ggml.c 334 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined(_WIN32)
  25. #include <windows.h>
  26. typedef volatile LONG atomic_int;
  27. typedef atomic_int atomic_bool;
  28. static void atomic_store(atomic_int* ptr, LONG val) {
  29. InterlockedExchange(ptr, val);
  30. }
  31. static LONG atomic_load(atomic_int* ptr) {
  32. return InterlockedCompareExchange(ptr, 0, 0);
  33. }
  34. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  35. return InterlockedExchangeAdd(ptr, inc);
  36. }
  37. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  38. return atomic_fetch_add(ptr, -(dec));
  39. }
  40. typedef HANDLE pthread_t;
  41. typedef DWORD thread_ret_t;
  42. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  43. (void) unused;
  44. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  45. if (handle == NULL)
  46. {
  47. return EAGAIN;
  48. }
  49. *out = handle;
  50. return 0;
  51. }
  52. static int pthread_join(pthread_t thread, void* unused) {
  53. (void) unused;
  54. return (int) WaitForSingleObject(thread, INFINITE);
  55. }
  56. static int sched_yield (void) {
  57. Sleep (0);
  58. return 0;
  59. }
  60. #else
  61. #include <pthread.h>
  62. #include <stdatomic.h>
  63. typedef void* thread_ret_t;
  64. #endif
  65. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  66. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  67. #ifndef __FMA__
  68. #define __FMA__
  69. #endif
  70. #ifndef __F16C__
  71. #define __F16C__
  72. #endif
  73. #ifndef __SSE3__
  74. #define __SSE3__
  75. #endif
  76. #endif
  77. #ifdef __HAIKU__
  78. #define static_assert(cond, msg) _Static_assert(cond, msg)
  79. #endif
  80. /*#define GGML_PERF*/
  81. #define GGML_DEBUG 0
  82. #define GGML_GELU_FP16
  83. #define GGML_SILU_FP16
  84. #define GGML_SOFT_MAX_UNROLL 4
  85. #define GGML_VEC_DOT_UNROLL 2
  86. #ifdef GGML_USE_ACCELERATE
  87. // uncomment to use vDSP for soft max computation
  88. // note: not sure if it is actually faster
  89. //#define GGML_SOFT_MAX_ACCELERATE
  90. #endif
  91. #if UINTPTR_MAX == 0xFFFFFFFF
  92. #define GGML_MEM_ALIGN 4
  93. #else
  94. #define GGML_MEM_ALIGN 16
  95. #endif
  96. #if defined(_MSC_VER) || defined(__MINGW32__)
  97. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  98. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  99. #else
  100. #define GGML_ALIGNED_MALLOC(size) aligned_alloc(GGML_MEM_ALIGN, size)
  101. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  102. #endif
  103. #define UNUSED(x) (void)(x)
  104. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  105. #define GGML_ASSERT(x) \
  106. do { \
  107. if (!(x)) { \
  108. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  109. abort(); \
  110. } \
  111. } while (0)
  112. #ifdef GGML_USE_ACCELERATE
  113. #include <Accelerate/Accelerate.h>
  114. #elif GGML_USE_OPENBLAS
  115. #include <cblas.h>
  116. #endif
  117. #undef MIN
  118. #undef MAX
  119. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  120. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  121. // floating point type used to accumulate sums
  122. typedef double ggml_float;
  123. // 16-bit float
  124. // on Arm, we use __fp16
  125. // on x86, we use uint16_t
  126. #ifdef __ARM_NEON
  127. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  128. //
  129. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  130. //
  131. #include <arm_neon.h>
  132. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  133. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  134. #define GGML_FP16_TO_FP32(x) ((float) (x))
  135. #define GGML_FP32_TO_FP16(x) (x)
  136. #else
  137. #ifdef __wasm_simd128__
  138. #include <wasm_simd128.h>
  139. #else
  140. #ifdef __POWER9_VECTOR__
  141. #include <altivec.h>
  142. #undef bool
  143. #define bool _Bool
  144. #else
  145. #include <immintrin.h>
  146. #endif
  147. #endif
  148. #ifdef __F16C__
  149. #ifdef _MSC_VER
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  152. #else
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  155. #endif
  156. #elif defined(__POWER9_VECTOR__)
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  159. /* the inline asm below is about 12% faster than the lookup method */
  160. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  161. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  162. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  163. register float f;
  164. register double d;
  165. __asm__(
  166. "mtfprd %0,%2\n"
  167. "xscvhpdp %0,%0\n"
  168. "frsp %1,%0\n" :
  169. /* temp */ "=d"(d),
  170. /* out */ "=f"(f):
  171. /* in */ "r"(h));
  172. return f;
  173. }
  174. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  175. register double d;
  176. register ggml_fp16_t r;
  177. __asm__( /* xscvdphp can work on double or single precision */
  178. "xscvdphp %0,%2\n"
  179. "mffprd %1,%0\n" :
  180. /* temp */ "=d"(d),
  181. /* out */ "=r"(r):
  182. /* in */ "f"(f));
  183. return r;
  184. }
  185. #else
  186. // FP16 <-> FP32
  187. // ref: https://github.com/Maratyszcza/FP16
  188. static inline float fp32_from_bits(uint32_t w) {
  189. union {
  190. uint32_t as_bits;
  191. float as_value;
  192. } fp32;
  193. fp32.as_bits = w;
  194. return fp32.as_value;
  195. }
  196. static inline uint32_t fp32_to_bits(float f) {
  197. union {
  198. float as_value;
  199. uint32_t as_bits;
  200. } fp32;
  201. fp32.as_value = f;
  202. return fp32.as_bits;
  203. }
  204. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  205. const uint32_t w = (uint32_t) h << 16;
  206. const uint32_t sign = w & UINT32_C(0x80000000);
  207. const uint32_t two_w = w + w;
  208. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  209. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  210. const float exp_scale = 0x1.0p-112f;
  211. #else
  212. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  213. #endif
  214. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  215. const uint32_t magic_mask = UINT32_C(126) << 23;
  216. const float magic_bias = 0.5f;
  217. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  218. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  219. const uint32_t result = sign |
  220. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  221. return fp32_from_bits(result);
  222. }
  223. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  224. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  225. const float scale_to_inf = 0x1.0p+112f;
  226. const float scale_to_zero = 0x1.0p-110f;
  227. #else
  228. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  229. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  230. #endif
  231. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  232. const uint32_t w = fp32_to_bits(f);
  233. const uint32_t shl1_w = w + w;
  234. const uint32_t sign = w & UINT32_C(0x80000000);
  235. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  236. if (bias < UINT32_C(0x71000000)) {
  237. bias = UINT32_C(0x71000000);
  238. }
  239. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  240. const uint32_t bits = fp32_to_bits(base);
  241. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  242. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  243. const uint32_t nonsign = exp_bits + mantissa_bits;
  244. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  245. }
  246. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  247. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  248. #endif // __F16C__
  249. #endif // __ARM_NEON
  250. //
  251. // global data
  252. //
  253. // precomputed gelu table for f16 (128 KB)
  254. static ggml_fp16_t table_gelu_f16[1 << 16];
  255. // precomputed silu table for f16 (128 KB)
  256. static ggml_fp16_t table_silu_f16[1 << 16];
  257. // precomputed exp table for f16 (128 KB)
  258. static ggml_fp16_t table_exp_f16[1 << 16];
  259. // precomputed f32 table for f16 (256 KB)
  260. static float table_f32_f16[1 << 16];
  261. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  262. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  263. // This is also true for POWER9.
  264. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  265. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  266. uint16_t s;
  267. memcpy(&s, &f, sizeof(uint16_t));
  268. return table_f32_f16[s];
  269. }
  270. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. #endif
  273. // note: do not use these inside ggml.c
  274. // these are meant to be used via the ggml.h API
  275. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  276. return (float) GGML_FP16_TO_FP32(x);
  277. }
  278. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  279. return GGML_FP32_TO_FP16(x);
  280. }
  281. //
  282. // timing
  283. //
  284. #if defined(_MSC_VER) || defined(__MINGW32__)
  285. static int64_t timer_freq;
  286. void ggml_time_init(void) {
  287. LARGE_INTEGER frequency;
  288. QueryPerformanceFrequency(&frequency);
  289. timer_freq = frequency.QuadPart;
  290. }
  291. int64_t ggml_time_ms(void) {
  292. LARGE_INTEGER t;
  293. QueryPerformanceCounter(&t);
  294. return (t.QuadPart * 1000) / timer_freq;
  295. }
  296. int64_t ggml_time_us(void) {
  297. LARGE_INTEGER t;
  298. QueryPerformanceCounter(&t);
  299. return (t.QuadPart * 1000000) / timer_freq;
  300. }
  301. #else
  302. void ggml_time_init(void) {}
  303. int64_t ggml_time_ms(void) {
  304. struct timespec ts;
  305. clock_gettime(CLOCK_MONOTONIC, &ts);
  306. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  307. }
  308. int64_t ggml_time_us(void) {
  309. struct timespec ts;
  310. clock_gettime(CLOCK_MONOTONIC, &ts);
  311. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  312. }
  313. #endif
  314. int64_t ggml_cycles(void) {
  315. return clock();
  316. }
  317. int64_t ggml_cycles_per_ms(void) {
  318. return CLOCKS_PER_SEC/1000;
  319. }
  320. #ifdef GGML_PERF
  321. #define ggml_perf_time_ms() ggml_time_ms()
  322. #define ggml_perf_time_us() ggml_time_us()
  323. #define ggml_perf_cycles() ggml_cycles()
  324. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  325. #else
  326. #define ggml_perf_time_ms() 0
  327. #define ggml_perf_time_us() 0
  328. #define ggml_perf_cycles() 0
  329. #define ggml_perf_cycles_per_ms() 0
  330. #endif
  331. //
  332. // cache line
  333. //
  334. #if defined(__cpp_lib_hardware_interference_size)
  335. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  336. #else
  337. #if defined(__POWER9_VECTOR__)
  338. #define CACHE_LINE_SIZE 128
  339. #else
  340. #define CACHE_LINE_SIZE 64
  341. #endif
  342. #endif
  343. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  344. //
  345. // quantization
  346. //
  347. #define QK 32
  348. // AVX routines provided by GH user Const-me
  349. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  350. #if __AVX2__ || __AVX512F__
  351. // Unpack 32 4-bit fields into 32 bytes
  352. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  353. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  354. {
  355. // Load 16 bytes from memory
  356. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  357. // Expand bytes into uint16_t values
  358. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  359. // Unpack values into individual bytes
  360. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  361. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  362. __m256i low = _mm256_and_si256( lowMask, bytes );
  363. high = _mm256_slli_epi16( high, 4 );
  364. bytes = _mm256_or_si256( low, high );
  365. return bytes;
  366. }
  367. static inline __m128i packNibbles( __m256i bytes )
  368. {
  369. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  370. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  371. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  372. __m256i low = _mm256_and_si256( lowByte, bytes );
  373. high = _mm256_srli_epi16( high, 4 );
  374. bytes = _mm256_or_si256( low, high );
  375. // Compress uint16_t lanes into bytes
  376. __m128i r0 = _mm256_castsi256_si128( bytes );
  377. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  378. return _mm_packus_epi16( r0, r1 );
  379. }
  380. #elif __AVX__
  381. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  382. {
  383. // Load 8 bytes from memory
  384. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  385. // Expand bytes into uint16_t values
  386. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  387. // Unpack values into individual bytes
  388. const __m128i lowMask = _mm_set1_epi8( 0xF );
  389. __m128i high = _mm_andnot_si128( lowMask, bytes );
  390. __m128i low = _mm_and_si128( lowMask, bytes );
  391. high = _mm_slli_epi16( high, 4 );
  392. bytes = _mm_or_si128( low, high );
  393. return bytes;
  394. }
  395. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  396. {
  397. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  398. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  399. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  400. __m128i low = _mm_and_si128( lowByte, bytes1 );
  401. high = _mm_srli_epi16( high, 4 );
  402. bytes1 = _mm_or_si128( low, high );
  403. high = _mm_andnot_si128( lowByte, bytes2 );
  404. low = _mm_and_si128( lowByte, bytes2 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes2 = _mm_or_si128( low, high );
  407. return _mm_packus_epi16( bytes1, bytes2);
  408. }
  409. #endif
  410. // method 5
  411. // blocks of QK elements
  412. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  413. typedef struct {
  414. float d; // delta
  415. uint8_t qs[QK / 2]; // nibbles / quants
  416. } block_q4_0;
  417. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  418. // method 4
  419. // blocks of QK elements
  420. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  421. typedef struct {
  422. float d;
  423. float m;
  424. uint8_t qs[QK / 2]; // nibbles / quants
  425. } block_q4_1;
  426. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  427. // reference implementation for deterministic creation of model files
  428. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  429. assert(k % QK == 0);
  430. const int nb = k / QK;
  431. uint8_t pp[QK/2];
  432. for (int i = 0; i < nb; i++) {
  433. float amax = 0.0f; // absolute max
  434. for (int l = 0; l < QK; l++) {
  435. const float v = x[i*QK + l];
  436. amax = MAX(amax, fabsf(v));
  437. }
  438. const float d = amax / ((1 << 3) - 1);
  439. const float id = d ? 1.0f/d : 0.0f;
  440. y[i].d = d;
  441. for (int l = 0; l < QK; l += 2) {
  442. const float v0 = x[i*QK + l + 0]*id;
  443. const float v1 = x[i*QK + l + 1]*id;
  444. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  445. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  446. assert(vi0 < 16);
  447. assert(vi1 < 16);
  448. pp[l/2] = vi0 | (vi1 << 4);
  449. }
  450. memcpy(y[i].qs, pp, sizeof(pp));
  451. }
  452. }
  453. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  454. assert(k % QK == 0);
  455. const int nb = k / QK;
  456. block_q4_0 * restrict y = vy;
  457. #if defined(__POWER9_VECTOR__)
  458. const vector float v85 = vec_splats(8.5f);
  459. for (int i = 0; i < nb; i++) {
  460. float amax = 0.0f; // absolute max
  461. vector float srcv [8];
  462. vector float asrcv[8];
  463. vector float amaxv[8];
  464. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  465. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  466. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  467. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  468. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  469. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  470. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  471. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  472. amax = MAX(
  473. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  474. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  475. const float d = amax / ((1 << 3) - 1);
  476. const float id = d ? 1.0/d : 0.0;
  477. y[i].d = d;
  478. const vector float vid = vec_splats(id);
  479. uint8_t * restrict pb = y[i].qs;
  480. for (int l = 0; l < 8; l++) {
  481. const vector float vf = vec_madd(srcv[l], vid, v85);
  482. const vector signed int vi = vec_signed(vf);
  483. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  484. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  485. }
  486. }
  487. #elif __ARM_NEON
  488. for (int i = 0; i < nb; i++) {
  489. float32x4_t srcv [8];
  490. float32x4_t asrcv[8];
  491. float32x4_t amaxv[8];
  492. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  493. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  494. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  495. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  496. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  497. const float amax = vmaxvq_f32(amaxv[0]);
  498. const float d = amax / ((1 << 3) - 1);
  499. const float id = d ? 1.0f/d : 0.0f;
  500. y[i].d = d;
  501. for (int l = 0; l < 8; l++) {
  502. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  503. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  504. const int32x4_t vi = vcvtq_s32_f32(vf);
  505. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  506. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  507. }
  508. }
  509. #elif defined(__AVX2__)
  510. for (int i = 0; i < nb; i++) {
  511. // Load elements into 4 AVX vectors
  512. __m256 v0 = _mm256_loadu_ps( x );
  513. __m256 v1 = _mm256_loadu_ps( x + 8 );
  514. __m256 v2 = _mm256_loadu_ps( x + 16 );
  515. __m256 v3 = _mm256_loadu_ps( x + 24 );
  516. x += 32;
  517. // Compute max(abs(e)) for the block
  518. const __m256 signBit = _mm256_set1_ps( -0.0f );
  519. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  520. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  521. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  522. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  523. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  524. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  525. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  526. const float maxScalar = _mm_cvtss_f32( max4 );
  527. // Quantize these floats
  528. const float d = maxScalar / 7.0f;
  529. y[i].d = d;
  530. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  531. const __m256 mul = _mm256_set1_ps( id );
  532. // Apply the multiplier
  533. v0 = _mm256_mul_ps( v0, mul );
  534. v1 = _mm256_mul_ps( v1, mul );
  535. v2 = _mm256_mul_ps( v2, mul );
  536. v3 = _mm256_mul_ps( v3, mul );
  537. // Round to nearest integer
  538. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  539. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  540. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  541. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  542. // Convert floats to integers
  543. __m256i i0 = _mm256_cvtps_epi32( v0 );
  544. __m256i i1 = _mm256_cvtps_epi32( v1 );
  545. __m256i i2 = _mm256_cvtps_epi32( v2 );
  546. __m256i i3 = _mm256_cvtps_epi32( v3 );
  547. // Convert int32 to int16
  548. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  549. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  550. // Convert int16 to int8
  551. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  552. // We got our precious signed bytes, but the order is now wrong
  553. // These AVX2 pack instructions process 16-byte pieces independently
  554. // The following instruction is fixing the order
  555. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  556. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  557. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  558. const __m256i off = _mm256_set1_epi8( 8 );
  559. i0 = _mm256_add_epi8( i0, off );
  560. // Compress the vector into 4 bit/value, and store
  561. __m128i res = packNibbles( i0 );
  562. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  563. }
  564. #elif defined(__AVX__)
  565. for (int i = 0; i < nb; i++) {
  566. // Load elements into 4 AVX vectors
  567. __m256 v0 = _mm256_loadu_ps( x );
  568. __m256 v1 = _mm256_loadu_ps( x + 8 );
  569. __m256 v2 = _mm256_loadu_ps( x + 16 );
  570. __m256 v3 = _mm256_loadu_ps( x + 24 );
  571. x += 32;
  572. // Compute max(abs(e)) for the block
  573. const __m256 signBit = _mm256_set1_ps( -0.0f );
  574. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  575. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  576. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  577. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  578. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  579. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  580. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  581. const float maxScalar = _mm_cvtss_f32( max4 );
  582. // Quantize these floats
  583. const float d = maxScalar / 7.0f;
  584. y[i].d = d;
  585. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  586. const __m256 mul = _mm256_set1_ps( id );
  587. // Apply the multiplier
  588. v0 = _mm256_mul_ps( v0, mul );
  589. v1 = _mm256_mul_ps( v1, mul );
  590. v2 = _mm256_mul_ps( v2, mul );
  591. v3 = _mm256_mul_ps( v3, mul );
  592. // Round to nearest integer
  593. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  594. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  595. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  596. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  597. // Convert floats to integers
