS;
  12096. }
  12097. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12098. new_type = GGML_TYPE_IQ2_S;
  12099. }
  12100. } else if (name.find("attn_q.weight") != std::string::npos) {
  12101. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12102. new_type = GGML_TYPE_IQ3_XXS;
  12103. }
  12104. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12105. new_type = GGML_TYPE_IQ2_S;
  12106. }
  12107. } else if (name.find("ffn_down") != std::string::npos) {
  12108. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12109. int i_layer = info.first, n_layer = info.second;
  12110. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12111. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12112. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12113. }
  12114. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12115. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12116. }
  12117. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12118. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12119. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12120. : GGML_TYPE_Q3_K;
  12121. }
  12122. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12123. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12124. new_type = GGML_TYPE_Q4_K;
  12125. }
  12126. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12127. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12128. }
  12129. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12130. if (arch == LLM_ARCH_FALCON) {
  12131. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12132. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12133. } else {
  12134. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12135. }
  12136. }
  12137. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12138. new_type = GGML_TYPE_Q5_K;
  12139. }
  12140. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12141. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12142. new_type = GGML_TYPE_Q5_K;
  12143. }
  12144. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12145. && qs.has_imatrix && i_layer < n_layer/8) {
  12146. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12147. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12148. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12149. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12150. }
  12151. ++qs.i_ffn_down;
  12152. } else if (name.find("attn_output.weight") != std::string::npos) {
  12153. if (arch != LLM_ARCH_FALCON) {
  12154. if (qs.model.hparams.n_expert == 8) {
  12155. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12156. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12157. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12158. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12159. new_type = GGML_TYPE_Q5_K;
  12160. }
  12161. } else {
  12162. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12163. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12164. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12165. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12166. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12167. }
  12168. } else {
  12169. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12170. }
  12171. }
  12172. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12173. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12174. new_type = GGML_TYPE_Q4_K;
  12175. }
  12176. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12177. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12178. }
  12179. else if (name.find("ffn_gate") != std::string::npos) {
  12180. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12181. int i_layer = info.first, n_layer = info.second;
  12182. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12183. new_type = GGML_TYPE_IQ3_XXS;
  12184. }
  12185. ++qs.i_ffn_gate;
  12186. }
  12187. else if (name.find("ffn_up") != std::string::npos) {
  12188. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12189. int i_layer = info.first, n_layer = info.second;
  12190. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12191. new_type = GGML_TYPE_IQ3_XXS;
  12192. }
  12193. ++qs.i_ffn_up;
  12194. }
  12195. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12196. //}
  12197. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12198. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12199. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12200. //}
  12201. // This can be used to reduce the size of the Q5_K_S model.
  12202. // The associated PPL increase is fully in line with the size reduction
  12203. //else {
  12204. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12205. //}
  12206. bool convert_incompatible_tensor = false;
  12207. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12208. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12209. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12210. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12211. new_type == GGML_TYPE_IQ1_M) {
  12212. int nx = tensor->ne[0];
  12213. int ny = tensor->ne[1];
  12214. if (nx % QK_K != 0) {
  12215. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12216. convert_incompatible_tensor = true;
  12217. } else {
  12218. ++qs.n_k_quantized;
  12219. }
  12220. }
  12221. if (convert_incompatible_tensor) {
  12222. switch (new_type) {
  12223. case GGML_TYPE_IQ2_XXS:
  12224. case GGML_TYPE_IQ2_XS:
  12225. case GGML_TYPE_IQ2_S:
  12226. case GGML_TYPE_IQ3_XXS:
  12227. case GGML_TYPE_IQ3_S:
  12228. case GGML_TYPE_IQ1_S:
  12229. case GGML_TYPE_IQ1_M:
  12230. case GGML_TYPE_Q2_K:
  12231. case GGML_TYPE_Q3_K:
  12232. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12233. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12234. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12235. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12236. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12237. }
  12238. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12239. ++qs.n_fallback;
  12240. }
  12241. return new_type;
  12242. }
  12243. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12244. if (nthread < 2) {
  12245. // single-thread
  12246. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12247. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12248. throw std::runtime_error("quantized data validation failed");
  12249. }
  12250. return new_size;
  12251. }
  12252. std::mutex mutex;
  12253. int64_t counter = 0;
  12254. size_t new_size = 0;
  12255. bool valid = true;
  12256. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12257. nrows, n_per_row, imatrix]() {
  12258. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12259. size_t local_size = 0;
  12260. while (true) {
  12261. std::unique_lock<std::mutex> lock(mutex);
  12262. int64_t first_row = counter; counter += nrows_per_chunk;
  12263. if (first_row >= nrows) {
  12264. if (local_size > 0) {
  12265. new_size += local_size;
  12266. }
  12267. break;
  12268. }
  12269. lock.unlock();
  12270. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12271. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12272. local_size += this_size;
  12273. // validate the quantized data
  12274. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12275. void * this_data = (char *) new_data + first_row * row_size;
  12276. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12277. std::unique_lock<std::mutex> lock(mutex);
  12278. valid = false;
  12279. break;
  12280. }
  12281. }
  12282. };
  12283. for (int it = 0; it < nthread - 1; ++it) {
  12284. workers.emplace_back(compute);
  12285. }
  12286. compute();
  12287. for (auto & w : workers) { w.join(); }
  12288. workers.clear();
  12289. if (!valid) {
  12290. throw std::runtime_error("quantized data validation failed");
  12291. }
  12292. return new_size;
  12293. }
  12294. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12295. ggml_type default_type;
  12296. llama_ftype ftype = params->ftype;
  12297. switch (params->ftype) {
  12298. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12299. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12300. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12301. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12302. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12303. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12304. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12305. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12306. // K-quants
  12307. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12308. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12309. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12310. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12311. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12312. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12313. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12314. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12315. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12316. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12317. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12318. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12319. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12320. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12321. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12322. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12323. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12324. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12325. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12326. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12327. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12328. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12329. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12330. }
  12331. int nthread = params->nthread;
  12332. if (nthread <= 0) {
  12333. nthread = std::thread::hardware_concurrency();
  12334. }
  12335. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12336. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12337. #if defined(__linux__) || defined(_WIN32)
  12338. constexpr bool use_mmap = true;
  12339. #else
  12340. constexpr bool use_mmap = false;
  12341. #endif
  12342. llama_model_kv_override * kv_overrides = nullptr;
  12343. if (params->kv_overrides) {
  12344. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12345. kv_overrides = v->data();
  12346. }
  12347. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12348. ml.init_mappings(false); // no prefetching
  12349. llama_model model;
  12350. llm_load_arch(ml, model);
  12351. llm_load_hparams(ml, model);
  12352. struct quantize_state_internal qs(model, params);
  12353. if (params->only_copy) {
  12354. ftype = model.ftype;
  12355. }
  12356. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12357. if (params->imatrix) {
  12358. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12359. if (imatrix_data) {
  12360. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12361. qs.has_imatrix = true;
  12362. }
  12363. }
  12364. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12365. struct gguf_context * ctx_out = gguf_init_empty();
  12366. // copy the KV pairs from the input file
  12367. gguf_set_kv (ctx_out, ml.meta);
  12368. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12369. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12370. // Remove split metadata
  12371. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12372. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12373. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12374. if (params->kv_overrides) {
  12375. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12376. for (auto & o : overrides) {
  12377. if (o.key[0] == 0) break;
  12378. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12379. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12380. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12381. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12382. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12383. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12384. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12385. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12386. } else {
  12387. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12388. }
  12389. }
  12390. }
  12391. for (int i = 0; i < ml.n_tensors; ++i) {
  12392. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12393. const std::string name = ggml_get_name(meta);
  12394. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12395. if (name.find("attn_v.weight") != std::string::npos ||
  12396. name.find("attn_qkv.weight") != std::string::npos) {
  12397. ++qs.n_attention_wv;
  12398. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12399. qs.has_output = true;
  12400. }
  12401. }
  12402. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12403. // sanity checks
  12404. //
  12405. // - qs.n_attention_wv == 0 for Mamba models
  12406. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12407. //
  12408. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12409. size_t total_size_org = 0;
  12410. size_t total_size_new = 0;
  12411. std::vector<std::thread> workers;
  12412. workers.reserve(nthread);
  12413. int idx = 0;
  12414. std::vector<no_init<uint8_t>> read_data;
  12415. std::vector<no_init<uint8_t>> work;
  12416. std::vector<no_init<float>> f32_conv_buf;
  12417. uint16_t n_split = 1;
  12418. // Assume split index is continuous
  12419. if (params->keep_split) {
  12420. for (int i = 0; i < ml.n_tensors; ++i) {
  12421. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12422. }
  12423. }
  12424. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12425. ctx_outs[0] = ctx_out;
  12426. // populate the original tensors so we get an initial meta data
  12427. for (int i = 0; i < ml.n_tensors; ++i) {
  12428. auto weight = ml.get_weight(i);
  12429. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12430. struct ggml_tensor * tensor = weight->tensor;
  12431. if (ctx_outs[i_split] == NULL) {
  12432. ctx_outs[i_split] = gguf_init_empty();
  12433. }
  12434. gguf_add_tensor(ctx_outs[i_split], tensor);
  12435. }
  12436. // Set split info if needed
  12437. if (n_split > 1) {
  12438. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12439. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12440. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12441. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12442. }
  12443. }
  12444. int cur_split = -1;
  12445. std::ofstream fout;
  12446. auto close_ofstream = [&]() {
  12447. // Write metadata and close file handler
  12448. if (fout.is_open()) {
  12449. fout.seekp(0);
  12450. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12451. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12452. fout.write((const char *) data.data(), data.size());
  12453. fout.close();
  12454. }
  12455. };
  12456. auto new_ofstream = [&](int index) {
  12457. cur_split = index;
  12458. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12459. std::string fname = fname_out;
  12460. if (params->keep_split) {
  12461. char split_path[PATH_MAX] = {0};
  12462. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12463. fname = std::string(split_path);
  12464. }
  12465. fout = std::ofstream(fname, std::ios::binary);
  12466. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12467. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12468. // placeholder for the meta data
  12469. ::zeros(fout, meta_size);
  12470. };
  12471. const auto tn = LLM_TN(model.arch);
  12472. new_ofstream(0);
  12473. for (int i = 0; i < ml.n_tensors; ++i) {
  12474. auto weight = ml.get_weight(i);
  12475. struct ggml_tensor * tensor = weight->tensor;
  12476. if (weight->idx != cur_split && params->keep_split) {
  12477. close_ofstream();
  12478. new_ofstream(weight->idx);
  12479. }
  12480. const std::string name = ggml_get_name(tensor);
  12481. if (!ml.use_mmap) {
  12482. if (read_data.size() < ggml_nbytes(tensor)) {
  12483. read_data.resize(ggml_nbytes(tensor));
  12484. }
  12485. tensor->data = read_data.data();
  12486. }
  12487. ml.load_data_for(tensor);
  12488. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12489. ++idx, ml.n_tensors,
  12490. ggml_get_name(tensor),
  12491. llama_format_tensor_shape(tensor).c_str(),
  12492. ggml_type_name(tensor->type));
  12493. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12494. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12495. // quantize only 2D and 3D tensors (experts)
  12496. quantize &= (ggml_n_dims(tensor) >= 2);
  12497. // do not quantize norm tensors
  12498. quantize &= name.find("_norm.weight") == std::string::npos;
  12499. quantize &= params->quantize_output_tensor || name != "output.weight";
  12500. quantize &= !params->only_copy;
  12501. // do not quantize expert gating tensors
  12502. // NOTE: can't use LLM_TN here because the layer number is not known
  12503. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12504. // do not quantize positional embeddings and token types (BERT)
  12505. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12506. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12507. // do not quantize Mamba's small yet 2D weights
  12508. // NOTE: can't use LLM_TN here because the layer number is not known
  12509. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12510. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12511. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12512. enum ggml_type new_type;
  12513. void * new_data;
  12514. size_t new_size;
  12515. if (quantize) {
  12516. new_type = default_type;
  12517. // get more optimal quantization type based on the tensor shape, layer, etc.
