clip.cpp 216 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-alloc.h"
  10. #include "ggml-backend.h"
  11. #include "gguf.h"
  12. #include <cassert>
  13. #include <cmath>
  14. #include <cstdlib>
  15. #include <cstring>
  16. #include <fstream>
  17. #include <map>
  18. #include <stdexcept>
  19. #include <unordered_set>
  20. #include <vector>
  21. #include <cinttypes>
  22. #include <limits>
  23. #include <array>
  24. #include <functional>
  25. // TODO: allow to pass callback from user code
  26. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  27. enum ffn_op_type {
  28. FFN_GELU,
  29. FFN_GELU_ERF,
  30. FFN_SILU,
  31. FFN_GELU_QUICK,
  32. };
  33. enum norm_type {
  34. NORM_TYPE_NORMAL,
  35. NORM_TYPE_RMS,
  36. };
  37. //#define CLIP_DEBUG_FUNCTIONS
  38. #ifdef CLIP_DEBUG_FUNCTIONS
  39. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  40. std::ofstream file(filename, std::ios::binary);
  41. if (!file.is_open()) {
  42. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  43. return;
  44. }
  45. // PPM header: P6 format, width, height, and max color value
  46. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  47. // Write pixel data
  48. for (size_t i = 0; i < img.buf.size(); i += 3) {
  49. // PPM expects binary data in RGB format, which matches our image buffer
  50. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  51. }
  52. file.close();
  53. }
  54. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  55. std::ofstream file(filename, std::ios::binary);
  56. if (!file.is_open()) {
  57. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  58. return;
  59. }
  60. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  61. int bytesPerPixel = 3;
  62. int widthInBytes = img.nx * bytesPerPixel;
  63. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  64. int stride = widthInBytes + paddingAmount;
  65. // Bitmap file header
  66. unsigned char fileHeader[14] = {
  67. 'B','M', // Signature
  68. 0,0,0,0, // Image file size in bytes
  69. 0,0,0,0, // Reserved
  70. 54,0,0,0 // Start of pixel array
  71. };
  72. // Total file size
  73. fileSize = 54 + (stride * img.ny);
  74. fileHeader[2] = (unsigned char)(fileSize);
  75. fileHeader[3] = (unsigned char)(fileSize >> 8);
  76. fileHeader[4] = (unsigned char)(fileSize >> 16);
  77. fileHeader[5] = (unsigned char)(fileSize >> 24);
  78. // Bitmap information header (BITMAPINFOHEADER)
  79. unsigned char infoHeader[40] = {
  80. 40,0,0,0, // Size of this header (40 bytes)
  81. 0,0,0,0, // Image width
  82. 0,0,0,0, // Image height
  83. 1,0, // Number of color planes
  84. 24,0, // Bits per pixel
  85. 0,0,0,0, // No compression
  86. 0,0,0,0, // Image size (can be 0 for no compression)
  87. 0,0,0,0, // X pixels per meter (not specified)
  88. 0,0,0,0, // Y pixels per meter (not specified)
  89. 0,0,0,0, // Total colors (color table not used)
  90. 0,0,0,0 // Important colors (all are important)
  91. };
  92. // Width and height in the information header
  93. infoHeader[4] = (unsigned char)(img.nx);
  94. infoHeader[5] = (unsigned char)(img.nx >> 8);
  95. infoHeader[6] = (unsigned char)(img.nx >> 16);
  96. infoHeader[7] = (unsigned char)(img.nx >> 24);
  97. infoHeader[8] = (unsigned char)(img.ny);
  98. infoHeader[9] = (unsigned char)(img.ny >> 8);
  99. infoHeader[10] = (unsigned char)(img.ny >> 16);
  100. infoHeader[11] = (unsigned char)(img.ny >> 24);
  101. // Write file headers
  102. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  103. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  104. // Pixel data
  105. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  106. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  107. for (int x = 0; x < img.nx; ++x) {
  108. // Each pixel
  109. size_t pixelIndex = (y * img.nx + x) * 3;
  110. unsigned char pixel[3] = {
  111. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  112. img.buf[pixelIndex + 1],
  113. img.buf[pixelIndex]
  114. };
  115. file.write(reinterpret_cast<char*>(pixel), 3);
  116. }
  117. // Write padding for the row
  118. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  119. }
  120. file.close();
  121. }
  122. // debug function to convert f32 to u8
  123. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  124. dst.nx = src.nx;
  125. dst.ny = src.ny;
  126. dst.buf.resize(3 * src.nx * src.ny);
  127. for (size_t i = 0; i < src.buf.size(); ++i) {
  128. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  129. }
  130. }
  131. #endif
  132. //
  133. // clip layers
  134. //
  135. enum patch_merge_type {
  136. PATCH_MERGE_FLAT,
  137. PATCH_MERGE_SPATIAL_UNPAD,
  138. };
  139. struct clip_hparams {
  140. int32_t image_size;
  141. int32_t patch_size;
  142. int32_t n_embd;
  143. int32_t n_ff;
  144. int32_t projection_dim;
  145. int32_t n_head;
  146. int32_t n_layer;
  147. // idefics3
  148. int32_t image_longest_edge = 0;
  149. int32_t image_min_pixels = 0;
  150. int32_t image_max_pixels = 0;
  151. int32_t n_merge = 0; // number of patch merges **per-side**
  152. float image_mean[3];
  153. float image_std[3];
  154. // for models using dynamic image size, we need to have a smaller image size to warmup
  155. // otherwise, user will get OOM everytime they load the model
  156. int32_t warmup_image_size = 0;
  157. int32_t warmup_audio_size = 3000;
  158. ffn_op_type ffn_op = FFN_GELU;
  159. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  160. float eps = 1e-6;
  161. float rope_theta = 0.0;
  162. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  163. int32_t image_crop_resolution;
  164. std::unordered_set<int32_t> vision_feature_layer;
  165. int32_t attn_window_size = 0;
  166. int32_t n_wa_pattern = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  174. void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
  175. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  176. const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
  177. image_min_pixels = n_tokens_min * patch_area;
  178. image_max_pixels = n_tokens_max * patch_area;
  179. warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
  180. }
  181. void set_warmup_n_tokens(int n_tokens) {
  182. int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
  183. GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
  184. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  185. warmup_image_size = n_tok_per_side * patch_size * cur_merge;
  186. }
  187. };
  188. struct clip_layer {
  189. // attention
  190. ggml_tensor * k_w = nullptr;
  191. ggml_tensor * k_b = nullptr;
  192. ggml_tensor * q_w = nullptr;
  193. ggml_tensor * q_b = nullptr;
  194. ggml_tensor * v_w = nullptr;
  195. ggml_tensor * v_b = nullptr;
  196. ggml_tensor * qkv_w = nullptr;
  197. ggml_tensor * qkv_b = nullptr;
  198. ggml_tensor * o_w = nullptr;
  199. ggml_tensor * o_b = nullptr;
  200. ggml_tensor * k_norm = nullptr;
  201. ggml_tensor * q_norm = nullptr;
  202. // layernorm 1
  203. ggml_tensor * ln_1_w = nullptr;
  204. ggml_tensor * ln_1_b = nullptr;
  205. ggml_tensor * ff_up_w = nullptr;
  206. ggml_tensor * ff_up_b = nullptr;
  207. ggml_tensor * ff_gate_w = nullptr;
  208. ggml_tensor * ff_gate_b = nullptr;
  209. ggml_tensor * ff_down_w = nullptr;
  210. ggml_tensor * ff_down_b = nullptr;
  211. // layernorm 2
  212. ggml_tensor * ln_2_w = nullptr;
  213. ggml_tensor * ln_2_b = nullptr;
  214. // layer scale (no bias)
  215. ggml_tensor * ls_1_w = nullptr;
  216. ggml_tensor * ls_2_w = nullptr;
  217. // qwen3vl deepstack merger
  218. ggml_tensor * deepstack_norm_w = nullptr;
  219. ggml_tensor * deepstack_norm_b = nullptr;
  220. ggml_tensor * deepstack_fc1_w = nullptr;
  221. ggml_tensor * deepstack_fc1_b = nullptr;
  222. ggml_tensor * deepstack_fc2_w = nullptr;
  223. ggml_tensor * deepstack_fc2_b = nullptr;
  224. bool has_deepstack() const {
  225. return deepstack_fc1_w != nullptr;
  226. }
  227. };
  228. struct clip_model {
  229. clip_modality modality = CLIP_MODALITY_VISION;
  230. projector_type proj_type = PROJECTOR_TYPE_MLP;
  231. clip_hparams hparams;
  232. // embeddings
  233. ggml_tensor * class_embedding = nullptr;
  234. ggml_tensor * patch_embeddings_0 = nullptr;
  235. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  236. ggml_tensor * patch_bias = nullptr;
  237. ggml_tensor * position_embeddings = nullptr;
  238. ggml_tensor * pre_ln_w = nullptr;
  239. ggml_tensor * pre_ln_b = nullptr;
  240. std::vector<clip_layer> layers;
  241. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  242. ggml_tensor * post_ln_w;
  243. ggml_tensor * post_ln_b;
  244. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  245. ggml_tensor * mm_fc_w;
  246. ggml_tensor * mm_fc_b;
  247. // LLaVA projection
  248. ggml_tensor * mm_input_norm_w = nullptr;
  249. ggml_tensor * mm_input_norm_b = nullptr;
  250. ggml_tensor * mm_0_w = nullptr;
  251. ggml_tensor * mm_0_b = nullptr;
  252. ggml_tensor * mm_2_w = nullptr;
  253. ggml_tensor * mm_2_b = nullptr;
  254. ggml_tensor * image_newline = nullptr;
  255. // Yi type models with mlp+normalization projection
  256. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  257. ggml_tensor * mm_1_b = nullptr;
  258. ggml_tensor * mm_3_w = nullptr;
  259. ggml_tensor * mm_3_b = nullptr;
  260. ggml_tensor * mm_4_w = nullptr;
  261. ggml_tensor * mm_4_b = nullptr;
  262. // GLMV-Edge projection
  263. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  264. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  265. // MobileVLM projection
  266. ggml_tensor * mm_model_mlp_1_w = nullptr;
  267. ggml_tensor * mm_model_mlp_1_b = nullptr;
  268. ggml_tensor * mm_model_mlp_3_w = nullptr;
  269. ggml_tensor * mm_model_mlp_3_b = nullptr;
  270. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  271. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  272. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  273. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  274. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  275. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  276. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  277. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  278. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  279. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  280. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  281. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  282. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  283. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  284. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  285. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  286. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  287. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  288. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  289. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  290. // MobileVLM_V2 projection
  291. ggml_tensor * mm_model_mlp_0_w = nullptr;
  292. ggml_tensor * mm_model_mlp_0_b = nullptr;
  293. ggml_tensor * mm_model_mlp_2_w = nullptr;
  294. ggml_tensor * mm_model_mlp_2_b = nullptr;
  295. ggml_tensor * mm_model_peg_0_w = nullptr;
  296. ggml_tensor * mm_model_peg_0_b = nullptr;
  297. // MINICPMV projection
  298. ggml_tensor * mm_model_pos_embed_k = nullptr;
  299. ggml_tensor * mm_model_query = nullptr;
  300. ggml_tensor * mm_model_proj = nullptr;
  301. ggml_tensor * mm_model_kv_proj = nullptr;
  302. ggml_tensor * mm_model_attn_q_w = nullptr;
  303. ggml_tensor * mm_model_attn_q_b = nullptr;
  304. ggml_tensor * mm_model_attn_k_w = nullptr;
  305. ggml_tensor * mm_model_attn_k_b = nullptr;
  306. ggml_tensor * mm_model_attn_v_w = nullptr;
  307. ggml_tensor * mm_model_attn_v_b = nullptr;
  308. ggml_tensor * mm_model_attn_o_w = nullptr;
  309. ggml_tensor * mm_model_attn_o_b = nullptr;
  310. ggml_tensor * mm_model_ln_q_w = nullptr;
  311. ggml_tensor * mm_model_ln_q_b = nullptr;
  312. ggml_tensor * mm_model_ln_kv_w = nullptr;
  313. ggml_tensor * mm_model_ln_kv_b = nullptr;
  314. ggml_tensor * mm_model_ln_post_w = nullptr;
  315. ggml_tensor * mm_model_ln_post_b = nullptr;
  316. // gemma3
  317. ggml_tensor * mm_input_proj_w = nullptr;
  318. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  319. // pixtral
  320. ggml_tensor * token_embd_img_break = nullptr;
  321. ggml_tensor * mm_patch_merger_w = nullptr;
  322. // ultravox / whisper encoder
  323. ggml_tensor * conv1d_1_w = nullptr;
  324. ggml_tensor * conv1d_1_b = nullptr;
  325. ggml_tensor * conv1d_2_w = nullptr;
  326. ggml_tensor * conv1d_2_b = nullptr;
  327. ggml_tensor * mm_norm_pre_w = nullptr;
  328. ggml_tensor * mm_norm_mid_w = nullptr;
  329. // cogvlm
  330. ggml_tensor * mm_post_fc_norm_w = nullptr;
  331. ggml_tensor * mm_post_fc_norm_b = nullptr;
  332. ggml_tensor * mm_h_to_4h_w = nullptr;
  333. ggml_tensor * mm_gate_w = nullptr;
  334. ggml_tensor * mm_4h_to_h_w = nullptr;
  335. ggml_tensor * mm_boi = nullptr;
  336. ggml_tensor * mm_eoi = nullptr;
  337. bool audio_has_avgpool() const {
  338. return proj_type == PROJECTOR_TYPE_QWEN2A
  339. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  340. }
  341. bool audio_has_stack_frames() const {
  342. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  343. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  344. }
  345. };
  346. struct clip_ctx {
  347. clip_model model;
  348. gguf_context_ptr ctx_gguf;
  349. ggml_context_ptr ctx_data;
  350. std::vector<uint8_t> buf_compute_meta;
  351. std::vector<ggml_backend_t> backend_ptrs;
  352. std::vector<ggml_backend_buffer_type_t> backend_buft;
  353. ggml_backend_t backend = nullptr;
  354. ggml_backend_t backend_cpu = nullptr;
  355. ggml_backend_buffer_ptr buf;
  356. int max_nodes = 8192;
  357. ggml_backend_sched_ptr sched;
  358. clip_flash_attn_type flash_attn_type = CLIP_FLASH_ATTN_TYPE_AUTO;
  359. // for debugging
  360. bool debug_graph = false;
  361. std::vector<ggml_tensor *> debug_print_tensors;
  362. clip_ctx(clip_context_params & ctx_params) {
  363. flash_attn_type = ctx_params.flash_attn_type;
  364. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  365. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  366. if (!backend_cpu) {
  367. throw std::runtime_error("failed to initialize CPU backend");
  368. }
  369. if (ctx_params.use_gpu) {
  370. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  371. if (backend_name != nullptr) {
  372. backend = ggml_backend_init_by_name(backend_name, nullptr);
  373. if (!backend) {
  374. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  375. }
  376. }
  377. if (!backend) {
  378. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  379. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  380. }
  381. }
  382. if (backend) {
  383. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  384. backend_ptrs.push_back(backend);
  385. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  386. } else {
  387. backend = backend_cpu;
  388. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  389. }
  390. backend_ptrs.push_back(backend_cpu);
  391. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  392. sched.reset(
  393. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  394. );
  395. }
  396. ~clip_ctx() {
  397. ggml_backend_free(backend);
  398. if (backend != backend_cpu) {
  399. ggml_backend_free(backend_cpu);
  400. }
  401. }
  402. // this function is added so that we don't change too much of the existing code
  403. projector_type proj_type() const {
  404. return model.proj_type;
  405. }
  406. };
  407. struct clip_graph {
  408. clip_ctx * ctx;
  409. const clip_model & model;
  410. const clip_hparams & hparams;
  411. // we only support single image per batch
  412. const clip_image_f32 & img;
  413. const int patch_size;
  414. const int n_patches_x;
  415. const int n_patches_y;
  416. const int n_patches;
  417. const int n_embd;
  418. const int n_head;
  419. const int d_head;
  420. const int n_layer;
  421. const float eps;
  422. const float kq_scale;
  423. ggml_context_ptr ctx0_ptr;
  424. ggml_context * ctx0;
  425. ggml_cgraph * gf;
  426. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  427. ctx(ctx),
  428. model(ctx->model),
  429. hparams(model.hparams),
  430. img(img),
  431. patch_size(hparams.patch_size),
  432. n_patches_x(img.nx / patch_size),
  433. n_patches_y(img.ny / patch_size),
  434. n_patches(n_patches_x * n_patches_y),
  435. n_embd(hparams.n_embd),
  436. n_head(hparams.n_head),
  437. d_head(n_embd / n_head),
  438. n_layer(hparams.n_layer),
  439. eps(hparams.eps),
  440. kq_scale(1.0f / sqrtf((float)d_head)) {
  441. struct ggml_init_params params = {
  442. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  443. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  444. /*.no_alloc =*/ true,
  445. };
  446. ctx0_ptr.reset(ggml_init(params));
  447. ctx0 = ctx0_ptr.get();
  448. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  449. }
  450. ggml_cgraph * build_siglip() {
  451. ggml_tensor * inp = build_inp();
  452. ggml_tensor * learned_pos_embd = model.position_embeddings;
  453. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  454. learned_pos_embd = resize_position_embeddings();
  455. }
  456. ggml_tensor * cur = build_vit(
  457. inp, n_patches,
  458. NORM_TYPE_NORMAL,
  459. hparams.ffn_op,
  460. learned_pos_embd,
  461. nullptr);
  462. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  463. const int batch_size = 1;
  464. GGML_ASSERT(n_patches_x == n_patches_y);
  465. const int patches_per_image = n_patches_x;
  466. const int kernel_size = hparams.n_merge;
  467. cur = ggml_transpose(ctx0, cur);
  468. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  469. // doing a pool2d to reduce the number of output tokens
  470. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  471. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  472. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  473. // apply norm before projection
  474. cur = ggml_rms_norm(ctx0, cur, eps);
  475. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  476. // apply projection
  477. cur = ggml_mul_mat(ctx0,
  478. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  479. cur);
  480. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  481. // pixel_shuffle
  482. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  483. const int scale_factor = model.hparams.n_merge;
  484. cur = build_patch_merge_permute(cur, scale_factor);
  485. cur = ggml_mul_mat(ctx0, model.projection, cur);
  486. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  487. // pixel unshuffle block
  488. const int scale_factor = model.hparams.n_merge;
  489. cur = build_patch_merge_permute(cur, scale_factor);
  490. // projection
  491. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  492. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  493. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  494. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  495. cur = ggml_add(ctx0, cur, model.mm_1_b);
  496. cur = ggml_gelu(ctx0, cur);
  497. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  498. cur = ggml_add(ctx0, cur, model.mm_2_b);
  499. } else if (ctx->proj_type() == PROJECTOR_TYPE_JANUS_PRO) {
  500. cur = build_ffn(cur,
  501. model.mm_0_w, model.mm_0_b,
  502. nullptr, nullptr,
  503. model.mm_1_w, model.mm_1_b,
  504. hparams.ffn_op,
  505. -1);
  506. } else {
  507. GGML_ABORT("SigLIP: Unsupported projector type");
  508. }
  509. // build the graph
  510. ggml_build_forward_expand(gf, cur);
  511. return gf;
  512. }
  513. ggml_cgraph * build_pixtral() {
  514. const int n_merge = hparams.n_merge;
  515. // 2D input positions
  516. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  517. ggml_set_name(pos_h, "pos_h");
  518. ggml_set_input(pos_h);
  519. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  520. ggml_set_name(pos_w, "pos_w");
  521. ggml_set_input(pos_w);
  522. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  523. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  524. };
  525. ggml_tensor * inp = build_inp();
  526. ggml_tensor * cur = build_vit(
  527. inp, n_patches,
  528. NORM_TYPE_RMS,
  529. hparams.ffn_op,
  530. nullptr, // no learned pos embd
  531. add_pos);
  532. // mistral small 3.1 patch merger
  533. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  534. if (model.mm_patch_merger_w) {
  535. GGML_ASSERT(hparams.n_merge > 0);
  536. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  537. // reshape image tokens to 2D grid
  538. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  539. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  540. cur = ggml_cont(ctx0, cur);
  541. // torch.nn.functional.unfold is just an im2col under the hood
  542. // we just need a dummy kernel to make it work
  543. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  544. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  545. // project to n_embd
  546. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  547. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  548. }
  549. // LlavaMultiModalProjector (always using GELU activation)
  550. {
  551. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  552. if (model.mm_1_b) {
  553. cur = ggml_add(ctx0, cur, model.mm_1_b);
  554. }
  555. cur = ggml_gelu(ctx0, cur);
  556. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  557. if (model.mm_2_b) {
  558. cur = ggml_add(ctx0, cur, model.mm_2_b);
  559. }
  560. }
  561. // arrangement of the [IMG_BREAK] token
  562. if (model.token_embd_img_break) {
  563. // not efficient, but works
  564. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  565. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  566. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  567. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  568. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  569. const int p_total = p_x * p_y;
  570. const int n_embd_text = cur->ne[0];
  571. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  572. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  573. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  574. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  575. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  576. tmp = ggml_concat(ctx0, tmp, tok, 1);
  577. cur = ggml_view_2d(ctx0, tmp,
  578. n_embd_text, n_tokens_output,
  579. ggml_row_size(tmp->type, n_embd_text), 0);
  580. }
  581. // build the graph
  582. ggml_build_forward_expand(gf, cur);
  583. return gf;
  584. }
  585. // Qwen2VL and Qwen2.5VL use M-RoPE
  586. ggml_cgraph * build_qwen2vl() {
  587. GGML_ASSERT(model.patch_bias == nullptr);
  588. GGML_ASSERT(model.class_embedding == nullptr);
  589. const int batch_size = 1;
  590. const bool use_window_attn = hparams.n_wa_pattern > 0;
  591. const int n_wa_pattern = hparams.n_wa_pattern;
  592. const int n_pos = n_patches;