  598. __m256i i0 = _mm256_cvtps_epi32( v0 );
  599. __m256i i1 = _mm256_cvtps_epi32( v1 );
  600. __m256i i2 = _mm256_cvtps_epi32( v2 );
  601. __m256i i3 = _mm256_cvtps_epi32( v3 );
  602. // Since we don't have in AVX some necessary functions,
  603. // we split the registers in half and call AVX2 analogs from SSE
  604. __m128i ni0 = _mm256_castsi256_si128( i0 );
  605. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  606. __m128i ni2 = _mm256_castsi256_si128( i1 );
  607. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  608. __m128i ni4 = _mm256_castsi256_si128( i2 );
  609. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  610. __m128i ni6 = _mm256_castsi256_si128( i3 );
  611. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  612. // Convert int32 to int16
  613. ni0 = _mm_packs_epi32( ni0, ni1 );
  614. ni2 = _mm_packs_epi32( ni2, ni3 );
  615. ni4 = _mm_packs_epi32( ni4, ni5 );
  616. ni6 = _mm_packs_epi32( ni6, ni7 );
  617. // Convert int16 to int8
  618. ni0 = _mm_packs_epi16( ni0, ni2 );
  619. ni4 = _mm_packs_epi16( ni4, ni6 );
  620. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  621. const __m128i off = _mm_set1_epi8( 8);
  622. ni0 = _mm_add_epi8( ni0, off );
  623. ni4 = _mm_add_epi8( ni4, off );
  624. // Compress the vector into 4 bit/value, and store
  625. __m128i res = packNibbles( ni0, ni4 );
  626. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  627. }
  628. #elif defined(__wasm_simd128__)
  629. for (int i = 0; i < nb; i++) {
  630. float amax = 0.0f; // absolute max
  631. v128_t srcv [8];
  632. v128_t asrcv[8];
  633. v128_t amaxv[8];
  634. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  635. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  636. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  637. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  638. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  639. amax = MAX(
  640. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  641. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  642. const float d = amax / ((1 << 3) - 1);
  643. const float id = d ? 1.0/d : 0.0;
  644. y[i].d = d;
  645. for (int l = 0; l < 8; l++) {
  646. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  647. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  648. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  649. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  650. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  651. }
  652. }
  653. #else
  654. // scalar
  655. quantize_row_q4_0_reference(x, y, k);
  656. #endif
  657. }
  658. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  659. assert(k % QK == 0);
  660. const int nb = k / QK;
  661. block_q4_1 * restrict y = vy;
  662. uint8_t pp[QK/2];
  663. for (int i = 0; i < nb; i++) {
  664. float min = FLT_MAX;
  665. float max = -FLT_MAX;
  666. for (int l = 0; l < QK; l++) {
  667. const float v = x[i*QK + l];
  668. if (v < min) min = v;
  669. if (v > max) max = v;
  670. }
  671. const float d = (max - min) / ((1 << 4) - 1);
  672. const float id = d ? 1.0f/d : 0.0f;
  673. y[i].d = d;
  674. y[i].m = min;
  675. for (int l = 0; l < QK; l += 2) {
  676. const float v0 = (x[i*QK + l + 0] - min)*id;
  677. const float v1 = (x[i*QK + l + 1] - min)*id;
  678. const uint8_t vi0 = roundf(v0);
  679. const uint8_t vi1 = roundf(v1);
  680. assert(vi0 < 16);
  681. assert(vi1 < 16);
  682. pp[l/2] = vi0 | (vi1 << 4);
  683. }
  684. memcpy(y[i].qs, pp, sizeof(pp));
  685. }
  686. }
  687. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  688. assert(k % QK == 0);
  689. const int nb = k / QK;
  690. block_q4_1 * restrict y = vy;
  691. #if defined(__AVX2__)
  692. for (int i = 0; i < nb; i++) {
  693. // Load elements into 4 AVX vectors
  694. __m256 v0 = _mm256_loadu_ps( x );
  695. __m256 v1 = _mm256_loadu_ps( x + 8 );
  696. __m256 v2 = _mm256_loadu_ps( x + 16 );
  697. __m256 v3 = _mm256_loadu_ps( x + 24 );
  698. x += 32;
  699. // Compute max for the block
  700. __m256 vmax;
  701. vmax = _mm256_max_ps( v0, v1 );
  702. vmax = _mm256_max_ps( vmax, v2 );
  703. vmax = _mm256_max_ps( vmax, v3 );
  704. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  705. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  706. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  707. const float maxScalar = _mm_cvtss_f32( max4 );
  708. // Compute min for the block
  709. __m256 vmin;
  710. vmin = _mm256_min_ps( v0, v1 );
  711. vmin = _mm256_min_ps( vmin, v2 );
  712. vmin = _mm256_min_ps( vmin, v3 );
  713. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  714. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  715. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  716. const float minScalar = _mm_cvtss_f32( min4 );
  717. // Quantize these floats
  718. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  719. const float id = d ? 1.0f/d : 0.0f;
  720. y[i].m = minScalar;
  721. y[i].d = d;
  722. // x = (x-min)*id
  723. const __m256 mul = _mm256_set1_ps( id );
  724. const __m256 off = _mm256_set1_ps( minScalar );
  725. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  726. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  727. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  728. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  729. // Round to nearest integer
  730. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  731. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  732. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  733. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  734. // Convert floats to integers
  735. __m256i i0 = _mm256_cvtps_epi32( v0 );
  736. __m256i i1 = _mm256_cvtps_epi32( v1 );
  737. __m256i i2 = _mm256_cvtps_epi32( v2 );
  738. __m256i i3 = _mm256_cvtps_epi32( v3 );
  739. // Convert int32 to int16
  740. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  741. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  742. // Convert int16 to int8
  743. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  744. // We got our precious signed bytes, but the order is now wrong
  745. // These AVX2 pack instructions process 16-byte pieces independently
  746. // The following instruction is fixing the order
  747. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  748. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  749. // Compress the vector into 4 bit/value, and store
  750. __m128i res = packNibbles( i0 );
  751. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  752. }
  753. #elif __ARM_NEON
  754. for (int i = 0; i < nb; i++) {
  755. float32x4_t srcv[8];
  756. float32x4_t minv[8];
  757. float32x4_t maxv[8];
  758. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK + 4*l);
  759. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  760. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  761. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  762. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  763. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  764. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  765. const float min = vminvq_f32(minv[0]);
  766. const float max = vmaxvq_f32(maxv[0]);
  767. const float d = (max - min) / ((1 << 4) - 1);
  768. const float id = d ? 1.0f/d : 0.0f;
  769. y[i].d = d;
  770. y[i].m = min;
  771. const float32x4_t minv0 = vdupq_n_f32(min);
  772. for (int l = 0; l < 8; l++) {
  773. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  774. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  775. const int32x4_t vi = vcvtq_s32_f32(vf);
  776. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  777. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  778. }
  779. }
  780. #else
  781. // scalar
  782. quantize_row_q4_1_reference(x, vy, k);
  783. #endif
  784. }
  785. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  786. assert(k % QK == 0);
  787. const int nb = k / QK;
  788. const block_q4_0 * restrict x = vx;
  789. #if defined(__AVX2__)
  790. for (int i = 0; i < nb; i++) {
  791. // scale factor
  792. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  793. const uint8_t * restrict pp = x[i].qs;
  794. for (int l = 0; l < QK; l += 32) {
  795. // Load 32x4-bit integers into 32x8-bit integers
  796. __m256i vx8 = bytesFromNibbles(pp+l/2);
  797. // Subtract 8 from the integers
  798. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  799. // Convert to 16-bit int
  800. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  801. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  802. // Convert to 32-bit int -> float 32
  803. const __m256 vf[4] = {
  804. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  805. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  806. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  807. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  808. };
  809. // Scale and store
  810. for (int j = 0; j < 4; j++) {
  811. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  812. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  813. }
  814. }
  815. }
  816. #elif defined(__ARM_NEON)
  817. for (int i = 0; i < nb; i++) {
  818. const float32x4_t vd = vdupq_n_f32(x[i].d);
  819. const uint8_t * restrict pp = x[i].qs;
  820. for (int l = 0; l < QK; l += 16) {
  821. // Load 16x4-bit integers into 8x8-bit integers
  822. const uint8x8_t v8 = vld1_u8(pp + l/2);
  823. // Expand 4-bit qs to 8-bit bytes
  824. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  825. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  826. // Convert to signed 8-bit integers
  827. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  828. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  829. // Subtract 8 from each byte
  830. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  831. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  832. // Interleave and combine
  833. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  834. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  835. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  836. // convert to 2x int16x8_t
  837. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  838. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  839. // convert to 4x float32x4_t
  840. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  841. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  842. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  843. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  844. // Multiply by d
  845. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  846. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  847. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  848. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  849. // Store
  850. vst1q_f32(y + i*QK + l + 0, r0);
  851. vst1q_f32(y + i*QK + l + 4, r1);
  852. vst1q_f32(y + i*QK + l + 8, r2);
  853. vst1q_f32(y + i*QK + l + 12, r3);
  854. }
  855. }
  856. #else
  857. // scalar
  858. for (int i = 0; i < nb; i++) {
  859. const float d = x[i].d;
  860. const uint8_t * restrict pp = x[i].qs;
  861. for (int l = 0; l < QK; l += 2) {
  862. const uint8_t vi = pp[l/2];
  863. const int8_t vi0 = vi & 0xf;
  864. const int8_t vi1 = vi >> 4;
  865. const float v0 = (vi0 - 8)*d;
  866. const float v1 = (vi1 - 8)*d;
  867. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  868. y[i*QK + l + 0] = v0;
  869. y[i*QK + l + 1] = v1;
  870. assert(!isnan(y[i*QK + l + 0]));
  871. assert(!isnan(y[i*QK + l + 1]));
  872. }
  873. }
  874. #endif
  875. }
  876. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  877. assert(k % QK == 0);
  878. const int nb = k / QK;
  879. const block_q4_1 * restrict x = vx;
  880. #if defined(__AVX2__)
  881. for (int i = 0; i < nb; i++) {
  882. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  883. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  884. const uint8_t * restrict pp = x[i].qs;
  885. for (int l = 0; l < QK; l += 32) {
  886. // Load 32x4-bit integers into 32x8-bit integers
  887. __m256i vx8 = bytesFromNibbles(pp+l/2);
  888. // Convert to 16-bit int
  889. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  890. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  891. // Convert to 32-bit int -> float 32
  892. const __m256 vf[4] = {
  893. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  894. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  895. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  896. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  897. };
  898. // Scale, add m and store
  899. for (int j = 0; j < 4; j++) {
  900. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  901. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  902. }
  903. }
  904. }
  905. #elif defined(__ARM_NEON)
  906. for (int i = 0; i < nb; i++) {
  907. const float32x4_t vd = vdupq_n_f32(x[i].d);
  908. const float32x4_t vm = vdupq_n_f32(x[i].m);
  909. const uint8_t * restrict pp = x[i].qs;
  910. for (int l = 0; l < QK; l += 16) {
  911. // Load 16x4-bit integers into 8x8-bit integers
  912. const uint8x8_t v8 = vld1_u8(pp + l/2);
  913. // Expand 4-bit qs to 8-bit bytes
  914. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  915. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  916. // Interleave and combine
  917. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  918. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  919. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  920. // convert to 2x uint16x8_t
  921. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  922. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  923. // convert to 4x float32x4_t
  924. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  925. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  926. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  927. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  928. // multiply by d and add m
  929. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  930. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  931. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  932. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  933. // Store
  934. vst1q_f32(y + i*QK + l + 0, r0);
  935. vst1q_f32(y + i*QK + l + 4, r1);
  936. vst1q_f32(y + i*QK + l + 8, r2);
  937. vst1q_f32(y + i*QK + l + 12, r3);
  938. }
  939. }
  940. #else
  941. for (int i = 0; i < nb; i++) {
  942. const float d = x[i].d;
  943. const float m = x[i].m;
  944. const uint8_t * restrict pp = x[i].qs;
  945. for (int l = 0; l < QK; l += 2) {
  946. const uint8_t vi = pp[l/2];
  947. const int8_t vi0 = vi & 0xf;
  948. const int8_t vi1 = vi >> 4;
  949. const float v0 = vi0*d + m;
  950. const float v1 = vi1*d + m;
  951. y[i*QK + l + 0] = v0;
  952. y[i*QK + l + 1] = v1;
  953. assert(!isnan(y[i*QK + l + 0]));
  954. assert(!isnan(y[i*QK + l + 1]));
  955. }
  956. }
  957. #endif
  958. }
  959. //
  960. // simd mappings
  961. //
  962. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  963. // we then implement the fundamental computation operations below using only these macros
  964. // adding support for new architectures requires to define the corresponding SIMD macros
  965. //
  966. // GGML_F32_STEP / GGML_F16_STEP
  967. // number of elements to process in a single step
  968. //
  969. // GGML_F32_EPR / GGML_F16_EPR
  970. // number of elements to fit in a single register
  971. //
  972. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  973. #define GGML_SIMD
  974. // F32 NEON
  975. #define GGML_F32_STEP 16
  976. #define GGML_F32_EPR 4
  977. #define GGML_F32x4 float32x4_t
  978. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  979. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  980. #define GGML_F32x4_LOAD vld1q_f32
  981. #define GGML_F32x4_STORE vst1q_f32
  982. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  983. #define GGML_F32x4_ADD vaddq_f32
  984. #define GGML_F32x4_MUL vmulq_f32
  985. #if defined(__ARM_FEATURE_QRDMX)
  986. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  987. #else
  988. #define GGML_F32x4_REDUCE_ONE(x) \
  989. (vgetq_lane_f32(x, 0) + \
  990. vgetq_lane_f32(x, 1) + \
  991. vgetq_lane_f32(x, 2) + \
  992. vgetq_lane_f32(x, 3))
  993. #endif
  994. #define GGML_F32x4_REDUCE(res, x) \
  995. { \
  996. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  997. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  998. } \
  999. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1000. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1001. } \
  1002. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1003. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1004. } \
  1005. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1006. }
  1007. #define GGML_F32_VEC GGML_F32x4
  1008. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1009. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1010. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1011. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1012. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1013. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1014. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1015. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1016. // F16 NEON
  1017. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1018. #define GGML_F16_STEP 32
  1019. #define GGML_F16_EPR 8
  1020. #define GGML_F16x8 float16x8_t
  1021. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1022. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1023. #define GGML_F16x8_LOAD vld1q_f16
  1024. #define GGML_F16x8_STORE vst1q_f16
  1025. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1026. #define GGML_F16x8_ADD vaddq_f16
  1027. #define GGML_F16x8_MUL vmulq_f16
  1028. #define GGML_F16x8_REDUCE(res, x) \
  1029. { \
  1030. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1031. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1032. } \
  1033. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1034. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1035. } \
  1036. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1037. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1038. } \
  1039. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1040. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1041. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1042. }
  1043. #define GGML_F16_VEC GGML_F16x8
  1044. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1045. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1046. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1047. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1048. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1049. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1050. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1051. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1052. #else
  1053. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1054. // and take advantage of the vcvt_ functions to convert to/from FP16
  1055. #define GGML_F16_STEP 16
  1056. #define GGML_F16_EPR 4
  1057. #define GGML_F32Cx4 float32x4_t
  1058. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1059. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1060. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1061. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1062. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1063. #define GGML_F32Cx4_ADD vaddq_f32
  1064. #define GGML_F32Cx4_MUL vmulq_f32
  1065. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1066. #define GGML_F16_VEC GGML_F32Cx4
  1067. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1068. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1069. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1070. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1071. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1072. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1073. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1074. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1075. #endif
  1076. #elif defined(__AVX__)
  1077. #define GGML_SIMD
  1078. // F32 AVX
  1079. #define GGML_F32_STEP 32
  1080. #define GGML_F32_EPR 8
  1081. #define GGML_F32x8 __m256
  1082. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1083. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1084. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1085. #define GGML_F32x8_STORE _mm256_storeu_ps
  1086. #if defined(__FMA__)
  1087. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1088. #else
  1089. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1090. #endif
  1091. #define GGML_F32x8_ADD _mm256_add_ps
  1092. #define GGML_F32x8_MUL _mm256_mul_ps
  1093. #define GGML_F32x8_REDUCE(res, x) \
  1094. { \
  1095. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1096. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1097. } \
  1098. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1099. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1100. } \
  1101. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1102. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1103. } \
  1104. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1105. _mm256_extractf128_ps(x[0], 1)); \
  1106. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1107. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1108. }
  1109. // TODO: is this optimal ?