  12518. if (!params->pure && ggml_is_quantized(default_type)) {
  12519. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12520. }
  12521. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12522. new_type = params->token_embedding_type;
  12523. }
  12524. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12525. new_type = params->output_tensor_type;
  12526. }
  12527. // If we've decided to quantize to the same type the tensor is already
  12528. // in then there's nothing to do.
  12529. quantize = tensor->type != new_type;
  12530. }
  12531. if (!quantize) {
  12532. new_type = tensor->type;
  12533. new_data = tensor->data;
  12534. new_size = ggml_nbytes(tensor);
  12535. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12536. } else {
  12537. const int64_t nelements = ggml_nelements(tensor);
  12538. const float * imatrix = nullptr;
  12539. if (imatrix_data) {
  12540. auto it = imatrix_data->find(tensor->name);
  12541. if (it == imatrix_data->end()) {
  12542. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12543. } else {
  12544. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12545. imatrix = it->second.data();
  12546. } else {
  12547. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12548. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12549. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12550. // this is a significant error and it may be good idea to abort the process if this happens,
  12551. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12552. // tok_embd should be ignored in this case, since it always causes this warning
  12553. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12554. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12555. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12556. }
  12557. }
  12558. }
  12559. }
  12560. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12561. new_type == GGML_TYPE_IQ2_XS ||
  12562. new_type == GGML_TYPE_IQ2_S ||
  12563. new_type == GGML_TYPE_IQ1_S ||
  12564. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12565. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12566. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12567. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12568. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12569. LLAMA_LOG_ERROR("============================================================\n\n");
  12570. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12571. }
  12572. float * f32_data;
  12573. if (tensor->type == GGML_TYPE_F32) {
  12574. f32_data = (float *) tensor->data;
  12575. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12576. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12577. } else {
  12578. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12579. f32_data = (float *) f32_conv_buf.data();
  12580. }
  12581. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12582. fflush(stdout);
  12583. if (work.size() < (size_t)nelements * 4) {
  12584. work.resize(nelements * 4); // upper bound on size
  12585. }
  12586. new_data = work.data();
  12587. const int64_t n_per_row = tensor->ne[0];
  12588. const int64_t nrows = tensor->ne[1];
  12589. static const int64_t min_chunk_size = 32 * 512;
  12590. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12591. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12592. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12593. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12594. // quantize each expert separately since they have different importance matrices
  12595. new_size = 0;
  12596. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12597. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12598. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12599. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12600. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12601. }
  12602. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12603. }
  12604. total_size_org += ggml_nbytes(tensor);
  12605. total_size_new += new_size;
  12606. // update the gguf meta data as we go
  12607. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12608. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12609. // write tensor data + padding
  12610. fout.write((const char *) new_data, new_size);
  12611. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12612. }
  12613. close_ofstream();
  12614. for (auto & c:ctx_outs) {
  12615. gguf_free(c);
  12616. }
  12617. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12618. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12619. if (qs.n_fallback > 0) {
  12620. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12621. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12622. }
  12623. }
  12624. static int llama_apply_lora_from_file_internal(
  12625. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12626. ) {
  12627. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12628. const int64_t t_start_lora_us = ggml_time_us();
  12629. llama_file fin(path_lora, "rb");
  12630. // verify magic and version
  12631. {
  12632. uint32_t magic = fin.read_u32();
  12633. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12634. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12635. return 1;
  12636. }
  12637. uint32_t format_version = fin.read_u32();
  12638. if (format_version != 1) {
  12639. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12640. return 1;
  12641. }
  12642. }
  12643. int32_t lora_r = fin.read_u32();
  12644. int32_t lora_alpha = fin.read_u32();
  12645. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12646. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12647. // load base model
  12648. std::unique_ptr<llama_model_loader> ml;
  12649. if (path_base_model) {
  12650. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12651. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12652. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12653. }
  12654. struct tensor_meta {
  12655. std::string name;
  12656. ggml_type type;
  12657. int32_t ne[2];
  12658. size_t offset;
  12659. };
  12660. std::map<std::string, tensor_meta> tensor_meta_map;
  12661. // load all tensor meta
  12662. while (true) {
  12663. if (fin.tell() == fin.size) {
  12664. // eof
  12665. break;
  12666. }
  12667. int32_t n_dims;
  12668. int32_t name_len;
  12669. int32_t ftype;
  12670. fin.read_raw(&n_dims, sizeof(n_dims));
  12671. fin.read_raw(&name_len, sizeof(name_len));
  12672. fin.read_raw(&ftype, sizeof(ftype));
  12673. if (n_dims != 1 && n_dims != 2) {
  12674. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12675. return 1;
  12676. }
  12677. int32_t ne[2] = { 1, 1 };
  12678. for (int i = 0; i < n_dims; ++i) {
  12679. fin.read_raw(&ne[i], sizeof(ne[i]));
  12680. }
  12681. std::string name;
  12682. {
  12683. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12684. char buf[GGML_MAX_NAME];
  12685. fin.read_raw(buf, name_len);
  12686. name = std::string(buf, name_len);
  12687. }
  12688. // check for lora suffix
  12689. std::string lora_suffix;
  12690. if (name.length() > 6) {
  12691. lora_suffix = name.substr(name.length() - 6);
  12692. }
  12693. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12694. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12695. return 1;
  12696. }
  12697. // tensor type
  12698. ggml_type wtype;
  12699. switch (ftype) {
  12700. case 0: wtype = GGML_TYPE_F32; break;
  12701. case 1: wtype = GGML_TYPE_F16; break;
  12702. default:
  12703. {
  12704. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12705. __func__, ftype);
  12706. return 1;
  12707. }
  12708. }
  12709. // data offset
  12710. size_t offset = fin.tell();
  12711. offset = (offset + 31) & -32;
  12712. // skip tensor data
  12713. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12714. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12715. }
  12716. bool warned = false;
  12717. int n_tensors = 0;
  12718. // apply
  12719. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12720. if (backend_cpu == nullptr) {
  12721. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12722. return 1;
  12723. }
  12724. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12725. std::vector<no_init<uint8_t>> read_buf;
  12726. for (const auto & it : model.tensors_by_name) {
  12727. const std::string & base_name = it.first;
  12728. ggml_tensor * model_t = it.second;
  12729. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12730. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12731. continue;
  12732. }
  12733. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12734. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12735. ggml_init_params lora_init_params = {
  12736. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12737. /* .mem_buffer */ nullptr,
  12738. /* .no_alloc */ true,
  12739. };
  12740. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12741. if (lora_ctx == nullptr) {
  12742. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12743. ggml_backend_free(backend_cpu);
  12744. return 1;
  12745. }
  12746. // create tensors
  12747. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12748. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12749. ggml_set_name(loraA, metaA.name.c_str());
  12750. ggml_set_name(loraB, metaB.name.c_str());
  12751. ggml_tensor * base_t;
  12752. if (ml) {
  12753. if (!ml->get_tensor_meta(base_name.c_str())) {
  12754. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12755. return 1;
  12756. }
  12757. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12758. } else {
  12759. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12760. }
  12761. ggml_set_name(base_t, base_name.c_str());
  12762. // allocate in backend buffer
  12763. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12764. if (lora_buf == nullptr) {
  12765. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12766. return 1;
  12767. }
  12768. // load tensor data
  12769. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12770. read_buf.resize(ggml_nbytes(tensor));
  12771. fin.seek(tensor_meta.offset, SEEK_SET);
  12772. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12773. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12774. };
  12775. load_tensor(metaA, loraA);
  12776. load_tensor(metaB, loraB);
  12777. // load base model tensor data
  12778. if (ml) {
  12779. ml->load_data_for(base_t);
  12780. } else {
  12781. ggml_backend_tensor_copy(model_t, base_t);
  12782. }
  12783. if (ggml_is_quantized(base_t->type) && !warned) {
  12784. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12785. "use a f16 or f32 base model with --lora-base\n", __func__);
  12786. warned = true;
  12787. }
  12788. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12789. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12790. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12791. ggml_free(lora_ctx);
  12792. ggml_backend_buffer_free(lora_buf);
  12793. ggml_backend_free(backend_cpu);
  12794. return 1;
  12795. }
  12796. auto build_lora_graph = [&]() {
  12797. // w = w + BA*s
  12798. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12799. ggml_set_name(BA, "BA");
  12800. if (scaling != 1.0f) {
  12801. BA = ggml_scale(lora_ctx, BA, scaling);
  12802. ggml_set_name(BA, "BA_scaled");
  12803. }
  12804. ggml_tensor * r;
  12805. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12806. ggml_set_name(r, "r_add");
  12807. if (base_t->type != model_t->type) {
  12808. // convert the result to the model type
  12809. r = ggml_cast(lora_ctx, r, model_t->type);
  12810. ggml_set_name(r, "r_cast");
  12811. }
  12812. return r;
  12813. };
  12814. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12815. ggml_tensor * r = build_lora_graph();
  12816. ggml_build_forward_expand(gf, r);
  12817. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12818. if (graph_buf == nullptr) {
  12819. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12820. ggml_free(lora_ctx);
  12821. ggml_backend_buffer_free(lora_buf);
  12822. ggml_backend_free(backend_cpu);
  12823. return 1;
  12824. }
  12825. ggml_backend_graph_compute(backend_cpu, gf);
  12826. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12827. #if 0
  12828. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12829. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12830. // sched compute
  12831. ggml_build_forward_expand(gf, build_graph());
  12832. ggml_backend_sched_init_measure(sched, gf);
  12833. // create the graph again, since the previous one was destroyed by the measure
  12834. ggml_graph_clear(gf);
  12835. ggml_build_forward_expand(gf, build_graph());
  12836. ggml_backend_sched_graph_compute(sched, gf);
  12837. ggml_backend_sched_free(sched);
  12838. #endif
  12839. ggml_backend_buffer_free(lora_buf);
  12840. ggml_backend_buffer_free(graph_buf);
  12841. ggml_free(lora_ctx);
  12842. n_tensors++;
  12843. if (n_tensors % 4 == 0) {
  12844. LLAMA_LOG_INFO(".");
  12845. }
  12846. }
  12847. ggml_backend_free(backend_cpu);
  12848. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12849. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12850. return 0;
  12851. }
  12852. //
  12853. // interface implementation
  12854. //
  12855. struct llama_model_params llama_model_default_params() {
  12856. struct llama_model_params result = {
  12857. /*.n_gpu_layers =*/ 0,
  12858. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12859. /*.main_gpu =*/ 0,
  12860. /*.tensor_split =*/ nullptr,
  12861. /*.rpc_servers =*/ nullptr,
  12862. /*.progress_callback =*/ nullptr,
  12863. /*.progress_callback_user_data =*/ nullptr,
  12864. /*.kv_overrides =*/ nullptr,
  12865. /*.vocab_only =*/ false,
  12866. /*.use_mmap =*/ true,
  12867. /*.use_mlock =*/ false,
  12868. /*.check_tensors =*/ false,
  12869. };
  12870. #ifdef GGML_USE_METAL
  12871. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12872. result.n_gpu_layers = 999;
  12873. #endif
  12874. return result;
  12875. }
  12876. struct llama_context_params llama_context_default_params() {
  12877. struct llama_context_params result = {
  12878. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12879. /*.n_ctx =*/ 512,
  12880. /*.n_batch =*/ 2048,
  12881. /*.n_ubatch =*/ 512,
  12882. /*.n_seq_max =*/ 1,
  12883. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12884. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12885. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12886. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12887. /*.rope_freq_base =*/ 0.0f,
  12888. /*.rope_freq_scale =*/ 0.0f,
  12889. /*.yarn_ext_factor =*/ -1.0f,
  12890. /*.yarn_attn_factor =*/ 1.0f,
  12891. /*.yarn_beta_fast =*/ 32.0f,
  12892. /*.yarn_beta_slow =*/ 1.0f,
  12893. /*.yarn_orig_ctx =*/ 0,
  12894. /*.defrag_thold =*/ -1.0f,
  12895. /*.cb_eval =*/ nullptr,
  12896. /*.cb_eval_user_data =*/ nullptr,