  593. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  594. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  595. ? NORM_TYPE_RMS // qwen 2.5 vl
  596. : NORM_TYPE_NORMAL; // qwen 2 vl
  597. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  598. ggml_tensor * inp_raw = build_inp_raw();
  599. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  600. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  601. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  602. // second conv dimension
  603. {
  604. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  605. inp = ggml_add(ctx0, inp, inp_1);
  606. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  607. inp = ggml_cont_4d(
  608. ctx0, inp,
  609. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  610. inp = ggml_reshape_4d(
  611. ctx0, inp,
  612. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  613. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  614. inp = ggml_cont_3d(
  615. ctx0, inp,
  616. n_embd, n_patches_x * n_patches_y, batch_size);
  617. }
  618. ggml_tensor * inpL = inp;
  619. ggml_tensor * window_mask = nullptr;
  620. ggml_tensor * window_idx = nullptr;
  621. ggml_tensor * inv_window_idx = nullptr;
  622. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  623. ggml_set_name(positions, "positions");
  624. ggml_set_input(positions);
  625. // pre-layernorm
  626. if (model.pre_ln_w) {
  627. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  628. }
  629. if (use_window_attn) {
  630. // handle window attention inputs
  631. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  632. ggml_set_name(inv_window_idx, "inv_window_idx");
  633. ggml_set_input(inv_window_idx);
  634. // mask for window attention
  635. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  636. ggml_set_name(window_mask, "window_mask");
  637. ggml_set_input(window_mask);
  638. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  639. GGML_ASSERT(batch_size == 1);
  640. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  641. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  642. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  643. }
  644. // loop over layers
  645. for (int il = 0; il < n_layer; il++) {
  646. auto & layer = model.layers[il];
  647. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  648. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  649. // layernorm1
  650. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  651. cb(cur, "ln1", il);
  652. // self-attention
  653. {
  654. ggml_tensor * Qcur = ggml_add(ctx0,
  655. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  656. ggml_tensor * Kcur = ggml_add(ctx0,
  657. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  658. ggml_tensor * Vcur = ggml_add(ctx0,
  659. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  660. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  661. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  662. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  663. cb(Qcur, "Qcur", il);
  664. cb(Kcur, "Kcur", il);
  665. cb(Vcur, "Vcur", il);
  666. // apply M-RoPE
  667. Qcur = ggml_rope_multi(
  668. ctx0, Qcur, positions, nullptr,
  669. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  670. Kcur = ggml_rope_multi(
  671. ctx0, Kcur, positions, nullptr,
  672. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  673. cb(Qcur, "Qcur_rope", il);
  674. cb(Kcur, "Kcur_rope", il);
  675. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  676. cur = build_attn(layer.o_w, layer.o_b,
  677. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  678. cb(cur, "attn_out", il);
  679. }
  680. // re-add the layer input, e.g., residual
  681. cur = ggml_add(ctx0, cur, inpL);
  682. inpL = cur; // inpL = residual, cur = hidden_states
  683. cb(cur, "ffn_inp", il);
  684. // layernorm2
  685. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  686. cb(cur, "ffn_inp_normed", il);
  687. // ffn
  688. cur = build_ffn(cur,
  689. layer.ff_up_w, layer.ff_up_b,
  690. layer.ff_gate_w, layer.ff_gate_b,
  691. layer.ff_down_w, layer.ff_down_b,
  692. hparams.ffn_op, il);
  693. cb(cur, "ffn_out", il);
  694. // residual 2
  695. cur = ggml_add(ctx0, inpL, cur);
  696. cb(cur, "layer_out", il);
  697. inpL = cur;
  698. }
  699. // post-layernorm
  700. if (model.post_ln_w) {
  701. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  702. }
  703. // multimodal projection
  704. ggml_tensor * embeddings = inpL;
  705. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  706. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  707. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  708. // GELU activation
  709. embeddings = ggml_gelu(ctx0, embeddings);
  710. // Second linear layer
  711. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  712. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  713. if (use_window_attn) {
  714. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  715. ggml_set_name(window_idx, "window_idx");
  716. ggml_set_input(window_idx);
  717. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  718. GGML_ASSERT(batch_size == 1);
  719. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  720. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  721. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  722. }
  723. // build the graph
  724. ggml_build_forward_expand(gf, embeddings);
  725. return gf;
  726. }
  727. // Qwen3VL
  728. ggml_cgraph * build_qwen3vl() {
  729. GGML_ASSERT(model.patch_bias != nullptr);
  730. GGML_ASSERT(model.position_embeddings != nullptr);
  731. GGML_ASSERT(model.class_embedding == nullptr);
  732. const int batch_size = 1;
  733. const int n_pos = n_patches;
  734. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  735. norm_type norm_t = NORM_TYPE_NORMAL;
  736. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  737. ggml_tensor * inp_raw = build_inp_raw();
  738. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  739. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  740. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  741. // second conv dimension
  742. {
  743. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  744. inp = ggml_add(ctx0, inp, inp_1);
  745. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  746. inp = ggml_cont_4d(
  747. ctx0, inp,
  748. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  749. inp = ggml_reshape_4d(
  750. ctx0, inp,
  751. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  752. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  753. inp = ggml_cont_3d(
  754. ctx0, inp,
  755. n_embd, n_patches_x * n_patches_y, batch_size);
  756. }
  757. // add patch bias
  758. if (model.patch_bias != nullptr) {
  759. inp = ggml_add(ctx0, inp, model.patch_bias);
  760. cb(inp, "patch_bias", -1);
  761. }
  762. // calculate absolute position embedding and apply
  763. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  764. learned_pos_embd = ggml_cont_4d(
  765. ctx0, learned_pos_embd,
  766. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  767. learned_pos_embd = ggml_reshape_4d(
  768. ctx0, learned_pos_embd,
  769. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  770. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  771. learned_pos_embd = ggml_cont_3d(
  772. ctx0, learned_pos_embd,
  773. n_embd, n_patches_x * n_patches_y, batch_size);
  774. inp = ggml_add(ctx0, inp, learned_pos_embd);
  775. cb(inp, "inp_pos_emb", -1);
  776. ggml_tensor * inpL = inp;
  777. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  778. ggml_set_name(positions, "positions");
  779. ggml_set_input(positions);
  780. // pre-layernorm
  781. if (model.pre_ln_w) {
  782. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  783. }
  784. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  785. ggml_tensor * deepstack_features = nullptr;
  786. const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
  787. // loop over layers
  788. for (int il = 0; il < n_layer; il++) {
  789. auto & layer = model.layers[il];
  790. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  791. // layernorm1
  792. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  793. cb(cur, "ln1", il);
  794. // self-attention
  795. {
  796. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  797. cur = ggml_add(ctx0, cur, layer.qkv_b);
  798. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  799. cur->nb[1], 0);
  800. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  801. cur->nb[1], n_embd * sizeof(float));
  802. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  803. cur->nb[1], 2 * n_embd * sizeof(float));
  804. cb(Qcur, "Qcur", il);
  805. cb(Kcur, "Kcur", il);
  806. cb(Vcur, "Vcur", il);
  807. // apply M-RoPE
  808. Qcur = ggml_rope_multi(
  809. ctx0, Qcur, positions, nullptr,
  810. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  811. Kcur = ggml_rope_multi(
  812. ctx0, Kcur, positions, nullptr,
  813. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  814. cb(Qcur, "Qcur_rope", il);
  815. cb(Kcur, "Kcur_rope", il);
  816. cur = build_attn(layer.o_w, layer.o_b,
  817. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  818. cb(cur, "attn_out", il);
  819. }
  820. // re-add the layer input, e.g., residual
  821. cur = ggml_add(ctx0, cur, inpL);
  822. inpL = cur; // inpL = residual, cur = hidden_states
  823. cb(cur, "ffn_inp", il);
  824. // layernorm2
  825. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  826. cb(cur, "ffn_inp_normed", il);
  827. // ffn
  828. cur = build_ffn(cur,
  829. layer.ff_up_w, layer.ff_up_b,
  830. layer.ff_gate_w, layer.ff_gate_b,
  831. layer.ff_down_w, layer.ff_down_b,
  832. hparams.ffn_op, il);
  833. cb(cur, "ffn_out", il);
  834. // residual 2
  835. cur = ggml_add(ctx0, inpL, cur);
  836. cb(cur, "layer_out", il);
  837. if (layer.has_deepstack()) {
  838. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  839. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  840. feat = build_ffn(feat,
  841. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  842. nullptr, nullptr,
  843. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  844. ffn_op_type::FFN_GELU, il);
  845. if(!deepstack_features) {
  846. deepstack_features = feat;
  847. } else {
  848. // concat along the feature dimension
  849. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  850. }
  851. }
  852. inpL = cur;
  853. }
  854. // post-layernorm
  855. if (model.post_ln_w) {
  856. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  857. }
  858. // multimodal projection
  859. ggml_tensor * embeddings = inpL;
  860. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  861. embeddings = build_ffn(embeddings,
  862. model.mm_0_w, model.mm_0_b,
  863. nullptr, nullptr,
  864. model.mm_1_w, model.mm_1_b,
  865. ffn_op_type::FFN_GELU, -1);
  866. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  867. // build the graph
  868. ggml_build_forward_expand(gf, embeddings);
  869. return gf;
  870. }
  871. ggml_cgraph * build_minicpmv() {
  872. const int batch_size = 1;
  873. GGML_ASSERT(model.class_embedding == nullptr);
  874. const int n_pos = n_patches;
  875. // position embeddings for the projector (not for ViT)
  876. int n_output_dim = clip_n_mmproj_embd(ctx);
  877. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  878. ggml_set_name(pos_embed, "pos_embed");
  879. ggml_set_input(pos_embed);
  880. // for selecting learned pos embd, used by ViT
  881. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  882. ggml_set_name(positions, "positions");
  883. ggml_set_input(positions);
  884. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  885. ggml_tensor * inp = build_inp();
  886. ggml_tensor * embeddings = build_vit(
  887. inp, n_patches,
  888. NORM_TYPE_NORMAL,
  889. hparams.ffn_op,
  890. learned_pos_embd,
  891. nullptr);
  892. // resampler projector (it is just another transformer)
  893. ggml_tensor * q = model.mm_model_query;
  894. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  895. // norm
  896. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  897. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  898. // k = v + pos_embed
  899. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  900. // attention
  901. {
  902. int n_embd = clip_n_mmproj_embd(ctx);
  903. const int d_head = 128;
  904. int n_head = n_embd/d_head;
  905. // Use actual config value if available, otherwise fall back to hardcoded values
  906. int num_query = ctx->model.hparams.minicpmv_query_num;
  907. ggml_tensor * Q = ggml_add(ctx0,
  908. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  909. model.mm_model_attn_q_b);
  910. ggml_tensor * K = ggml_add(ctx0,
  911. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  912. model.mm_model_attn_k_b);
  913. ggml_tensor * V = ggml_add(ctx0,
  914. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  915. model.mm_model_attn_v_b);
  916. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  917. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  918. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  919. cb(Q, "resampler_Q", -1);
  920. cb(K, "resampler_K", -1);
  921. cb(V, "resampler_V", -1);
  922. embeddings = build_attn(
  923. model.mm_model_attn_o_w,
  924. model.mm_model_attn_o_b,
  925. Q, K, V, nullptr, kq_scale, -1);
  926. cb(embeddings, "resampler_attn_out", -1);
  927. }
  928. // layernorm
  929. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  930. // projection
  931. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  932. // build the graph
  933. ggml_build_forward_expand(gf, embeddings);
  934. return gf;
  935. }
  936. ggml_cgraph * build_internvl() {
  937. GGML_ASSERT(model.class_embedding != nullptr);
  938. GGML_ASSERT(model.position_embeddings != nullptr);
  939. const int n_pos = n_patches + 1;
  940. ggml_tensor * inp = build_inp();
  941. // add CLS token
  942. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  943. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  944. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  945. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  946. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  947. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  948. ggml_tensor * cur = build_vit(
  949. inp, n_pos,
  950. norm_t,
  951. hparams.ffn_op,
  952. model.position_embeddings,
  953. nullptr);
  954. // remove CLS token
  955. cur = ggml_view_2d(ctx0, cur,
  956. n_embd, n_patches,
  957. ggml_row_size(cur->type, n_embd), 0);
  958. // pixel shuffle
  959. {
  960. const int scale_factor = model.hparams.n_merge;
  961. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  962. const int height = n_patches_y;
  963. const int width = n_patches_x;
  964. GGML_ASSERT(scale_factor > 0);
  965. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  966. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  967. cur = ggml_cont_4d(ctx0, cur,
  968. n_embd * scale_factor * scale_factor,
  969. height / scale_factor,
  970. width / scale_factor,
  971. bsz);
  972. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  973. // flatten to 2D
  974. cur = ggml_cont_2d(ctx0, cur,
  975. n_embd * scale_factor * scale_factor,
  976. cur->ne[1] * cur->ne[2]);
  977. }
  978. // projector (always using GELU activation)
  979. {
  980. // projector LayerNorm uses pytorch's default eps = 1e-5
  981. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  982. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  983. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  984. cur = ggml_add(ctx0, cur, model.mm_1_b);
  985. cur = ggml_gelu(ctx0, cur);
  986. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  987. cur = ggml_add(ctx0, cur, model.mm_3_b);
  988. }
  989. // build the graph
  990. ggml_build_forward_expand(gf, cur);
  991. return gf;
  992. }
  993. ggml_cgraph * build_llama4() {
  994. GGML_ASSERT(model.class_embedding != nullptr);
  995. GGML_ASSERT(model.position_embeddings != nullptr);
  996. const int n_pos = n_patches + 1; // +1 for [CLS]
  997. // 2D input positions
  998. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  999. ggml_set_name(pos_h, "pos_h");
  1000. ggml_set_input(pos_h);
  1001. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1002. ggml_set_name(pos_w, "pos_w");
  1003. ggml_set_input(pos_w);
  1004. ggml_tensor * inp = build_inp_raw();
  1005. // Llama4UnfoldConvolution
  1006. {
  1007. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  1008. patch_size, patch_size, 3, n_embd);
  1009. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  1010. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  1011. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  1012. cb(inp, "patch_conv", -1);
  1013. }
  1014. // add CLS token
  1015. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1016. // build ViT with 2D position embeddings
  1017. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1018. // first half is X axis and second half is Y axis
  1019. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1020. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1021. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1022. };
  1023. ggml_tensor * cur = build_vit(
  1024. inp, n_pos,
  1025. NORM_TYPE_NORMAL,
  1026. hparams.ffn_op,
  1027. model.position_embeddings,
  1028. add_pos);
  1029. // remove CLS token
  1030. cur = ggml_view_2d(ctx0, cur,
  1031. n_embd, n_patches,
  1032. ggml_row_size(cur->type, n_embd), 0);
  1033. // pixel shuffle
  1034. // based on Llama4VisionPixelShuffleMLP
  1035. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1036. {
  1037. const int scale_factor = model.hparams.n_merge;
  1038. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1039. GGML_ASSERT(scale_factor > 0);
  1040. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1041. cur = ggml_reshape_4d(ctx0, cur,
  1042. n_embd * scale_factor,
  1043. n_patches_x / scale_factor,
  1044. n_patches_y,
  1045. bsz);
  1046. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1047. cur = ggml_cont_4d(ctx0, cur,
  1048. n_embd * scale_factor * scale_factor,
  1049. n_patches_x / scale_factor,
  1050. n_patches_y / scale_factor,
  1051. bsz);
  1052. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1053. // flatten to 2D
  1054. cur = ggml_cont_2d(ctx0, cur,
  1055. n_embd * scale_factor * scale_factor,
  1056. n_patches / scale_factor / scale_factor);
  1057. cb(cur, "pixel_shuffle", -1);
  1058. }
  1059. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1060. {
  1061. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1062. cur = ggml_gelu(ctx0, cur);
  1063. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1064. cur = ggml_gelu(ctx0, cur);
  1065. cb(cur, "adapter_mlp", -1);
  1066. }
  1067. // Llama4MultiModalProjector
  1068. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1069. cb(cur, "projected", -1);
  1070. // build the graph
  1071. ggml_build_forward_expand(gf, cur);
  1072. return gf;
  1073. }
  1074. ggml_cgraph * build_kimivl() {
  1075. // 2D input positions
  1076. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1077. ggml_set_name(pos_h, "pos_h");
  1078. ggml_set_input(pos_h);
  1079. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1080. ggml_set_name(pos_w, "pos_w");
  1081. ggml_set_input(pos_w);
  1082. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1083. // build ViT with 2D position embeddings
  1084. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1085. // first half is X axis and second half is Y axis
  1086. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1087. };
  1088. ggml_tensor * inp = build_inp();
  1089. ggml_tensor * cur = build_vit(
  1090. inp, n_patches,
  1091. NORM_TYPE_NORMAL,
  1092. hparams.ffn_op,
  1093. learned_pos_embd,
  1094. add_pos);
  1095. cb(cur, "vit_out", -1);
  1096. {
  1097. // patch_merger
  1098. const int scale_factor = model.hparams.n_merge;
  1099. cur = build_patch_merge_permute(cur, scale_factor);
  1100. // projection norm
  1101. int proj_inp_dim = cur->ne[0];
  1102. cur = ggml_view_2d(ctx0, cur,
  1103. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1104. ggml_row_size(cur->type, n_embd), 0);
  1105. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1106. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1107. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1108. cur = ggml_view_2d(ctx0, cur,
  1109. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1110. ggml_row_size(cur->type, proj_inp_dim), 0);
  1111. cb(cur, "proj_inp_normed", -1);
  1112. // projection mlp
  1113. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1114. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1115. cur = ggml_gelu(ctx0, cur);
  1116. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1117. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1118. cb(cur, "proj_out", -1);
  1119. }
  1120. // build the graph
  1121. ggml_build_forward_expand(gf, cur);
  1122. return gf;
  1123. }
  1124. // this graph is used by llava, granite and glm
  1125. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1126. ggml_cgraph * build_llava() {
  1127. const int batch_size = 1;
  1128. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1129. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1130. // Calculate the deepest feature layer based on hparams and projector type
  1131. int max_feature_layer = n_layer;
  1132. {
  1133. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1134. int il_last = hparams.n_layer - 1;
  1135. int deepest_feature_layer = -1;
  1136. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1137. il_last += 1;
  1138. }
  1139. // If we set explicit vision feature layers, only go up to the deepest one
  1140. // NOTE: only used by granite-vision models for now
  1141. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1142. if (feature_layer > deepest_feature_layer) {
  1143. deepest_feature_layer = feature_layer;
  1144. }
  1145. }
  1146. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1147. }
  1148. ggml_tensor * inp = build_inp();
  1149. // concat class_embeddings and patch_embeddings
  1150. if (model.class_embedding) {
  1151. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1152. }
  1153. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1154. ggml_set_name(positions, "positions");
  1155. ggml_set_input(positions);
  1156. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1157. ggml_tensor * inpL = inp;
  1158. // pre-layernorm
  1159. if (model.pre_ln_w) {
  1160. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1161. cb(inpL, "pre_ln", -1);
  1162. }
  1163. std::vector<ggml_tensor *> embedding_stack;
  1164. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1165. // loop over layers
  1166. for (int il = 0; il < max_feature_layer; il++) {
  1167. auto & layer = model.layers[il];
  1168. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1169. // If this is an embedding feature layer, save the output.