  1110. #define GGML_F32_VEC GGML_F32x8
  1111. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1112. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1113. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1114. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1115. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1116. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1117. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1118. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1119. // F16 AVX
  1120. #define GGML_F16_STEP 32
  1121. #define GGML_F16_EPR 8
  1122. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1123. #define GGML_F32Cx8 __m256
  1124. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1125. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1126. #if defined(__F16C__)
  1127. // the _mm256_cvt intrinsics require F16C
  1128. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1129. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1130. #else
  1131. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1132. float tmp[8];
  1133. for (int i = 0; i < 8; i++)
  1134. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1135. return _mm256_loadu_ps(tmp);
  1136. }
  1137. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1138. float arr[8];
  1139. _mm256_storeu_ps(arr, y);
  1140. for (int i = 0; i < 8; i++)
  1141. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1142. }
  1143. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1144. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1145. #endif
  1146. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1147. #define GGML_F32Cx8_ADD _mm256_add_ps
  1148. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1149. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1150. #define GGML_F16_VEC GGML_F32Cx8
  1151. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1152. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1153. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1154. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1155. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1156. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1157. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1158. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1159. #elif defined(__POWER9_VECTOR__)
  1160. #define GGML_SIMD
  1161. // F32 POWER9
  1162. #define GGML_F32_STEP 32
  1163. #define GGML_F32_EPR 4
  1164. #define GGML_F32x4 vector float
  1165. #define GGML_F32x4_ZERO 0.0f
  1166. #define GGML_F32x4_SET1 vec_splats
  1167. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1168. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1169. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1170. #define GGML_F32x4_ADD vec_add
  1171. #define GGML_F32x4_MUL vec_mul
  1172. #define GGML_F32x4_REDUCE(res, x) \
  1173. { \
  1174. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1175. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1176. } \
  1177. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1178. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1179. } \
  1180. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1181. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1182. } \
  1183. res = vec_extract(x[0], 0) + \
  1184. vec_extract(x[0], 1) + \
  1185. vec_extract(x[0], 2) + \
  1186. vec_extract(x[0], 3); \
  1187. }
  1188. #define GGML_F32_VEC GGML_F32x4
  1189. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1190. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1191. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1192. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1193. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1194. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1195. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1196. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1197. // F16 POWER9
  1198. #define GGML_F16_STEP GGML_F32_STEP
  1199. #define GGML_F16_EPR GGML_F32_EPR
  1200. #define GGML_F16_VEC GGML_F32x4
  1201. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1202. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1203. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1204. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1205. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1206. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1207. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1208. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1209. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1210. #define GGML_F16_VEC_STORE(p, r, i) \
  1211. if (i & 0x1) \
  1212. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1213. r[i - GGML_ENDIAN_BYTE(0)]), \
  1214. 0, p - GGML_F16_EPR)
  1215. #elif defined(__wasm_simd128__)
  1216. #define GGML_SIMD
  1217. // F32 WASM
  1218. #define GGML_F32_STEP 16
  1219. #define GGML_F32_EPR 4
  1220. #define GGML_F32x4 v128_t
  1221. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1222. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1223. #define GGML_F32x4_LOAD wasm_v128_load
  1224. #define GGML_F32x4_STORE wasm_v128_store
  1225. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1226. #define GGML_F32x4_ADD wasm_f32x4_add
  1227. #define GGML_F32x4_MUL wasm_f32x4_mul
  1228. #define GGML_F32x4_REDUCE(res, x) \
  1229. { \
  1230. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1231. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1232. } \
  1233. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1234. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1235. } \
  1236. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1237. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1238. } \
  1239. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1240. wasm_f32x4_extract_lane(x[0], 1) + \
  1241. wasm_f32x4_extract_lane(x[0], 2) + \
  1242. wasm_f32x4_extract_lane(x[0], 3); \
  1243. }
  1244. #define GGML_F32_VEC GGML_F32x4
  1245. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1246. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1247. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1248. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1249. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1250. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1251. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1252. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1253. // F16 WASM
  1254. #define GGML_F16_STEP 16
  1255. #define GGML_F16_EPR 4
  1256. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1257. float tmp[4];
  1258. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1259. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1260. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1261. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1262. return wasm_v128_load(tmp);
  1263. }
  1264. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1265. float tmp[4];
  1266. wasm_v128_store(tmp, x);
  1267. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1268. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1269. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1270. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1271. }
  1272. #define GGML_F16x4 v128_t
  1273. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1274. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1275. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1276. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1277. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1278. #define GGML_F16x4_ADD wasm_f32x4_add
  1279. #define GGML_F16x4_MUL wasm_f32x4_mul
  1280. #define GGML_F16x4_REDUCE(res, x) \
  1281. { \
  1282. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1283. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1284. } \
  1285. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1286. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1287. } \
  1288. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1289. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1290. } \
  1291. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1292. wasm_f32x4_extract_lane(x[0], 1) + \
  1293. wasm_f32x4_extract_lane(x[0], 2) + \
  1294. wasm_f32x4_extract_lane(x[0], 3); \
  1295. }
  1296. #define GGML_F16_VEC GGML_F16x4
  1297. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1298. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1299. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1300. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1301. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1302. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1303. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1304. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1305. #elif defined(__SSE3__)
  1306. #define GGML_SIMD
  1307. // F32 SSE
  1308. #define GGML_F32_STEP 32
  1309. #define GGML_F32_EPR 4
  1310. #define GGML_F32x4 __m128
  1311. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1312. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1313. #define GGML_F32x4_LOAD _mm_loadu_ps
  1314. #define GGML_F32x4_STORE _mm_storeu_ps
  1315. #if defined(__FMA__)
  1316. // TODO: Does this work?
  1317. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1318. #else
  1319. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1320. #endif
  1321. #define GGML_F32x4_ADD _mm_add_ps
  1322. #define GGML_F32x4_MUL _mm_mul_ps
  1323. #define GGML_F32x4_REDUCE(res, x) \
  1324. { \
  1325. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1326. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1327. } \
  1328. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1329. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1330. } \
  1331. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1332. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1333. } \
  1334. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1335. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1336. }
  1337. // TODO: is this optimal ?
  1338. #define GGML_F32_VEC GGML_F32x4
  1339. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1340. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1341. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1342. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1343. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1344. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1345. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1346. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1347. // F16 SSE
  1348. #define GGML_F16_STEP 32
  1349. #define GGML_F16_EPR 4
  1350. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1351. float tmp[4];
  1352. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1353. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1354. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1355. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1356. return _mm_loadu_ps(tmp);
  1357. }
  1358. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1359. float arr[4];
  1360. _mm_storeu_ps(arr, y);
  1361. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1362. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1363. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1364. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1365. }
  1366. #define GGML_F32Cx4 __m128
  1367. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1368. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1369. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1370. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1371. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1372. #define GGML_F32Cx4_ADD _mm_add_ps
  1373. #define GGML_F32Cx4_MUL _mm_mul_ps
  1374. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1375. #define GGML_F16_VEC GGML_F32Cx4
  1376. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1377. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1378. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1379. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1380. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1381. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1382. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1383. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1384. #endif
  1385. // GGML_F32_ARR / GGML_F16_ARR
  1386. // number of registers to use per step
  1387. #ifdef GGML_SIMD
  1388. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1389. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1390. #endif
  1391. //
  1392. // fundamental operations
  1393. //
  1394. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1395. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1396. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1397. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1398. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1399. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1400. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1401. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1402. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1404. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1405. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1406. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1407. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1408. #ifdef GGML_SIMD
  1409. float sumf = 0.0f;
  1410. const int np = (n & ~(GGML_F32_STEP - 1));
  1411. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1412. GGML_F32_VEC ax[GGML_F32_ARR];
  1413. GGML_F32_VEC ay[GGML_F32_ARR];
  1414. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1415. for (int j = 0; j < GGML_F32_ARR; j++) {
  1416. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1417. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1418. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1419. }
  1420. }
  1421. // reduce sum0..sum3 to sum0
  1422. GGML_F32_VEC_REDUCE(sumf, sum);
  1423. // leftovers
  1424. for (int i = np; i < n; ++i) {
  1425. sumf += x[i]*y[i];
  1426. }
  1427. #else
  1428. // scalar
  1429. ggml_float sumf = 0.0;
  1430. for (int i = 0; i < n; ++i) {
  1431. sumf += (ggml_float)(x[i]*y[i]);
  1432. }
  1433. #endif
  1434. *s = sumf;
  1435. }
  1436. #if __AVX512F__ && QK == 32
  1437. static inline __m512 dot_q4_0_oneblock_avx512(
  1438. __m512 acc,
  1439. const block_q4_0 * restrict x,
  1440. const block_q4_0 * restrict y,
  1441. int i
  1442. ) {
  1443. // Compute combined scale for the block
  1444. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1445. __m256i bx = bytesFromNibbles( x[i].qs );
  1446. __m256i by = bytesFromNibbles( y[i].qs );
  1447. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1448. const __m256i off = _mm256_set1_epi8( 8 );
  1449. bx = _mm256_sub_epi8( bx, off );
  1450. by = _mm256_sub_epi8( by, off );
  1451. // Sign-extend 16 signed bytes into int16_t
  1452. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1453. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1454. // Compute products of int16_t integers, add pairwise
  1455. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1456. // Convert int32_t to float
  1457. __m512 p = _mm512_cvtepi32_ps( i64 );
  1458. // Apply the scale, and accumulate
  1459. return _mm512_fmadd_ps( d, p, acc );
  1460. }
  1461. #endif
  1462. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1463. ggml_float sumf = 0.0;
  1464. #if defined(GGML_SIMD)
  1465. const int np = (n & ~(GGML_F16_STEP - 1));
  1466. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1467. GGML_F16_VEC ax[GGML_F16_ARR];
  1468. GGML_F16_VEC ay[GGML_F16_ARR];
  1469. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1470. for (int j = 0; j < GGML_F16_ARR; j++) {
  1471. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1472. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1473. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1474. }
  1475. }
  1476. // reduce sum0..sum3 to sum0
  1477. GGML_F16_VEC_REDUCE(sumf, sum);
  1478. // leftovers
  1479. for (int i = np; i < n; ++i) {
  1480. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1481. }
  1482. #else
  1483. for (int i = 0; i < n; ++i) {
  1484. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1485. }
  1486. #endif
  1487. *s = sumf;
  1488. }
  1489. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1490. const int nb = n / QK;
  1491. assert(n % QK == 0);
  1492. assert(nb % 2 == 0);
  1493. const block_q4_0 * restrict x = vx;
  1494. const block_q4_0 * restrict y = vy;
  1495. float sumf = 0.0;
  1496. #if defined(__ARM_NEON)
  1497. float sum0 = 0.0f;
  1498. float sum1 = 0.0f;
  1499. for (int i = 0; i < nb; i += 2) {
  1500. const block_q4_0 * restrict x0 = &x[i + 0];
  1501. const block_q4_0 * restrict y0 = &y[i + 0];
  1502. const block_q4_0 * restrict x1 = &x[i + 1];
  1503. const block_q4_0 * restrict y1 = &y[i + 1];
  1504. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1505. const int8x16_t s8b = vdupq_n_s8(0x8);
  1506. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1507. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1508. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1509. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1510. // 4-bit -> 8-bit
  1511. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1512. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1513. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1514. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1515. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1516. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1517. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1518. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1519. // sub 8
  1520. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1521. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1522. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1523. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1524. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1525. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1526. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1527. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1528. #if defined(__ARM_FEATURE_DOTPROD)
  1529. // dot product into int16x8_t
  1530. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1531. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1532. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1533. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1534. // scalar
  1535. #if defined(__ARM_FEATURE_QRDMX)
  1536. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1537. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1538. #else
  1539. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1540. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1541. #endif
  1542. #else
  1543. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1544. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1545. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1546. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1547. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1548. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1549. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1550. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1551. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1552. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1553. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1554. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1555. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1556. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1557. // scalar
  1558. #if defined(__ARM_FEATURE_QRDMX)
  1559. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1560. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1561. #else
  1562. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1563. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1564. #endif
  1565. #endif
  1566. }
  1567. sumf = sum0 + sum1;
  1568. #elif defined(__AVX512F__)
  1569. // Initialize accumulator with zeros
  1570. __m512 acc0 = _mm512_setzero_ps();
  1571. __m512 acc1 = _mm512_setzero_ps();
  1572. const int superblock_size = 8;
  1573. const int superblock_count = nb / superblock_size;
  1574. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1575. int i = superblock_ix * superblock_size;
  1576. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1577. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1578. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1579. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1580. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1581. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1582. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1583. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1584. }