  12897. /*.type_k =*/ GGML_TYPE_F16,
  12898. /*.type_v =*/ GGML_TYPE_F16,
  12899. /*.logits_all =*/ false,
  12900. /*.embeddings =*/ false,
  12901. /*.offload_kqv =*/ true,
  12902. /*.flash_attn =*/ false,
  12903. /*.abort_callback =*/ nullptr,
  12904. /*.abort_callback_data =*/ nullptr,
  12905. };
  12906. return result;
  12907. }
  12908. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12909. struct llama_model_quantize_params result = {
  12910. /*.nthread =*/ 0,
  12911. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12912. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12913. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12914. /*.allow_requantize =*/ false,
  12915. /*.quantize_output_tensor =*/ true,
  12916. /*.only_copy =*/ false,
  12917. /*.pure =*/ false,
  12918. /*.keep_split =*/ false,
  12919. /*.imatrix =*/ nullptr,
  12920. /*.kv_overrides =*/ nullptr,
  12921. };
  12922. return result;
  12923. }
  12924. size_t llama_max_devices(void) {
  12925. #if defined(GGML_USE_RPC)
  12926. return GGML_RPC_MAX_SERVERS;
  12927. #elif defined(GGML_USE_METAL)
  12928. return 1;
  12929. #elif defined(GGML_USE_CUDA)
  12930. return GGML_CUDA_MAX_DEVICES;
  12931. #elif defined(GGML_USE_SYCL)
  12932. return GGML_SYCL_MAX_DEVICES;
  12933. #elif defined(GGML_USE_VULKAN)
  12934. return GGML_VK_MAX_DEVICES;
  12935. #else
  12936. return 1;
  12937. #endif
  12938. }
  12939. bool llama_supports_mmap(void) {
  12940. return llama_mmap::SUPPORTED;
  12941. }
  12942. bool llama_supports_mlock(void) {
  12943. return llama_mlock::SUPPORTED;
  12944. }
  12945. bool llama_supports_gpu_offload(void) {
  12946. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12947. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  12948. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12949. return true;
  12950. #else
  12951. return false;
  12952. #endif
  12953. }
  12954. void llama_backend_init(void) {
  12955. ggml_time_init();
  12956. // needed to initialize f16 tables
  12957. {
  12958. struct ggml_init_params params = { 0, NULL, false };
  12959. struct ggml_context * ctx = ggml_init(params);
  12960. ggml_free(ctx);
  12961. }
  12962. #ifdef GGML_USE_MPI
  12963. ggml_mpi_backend_init();
  12964. #endif
  12965. }
  12966. void llama_numa_init(enum ggml_numa_strategy numa) {
  12967. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12968. ggml_numa_init(numa);
  12969. }
  12970. }
  12971. void llama_backend_free(void) {
  12972. #ifdef GGML_USE_MPI
  12973. ggml_mpi_backend_free();
  12974. #endif
  12975. ggml_quantize_free();
  12976. }
  12977. int64_t llama_time_us(void) {
  12978. return ggml_time_us();
  12979. }
  12980. struct llama_model * llama_load_model_from_file(
  12981. const char * path_model,
  12982. struct llama_model_params params) {
  12983. ggml_time_init();
  12984. llama_model * model = new llama_model;
  12985. unsigned cur_percentage = 0;
  12986. if (params.progress_callback == NULL) {
  12987. params.progress_callback_user_data = &cur_percentage;
  12988. params.progress_callback = [](float progress, void * ctx) {
  12989. unsigned * cur_percentage_p = (unsigned *) ctx;
  12990. unsigned percentage = (unsigned) (100 * progress);
  12991. while (percentage > *cur_percentage_p) {
  12992. *cur_percentage_p = percentage;
  12993. LLAMA_LOG_INFO(".");
  12994. if (percentage >= 100) {
  12995. LLAMA_LOG_INFO("\n");
  12996. }
  12997. }
  12998. return true;
  12999. };
  13000. }
  13001. if (params.rpc_servers != nullptr) {
  13002. // split the servers set them into model->rpc_servers
  13003. std::string servers(params.rpc_servers);
  13004. size_t pos = 0;
  13005. while ((pos = servers.find(",")) != std::string::npos) {
  13006. std::string server = servers.substr(0, pos);
  13007. model->rpc_servers.push_back(server);
  13008. servers.erase(0, pos + 1);
  13009. }
  13010. model->rpc_servers.push_back(servers);
  13011. }
  13012. int status = llama_model_load(path_model, *model, params);
  13013. GGML_ASSERT(status <= 0);
  13014. if (status < 0) {
  13015. if (status == -1) {
  13016. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13017. } else if (status == -2) {
  13018. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13019. }
  13020. delete model;
  13021. return nullptr;
  13022. }
  13023. return model;
  13024. }
  13025. void llama_free_model(struct llama_model * model) {
  13026. delete model;
  13027. }
  13028. struct llama_context * llama_new_context_with_model(
  13029. struct llama_model * model,
  13030. struct llama_context_params params) {
  13031. if (!model) {
  13032. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13033. return nullptr;
  13034. }
  13035. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13036. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13037. return nullptr;
  13038. }
  13039. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13040. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13041. return nullptr;
  13042. }
  13043. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13044. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13045. params.flash_attn = false;
  13046. }
  13047. llama_context * ctx = new llama_context(*model);
  13048. const auto & hparams = model->hparams;
  13049. auto & cparams = ctx->cparams;
  13050. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13051. cparams.n_threads = params.n_threads;
  13052. cparams.n_threads_batch = params.n_threads_batch;
  13053. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13054. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13055. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13056. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13057. cparams.defrag_thold = params.defrag_thold;
  13058. cparams.embeddings = params.embeddings;
  13059. cparams.offload_kqv = params.offload_kqv;
  13060. cparams.flash_attn = params.flash_attn;
  13061. cparams.pooling_type = params.pooling_type;
  13062. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13063. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13064. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13065. // this is necessary due to kv_self.n being padded later during inference
  13066. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13067. // with causal attention, the batch size is limited by the context size
  13068. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13069. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13070. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13071. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13072. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13073. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13074. cparams.n_batch = GGML_KQ_MASK_PAD;
  13075. }
  13076. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13077. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13078. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  13079. hparams.n_ctx_train;
  13080. cparams.cb_eval = params.cb_eval;
  13081. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13082. auto rope_scaling_type = params.rope_scaling_type;
  13083. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13084. rope_scaling_type = hparams.rope_scaling_type_train;
  13085. }
  13086. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13087. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13088. }
  13089. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13090. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13091. }
  13092. cparams.causal_attn = hparams.causal_attn;
  13093. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13094. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13095. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13096. } else {
  13097. cparams.pooling_type = hparams.pooling_type;
  13098. }
  13099. }
  13100. if (params.seed == LLAMA_DEFAULT_SEED) {
  13101. params.seed = time(NULL);
  13102. }
  13103. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13104. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13105. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13106. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13107. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13108. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13109. ctx->abort_callback = params.abort_callback;
  13110. ctx->abort_callback_data = params.abort_callback_data;
  13111. ctx->rng = std::mt19937(params.seed);
  13112. ctx->logits_all = params.logits_all;
  13113. uint32_t kv_size = cparams.n_ctx;
  13114. ggml_type type_k = params.type_k;
  13115. ggml_type type_v = params.type_v;
  13116. // Mamba only needs a constant number of KV cache cells per sequence
  13117. if (model->arch == LLM_ARCH_MAMBA) {
  13118. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13119. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13120. // it's probably best to keep as much precision as possible for the states
  13121. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13122. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13123. }
  13124. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13125. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13126. if (!hparams.vocab_only) {
  13127. // initialize backends
  13128. #if defined(GGML_USE_RPC)
  13129. for (auto & server : model->rpc_servers) {
  13130. ggml_backend_t backend = ggml_backend_rpc_init(server.c_str());
  13131. if (backend == nullptr) {
  13132. LLAMA_LOG_ERROR("%s: failed to connect RPC backend to %s\n", __func__, server.c_str());
  13133. llama_free(ctx);
  13134. return nullptr;
  13135. }
  13136. ctx->backends.push_back(backend);
  13137. }
  13138. #elif defined(GGML_USE_METAL)
  13139. if (model->n_gpu_layers > 0) {
  13140. ctx->backend_metal = ggml_backend_metal_init();
  13141. if (ctx->backend_metal == nullptr) {
  13142. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13143. llama_free(ctx);
  13144. return nullptr;
  13145. }
  13146. ctx->backends.push_back(ctx->backend_metal);
  13147. }
  13148. #elif defined(GGML_USE_CUDA)
  13149. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13150. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13151. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13152. if (backend == nullptr) {
  13153. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13154. llama_free(ctx);
  13155. return nullptr;
  13156. }
  13157. ctx->backends.push_back(backend);
  13158. } else {
  13159. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13160. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13161. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13162. if (backend == nullptr) {
  13163. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13164. llama_free(ctx);
  13165. return nullptr;
  13166. }
  13167. ctx->backends.push_back(backend);
  13168. }
  13169. }
  13170. #elif defined(GGML_USE_VULKAN)
  13171. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13172. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13173. llama_free(ctx);
  13174. return nullptr;
  13175. }
  13176. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13177. ggml_backend_t backend = ggml_backend_vk_init(0);
  13178. if (backend == nullptr) {
  13179. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13180. llama_free(ctx);
  13181. return nullptr;
  13182. }
  13183. ctx->backends.push_back(backend);
  13184. } else {
  13185. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13186. ggml_backend_t backend = ggml_backend_vk_init(device);
  13187. if (backend == nullptr) {
  13188. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13189. llama_free(ctx);
  13190. return nullptr;
  13191. }
  13192. ctx->backends.push_back(backend);
  13193. }
  13194. }
  13195. #elif defined(GGML_USE_SYCL)
  13196. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13197. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13198. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13199. if (backend == nullptr) {
  13200. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13201. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13202. llama_free(ctx);
  13203. return nullptr;
  13204. }
  13205. ctx->backends.push_back(backend);
  13206. } else {
  13207. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13208. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13209. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13210. if (backend == nullptr) {
  13211. int id_list[GGML_SYCL_MAX_DEVICES];
  13212. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13213. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13214. llama_free(ctx);
  13215. return nullptr;
  13216. }
  13217. ctx->backends.push_back(backend);
  13218. }
  13219. }
  13220. #elif defined(GGML_USE_KOMPUTE)
  13221. if (model->n_gpu_layers > 0) {
  13222. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13223. if (backend == nullptr) {
  13224. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13225. llama_free(ctx);
  13226. return nullptr;
  13227. }
  13228. ctx->backends.push_back(backend);
  13229. }
  13230. #endif
  13231. ctx->backend_cpu = ggml_backend_cpu_init();
  13232. if (ctx->backend_cpu == nullptr) {
  13233. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13234. llama_free(ctx);
  13235. return nullptr;
  13236. }
  13237. ctx->backends.push_back(ctx->backend_cpu);
  13238. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13239. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13240. llama_free(ctx);
  13241. return nullptr;
  13242. }
  13243. {
  13244. size_t memory_size_k = 0;
  13245. size_t memory_size_v = 0;
  13246. for (auto & k : ctx->kv_self.k_l) {
  13247. memory_size_k += ggml_nbytes(k);
  13248. }
  13249. for (auto & v : ctx->kv_self.v_l) {
  13250. memory_size_v += ggml_nbytes(v);
  13251. }
  13252. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13253. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13254. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13255. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13256. }
  13257. // graph outputs buffer
  13258. {
  13259. // resized during inference when a batch uses more outputs
  13260. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13261. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13262. llama_free(ctx);
  13263. return nullptr;
  13264. }
  13265. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13266. ggml_backend_buffer_name(ctx->buf_output),
  13267. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13268. }
  13269. // scheduler and compute buffers
  13270. {
  13271. // buffer types used for the compute buffer of each backend
  13272. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13273. for (auto * backend : ctx->backends) {
  13274. if (ggml_backend_is_cpu(backend)) {
  13275. // use host buffers for the CPU backend compute buffer