  1170. // NOTE: 0 index here refers to the input to the encoder.
  1171. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1172. embedding_stack.push_back(cur);
  1173. }
  1174. // layernorm1
  1175. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1176. cb(cur, "layer_inp_normed", il);
  1177. // self-attention
  1178. {
  1179. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1180. if (layer.q_b) {
  1181. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1182. }
  1183. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1184. if (layer.k_b) {
  1185. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1186. }
  1187. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1188. if (layer.v_b) {
  1189. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1190. }
  1191. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1192. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1193. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1194. cb(Qcur, "Qcur", il);
  1195. cb(Kcur, "Kcur", il);
  1196. cb(Vcur, "Vcur", il);
  1197. cur = build_attn(layer.o_w, layer.o_b,
  1198. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1199. cb(cur, "attn_out", il);
  1200. }
  1201. // re-add the layer input, e.g., residual
  1202. cur = ggml_add(ctx0, cur, inpL);
  1203. inpL = cur; // inpL = residual, cur = hidden_states
  1204. cb(cur, "ffn_inp", il);
  1205. // layernorm2
  1206. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1207. cb(cur, "ffn_inp_normed", il);
  1208. // ffn
  1209. cur = build_ffn(cur,
  1210. layer.ff_up_w, layer.ff_up_b,
  1211. layer.ff_gate_w, layer.ff_gate_b,
  1212. layer.ff_down_w, layer.ff_down_b,
  1213. hparams.ffn_op, il);
  1214. cb(cur, "ffn_out", il);
  1215. // residual 2
  1216. cur = ggml_add(ctx0, inpL, cur);
  1217. cb(cur, "layer_out", il);
  1218. inpL = cur;
  1219. }
  1220. // post-layernorm
  1221. if (model.post_ln_w) {
  1222. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1223. }
  1224. ggml_tensor * embeddings = inpL;
  1225. // process vision feature layers (used by granite)
  1226. {
  1227. // final layer is a vision feature layer
  1228. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1229. embedding_stack.push_back(inpL);
  1230. }
  1231. // If feature layers are explicitly set, stack them (if we have multiple)
  1232. if (!embedding_stack.empty()) {
  1233. embeddings = embedding_stack[0];
  1234. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1235. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1236. }
  1237. }
  1238. }
  1239. // llava projector (also used by granite)
  1240. if (ctx->model.hparams.has_llava_projector) {
  1241. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1242. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1243. ggml_set_name(patches, "patches");
  1244. ggml_set_input(patches);
  1245. // shape [1, 576, 1024]
  1246. // ne is whcn, ne = [1024, 576, 1, 1]
  1247. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1248. // print_tensor_info(embeddings, "embeddings");
  1249. // llava projector
  1250. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1251. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1252. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1253. embeddings = ggml_gelu(ctx0, embeddings);
  1254. if (model.mm_2_w) {
  1255. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1256. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1257. }
  1258. }
  1259. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1260. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1261. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1262. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1263. // First LayerNorm
  1264. embeddings = ggml_norm(ctx0, embeddings, eps);
  1265. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1266. model.mm_1_b);
  1267. // GELU activation
  1268. embeddings = ggml_gelu(ctx0, embeddings);
  1269. // Second linear layer
  1270. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1271. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1272. // Second LayerNorm
  1273. embeddings = ggml_norm(ctx0, embeddings, eps);
  1274. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1275. model.mm_4_b);
  1276. }
  1277. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1278. // MobileVLM projector
  1279. int n_patch = 24;
  1280. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1281. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1282. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1283. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1284. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1285. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1286. // block 1
  1287. ggml_tensor * block_1 = nullptr;
  1288. {
  1289. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1290. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1291. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1292. // stride = 1, padding = 1, bias is nullptr
  1293. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1294. // layer norm
  1295. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1296. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1297. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1298. block_1 = ggml_norm(ctx0, block_1, eps);
  1299. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1300. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1301. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1302. // hardswish
  1303. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1304. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1305. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1306. // pointwise conv
  1307. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1308. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1309. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1310. block_1 = ggml_relu(ctx0, block_1);
  1311. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1312. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1313. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1314. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1315. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1316. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1317. int w = block_1->ne[0], h = block_1->ne[1];
  1318. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1319. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1320. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1321. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1322. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1323. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1324. block_1 = ggml_norm(ctx0, block_1, eps);
  1325. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1326. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1327. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1328. // residual
  1329. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1330. }
  1331. // block_2
  1332. {
  1333. // stride = 2
  1334. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1335. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1336. // layer norm
  1337. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1338. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1339. block_1 = ggml_norm(ctx0, block_1, eps);
  1340. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1341. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1342. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1343. // hardswish
  1344. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1345. // not sure the parameters is right for globalAvgPooling
  1346. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1347. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1348. // pointwise conv
  1349. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1350. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1351. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1352. block_1 = ggml_relu(ctx0, block_1);
  1353. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1354. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1355. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1356. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1357. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1358. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1359. int w = block_1->ne[0], h = block_1->ne[1];
  1360. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1361. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1362. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1363. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1364. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1365. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1366. block_1 = ggml_norm(ctx0, block_1, eps);
  1367. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1368. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1369. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1370. }
  1371. embeddings = block_1;
  1372. }
  1373. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1374. {
  1375. int n_patch = 24;
  1376. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1377. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1378. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1379. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1380. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1381. // mlp_2 ne = [2048, 576, 1, 1]
  1382. // // AVG Pool Layer 2*2, strides = 2
  1383. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1384. // mlp_2 ne = [576, 2048, 1, 1]
  1385. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1386. // mlp_2 ne [24, 24, 2048, 1]
  1387. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1388. // weight ne = [3, 3, 2048, 1]
  1389. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1390. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1391. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1392. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1393. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1394. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1395. embeddings = peg_0;
  1396. }
  1397. else {
  1398. GGML_ABORT("fatal error");
  1399. }
  1400. }
  1401. // glm projector
  1402. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1403. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1404. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1405. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1406. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1407. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1408. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1409. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1410. // GLU
  1411. {
  1412. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1413. embeddings = ggml_norm(ctx0, embeddings, eps);
  1414. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1415. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1416. ggml_tensor * x = embeddings;
  1417. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1418. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1419. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1420. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1421. }
  1422. // arrangement of BOI/EOI token embeddings
  1423. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1424. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1425. {
  1426. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1427. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1428. }
  1429. }
  1430. else {
  1431. GGML_ABORT("llava: unknown projector type");
  1432. }
  1433. // build the graph
  1434. ggml_build_forward_expand(gf, embeddings);
  1435. return gf;
  1436. }
  1437. // whisper encoder with custom projector
  1438. ggml_cgraph * build_whisper_enc() {
  1439. const int n_frames = img.nx;
  1440. const int n_pos = n_frames / 2;
  1441. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1442. ggml_tensor * inp = build_inp_raw(1);
  1443. // conv1d block
  1444. {
  1445. // convolution + gelu
  1446. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1447. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1448. cur = ggml_gelu_erf(ctx0, cur);
  1449. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1450. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1451. cur = ggml_gelu_erf(ctx0, cur);
  1452. // transpose
  1453. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1454. cb(inp, "after_conv1d", -1);
  1455. }
  1456. // sanity check (only check one layer, but it should be the same for all)
  1457. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1458. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1459. GGML_ASSERT(model.layers[0].q_b);
  1460. GGML_ASSERT(model.layers[0].v_b);
  1461. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1462. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1463. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1464. ctx0, model.position_embeddings,
  1465. model.position_embeddings->ne[0], n_pos,
  1466. model.position_embeddings->nb[1], 0
  1467. );
  1468. ggml_tensor * cur = build_vit(
  1469. inp, n_pos,
  1470. NORM_TYPE_NORMAL,
  1471. hparams.ffn_op,
  1472. pos_embd_selected,
  1473. nullptr);
  1474. cb(cur, "after_transformer", -1);
  1475. if (model.audio_has_stack_frames()) {
  1476. // StackAudioFrames
  1477. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1478. int64_t stride = n_embd * hparams.proj_stack_factor;
  1479. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1480. int64_t pad = padded_len - ggml_nelements(cur);
  1481. if (pad > 0) {
  1482. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1483. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1484. }
  1485. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1486. ggml_row_size(cur->type, stride), 0);
  1487. cb(cur, "after_stacked", -1);
  1488. }
  1489. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1490. // UltravoxProjector
  1491. // pre-norm
  1492. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1493. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1494. // ffn in
  1495. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1496. // swiglu
  1497. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1498. cur = ggml_swiglu_swapped(ctx0, cur);
  1499. // mid-norm
  1500. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1501. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1502. // ffn out
  1503. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1504. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1505. // projector
  1506. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1507. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1508. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1509. // projector
  1510. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1511. cur = ggml_gelu_erf(ctx0, cur);
  1512. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1513. } else {
  1514. GGML_ABORT("%s: unknown projector type", __func__);
  1515. }
  1516. cb(cur, "projected", -1);
  1517. ggml_build_forward_expand(gf, cur);
  1518. return gf;
  1519. }
  1520. // cogvlm vision encoder
  1521. ggml_cgraph * build_cogvlm() {
  1522. GGML_ASSERT(model.class_embedding != nullptr);
  1523. GGML_ASSERT(model.position_embeddings != nullptr);
  1524. const int n_pos = n_patches + 1; // +1 for [CLS]
  1525. // build input and concatenate class embedding
  1526. ggml_tensor * inp = build_inp();
  1527. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1528. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1529. cb(inp, "inp_pos", -1);
  1530. ggml_tensor * inpL = inp;
  1531. for (int il = 0; il < n_layer; il++) {
  1532. auto & layer = model.layers[il];
  1533. ggml_tensor * cur = inpL;
  1534. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1535. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1536. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1537. cur->nb[1], 0);
  1538. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1539. cur->nb[1], n_embd * sizeof(float));
  1540. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1541. cur->nb[1], 2 * n_embd * sizeof(float));
  1542. cb(Qcur, "Qcur", il);
  1543. cb(Kcur, "Kcur", il);
  1544. cb(Vcur, "Vcur", il);
  1545. cur = build_attn(layer.o_w, layer.o_b,
  1546. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1547. cb(cur, "attn_out", il);
  1548. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1549. cb(cur, "attn_post_norm", il);
  1550. cur = ggml_add(ctx0, cur, inpL);
  1551. inpL = cur;
  1552. cur = build_ffn(cur,
  1553. layer.ff_up_w, layer.ff_up_b,
  1554. layer.ff_gate_w, layer.ff_gate_b,
  1555. layer.ff_down_w, layer.ff_down_b,
  1556. hparams.ffn_op, il);
  1557. cb(cur, "ffn_out", il);
  1558. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1559. cb(cur, "ffn_post_norm", il);
  1560. cur = ggml_add(ctx0, cur, inpL);
  1561. cb(cur, "layer_out", il);
  1562. inpL = cur;
  1563. }
  1564. // remove CLS token (like build_llama4 does)
  1565. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1566. n_embd, n_patches,
  1567. ggml_row_size(inpL->type, n_embd), 0);
  1568. // Multiply with mm_model_proj
  1569. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1570. // Apply layernorm, weight, bias
  1571. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1572. // Apply GELU
  1573. cur = ggml_gelu_inplace(ctx0, cur);
  1574. // Branch 1: multiply with mm_h_to_4h_w
  1575. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1576. // Branch 2: multiply with mm_gate_w
  1577. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1578. // Apply silu
  1579. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1580. // Apply mm_4h_to_h_w
  1581. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1582. // Concatenate with boi and eoi
  1583. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1584. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1585. // build the graph
  1586. ggml_build_forward_expand(gf, cur);
  1587. return gf;
  1588. }
  1589. private:
  1590. //
  1591. // utility functions
  1592. //
  1593. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1594. if (ctx->debug_graph) {
  1595. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1596. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1597. ggml_set_name(cur, cur_name.c_str());
  1598. ggml_set_output(cur);
  1599. ggml_build_forward_expand(gf, cur);
  1600. ctx->debug_print_tensors.push_back(cur);
  1601. }
  1602. }
  1603. // siglip2 naflex
  1604. ggml_tensor * resize_position_embeddings() {
  1605. ggml_tensor * pos_embd = model.position_embeddings;
  1606. const int height = img.ny / patch_size;
  1607. const int width = img.nx / patch_size;
  1608. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1609. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1610. GGML_ASSERT(pos_embd);
  1611. if (height == n_per_side && width == n_per_side) {
  1612. return pos_embd;
  1613. }
  1614. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1615. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1616. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1617. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1618. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1619. return pos_embd;
  1620. }
  1621. // build vision transformer (ViT) cgraph
  1622. // this function should cover most of the models
  1623. // if your model has specific features, you should probably duplicate this function
  1624. ggml_tensor * build_vit(
  1625. ggml_tensor * inp,
  1626. int64_t n_pos,
  1627. norm_type norm_t,
  1628. ffn_op_type ffn_t,
  1629. ggml_tensor * learned_pos_embd,
  1630. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1631. ) {
  1632. if (learned_pos_embd) {
  1633. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1634. cb(inp, "pos_embed", -1);
  1635. }
  1636. ggml_tensor * inpL = inp;
  1637. // pre-layernorm
  1638. if (model.pre_ln_w) {
  1639. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1640. cb(inpL, "pre_ln", -1);
  1641. }
  1642. // loop over layers
  1643. for (int il = 0; il < n_layer; il++) {
  1644. auto & layer = model.layers[il];
  1645. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1646. // layernorm1
  1647. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1648. cb(cur, "layer_inp_normed", il);
  1649. // self-attention
  1650. {
  1651. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1652. if (layer.q_b) {