  1585. // Remainders
  1586. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1587. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1588. }
  1589. // Horizontal sum of all lanes of the accumulator
  1590. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1591. #elif defined(__AVX2__)
  1592. // Initialize accumulator with zeros
  1593. __m256 acc = _mm256_setzero_ps();
  1594. /* Prepare the constants we will need during execution */
  1595. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  1596. const __m256i offset_8 = _mm256_set1_epi16( 8 );
  1597. #define UNROLL_COUNT 8
  1598. // make sure we only unroll multiples of the block count
  1599. assert(nb % UNROLL_COUNT == 0);
  1600. // Main loop
  1601. for (int i = 0; i < nb; i+=UNROLL_COUNT) {
  1602. // This loop will be unrolled by the compiler
  1603. for (int u=0;u<UNROLL_COUNT;u++) {
  1604. /* Compute combined scale for the block */
  1605. const __m256 scale = _mm256_mul_ps(
  1606. _mm256_broadcast_ss( &x[i+u].d ),
  1607. _mm256_broadcast_ss( &y[i+u].d ) );
  1608. /* get input from x
  1609. Input: 32 Nibbles (16 bytes) at *x[i+u]
  1610. Output: 2 vectors with 16 values of type int16_t (x_high_q, x_low_q) */
  1611. /* Load 16 bytes from memory */
  1612. const __m128i tmp_x = _mm_loadu_si128( ( const __m128i* ) x[i+u].qs);
  1613. /* Expand bytes into uint16_t values */
  1614. const __m256i bytes_x = _mm256_cvtepu8_epi16(tmp_x);
  1615. /* Unpack values into individual bytes */
  1616. __m256i x_low_q = _mm256_and_si256( lowMask, bytes_x );
  1617. const __m256i pre_shift_x_high_q = _mm256_andnot_si256( lowMask, bytes_x );
  1618. __m256i x_high_q = _mm256_srli_epi16( pre_shift_x_high_q, 4 );
  1619. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1620. x_high_q = _mm256_sub_epi16( x_high_q, offset_8 );
  1621. x_low_q = _mm256_sub_epi16( x_low_q, offset_8 );
  1622. /* get input from y
  1623. Input: 32 Nibbles (16 bytes) at *y[i+u]
  1624. Output: 2 vectors with 16 values of type int16_t (y_high_q, y_low_q) */
  1625. /* Load 16 bytes from memory */
  1626. const __m128i tmp_y = _mm_loadu_si128( (const __m128i* ) y[i+u].qs);
  1627. /* Expand bytes into uint16_t values */
  1628. const __m256i bytes_y = _mm256_cvtepu8_epi16(tmp_y);
  1629. /* Unpack values into individual bytes */
  1630. const __m256i pre_shift_y_high_q = _mm256_andnot_si256( lowMask, bytes_y );
  1631. __m256i y_high_q = _mm256_srli_epi16( pre_shift_y_high_q, 4 );
  1632. __m256i y_low_q = _mm256_and_si256( lowMask, bytes_y );
  1633. /* Now we have two vectors with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. */
  1634. y_high_q = _mm256_sub_epi16( y_high_q, offset_8 );
  1635. y_low_q = _mm256_sub_epi16( y_low_q, offset_8 );
  1636. /* Compute products of int16_t integers, add pairwise, store as int32_t */
  1637. __m256i xy_high_q = _mm256_madd_epi16( x_high_q, y_high_q );
  1638. __m256i xy_low_q = _mm256_madd_epi16( x_low_q, y_low_q );
  1639. /* Accumulate the products of int32_t integers -> we now have a vector of 8 int_32t */
  1640. __m256i xy_q = _mm256_add_epi32( xy_high_q, xy_low_q );
  1641. /* Convert to vectore of 8 int32_t to 8 floats */
  1642. __m256 q = _mm256_cvtepi32_ps( xy_q );
  1643. /* Multiply q with scale and accumulate */
  1644. acc = _mm256_fmadd_ps( scale, q, acc );
  1645. }
  1646. }
  1647. // Return horizontal sum of the acc vector
  1648. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1649. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1650. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1651. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1652. sumf = _mm_cvtss_f32( res );
  1653. #elif defined(__AVX__)
  1654. // Initialize accumulator with zeros
  1655. __m256 acc = _mm256_setzero_ps();
  1656. // Main loop
  1657. for (int i = 0; i < nb; ++i) {
  1658. // Compute combined scale for the block
  1659. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1660. __m128i i32[2];
  1661. for (int j = 0; j < 2; ++j) {
  1662. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1663. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1664. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1665. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1666. const __m128i off = _mm_set1_epi8( 8 );
  1667. bx = _mm_sub_epi8( bx, off );
  1668. by = _mm_sub_epi8( by, off );
  1669. // Get absolute values of x vectors
  1670. const __m128i ax = _mm_sign_epi8(bx, bx);
  1671. // Sign the values of the y vectors
  1672. const __m128i sy = _mm_sign_epi8(by, bx);
  1673. // Perform multiplication and create 16-bit values
  1674. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1675. const __m128i ones = _mm_set1_epi16(1);
  1676. i32[j] = _mm_madd_epi16(ones, dot);
  1677. }
  1678. // Convert int32_t to float
  1679. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1680. // Apply the scale, and accumulate
  1681. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1682. }
  1683. // Return horizontal sum of the acc vector
  1684. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1685. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1686. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1687. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1688. sumf = _mm_cvtss_f32( res );
  1689. #elif defined(__wasm_simd128__)
  1690. // wasm simd
  1691. float sum0 = 0.0f;
  1692. float sum1 = 0.0f;
  1693. for (int i = 0; i < nb; i += 2) {
  1694. const block_q4_0 * restrict x0 = &x[i + 0];
  1695. const block_q4_0 * restrict y0 = &y[i + 0];
  1696. const block_q4_0 * restrict x1 = &x[i + 1];
  1697. const block_q4_0 * restrict y1 = &y[i + 1];
  1698. const v128_t m4b = wasm_u8x16_splat(0xf);
  1699. const v128_t s8b = wasm_i8x16_splat(0x8);
  1700. const v128_t v0_0 = wasm_v128_load(x0->qs);
  1701. const v128_t v0_1 = wasm_v128_load(y0->qs);
  1702. const v128_t v1_0 = wasm_v128_load(x1->qs);
  1703. const v128_t v1_1 = wasm_v128_load(y1->qs);
  1704. // 4-bit -> 8-bit
  1705. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1706. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1707. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1708. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1709. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1710. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1711. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1712. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1713. // sub 8
  1714. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1715. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1716. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1717. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1718. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1719. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1720. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1721. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1722. // dot product into int16x8_t
  1723. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1724. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1725. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1726. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1727. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1728. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1729. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1730. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1731. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1732. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1733. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1734. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1735. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1736. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1737. sum0 += x0->d * y0->d * (
  1738. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1739. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1740. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1741. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1742. sum1 += x1->d * y1->d * (
  1743. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1744. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1745. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1746. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1747. }
  1748. sumf = sum0 + sum1;
  1749. #else
  1750. // scalar
  1751. for (int i = 0; i < nb; i++) {
  1752. const float d0 = x[i].d;
  1753. const float d1 = y[i].d;
  1754. const uint8_t * restrict p0 = x[i].qs;
  1755. const uint8_t * restrict p1 = y[i].qs;
  1756. for (int j = 0; j < QK/2; j++) {
  1757. const uint8_t v0 = p0[j];
  1758. const uint8_t v1 = p1[j];
  1759. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1760. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1761. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1762. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1763. sumf += f0*f2 + f1*f3;
  1764. }
  1765. }
  1766. #endif
  1767. *s = sumf;
  1768. }
  1769. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1770. const int nb = n / QK;
  1771. const block_q4_1 * restrict x = vx;
  1772. const block_q4_1 * restrict y = vy;
  1773. float sumf = 0.0;
  1774. #if defined(__AVX2__)
  1775. // Initialize accumulator with zeros
  1776. __m256 acc = _mm256_setzero_ps();
  1777. // Accumulator for constant offsets
  1778. float acc_offset = 0.0f;
  1779. // Main loop
  1780. for (int i = 0; i < nb; ++i) {
  1781. const float * d0 = &x[i].d;
  1782. const float * d1 = &y[i].d;
  1783. const float * m0 = &x[i].m;
  1784. const float * m1 = &y[i].m;
  1785. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1786. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1787. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1788. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1789. // Compute combined scale for the block
  1790. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1791. // Compute cross scales for the block
  1792. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1793. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1794. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1795. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1796. __m256i bx = bytesFromNibbles( x[i].qs );
  1797. __m256i by = bytesFromNibbles( y[i].qs );
  1798. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1799. // Sign-extend first 16 signed bytes into int16_t
  1800. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1801. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1802. // Compute products of int16_t integers, add pairwise
  1803. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1804. // Sign-extend last 16 signed bytes into int16_t vectors
  1805. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1806. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1807. // Accumulate products of int16_t integers
  1808. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1809. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1810. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1811. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1812. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1813. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1814. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1815. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1816. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1817. // Convert int32_t to float
  1818. __m256 p = _mm256_cvtepi32_ps( i32 );
  1819. // Apply the scale, and accumulate
  1820. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1821. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1822. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1823. // acc_offset += m0*m1 (for each entry in the block)
  1824. acc_offset += (*m0)*(*m1);
  1825. }
  1826. // Return horizontal sum of the acc vector
  1827. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1828. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1829. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1830. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1831. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1832. #elif defined(__ARM_NEON)
  1833. float sum00 = 0.0f;
  1834. float sum01 = 0.0f;
  1835. float sum10 = 0.0f;
  1836. float sum11 = 0.0f;
  1837. for (int i = 0; i < nb; ++i) {
  1838. const block_q4_1 * restrict x0 = &x[i + 0];
  1839. const block_q4_1 * restrict y0 = &y[i + 0];
  1840. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1841. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1842. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1843. // and with 0xf
  1844. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1845. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1846. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1847. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1848. // dot product into uint16x8_t
  1849. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1850. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1851. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1852. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1853. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1854. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1855. sum00 += x0->m*y0->m;
  1856. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1857. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1858. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1859. }
  1860. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1861. #else
  1862. // scalar
  1863. for (int i = 0; i < nb; i++) {
  1864. const float d0 = x[i].d;
  1865. const float d1 = y[i].d;
  1866. const float m0 = x[i].m;
  1867. const float m1 = y[i].m;
  1868. const uint8_t * restrict p0 = x[i].qs;
  1869. const uint8_t * restrict p1 = y[i].qs;
  1870. for (int j = 0; j < QK/2; j++) {
  1871. const uint8_t v0 = p0[j];
  1872. const uint8_t v1 = p1[j];
  1873. const float f0 = d0*(v0 & 0xf) + m0;
  1874. const float f1 = d0*(v0 >> 4) + m0;
  1875. const float f2 = d1*(v1 & 0xf) + m1;
  1876. const float f3 = d1*(v1 >> 4) + m1;
  1877. sumf += f0*f2 + f1*f3;
  1878. }
  1879. }
  1880. #endif
  1881. *s = sumf;
  1882. }
  1883. // compute GGML_VEC_DOT_UNROLL dot products at once
  1884. // xs - x row stride in bytes
  1885. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1886. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1887. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1888. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1889. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1890. }
  1891. #if defined(GGML_SIMD)
  1892. const int np = (n & ~(GGML_F16_STEP - 1));
  1893. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1894. GGML_F16_VEC ax[GGML_F16_ARR];
  1895. GGML_F16_VEC ay[GGML_F16_ARR];
  1896. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1897. for (int j = 0; j < GGML_F16_ARR; j++) {
  1898. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1899. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1900. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1901. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1902. }
  1903. }
  1904. }
  1905. // reduce sum0..sum3 to sum0
  1906. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1907. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1908. }
  1909. // leftovers
  1910. for (int i = np; i < n; ++i) {
  1911. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1912. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1913. }
  1914. }
  1915. #else
  1916. for (int i = 0; i < n; ++i) {
  1917. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1918. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1919. }
  1920. }
  1921. #endif
  1922. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1923. s[i] = sumf[i];
  1924. }
  1925. }
  1926. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1927. #if defined(GGML_SIMD)
  1928. const int np = (n & ~(GGML_F32_STEP - 1));
  1929. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1930. GGML_F32_VEC ax[GGML_F32_ARR];
  1931. GGML_F32_VEC ay[GGML_F32_ARR];
  1932. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1933. for (int j = 0; j < GGML_F32_ARR; j++) {
  1934. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1935. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1936. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1937. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1938. }
  1939. }
  1940. // leftovers
  1941. for (int i = np; i < n; ++i) {
  1942. y[i] += x[i]*v;
  1943. }
  1944. #else
  1945. // scalar
  1946. for (int i = 0; i < n; ++i) {
  1947. y[i] += x[i]*v;
  1948. }
  1949. #endif
  1950. }
  1951. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1952. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1953. #if defined(GGML_SIMD)
  1954. const int np = (n & ~(GGML_F32_STEP - 1));
  1955. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1956. GGML_F32_VEC ay[GGML_F32_ARR];
  1957. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1958. for (int j = 0; j < GGML_F32_ARR; j++) {
  1959. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1960. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1961. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1962. }
  1963. }
  1964. // leftovers
  1965. for (int i = np; i < n; ++i) {
  1966. y[i] *= v;
  1967. }
  1968. #else
  1969. // scalar
  1970. for (int i = 0; i < n; ++i) {
  1971. y[i] *= v;
  1972. }
  1973. #endif
  1974. }
  1975. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1976. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1977. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1978. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1979. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1980. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1981. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1982. static const float GELU_COEF_A = 0.044715f;
  1983. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1984. inline static float ggml_gelu_f32(float x) {
  1985. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1986. }
  1987. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1988. const uint16_t * i16 = (const uint16_t *) x;
  1989. for (int i = 0; i < n; ++i) {
  1990. y[i] = table_gelu_f16[i16[i]];
  1991. }
  1992. }
  1993. #ifdef GGML_GELU_FP16
  1994. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1995. uint16_t t;
  1996. for (int i = 0; i < n; ++i) {
  1997. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1998. memcpy(&t, &fp16, sizeof(uint16_t));
  1999. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2000. }
  2001. }
  2002. #else
  2003. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2004. for (int i = 0; i < n; ++i) {
  2005. y[i] = ggml_gelu_f32(x[i]);
  2006. }
  2007. }
  2008. #endif
  2009. // Sigmoid Linear Unit (SiLU) function
  2010. inline static float ggml_silu_f32(float x) {
  2011. return x/(1.0f + expf(-x));
  2012. }
  2013. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2014. const uint16_t * i16 = (const uint16_t *) x;
  2015. for (int i = 0; i < n; ++i) {
  2016. y[i] = table_silu_f16[i16[i]];
  2017. }
  2018. }
  2019. #ifdef GGML_SILU_FP16
  2020. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2021. uint16_t t;
  2022. for (int i = 0; i < n; ++i) {
  2023. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2024. memcpy(&t, &fp16, sizeof(uint16_t));
  2025. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2026. }
  2027. }
  2028. #else
  2029. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2030. for (int i = 0; i < n; ++i) {
  2031. y[i] = ggml_silu_f32(x[i]);
  2032. }
  2033. }
  2034. #endif
  2035. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2036. #ifndef GGML_USE_ACCELERATE
  2037. ggml_float sum = 0.0;
  2038. for (int i = 0; i < n; ++i) {
  2039. sum += (ggml_float)x[i];
  2040. }
  2041. *s = sum;
  2042. #else
  2043. vDSP_sve(x, 1, s, n);
  2044. #endif
  2045. }
  2046. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2047. #ifndef GGML_USE_ACCELERATE
  2048. float max = -INFINITY;
  2049. for (int i = 0; i < n; ++i) {
  2050. max = MAX(max, x[i]);
  2051. }
  2052. *s = max;
  2053. #else
  2054. vDSP_maxv(x, 1, s, n);
  2055. #endif
  2056. }
  2057. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2058. ggml_vec_norm_f32(n, s, x);
  2059. *s = 1.f/(*s);
  2060. }
  2061. //
  2062. // logging
  2063. //
  2064. #if (GGML_DEBUG >= 1)
  2065. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2066. #else
  2067. #define GGML_PRINT_DEBUG(...)
  2068. #endif
  2069. #if (GGML_DEBUG >= 5)
  2070. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2071. #else
  2072. #define GGML_PRINT_DEBUG_5(...)
  2073. #endif
  2074. #if (GGML_DEBUG >= 10)
  2075. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2076. #else
  2077. #define GGML_PRINT_DEBUG_10(...)
