| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- # Usage:
- #! ./llama-server -m some-model.gguf &
- #! pip install pydantic
- #! python json_schema_pydantic_example.py
- from pydantic import BaseModel, Extra, TypeAdapter
- from annotated_types import MinLen
- from typing import Annotated, List, Optional
- import json, requests
- if True:
- def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
- '''
- Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
- (llama.cpp server, llama-cpp-python, Anyscale / Together...)
- The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
- '''
- if response_model:
- type_adapter = TypeAdapter(response_model)
- schema = type_adapter.json_schema()
- messages = [{
- "role": "system",
- "content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
- }] + messages
- response_format={"type": "json_object", "schema": schema}
- data = requests.post(endpoint, headers={"Content-Type": "application/json"},
- json=dict(messages=messages, response_format=response_format, **kwargs)).json()
- if 'error' in data:
- raise Exception(data['error']['message'])
- content = data["choices"][0]["message"]["content"]
- return type_adapter.validate_json(content) if type_adapter else content
- else:
- # This alternative branch uses Instructor + OpenAI client lib.
- # Instructor support streamed iterable responses, retry & more.
- # (see https://python.useinstructor.com/)
- #! pip install instructor openai
- import instructor, openai
- client = instructor.patch(
- openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
- mode=instructor.Mode.JSON_SCHEMA)
- create_completion = client.chat.completions.create
- if __name__ == '__main__':
- class QAPair(BaseModel):
- class Config:
- extra = 'forbid' # triggers additionalProperties: false in the JSON schema
- question: str
- concise_answer: str
- justification: str
- stars: Annotated[int, Field(ge=1, le=5)]
- class PyramidalSummary(BaseModel):
- class Config:
- extra = 'forbid' # triggers additionalProperties: false in the JSON schema
- title: str
- summary: str
- question_answers: Annotated[List[QAPair], MinLen(2)]
- sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
- print("# Summary\n", create_completion(
- model="...",
- response_model=PyramidalSummary,
- messages=[{
- "role": "user",
- "content": f"""
- You are a highly efficient corporate document summarizer.
- Create a pyramidal summary of an imaginary internal document about our company processes
- (starting high-level, going down to each sub sections).
- Keep questions short, and answers even shorter (trivia / quizz style).
- """
- }]))
|