  1653. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1654. }
  1655. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1656. if (layer.k_b) {
  1657. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1658. }
  1659. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1660. if (layer.v_b) {
  1661. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1662. }
  1663. if (layer.q_norm) {
  1664. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1665. cb(Qcur, "Qcur_norm", il);
  1666. }
  1667. if (layer.k_norm) {
  1668. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1669. cb(Kcur, "Kcur_norm", il);
  1670. }
  1671. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1672. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1673. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1674. cb(Qcur, "Qcur", il);
  1675. cb(Kcur, "Kcur", il);
  1676. cb(Vcur, "Vcur", il);
  1677. if (add_pos) {
  1678. Qcur = add_pos(Qcur, layer);
  1679. Kcur = add_pos(Kcur, layer);
  1680. cb(Qcur, "Qcur_pos", il);
  1681. cb(Kcur, "Kcur_pos", il);
  1682. }
  1683. cur = build_attn(layer.o_w, layer.o_b,
  1684. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1685. cb(cur, "attn_out", il);
  1686. }
  1687. if (layer.ls_1_w) {
  1688. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1689. cb(cur, "attn_out_scaled", il);
  1690. }
  1691. // re-add the layer input, e.g., residual
  1692. cur = ggml_add(ctx0, cur, inpL);
  1693. inpL = cur; // inpL = residual, cur = hidden_states
  1694. cb(cur, "ffn_inp", il);
  1695. // layernorm2
  1696. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1697. cb(cur, "ffn_inp_normed", il);
  1698. // ffn
  1699. cur = build_ffn(cur,
  1700. layer.ff_up_w, layer.ff_up_b,
  1701. layer.ff_gate_w, layer.ff_gate_b,
  1702. layer.ff_down_w, layer.ff_down_b,
  1703. ffn_t, il);
  1704. cb(cur, "ffn_out", il);
  1705. if (layer.ls_2_w) {
  1706. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1707. cb(cur, "ffn_out_scaled", il);
  1708. }
  1709. // residual 2
  1710. cur = ggml_add(ctx0, inpL, cur);
  1711. cb(cur, "layer_out", il);
  1712. inpL = cur;
  1713. }
  1714. if (ctx->model.audio_has_avgpool()) {
  1715. ggml_tensor * cur = inpL;
  1716. cur = ggml_transpose(ctx0, cur);
  1717. cur = ggml_cont(ctx0, cur);
  1718. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1719. cur = ggml_transpose(ctx0, cur);
  1720. cur = ggml_cont(ctx0, cur);
  1721. inpL = cur;
  1722. }
  1723. // post-layernorm
  1724. if (model.post_ln_w) {
  1725. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1726. }
  1727. return inpL;
  1728. }
  1729. // build the input after conv2d (inp_raw --> patches)
  1730. // returns tensor with shape [n_embd, n_patches]
  1731. ggml_tensor * build_inp() {
  1732. ggml_tensor * inp_raw = build_inp_raw();
  1733. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1734. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1735. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1736. if (model.patch_bias) {
  1737. inp = ggml_add(ctx0, inp, model.patch_bias);
  1738. cb(inp, "patch_bias", -1);
  1739. }
  1740. return inp;
  1741. }
  1742. ggml_tensor * build_inp_raw(int channels = 3) {
  1743. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1744. ggml_set_name(inp_raw, "inp_raw");
  1745. ggml_set_input(inp_raw);
  1746. return inp_raw;
  1747. }
  1748. ggml_tensor * build_norm(
  1749. ggml_tensor * cur,
  1750. ggml_tensor * mw,
  1751. ggml_tensor * mb,
  1752. norm_type type,
  1753. float norm_eps,
  1754. int il) const {
  1755. cur = type == NORM_TYPE_RMS
  1756. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1757. : ggml_norm(ctx0, cur, norm_eps);
  1758. if (mw || mb) {
  1759. cb(cur, "norm", il);
  1760. }
  1761. if (mw) {
  1762. cur = ggml_mul(ctx0, cur, mw);
  1763. if (mb) {
  1764. cb(cur, "norm_w", il);
  1765. }
  1766. }
  1767. if (mb) {
  1768. cur = ggml_add(ctx0, cur, mb);
  1769. }
  1770. return cur;
  1771. }
  1772. ggml_tensor * build_ffn(
  1773. ggml_tensor * cur,
  1774. ggml_tensor * up,
  1775. ggml_tensor * up_b,
  1776. ggml_tensor * gate,
  1777. ggml_tensor * gate_b,
  1778. ggml_tensor * down,
  1779. ggml_tensor * down_b,
  1780. ffn_op_type type_op,
  1781. int il) const {
  1782. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1783. cb(tmp, "ffn_up", il);
  1784. if (up_b) {
  1785. tmp = ggml_add(ctx0, tmp, up_b);
  1786. cb(tmp, "ffn_up_b", il);
  1787. }
  1788. if (gate) {
  1789. cur = ggml_mul_mat(ctx0, gate, cur);
  1790. cb(cur, "ffn_gate", il);
  1791. if (gate_b) {
  1792. cur = ggml_add(ctx0, cur, gate_b);
  1793. cb(cur, "ffn_gate_b", il);
  1794. }
  1795. } else {
  1796. cur = tmp;
  1797. }
  1798. // we only support parallel ffn for now
  1799. switch (type_op) {
  1800. case FFN_SILU:
  1801. if (gate) {
  1802. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1803. cb(cur, "ffn_swiglu", il);
  1804. } else {
  1805. cur = ggml_silu(ctx0, cur);
  1806. cb(cur, "ffn_silu", il);
  1807. } break;
  1808. case FFN_GELU:
  1809. if (gate) {
  1810. cur = ggml_geglu_split(ctx0, cur, tmp);
  1811. cb(cur, "ffn_geglu", il);
  1812. } else {
  1813. cur = ggml_gelu(ctx0, cur);
  1814. cb(cur, "ffn_gelu", il);
  1815. } break;
  1816. case FFN_GELU_ERF:
  1817. if (gate) {
  1818. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1819. cb(cur, "ffn_geglu_erf", il);
  1820. } else {
  1821. cur = ggml_gelu_erf(ctx0, cur);
  1822. cb(cur, "ffn_gelu_erf", il);
  1823. } break;
  1824. case FFN_GELU_QUICK:
  1825. if (gate) {
  1826. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1827. cb(cur, "ffn_geglu_quick", il);
  1828. } else {
  1829. cur = ggml_gelu_quick(ctx0, cur);
  1830. cb(cur, "ffn_gelu_quick", il);
  1831. } break;
  1832. }
  1833. if (down) {
  1834. cur = ggml_mul_mat(ctx0, down, cur);
  1835. }
  1836. if (down_b) {
  1837. cb(cur, "ffn_down", il);
  1838. }
  1839. if (down_b) {
  1840. cur = ggml_add(ctx0, cur, down_b);
  1841. }
  1842. return cur;
  1843. }
  1844. ggml_tensor * build_attn(
  1845. ggml_tensor * wo,
  1846. ggml_tensor * wo_b,
  1847. ggml_tensor * q_cur,
  1848. ggml_tensor * k_cur,
  1849. ggml_tensor * v_cur,
  1850. ggml_tensor * kq_mask,
  1851. float kq_scale,
  1852. int il) const {
  1853. // these nodes are added to the graph together so that they are not reordered
  1854. // by doing so, the number of splits in the graph is reduced
  1855. ggml_build_forward_expand(gf, q_cur);
  1856. ggml_build_forward_expand(gf, k_cur);
  1857. ggml_build_forward_expand(gf, v_cur);
  1858. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1859. //cb(q, "q", il);
  1860. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1861. //cb(k, "k", il);
  1862. ggml_tensor * cur;
  1863. if (ctx->flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  1864. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1865. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  1866. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  1867. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, 0.0f, 0.0f);
  1868. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  1869. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*cur->ne[1], cur->ne[2]*cur->ne[3]);
  1870. } else {
  1871. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1872. v = ggml_cont(ctx0, v);
  1873. const auto n_tokens = q->ne[1];
  1874. const auto n_head = q->ne[2];
  1875. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1876. // F32 may not needed for vision encoders?
  1877. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1878. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1879. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1880. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1881. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1882. }
  1883. cb(cur, "kqv_out", il);
  1884. if (wo) {
  1885. cur = ggml_mul_mat(ctx0, wo, cur);
  1886. }
  1887. if (wo_b) {
  1888. cur = ggml_add(ctx0, cur, wo_b);
  1889. }
  1890. return cur;
  1891. }
  1892. // implementation of the 2D RoPE without adding a new op in ggml
  1893. // this is not efficient (use double the memory), but works on all backends
  1894. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1895. static ggml_tensor * build_rope_2d(
  1896. ggml_context * ctx0,
  1897. ggml_tensor * cur,
  1898. ggml_tensor * pos_a, // first half
  1899. ggml_tensor * pos_b, // second half
  1900. const float freq_base,
  1901. const bool interleave_freq
  1902. ) {
  1903. const int64_t n_dim = cur->ne[0];
  1904. const int64_t n_head = cur->ne[1];
  1905. const int64_t n_pos = cur->ne[2];
  1906. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1907. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1908. // first half of cur will use 1e-0, 1e-2 (even)
  1909. // second half of cur will use 1e-1, 1e-3 (odd)
  1910. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1911. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1912. // then for the second half, we use freq_scale to shift the inv_freq
  1913. // ^ why? replace (2i) with (2i+1) in the above equation
  1914. const float freq_scale_odd = interleave_freq
  1915. ? std::pow(freq_base, (float)-2/n_dim)
  1916. : 1.0;
  1917. // first half
  1918. ggml_tensor * first;
  1919. {
  1920. first = ggml_view_3d(ctx0, cur,
  1921. n_dim/2, n_head, n_pos,
  1922. ggml_row_size(cur->type, n_dim),
  1923. ggml_row_size(cur->type, n_dim*n_head),
  1924. 0);
  1925. first = ggml_rope_ext(
  1926. ctx0,
  1927. first,
  1928. pos_a, // positions
  1929. nullptr, // freq factors
  1930. n_dim/2, // n_dims
  1931. 0, 0, freq_base,
  1932. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1933. );
  1934. }
  1935. // second half
  1936. ggml_tensor * second;
  1937. {
  1938. second = ggml_view_3d(ctx0, cur,
  1939. n_dim/2, n_head, n_pos,
  1940. ggml_row_size(cur->type, n_dim),
  1941. ggml_row_size(cur->type, n_dim*n_head),
  1942. n_dim/2 * ggml_element_size(cur));
  1943. second = ggml_rope_ext(
  1944. ctx0,
  1945. second,
  1946. pos_b, // positions
  1947. nullptr, // freq factors
  1948. n_dim/2, // n_dims
  1949. 0, 0, freq_base,
  1950. freq_scale_odd,
  1951. 0.0f, 1.0f, 0.0f, 0.0f
  1952. );
  1953. }
  1954. cur = ggml_concat(ctx0, first, second, 0);
  1955. return cur;
  1956. }
  1957. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  1958. // support dynamic resolution
  1959. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  1960. GGML_ASSERT(scale_factor > 1);
  1961. const int n_embd = cur->ne[0];
  1962. int width = img.nx / patch_size;
  1963. int height = img.ny / patch_size;
  1964. // pad width and height to factor
  1965. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  1966. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  1967. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  1968. if (pad_width || pad_height) {
  1969. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  1970. width += pad_width;
  1971. height += pad_height;
  1972. }
  1973. // unshuffle h
  1974. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  1975. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1976. // unshuffle w
  1977. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  1978. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1979. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  1980. cb(cur, "pixel_shuffle", -1);
  1981. return cur;
  1982. }
  1983. };
  1984. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1985. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1986. clip_graph graph(ctx, *imgs.entries[0]);
  1987. ggml_cgraph * res;
  1988. switch (ctx->proj_type()) {
  1989. case PROJECTOR_TYPE_GEMMA3:
  1990. case PROJECTOR_TYPE_IDEFICS3:
  1991. case PROJECTOR_TYPE_LFM2:
  1992. {
  1993. res = graph.build_siglip();
  1994. } break;
  1995. case PROJECTOR_TYPE_PIXTRAL:
  1996. case PROJECTOR_TYPE_LIGHTONOCR:
  1997. {
  1998. res = graph.build_pixtral();
  1999. } break;
  2000. case PROJECTOR_TYPE_QWEN2VL:
  2001. case PROJECTOR_TYPE_QWEN25VL:
  2002. {
  2003. res = graph.build_qwen2vl();
  2004. } break;
  2005. case PROJECTOR_TYPE_QWEN3VL:
  2006. {
  2007. res = graph.build_qwen3vl();
  2008. } break;
  2009. case PROJECTOR_TYPE_MINICPMV:
  2010. {
  2011. res = graph.build_minicpmv();
  2012. } break;
  2013. case PROJECTOR_TYPE_INTERNVL:
  2014. {
  2015. res = graph.build_internvl();
  2016. } break;
  2017. case PROJECTOR_TYPE_LLAMA4:
  2018. {
  2019. res = graph.build_llama4();
  2020. } break;
  2021. case PROJECTOR_TYPE_ULTRAVOX:
  2022. case PROJECTOR_TYPE_VOXTRAL:
  2023. case PROJECTOR_TYPE_QWEN2A:
  2024. {
  2025. res = graph.build_whisper_enc();
  2026. } break;
  2027. case PROJECTOR_TYPE_KIMIVL:
  2028. {
  2029. res = graph.build_kimivl();
  2030. } break;
  2031. case PROJECTOR_TYPE_JANUS_PRO:
  2032. {
  2033. res = graph.build_siglip();
  2034. } break;
  2035. case PROJECTOR_TYPE_COGVLM:
  2036. {
  2037. res = graph.build_cogvlm();
  2038. } break;
  2039. default:
  2040. {
  2041. res = graph.build_llava();
  2042. } break;
  2043. }
  2044. return res;
  2045. }
  2046. struct clip_model_loader {
  2047. ggml_context_ptr ctx_meta;
  2048. gguf_context_ptr ctx_gguf;
  2049. std::string fname;
  2050. size_t model_size = 0; // in bytes
  2051. bool has_vision = false;
  2052. bool has_audio = false;
  2053. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2054. clip_model_loader(const char * fname) : fname(fname) {
  2055. struct ggml_context * meta = nullptr;
  2056. struct gguf_init_params params = {
  2057. /*.no_alloc = */ true,
  2058. /*.ctx = */ &meta,
  2059. };
  2060. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2061. if (!ctx_gguf.get()) {
  2062. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2063. }
  2064. ctx_meta.reset(meta);
  2065. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2066. // print gguf info
  2067. {
  2068. std::string name;
  2069. get_string(KEY_NAME, name, false);
  2070. std::string description;
  2071. get_string(KEY_DESCRIPTION, description, false);
  2072. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2073. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2074. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2075. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2076. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2077. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2078. LOG_INF("\n");
  2079. }
  2080. // modalities
  2081. {
  2082. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2083. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2084. if (has_vision) {
  2085. LOG_INF("%s: has vision encoder\n", __func__);
  2086. }
  2087. if (has_audio) {
  2088. LOG_INF("%s: has audio encoder\n", __func__);
  2089. }
  2090. }
  2091. // tensors
  2092. {
  2093. for (int i = 0; i < n_tensors; ++i) {
  2094. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2095. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2096. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2097. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2098. size_t tensor_size = ggml_nbytes(cur);
  2099. model_size += tensor_size;
  2100. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2101. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2102. }
  2103. }
  2104. }
  2105. void load_hparams(clip_model & model, clip_modality modality) {
  2106. auto & hparams = model.hparams;
  2107. std::string log_ffn_op; // for logging
  2108. // sanity check
  2109. if (modality == CLIP_MODALITY_VISION) {
  2110. GGML_ASSERT(has_vision);
  2111. } else if (modality == CLIP_MODALITY_AUDIO) {
  2112. GGML_ASSERT(has_audio);
  2113. }
  2114. model.modality = modality;
  2115. // projector type
  2116. std::string proj_type;
  2117. {
  2118. // default key
  2119. get_string(KEY_PROJ_TYPE, proj_type, false);
  2120. // for models with mixed modalities
  2121. if (proj_type.empty()) {
  2122. if (modality == CLIP_MODALITY_VISION) {
  2123. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2124. } else if (modality == CLIP_MODALITY_AUDIO) {
  2125. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2126. } else {
  2127. GGML_ABORT("unknown modality");
  2128. }
  2129. }
  2130. model.proj_type = clip_projector_type_from_string(proj_type);
  2131. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2132. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2133. }
  2134. // correct arch for multimodal models (legacy method)
  2135. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2136. model.proj_type = modality == CLIP_MODALITY_VISION
  2137. ? PROJECTOR_TYPE_QWEN25VL
  2138. : PROJECTOR_TYPE_QWEN2A;
  2139. }
  2140. }
  2141. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2142. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2143. // other hparams
  2144. {
  2145. const char * prefix = is_vision ? "vision" : "audio";
  2146. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2147. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2148. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2149. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2150. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2151. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2152. if (is_vision) {
  2153. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2154. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2155. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2156. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2157. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2158. if (hparams.minicpmv_query_num == 0) {
  2159. // Fallback to hardcoded values for legacy models
  2160. if (hparams.minicpmv_version == 3) {
  2161. hparams.minicpmv_query_num = 64;
  2162. } else if (hparams.minicpmv_version == 4) {
  2163. hparams.minicpmv_query_num = 64;
  2164. } else if (hparams.minicpmv_version == 5) {
  2165. hparams.minicpmv_query_num = 64;
  2166. } else if (hparams.minicpmv_version == 6) {
  2167. hparams.minicpmv_query_num = 64;
  2168. } else {
  2169. hparams.minicpmv_query_num = 96;
  2170. }
  2171. }
  2172. } else if (is_audio) {
  2173. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2174. } else {
  2175. GGML_ASSERT(false && "unknown modality");
  2176. }
  2177. // for pinpoints, we need to convert it into a list of resolution candidates
  2178. {
  2179. std::vector<int> pinpoints;
  2180. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2181. if (!pinpoints.empty()) {
  2182. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2183. hparams.image_res_candidates.push_back({
  2184. pinpoints[i],
  2185. pinpoints[i+1],
  2186. });
  2187. }
  2188. }
  2189. }
  2190. // default warmup value
  2191. hparams.warmup_image_size = hparams.image_size;
  2192. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2193. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2194. || model.proj_type == PROJECTOR_TYPE_LDP
  2195. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2196. {
  2197. bool use_gelu = false;
  2198. bool use_silu = false;
  2199. get_bool(KEY_USE_GELU, use_gelu, false);
  2200. get_bool(KEY_USE_SILU, use_silu, false);
  2201. if (use_gelu && use_silu) {
  2202. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2203. }
  2204. if (use_gelu) {
  2205. hparams.ffn_op = FFN_GELU;
  2206. log_ffn_op = "gelu";
  2207. } else if (use_silu) {
  2208. hparams.ffn_op = FFN_SILU;
  2209. log_ffn_op = "silu";
  2210. } else {
  2211. hparams.ffn_op = FFN_GELU_QUICK;
  2212. log_ffn_op = "gelu_quick";
  2213. }
  2214. }
  2215. {
  2216. std::string mm_patch_merge_type;
  2217. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2218. if (mm_patch_merge_type == "spatial_unpad") {
  2219. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2220. }
  2221. }
  2222. if (is_vision) {
  2223. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2224. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2225. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2226. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2227. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2228. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2229. for (int i = 0; i < 3; ++i) {
  2230. hparams.image_mean[i] = mean_data[i];
  2231. hparams.image_std[i] = std_data[i];
  2232. }
  2233. }
  2234. // Load the vision feature layer indices if they are explicitly provided;
  2235. // if multiple vision feature layers are present, the values will be concatenated
  2236. // to form the final visual features.