  2078. #endif
  2079. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2080. //
  2081. // data types
  2082. //
  2083. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2084. [GGML_TYPE_F32] = 1,
  2085. [GGML_TYPE_F16] = 1,
  2086. [GGML_TYPE_Q4_0] = QK,
  2087. [GGML_TYPE_Q4_1] = QK,
  2088. [GGML_TYPE_I8] = 1,
  2089. [GGML_TYPE_I16] = 1,
  2090. [GGML_TYPE_I32] = 1,
  2091. };
  2092. static_assert(GGML_TYPE_COUNT == 7, "GGML_BLCK_SIZE is outdated");
  2093. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2094. [GGML_TYPE_F32] = sizeof(float),
  2095. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2096. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2097. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2098. [GGML_TYPE_I8] = sizeof(int8_t),
  2099. [GGML_TYPE_I16] = sizeof(int16_t),
  2100. [GGML_TYPE_I32] = sizeof(int32_t),
  2101. };
  2102. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_SIZE is outdated");
  2103. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2104. "NONE",
  2105. "DUP",
  2106. "ADD",
  2107. "SUB",
  2108. "MUL",
  2109. "DIV",
  2110. "SQR",
  2111. "SQRT",
  2112. "SUM",
  2113. "MEAN",
  2114. "REPEAT",
  2115. "ABS",
  2116. "SGN",
  2117. "NEG",
  2118. "STEP",
  2119. "RELU",
  2120. "GELU",
  2121. "SILU",
  2122. "NORM",
  2123. "RMS_NORM",
  2124. "MUL_MAT",
  2125. "SCALE",
  2126. "CPY",
  2127. "CONT",
  2128. "RESHAPE",
  2129. "VIEW",
  2130. "PERMUTE",
  2131. "TRANSPOSE",
  2132. "GET_ROWS",
  2133. "DIAG_MASK_INF",
  2134. "SOFT_MAX",
  2135. "ROPE",
  2136. "CONV_1D_1S",
  2137. "CONV_1D_2S",
  2138. "FLASH_ATTN",
  2139. "FLASH_FF",
  2140. };
  2141. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2142. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2143. "none",
  2144. "x",
  2145. "x+y",
  2146. "x-y",
  2147. "x*y",
  2148. "x/y",
  2149. "x^2",
  2150. "√x",
  2151. "Σx",
  2152. "Σx/n",
  2153. "repeat(x)",
  2154. "abs(x)",
  2155. "sgn(x)",
  2156. "-x",
  2157. "step(x)",
  2158. "relu(x)",
  2159. "gelu(x)",
  2160. "silu(x)",
  2161. "norm(x)",
  2162. "rms_norm(x)",
  2163. "X*Y",
  2164. "x*v",
  2165. "x-\\>y",
  2166. "cont(x)",
  2167. "reshape(x)",
  2168. "view(x)",
  2169. "permute(x)",
  2170. "transpose(x)",
  2171. "get_rows(x)",
  2172. "diag_mask_inf(x)",
  2173. "soft_max(x)",
  2174. "rope(x)",
  2175. "conv_1d_1s(x)",
  2176. "conv_1d_2s(x)",
  2177. "flash_attn(x)",
  2178. "flash_ff(x)",
  2179. };
  2180. static_assert(GGML_OP_COUNT == 36, "GGML_OP_COUNT != 36");
  2181. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2182. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2183. //
  2184. // ggml context
  2185. //
  2186. struct ggml_context {
  2187. size_t mem_size;
  2188. void * mem_buffer;
  2189. bool mem_buffer_owned;
  2190. bool no_alloc;
  2191. int n_objects;
  2192. struct ggml_object * objects_begin;
  2193. struct ggml_object * objects_end;
  2194. struct ggml_scratch scratch;
  2195. struct ggml_scratch scratch_save;
  2196. };
  2197. struct ggml_context_container {
  2198. bool used;
  2199. struct ggml_context context;
  2200. };
  2201. //
  2202. // compute types
  2203. //
  2204. enum ggml_task_type {
  2205. GGML_TASK_INIT = 0,
  2206. GGML_TASK_COMPUTE,
  2207. GGML_TASK_FINALIZE,
  2208. };
  2209. struct ggml_compute_params {
  2210. enum ggml_task_type type;
  2211. int ith, nth;
  2212. // work buffer for all threads
  2213. size_t wsize;
  2214. void * wdata;
  2215. };
  2216. //
  2217. // ggml state
  2218. //
  2219. struct ggml_state {
  2220. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2221. };
  2222. // global state
  2223. static struct ggml_state g_state;
  2224. static atomic_int g_state_barrier = 0;
  2225. // barrier via spin lock
  2226. inline static void ggml_critical_section_start(void) {
  2227. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2228. while (processing > 0) {
  2229. // wait for other threads to finish
  2230. atomic_fetch_sub(&g_state_barrier, 1);
  2231. sched_yield(); // TODO: reconsider this
  2232. processing = atomic_fetch_add(&g_state_barrier, 1);
  2233. }
  2234. }
  2235. // TODO: make this somehow automatically executed
  2236. // some sort of "sentry" mechanism
  2237. inline static void ggml_critical_section_end(void) {
  2238. atomic_fetch_sub(&g_state_barrier, 1);
  2239. }
  2240. ////////////////////////////////////////////////////////////////////////////////
  2241. void ggml_print_object(const struct ggml_object * obj) {
  2242. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2243. obj->offs, obj->size, (const void *) obj->next);
  2244. }
  2245. void ggml_print_objects(const struct ggml_context * ctx) {
  2246. struct ggml_object * obj = ctx->objects_begin;
  2247. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2248. while (obj != NULL) {
  2249. ggml_print_object(obj);
  2250. obj = obj->next;
  2251. }
  2252. GGML_PRINT("%s: --- end ---\n", __func__);
  2253. }
  2254. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2255. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2256. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2257. }
  2258. int ggml_nrows(const struct ggml_tensor * tensor) {
  2259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2260. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2261. }
  2262. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2263. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2264. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2265. }
  2266. int ggml_blck_size(enum ggml_type type) {
  2267. return GGML_BLCK_SIZE[type];
  2268. }
  2269. size_t ggml_type_size(enum ggml_type type) {
  2270. return GGML_TYPE_SIZE[type];
  2271. }
  2272. float ggml_type_sizef(enum ggml_type type) {
  2273. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2274. }
  2275. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2276. return GGML_TYPE_SIZE[tensor->type];
  2277. }
  2278. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2279. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2280. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2281. }
  2282. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2283. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2284. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2285. }
  2286. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2287. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2288. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2289. }
  2290. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2291. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2292. return
  2293. (t0->ne[0] == t1->ne[0]) &&
  2294. (t0->ne[2] == t1->ne[2]) &&
  2295. (t0->ne[3] == t1->ne[3]);
  2296. }
  2297. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2298. return tensor->nb[0] > tensor->nb[1];
  2299. }
  2300. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2301. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2302. return
  2303. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2304. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2305. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2306. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2307. }
  2308. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2309. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2310. return
  2311. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2312. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2313. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2314. }
  2315. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2316. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2317. return
  2318. (t0->ne[0] == t1->ne[0] ) &&
  2319. (t0->ne[1] == t1->ne[1] ) &&
  2320. (t0->ne[2] == t1->ne[2] ) &&
  2321. (t0->ne[3] == t1->ne[3] );
  2322. }
  2323. // check if t1 can be represented as a repeatition of t0
  2324. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2325. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2326. return
  2327. (t1->ne[0]%t0->ne[0] == 0) &&
  2328. (t1->ne[1]%t0->ne[1] == 0) &&
  2329. (t1->ne[2]%t0->ne[2] == 0) &&
  2330. (t1->ne[3]%t0->ne[3] == 0);
  2331. }
  2332. static inline int ggml_up32(int n) {
  2333. return (n + 31) & ~31;
  2334. }
  2335. static inline int ggml_up64(int n) {
  2336. return (n + 63) & ~63;
  2337. }
  2338. static inline int ggml_up(int n, int m) {
  2339. // assert m is a power of 2
  2340. GGML_ASSERT((m & (m - 1)) == 0);
  2341. return (n + m - 1) & ~(m - 1);
  2342. }
  2343. // assert that pointer is aligned to GGML_MEM_ALIGN
  2344. #define ggml_assert_aligned(ptr) \
  2345. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2346. ////////////////////////////////////////////////////////////////////////////////
  2347. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2348. // make this function thread safe
  2349. ggml_critical_section_start();
  2350. static bool is_first_call = true;
  2351. if (is_first_call) {
  2352. // initialize time system (required on Windows)
  2353. ggml_time_init();
  2354. // initialize GELU, SILU and EXP F32 tables
  2355. {
  2356. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2357. ggml_fp16_t ii;
  2358. for (int i = 0; i < (1 << 16); ++i) {
  2359. uint16_t ui = i;
  2360. memcpy(&ii, &ui, sizeof(ii));
  2361. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2362. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2363. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2364. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2365. }
  2366. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2367. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2368. }
  2369. // initialize g_state
  2370. {
  2371. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2372. g_state = (struct ggml_state) {
  2373. /*.contexts =*/ { { 0 } },
  2374. };
  2375. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2376. g_state.contexts[i].used = false;
  2377. }
  2378. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2379. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2380. }
  2381. is_first_call = false;
  2382. }
  2383. // find non-used context in g_state
  2384. struct ggml_context * ctx = NULL;
  2385. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2386. if (!g_state.contexts[i].used) {
  2387. g_state.contexts[i].used = true;
  2388. ctx = &g_state.contexts[i].context;
  2389. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2390. break;
  2391. }
  2392. }
  2393. if (ctx == NULL) {
  2394. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2395. ggml_critical_section_end();
  2396. return NULL;
  2397. }
  2398. *ctx = (struct ggml_context) {
  2399. /*.mem_size =*/ params.mem_size,
  2400. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(params.mem_size),
  2401. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2402. /*.no_alloc =*/ params.no_alloc,
  2403. /*.n_objects =*/ 0,
  2404. /*.objects_begin =*/ NULL,
  2405. /*.objects_end =*/ NULL,
  2406. /*.scratch =*/ { 0, 0, NULL, },
  2407. /*.scratch_save =*/ { 0, 0, NULL, },
  2408. };
  2409. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2410. ggml_assert_aligned(ctx->mem_buffer);
  2411. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2412. ggml_critical_section_end();
  2413. return ctx;
  2414. }
  2415. void ggml_free(struct ggml_context * ctx) {
  2416. // make this function thread safe
  2417. ggml_critical_section_start();
  2418. bool found = false;
  2419. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2420. if (&g_state.contexts[i].context == ctx) {
  2421. g_state.contexts[i].used = false;
  2422. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2423. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2424. if (ctx->mem_buffer_owned) {
  2425. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2426. }
  2427. found = true;
  2428. break;
  2429. }
  2430. }
  2431. if (!found) {
  2432. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2433. }
  2434. ggml_critical_section_end();
  2435. }
  2436. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2437. return ctx->objects_end->offs + ctx->objects_end->size;
  2438. }
  2439. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2440. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2441. ctx->scratch = scratch;
  2442. return result;
  2443. }
  2444. ////////////////////////////////////////////////////////////////////////////////
  2445. struct ggml_tensor * ggml_new_tensor_impl(
  2446. struct ggml_context * ctx,
  2447. enum ggml_type type,
  2448. int n_dims,
  2449. const int64_t* ne,
  2450. void* data) {
  2451. // always insert objects at the end of the context's memory pool
  2452. struct ggml_object * obj_cur = ctx->objects_end;
  2453. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2454. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2455. const size_t cur_end = cur_offs + cur_size;
  2456. size_t size_needed = 0;
  2457. if (data == NULL && !ctx->no_alloc) {
  2458. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2459. for (int i = 1; i < n_dims; i++) {
  2460. size_needed *= ne[i];
  2461. }
  2462. // align to GGML_MEM_ALIGN
  2463. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2464. }
  2465. char * const mem_buffer = ctx->mem_buffer;
  2466. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2467. if (ctx->scratch.data == NULL || data != NULL) {
  2468. size_needed += sizeof(struct ggml_tensor);
  2469. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2470. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2471. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2472. assert(false);
  2473. return NULL;
  2474. }
  2475. *obj_new = (struct ggml_object) {
  2476. .offs = cur_end + GGML_OBJECT_SIZE,
  2477. .size = size_needed,
  2478. .next = NULL,
  2479. };
  2480. } else {
  2481. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2482. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2483. assert(false);
  2484. return NULL;
  2485. }
  2486. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2487. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2488. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2489. assert(false);
  2490. return NULL;
  2491. }
  2492. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2493. *obj_new = (struct ggml_object) {
  2494. .offs = cur_end + GGML_OBJECT_SIZE,
  2495. .size = sizeof(struct ggml_tensor),
  2496. .next = NULL,
  2497. };
  2498. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2499. ctx->scratch.offs += size_needed;
  2500. }
  2501. if (obj_cur != NULL) {
  2502. obj_cur->next = obj_new;
  2503. } else {
  2504. // this is the first object in this context
  2505. ctx->objects_begin = obj_new;
  2506. }
  2507. ctx->objects_end = obj_new;
  2508. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2509. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2510. ggml_assert_aligned(result);
  2511. *result = (struct ggml_tensor) {
  2512. /*.type =*/ type,
  2513. /*.n_dims =*/ n_dims,
  2514. /*.ne =*/ { 1, 1, 1, 1 },
  2515. /*.nb =*/ { 0, 0, 0, 0 },
  2516. /*.op =*/ GGML_OP_NONE,
  2517. /*.is_param =*/ false,
  2518. /*.grad =*/ NULL,
  2519. /*.src0 =*/ NULL,
  2520. /*.src1 =*/ NULL,
  2521. /*.opt =*/ { NULL },
  2522. /*.n_tasks =*/ 0,
  2523. /*.perf_runs =*/ 0,
  2524. /*.perf_cycles =*/ 0,
  2525. /*.perf_time_us =*/ 0,
  2526. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2527. /*.pad =*/ { 0 },
  2528. };
  2529. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2530. //ggml_assert_aligned(result->data);
  2531. for (int i = 0; i < n_dims; i++) {
  2532. result->ne[i] = ne[i];
  2533. }
  2534. result->nb[0] = GGML_TYPE_SIZE[type];
  2535. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2536. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2537. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2538. }
  2539. ctx->n_objects++;
  2540. return result;
  2541. }
  2542. struct ggml_tensor * ggml_new_tensor(
  2543. struct ggml_context * ctx,
  2544. enum ggml_type type,
  2545. int n_dims,
  2546. const int64_t * ne) {
  2547. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2548. }
  2549. struct ggml_tensor * ggml_new_tensor_1d(
  2550. struct ggml_context * ctx,
  2551. enum ggml_type type,
  2552. int64_t ne0) {
  2553. return ggml_new_tensor(ctx, type, 1, &ne0);
  2554. }
  2555. struct ggml_tensor * ggml_new_tensor_2d(
  2556. struct ggml_context * ctx,
  2557. enum ggml_type type,
  2558. int64_t ne0,
  2559. int64_t ne1) {
  2560. const int64_t ne[2] = { ne0, ne1 };
  2561. return ggml_new_tensor(ctx, type, 2, ne);
  2562. }
  2563. struct ggml_tensor * ggml_new_tensor_3d(
  2564. struct ggml_context * ctx,
  2565. enum ggml_type type,
  2566. int64_t ne0,
  2567. int64_t ne1,
  2568. int64_t ne2) {
  2569. const int64_t ne[3] = { ne0, ne1, ne2 };
  2570. return ggml_new_tensor(ctx, type, 3, ne);
  2571. }
  2572. struct ggml_tensor * ggml_new_tensor_4d(
  2573. struct ggml_context * ctx,
  2574. enum ggml_type type,
  2575. int64_t ne0,