  13276. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13277. } else {
  13278. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13279. }
  13280. }
  13281. // buffer used to store the computation graph and the tensor meta data
  13282. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13283. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13284. bool pipeline_parallel =
  13285. llama_get_device_count(*model) > 1 &&
  13286. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13287. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13288. params.offload_kqv;
  13289. #ifndef GGML_USE_CUDA
  13290. // pipeline parallelism requires support for async compute and events
  13291. // currently this is only implemented in the CUDA backend
  13292. pipeline_parallel = false;
  13293. #endif
  13294. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13295. if (pipeline_parallel) {
  13296. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13297. }
  13298. // build worst-case graph
  13299. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13300. int n_past = cparams.n_ctx - n_tokens;
  13301. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13302. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13303. // initialize scheduler with the worst-case graph
  13304. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13305. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13306. llama_free(ctx);
  13307. return nullptr;
  13308. }
  13309. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13310. ggml_backend_t backend = ctx->backends[i];
  13311. ggml_backend_buffer_type_t buft = backend_buft[i];
  13312. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13313. if (size > 1) {
  13314. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13315. ggml_backend_buft_name(buft),
  13316. size / 1024.0 / 1024.0);
  13317. }
  13318. }
  13319. // note: the number of splits during measure is higher than during inference due to the kv shift
  13320. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13321. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13322. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13323. }
  13324. }
  13325. #ifdef GGML_USE_MPI
  13326. ctx->ctx_mpi = ggml_mpi_init();
  13327. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  13328. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  13329. // TODO: needs fix after #3228
  13330. GGML_ASSERT(false && "not implemented");
  13331. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  13332. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  13333. llama_backend_free();
  13334. exit(1);
  13335. }
  13336. #endif
  13337. return ctx;
  13338. }
  13339. void llama_free(struct llama_context * ctx) {
  13340. delete ctx;
  13341. }
  13342. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13343. return &ctx->model;
  13344. }
  13345. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13346. return ctx->cparams.n_ctx;
  13347. }
  13348. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13349. return ctx->cparams.n_batch;
  13350. }
  13351. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13352. return ctx->cparams.n_ubatch;
  13353. }
  13354. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13355. return ctx->kv_self.size;
  13356. }
  13357. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13358. return model->vocab.type;
  13359. }
  13360. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13361. switch (model->arch) {
  13362. // these models do not use RoPE
  13363. case LLM_ARCH_GPT2:
  13364. case LLM_ARCH_GPTJ:
  13365. case LLM_ARCH_GPTNEOX:
  13366. case LLM_ARCH_MPT:
  13367. case LLM_ARCH_REFACT:
  13368. case LLM_ARCH_BLOOM:
  13369. case LLM_ARCH_MAMBA:
  13370. case LLM_ARCH_JINA_BERT_V2:
  13371. return LLAMA_ROPE_TYPE_NONE;
  13372. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13373. case LLM_ARCH_LLAMA:
  13374. case LLM_ARCH_BAICHUAN:
  13375. case LLM_ARCH_STARCODER:
  13376. case LLM_ARCH_PLAMO:
  13377. case LLM_ARCH_CODESHELL:
  13378. case LLM_ARCH_ORION:
  13379. case LLM_ARCH_INTERNLM2:
  13380. case LLM_ARCH_MINICPM:
  13381. case LLM_ARCH_XVERSE:
  13382. case LLM_ARCH_COMMAND_R:
  13383. case LLM_ARCH_OLMO:
  13384. return LLAMA_ROPE_TYPE_NORM;
  13385. // the pairs of head values are offset by n_rot/2
  13386. case LLM_ARCH_FALCON:
  13387. case LLM_ARCH_GROK:
  13388. case LLM_ARCH_DBRX:
  13389. case LLM_ARCH_PERSIMMON:
  13390. case LLM_ARCH_BERT:
  13391. case LLM_ARCH_NOMIC_BERT:
  13392. case LLM_ARCH_STABLELM:
  13393. case LLM_ARCH_QWEN:
  13394. case LLM_ARCH_QWEN2:
  13395. case LLM_ARCH_QWEN2MOE:
  13396. case LLM_ARCH_PHI2:
  13397. case LLM_ARCH_PHI3:
  13398. case LLM_ARCH_GEMMA:
  13399. case LLM_ARCH_STARCODER2:
  13400. return LLAMA_ROPE_TYPE_NEOX;
  13401. // all model arches should be listed explicitly here
  13402. case LLM_ARCH_UNKNOWN:
  13403. GGML_ASSERT(false && "unknown architecture");
  13404. break;
  13405. }
  13406. return LLAMA_ROPE_TYPE_NONE;
  13407. }
  13408. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13409. return ctx->cparams.pooling_type;
  13410. }
  13411. int32_t llama_n_vocab(const struct llama_model * model) {
  13412. return model->hparams.n_vocab;
  13413. }
  13414. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13415. return model->hparams.n_ctx_train;
  13416. }
  13417. int32_t llama_n_embd(const struct llama_model * model) {
  13418. return model->hparams.n_embd;
  13419. }
  13420. int32_t llama_n_layer(const struct llama_model * model) {
  13421. return model->hparams.n_layer;
  13422. }
  13423. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13424. return model->hparams.rope_freq_scale_train;
  13425. }
  13426. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13427. const auto & it = model->gguf_kv.find(key);
  13428. if (it == model->gguf_kv.end()) {
  13429. if (buf_size > 0) {
  13430. buf[0] = '\0';
  13431. }
  13432. return -1;
  13433. }
  13434. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13435. }
  13436. int32_t llama_model_meta_count(const struct llama_model * model) {
  13437. return (int)model->gguf_kv.size();
  13438. }
  13439. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13440. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13441. if (buf_size > 0) {
  13442. buf[0] = '\0';
  13443. }
  13444. return -1;
  13445. }
  13446. auto it = model->gguf_kv.begin();
  13447. std::advance(it, i);
  13448. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13449. }
  13450. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13451. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13452. if (buf_size > 0) {
  13453. buf[0] = '\0';
  13454. }
  13455. return -1;
  13456. }
  13457. auto it = model->gguf_kv.begin();
  13458. std::advance(it, i);
  13459. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13460. }
  13461. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13462. return snprintf(buf, buf_size, "%s %s %s",
  13463. llama_model_arch_name(model->arch),
  13464. llama_model_type_name(model->type),
  13465. llama_model_ftype_name(model->ftype).c_str());
  13466. }
  13467. uint64_t llama_model_size(const struct llama_model * model) {
  13468. uint64_t size = 0;
  13469. for (const auto & it : model->tensors_by_name) {
  13470. size += ggml_nbytes(it.second);
  13471. }
  13472. return size;
  13473. }
  13474. uint64_t llama_model_n_params(const struct llama_model * model) {
  13475. uint64_t nparams = 0;
  13476. for (const auto & it : model->tensors_by_name) {
  13477. nparams += ggml_nelements(it.second);
  13478. }
  13479. return nparams;
  13480. }
  13481. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13482. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13483. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13484. return it.first == name;
  13485. });
  13486. if (it == model->tensors_by_name.end()) {
  13487. return nullptr;
  13488. }
  13489. return it->second;
  13490. }
  13491. uint32_t llama_model_quantize(
  13492. const char * fname_inp,
  13493. const char * fname_out,
  13494. const llama_model_quantize_params * params) {
  13495. try {
  13496. llama_model_quantize_internal(fname_inp, fname_out, params);
  13497. return 0;
  13498. } catch (const std::exception & err) {
  13499. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13500. return 1;
  13501. }
  13502. }
  13503. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13504. try {
  13505. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13506. } catch (const std::exception & err) {
  13507. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13508. return 1;
  13509. }
  13510. }
  13511. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13512. GGML_ASSERT(cvec.tensors.empty());
  13513. GGML_ASSERT(cvec.ctxs.empty());
  13514. GGML_ASSERT(cvec.bufs.empty());
  13515. // count layer buffer types
  13516. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13517. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13518. buft_layer_count[model.buft_layer[i].buft]++;
  13519. }
  13520. // allocate contexts
  13521. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13522. for (auto & it : buft_layer_count) {
  13523. int n_layers = it.second;
  13524. struct ggml_init_params params = {
  13525. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13526. /*.mem_buffer =*/ NULL,
  13527. /*.no_alloc =*/ true,
  13528. };
  13529. ggml_context * ctx = ggml_init(params);
  13530. if (!ctx) {
  13531. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13532. return 1;
  13533. }
  13534. ctx_map[it.first] = ctx;
  13535. }
  13536. // make tensors
  13537. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13538. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13539. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13540. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13541. cvec.tensors.push_back(tensor);
  13542. }
  13543. // allocate tensors / buffers and zero
  13544. for (auto it : ctx_map) {
  13545. ggml_backend_buffer_type_t buft = it.first;
  13546. ggml_context * ctx = it.second;
  13547. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13548. if (!buf) {
  13549. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13550. return false;
  13551. }
  13552. ggml_backend_buffer_clear(buf, 0);
  13553. cvec.ctxs.push_back(ctx);
  13554. cvec.bufs.push_back(buf);
  13555. }
  13556. return true;
  13557. }
  13558. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13559. const llama_model & model = lctx->model;
  13560. llama_control_vector & cvec = lctx->cvec;
  13561. if (data == nullptr) {
  13562. // disable the current control vector (but leave allocated for later)
  13563. cvec.layer_start = -1;
  13564. cvec.layer_end = -1;
  13565. return 0;
  13566. }
  13567. if (n_embd != (int) model.hparams.n_embd) {
  13568. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13569. return 1;
  13570. }
  13571. if (cvec.tensors.empty()) {
  13572. if (!llama_control_vector_init(cvec, model)) {
  13573. return 1;
  13574. }
  13575. }
  13576. cvec.layer_start = il_start;
  13577. cvec.layer_end = il_end;
  13578. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13579. assert(cvec.tensors[il] != nullptr);
  13580. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13581. if (off + n_embd <= len) {
  13582. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13583. }
  13584. }
  13585. return 0;
  13586. }
  13587. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13588. struct llama_kv_cache_view result = {
  13589. /*.n_cells = */ 0,
  13590. /*.n_seq_max = */ n_seq_max,
  13591. /*.token_count = */ 0,
  13592. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13593. /*.max_contiguous = */ 0,
  13594. /*.max_contiguous_idx = */ -1,
  13595. /*.cells = */ nullptr,
  13596. /*.cells_sequences = */ nullptr,
  13597. };
  13598. return result;
  13599. }
  13600. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13601. if (view->cells != nullptr) {
  13602. free(view->cells);
  13603. view->cells = nullptr;
  13604. }
  13605. if (view->cells_sequences != nullptr) {
  13606. free(view->cells_sequences);
  13607. view->cells_sequences = nullptr;
  13608. }
  13609. }
  13610. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13611. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13612. view->n_cells = int32_t(ctx->kv_self.size);
  13613. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13614. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13615. view->cells = (struct llama_kv_cache_view_cell *)p;
  13616. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13617. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13618. view->cells_sequences = (llama_seq_id *)p;
  13619. }
  13620. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13621. llama_kv_cache_view_cell * c_curr = view->cells;
  13622. llama_seq_id * cs_curr = view->cells_sequences;
  13623. int32_t used_cells = 0;
  13624. int32_t token_count = 0;
  13625. int32_t curr_contig_idx = -1;
  13626. uint32_t max_contig = 0;
  13627. int32_t max_contig_idx = -1;
  13628. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13629. const size_t curr_size = kv_cells[i].seq_id.size();
  13630. token_count += curr_size;
  13631. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13632. if (curr_size > 0) {
  13633. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13634. max_contig = i - curr_contig_idx;
  13635. max_contig_idx = curr_contig_idx;
  13636. }
  13637. curr_contig_idx = -1;
  13638. } else if (curr_contig_idx < 0) {
  13639. curr_contig_idx = i;
  13640. }
  13641. int seq_idx = 0;
  13642. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13643. if (seq_idx >= view->n_seq_max) {
  13644. break;
  13645. }
  13646. cs_curr[seq_idx] = it;
  13647. seq_idx++;
  13648. }
  13649. if (seq_idx != 0) {
  13650. used_cells++;
  13651. }
  13652. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13653. cs_curr[seq_idx] = -1;
  13654. }
  13655. }
  13656. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13657. max_contig_idx = curr_contig_idx;
  13658. max_contig = kv_cells.size() - curr_contig_idx;
  13659. }
  13660. view->max_contiguous = max_contig;
  13661. view->max_contiguous_idx = max_contig_idx;
  13662. view->token_count = token_count;
  13663. view->used_cells = used_cells;
  13664. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13665. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13666. __func__, ctx->kv_self.used, used_cells);
  13667. }
  13668. }
  13669. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13670. int result = 0;
  13671. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13672. result += ctx->kv_self.cells[i].seq_id.size();
  13673. }
  13674. return result;
  13675. }
  13676. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13677. return ctx->kv_self.used;
  13678. }
