export-lora.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462
  1. #include "common.h"
  2. #include "ggml.h"
  3. #include "ggml-alloc.h"
  4. #include <vector>
  5. #include <string>
  6. #include <thread>
  7. struct lora_info {
  8. std::string filename;
  9. float scale;
  10. };
  11. struct export_lora_params {
  12. std::string fn_model_base;
  13. std::string fn_model_out;
  14. std::vector<struct lora_info> lora;
  15. int n_threads;
  16. };
  17. struct lora_data {
  18. struct lora_info info;
  19. std::vector<uint8_t> data;
  20. struct ggml_context * ctx;
  21. uint32_t lora_r;
  22. uint32_t lora_alpha;
  23. };
  24. struct llama_file {
  25. // use FILE * so we don't have to re-open the file to mmap
  26. FILE * fp;
  27. size_t size;
  28. llama_file(const char * fname, const char * mode) {
  29. fp = std::fopen(fname, mode);
  30. if (fp == NULL) {
  31. size = 0;
  32. } else {
  33. seek(0, SEEK_END);
  34. size = tell();
  35. seek(0, SEEK_SET);
  36. }
  37. }
  38. size_t tell() const {
  39. #ifdef _WIN32
  40. __int64 ret = _ftelli64(fp);
  41. #else
  42. long ret = std::ftell(fp);
  43. #endif
  44. GGML_ASSERT(ret != -1); // this really shouldn't fail
  45. return (size_t) ret;
  46. }
  47. void seek(size_t offset, int whence) {
  48. #ifdef _WIN32
  49. int ret = _fseeki64(fp, (__int64) offset, whence);
  50. #else
  51. int ret = std::fseek(fp, (long) offset, whence);
  52. #endif
  53. GGML_ASSERT(ret == 0); // same
  54. }
  55. void read_raw(void * ptr, size_t size) {
  56. if (size == 0) {
  57. return;
  58. }
  59. errno = 0;
  60. std::size_t ret = std::fread(ptr, size, 1, fp);
  61. if (ferror(fp)) {
  62. die_fmt("read error: %s", strerror(errno));
  63. }
  64. if (ret != 1) {
  65. die("unexpectedly reached end of file");
  66. }
  67. }
  68. std::uint32_t read_u32() {
  69. std::uint32_t ret;
  70. read_raw(&ret, sizeof(ret));
  71. return ret;
  72. }
  73. std::string read_string(std::uint32_t len) {
  74. std::vector<char> chars(len);
  75. read_raw(chars.data(), len);
  76. return std::string(chars.data(), len);
  77. }
  78. void write_raw(const void * ptr, size_t size) {
  79. if (size == 0) {
  80. return;
  81. }
  82. errno = 0;
  83. size_t ret = std::fwrite(ptr, size, 1, fp);
  84. if (ret != 1) {
  85. die_fmt("write error: %s", strerror(errno));
  86. }
  87. }
  88. void write_u32(std::uint32_t val) {
  89. write_raw(&val, sizeof(val));
  90. }
  91. bool eof() {
  92. return tell() >= size;
  93. }
  94. ~llama_file() {
  95. if (fp) {
  96. std::fclose(fp);
  97. }
  98. }
  99. };
  100. static struct export_lora_params get_default_export_lora_params() {
  101. struct export_lora_params result;
  102. result.fn_model_base = "";
  103. result.fn_model_out = "";
  104. result.n_threads = GGML_DEFAULT_N_THREADS;
  105. return result;
  106. }
  107. static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
  108. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  109. fprintf(stderr, "\n");
  110. fprintf(stderr, "options:\n");
  111. fprintf(stderr, " -h, --help show this help message and exit\n");
  112. fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
  113. fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
  114. fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
  115. fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
  116. fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
  117. }
  118. static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
  119. bool invalid_param = false;
  120. std::string arg;
  121. struct export_lora_params default_params = get_default_export_lora_params();
  122. const std::string arg_prefix = "--";
  123. for (int i = 1; i < argc; i++) {
  124. arg = argv[i];
  125. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  126. std::replace(arg.begin(), arg.end(), '_', '-');
  127. }
  128. if (arg == "-m" || arg == "--model-base") {
  129. if (++i >= argc) {
  130. invalid_param = true;
  131. break;
  132. }
  133. params->fn_model_base = argv[i];
  134. } else if (arg == "-o" || arg == "--model-out") {
  135. if (++i >= argc) {
  136. invalid_param = true;
  137. break;
  138. }
  139. params->fn_model_out = argv[i];
  140. } else if (arg == "-l" || arg == "--lora") {
  141. if (++i >= argc) {
  142. invalid_param = true;
  143. break;
  144. }
  145. struct lora_info lora;
  146. lora.filename = argv[i];
  147. lora.scale = 1.0f;
  148. params->lora.push_back(lora);
  149. } else if (arg == "-s" || arg == "--lora-scaled") {
  150. if (++i >= argc) {
  151. invalid_param = true;
  152. break;
  153. }
  154. struct lora_info lora;
  155. lora.filename = argv[i];
  156. if (++i >= argc) {