  2576. int64_t ne1,
  2577. int64_t ne2,
  2578. int64_t ne3) {
  2579. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2580. return ggml_new_tensor(ctx, type, 4, ne);
  2581. }
  2582. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2583. ctx->scratch_save = ctx->scratch;
  2584. ctx->scratch.data = NULL;
  2585. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2586. ctx->scratch = ctx->scratch_save;
  2587. ggml_set_i32(result, value);
  2588. return result;
  2589. }
  2590. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2591. ctx->scratch_save = ctx->scratch;
  2592. ctx->scratch.data = NULL;
  2593. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2594. ctx->scratch = ctx->scratch_save;
  2595. ggml_set_f32(result, value);
  2596. return result;
  2597. }
  2598. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2599. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2600. }
  2601. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2602. memset(tensor->data, 0, ggml_nbytes(tensor));
  2603. return tensor;
  2604. }
  2605. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2606. const int n = ggml_nrows(tensor);
  2607. const int nc = tensor->ne[0];
  2608. const size_t n1 = tensor->nb[1];
  2609. char * const data = tensor->data;
  2610. switch (tensor->type) {
  2611. case GGML_TYPE_Q4_0:
  2612. {
  2613. GGML_ASSERT(false);
  2614. } break;
  2615. case GGML_TYPE_Q4_1:
  2616. {
  2617. GGML_ASSERT(false);
  2618. } break;
  2619. case GGML_TYPE_I8:
  2620. {
  2621. assert(tensor->nb[0] == sizeof(int8_t));
  2622. for (int i = 0; i < n; i++) {
  2623. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2624. }
  2625. } break;
  2626. case GGML_TYPE_I16:
  2627. {
  2628. assert(tensor->nb[0] == sizeof(int16_t));
  2629. for (int i = 0; i < n; i++) {
  2630. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2631. }
  2632. } break;
  2633. case GGML_TYPE_I32:
  2634. {
  2635. assert(tensor->nb[0] == sizeof(int32_t));
  2636. for (int i = 0; i < n; i++) {
  2637. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2638. }
  2639. } break;
  2640. case GGML_TYPE_F16:
  2641. {
  2642. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2643. for (int i = 0; i < n; i++) {
  2644. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2645. }
  2646. } break;
  2647. case GGML_TYPE_F32:
  2648. {
  2649. assert(tensor->nb[0] == sizeof(float));
  2650. for (int i = 0; i < n; i++) {
  2651. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2652. }
  2653. } break;
  2654. case GGML_TYPE_COUNT:
  2655. {
  2656. GGML_ASSERT(false);
  2657. } break;
  2658. }
  2659. return tensor;
  2660. }
  2661. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2662. const int n = ggml_nrows(tensor);
  2663. const int nc = tensor->ne[0];
  2664. const size_t n1 = tensor->nb[1];
  2665. char * const data = tensor->data;
  2666. switch (tensor->type) {
  2667. case GGML_TYPE_Q4_0:
  2668. {
  2669. GGML_ASSERT(false);
  2670. } break;
  2671. case GGML_TYPE_Q4_1:
  2672. {
  2673. GGML_ASSERT(false);
  2674. } break;
  2675. case GGML_TYPE_I8:
  2676. {
  2677. assert(tensor->nb[0] == sizeof(int8_t));
  2678. for (int i = 0; i < n; i++) {
  2679. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2680. }
  2681. } break;
  2682. case GGML_TYPE_I16:
  2683. {
  2684. assert(tensor->nb[0] == sizeof(int16_t));
  2685. for (int i = 0; i < n; i++) {
  2686. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2687. }
  2688. } break;
  2689. case GGML_TYPE_I32:
  2690. {
  2691. assert(tensor->nb[0] == sizeof(int32_t));
  2692. for (int i = 0; i < n; i++) {
  2693. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2694. }
  2695. } break;
  2696. case GGML_TYPE_F16:
  2697. {
  2698. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2699. for (int i = 0; i < n; i++) {
  2700. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2701. }
  2702. } break;
  2703. case GGML_TYPE_F32:
  2704. {
  2705. assert(tensor->nb[0] == sizeof(float));
  2706. for (int i = 0; i < n; i++) {
  2707. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2708. }
  2709. } break;
  2710. case GGML_TYPE_COUNT:
  2711. {
  2712. GGML_ASSERT(false);
  2713. } break;
  2714. }
  2715. return tensor;
  2716. }
  2717. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2718. switch (tensor->type) {
  2719. case GGML_TYPE_Q4_0:
  2720. {
  2721. GGML_ASSERT(false);
  2722. } break;
  2723. case GGML_TYPE_Q4_1:
  2724. {
  2725. GGML_ASSERT(false);
  2726. } break;
  2727. case GGML_TYPE_I8:
  2728. {
  2729. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2730. return ((int8_t *)(tensor->data))[i];
  2731. } break;
  2732. case GGML_TYPE_I16:
  2733. {
  2734. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2735. return ((int16_t *)(tensor->data))[i];
  2736. } break;
  2737. case GGML_TYPE_I32:
  2738. {
  2739. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2740. return ((int32_t *)(tensor->data))[i];
  2741. } break;
  2742. case GGML_TYPE_F16:
  2743. {
  2744. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2745. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2746. } break;
  2747. case GGML_TYPE_F32:
  2748. {
  2749. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2750. return ((float *)(tensor->data))[i];
  2751. } break;
  2752. case GGML_TYPE_COUNT:
  2753. {
  2754. GGML_ASSERT(false);
  2755. } break;
  2756. }
  2757. return 0.0f;
  2758. }
  2759. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2760. switch (tensor->type) {
  2761. case GGML_TYPE_Q4_0:
  2762. {
  2763. GGML_ASSERT(false);
  2764. } break;
  2765. case GGML_TYPE_Q4_1:
  2766. {
  2767. GGML_ASSERT(false);
  2768. } break;
  2769. case GGML_TYPE_I8:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2772. ((int8_t *)(tensor->data))[i] = value;
  2773. } break;
  2774. case GGML_TYPE_I16:
  2775. {
  2776. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2777. ((int16_t *)(tensor->data))[i] = value;
  2778. } break;
  2779. case GGML_TYPE_I32:
  2780. {
  2781. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2782. ((int32_t *)(tensor->data))[i] = value;
  2783. } break;
  2784. case GGML_TYPE_F16:
  2785. {
  2786. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2787. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2788. } break;
  2789. case GGML_TYPE_F32:
  2790. {
  2791. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2792. ((float *)(tensor->data))[i] = value;
  2793. } break;
  2794. case GGML_TYPE_COUNT:
  2795. {
  2796. GGML_ASSERT(false);
  2797. } break;
  2798. }
  2799. }
  2800. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2801. switch (tensor->type) {
  2802. case GGML_TYPE_Q4_0:
  2803. {
  2804. GGML_ASSERT(false);
  2805. } break;
  2806. case GGML_TYPE_Q4_1:
  2807. {
  2808. GGML_ASSERT(false);
  2809. } break;
  2810. case GGML_TYPE_I8:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2813. return ((int8_t *)(tensor->data))[i];
  2814. } break;
  2815. case GGML_TYPE_I16:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2818. return ((int16_t *)(tensor->data))[i];
  2819. } break;
  2820. case GGML_TYPE_I32:
  2821. {
  2822. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2823. return ((int32_t *)(tensor->data))[i];
  2824. } break;
  2825. case GGML_TYPE_F16:
  2826. {
  2827. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2828. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2829. } break;
  2830. case GGML_TYPE_F32:
  2831. {
  2832. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2833. return ((float *)(tensor->data))[i];
  2834. } break;
  2835. case GGML_TYPE_COUNT:
  2836. {
  2837. GGML_ASSERT(false);
  2838. } break;
  2839. }
  2840. return 0.0f;
  2841. }
  2842. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2843. switch (tensor->type) {
  2844. case GGML_TYPE_Q4_0:
  2845. {
  2846. GGML_ASSERT(false);
  2847. } break;
  2848. case GGML_TYPE_Q4_1:
  2849. {
  2850. GGML_ASSERT(false);
  2851. } break;
  2852. case GGML_TYPE_I8:
  2853. {
  2854. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2855. ((int8_t *)(tensor->data))[i] = value;
  2856. } break;
  2857. case GGML_TYPE_I16:
  2858. {
  2859. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2860. ((int16_t *)(tensor->data))[i] = value;
  2861. } break;
  2862. case GGML_TYPE_I32:
  2863. {
  2864. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2865. ((int32_t *)(tensor->data))[i] = value;
  2866. } break;
  2867. case GGML_TYPE_F16:
  2868. {
  2869. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2870. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2871. } break;
  2872. case GGML_TYPE_F32:
  2873. {
  2874. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2875. ((float *)(tensor->data))[i] = value;
  2876. } break;
  2877. case GGML_TYPE_COUNT:
  2878. {
  2879. GGML_ASSERT(false);
  2880. } break;
  2881. }
  2882. }
  2883. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2884. return tensor->data;
  2885. }
  2886. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2887. assert(tensor->type == GGML_TYPE_F32);
  2888. return (float *)(tensor->data);
  2889. }
  2890. struct ggml_tensor * ggml_view_tensor(
  2891. struct ggml_context * ctx,
  2892. const struct ggml_tensor * src) {
  2893. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2894. result->nb[0] = src->nb[0];
  2895. result->nb[1] = src->nb[1];
  2896. result->nb[2] = src->nb[2];
  2897. result->nb[3] = src->nb[3];
  2898. return result;
  2899. }
  2900. ////////////////////////////////////////////////////////////////////////////////
  2901. // ggml_dup
  2902. struct ggml_tensor * ggml_dup_impl(
  2903. struct ggml_context * ctx,
  2904. struct ggml_tensor * a,
  2905. bool inplace) {
  2906. bool is_node = false;
  2907. if (!inplace && (a->grad)) {
  2908. is_node = true;
  2909. }
  2910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2911. result->op = GGML_OP_DUP;
  2912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2913. result->src0 = a;
  2914. result->src1 = NULL;
  2915. return result;
  2916. }
  2917. struct ggml_tensor * ggml_dup(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a) {
  2920. return ggml_dup_impl(ctx, a, false);
  2921. }
  2922. struct ggml_tensor * ggml_dup_inplace(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a) {
  2925. return ggml_dup_impl(ctx, a, true);
  2926. }
  2927. // ggml_add
  2928. struct ggml_tensor * ggml_add_impl(
  2929. struct ggml_context * ctx,
  2930. struct ggml_tensor * a,
  2931. struct ggml_tensor * b,
  2932. bool inplace) {
  2933. GGML_ASSERT(ggml_are_same_shape(a, b));
  2934. bool is_node = false;
  2935. if (!inplace && (a->grad || b->grad)) {
  2936. is_node = true;
  2937. }
  2938. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2939. result->op = GGML_OP_ADD;
  2940. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2941. result->src0 = a;
  2942. result->src1 = b;
  2943. return result;
  2944. }
  2945. struct ggml_tensor * ggml_add(
  2946. struct ggml_context * ctx,
  2947. struct ggml_tensor * a,
  2948. struct ggml_tensor * b) {
  2949. return ggml_add_impl(ctx, a, b, false);
  2950. }
  2951. struct ggml_tensor * ggml_add_inplace(
  2952. struct ggml_context * ctx,
  2953. struct ggml_tensor * a,
  2954. struct ggml_tensor * b) {
  2955. return ggml_add_impl(ctx, a, b, true);
  2956. }
  2957. // ggml_sub
  2958. struct ggml_tensor * ggml_sub_impl(
  2959. struct ggml_context * ctx,
  2960. struct ggml_tensor * a,
  2961. struct ggml_tensor * b,
  2962. bool inplace) {
  2963. GGML_ASSERT(ggml_are_same_shape(a, b));
  2964. bool is_node = false;
  2965. if (!inplace && (a->grad || b->grad)) {
  2966. is_node = true;
  2967. }
  2968. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2969. result->op = GGML_OP_SUB;
  2970. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2971. result->src0 = a;
  2972. result->src1 = b;
  2973. return result;
  2974. }
  2975. struct ggml_tensor * ggml_sub(
  2976. struct ggml_context * ctx,
  2977. struct ggml_tensor * a,
  2978. struct ggml_tensor * b) {
  2979. return ggml_sub_impl(ctx, a, b, false);
  2980. }
  2981. struct ggml_tensor * ggml_sub_inplace(
  2982. struct ggml_context * ctx,
  2983. struct ggml_tensor * a,
  2984. struct ggml_tensor * b) {
  2985. return ggml_sub_impl(ctx, a, b, true);
  2986. }
  2987. // ggml_mul
  2988. struct ggml_tensor * ggml_mul_impl(
  2989. struct ggml_context * ctx,
  2990. struct ggml_tensor * a,
  2991. struct ggml_tensor * b,
  2992. bool inplace) {
  2993. GGML_ASSERT(ggml_are_same_shape(a, b));
  2994. bool is_node = false;
  2995. if (!inplace && (a->grad || b->grad)) {
  2996. is_node = true;
  2997. }
  2998. if (inplace) {
  2999. GGML_ASSERT(is_node == false);
  3000. }
  3001. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3002. result->op = GGML_OP_MUL;
  3003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3004. result->src0 = a;
  3005. result->src1 = b;
  3006. return result;
  3007. }
  3008. struct ggml_tensor * ggml_mul(
  3009. struct ggml_context * ctx,
  3010. struct ggml_tensor * a,
  3011. struct ggml_tensor * b) {
  3012. return ggml_mul_impl(ctx, a, b, false);
  3013. }
  3014. struct ggml_tensor * ggml_mul_inplace(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a,
  3017. struct ggml_tensor * b) {
  3018. return ggml_mul_impl(ctx, a, b, true);
  3019. }
  3020. // ggml_div
  3021. struct ggml_tensor * ggml_div_impl(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a,
  3024. struct ggml_tensor * b,
  3025. bool inplace) {
  3026. GGML_ASSERT(ggml_are_same_shape(a, b));
  3027. bool is_node = false;
  3028. if (!inplace && (a->grad || b->grad)) {
  3029. is_node = true;
  3030. }
  3031. if (inplace) {
  3032. GGML_ASSERT(is_node == false);
  3033. }
  3034. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3035. result->op = GGML_OP_DIV;
  3036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3037. result->src0 = a;
  3038. result->src1 = b;
  3039. return result;
  3040. }
  3041. struct ggml_tensor * ggml_div(
  3042. struct ggml_context * ctx,
  3043. struct ggml_tensor * a,
  3044. struct ggml_tensor * b) {
  3045. return ggml_div_impl(ctx, a, b, false);
  3046. }
  3047. struct ggml_tensor * ggml_div_inplace(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a,
  3050. struct ggml_tensor * b) {
  3051. return ggml_div_impl(ctx, a, b, true);
  3052. }
  3053. // ggml_sqr
  3054. struct ggml_tensor * ggml_sqr_impl(
  3055. struct ggml_context * ctx,
  3056. struct ggml_tensor * a,
  3057. bool inplace) {
  3058. bool is_node = false;
  3059. if (!inplace && (a->grad)) {
  3060. is_node = true;
  3061. }
  3062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3063. result->op = GGML_OP_SQR;
  3064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3065. result->src0 = a;
  3066. result->src1 = NULL;
  3067. return result;
  3068. }
  3069. struct ggml_tensor * ggml_sqr(
  3070. struct ggml_context * ctx,
  3071. struct ggml_tensor * a) {
  3072. return ggml_sqr_impl(ctx, a, false);
  3073. }
  3074. struct ggml_tensor * ggml_sqr_inplace(
  3075. struct ggml_context * ctx,
  3076. struct ggml_tensor * a) {
  3077. return ggml_sqr_impl(ctx, a, true);
  3078. }
  3079. // ggml_sqrt
  3080. struct ggml_tensor * ggml_sqrt_impl(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a,
  3083. bool inplace) {
  3084. bool is_node = false;
  3085. if (!inplace && (a->grad)) {
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3089. result->op = GGML_OP_SQRT;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src0 = a;
  3092. result->src1 = NULL;
  3093. return result;
  3094. }
  3095. struct ggml_tensor * ggml_sqrt(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_sqrt_impl(ctx, a, false);
  3099. }
  3100. struct ggml_tensor * ggml_sqrt_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_sqrt_impl(ctx, a, true);
  3104. }
  3105. // ggml_sum
  3106. struct ggml_tensor * ggml_sum(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. bool is_node = false;
  3110. if (a->grad) {
  3111. is_node = true;
  3112. }
  3113. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3114. result->op = GGML_OP_SUM;
  3115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3116. result->src0 = a;
  3117. result->src1 = NULL;
  3118. return result;
  3119. }
  3120. // ggml_mean
  3121. struct ggml_tensor * ggml_mean(
  3122. struct ggml_context * ctx,
  3123. struct ggml_tensor * a) {
  3124. bool is_node = false;
  3125. if (a->grad) {
  3126. GGML_ASSERT(false); // TODO: implement
  3127. is_node = true;
  3128. }
  3129. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3130. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3131. result->op = GGML_OP_MEAN;
  3132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3133. result->src0 = a;
  3134. result->src1 = NULL;
  3135. return result;
  3136. }
  3137. // ggml_repeat
  3138. struct ggml_tensor * ggml_repeat(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a,
  3141. struct ggml_tensor * b) {