  2237. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2238. // be non-negative, since we use -1 to mark values as unset here.
  2239. std::vector<int> vision_feature_layer;
  2240. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2241. // convert std::vector to std::unordered_set
  2242. for (auto & layer : vision_feature_layer) {
  2243. hparams.vision_feature_layer.insert(layer);
  2244. }
  2245. // model-specific params
  2246. switch (model.proj_type) {
  2247. case PROJECTOR_TYPE_MINICPMV:
  2248. {
  2249. if (hparams.minicpmv_version == 0) {
  2250. hparams.minicpmv_version = 2; // default to 2 if not set
  2251. }
  2252. } break;
  2253. case PROJECTOR_TYPE_INTERNVL:
  2254. {
  2255. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2256. } break;
  2257. case PROJECTOR_TYPE_IDEFICS3:
  2258. {
  2259. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2260. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  2261. } break;
  2262. case PROJECTOR_TYPE_LFM2:
  2263. {
  2264. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2265. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  2266. hparams.set_limit_image_tokens(64, 256);
  2267. } break;
  2268. case PROJECTOR_TYPE_PIXTRAL:
  2269. case PROJECTOR_TYPE_LIGHTONOCR:
  2270. {
  2271. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  2272. // TODO: verify the image_min_tokens
  2273. hparams.rope_theta = 10000.0f;
  2274. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2275. hparams.set_limit_image_tokens(8, 1024);
  2276. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2277. } break;
  2278. case PROJECTOR_TYPE_KIMIVL:
  2279. {
  2280. hparams.rope_theta = 10000.0f;
  2281. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2282. // TODO: check kimivl preprocessor for exact values
  2283. hparams.set_limit_image_tokens(8, 1024);
  2284. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2285. } break;
  2286. case PROJECTOR_TYPE_GEMMA3:
  2287. {
  2288. // default value (used by all model sizes in gemma 3 family)
  2289. // number of patches for each **side** is reduced by a factor of 4
  2290. hparams.n_merge = 4;
  2291. // test model (tinygemma3) has a different value, we optionally read it
  2292. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2293. } break;
  2294. case PROJECTOR_TYPE_QWEN2VL:
  2295. case PROJECTOR_TYPE_QWEN25VL:
  2296. case PROJECTOR_TYPE_QWEN3VL:
  2297. {
  2298. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  2299. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2300. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  2301. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2302. // the actual max limit is 12845056/14/14/2/2/4 = 4096 tokens
  2303. // but we set a lower value to avoid OOM
  2304. // TODO: make it configurable by user
  2305. // TODO (2): bbox coordinates become inaccurate with small number of tokens,
  2306. // therefore we need to increase the min_tokens
  2307. // see: https://github.com/ggml-org/llama.cpp/issues/16842#issuecomment-3475144858
  2308. hparams.set_limit_image_tokens(8, 2048);
  2309. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2310. } break;
  2311. case PROJECTOR_TYPE_LLAMA4:
  2312. {
  2313. hparams.rope_theta = 10000.0f;
  2314. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2315. set_llava_uhd_res_candidates(model, 3);
  2316. } break;
  2317. case PROJECTOR_TYPE_ULTRAVOX:
  2318. case PROJECTOR_TYPE_QWEN2A:
  2319. case PROJECTOR_TYPE_VOXTRAL:
  2320. {
  2321. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2322. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2323. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2324. if (hparams.n_mel_bins != 128) {
  2325. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2326. }
  2327. hparams.ffn_op = FFN_GELU_ERF;
  2328. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2329. } break;
  2330. default:
  2331. break;
  2332. }
  2333. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2334. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2335. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2336. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2337. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2338. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2339. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2340. if (is_vision) {
  2341. LOG_INF("\n--- vision hparams ---\n");
  2342. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2343. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2344. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2345. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2346. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  2347. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2348. if (hparams.image_min_pixels > 0) {
  2349. LOG_INF("%s: image_min_pixels: %d\n", __func__, hparams.image_min_pixels);
  2350. }
  2351. if (hparams.image_max_pixels > 0) {
  2352. LOG_INF("%s: image_max_pixels: %d\n", __func__, hparams.image_max_pixels);
  2353. }
  2354. } else if (is_audio) {
  2355. LOG_INF("\n--- audio hparams ---\n");
  2356. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2357. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2358. }
  2359. LOG_INF("\n");
  2360. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2361. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2362. }
  2363. }
  2364. void load_tensors(clip_ctx & ctx_clip) {
  2365. auto & model = ctx_clip.model;
  2366. auto & hparams = model.hparams;
  2367. std::map<std::string, size_t> tensor_offset;
  2368. std::vector<ggml_tensor *> tensors_to_load;
  2369. // TODO @ngxson : support both audio and video in the future
  2370. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2371. // get offsets
  2372. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2373. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2374. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2375. }
  2376. // create data context
  2377. struct ggml_init_params params = {
  2378. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2379. /*.mem_buffer =*/ NULL,
  2380. /*.no_alloc =*/ true,
  2381. };
  2382. ctx_clip.ctx_data.reset(ggml_init(params));
  2383. if (!ctx_clip.ctx_data) {
  2384. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2385. }
  2386. // helper function
  2387. auto get_tensor = [&](const std::string & name, bool required = true) {
  2388. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2389. if (!cur && required) {
  2390. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2391. }
  2392. if (cur) {
  2393. tensors_to_load.push_back(cur);
  2394. // add tensors to context
  2395. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2396. ggml_set_name(data_tensor, cur->name);
  2397. cur = data_tensor;
  2398. }
  2399. return cur;
  2400. };
  2401. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2402. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2403. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2404. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2405. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2406. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2407. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2408. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2409. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2410. // layers
  2411. model.layers.resize(hparams.n_layer);
  2412. for (int il = 0; il < hparams.n_layer; ++il) {
  2413. auto & layer = model.layers[il];
  2414. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2415. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2416. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2417. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2418. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2419. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2420. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2421. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2422. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2423. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2424. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2425. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2426. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2427. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2428. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2429. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2430. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2431. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2432. // ffn
  2433. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2434. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2435. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2436. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2437. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2438. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2439. // qwen3vl deepstack layer
  2440. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2441. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2442. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2443. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2444. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2445. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2446. if (layer.has_deepstack()) {
  2447. model.n_deepstack_layers++;
  2448. }
  2449. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2450. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2451. bool is_ffn_swapped = (
  2452. // only old models need this fix
  2453. model.proj_type == PROJECTOR_TYPE_MLP
  2454. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2455. || model.proj_type == PROJECTOR_TYPE_LDP
  2456. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2457. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2458. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2459. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2460. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2461. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2462. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2463. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2464. if (is_ffn_swapped) {
  2465. // swap up and down weights
  2466. ggml_tensor * tmp = layer.ff_up_w;
  2467. layer.ff_up_w = layer.ff_down_w;
  2468. layer.ff_down_w = tmp;
  2469. // swap up and down biases
  2470. tmp = layer.ff_up_b;
  2471. layer.ff_up_b = layer.ff_down_b;
  2472. layer.ff_down_b = tmp;
  2473. if (il == 0) {
  2474. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2475. }
  2476. }
  2477. }
  2478. switch (model.proj_type) {
  2479. case PROJECTOR_TYPE_MLP:
  2480. case PROJECTOR_TYPE_MLP_NORM:
  2481. {
  2482. // LLaVA projection
  2483. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2484. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2485. // Yi-type llava
  2486. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2487. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2488. // missing in Yi-type llava
  2489. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2490. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2491. // Yi-type llava
  2492. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2493. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2494. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2495. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2496. if (model.mm_3_w) {
  2497. // TODO: this is a hack to support Yi-type llava
  2498. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2499. }
  2500. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2501. } break;
  2502. case PROJECTOR_TYPE_LDP:
  2503. {
  2504. // MobileVLM projection
  2505. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2506. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2507. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2508. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2509. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2510. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2511. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2512. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2513. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2514. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2515. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2516. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2517. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2518. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2519. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2520. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2521. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2522. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2523. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2524. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2525. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2526. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2527. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2528. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2529. } break;
  2530. case PROJECTOR_TYPE_LDPV2:
  2531. {
  2532. // MobilVLM_V2 projection
  2533. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2534. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2535. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2536. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2537. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2538. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2539. } break;
  2540. case PROJECTOR_TYPE_MINICPMV:
  2541. {
  2542. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2543. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2544. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2545. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2546. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2547. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2548. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2549. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2550. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2551. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2552. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2553. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2554. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2555. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2556. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2557. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2558. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2559. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2560. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2561. } break;
  2562. case PROJECTOR_TYPE_GLM_EDGE:
  2563. {
  2564. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2565. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2566. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2567. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2568. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2569. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2570. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2571. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2572. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2573. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2574. } break;
  2575. case PROJECTOR_TYPE_QWEN2VL:
  2576. case PROJECTOR_TYPE_QWEN25VL:
  2577. {
  2578. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2579. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2580. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2581. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2582. } break;
  2583. case PROJECTOR_TYPE_QWEN3VL:
  2584. {
  2585. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2586. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2587. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2588. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2589. } break;
  2590. case PROJECTOR_TYPE_GEMMA3:
  2591. {
  2592. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2593. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2594. } break;
  2595. case PROJECTOR_TYPE_IDEFICS3:
  2596. {
  2597. model.projection = get_tensor(TN_MM_PROJECTOR);
  2598. } break;
  2599. case PROJECTOR_TYPE_LFM2:
  2600. case PROJECTOR_TYPE_KIMIVL:
  2601. {
  2602. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2603. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2604. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2605. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2606. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2607. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2608. } break;
  2609. case PROJECTOR_TYPE_PIXTRAL:
  2610. {
  2611. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2612. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2613. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2614. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2615. // [IMG_BREAK] token embedding
  2616. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2617. // for mistral small 3.1
  2618. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2619. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2620. } break;
  2621. case PROJECTOR_TYPE_LIGHTONOCR:
  2622. {
  2623. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2624. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2625. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2626. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2627. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2628. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2629. } break;
  2630. case PROJECTOR_TYPE_ULTRAVOX:
  2631. {
  2632. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2633. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2634. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2635. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2636. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2637. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2638. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2639. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2640. } break;
  2641. case PROJECTOR_TYPE_QWEN2A:
  2642. {
  2643. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2644. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2645. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2646. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2647. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2648. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2649. } break;
  2650. case PROJECTOR_TYPE_VOXTRAL:
  2651. {
  2652. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2653. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2654. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2655. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2656. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2657. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2658. } break;
  2659. case PROJECTOR_TYPE_INTERNVL:
  2660. {
  2661. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2662. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2663. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2664. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2665. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2666. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2667. } break;
  2668. case PROJECTOR_TYPE_LLAMA4:
  2669. {
  2670. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2671. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2672. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2673. } break;
  2674. case PROJECTOR_TYPE_COGVLM:
  2675. {
  2676. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2677. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2678. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2679. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2680. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2681. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2682. model.mm_boi = get_tensor(TN_TOK_BOI);
  2683. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2684. } break;
  2685. case PROJECTOR_TYPE_JANUS_PRO:
  2686. {
  2687. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2688. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2689. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2690. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2691. } break;
  2692. default:
  2693. GGML_ASSERT(false && "unknown projector type");
  2694. }
  2695. // load data
  2696. {
  2697. std::vector<uint8_t> read_buf;
  2698. auto fin = std::ifstream(fname, std::ios::binary);
  2699. if (!fin) {
  2700. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2701. }
  2702. // alloc memory and offload data
  2703. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2704. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2705. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2706. for (auto & t : tensors_to_load) {
  2707. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2708. const size_t offset = tensor_offset[t->name];
  2709. fin.seekg(offset, std::ios::beg);
  2710. if (!fin) {
  2711. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2712. }
  2713. size_t num_bytes = ggml_nbytes(cur);
  2714. if (ggml_backend_buft_is_host(buft)) {
  2715. // for the CPU and Metal backend, we can read directly into the tensor
  2716. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2717. } else {
  2718. // read into a temporary buffer first, then copy to device memory
  2719. read_buf.resize(num_bytes);
  2720. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2721. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2722. }
  2723. }
  2724. fin.close();
  2725. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2726. }
  2727. }
  2728. struct support_info_op {
  2729. ggml_tensor * op;
  2730. // true if the op runs on the accelerated ctx_clip.backend
  2731. bool is_accel = true;
  2732. };
  2733. struct support_info_graph {
  2734. // whether the clip_ctx.backend supports flash attention
  2735. bool fattn = true;
  2736. ggml_tensor * fattn_op = nullptr; // for debugging
  2737. std::vector<support_info_op> ops;
  2738. };
  2739. static void warmup(clip_ctx & ctx_clip) {
  2740. support_info_graph info;
  2741. if (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_AUTO) {
  2742. // try to enable flash attention to see if it's supported
  2743. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_ENABLED;
  2744. info = alloc_compute_meta(ctx_clip);
  2745. if (!info.fattn && info.fattn_op) {
  2746. auto op = info.fattn_op;
  2747. LOG_WRN("%s: *****************************************************************\n", __func__);
  2748. LOG_WRN("%s: WARNING: flash attention not supported by %s, memory usage will increase\n", __func__, ggml_backend_name(ctx_clip.backend));
  2749. LOG_WRN("%s: op params: \n", __func__);
  2750. static auto print_shape = [](const char * fn, const char * name, ggml_tensor * t) {
  2751. LOG_WRN("%s: %s: type = %s, ne = [%d %d %d %d], nb = [%d %d %d %d]\n", fn,
  2752. name, ggml_type_name(t->type),
  2753. t->ne[0], t->ne[1], t->ne[2], t->ne[3],
  2754. t->nb[0], t->nb[1], t->nb[2], t->nb[3]);
  2755. };
  2756. print_shape(__func__, " dst", op);
  2757. print_shape(__func__, "src0", op->src[0]);
  2758. print_shape(__func__, "src1", op->src[1]);
  2759. print_shape(__func__, "src2", op->src[2]);
  2760. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2761. LOG_WRN("%s: *****************************************************************\n", __func__);
  2762. ctx_clip.flash_attn_type = CLIP_FLASH_ATTN_TYPE_DISABLED;
  2763. alloc_compute_meta(ctx_clip);
  2764. }
  2765. } else {
  2766. info = alloc_compute_meta(ctx_clip);
  2767. if (!info.fattn && ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
  2768. LOG_WRN("%s: flash attention is not supported by the current backend; falling back to CPU (performance will be degraded)\n", __func__);
  2769. }
  2770. }
  2771. LOG_INF("%s: flash attention is %s\n", __func__,
  2772. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2773. // print ops that are not supported by the GPU backend (if there is one)
  2774. if (ctx_clip.backend && ctx_clip.backend != ctx_clip.backend_cpu) {
  2775. std::vector<support_info_op> unsupported_ops;
  2776. for (const auto & op : info.ops) {
  2777. if (!op.is_accel) {
  2778. unsupported_ops.push_back(op);
  2779. }
  2780. }
  2781. if (!unsupported_ops.empty()) {
  2782. LOG_WRN("%s: *****************************************************************\n", __func__);