  157. invalid_param = true;
  158. break;
  159. }
  160. lora.scale = std::stof(argv[i]);
  161. params->lora.push_back(lora);
  162. } else if (arg == "-t" || arg == "--threads") {
  163. if (++i >= argc) {
  164. invalid_param = true;
  165. break;
  166. }
  167. params->n_threads = std::stoi(argv[i]);
  168. if (params->n_threads <= 0) {
  169. params->n_threads = std::thread::hardware_concurrency();
  170. }
  171. } else {
  172. fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
  173. export_lora_print_usage(argc, argv, &default_params);
  174. exit(1);
  175. }
  176. }
  177. if (params->fn_model_base == default_params.fn_model_base) {
  178. fprintf(stderr, "error: please specify a filename for model-base.\n");
  179. export_lora_print_usage(argc, argv, &default_params);
  180. exit(1);
  181. }
  182. if (params->fn_model_out == default_params.fn_model_out) {
  183. fprintf(stderr, "error: please specify a filename for model-out.\n");
  184. export_lora_print_usage(argc, argv, &default_params);
  185. exit(1);
  186. }
  187. if (invalid_param) {
  188. fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
  189. export_lora_print_usage(argc, argv, &default_params);
  190. exit(1);
  191. }
  192. return true;
  193. }
  194. static void free_lora(struct lora_data * lora) {
  195. if (lora->ctx != NULL) {
  196. ggml_free(lora->ctx);
  197. }
  198. delete lora;
  199. }
  200. static struct lora_data * load_lora(struct lora_info * info) {
  201. struct lora_data * result = new struct lora_data;
  202. result->info = *info;
  203. result->ctx = NULL;
  204. result->lora_r = 1;
  205. result->lora_alpha = 1;
  206. struct llama_file file(info->filename.c_str(), "rb");
  207. if (file.fp == NULL) {
  208. fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
  209. info->filename.c_str());
  210. free_lora(result);
  211. return NULL;
  212. }
  213. struct ggml_init_params params_ggml;
  214. params_ggml.mem_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
  215. params_ggml.mem_buffer = NULL;
  216. params_ggml.no_alloc = true;
  217. result->ctx = ggml_init(params_ggml);
  218. uint32_t magic = file.read_u32();
  219. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  220. die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
  221. }
  222. uint32_t version = file.read_u32();
  223. if (version != 1) {
  224. die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
  225. }
  226. result->lora_r = file.read_u32();
  227. result->lora_alpha = file.read_u32();
  228. // read tensor infos from file
  229. std::vector<char> name_buf;
  230. std::vector<struct ggml_tensor *> tensors;
  231. std::vector<size_t> tensors_offset;
  232. size_t total_nbytes_pad = 0;
  233. while(!file.eof()) {
  234. int64_t ne[4] = {1,1,1,1};
  235. uint32_t n_dims = file.read_u32();
  236. uint32_t namelen = file.read_u32();
  237. uint32_t type = file.read_u32();
  238. for (uint32_t k = 0; k < n_dims; ++k) {
  239. ne[k] = (int64_t)file.read_u32();
  240. }
  241. name_buf.clear();
  242. name_buf.resize(namelen + 1, '\0');
  243. file.read_raw(name_buf.data(), namelen);
  244. file.seek((0-file.tell()) & 31, SEEK_CUR);
  245. size_t offset = file.tell();
  246. struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
  247. ggml_set_name(tensor, name_buf.data());
  248. size_t nbytes = ggml_nbytes(tensor);
  249. size_t nbytes_pad = ggml_nbytes_pad(tensor);
  250. total_nbytes_pad += nbytes_pad;
  251. tensors.push_back(tensor);
  252. tensors_offset.push_back(offset);
  253. file.seek(nbytes, SEEK_CUR);
  254. }
  255. // read tensor data
  256. result->data.resize(total_nbytes_pad);
  257. size_t data_offset = 0;
  258. for (size_t i = 0; i < tensors.size(); ++i) {
  259. struct ggml_tensor * tensor = tensors[i];
  260. size_t offset = tensors_offset[i];
  261. size_t nbytes = ggml_nbytes(tensor);
  262. size_t nbytes_pad = ggml_nbytes_pad(tensor);
  263. file.seek(offset, SEEK_SET);
  264. tensor->data = result->data.data() + data_offset;
  265. file.read_raw(tensor->data, nbytes);
  266. data_offset += nbytes_pad;
  267. }
  268. return result;
  269. }
  270. static struct ggml_cgraph * build_graph_lora(
  271. struct ggml_context * ctx,
  272. struct ggml_tensor * tensor,
  273. struct ggml_tensor * lora_a,
  274. struct ggml_tensor * lora_b,
  275. float scaling
  276. ) {
  277. struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
  278. if (scaling != 1.0f) {
  279. ab = ggml_scale(ctx, ab, scaling);
  280. }
  281. struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
  282. struct ggml_cgraph * gf = ggml_new_graph(ctx);
  283. ggml_build_forward_expand (gf, res);
  284. return gf;