  13679. void llama_kv_cache_clear(struct llama_context * ctx) {
  13680. llama_kv_cache_clear(ctx->kv_self);
  13681. }
  13682. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13683. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13684. }
  13685. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13686. if (seq_id_src == seq_id_dst) {
  13687. return;
  13688. }
  13689. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13690. }
  13691. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13692. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13693. }
  13694. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13695. if (delta == 0) {
  13696. return;
  13697. }
  13698. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13699. }
  13700. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13701. if (d == 1) {
  13702. return;
  13703. }
  13704. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13705. }
  13706. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13707. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13708. }
  13709. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13710. llama_kv_cache_defrag(ctx->kv_self);
  13711. }
  13712. void llama_kv_cache_update(struct llama_context * ctx) {
  13713. llama_kv_cache_update_internal(*ctx);
  13714. }
  13715. // deprecated
  13716. size_t llama_get_state_size(const struct llama_context * ctx) {
  13717. return llama_state_get_size(ctx);
  13718. }
  13719. // deprecated
  13720. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13721. return llama_state_get_data(ctx, dst);
  13722. }
  13723. // deprecated
  13724. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13725. return llama_state_set_data(ctx, src);
  13726. }
  13727. // deprecated
  13728. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13729. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13730. }
  13731. // deprecated
  13732. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13733. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13734. }
  13735. // Returns the *maximum* size of the state
  13736. size_t llama_state_get_size(const struct llama_context * ctx) {
  13737. const auto & cparams = ctx->cparams;
  13738. const auto & hparams = ctx->model.hparams;
  13739. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13740. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13741. const size_t s_rng_size = sizeof(size_t);
  13742. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13743. const size_t s_n_outputs = sizeof(size_t);
  13744. // assume worst case for outputs although only currently set ones are serialized
  13745. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13746. const size_t s_logits_size = sizeof(size_t);
  13747. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13748. const size_t s_embedding_size = sizeof(size_t);
  13749. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13750. const size_t s_kv_buf_size = sizeof(size_t);
  13751. const size_t s_kv_head = sizeof(uint32_t);
  13752. const size_t s_kv_size = sizeof(uint32_t);
  13753. const size_t s_kv_used = sizeof(uint32_t);
  13754. const size_t s_v_trans = sizeof(uint32_t);
  13755. const size_t s_kv = ctx->kv_self.total_size();
  13756. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13757. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13758. const size_t s_total = (
  13759. + s_rng_size
  13760. + s_rng
  13761. + s_n_outputs
  13762. + s_output_pos
  13763. + s_logits_size
  13764. + s_logits
  13765. + s_embedding_size
  13766. + s_embedding
  13767. + s_kv_buf_size
  13768. + s_kv_head
  13769. + s_kv_size
  13770. + s_kv_used
  13771. + s_v_trans
  13772. + s_kv
  13773. + s_kv_cells
  13774. );
  13775. // on session change it is very likely that the state size has changed - so we need to update this function
  13776. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  13777. return s_total;
  13778. }
  13779. // llama_context_data
  13780. struct llama_data_context {
  13781. virtual void write(const void * src, size_t size) = 0;
  13782. virtual size_t get_size_written() = 0;
  13783. virtual ~llama_data_context() = default;
  13784. };
  13785. struct llama_data_buffer_context : llama_data_context {
  13786. uint8_t * ptr;
  13787. size_t size_written = 0;
  13788. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13789. void write(const void * src, size_t size) override {
  13790. memcpy(ptr, src, size);
  13791. ptr += size;
  13792. size_written += size;
  13793. }
  13794. size_t get_size_written() override {
  13795. return size_written;
  13796. }
  13797. };
  13798. struct llama_data_file_context : llama_data_context {
  13799. llama_file * file;
  13800. size_t size_written = 0;
  13801. llama_data_file_context(llama_file * f) : file(f) {}
  13802. void write(const void * src, size_t size) override {
  13803. file->write_raw(src, size);
  13804. size_written += size;
  13805. }
  13806. size_t get_size_written() override {
  13807. return size_written;
  13808. }
  13809. };
  13810. /** copy state data into either a buffer or file depending on the passed in context
  13811. *
  13812. * file context:
  13813. * llama_file file("/path", "wb");
  13814. * llama_data_file_context data_ctx(&file);
  13815. * llama_state_get_data(ctx, &data_ctx);
  13816. *
  13817. * buffer context:
  13818. * std::vector<uint8_t> buf(max_size, 0);
  13819. * llama_data_buffer_context data_ctx(&buf.data());
  13820. * llama_state_get_data(ctx, &data_ctx);
  13821. *
  13822. */
  13823. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13824. llama_synchronize(ctx);
  13825. // copy rng
  13826. {
  13827. std::ostringstream rng_ss;
  13828. rng_ss << ctx->rng;
  13829. const std::string & rng_str = rng_ss.str();
  13830. const size_t rng_size = rng_str.size();
  13831. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13832. data_ctx->write(&rng_size, sizeof(rng_size));
  13833. data_ctx->write(rng_str.data(), rng_size);
  13834. }
  13835. // copy outputs
  13836. {
  13837. // Can't use ctx->n_outputs because it's not for the
  13838. // entire last batch when n_ubatch is smaller than n_batch
  13839. size_t n_outputs = 0;
  13840. // copy output ids
  13841. {
  13842. std::vector<int32_t> output_pos;
  13843. const size_t n_batch = ctx->cparams.n_batch;
  13844. const auto & output_ids = ctx->output_ids;
  13845. output_pos.resize(ctx->output_size);
  13846. // build a more compact representation of the output ids
  13847. for (size_t i = 0; i < n_batch; ++i) {
  13848. // map an output id to a position in the batch
  13849. int32_t pos = output_ids[i];
  13850. if (pos >= 0) {
  13851. if ((size_t) pos >= n_outputs) {
  13852. n_outputs = pos + 1;
  13853. }
  13854. GGML_ASSERT((size_t) pos < ctx->output_size);
  13855. output_pos[pos] = i;
  13856. }
  13857. }
  13858. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13859. if (n_outputs) {
  13860. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13861. }
  13862. }
  13863. // copy logits
  13864. {
  13865. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13866. data_ctx->write(&logits_size, sizeof(logits_size));
  13867. if (logits_size) {
  13868. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13869. }
  13870. }
  13871. // copy embeddings
  13872. {
  13873. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13874. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13875. if (embeddings_size) {
  13876. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13877. }
  13878. }
  13879. }
  13880. // copy kv cache
  13881. {
  13882. const auto & kv_self = ctx->kv_self;
  13883. const auto & hparams = ctx->model.hparams;
  13884. const uint32_t n_layer = hparams.n_layer;
  13885. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13886. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13887. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13888. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13889. const uint32_t kv_size = kv_self.size;
  13890. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13891. const uint32_t kv_used = kv_self.used;
  13892. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  13893. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13894. data_ctx->write(&kv_head, sizeof(kv_head));
  13895. data_ctx->write(&kv_size, sizeof(kv_size));
  13896. data_ctx->write(&kv_used, sizeof(kv_used));
  13897. data_ctx->write(&v_trans, sizeof(v_trans));
  13898. if (kv_buf_size) {
  13899. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13900. std::vector<uint8_t> tmp_buf;
  13901. for (int il = 0; il < (int) n_layer; ++il) {
  13902. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13903. tmp_buf.resize(k_size);
  13904. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13905. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13906. if (kv_self.recurrent || !kv_self.v_trans) {
  13907. // v is contiguous for recurrent models
  13908. // TODO: use other tensors for state models than k and v
  13909. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13910. tmp_buf.resize(v_size);
  13911. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13912. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13913. continue;
  13914. }
  13915. // v is not contiguous, copy row by row
  13916. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13917. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13918. tmp_buf.resize(v_row_size);
  13919. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13920. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13921. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13922. }
  13923. }
  13924. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13925. }
  13926. for (uint32_t i = 0; i < kv_head; ++i) {
  13927. const auto & cell = kv_self.cells[i];
  13928. const llama_pos pos = cell.pos;
  13929. const size_t seq_id_size = cell.seq_id.size();
  13930. data_ctx->write(&pos, sizeof(pos));
  13931. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13932. for (auto seq_id : cell.seq_id) {
  13933. data_ctx->write(&seq_id, sizeof(seq_id));
  13934. }
  13935. }
  13936. }
  13937. }
  13938. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13939. llama_data_buffer_context data_ctx(dst);
  13940. llama_state_get_data_internal(ctx, &data_ctx);
  13941. return data_ctx.get_size_written();
  13942. }
  13943. // Sets the state reading from the specified source address
  13944. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13945. llama_synchronize(ctx);
  13946. const uint8_t * inp = src;
  13947. // set rng
  13948. {
  13949. size_t rng_size;
  13950. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13951. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13952. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13953. std::istringstream rng_ss(rng_str);
  13954. rng_ss >> ctx->rng;
  13955. GGML_ASSERT(!rng_ss.fail());
  13956. }
  13957. // set output ids
  13958. {
  13959. size_t n_outputs;
  13960. std::vector<int32_t> output_pos;
  13961. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13962. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13963. if (n_outputs) {
  13964. output_pos.resize(n_outputs);
  13965. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13966. inp += n_outputs * sizeof(int32_t);
  13967. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13968. int32_t id = output_pos[i];
  13969. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13970. ctx->output_ids[id] = i;
  13971. }
  13972. ctx->n_outputs = n_outputs;
  13973. }
  13974. }
  13975. // set logits
  13976. {
  13977. size_t logits_size;
  13978. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13979. GGML_ASSERT(ctx->logits_size >= logits_size);
  13980. if (logits_size) {
  13981. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13982. inp += logits_size * sizeof(float);
  13983. }
  13984. }
  13985. // set embeddings
  13986. {
  13987. size_t embeddings_size;
  13988. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13989. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13990. if (embeddings_size) {
  13991. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13992. inp += embeddings_size * sizeof(float);
  13993. }
  13994. }
  13995. // set kv cache
  13996. {
  13997. const auto & kv_self = ctx->kv_self;
  13998. const auto & hparams = ctx->model.hparams;
  13999. const uint32_t n_layer = hparams.n_layer;
  14000. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14001. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14002. size_t kv_buf_size;
  14003. uint32_t kv_head;
  14004. uint32_t kv_size;
  14005. uint32_t kv_used;
  14006. uint32_t v_trans;
  14007. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14008. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14009. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14010. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14011. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14012. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14013. if (kv_self.size != kv_size) {
  14014. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14015. GGML_ASSERT(kv_self.size >= kv_head);
  14016. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14017. __func__, kv_head, kv_size, kv_self.size);
  14018. }
  14019. llama_kv_cache_clear(ctx);
  14020. if (kv_buf_size) {
  14021. const size_t pre_kv_buf_size = inp - src;
  14022. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14023. for (int il = 0; il < (int) n_layer; ++il) {
  14024. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14025. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14026. inp += k_size;
  14027. if (kv_self.recurrent || !kv_self.v_trans) {
  14028. // v is contiguous for recurrent models
  14029. // TODO: use other tensors for state models than k and v
  14030. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14031. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14032. inp += v_size;
  14033. continue;
  14034. }
  14035. // v is not contiguous, copy row by row
  14036. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14037. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14038. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14039. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14040. inp += v_row_size;
  14041. }
  14042. }
  14043. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14044. }
  14045. ctx->kv_self.head = kv_head;
  14046. ctx->kv_self.used = kv_used;
  14047. for (uint32_t i = 0; i < kv_head; ++i) {
  14048. llama_pos pos;
  14049. size_t seq_id_size;
  14050. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14051. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14052. ctx->kv_self.cells[i].pos = pos;
  14053. llama_seq_id seq_id;
  14054. for (size_t j = 0; j < seq_id_size; ++j) {
  14055. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14056. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14057. }