  2783. LOG_WRN("%s: WARNING: the CLIP graph uses unsupported operators by the backend\n", __func__);
  2784. LOG_WRN("%s: the performance will be suboptimal \n", __func__);
  2785. LOG_WRN("%s: list of unsupported ops (backend=%s):\n", __func__, ggml_backend_name(ctx_clip.backend));
  2786. for (const auto & op : unsupported_ops) {
  2787. LOG_WRN("%s: %16s: type = %s, ne = [%d %d %d %d]\n", __func__,
  2788. ggml_op_name(op.op->op),
  2789. ggml_type_name(op.op->type),
  2790. op.op->ne[0], op.op->ne[1], op.op->ne[2], op.op->ne[3]);
  2791. }
  2792. LOG_WRN("%s: flash attention is %s\n", __func__,
  2793. (ctx_clip.flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) ? "enabled" : "disabled");
  2794. LOG_WRN("%s: please report this on github as an issue\n", __func__);
  2795. LOG_WRN("%s: ref: https://github.com/ggml-org/llama.cpp/pull/16837#issuecomment-3461676118\n", __func__);
  2796. LOG_WRN("%s: *****************************************************************\n", __func__);
  2797. }
  2798. }
  2799. }
  2800. static support_info_graph alloc_compute_meta(clip_ctx & ctx_clip) {
  2801. const auto & hparams = ctx_clip.model.hparams;
  2802. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2803. // create a fake batch
  2804. clip_image_f32_batch batch;
  2805. clip_image_f32_ptr img(clip_image_f32_init());
  2806. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2807. img->nx = hparams.warmup_image_size;
  2808. img->ny = hparams.warmup_image_size;
  2809. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  2810. } else {
  2811. img->nx = hparams.warmup_audio_size;
  2812. img->ny = hparams.n_mel_bins;
  2813. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  2814. }
  2815. batch.entries.push_back(std::move(img));
  2816. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2817. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2818. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2819. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2820. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2821. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2822. if (size > 1) {
  2823. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2824. ggml_backend_buft_name(buft),
  2825. size / 1024.0 / 1024.0);
  2826. }
  2827. }
  2828. const int n_splits = ggml_backend_sched_get_n_splits(ctx_clip.sched.get());
  2829. const int n_nodes = ggml_graph_n_nodes(gf);
  2830. LOG_INF("%s: graph splits = %d, nodes = %d\n", __func__, n_splits, n_nodes);
  2831. support_info_graph res {
  2832. /*.fattn = */ true,
  2833. /*.fattn_op = */ nullptr,
  2834. /*.ops = */ {},
  2835. };
  2836. // check op support
  2837. for (int i = 0; i < ggml_graph_n_nodes(gf); i++) {
  2838. ggml_tensor * node = ggml_graph_node(gf, i);
  2839. res.ops.push_back({node, true});
  2840. if (!ggml_backend_supports_op(ctx_clip.backend, node)) {
  2841. res.ops.back().is_accel = false;
  2842. if (node->op == GGML_OP_FLASH_ATTN_EXT) {
  2843. res.fattn = false;
  2844. res.fattn_op = node;
  2845. }
  2846. }
  2847. }
  2848. return res;
  2849. }
  2850. void get_bool(const std::string & key, bool & output, bool required = true) const {
  2851. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2852. if (i < 0) {
  2853. if (required) {
  2854. throw std::runtime_error("Key not found: " + key);
  2855. }
  2856. return;
  2857. }
  2858. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2859. }
  2860. void get_i32(const std::string & key, int & output, bool required = true) const {
  2861. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2862. if (i < 0) {
  2863. if (required) {
  2864. throw std::runtime_error("Key not found: " + key);
  2865. }
  2866. return;
  2867. }
  2868. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2869. }
  2870. void get_u32(const std::string & key, int & output, bool required = true) const {
  2871. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2872. if (i < 0) {
  2873. if (required) {
  2874. throw std::runtime_error("Key not found: " + key);
  2875. }
  2876. return;
  2877. }
  2878. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2879. }
  2880. void get_f32(const std::string & key, float & output, bool required = true) const {
  2881. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2882. if (i < 0) {
  2883. if (required) {
  2884. throw std::runtime_error("Key not found: " + key);
  2885. }
  2886. return;
  2887. }
  2888. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2889. }
  2890. void get_string(const std::string & key, std::string & output, bool required = true) const {
  2891. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2892. if (i < 0) {
  2893. if (required) {
  2894. throw std::runtime_error("Key not found: " + key);
  2895. }
  2896. return;
  2897. }
  2898. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2899. }
  2900. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) const {
  2901. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2902. if (i < 0) {
  2903. if (required) {
  2904. throw std::runtime_error("Key not found: " + key);
  2905. }
  2906. return;
  2907. }
  2908. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2909. output.resize(n);
  2910. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2911. for (int i = 0; i < n; ++i) {
  2912. output[i] = values[i];
  2913. }
  2914. }
  2915. static void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2916. auto & hparams = model.hparams;
  2917. for (int x = 1; x <= max_patches_per_side; x++) {
  2918. for (int y = 1; y <= max_patches_per_side; y++) {
  2919. if (x == 1 && y == 1) {
  2920. continue; // skip the first point
  2921. }
  2922. hparams.image_res_candidates.push_back(clip_image_size{
  2923. x*hparams.image_size,
  2924. y*hparams.image_size,
  2925. });
  2926. }
  2927. }
  2928. }
  2929. };
  2930. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2931. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2932. clip_ctx * ctx_vision = nullptr;
  2933. clip_ctx * ctx_audio = nullptr;
  2934. try {
  2935. clip_model_loader loader(fname);
  2936. if (loader.has_vision) {
  2937. ctx_vision = new clip_ctx(ctx_params);
  2938. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2939. loader.load_tensors(*ctx_vision);
  2940. loader.warmup(*ctx_vision);
  2941. }
  2942. if (loader.has_audio) {
  2943. ctx_audio = new clip_ctx(ctx_params);
  2944. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2945. loader.load_tensors(*ctx_audio);
  2946. loader.warmup(*ctx_audio);
  2947. }
  2948. } catch (const std::exception & e) {
  2949. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2950. delete ctx_vision;
  2951. delete ctx_audio;
  2952. return {nullptr, nullptr};
  2953. }
  2954. return {ctx_vision, ctx_audio};
  2955. }
  2956. struct clip_image_size * clip_image_size_init() {
  2957. struct clip_image_size * load_image_size = new struct clip_image_size();
  2958. load_image_size->width = 448;
  2959. load_image_size->height = 448;
  2960. return load_image_size;
  2961. }
  2962. struct clip_image_u8 * clip_image_u8_init() {
  2963. return new clip_image_u8();
  2964. }
  2965. struct clip_image_f32 * clip_image_f32_init() {
  2966. return new clip_image_f32();
  2967. }
  2968. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2969. return new clip_image_f32_batch();
  2970. }
  2971. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2972. if (nx) *nx = img->nx;
  2973. if (ny) *ny = img->ny;
  2974. return img->buf.data();
  2975. }
  2976. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2977. if (load_image_size == nullptr) {
  2978. return;
  2979. }
  2980. delete load_image_size;
  2981. }
  2982. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  2983. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  2984. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { delete batch; }
  2985. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { delete batch; }
  2986. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2987. return batch->entries.size();
  2988. }
  2989. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2990. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2991. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2992. return 0;
  2993. }
  2994. return batch->entries[idx]->nx;
  2995. }
  2996. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2997. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2998. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2999. return 0;
  3000. }
  3001. return batch->entries[idx]->ny;
  3002. }
  3003. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  3004. if (idx < 0 || idx >= (int)batch->entries.size()) {
  3005. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  3006. return nullptr;
  3007. }
  3008. return batch->entries[idx].get();
  3009. }
  3010. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  3011. img->nx = nx;
  3012. img->ny = ny;
  3013. img->buf.resize(3 * nx * ny);
  3014. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  3015. }
  3016. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  3017. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  3018. dst.nx = src.nx;
  3019. dst.ny = src.ny;
  3020. dst.buf.resize(src.buf.size());
  3021. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  3022. for (size_t i = 0; i < src.buf.size(); ++i) {
  3023. int c = i % 3; // rgb
  3024. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  3025. }
  3026. }
  3027. // set of tools to manupulate images
  3028. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  3029. struct img_tool {
  3030. enum resize_algo {
  3031. RESIZE_ALGO_BILINEAR,
  3032. RESIZE_ALGO_BICUBIC,
  3033. // RESIZE_ALGO_LANCZOS, // TODO
  3034. };
  3035. static void resize(
  3036. const clip_image_u8 & src,
  3037. clip_image_u8 & dst,
  3038. const clip_image_size & target_resolution,
  3039. resize_algo algo,
  3040. bool add_padding = true, // TODO: define the behavior for add_padding = false
  3041. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  3042. dst.nx = target_resolution.width;
  3043. dst.ny = target_resolution.height;
  3044. dst.buf.resize(3 * dst.nx * dst.ny);
  3045. if (dst.nx == src.nx && dst.ny == src.ny) {
  3046. // no resize needed, simple copy
  3047. dst.buf = src.buf;
  3048. return;
  3049. }
  3050. if (!add_padding) {
  3051. // direct resize
  3052. switch (algo) {
  3053. case RESIZE_ALGO_BILINEAR:
  3054. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  3055. break;
  3056. case RESIZE_ALGO_BICUBIC:
  3057. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  3058. break;
  3059. default:
  3060. throw std::runtime_error("Unsupported resize algorithm");
  3061. }
  3062. } else {
  3063. // resize with padding
  3064. clip_image_u8 resized_image;
  3065. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  3066. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  3067. float scale = std::min(scale_w, scale_h);
  3068. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  3069. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  3070. switch (algo) {
  3071. case RESIZE_ALGO_BILINEAR:
  3072. resize_bilinear(src, resized_image, new_width, new_height);
  3073. break;
  3074. case RESIZE_ALGO_BICUBIC:
  3075. resize_bicubic(src, resized_image, new_width, new_height);
  3076. break;
  3077. default:
  3078. throw std::runtime_error("Unsupported resize algorithm");
  3079. }
  3080. // fill dst with pad_color
  3081. fill(dst, pad_color);
  3082. int offset_x = (target_resolution.width - new_width) / 2;
  3083. int offset_y = (target_resolution.height - new_height) / 2;
  3084. composite(dst, resized_image, offset_x, offset_y);
  3085. }
  3086. }
  3087. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  3088. dst.nx = w;
  3089. dst.ny = h;
  3090. dst.buf.resize(3 * w * h);
  3091. for (int i = 0; i < h; ++i) {
  3092. for (int j = 0; j < w; ++j) {
  3093. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  3094. int dst_idx = 3 * (i*w + j);
  3095. dst.buf[dst_idx] = image.buf[src_idx];
  3096. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  3097. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  3098. }
  3099. }
  3100. }
  3101. // calculate the size of the **resized** image, while preserving the aspect ratio
  3102. // the calculated size will be aligned to the nearest multiple of align_size
  3103. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  3104. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  3105. GGML_ASSERT(align_size > 0);
  3106. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  3107. return {0, 0};
  3108. }
  3109. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  3110. static_cast<float>(longest_edge) / inp_size.height);
  3111. float target_width_f = static_cast<float>(inp_size.width) * scale;
  3112. float target_height_f = static_cast<float>(inp_size.height) * scale;
  3113. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3114. int aligned_width = ceil_by_factor(target_width_f);
  3115. int aligned_height = ceil_by_factor(target_height_f);
  3116. return {aligned_width, aligned_height};
  3117. }
  3118. // calculate the size of the **resized** image, while preserving the aspect ratio
  3119. // the calculated size will have min_pixels <= W*H <= max_pixels
  3120. // this is referred as "smart_resize" in transformers code
  3121. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  3122. GGML_ASSERT(align_size > 0);
  3123. const int width = inp_size.width;
  3124. const int height = inp_size.height;
  3125. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3126. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3127. // always align up first
  3128. int h_bar = std::max(align_size, ceil_by_factor(height));
  3129. int w_bar = std::max(align_size, ceil_by_factor(width));
  3130. if (h_bar * w_bar > max_pixels) {
  3131. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  3132. h_bar = std::max(align_size, floor_by_factor(height / beta));
  3133. w_bar = std::max(align_size, floor_by_factor(width / beta));
  3134. } else if (h_bar * w_bar < min_pixels) {
  3135. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  3136. h_bar = ceil_by_factor(height * beta);
  3137. w_bar = ceil_by_factor(width * beta);
  3138. }
  3139. return {w_bar, h_bar};
  3140. }
  3141. // draw src image into dst image at offset (offset_x, offset_y)
  3142. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  3143. for (int y = 0; y < src.ny; ++y) {
  3144. for (int x = 0; x < src.nx; ++x) {
  3145. int dx = x + offset_x;
  3146. int dy = y + offset_y;
  3147. // skip pixels that would be out of bounds in the destination
  3148. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  3149. continue;
  3150. }
  3151. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  3152. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  3153. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  3154. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  3155. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  3156. }
  3157. }
  3158. }
  3159. // fill the image with a solid color
  3160. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  3161. for (size_t i = 0; i < img.buf.size(); i += 3) {
  3162. img.buf[i] = color[0];
  3163. img.buf[i + 1] = color[1];
  3164. img.buf[i + 2] = color[2];
  3165. }
  3166. }
  3167. private:
  3168. // Bilinear resize function
  3169. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  3170. dst.nx = target_width;
  3171. dst.ny = target_height;
  3172. dst.buf.resize(3 * target_width * target_height);
  3173. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  3174. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  3175. for (int y = 0; y < target_height; y++) {
  3176. for (int x = 0; x < target_width; x++) {
  3177. float px = x_ratio * x;
  3178. float py = y_ratio * y;
  3179. int x_floor = static_cast<int>(px);
  3180. int y_floor = static_cast<int>(py);
  3181. float x_lerp = px - x_floor;
  3182. float y_lerp = py - y_floor;
  3183. for (int c = 0; c < 3; c++) {
  3184. float top = lerp(
  3185. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  3186. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  3187. x_lerp
  3188. );
  3189. float bottom = lerp(
  3190. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  3191. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  3192. x_lerp
  3193. );
  3194. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  3195. }
  3196. }
  3197. }
  3198. }
  3199. // Bicubic resize function
  3200. // part of image will be cropped if the aspect ratio is different
  3201. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  3202. const int nx = img.nx;
  3203. const int ny = img.ny;
  3204. dst.nx = target_width;
  3205. dst.ny = target_height;
  3206. dst.buf.resize(3 * target_width * target_height);
  3207. float Cc;
  3208. float C[5] = {};
  3209. float d0, d2, d3, a0, a1, a2, a3;
  3210. int i, j, k, jj;
  3211. int x, y;
  3212. float dx, dy;
  3213. float tx, ty;
  3214. tx = (float)nx / (float)target_width;
  3215. ty = (float)ny / (float)target_height;
  3216. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  3217. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  3218. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  3219. for (i = 0; i < target_height; i++) {
  3220. for (j = 0; j < target_width; j++) {
  3221. x = (int)(tx * j);
  3222. y = (int)(ty * i);
  3223. dx = tx * j - x;
  3224. dy = ty * i - y;
  3225. for (k = 0; k < 3; k++) {
  3226. for (jj = 0; jj <= 3; jj++) {
  3227. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3228. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3229. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3230. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3231. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3232. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3233. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3234. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  3235. d0 = C[0] - C[1];
  3236. d2 = C[2] - C[1];
  3237. d3 = C[3] - C[1];
  3238. a0 = C[1];
  3239. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3240. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3241. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3242. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  3243. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  3244. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  3245. }
  3246. }
  3247. }
  3248. }
  3249. return true;
  3250. }
  3251. static inline int clip(int x, int lower, int upper) {
  3252. return std::max(lower, std::min(x, upper));
  3253. }
  3254. // Linear interpolation between two points
  3255. static inline float lerp(float s, float e, float t) {
  3256. return s + (e - s) * t;
  3257. }
  3258. };
  3259. /**
  3260. * implementation of LLaVA-UHD:
  3261. * - https://arxiv.org/pdf/2403.11703
  3262. * - https://github.com/thunlp/LLaVA-UHD
  3263. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3264. *
  3265. * overview:
  3266. * - an image always have a single overview (downscaled image)
  3267. * - an image can have 0 or multiple slices, depending on the image size
  3268. * - each slice can then be considered as a separate image
  3269. *
  3270. * for example:
  3271. *
  3272. * [overview] --> [slice 1] --> [slice 2]
  3273. * | |
  3274. * +--> [slice 3] --> [slice 4]
  3275. */
  3276. struct llava_uhd {
  3277. struct slice_coordinates {
  3278. int x;
  3279. int y;
  3280. clip_image_size size;
  3281. };
  3282. struct slice_instructions {
  3283. clip_image_size overview_size; // size of downscaled image
  3284. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3285. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3286. std::vector<slice_coordinates> slices;
  3287. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3288. };
  3289. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3290. slice_instructions res;
  3291. const int patch_size = clip_get_patch_size(ctx);
  3292. const int slice_size = clip_get_image_size(ctx);
  3293. const int original_width = original_size.width;
  3294. const int original_height = original_size.height;
  3295. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3296. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3297. if (!has_slices) {
  3298. // skip slicing logic
  3299. res.overview_size = clip_image_size{slice_size, slice_size};
  3300. res.refined_size = clip_image_size{0, 0};
  3301. res.grid_size = clip_image_size{0, 0};
  3302. return res;
  3303. }
  3304. if (has_pinpoints) {
  3305. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3306. auto refine_size = llava_uhd::select_best_resolution(
  3307. original_size,
  3308. ctx->model.hparams.image_res_candidates);
  3309. res.overview_size = clip_image_size{slice_size, slice_size};
  3310. res.refined_size = refine_size;
  3311. res.grid_size = clip_image_size{0, 0};
  3312. res.padding_refined = true;
  3313. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3314. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3315. __func__, original_width, original_height,
  3316. res.overview_size.width, res.overview_size.height,
  3317. res.refined_size.width, res.refined_size.height);
  3318. for (int y = 0; y < refine_size.height; y += slice_size) {
  3319. for (int x = 0; x < refine_size.width; x += slice_size) {
  3320. slice_coordinates slice;
  3321. slice.x = x;
  3322. slice.y = y;
  3323. slice.size.width = std::min(slice_size, refine_size.width - x);
  3324. slice.size.height = std::min(slice_size, refine_size.height - y);
  3325. res.slices.push_back(slice);
  3326. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3327. __func__, (int)res.slices.size() - 1,
  3328. slice.x, slice.y, slice.size.width, slice.size.height);
  3329. }
  3330. }
  3331. res.grid_size.height = refine_size.height / slice_size;
  3332. res.grid_size.width = refine_size.width / slice_size;
  3333. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3334. return res;
  3335. }
  3336. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3337. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3338. res.overview_size = best_size;
  3339. {
  3340. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3341. const float log_ratio = log((float)original_width / original_height);
  3342. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3343. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3344. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3345. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3346. res.grid_size = best_grid;
  3347. res.refined_size = refine_size;
  3348. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3349. __func__, original_width, original_height,
  3350. res.overview_size.width, res.overview_size.height,
  3351. res.refined_size.width, res.refined_size.height,
  3352. res.grid_size.width, res.grid_size.height);
  3353. int width = refine_size.width;
  3354. int height = refine_size.height;
  3355. int grid_x = int(width / best_grid.width);
  3356. int grid_y = int(height / best_grid.height);
  3357. for (int patches_y = 0, ic = 0;
  3358. patches_y < refine_size.height && ic < best_grid.height;
  3359. patches_y += grid_y, ic += 1) {
  3360. for (int patches_x = 0, jc = 0;
  3361. patches_x < refine_size.width && jc < best_grid.width;
  3362. patches_x += grid_x, jc += 1) {
  3363. slice_coordinates slice;
  3364. slice.x = patches_x;
  3365. slice.y = patches_y;
  3366. slice.size.width = grid_x;
  3367. slice.size.height = grid_y;
  3368. res.slices.push_back(slice);
  3369. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3370. __func__, (int)res.slices.size() - 1,
  3371. slice.x, slice.y, slice.size.width, slice.size.height);
  3372. }
  3373. }
  3374. }
  3375. return res;
  3376. }
  3377. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3378. std::vector<clip_image_u8_ptr> output;
  3379. img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
  3380. // resize to overview size
  3381. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3382. img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
  3383. output.push_back(std::move(resized_img));
  3384. if (inst.slices.empty()) {
  3385. // no slices, just return the resized image
  3386. return output;
  3387. }
  3388. // resize to refined size
  3389. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3390. if (inst.padding_refined) {
  3391. img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
  3392. } else {
  3393. // only algo bicubic preserves the ratio; old models rely on this behavior
  3394. // TODO: do we need to support other algos here?