  285. }
  286. static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
  287. if (lora->ctx == NULL) {
  288. return false;
  289. }
  290. std::string name = ggml_get_name(tensor);
  291. std::string name_a = name + std::string(".loraA");
  292. std::string name_b = name + std::string(".loraB");
  293. struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
  294. struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
  295. if (lora_a == NULL || lora_b == NULL) {
  296. return false;
  297. }
  298. float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
  299. struct ggml_init_params params;
  300. params.mem_size = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
  301. params.mem_buffer = NULL;
  302. params.no_alloc = true;
  303. struct ggml_context * ctx = NULL;
  304. struct ggml_gallocr * alloc = NULL;
  305. struct ggml_cgraph * gf = NULL;
  306. ctx = ggml_init(params);
  307. alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
  308. gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
  309. ggml_gallocr_alloc_graph(alloc, gf);
  310. struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
  311. static std::vector<uint8_t> data_work;
  312. data_work.resize(cplan.work_size);
  313. cplan.work_data = data_work.data();
  314. ggml_graph_compute(gf, &cplan);
  315. ggml_gallocr_free(alloc);
  316. ggml_free(ctx);
  317. return true;
  318. }
  319. static void export_lora(struct export_lora_params * params) {
  320. // load all loras
  321. std::vector<struct lora_data *> loras;
  322. for (size_t i = 0; i < params->lora.size(); ++i) {
  323. struct lora_data * lora = load_lora(&params->lora[i]);
  324. if (lora != NULL) {
  325. loras.push_back(lora);
  326. }
  327. }
  328. if (loras.size() == 0) {
  329. fprintf(stderr, "warning: no lora adapters will be applied.\n");
  330. }
  331. // open input file
  332. struct llama_file fin(params->fn_model_base.c_str(), "rb");
  333. if (!fin.fp) {
  334. die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
  335. }
  336. // open base model gguf, read tensors without their data
  337. struct ggml_context * ctx_in;
  338. struct gguf_init_params params_gguf;
  339. params_gguf.no_alloc = true;
  340. params_gguf.ctx = &ctx_in;
  341. struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
  342. // create new gguf
  343. struct gguf_context * gguf_out = gguf_init_empty();
  344. // copy meta data from base model: kv and tensors
  345. gguf_set_kv(gguf_out, gguf_in);
  346. int n_tensors = gguf_get_n_tensors(gguf_in);
  347. for (int i=0; i < n_tensors; ++i) {
  348. const char * name = gguf_get_tensor_name(gguf_in, i);
  349. struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
  350. gguf_add_tensor(gguf_out, tensor);
  351. }
  352. // create output file
  353. struct llama_file fout(params->fn_model_out.c_str(), "wb");
  354. if (!fout.fp) {
  355. die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
  356. }
  357. // write gguf meta data
  358. std::vector<uint8_t> meta;
  359. meta.resize(gguf_get_meta_size(gguf_out));
  360. gguf_get_meta_data(gguf_out, meta.data());
  361. fout.write_raw(meta.data(), meta.size());
  362. std::vector<uint8_t> data;
  363. std::vector<uint8_t> padding;
  364. for (int i=0; i < n_tensors; ++i) {
  365. const char * name = gguf_get_tensor_name(gguf_in, i);
  366. struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
  367. // read tensor data
  368. data.resize(ggml_nbytes(tensor));
  369. tensor->data = data.data();
  370. size_t offset = gguf_get_tensor_offset(gguf_in, i);
  371. fin.seek(offset + meta.size(), SEEK_SET);
  372. fin.read_raw(data.data(), data.size());
  373. // apply all loras
  374. for (size_t k = 0; k < loras.size(); ++k) {
  375. apply_lora(tensor, loras[k], params->n_threads);
  376. }
  377. // write tensor data + padding
  378. padding.clear();
  379. padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
  380. GGML_ASSERT(fout.tell() == offset + meta.size());
  381. // fout.seek(offset + meta.size(), SEEK_SET);
  382. fout.write_raw(data.data(), data.size());
  383. fout.write_raw(padding.data(), padding.size());
  384. if (i % 2 == 0) {
  385. printf(".");
  386. }
  387. }
  388. printf("\n");
  389. // close gguf
  390. gguf_free(gguf_out);
  391. gguf_free(gguf_in);
  392. // free loras
  393. for (size_t i = 0; i < loras.size(); ++i) {
  394. free_lora(loras[i]);
  395. }
  396. }
  397. int main(int argc, char ** argv) {
  398. struct export_lora_params params = get_default_export_lora_params();
  399. if (!export_lora_params_parse(argc, argv, &params)) {
  400. return 1;
  401. }
  402. export_lora(&params);
  403. return 0;
  404. }