  3142. GGML_ASSERT(ggml_can_repeat(a, b));
  3143. bool is_node = false;
  3144. if (a->grad) {
  3145. is_node = true;
  3146. }
  3147. if (ggml_are_same_shape(a, b) && !is_node) {
  3148. return a;
  3149. }
  3150. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3151. result->op = GGML_OP_REPEAT;
  3152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3153. result->src0 = a;
  3154. result->src1 = b;
  3155. return result;
  3156. }
  3157. // ggml_abs
  3158. struct ggml_tensor * ggml_abs_impl(
  3159. struct ggml_context * ctx,
  3160. struct ggml_tensor * a,
  3161. bool inplace) {
  3162. bool is_node = false;
  3163. if (!inplace && (a->grad)) {
  3164. is_node = true;
  3165. }
  3166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3167. result->op = GGML_OP_ABS;
  3168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3169. result->src0 = a;
  3170. result->src1 = NULL;
  3171. return result;
  3172. }
  3173. struct ggml_tensor * ggml_abs(
  3174. struct ggml_context * ctx,
  3175. struct ggml_tensor * a) {
  3176. return ggml_abs_impl(ctx, a, false);
  3177. }
  3178. struct ggml_tensor * ggml_abs_inplace(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_abs_impl(ctx, a, true);
  3182. }
  3183. // ggml_sgn
  3184. struct ggml_tensor * ggml_sgn_impl(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a,
  3187. bool inplace) {
  3188. bool is_node = false;
  3189. if (!inplace && (a->grad)) {
  3190. is_node = true;
  3191. }
  3192. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3193. result->op = GGML_OP_SGN;
  3194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3195. result->src0 = a;
  3196. result->src1 = NULL;
  3197. return result;
  3198. }
  3199. struct ggml_tensor * ggml_sgn(
  3200. struct ggml_context * ctx,
  3201. struct ggml_tensor * a) {
  3202. return ggml_sgn_impl(ctx, a, false);
  3203. }
  3204. struct ggml_tensor * ggml_sgn_inplace(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a) {
  3207. return ggml_sgn_impl(ctx, a, true);
  3208. }
  3209. // ggml_neg
  3210. struct ggml_tensor * ggml_neg_impl(
  3211. struct ggml_context * ctx,
  3212. struct ggml_tensor * a,
  3213. bool inplace) {
  3214. bool is_node = false;
  3215. if (!inplace && (a->grad)) {
  3216. is_node = true;
  3217. }
  3218. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3219. result->op = GGML_OP_NEG;
  3220. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3221. result->src0 = a;
  3222. result->src1 = NULL;
  3223. return result;
  3224. }
  3225. struct ggml_tensor * ggml_neg(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a) {
  3228. return ggml_neg_impl(ctx, a, false);
  3229. }
  3230. struct ggml_tensor * ggml_neg_inplace(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_neg_impl(ctx, a, true);
  3234. }
  3235. // ggml_step
  3236. struct ggml_tensor * ggml_step_impl(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a,
  3239. bool inplace) {
  3240. bool is_node = false;
  3241. if (!inplace && (a->grad)) {
  3242. is_node = true;
  3243. }
  3244. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3245. result->op = GGML_OP_STEP;
  3246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3247. result->src0 = a;
  3248. result->src1 = NULL;
  3249. return result;
  3250. }
  3251. struct ggml_tensor * ggml_step(
  3252. struct ggml_context * ctx,
  3253. struct ggml_tensor * a) {
  3254. return ggml_step_impl(ctx, a, false);
  3255. }
  3256. struct ggml_tensor * ggml_step_inplace(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a) {
  3259. return ggml_step_impl(ctx, a, true);
  3260. }
  3261. // ggml_relu
  3262. struct ggml_tensor * ggml_relu_impl(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a,
  3265. bool inplace) {
  3266. bool is_node = false;
  3267. if (!inplace && (a->grad)) {
  3268. is_node = true;
  3269. }
  3270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3271. result->op = GGML_OP_RELU;
  3272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3273. result->src0 = a;
  3274. result->src1 = NULL;
  3275. return result;
  3276. }
  3277. struct ggml_tensor * ggml_relu(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a) {
  3280. return ggml_relu_impl(ctx, a, false);
  3281. }
  3282. struct ggml_tensor * ggml_relu_inplace(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a) {
  3285. return ggml_relu_impl(ctx, a, true);
  3286. }
  3287. // ggml_gelu
  3288. struct ggml_tensor * ggml_gelu_impl(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a,
  3291. bool inplace) {
  3292. bool is_node = false;
  3293. if (!inplace && (a->grad)) {
  3294. is_node = true;
  3295. }
  3296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3297. result->op = GGML_OP_GELU;
  3298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3299. result->src0 = a;
  3300. result->src1 = NULL;
  3301. return result;
  3302. }
  3303. struct ggml_tensor * ggml_gelu(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a) {
  3306. return ggml_gelu_impl(ctx, a, false);
  3307. }
  3308. struct ggml_tensor * ggml_gelu_inplace(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a) {
  3311. return ggml_gelu_impl(ctx, a, true);
  3312. }
  3313. // ggml_silu
  3314. struct ggml_tensor * ggml_silu_impl(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a,
  3317. bool inplace) {
  3318. bool is_node = false;
  3319. if (!inplace && (a->grad)) {
  3320. is_node = true;
  3321. }
  3322. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3323. result->op = GGML_OP_SILU;
  3324. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3325. result->src0 = a;
  3326. result->src1 = NULL;
  3327. return result;
  3328. }
  3329. struct ggml_tensor * ggml_silu(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a) {
  3332. return ggml_silu_impl(ctx, a, false);
  3333. }
  3334. struct ggml_tensor * ggml_silu_inplace(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a) {
  3337. return ggml_silu_impl(ctx, a, true);
  3338. }
  3339. // ggml_norm
  3340. struct ggml_tensor * ggml_norm_impl(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a,
  3343. bool inplace) {
  3344. bool is_node = false;
  3345. if (!inplace && (a->grad)) {
  3346. GGML_ASSERT(false); // TODO: implement backward
  3347. is_node = true;
  3348. }
  3349. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3350. result->op = GGML_OP_NORM;
  3351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3352. result->src0 = a;
  3353. result->src1 = NULL; // TODO: maybe store epsilon here?
  3354. return result;
  3355. }
  3356. struct ggml_tensor * ggml_norm(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a) {
  3359. return ggml_norm_impl(ctx, a, false);
  3360. }
  3361. struct ggml_tensor * ggml_norm_inplace(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a) {
  3364. return ggml_norm_impl(ctx, a, true);
  3365. }
  3366. struct ggml_tensor * ggml_rms_norm_impl(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a,
  3369. bool inplace) {
  3370. bool is_node = false;
  3371. if (!inplace && (a->grad)) {
  3372. GGML_ASSERT(false); // TODO: implement backward
  3373. is_node = true;
  3374. }
  3375. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3376. result->op = GGML_OP_RMS_NORM;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src0 = a;
  3379. result->src1 = NULL; // TODO: maybe store epsilon here?
  3380. return result;
  3381. }
  3382. struct ggml_tensor * ggml_rms_norm(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. return ggml_rms_norm_impl(ctx, a, false);
  3386. }
  3387. struct ggml_tensor * ggml_rms_norm_inplace(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a) {
  3390. return ggml_rms_norm_impl(ctx, a, true);
  3391. }
  3392. // ggml_mul_mat
  3393. struct ggml_tensor * ggml_mul_mat(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a,
  3396. struct ggml_tensor * b) {
  3397. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3398. GGML_ASSERT(!ggml_is_transposed(a));
  3399. bool is_node = false;
  3400. if (a->grad || b->grad) {
  3401. is_node = true;
  3402. }
  3403. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3404. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3405. result->op = GGML_OP_MUL_MAT;
  3406. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3407. result->src0 = a;
  3408. result->src1 = b;
  3409. return result;
  3410. }
  3411. // ggml_scale
  3412. struct ggml_tensor * ggml_scale_impl(
  3413. struct ggml_context * ctx,
  3414. struct ggml_tensor * a,
  3415. struct ggml_tensor * b,
  3416. bool inplace) {
  3417. GGML_ASSERT(ggml_is_scalar(b));
  3418. GGML_ASSERT(ggml_is_padded_1d(a));
  3419. bool is_node = false;
  3420. if (!inplace && (a->grad || b->grad)) {
  3421. GGML_ASSERT(false); // TODO: implement backward
  3422. is_node = true;
  3423. }
  3424. // TODO: when implement backward, fix this:
  3425. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3426. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3427. result->op = GGML_OP_SCALE;
  3428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3429. result->src0 = a;
  3430. result->src1 = b;
  3431. return result;
  3432. }
  3433. struct ggml_tensor * ggml_scale(
  3434. struct ggml_context * ctx,
  3435. struct ggml_tensor * a,
  3436. struct ggml_tensor * b) {
  3437. return ggml_scale_impl(ctx, a, b, false);
  3438. }
  3439. struct ggml_tensor * ggml_scale_inplace(
  3440. struct ggml_context * ctx,
  3441. struct ggml_tensor * a,
  3442. struct ggml_tensor * b) {
  3443. return ggml_scale_impl(ctx, a, b, true);
  3444. }
  3445. // ggml_cpy
  3446. struct ggml_tensor * ggml_cpy_impl(
  3447. struct ggml_context * ctx,
  3448. struct ggml_tensor * a,
  3449. struct ggml_tensor * b,
  3450. bool inplace) {
  3451. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3452. bool is_node = false;
  3453. if (!inplace && (a->grad || b->grad)) {
  3454. GGML_ASSERT(false); // TODO: implement backward
  3455. is_node = true;
  3456. }
  3457. // make a view of the destination
  3458. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3459. result->op = GGML_OP_CPY;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src0 = a;
  3462. result->src1 = b;
  3463. return result;
  3464. }
  3465. struct ggml_tensor * ggml_cpy(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. struct ggml_tensor * b) {
  3469. return ggml_cpy_impl(ctx, a, b, false);
  3470. }
  3471. struct ggml_tensor * ggml_cpy_inplace(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. struct ggml_tensor * b) {
  3475. return ggml_cpy_impl(ctx, a, b, true);
  3476. }
  3477. // ggml_cont
  3478. struct ggml_tensor * ggml_cont_impl(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. bool inplace) {
  3482. bool is_node = false;
  3483. if (!inplace && a->grad) {
  3484. GGML_ASSERT(false); // TODO: implement backward
  3485. is_node = true;
  3486. }
  3487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3488. result->op = GGML_OP_CONT;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src0 = a;
  3491. result->src1 = NULL;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_cont(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a) {
  3497. return ggml_cont_impl(ctx, a, false);
  3498. }
  3499. struct ggml_tensor * ggml_cont_inplace(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a) {
  3502. return ggml_cont_impl(ctx, a, true);
  3503. }
  3504. // ggml_reshape
  3505. struct ggml_tensor * ggml_reshape(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a,
  3508. struct ggml_tensor * b) {
  3509. GGML_ASSERT(ggml_is_contiguous(a));
  3510. GGML_ASSERT(ggml_is_contiguous(b));
  3511. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3512. bool is_node = false;
  3513. if (a->grad || b->grad) {
  3514. GGML_ASSERT(false); // TODO: implement backward
  3515. is_node = true;
  3516. }
  3517. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3518. result->op = GGML_OP_RESHAPE;
  3519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3520. result->src0 = a;
  3521. result->src1 = NULL;
  3522. return result;
  3523. }
  3524. struct ggml_tensor * ggml_reshape_2d(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. int64_t ne0,
  3528. int64_t ne1) {
  3529. GGML_ASSERT(ggml_is_contiguous(a));
  3530. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3531. bool is_node = false;
  3532. if (a->grad) {
  3533. GGML_ASSERT(false); // TODO: implement backward
  3534. is_node = true;
  3535. }
  3536. const int64_t ne[2] = { ne0, ne1 };
  3537. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3538. result->op = GGML_OP_RESHAPE;
  3539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3540. result->src0 = a;
  3541. result->src1 = NULL;
  3542. return result;
  3543. }
  3544. struct ggml_tensor * ggml_reshape_3d(
  3545. struct ggml_context * ctx,
  3546. struct ggml_tensor * a,
  3547. int64_t ne0,
  3548. int64_t ne1,
  3549. int64_t ne2) {
  3550. GGML_ASSERT(ggml_is_contiguous(a));
  3551. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3552. bool is_node = false;
  3553. if (a->grad) {
  3554. GGML_ASSERT(false); // TODO: implement backward
  3555. is_node = true;
  3556. }
  3557. const int64_t ne[3] = { ne0, ne1, ne2 };
  3558. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3559. result->op = GGML_OP_RESHAPE;
  3560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3561. result->src0 = a;
  3562. result->src1 = NULL;
  3563. return result;
  3564. }
  3565. // ggml_view_1d
  3566. struct ggml_tensor * ggml_view_1d(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. int64_t ne0,
  3570. size_t offset) {
  3571. if (a->grad) {
  3572. GGML_ASSERT(false); // gradient propagation is not supported
  3573. }
  3574. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3575. result->op = GGML_OP_VIEW;
  3576. result->grad = NULL;
  3577. result->src0 = a;
  3578. result->src1 = NULL; // TODO: maybe store the offset here?
  3579. return result;
  3580. }
  3581. // ggml_view_2d
  3582. struct ggml_tensor * ggml_view_2d(
  3583. struct ggml_context * ctx,
  3584. struct ggml_tensor * a,
  3585. int64_t ne0,
  3586. int64_t ne1,
  3587. size_t nb1,
  3588. size_t offset) {
  3589. if (a->grad) {
  3590. GGML_ASSERT(false); // gradient propagation is not supported
  3591. }
  3592. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3593. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3594. result->nb[1] = nb1;
  3595. result->nb[2] = result->nb[1]*ne1;
  3596. result->nb[3] = result->nb[2];
  3597. result->op = GGML_OP_VIEW;
  3598. result->grad = NULL;
  3599. result->src0 = a;
  3600. result->src1 = NULL; // TODO: maybe store the offset here?
  3601. return result;
  3602. }
  3603. // ggml_view_3d
  3604. struct ggml_tensor * ggml_view_3d(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a,
  3607. int64_t ne0,
  3608. int64_t ne1,
  3609. int64_t ne2,
  3610. size_t nb1,
  3611. size_t nb2,
  3612. size_t offset) {
  3613. if (a->grad) {
  3614. GGML_ASSERT(false); // gradient propagation is not supported
  3615. }
  3616. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  3617. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  3618. result->nb[1] = nb1;
  3619. result->nb[2] = nb2;
  3620. result->nb[3] = result->nb[2]*ne2;
  3621. result->op = GGML_OP_VIEW;
  3622. result->grad = NULL;
  3623. result->src0 = a;
  3624. result->src1 = NULL; // TODO: maybe store the offset here?
  3625. return result;
  3626. }
  3627. // ggml_permute
  3628. struct ggml_tensor * ggml_permute(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. int axis0,
  3632. int axis1,
  3633. int axis2,
  3634. int axis3) {
  3635. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3636. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3637. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3638. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3639. GGML_ASSERT(axis0 != axis1);
  3640. GGML_ASSERT(axis0 != axis2);
  3641. GGML_ASSERT(axis0 != axis3);
  3642. GGML_ASSERT(axis1 != axis2);
  3643. GGML_ASSERT(axis1 != axis3);
  3644. GGML_ASSERT(axis2 != axis3);
  3645. bool is_node = false;
  3646. if (a->grad) {
  3647. GGML_ASSERT(false); // TODO: implement backward
  3648. is_node = true;
  3649. }
  3650. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3651. int ne[GGML_MAX_DIMS];
  3652. int nb[GGML_MAX_DIMS];
  3653. ne[axis0] = a->ne[0];
  3654. ne[axis1] = a->ne[1];
  3655. ne[axis2] = a->ne[2];
  3656. ne[axis3] = a->ne[3];
  3657. nb[axis0] = a->nb[0];
  3658. nb[axis1] = a->nb[1];
  3659. nb[axis2] = a->nb[2];
  3660. nb[axis3] = a->nb[3];
  3661. result->ne[0] = ne[0];
  3662. result->ne[1] = ne[1];
  3663. result->ne[2] = ne[2];
  3664. result->ne[3] = ne[3];
  3665. result->nb[0] = nb[0];
  3666. result->nb[1] = nb[1];
  3667. result->nb[2] = nb[2];
  3668. result->nb[3] = nb[3];
  3669. result->op = GGML_OP_PERMUTE;
  3670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3671. result->src0 = a;
  3672. result->src1 = NULL; // TODO: maybe store the permutation here?