  3395. img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
  3396. }
  3397. // create slices
  3398. for (const auto & slice : inst.slices) {
  3399. int x = slice.x;
  3400. int y = slice.y;
  3401. int w = slice.size.width;
  3402. int h = slice.size.height;
  3403. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3404. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  3405. output.push_back(std::move(img_slice));
  3406. }
  3407. return output;
  3408. }
  3409. private:
  3410. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3411. int width = original_size.width;
  3412. int height = original_size.height;
  3413. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3414. float r = static_cast<float>(width) / height;
  3415. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3416. width = static_cast<int>(height * r);
  3417. }
  3418. clip_image_size res;
  3419. res.width = ensure_divide(width, patch_size);
  3420. res.height = ensure_divide(height, patch_size);
  3421. return res;
  3422. }
  3423. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3424. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3425. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3426. float scale = std::min(scale_width, scale_height);
  3427. return clip_image_size{
  3428. static_cast<int>(orig.width * scale),
  3429. static_cast<int>(orig.height * scale),
  3430. };
  3431. }
  3432. /**
  3433. * Selects the best resolution from a list of possible resolutions based on the original size.
  3434. *
  3435. * For example, when given a list of resolutions:
  3436. * - 100x100
  3437. * - 200x100
  3438. * - 100x200
  3439. * - 200x200
  3440. *
  3441. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3442. *
  3443. * @param original_size The original size of the image
  3444. * @param possible_resolutions A list of possible resolutions
  3445. * @return The best fit resolution
  3446. */
  3447. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3448. clip_image_size best_fit;
  3449. int min_wasted_area = std::numeric_limits<int>::max();
  3450. int max_effective_resolution = 0;
  3451. for (const clip_image_size & candidate : possible_resolutions) {
  3452. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3453. int effective_resolution = std::min(
  3454. target_size.width * target_size.height,
  3455. original_size.width * original_size.height);
  3456. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3457. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3458. max_effective_resolution = effective_resolution;
  3459. min_wasted_area = wasted_area;
  3460. best_fit = candidate;
  3461. }
  3462. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3463. }
  3464. return best_fit;
  3465. }
  3466. static int ensure_divide(int length, int patch_size) {
  3467. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3468. }
  3469. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3470. int width = original_size.width;
  3471. int height = original_size.height;
  3472. int grid_x = grid.width;
  3473. int grid_y = grid.height;
  3474. int refine_width = ensure_divide(width, grid_x);
  3475. int refine_height = ensure_divide(height, grid_y);
  3476. clip_image_size grid_size;
  3477. grid_size.width = refine_width / grid_x;
  3478. grid_size.height = refine_height / grid_y;
  3479. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3480. int best_grid_width = best_grid_size.width;
  3481. int best_grid_height = best_grid_size.height;
  3482. clip_image_size refine_size;
  3483. refine_size.width = best_grid_width * grid_x;
  3484. refine_size.height = best_grid_height * grid_y;
  3485. return refine_size;
  3486. }
  3487. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3488. std::vector<int> candidate_split_grids_nums;
  3489. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3490. if (i == 1 || i > max_slice_nums) {
  3491. continue;
  3492. }
  3493. candidate_split_grids_nums.push_back(i);
  3494. }
  3495. std::vector<clip_image_size> candidate_grids;
  3496. for (int split_grids_nums : candidate_split_grids_nums) {
  3497. int m = 1;
  3498. while (m <= split_grids_nums) {
  3499. if (split_grids_nums % m == 0) {
  3500. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3501. }
  3502. ++m;
  3503. }
  3504. }
  3505. clip_image_size best_grid{1, 1};
  3506. float min_error = std::numeric_limits<float>::infinity();
  3507. for (const auto& grid : candidate_grids) {
  3508. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3509. if (error < min_error) {
  3510. best_grid = grid;
  3511. min_error = error;
  3512. }
  3513. }
  3514. return best_grid;
  3515. }
  3516. };
  3517. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3518. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3519. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3520. clip_image_size original_size{img->nx, img->ny};
  3521. auto & params = ctx->model.hparams;
  3522. switch (ctx->proj_type()) {
  3523. case PROJECTOR_TYPE_MINICPMV:
  3524. {
  3525. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3526. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3527. for (size_t i = 0; i < imgs.size(); ++i) {
  3528. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3529. clip_image_f32_ptr res(clip_image_f32_init());
  3530. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3531. res_imgs->entries.push_back(std::move(res));
  3532. }
  3533. res_imgs->grid_x = inst.grid_size.width;
  3534. res_imgs->grid_y = inst.grid_size.height;
  3535. } break;
  3536. case PROJECTOR_TYPE_QWEN2VL:
  3537. case PROJECTOR_TYPE_QWEN25VL:
  3538. case PROJECTOR_TYPE_QWEN3VL:
  3539. {
  3540. // step 1: make a blank canvas which aligns to the grid
  3541. clip_image_u8 resized;
  3542. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  3543. original_size,
  3544. params.patch_size * 2,
  3545. params.image_min_pixels,
  3546. params.image_max_pixels);
  3547. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  3548. // clip_image_save_to_bmp(resized, "preproc.bmp");
  3549. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3550. // clip_image_f32_ptr res(clip_image_f32_init());
  3551. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3552. // res_imgs->data[0] = *res;
  3553. res_imgs->entries.push_back(std::move(img_f32));
  3554. } break;
  3555. case PROJECTOR_TYPE_IDEFICS3:
  3556. {
  3557. // The refined size has two steps:
  3558. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3559. // the preprocessor longest size
  3560. // 2. Resize w/out preserving aspect ratio such that both sides are
  3561. // multiples of image_size (always rounding up)
  3562. //
  3563. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3564. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  3565. original_size, params.image_size, params.image_longest_edge);
  3566. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3567. // __func__, original_size.width, original_size.height,
  3568. // refined_size.width, refined_size.height);
  3569. llava_uhd::slice_instructions instructions;
  3570. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3571. instructions.refined_size = refined_size;
  3572. instructions.grid_size = clip_image_size{
  3573. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3574. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3575. };
  3576. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3577. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3578. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3579. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3580. /* x */x,
  3581. /* y */y,
  3582. /* size */clip_image_size{
  3583. std::min(params.image_size, refined_size.width - x),
  3584. std::min(params.image_size, refined_size.height - y)
  3585. }
  3586. });
  3587. }
  3588. }
  3589. auto imgs = llava_uhd::slice_image(img, instructions);
  3590. // cast and normalize to f32
  3591. for (size_t i = 0; i < imgs.size(); ++i) {
  3592. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3593. clip_image_f32_ptr res(clip_image_f32_init());
  3594. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3595. res_imgs->entries.push_back(std::move(res));
  3596. }
  3597. res_imgs->grid_x = instructions.grid_size.width;
  3598. res_imgs->grid_y = instructions.grid_size.height;
  3599. } break;
  3600. case PROJECTOR_TYPE_GLM_EDGE:
  3601. case PROJECTOR_TYPE_GEMMA3:
  3602. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  3603. {
  3604. clip_image_u8 resized_image;
  3605. int sz = params.image_size;
  3606. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  3607. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3608. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3609. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3610. res_imgs->entries.push_back(std::move(img_f32));
  3611. } break;
  3612. case PROJECTOR_TYPE_JANUS_PRO:
  3613. {
  3614. // Janus Pro preprocessing: pad to square with gray(127), resize to 384x384
  3615. const std::array<uint8_t, 3> pad_color = {127, 127, 127};
  3616. clip_image_u8 resized_image;
  3617. int sz = params.image_size;
  3618. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3619. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3620. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3621. res_imgs->entries.push_back(std::move(img_f32));
  3622. } break;
  3623. case PROJECTOR_TYPE_PIXTRAL:
  3624. case PROJECTOR_TYPE_LIGHTONOCR:
  3625. {
  3626. GGML_ASSERT(params.image_min_pixels && params.image_max_pixels);
  3627. clip_image_u8 resized_image;
  3628. // the original pixtral model doesn't have n_merge
  3629. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  3630. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3631. original_size,
  3632. params.patch_size * cur_merge,
  3633. params.image_min_pixels,
  3634. params.image_max_pixels);
  3635. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  3636. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3637. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3638. res_imgs->entries.push_back(std::move(img_f32));
  3639. } break;
  3640. case PROJECTOR_TYPE_LLAMA4:
  3641. {
  3642. GGML_ASSERT(!params.image_res_candidates.empty());
  3643. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3644. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3645. for (size_t i = 0; i < imgs.size(); ++i) {
  3646. clip_image_f32_ptr res(clip_image_f32_init());
  3647. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3648. res_imgs->entries.push_back(std::move(res));
  3649. }
  3650. res_imgs->grid_x = inst.grid_size.width;
  3651. res_imgs->grid_y = inst.grid_size.height;
  3652. } break;
  3653. case PROJECTOR_TYPE_LFM2:
  3654. case PROJECTOR_TYPE_KIMIVL:
  3655. {
  3656. GGML_ASSERT(params.image_min_pixels && params.image_max_pixels);
  3657. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3658. original_size,
  3659. params.patch_size * params.n_merge,
  3660. params.image_min_pixels,
  3661. params.image_max_pixels);
  3662. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3663. clip_image_u8 resized_img;
  3664. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3665. clip_image_f32_ptr res(clip_image_f32_init());
  3666. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3667. res_imgs->entries.push_back(std::move(res));
  3668. } break;
  3669. case PROJECTOR_TYPE_MLP:
  3670. case PROJECTOR_TYPE_MLP_NORM:
  3671. case PROJECTOR_TYPE_LDP:
  3672. case PROJECTOR_TYPE_LDPV2:
  3673. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  3674. {
  3675. // TODO @ngxson : refactor the code below to avoid duplicated logic
  3676. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3677. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3678. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3679. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3680. if (params.image_res_candidates.empty()) { // pad_to_square
  3681. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3682. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3683. const int longer_side = std::max(img->nx, img->ny);
  3684. temp->nx = longer_side;
  3685. temp->ny = longer_side;
  3686. temp->buf.resize(3 * longer_side * longer_side);
  3687. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3688. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3689. // resize the image to the target_size
  3690. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3691. clip_image_f32_ptr res(clip_image_f32_init());
  3692. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3693. res_imgs->entries.push_back(std::move(res));
  3694. } else {
  3695. // "spatial_unpad" with "anyres" processing for llava-1.6
  3696. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3697. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3698. for (size_t i = 0; i < imgs.size(); ++i) {
  3699. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3700. clip_image_f32_ptr res(clip_image_f32_init());
  3701. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3702. res_imgs->entries.push_back(std::move(res));
  3703. }
  3704. }
  3705. } break;
  3706. default:
  3707. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  3708. return false;
  3709. }
  3710. return true;
  3711. }
  3712. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3713. return ctx->model.image_newline;
  3714. }
  3715. void clip_free(clip_ctx * ctx) {
  3716. if (ctx == nullptr) {
  3717. return;
  3718. }
  3719. delete ctx;
  3720. }
  3721. // deprecated
  3722. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3723. const int32_t nx = ctx->model.hparams.image_size;
  3724. const int32_t ny = ctx->model.hparams.image_size;
  3725. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3726. }
  3727. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3728. clip_image_f32 img;
  3729. img.nx = img_w;
  3730. img.ny = img_h;
  3731. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3732. }
  3733. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3734. return ctx->model.hparams.image_size;
  3735. }
  3736. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3737. return ctx->model.hparams.patch_size;
  3738. }
  3739. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3740. return ctx->model.hparams.n_embd;
  3741. }
  3742. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3743. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3744. }
  3745. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3746. const auto & params = ctx->model.hparams;
  3747. const int n_total = clip_n_output_tokens(ctx, img);
  3748. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3749. return img->nx / (params.patch_size * 2);
  3750. }
  3751. return n_total;
  3752. }
  3753. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3754. const auto & params = ctx->model.hparams;
  3755. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3756. return img->ny / (params.patch_size * 2);
  3757. }
  3758. return 1;
  3759. }
  3760. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3761. const auto & params = ctx->model.hparams;
  3762. // for models with fixed size image, the input image is already pre-processed and resized to square
  3763. int patch_size = params.patch_size;
  3764. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3765. projector_type proj = ctx->proj_type();
  3766. switch (proj) {
  3767. case PROJECTOR_TYPE_MLP:
  3768. case PROJECTOR_TYPE_MLP_NORM:
  3769. case PROJECTOR_TYPE_JANUS_PRO:
  3770. {
  3771. // do nothing
  3772. } break;
  3773. case PROJECTOR_TYPE_LDP:
  3774. case PROJECTOR_TYPE_LDPV2:
  3775. case PROJECTOR_TYPE_GLM_EDGE:
  3776. {
  3777. n_patches /= 4;
  3778. if (ctx->model.mm_boi) {
  3779. n_patches += 2; // for BOI and EOI token embeddings
  3780. }
  3781. } break;
  3782. case PROJECTOR_TYPE_MINICPMV:
  3783. {
  3784. // Use actual config value if available, otherwise fall back to hardcoded values
  3785. if (params.minicpmv_query_num > 0) {
  3786. n_patches = params.minicpmv_query_num;
  3787. } else {
  3788. // Fallback to hardcoded values for legacy models
  3789. if (params.minicpmv_version == 2) {
  3790. n_patches = 96;
  3791. } else if (params.minicpmv_version == 3) {
  3792. n_patches = 64;
  3793. } else if (params.minicpmv_version == 4) {
  3794. n_patches = 64;
  3795. } else if (params.minicpmv_version == 5) {
  3796. // MiniCPM-V 4.0
  3797. n_patches = 64;
  3798. } else if (params.minicpmv_version == 6) {
  3799. // MiniCPM-V 4.5
  3800. n_patches = 64;
  3801. } else {
  3802. GGML_ABORT("Unknown minicpmv version");
  3803. }
  3804. }
  3805. } break;
  3806. case PROJECTOR_TYPE_QWEN2VL:
  3807. case PROJECTOR_TYPE_QWEN25VL:
  3808. case PROJECTOR_TYPE_QWEN3VL:
  3809. {
  3810. // dynamic size (2 conv, so double patch size)
  3811. int x_patch = img->nx / (params.patch_size * 2);
  3812. int y_patch = img->ny / (params.patch_size * 2);
  3813. n_patches = x_patch * y_patch;
  3814. } break;
  3815. case PROJECTOR_TYPE_GEMMA3:
  3816. case PROJECTOR_TYPE_IDEFICS3:
  3817. case PROJECTOR_TYPE_INTERNVL:
  3818. case PROJECTOR_TYPE_LLAMA4:
  3819. {
  3820. // both X and Y are downscaled by the scale factor
  3821. int scale_factor = ctx->model.hparams.n_merge;
  3822. n_patches /= (scale_factor * scale_factor);
  3823. } break;
  3824. case PROJECTOR_TYPE_LFM2:
  3825. case PROJECTOR_TYPE_KIMIVL:
  3826. {
  3827. // dynamic size
  3828. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  3829. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3830. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3831. n_patches = x_patch * y_patch;
  3832. } break;
  3833. case PROJECTOR_TYPE_PIXTRAL:
  3834. case PROJECTOR_TYPE_LIGHTONOCR:
  3835. {
  3836. // dynamic size
  3837. int n_merge = ctx->model.hparams.n_merge;
  3838. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3839. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3840. if (ctx->model.token_embd_img_break) {
  3841. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3842. } else {
  3843. n_patches = n_patches_y * n_patches_x;
  3844. }
  3845. } break;
  3846. case PROJECTOR_TYPE_VOXTRAL:
  3847. case PROJECTOR_TYPE_ULTRAVOX:
  3848. case PROJECTOR_TYPE_QWEN2A:
  3849. {
  3850. n_patches = img->nx;
  3851. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3852. if (ctx->model.audio_has_stack_frames()) {
  3853. GGML_ASSERT(proj_stack_factor > 0);
  3854. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3855. n_patches = n_len / proj_stack_factor;
  3856. }
  3857. // whisper downscales input token by half after conv1d
  3858. n_patches /= 2;
  3859. if (ctx->model.audio_has_avgpool()) {
  3860. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3861. n_patches /= 2;
  3862. }
  3863. } break;
  3864. case PROJECTOR_TYPE_COGVLM:
  3865. {
  3866. n_patches += 2; // for BOI and EOI token embeddings
  3867. } break;
  3868. default:
  3869. GGML_ABORT("unsupported projector type");
  3870. }
  3871. return n_patches;
  3872. }
  3873. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3874. assert(embed_dim % 2 == 0);
  3875. int H = pos.size();
  3876. int W = pos[0].size();
  3877. std::vector<float> omega(embed_dim / 2);
  3878. for (int i = 0; i < embed_dim / 2; ++i) {
  3879. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3880. }
  3881. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3882. for (int h = 0; h < H; ++h) {
  3883. for (int w = 0; w < W; ++w) {