  14058. }
  14059. }
  14060. const size_t nread = inp - src;
  14061. const size_t max_size = llama_state_get_size(ctx);
  14062. GGML_ASSERT(nread <= max_size);
  14063. return nread;
  14064. }
  14065. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14066. llama_file file(path_session, "rb");
  14067. // sanity checks
  14068. {
  14069. const uint32_t magic = file.read_u32();
  14070. const uint32_t version = file.read_u32();
  14071. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14072. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14073. return false;
  14074. }
  14075. llama_hparams session_hparams;
  14076. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14077. if (session_hparams != ctx->model.hparams) {
  14078. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14079. return false;
  14080. }
  14081. }
  14082. // load the prompt
  14083. {
  14084. const uint32_t n_token_count = file.read_u32();
  14085. if (n_token_count > n_token_capacity) {
  14086. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14087. return false;
  14088. }
  14089. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14090. *n_token_count_out = n_token_count;
  14091. }
  14092. // restore the context state
  14093. {
  14094. const size_t n_state_size_cur = file.size - file.tell();
  14095. const size_t n_state_size_max = llama_state_get_size(ctx);
  14096. if (n_state_size_cur > n_state_size_max) {
  14097. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14098. return false;
  14099. }
  14100. std::vector<uint8_t> state_data(n_state_size_max);
  14101. file.read_raw(state_data.data(), n_state_size_cur);
  14102. llama_state_set_data(ctx, state_data.data());
  14103. }
  14104. return true;
  14105. }
  14106. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14107. try {
  14108. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14109. } catch (const std::exception & err) {
  14110. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14111. return false;
  14112. }
  14113. }
  14114. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14115. llama_file file(path_session, "wb");
  14116. file.write_u32(LLAMA_SESSION_MAGIC);
  14117. file.write_u32(LLAMA_SESSION_VERSION);
  14118. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14119. // save the prompt
  14120. file.write_u32((uint32_t) n_token_count);
  14121. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14122. // save the context state using stream saving
  14123. llama_data_file_context data_ctx(&file);
  14124. llama_state_get_data_internal(ctx, &data_ctx);
  14125. return true;
  14126. }
  14127. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14128. try {
  14129. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14130. } catch (const std::exception & err) {
  14131. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14132. return false;
  14133. }
  14134. }
  14135. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14136. // save the size of size_t as a uint32_t for safety check
  14137. const size_t size_t_size_size = sizeof(uint32_t);
  14138. // other values
  14139. const size_t s_cell_count_size = sizeof(uint32_t);
  14140. const size_t s_layer_count_size = sizeof(uint32_t);
  14141. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14142. size_t s_cell_count = 0;
  14143. size_t s_cell_data_size = 0;
  14144. const auto & kv_self = ctx->kv_self;
  14145. const auto & hparams = ctx->model.hparams;
  14146. const uint32_t n_layer = hparams.n_layer;
  14147. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14148. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14149. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14150. const auto & cell = kv_self.cells[i];
  14151. if (cell.seq_id.count(seq_id) > 0) {
  14152. ++s_cell_count;
  14153. s_cell_data_size += sizeof(llama_pos);
  14154. }
  14155. }
  14156. for (int il = 0; il < (int)n_layer; ++il) {
  14157. // types of keys and values
  14158. s_cell_data_size += sizeof(int32_t) * 2;
  14159. // k_size_row and v_size_el values of layer
  14160. s_cell_data_size += sizeof(size_t) * 2;
  14161. // keys
  14162. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14163. s_cell_data_size += k_size_row * s_cell_count;
  14164. // values (transposed)
  14165. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14166. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14167. }
  14168. const size_t s_total = (
  14169. size_t_size_size +
  14170. s_cell_count_size +
  14171. s_layer_count_size +
  14172. n_embd_v_gqa_size +
  14173. s_cell_data_size
  14174. );
  14175. return s_total;
  14176. }
  14177. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14178. llama_synchronize(ctx);
  14179. const auto & kv_self = ctx->kv_self;
  14180. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14181. // Save the size of size_t as a uint32_t for safety check
  14182. const uint32_t size_t_size = sizeof(size_t);
  14183. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14184. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14185. uint32_t cell_count = 0;
  14186. // Count the number of cells with the specified seq_id
  14187. // Find all the ranges of cells with this seq id
  14188. {
  14189. uint32_t cell_range_begin = kv_self.size;
  14190. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14191. const auto & cell = kv_self.cells[i];
  14192. if (cell.has_seq_id(seq_id)) {
  14193. ++cell_count;
  14194. if (cell_range_begin == kv_self.size) {
  14195. cell_range_begin = i;
  14196. }
  14197. }
  14198. else {
  14199. if (cell_range_begin != kv_self.size) {
  14200. cell_ranges.emplace_back(cell_range_begin, i);
  14201. cell_range_begin = kv_self.size;
  14202. }
  14203. }
  14204. }
  14205. if (cell_range_begin != kv_self.size) {
  14206. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14207. }
  14208. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14209. uint32_t cell_count_check = 0;
  14210. for (const auto & range : cell_ranges) {
  14211. cell_count_check += range.second - range.first;
  14212. }
  14213. GGML_ASSERT(cell_count == cell_count_check);
  14214. }
  14215. // Write the cell count
  14216. data_ctx.write(&cell_count, sizeof(cell_count));
  14217. const auto & hparams = ctx->model.hparams;
  14218. const uint32_t n_layer = hparams.n_layer;
  14219. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14220. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14221. // Write the layer count
  14222. data_ctx.write(&n_layer, sizeof(n_layer));
  14223. // Write n_embd_v_gqa
  14224. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14225. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14226. for (const auto & range : cell_ranges) {
  14227. for (uint32_t i = range.first; i < range.second; ++i) {
  14228. const auto & cell = kv_self.cells[i];
  14229. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14230. }
  14231. }
  14232. // Iterate and write all the keys first, each row is a cell
  14233. // Get whole range at a time
  14234. std::vector<uint8_t> tmp_buf;
  14235. for (int il = 0; il < (int)n_layer; ++il) {
  14236. // Write key type
  14237. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14238. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14239. // Write row size of key
  14240. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14241. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14242. // Read each range of cells of k_size length each into tmp_buf and write out
  14243. for (const auto & range : cell_ranges) {
  14244. const size_t range_size = range.second - range.first;
  14245. tmp_buf.resize(range_size * k_size_row);
  14246. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14247. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14248. }
  14249. }
  14250. // TODO: simplify, reduce copy-paste
  14251. if (!kv_self.v_trans) {
  14252. for (int il = 0; il < (int)n_layer; ++il) {
  14253. // Write value type
  14254. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14255. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14256. // Write row size of value
  14257. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14258. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14259. // Read each range of cells of v_size length each into tmp_buf and write out
  14260. for (const auto & range : cell_ranges) {
  14261. const size_t range_size = range.second - range.first;
  14262. tmp_buf.resize(range_size * v_size_row);
  14263. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14264. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14265. }
  14266. }
  14267. } else {
  14268. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14269. const uint32_t kv_size = kv_self.size;
  14270. for (int il = 0; il < (int)n_layer; ++il) {
  14271. // Write value type
  14272. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14273. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14274. // Write element size
  14275. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14276. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14277. // For each row, we get the element values of each cell
  14278. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14279. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14280. for (const auto & range : cell_ranges) {
  14281. const size_t range_size = range.second - range.first;
  14282. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14283. tmp_buf.resize(range_size * v_size_el);
  14284. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14285. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14286. }
  14287. }
  14288. }
  14289. }
  14290. return data_ctx.get_size_written();
  14291. }
  14292. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14293. llama_data_buffer_context data_ctx(dst);
  14294. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14295. }
  14296. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14297. llama_synchronize(ctx);
  14298. auto & kv_self = ctx->kv_self;
  14299. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14300. // Wipe the slot
  14301. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14302. const uint8_t * inp = src;
  14303. // Read size of size_t
  14304. uint32_t size_t_size;
  14305. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14306. inp += sizeof(size_t_size);
  14307. if (size_t_size != sizeof(size_t)) {
  14308. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14309. return 0;
  14310. }
  14311. // Read the cell count
  14312. uint32_t cell_count;
  14313. memcpy(&cell_count, inp, sizeof(cell_count));
  14314. inp += sizeof(cell_count);
  14315. // Read the layer count
  14316. uint32_t n_layer_ref;
  14317. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14318. inp += sizeof(n_layer_ref);
  14319. // Read n_embd_v_gqa
  14320. uint32_t n_embd_v_gqa_ref;
  14321. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14322. inp += sizeof(n_embd_v_gqa_ref);
  14323. // Sanity check model compatibility
  14324. const auto & hparams = ctx->model.hparams;
  14325. const uint32_t n_layer = hparams.n_layer;
  14326. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14327. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14328. if (n_layer != n_layer_ref) {
  14329. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14330. return 0;
  14331. }
  14332. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14333. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14334. return 0;
  14335. }
  14336. // Allocate the new cells for the slot
  14337. if (cell_count) {
  14338. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14339. batch.n_tokens = cell_count;
  14340. for (uint32_t i = 0; i < cell_count; ++i) {
  14341. llama_pos pos;
  14342. memcpy(&pos, inp, sizeof(pos));
  14343. inp += sizeof(pos);
  14344. batch.pos[i] = pos;
  14345. batch.n_seq_id[i] = 1;
  14346. batch.seq_id[i][0] = dest_seq_id;
  14347. }
  14348. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14349. llama_batch_free(batch);
  14350. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14351. return 0;
  14352. }
  14353. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14354. // Assume that this is one contiguous block of cells
  14355. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14356. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14357. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14358. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14359. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14360. // Cleanup
  14361. llama_batch_free(batch);
  14362. }
  14363. const uint32_t kv_size = kv_self.size;
  14364. const uint32_t kv_head = kv_self.head;
  14365. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14366. for (int il = 0; il < (int)n_layer; ++il) {
  14367. // Read type of key
  14368. int32_t k_type_i_ref;
  14369. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14370. inp += sizeof(k_type_i_ref);
  14371. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14372. if (k_type_i != k_type_i_ref) {
  14373. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14374. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14375. return 0;
  14376. }
  14377. // Read row size of key
  14378. size_t k_size_row_ref;
  14379. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14380. inp += sizeof(k_size_row_ref);
  14381. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14382. if (k_size_row != k_size_row_ref) {
  14383. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14384. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14385. return 0;
  14386. }
  14387. if (cell_count) {
  14388. // Read and set the keys for the whole cell range
  14389. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14390. inp += cell_count * k_size_row;
  14391. }
  14392. }
  14393. // TODO: simplify, reduce copy-paste
  14394. if (!kv_self.v_trans) {
  14395. for (int il = 0; il < (int)n_layer; ++il) {
  14396. // Read type of value
  14397. int32_t v_type_i_ref;
  14398. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14399. inp += sizeof(v_type_i_ref);
  14400. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14401. if (v_type_i != v_type_i_ref) {
  14402. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14403. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14404. return 0;
  14405. }
  14406. // Read row size of value
  14407. size_t v_size_row_ref;
  14408. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14409. inp += sizeof(v_size_row_ref);
  14410. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14411. if (v_size_row != v_size_row_ref) {
  14412. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14413. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14414. return 0;
  14415. }
  14416. if (cell_count) {
  14417. // Read and set the values for the whole cell range