  3884. for (int d = 0; d < embed_dim / 2; ++d) {
  3885. float out_value = pos[h][w] * omega[d];
  3886. emb[h][w][d] = sin(out_value);
  3887. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3888. }
  3889. }
  3890. }
  3891. return emb;
  3892. }
  3893. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3894. assert(embed_dim % 2 == 0);
  3895. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3896. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3897. int H = emb_h.size();
  3898. int W = emb_h[0].size();
  3899. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3900. for (int h = 0; h < H; ++h) {
  3901. for (int w = 0; w < W; ++w) {
  3902. for (int d = 0; d < embed_dim / 2; ++d) {
  3903. emb[h][w][d] = emb_h[h][w][d];
  3904. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3905. }
  3906. }
  3907. }
  3908. return emb;
  3909. }
  3910. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3911. int grid_h_size = image_size.first;
  3912. int grid_w_size = image_size.second;
  3913. std::vector<float> grid_h(grid_h_size);
  3914. std::vector<float> grid_w(grid_w_size);
  3915. for (int i = 0; i < grid_h_size; ++i) {
  3916. grid_h[i] = static_cast<float>(i);
  3917. }
  3918. for (int i = 0; i < grid_w_size; ++i) {
  3919. grid_w[i] = static_cast<float>(i);
  3920. }
  3921. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3922. for (int h = 0; h < grid_h_size; ++h) {
  3923. for (int w = 0; w < grid_w_size; ++w) {
  3924. grid[h][w] = grid_w[w];
  3925. }
  3926. }
  3927. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3928. for (int h = 0; h < grid_h_size; ++h) {
  3929. for (int w = 0; w < grid_w_size; ++w) {
  3930. grid_2d[0][h][w] = grid_h[h];
  3931. grid_2d[1][h][w] = grid_w[w];
  3932. }
  3933. }
  3934. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3935. int H = image_size.first;
  3936. int W = image_size.second;
  3937. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3938. for (int h = 0; h < H; ++h) {
  3939. for (int w = 0; w < W; ++w) {
  3940. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3941. }
  3942. }
  3943. return pos_embed_2d;
  3944. }
  3945. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3946. clip_image_f32_batch imgs;
  3947. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3948. *img_copy = *img;
  3949. imgs.entries.push_back(std::move(img_copy));
  3950. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3951. }
  3952. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3953. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3954. int batch_size = imgs.entries.size();
  3955. // TODO @ngxson : implement batch size > 1 as a loop
  3956. // we don't need true batching support because the cgraph will gonna be big anyway
  3957. if (batch_size != 1) {
  3958. return false; // only support batch size of 1
  3959. }
  3960. // build the inference graph
  3961. ctx->debug_print_tensors.clear();
  3962. ggml_backend_sched_reset(ctx->sched.get());
  3963. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3964. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3965. // set inputs
  3966. const auto & model = ctx->model;
  3967. const auto & hparams = model.hparams;
  3968. const int image_size_width = imgs.entries[0]->nx;
  3969. const int image_size_height = imgs.entries[0]->ny;
  3970. const int patch_size = hparams.patch_size;
  3971. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3972. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3973. const int pos_w = image_size_width / patch_size;
  3974. const int pos_h = image_size_height / patch_size;
  3975. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3976. auto get_inp_tensor = [&gf](const char * name) {
  3977. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3978. if (inp == nullptr) {
  3979. GGML_ABORT("Failed to get tensor %s", name);
  3980. }
  3981. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3982. GGML_ABORT("Tensor %s is not an input tensor", name);
  3983. }
  3984. return inp;
  3985. };
  3986. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3987. ggml_tensor * cur = get_inp_tensor(name);
  3988. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3989. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3990. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3991. };
  3992. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3993. ggml_tensor * cur = get_inp_tensor(name);
  3994. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3995. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3996. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3997. };
  3998. // set input pixel values
  3999. if (!imgs.is_audio) {
  4000. size_t nelem = 0;
  4001. for (const auto & img : imgs.entries) {
  4002. nelem += img->nx * img->ny * 3;
  4003. }
  4004. std::vector<float> inp_raw(nelem);
  4005. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  4006. //
  4007. // ┌──W──┐
  4008. // │ H │ channel = R
  4009. // ├─────┤ │
  4010. // │ H │ channel = G
  4011. // ├─────┤ │
  4012. // │ H │ channel = B
  4013. // └─────┘ │
  4014. // ──────┘ x B
  4015. for (size_t i = 0; i < imgs.entries.size(); i++) {
  4016. const int nx = imgs.entries[i]->nx;
  4017. const int ny = imgs.entries[i]->ny;
  4018. const int n = nx * ny;
  4019. for (int b = 0; b < batch_size; b++) {
  4020. float * batch_entry = inp_raw.data() + b * (3*n);
  4021. for (int y = 0; y < ny; y++) {
  4022. for (int x = 0; x < nx; x++) {
  4023. size_t base_src = 3*(y * nx + x); // idx of the first channel
  4024. size_t base_dst = y * nx + x; // idx of the first channel
  4025. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  4026. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  4027. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  4028. }
  4029. }
  4030. }
  4031. }
  4032. set_input_f32("inp_raw", inp_raw);
  4033. } else {
  4034. // audio input
  4035. GGML_ASSERT(imgs.entries.size() == 1);
  4036. const auto & mel_inp = imgs.entries[0];
  4037. const int n_step = mel_inp->nx;
  4038. const int n_mel = mel_inp->ny;
  4039. std::vector<float> inp_raw(n_step * n_mel);
  4040. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  4041. set_input_f32("inp_raw", inp_raw);
  4042. }
  4043. // set input per projector
  4044. switch (ctx->model.proj_type) {
  4045. case PROJECTOR_TYPE_MINICPMV:
  4046. {
  4047. // inspired from siglip:
  4048. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  4049. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  4050. std::vector<int32_t> positions(pos_h * pos_w);
  4051. int bucket_coords_h[1024];
  4052. int bucket_coords_w[1024];
  4053. for (int i = 0; i < pos_h; i++){
  4054. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  4055. }
  4056. for (int i = 0; i < pos_w; i++){
  4057. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  4058. }
  4059. for (int i = 0, id = 0; i < pos_h; i++){
  4060. for (int j = 0; j < pos_w; j++){
  4061. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  4062. }
  4063. }
  4064. set_input_i32("positions", positions);
  4065. // inspired from resampler of Qwen-VL:
  4066. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  4067. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  4068. int embed_dim = clip_n_mmproj_embd(ctx);
  4069. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  4070. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  4071. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  4072. for(int i = 0; i < pos_w * pos_h; ++i){
  4073. for(int j = 0; j < embed_dim; ++j){
  4074. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  4075. }
  4076. }
  4077. set_input_f32("pos_embed", pos_embed);
  4078. } break;
  4079. case PROJECTOR_TYPE_QWEN2VL:
  4080. case PROJECTOR_TYPE_QWEN3VL:
  4081. {
  4082. const int merge_ratio = 2;
  4083. const int pw = image_size_width / patch_size;
  4084. const int ph = image_size_height / patch_size;
  4085. std::vector<int> positions(n_pos * 4);
  4086. int ptr = 0;
  4087. for (int y = 0; y < ph; y += merge_ratio) {
  4088. for (int x = 0; x < pw; x += merge_ratio) {
  4089. for (int dy = 0; dy < 2; dy++) {
  4090. for (int dx = 0; dx < 2; dx++) {
  4091. positions[ ptr] = y + dy;
  4092. positions[ num_patches + ptr] = x + dx;
  4093. positions[2 * num_patches + ptr] = y + dy;
  4094. positions[3 * num_patches + ptr] = x + dx;
  4095. ptr++;
  4096. }
  4097. }
  4098. }
  4099. }
  4100. set_input_i32("positions", positions);
  4101. } break;
  4102. case PROJECTOR_TYPE_QWEN25VL:
  4103. {
  4104. // pw * ph = number of tokens output by ViT after apply patch merger
  4105. // ipw * ipw = number of vision token been processed inside ViT
  4106. const int merge_ratio = 2;
  4107. const int pw = image_size_width / patch_size / merge_ratio;
  4108. const int ph = image_size_height / patch_size / merge_ratio;
  4109. const int ipw = image_size_width / patch_size;
  4110. const int iph = image_size_height / patch_size;
  4111. std::vector<int> idx (ph * pw);
  4112. std::vector<int> inv_idx(ph * pw);
  4113. if (use_window_attn) {
  4114. const int attn_window_size = 112;
  4115. const int grid_window = attn_window_size / patch_size / merge_ratio;
  4116. int dst = 0;
  4117. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  4118. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  4119. int mask_row = 0;
  4120. for (int y = 0; y < ph; y += grid_window) {
  4121. for (int x = 0; x < pw; x += grid_window) {
  4122. const int win_h = std::min(grid_window, ph - y);
  4123. const int win_w = std::min(grid_window, pw - x);
  4124. const int dst_0 = dst;
  4125. // group all tokens belong to the same window togather (to a continue range)
  4126. for (int dy = 0; dy < win_h; dy++) {
  4127. for (int dx = 0; dx < win_w; dx++) {
  4128. const int src = (y + dy) * pw + (x + dx);
  4129. GGML_ASSERT(src < (int)idx.size());
  4130. GGML_ASSERT(dst < (int)inv_idx.size());
  4131. idx [src] = dst;
  4132. inv_idx[dst] = src;
  4133. dst++;
  4134. }
  4135. }
  4136. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  4137. int row_offset = mask_row * (ipw * iph);
  4138. std::fill(
  4139. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  4140. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  4141. 0.0);
  4142. mask_row++;
  4143. }
  4144. }
  4145. }
  4146. set_input_i32("window_idx", idx);
  4147. set_input_i32("inv_window_idx", inv_idx);
  4148. set_input_f32("window_mask", mask);
  4149. } else {
  4150. for (int i = 0; i < ph * pw; i++) {
  4151. idx[i] = i;
  4152. }
  4153. }
  4154. const int mpow = merge_ratio * merge_ratio;
  4155. std::vector<int> positions(n_pos * 4);
  4156. int ptr = 0;
  4157. for (int y = 0; y < iph; y += merge_ratio) {
  4158. for (int x = 0; x < ipw; x += merge_ratio) {
  4159. for (int dy = 0; dy < 2; dy++) {
  4160. for (int dx = 0; dx < 2; dx++) {
  4161. auto remap = idx[ptr / mpow];
  4162. remap = (remap * mpow) + (ptr % mpow);
  4163. positions[ remap] = y + dy;
  4164. positions[ num_patches + remap] = x + dx;
  4165. positions[2 * num_patches + remap] = y + dy;
  4166. positions[3 * num_patches + remap] = x + dx;
  4167. ptr++;
  4168. }
  4169. }
  4170. }
  4171. }
  4172. set_input_i32("positions", positions);
  4173. } break;
  4174. case PROJECTOR_TYPE_PIXTRAL:
  4175. case PROJECTOR_TYPE_KIMIVL:
  4176. case PROJECTOR_TYPE_LIGHTONOCR:
  4177. {
  4178. // set the 2D positions
  4179. int n_patches_per_col = image_size_width / patch_size;
  4180. std::vector<int> pos_data(n_pos);
  4181. // dimension H
  4182. for (int i = 0; i < n_pos; i++) {
  4183. pos_data[i] = i / n_patches_per_col;
  4184. }
  4185. set_input_i32("pos_h", pos_data);
  4186. // dimension W
  4187. for (int i = 0; i < n_pos; i++) {
  4188. pos_data[i] = i % n_patches_per_col;
  4189. }
  4190. set_input_i32("pos_w", pos_data);
  4191. } break;
  4192. case PROJECTOR_TYPE_GLM_EDGE:
  4193. {
  4194. // llava and other models
  4195. std::vector<int32_t> positions(n_pos);
  4196. for (int i = 0; i < n_pos; i++) {
  4197. positions[i] = i;
  4198. }
  4199. set_input_i32("positions", positions);
  4200. } break;
  4201. case PROJECTOR_TYPE_MLP:
  4202. case PROJECTOR_TYPE_MLP_NORM:
  4203. case PROJECTOR_TYPE_LDP:
  4204. case PROJECTOR_TYPE_LDPV2:
  4205. {
  4206. // llava and other models
  4207. std::vector<int32_t> positions(n_pos);
  4208. for (int i = 0; i < n_pos; i++) {
  4209. positions[i] = i;
  4210. }
  4211. set_input_i32("positions", positions);
  4212. // The patches vector is used to get rows to index into the embeds with;
  4213. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  4214. // when retrieving the rows.
  4215. int patch_offset = model.class_embedding ? 1 : 0;
  4216. std::vector<int32_t> patches(num_patches);
  4217. for (int i = 0; i < num_patches; i++) {
  4218. patches[i] = i + patch_offset;
  4219. }
  4220. set_input_i32("patches", patches);
  4221. } break;
  4222. case PROJECTOR_TYPE_GEMMA3:
  4223. case PROJECTOR_TYPE_IDEFICS3:
  4224. case PROJECTOR_TYPE_INTERNVL:
  4225. case PROJECTOR_TYPE_QWEN2A:
  4226. case PROJECTOR_TYPE_ULTRAVOX:
  4227. case PROJECTOR_TYPE_LFM2:
  4228. case PROJECTOR_TYPE_VOXTRAL:
  4229. case PROJECTOR_TYPE_JANUS_PRO:
  4230. case PROJECTOR_TYPE_COGVLM:
  4231. {
  4232. // do nothing
  4233. } break;
  4234. case PROJECTOR_TYPE_LLAMA4:
  4235. {
  4236. // set the 2D positions
  4237. int n_patches_per_col = image_size_width / patch_size;
  4238. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4239. // last pos is always kept 0, it's for CLS
  4240. // dimension H
  4241. for (int i = 0; i < num_patches; i++) {
  4242. pos_data[i] = (i / n_patches_per_col) + 1;
  4243. }
  4244. set_input_i32("pos_h", pos_data);
  4245. // dimension W
  4246. for (int i = 0; i < num_patches; i++) {
  4247. pos_data[i] = (i % n_patches_per_col) + 1;
  4248. }
  4249. set_input_i32("pos_w", pos_data);
  4250. } break;
  4251. default:
  4252. GGML_ABORT("Unknown projector type");
  4253. }
  4254. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4255. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4256. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4257. if (reg) {
  4258. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4259. if (ggml_backend_set_n_threads_fn) {
  4260. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4261. }
  4262. }
  4263. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4264. if (status != GGML_STATUS_SUCCESS) {
  4265. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4266. return false;
  4267. }
  4268. // print debug nodes
  4269. if (ctx->debug_graph) {
  4270. LOG_INF("\n\n---\n\n");
  4271. LOG_INF("\n\nDebug graph:\n\n");
  4272. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4273. std::vector<uint8_t> data(ggml_nbytes(t));
  4274. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4275. print_tensor_shape(t);
  4276. print_tensor_data(t, data.data(), 3);
  4277. }
  4278. }
  4279. // the last node is the embedding tensor
  4280. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4281. // sanity check (only support batch size of 1 for now)
  4282. const int n_tokens_out = embeddings->ne[1];
  4283. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4284. if (n_tokens_out != expected_n_tokens_out) {
  4285. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4286. GGML_ABORT("Invalid number of output tokens");
  4287. }
  4288. // copy the embeddings to the location passed by the user
  4289. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4290. return true;
  4291. }
  4292. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4293. switch (ctx->model.proj_type) {
  4294. case PROJECTOR_TYPE_LDP:
  4295. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4296. case PROJECTOR_TYPE_LDPV2:
  4297. return ctx->model.mm_model_peg_0_b->ne[0];
  4298. case PROJECTOR_TYPE_MLP:
  4299. case PROJECTOR_TYPE_PIXTRAL:
  4300. case PROJECTOR_TYPE_LIGHTONOCR:
  4301. return ctx->model.mm_2_w->ne[1];
  4302. case PROJECTOR_TYPE_MLP_NORM:
  4303. return ctx->model.mm_3_b->ne[0];
  4304. case PROJECTOR_TYPE_MINICPMV:
  4305. return ctx->model.mm_model_proj->ne[0];
  4306. case PROJECTOR_TYPE_GLM_EDGE:
  4307. return ctx->model.mm_model_mlp_3_w->ne[1];
  4308. case PROJECTOR_TYPE_QWEN2VL:
  4309. case PROJECTOR_TYPE_QWEN25VL:
  4310. case PROJECTOR_TYPE_JANUS_PRO:
  4311. return ctx->model.mm_1_b->ne[0];
  4312. case PROJECTOR_TYPE_QWEN3VL:
  4313. // main path + deepstack paths
  4314. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4315. case PROJECTOR_TYPE_GEMMA3:
  4316. return ctx->model.mm_input_proj_w->ne[0];
  4317. case PROJECTOR_TYPE_IDEFICS3:
  4318. return ctx->model.projection->ne[1];
  4319. case PROJECTOR_TYPE_ULTRAVOX:
  4320. case PROJECTOR_TYPE_VOXTRAL:
  4321. return ctx->model.mm_2_w->ne[1];
  4322. case PROJECTOR_TYPE_INTERNVL:
  4323. return ctx->model.mm_3_w->ne[1];
  4324. case PROJECTOR_TYPE_LLAMA4:
  4325. return ctx->model.mm_model_proj->ne[1];
  4326. case PROJECTOR_TYPE_QWEN2A:
  4327. return ctx->model.mm_fc_w->ne[1];
  4328. case PROJECTOR_TYPE_LFM2:
  4329. case PROJECTOR_TYPE_KIMIVL:
  4330. return ctx->model.mm_2_w->ne[1];
  4331. case PROJECTOR_TYPE_COGVLM:
  4332. return ctx->model.mm_4h_to_h_w->ne[1];
  4333. default:
  4334. GGML_ABORT("Unknown projector type");
  4335. }
  4336. }
  4337. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4338. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4339. return ctx->model.hparams.minicpmv_version;
  4340. }
  4341. return 0;
  4342. }
  4343. bool clip_is_glm(const struct clip_ctx * ctx) {
  4344. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4345. }
  4346. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4347. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4348. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4349. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4350. }
  4351. bool clip_is_llava(const struct clip_ctx * ctx) {
  4352. return ctx->model.hparams.has_llava_projector;
  4353. }
  4354. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4355. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4356. }
  4357. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4358. return ctx->model.modality == CLIP_MODALITY_VISION;
  4359. }
  4360. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4361. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4362. }
  4363. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4364. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4365. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4366. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4367. }
  4368. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4369. clip_image_f32 clip_img;
  4370. clip_img.buf.resize(h * w * 3);
  4371. for (int i = 0; i < h*w*3; i++)
  4372. {
  4373. clip_img.buf[i] = img[i];
  4374. }
  4375. clip_img.nx = w;
  4376. clip_img.ny = h;
  4377. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4378. return true;
  4379. }
  4380. //
  4381. // API used internally with mtmd
  4382. //
  4383. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4384. return ctx->proj_type();
  4385. }
  4386. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4387. clip_image_f32 * audio = new clip_image_f32;
  4388. audio->nx = n_frames;
  4389. audio->ny = n_mel;
  4390. audio->buf.resize(n_frames * n_mel);
  4391. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4392. batch->entries.push_back(clip_image_f32_ptr(audio));
  4393. batch->is_audio = true;
  4394. }