  14418. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14419. inp += cell_count * v_size_row;
  14420. }
  14421. }
  14422. } else {
  14423. // For each layer, read the values for each cell (transposed)
  14424. for (int il = 0; il < (int)n_layer; ++il) {
  14425. // Read type of value
  14426. int32_t v_type_i_ref;
  14427. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14428. inp += sizeof(v_type_i_ref);
  14429. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14430. if (v_type_i != v_type_i_ref) {
  14431. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14432. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14433. return 0;
  14434. }
  14435. // Read element size of value
  14436. size_t v_size_el_ref;
  14437. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14438. inp += sizeof(v_size_el_ref);
  14439. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14440. if (v_size_el != v_size_el_ref) {
  14441. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14442. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14443. return 0;
  14444. }
  14445. if (cell_count) {
  14446. // For each row in the transposed matrix, read the values for the whole cell range
  14447. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14448. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14449. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14450. inp += cell_count * v_size_el;
  14451. }
  14452. }
  14453. }
  14454. }
  14455. const size_t nread = inp - src;
  14456. return nread;
  14457. }
  14458. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14459. llama_file file(filepath, "wb");
  14460. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14461. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14462. // save the prompt
  14463. file.write_u32((uint32_t)n_token_count);
  14464. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14465. // save the context state using stream saving
  14466. llama_data_file_context data_ctx(&file);
  14467. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14468. const size_t res = file.tell();
  14469. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14470. return res;
  14471. }
  14472. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14473. llama_file file(filepath, "rb");
  14474. // version checks
  14475. {
  14476. const uint32_t magic = file.read_u32();
  14477. const uint32_t version = file.read_u32();
  14478. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14479. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14480. return 0;
  14481. }
  14482. }
  14483. // load the prompt
  14484. {
  14485. const uint32_t n_token_count = file.read_u32();
  14486. if (n_token_count > n_token_capacity) {
  14487. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14488. return 0;
  14489. }
  14490. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14491. *n_token_count_out = n_token_count;
  14492. }
  14493. // restore the context state
  14494. {
  14495. const size_t state_size = file.size - file.tell();
  14496. std::vector<uint8_t> state_data(state_size);
  14497. file.read_raw(state_data.data(), state_size);
  14498. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14499. if (!nread) {
  14500. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14501. return 0;
  14502. }
  14503. GGML_ASSERT(nread <= state_size);
  14504. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14505. }
  14506. return file.tell();
  14507. }
  14508. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14509. try {
  14510. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14511. } catch (const std::exception & err) {
  14512. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14513. return 0;
  14514. }
  14515. }
  14516. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14517. try {
  14518. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14519. } catch (const std::exception & err) {
  14520. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14521. return 0;
  14522. }
  14523. }
  14524. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14525. ctx->cparams.n_threads = n_threads;
  14526. ctx->cparams.n_threads_batch = n_threads_batch;
  14527. }
  14528. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14529. ctx->abort_callback = abort_callback;
  14530. ctx->abort_callback_data = abort_callback_data;
  14531. }
  14532. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14533. ctx->cparams.causal_attn = causal_attn;
  14534. }
  14535. struct llama_batch llama_batch_get_one(
  14536. llama_token * tokens,
  14537. int32_t n_tokens,
  14538. llama_pos pos_0,
  14539. llama_seq_id seq_id) {
  14540. return {
  14541. /*n_tokens =*/ n_tokens,
  14542. /*tokens =*/ tokens,
  14543. /*embd =*/ nullptr,
  14544. /*pos =*/ nullptr,
  14545. /*n_seq_id =*/ nullptr,
  14546. /*seq_id =*/ nullptr,
  14547. /*logits =*/ nullptr,
  14548. /*all_pos_0 =*/ pos_0,
  14549. /*all_pos_1 =*/ 1,
  14550. /*all_seq_id =*/ seq_id,
  14551. };
  14552. }
  14553. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14554. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14555. if (embd) {
  14556. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14557. } else {
  14558. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14559. }
  14560. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14561. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14562. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14563. for (int i = 0; i < n_tokens_alloc; ++i) {
  14564. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14565. }
  14566. batch.seq_id[n_tokens_alloc] = nullptr;
  14567. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14568. return batch;
  14569. }
  14570. void llama_batch_free(struct llama_batch batch) {
  14571. if (batch.token) free(batch.token);
  14572. if (batch.embd) free(batch.embd);
  14573. if (batch.pos) free(batch.pos);
  14574. if (batch.n_seq_id) free(batch.n_seq_id);
  14575. if (batch.seq_id) {
  14576. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14577. free(batch.seq_id[i]);
  14578. }
  14579. free(batch.seq_id);
  14580. }
  14581. if (batch.logits) free(batch.logits);
  14582. }
  14583. int32_t llama_decode(
  14584. struct llama_context * ctx,
  14585. struct llama_batch batch) {
  14586. const int ret = llama_decode_internal(*ctx, batch);
  14587. if (ret < 0) {
  14588. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14589. }
  14590. return ret;
  14591. }
  14592. void llama_synchronize(struct llama_context * ctx) {
  14593. ggml_backend_sched_synchronize(ctx->sched);
  14594. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14595. // the stats will be added to the prompt evaluation stats
  14596. // this should only happen when using batch size 1 to evaluate a batch
  14597. // add the evaluation to the stats
  14598. if (ctx->n_queued_tokens == 1) {
  14599. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14600. ctx->n_eval++;
  14601. } else if (ctx->n_queued_tokens > 1) {
  14602. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14603. ctx->n_p_eval += ctx->n_queued_tokens;
  14604. }
  14605. // get a more accurate load time, upon first eval
  14606. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14607. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14608. ctx->has_evaluated_once = true;
  14609. }
  14610. ctx->n_queued_tokens = 0;
  14611. ctx->t_compute_start_us = 0;
  14612. }
  14613. float * llama_get_logits(struct llama_context * ctx) {
  14614. llama_synchronize(ctx);
  14615. return ctx->logits;
  14616. }
  14617. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14618. int32_t j = -1;
  14619. llama_synchronize(ctx);
  14620. try {
  14621. if (ctx->logits == nullptr) {
  14622. throw std::runtime_error("no logits");
  14623. }
  14624. if (i < 0) {
  14625. j = ctx->n_outputs + i;
  14626. if (j < 0) {
  14627. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14628. }
  14629. } else if ((size_t) i >= ctx->output_ids.size()) {
  14630. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14631. } else {
  14632. j = ctx->output_ids[i];
  14633. }
  14634. if (j < 0) {
  14635. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14636. }
  14637. if (j >= ctx->n_outputs) {
  14638. // This should not happen
  14639. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14640. }
  14641. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14642. } catch (const std::exception & err) {
  14643. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14644. #ifndef NDEBUG
  14645. GGML_ASSERT(false);
  14646. #endif
  14647. return nullptr;
  14648. }
  14649. }
  14650. float * llama_get_embeddings(struct llama_context * ctx) {
  14651. llama_synchronize(ctx);
  14652. return ctx->embd;
  14653. }
  14654. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14655. int32_t j = -1;
  14656. llama_synchronize(ctx);
  14657. try {
  14658. if (ctx->embd == nullptr) {
  14659. throw std::runtime_error("no embeddings");
  14660. }
  14661. if (i < 0) {
  14662. j = ctx->n_outputs + i;
  14663. if (j < 0) {
  14664. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14665. }
  14666. } else if ((size_t) i >= ctx->output_ids.size()) {
  14667. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14668. } else {
  14669. j = ctx->output_ids[i];
  14670. }
  14671. if (j < 0) {
  14672. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14673. }
  14674. if (j >= ctx->n_outputs) {
  14675. // This should not happen
  14676. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14677. }
  14678. return ctx->embd + j*ctx->model.hparams.n_embd;
  14679. } catch (const std::exception & err) {
  14680. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14681. #ifndef NDEBUG
  14682. GGML_ASSERT(false);
  14683. #endif
  14684. return nullptr;
  14685. }
  14686. }
  14687. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14688. llama_synchronize(ctx);
  14689. auto it = ctx->embd_seq.find(seq_id);
  14690. if (it == ctx->embd_seq.end()) {
  14691. return nullptr;
  14692. }
  14693. return it->second.data();
  14694. }
  14695. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14696. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14697. return model->vocab.id_to_token[token].text.c_str();
  14698. }
  14699. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14700. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14701. return model->vocab.id_to_token[token].score;
  14702. }
  14703. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14704. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14705. return model->vocab.id_to_token[token].type;
  14706. }
  14707. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14708. return token != -1 && (
  14709. token == llama_token_eos(model) ||
  14710. token == llama_token_eot(model)
  14711. );
  14712. }
  14713. llama_token llama_token_bos(const struct llama_model * model) {
  14714. return model->vocab.special_bos_id;
  14715. }
  14716. llama_token llama_token_eos(const struct llama_model * model) {
  14717. return model->vocab.special_eos_id;
  14718. }
  14719. llama_token llama_token_cls(const struct llama_model * model) {
  14720. return model->vocab.special_cls_id;
  14721. }
  14722. llama_token llama_token_sep(const struct llama_model * model) {
  14723. return model->vocab.special_sep_id;
  14724. }
  14725. llama_token llama_token_nl(const struct llama_model * model) {
  14726. return model->vocab.linefeed_id;
  14727. }
  14728. int32_t llama_add_bos_token(const struct llama_model * model) {
  14729. return model->vocab.special_add_bos;
  14730. }
  14731. int32_t llama_add_eos_token(const struct llama_model * model) {
  14732. return model->vocab.special_add_eos;
  14733. }
  14734. llama_token llama_token_prefix(const struct llama_model * model) {
  14735. return model->vocab.special_prefix_id;
  14736. }
  14737. llama_token llama_token_middle(const struct llama_model * model) {
  14738. return model->vocab.special_middle_id;
  14739. }
  14740. llama_token llama_token_suffix(const struct llama_model * model) {
  14741. return model->vocab.special_suffix_id;
  14742. }
  14743. llama_token llama_token_eot(const struct llama_model * model) {
  14744. return model->vocab.special_eot_id;
  14745. }
  14746. int32_t llama_tokenize(
  14747. const struct llama_model * model,
  14748. const char * text,
  14749. int32_t text_len,
  14750. llama_token * tokens,
  14751. int32_t n_tokens_max,
  14752. bool add_special,
  14753. bool parse_special) {
  14754. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14755. if (n_tokens_max < (int) res.size()) {
  14756. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14757. return -((int) res.size());
  14758. }
  14759. for (size_t i = 0; i < res.size(); i++) {
  14760. tokens[i] = res[i];
  14761. }
  14762. return res.size();
  14763. }
  14764. static std::string llama_decode_text(const std::string & text) {
  14765. std::string decoded_text;
  14766. const auto cpts = unicode_cpts_from_utf8(text);
  14767. for (const auto cpt : cpts) {
  14768. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(cpt));
  14769. }
  14770. return decoded_text;
  14771. }
  14772. // does not write null-terminator to buf
  14773. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14774. if (0 <= token && token < llama_n_vocab(model)) {
  14775. switch (llama_vocab_get_type(model->vocab)) {
  14776. case LLAMA_VOCAB_TYPE_WPM:
  14777. case LLAMA_VOCAB_TYPE_SPM: {
  14778. // NOTE: we accept all unsupported token types,
  14779. // suppressing them like CONTROL tokens.
  14780. if (llama_is_normal_token(model->vocab, token)) {
  14781. std::string result = model->vocab.id_to_token[token].text;
  14782. llama_unescape_whitespace(result);
  14783. if (length < (int) result.length()) {
  14784. return -(int) result.length();
  14785. }
  14786. memcpy(buf, result.c_str(), result.length());
  14787. return result.length();
  14788. } else if (
  14789. (llama_is_user_defined_token(model->vocab, token)) ||
  14790. (llama_is_control_token (model->vocab, token) && special)) {
  14791. std::string result = model->vocab.id_to_token[token].text;
  14792. if (length < (int) result.length()) {
  14793. return -(int) result.length();
  14794. }
  14795. memcpy(buf, result.c_str(), result.length());
  14796. return result.length();
  14797. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14798. if (length < 3) {
  14799. return -3;
  14800. }
  14801. memcpy(buf, "\xe2\x96\x85", 3);
  14802. return 3;
  14803. } else if (llama_is_byte_token(model->vocab, token)) {
  14804. if (length < 1) {
  14805. return -1;
  14806. }
  14807. buf[0] = llama_token_to_byte(model->vocab, token);
  14808. return 1;
  14809. }
  14810. break;
  14811. }
  14812. case LLAMA_VOCAB_TYPE_BPE: {
  14813. // NOTE: we accept all unsupported token types,
  14814. // suppressing them like CONTROL tokens.
  14815. if (llama_is_normal_token(model->vocab, token)) {
  14816. std::string result = model->vocab.id_to_token[token].text;
  14817. result = llama_decode_text(result);
  14818. if (length < (int) result.length()) {
  14819. return -(int) result.length();
  14820. }
  14821. memcpy(buf, result.c_str(), result.length());
  14822. return result.length();
  14823. } else if (
  14824. (llama_is_user_defined_token(model->vocab, token)) ||
  14825. (llama_is_control_token (model->vocab, token) && special)) {
  14826. std::string result = model->vocab.id_to_token[token].text;
  14827. if (length < (int) result.length()) {
  14828. return -(int) result.length();
  14829. }
  14830. memcpy(buf, result.c_str(), result.length());
  14831. return result.length();
  14832. }
  14833. break;
  14834. }
  14835. default:
  14836. GGML_ASSERT(false);
  14837. }
  14838. }
  14839. return 0;
  14840. }
  14841. // trim whitespace from the beginning and end of a string
  14842. static std::string trim(const std::string & str) {
  14843. size_t start = 0;
  14844. size_t end = str.size();
  14845. while (start < end && isspace(str[start])) {
  14846. start += 1;
  14847. }
  14848. while (end > start && isspace(str[end - 1])) {
  14849. end -= 1;
  14850. }
  14851. return str.substr(start, end - start);
  14852. }
  14853. // Simple version of "llama_apply_chat_template" that only works with strings
  14854. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14855. static int32_t llama_chat_apply_template_internal(
  14856. const std::string & tmpl,
  14857. const std::vector<const llama_chat_message *> & chat,
  14858. std::string & dest, bool add_ass) {
  14859. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14860. std::stringstream ss;
  14861. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14862. // chatml template
  14863. for (auto message : chat) {
  14864. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14865. }
  14866. if (add_ass) {
  14867. ss << "<|im_start|>assistant\n";
  14868. }
  14869. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14870. // llama2 template and its variants
  14871. // [variant] support system message
  14872. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14873. // [variant] space before + after response
  14874. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14875. // [variant] add BOS inside history
  14876. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14877. // [variant] trim spaces from the input message
  14878. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14879. // construct the prompt
  14880. bool is_inside_turn = true; // skip BOS at the beginning
  14881. ss << "[INST] ";
  14882. for (auto message : chat) {
  14883. std::string content = strip_message ? trim(message->content) : message->content;
  14884. std::string role(message->role);
  14885. if (!is_inside_turn) {
  14886. is_inside_turn = true;
  14887. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14888. }
  14889. if (role == "system") {
  14890. if (support_system_message) {
  14891. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14892. } else {
  14893. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14894. ss << content << "\n";
  14895. }
  14896. } else if (role == "user") {
  14897. ss << content << " [/INST]";
  14898. } else {
  14899. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14900. is_inside_turn = false;
  14901. }
  14902. }
  14903. // llama2 templates seem to not care about "add_generation_prompt"
  14904. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14905. // zephyr template
  14906. for (auto message : chat) {
  14907. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14908. }
  14909. if (add_ass) {
  14910. ss << "<|assistant|>\n";
  14911. }
  14912. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14913. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14914. for (auto message : chat) {
  14915. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14916. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14917. }
  14918. if (add_ass) {
  14919. ss << "<s>assistant\n";
  14920. }
  14921. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14922. // google/gemma-7b-it
  14923. std::string system_prompt = "";
  14924. for (auto message : chat) {
  14925. std::string role(message->role);
  14926. if (role == "system") {
  14927. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14928. system_prompt = trim(message->content);
  14929. continue;
  14930. }
  14931. // in gemma, "assistant" is "model"
  14932. role = role == "assistant" ? "model" : message->role;
  14933. ss << "<start_of_turn>" << role << "\n";
  14934. if (!system_prompt.empty() && role != "model") {
  14935. ss << system_prompt << "\n\n";
  14936. system_prompt = "";
  14937. }
  14938. ss << trim(message->content) << "<end_of_turn>\n";
  14939. }
  14940. if (add_ass) {
  14941. ss << "<start_of_turn>model\n";
  14942. }
  14943. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14944. // OrionStarAI/Orion-14B-Chat
  14945. std::string system_prompt = "";
  14946. for (auto message : chat) {
  14947. std::string role(message->role);
  14948. if (role == "system") {
  14949. // there is no system message support, we will merge it with user prompt
  14950. system_prompt = message->content;
  14951. continue;
  14952. } else if (role == "user") {
  14953. ss << "Human: ";
  14954. if (!system_prompt.empty()) {
  14955. ss << system_prompt << "\n\n";
  14956. system_prompt = "";
  14957. }
  14958. ss << message->content << "\n\nAssistant: </s>";
  14959. } else {
  14960. ss << message->content << "</s>";
  14961. }
  14962. }
  14963. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14964. // openchat/openchat-3.5-0106,
  14965. for (auto message : chat) {
  14966. std::string role(message->role);
  14967. if (role == "system") {
  14968. ss << message->content << "<|end_of_turn|>";
  14969. } else {
  14970. role[0] = toupper(role[0]);
  14971. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14972. }
  14973. }
  14974. if (add_ass) {
  14975. ss << "GPT4 Correct Assistant:";
  14976. }
  14977. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14978. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14979. for (auto message : chat) {
  14980. std::string role(message->role);
  14981. if (role == "system") {
  14982. // Orca-Vicuna variant uses a system prefix
  14983. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14984. ss << "SYSTEM: " << message->content << "\n";
  14985. } else {
  14986. ss << message->content << "\n\n";
  14987. }
  14988. } else if (role == "user") {
  14989. ss << "USER: " << message->content << "\n";
  14990. } else if (role == "assistant") {
  14991. ss << "ASSISTANT: " << message->content << "</s>\n";
  14992. }
  14993. }
  14994. if (add_ass) {
  14995. ss << "ASSISTANT:";
  14996. }
  14997. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14998. // deepseek-ai/deepseek-coder-33b-instruct
  14999. for (auto message : chat) {
  15000. std::string role(message->role);
  15001. if (role == "system") {
  15002. ss << message->content;
  15003. } else if (role == "user") {
  15004. ss << "### Instruction:\n" << message->content << "\n";
  15005. } else if (role == "assistant") {
  15006. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15007. }
  15008. }
  15009. if (add_ass) {
  15010. ss << "### Response:\n";
  15011. }
  15012. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15013. // CohereForAI/c4ai-command-r-plus
  15014. for (auto message : chat) {
  15015. std::string role(message->role);
  15016. if (role == "system") {
  15017. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15018. } else if (role == "user") {
  15019. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15020. } else if (role == "assistant") {
  15021. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15022. }
  15023. }
  15024. if (add_ass) {
  15025. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15026. }
  15027. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15028. // Llama 3
  15029. for (auto message : chat) {
  15030. std::string role(message->role);
  15031. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15032. }
  15033. if (add_ass) {
  15034. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15035. }
  15036. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  15037. // Phi 3
  15038. for (auto message : chat) {
  15039. std::string role(message->role);
  15040. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  15041. }
  15042. if (add_ass) {
  15043. ss << "<|assistant|>\n";
  15044. }
  15045. } else {
  15046. // template not supported
  15047. return -1;
  15048. }
  15049. dest = ss.str();
  15050. return dest.size();
  15051. }
  15052. LLAMA_API int32_t llama_chat_apply_template(
  15053. const struct llama_model * model,
  15054. const char * tmpl,
  15055. const struct llama_chat_message * chat,
  15056. size_t n_msg,
  15057. bool add_ass,
  15058. char * buf,
  15059. int32_t length) {
  15060. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15061. if (tmpl == nullptr) {
  15062. GGML_ASSERT(model != nullptr);
  15063. // load template from model
  15064. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15065. std::string template_key = "tokenizer.chat_template";
  15066. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15067. if (res < 0) {
  15068. // worst case: there is no information about template, we will use chatml by default
  15069. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15070. } else {
  15071. curr_tmpl = std::string(model_template.data(), model_template.size());
  15072. }
  15073. }
  15074. // format the chat to string
  15075. std::vector<const llama_chat_message *> chat_vec;
  15076. chat_vec.resize(n_msg);
  15077. for (size_t i = 0; i < n_msg; i++) {
  15078. chat_vec[i] = &chat[i];
  15079. }
  15080. std::string formatted_chat;
  15081. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15082. if (res < 0) {
  15083. return res;
  15084. }
  15085. if (buf && length > 0) {
  15086. strncpy(buf, formatted_chat.c_str(), length);
  15087. }
  15088. return res;
  15089. }
  15090. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15091. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15092. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15093. return strlen(split_path);
  15094. }
  15095. return 0;
  15096. }
  15097. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15098. std::string str_split_path(split_path);
  15099. char postfix[32];
  15100. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15101. std::string str_postfix(postfix);
  15102. // check if dest ends with postfix
  15103. int size_prefix = str_split_path.size() - str_postfix.size();
  15104. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15105. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15106. return size_prefix;
  15107. }
  15108. return 0;
  15109. }
  15110. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15111. struct llama_timings result = {
  15112. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15113. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15114. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15115. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15116. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15117. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15118. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15119. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15120. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15121. };
  15122. return result;
  15123. }
  15124. void llama_print_timings(struct llama_context * ctx) {
  15125. const llama_timings timings = llama_get_timings(ctx);
  15126. LLAMA_LOG_INFO("\n");
  15127. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15128. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15129. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15130. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15131. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15132. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15133. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15134. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15135. }
  15136. void llama_reset_timings(struct llama_context * ctx) {
  15137. ctx->t_start_us = ggml_time_us();
  15138. ctx->t_sample_us = ctx->n_sample = 0;
  15139. ctx->t_eval_us = ctx->n_eval = 0;
  15140. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15141. }
  15142. const char * llama_print_system_info(void) {
  15143. static std::string s;
  15144. s = "";
  15145. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15146. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15147. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15148. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15149. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15150. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15151. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15152. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15153. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15154. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15155. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15156. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15157. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15158. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15159. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15160. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15161. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15162. #ifdef GGML_USE_LLAMAFILE
  15163. s += "LLAMAFILE = 1 | ";
  15164. #else
  15165. s += "LLAMAFILE = 0 | ";
  15166. #endif
  15167. return s.c_str();
  15168. }
  15169. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15170. fprintf(stream, "\n");
  15171. fprintf(stream, "###########\n");
  15172. fprintf(stream, "# Timings #\n");
  15173. fprintf(stream, "###########\n");
  15174. fprintf(stream, "\n");
  15175. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15176. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15177. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15178. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15179. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15180. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15181. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15182. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15183. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15184. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15185. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15186. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15187. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15188. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15189. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15190. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15191. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15192. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15193. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15194. }
  15195. // For internal test use
  15196. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15197. struct llama_context * ctx
  15198. ) {
  15199. return ctx->model.tensors_by_name;
  15200. }
  15201. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15202. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15203. g_state.log_callback_user_data = user_data;
  15204. #ifdef GGML_USE_METAL
  15205. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15206. #elif defined(GGML_USE_CUDA)
  15207. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15208. #endif
  15209. }
  15210. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15211. va_list args_copy;
  15212. va_copy(args_copy, args);
  15213. char buffer[128];
  15214. int len = vsnprintf(buffer, 128, format, args);
  15215. if (len < 128) {
  15216. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15217. } else {
  15218. char* buffer2 = new char[len+1];
  15219. vsnprintf(buffer2, len+1, format, args_copy);
  15220. buffer2[len] = 0;
  15221. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15222. delete[] buffer2;
  15223. }
  15224. va_end(args_copy);
  15225. }
  15226. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15227. va_list args;
  15228. va_start(args, format);
  15229. llama_log_internal_v(level, format, args);
  15230. va_end(args);
  15231. }
  15232. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15233. (void) level;
  15234. (void) user_data;
  15235. fputs(text, stderr);
  15236. fflush(stderr);
  15237. }