  3673. return result;
  3674. }
  3675. // ggml_transpose
  3676. struct ggml_tensor * ggml_transpose(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a) {
  3679. bool is_node = false;
  3680. if (a->grad) {
  3681. GGML_ASSERT(false); // TODO: implement backward
  3682. is_node = true;
  3683. }
  3684. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3685. result->ne[0] = a->ne[1];
  3686. result->ne[1] = a->ne[0];
  3687. result->nb[0] = a->nb[1];
  3688. result->nb[1] = a->nb[0];
  3689. result->op = GGML_OP_TRANSPOSE;
  3690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3691. result->src0 = a;
  3692. result->src1 = NULL;
  3693. return result;
  3694. }
  3695. // ggml_get_rows
  3696. struct ggml_tensor * ggml_get_rows(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. struct ggml_tensor * b) {
  3700. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3701. bool is_node = false;
  3702. if (a->grad || b->grad) {
  3703. GGML_ASSERT(false); // TODO: implement backward
  3704. is_node = true;
  3705. }
  3706. // TODO: implement non F32 return
  3707. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3708. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3709. result->op = GGML_OP_GET_ROWS;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src0 = a;
  3712. result->src1 = b;
  3713. return result;
  3714. }
  3715. // ggml_diag_mask_inf
  3716. struct ggml_tensor * ggml_diag_mask_inf(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a,
  3719. int n_past) {
  3720. bool is_node = false;
  3721. if (a->grad) {
  3722. GGML_ASSERT(false); // TODO: implement backward
  3723. is_node = true;
  3724. }
  3725. // TODO: when implement backward, fix this:
  3726. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3727. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3728. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3729. result->op = GGML_OP_DIAG_MASK_INF;
  3730. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3731. result->src0 = a;
  3732. result->src1 = b;
  3733. return result;
  3734. }
  3735. // ggml_soft_max
  3736. struct ggml_tensor * ggml_soft_max(
  3737. struct ggml_context * ctx,
  3738. struct ggml_tensor * a) {
  3739. bool is_node = false;
  3740. if (a->grad) {
  3741. GGML_ASSERT(false); // TODO: implement backward
  3742. is_node = true;
  3743. }
  3744. // TODO: when implement backward, fix this:
  3745. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3746. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3747. result->op = GGML_OP_SOFT_MAX;
  3748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3749. result->src0 = a;
  3750. result->src1 = NULL;
  3751. return result;
  3752. }
  3753. // ggml_rope
  3754. struct ggml_tensor * ggml_rope(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. int n_past,
  3758. int n_dims,
  3759. int mode) {
  3760. GGML_ASSERT(n_past >= 0);
  3761. bool is_node = false;
  3762. if (a->grad) {
  3763. GGML_ASSERT(false); // TODO: implement backward
  3764. is_node = true;
  3765. }
  3766. // TODO: when implement backward, fix this:
  3767. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3768. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3769. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3770. ((int32_t *) b->data)[0] = n_past;
  3771. ((int32_t *) b->data)[1] = n_dims;
  3772. ((int32_t *) b->data)[2] = mode;
  3773. result->op = GGML_OP_ROPE;
  3774. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3775. result->src0 = a;
  3776. result->src1 = b;
  3777. return result;
  3778. }
  3779. // ggml_conv_1d_1s
  3780. struct ggml_tensor * ggml_conv_1d_1s(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. struct ggml_tensor * b) {
  3784. GGML_ASSERT(ggml_is_matrix(b));
  3785. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3786. GGML_ASSERT(a->ne[3] == 1);
  3787. bool is_node = false;
  3788. if (a->grad || b->grad) {
  3789. GGML_ASSERT(false); // TODO: implement backward
  3790. is_node = true;
  3791. }
  3792. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3793. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3794. result->op = GGML_OP_CONV_1D_1S;
  3795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3796. result->src0 = a;
  3797. result->src1 = b;
  3798. return result;
  3799. }
  3800. // ggml_conv_1d_2s
  3801. struct ggml_tensor * ggml_conv_1d_2s(
  3802. struct ggml_context * ctx,
  3803. struct ggml_tensor * a,
  3804. struct ggml_tensor * b) {
  3805. GGML_ASSERT(ggml_is_matrix(b));
  3806. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3807. GGML_ASSERT(a->ne[3] == 1);
  3808. bool is_node = false;
  3809. if (a->grad || b->grad) {
  3810. GGML_ASSERT(false); // TODO: implement backward
  3811. is_node = true;
  3812. }
  3813. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3814. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3815. result->op = GGML_OP_CONV_1D_2S;
  3816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3817. result->src0 = a;
  3818. result->src1 = b;
  3819. return result;
  3820. }
  3821. // ggml_flash_attn
  3822. struct ggml_tensor * ggml_flash_attn(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * q,
  3825. struct ggml_tensor * k,
  3826. struct ggml_tensor * v,
  3827. bool masked) {
  3828. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3829. // TODO: check if vT can be multiplied by (k*qT)
  3830. bool is_node = false;
  3831. if (q->grad || k->grad || v->grad) {
  3832. GGML_ASSERT(false); // TODO: implement backward
  3833. is_node = true;
  3834. }
  3835. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3836. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3837. result->op = GGML_OP_FLASH_ATTN;
  3838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3839. result->src0 = q;
  3840. result->src1 = k;
  3841. result->opt[0] = v;
  3842. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3843. return result;
  3844. }
  3845. // ggml_flash_ff
  3846. struct ggml_tensor * ggml_flash_ff(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. struct ggml_tensor * b0,
  3850. struct ggml_tensor * b1,
  3851. struct ggml_tensor * c0,
  3852. struct ggml_tensor * c1) {
  3853. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3854. // TODO: more checks
  3855. bool is_node = false;
  3856. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3857. GGML_ASSERT(false); // TODO: implement backward
  3858. is_node = true;
  3859. }
  3860. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3861. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3862. result->op = GGML_OP_FLASH_FF;
  3863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3864. result->src0 = a;
  3865. result->src1 = b0;
  3866. result->opt[0] = b1;
  3867. result->opt[1] = c0;
  3868. result->opt[2] = c1;
  3869. return result;
  3870. }
  3871. ////////////////////////////////////////////////////////////////////////////////
  3872. void ggml_set_param(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * tensor) {
  3875. tensor->is_param = true;
  3876. GGML_ASSERT(tensor->grad == NULL);
  3877. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3878. }
  3879. // ggml_compute_forward_dup
  3880. static void ggml_compute_forward_dup_f16(
  3881. const struct ggml_compute_params * params,
  3882. const struct ggml_tensor * src0,
  3883. struct ggml_tensor * dst) {
  3884. GGML_ASSERT(params->ith == 0);
  3885. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3887. return;
  3888. }
  3889. const int64_t ne00 = src0->ne[0];
  3890. const int64_t ne01 = src0->ne[1];
  3891. const int64_t ne02 = src0->ne[2];
  3892. const int64_t ne03 = src0->ne[3];
  3893. const size_t nb00 = src0->nb[0];
  3894. const size_t nb01 = src0->nb[1];
  3895. const size_t nb02 = src0->nb[2];
  3896. const size_t nb03 = src0->nb[3];
  3897. const size_t nb0 = dst->nb[0];
  3898. const size_t nb1 = dst->nb[1];
  3899. const size_t nb2 = dst->nb[2];
  3900. const size_t nb3 = dst->nb[3];
  3901. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  3902. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3903. return;
  3904. }
  3905. if (src0->type == dst->type &&
  3906. src0->ne[0] == dst->ne[0] &&
  3907. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  3908. // copy by rows
  3909. const size_t rs = ne00*nb00;
  3910. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3911. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3912. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3913. memcpy(
  3914. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  3915. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  3916. rs);
  3917. }
  3918. }
  3919. }
  3920. return;
  3921. }
  3922. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  3923. if (ggml_is_contiguous(dst)) {
  3924. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3925. if (dst->type == GGML_TYPE_F16) {
  3926. size_t id = 0;
  3927. const size_t rs = ne00*nb00;
  3928. for (int i03 = 0; i03 < ne03; i03++) {
  3929. for (int i02 = 0; i02 < ne02; i02++) {
  3930. for (int i01 = 0; i01 < ne01; i01++) {
  3931. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3932. char * dst_ptr = (char *) dst->data + id*rs;
  3933. memcpy(dst_ptr, src0_ptr, rs);
  3934. id++;
  3935. }
  3936. }
  3937. }
  3938. } else if (dst->type == GGML_TYPE_F32) {
  3939. size_t id = 0;
  3940. float * dst_ptr = (float *) dst->data;
  3941. for (int i03 = 0; i03 < ne03; i03++) {
  3942. for (int i02 = 0; i02 < ne02; i02++) {
  3943. for (int i01 = 0; i01 < ne01; i01++) {
  3944. for (int i00 = 0; i00 < ne00; i00++) {
  3945. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3946. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3947. id++;
  3948. }
  3949. }
  3950. }
  3951. }
  3952. } else {
  3953. GGML_ASSERT(false); // TODO: implement
  3954. }
  3955. } else {
  3956. //printf("%s: this is not optimal - fix me\n", __func__);
  3957. if (dst->type == GGML_TYPE_F32) {
  3958. size_t id = 0;
  3959. float * dst_ptr = (float *) dst->data;
  3960. for (int i03 = 0; i03 < ne03; i03++) {
  3961. for (int i02 = 0; i02 < ne02; i02++) {
  3962. for (int i01 = 0; i01 < ne01; i01++) {
  3963. for (int i00 = 0; i00 < ne00; i00++) {
  3964. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3965. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3966. id++;
  3967. }
  3968. }
  3969. }
  3970. }
  3971. } else if (dst->type == GGML_TYPE_F16) {
  3972. size_t id = 0;
  3973. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3974. for (int i03 = 0; i03 < ne03; i03++) {
  3975. for (int i02 = 0; i02 < ne02; i02++) {
  3976. for (int i01 = 0; i01 < ne01; i01++) {
  3977. for (int i00 = 0; i00 < ne00; i00++) {
  3978. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3979. dst_ptr[id] = *src0_ptr;
  3980. id++;
  3981. }
  3982. }
  3983. }
  3984. }
  3985. } else {
  3986. GGML_ASSERT(false); // TODO: implement
  3987. }
  3988. }
  3989. return;
  3990. }
  3991. // dst counters
  3992. int64_t i10 = 0;
  3993. int64_t i11 = 0;
  3994. int64_t i12 = 0;
  3995. int64_t i13 = 0;
  3996. if (dst->type == GGML_TYPE_F16) {
  3997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3999. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4000. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4001. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4002. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4003. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4004. if (++i10 == ne00) {
  4005. i10 = 0;
  4006. if (++i11 == ne01) {
  4007. i11 = 0;
  4008. if (++i12 == ne02) {
  4009. i12 = 0;
  4010. if (++i13 == ne03) {
  4011. i13 = 0;
  4012. }
  4013. }
  4014. }
  4015. }
  4016. }
  4017. }
  4018. }
  4019. }
  4020. } else if (dst->type == GGML_TYPE_F32) {
  4021. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4022. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4023. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4024. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4025. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4026. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4027. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4028. if (++i10 == ne00) {
  4029. i10 = 0;
  4030. if (++i11 == ne01) {
  4031. i11 = 0;
  4032. if (++i12 == ne02) {
  4033. i12 = 0;
  4034. if (++i13 == ne03) {
  4035. i13 = 0;
  4036. }
  4037. }
  4038. }
  4039. }
  4040. }
  4041. }
  4042. }
  4043. }
  4044. } else {
  4045. GGML_ASSERT(false); // TODO: implement
  4046. }
  4047. }
  4048. static void ggml_compute_forward_dup_f32(
  4049. const struct ggml_compute_params * params,
  4050. const struct ggml_tensor * src0,
  4051. struct ggml_tensor * dst) {
  4052. GGML_ASSERT(params->ith == 0);
  4053. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4054. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4055. return;
  4056. }
  4057. const int64_t ne00 = src0->ne[0];
  4058. const int64_t ne01 = src0->ne[1];
  4059. const int64_t ne02 = src0->ne[2];
  4060. const int64_t ne03 = src0->ne[3];
  4061. const size_t nb00 = src0->nb[0];
  4062. const size_t nb01 = src0->nb[1];
  4063. const size_t nb02 = src0->nb[2];
  4064. const size_t nb03 = src0->nb[3];
  4065. const size_t nb0 = dst->nb[0];
  4066. const size_t nb1 = dst->nb[1];
  4067. const size_t nb2 = dst->nb[2];
  4068. const size_t nb3 = dst->nb[3];
  4069. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4070. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  4071. return;
  4072. }
  4073. if (src0->type == dst->type &&
  4074. src0->ne[0] == dst->ne[0] &&
  4075. src0->nb[0] == GGML_TYPE_SIZE[src0->type] && dst->nb[0] == GGML_TYPE_SIZE[dst->type]) {
  4076. // copy by rows
  4077. const size_t rs = ne00*nb00;
  4078. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4079. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4080. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4081. memcpy(
  4082. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4083. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4084. rs);
  4085. }
  4086. }
  4087. }
  4088. return;
  4089. }
  4090. if (ggml_is_contiguous(dst)) {
  4091. // TODO: simplify
  4092. if (src0->nb[0] == sizeof(float)) {
  4093. if (dst->type == GGML_TYPE_F32) {
  4094. size_t id = 0;
  4095. const size_t rs = ne00*nb00;
  4096. for (int i03 = 0; i03 < ne03; i03++) {
  4097. for (int i02 = 0; i02 < ne02; i02++) {
  4098. for (int i01 = 0; i01 < ne01; i01++) {
  4099. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4100. char * dst_ptr = (char *) dst->data + id*rs;
  4101. memcpy(dst_ptr, src0_ptr, rs);
  4102. id++;
  4103. }
  4104. }
  4105. }
  4106. } else if (dst->type == GGML_TYPE_F16) {
  4107. size_t id = 0;
  4108. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4109. for (int i03 = 0; i03 < ne03; i03++) {
  4110. for (int i02 = 0; i02 < ne02; i02++) {
  4111. for (int i01 = 0; i01 < ne01; i01++) {
  4112. for (int i00 = 0; i00 < ne00; i00++) {
  4113. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4114. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4115. id++;
  4116. }
  4117. }
  4118. }
  4119. }
  4120. } else {
  4121. GGML_ASSERT(false); // TODO: implement
  4122. }
  4123. } else {
  4124. //printf("%s: this is not optimal - fix me\n", __func__);
  4125. if (dst->type == GGML_TYPE_F32) {
  4126. size_t id = 0;
  4127. float * dst_ptr = (float *) dst->data;
  4128. for (int i03 = 0; i03 < ne03; i03++) {
  4129. for (int i02 = 0; i02 < ne02; i02++) {
  4130. for (int i01 = 0; i01 < ne01; i01++) {
  4131. for (int i00 = 0; i00 < ne00; i00++) {
  4132. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4133. dst_ptr[id] = *src0_ptr;
  4134. id++;
  4135. }
  4136. }
  4137. }
  4138. }
  4139. } else if (dst->type == GGML_TYPE_F16) {
  4140. size_t id = 0;
  4141. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4142. for (int i03 = 0; i03 < ne03; i03++) {
  4143. for (int i02 = 0; i02 < ne02; i02++) {
  4144. for (int i01 = 0; i01 < ne01; i01++) {
  4145. for (int i00 = 0; i00 < ne00; i00++) {
  4146. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4147. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4148. id++;
  4149. }
  4150. }
  4151. }
  4152. }
  4153. } else {
  4154. GGML_ASSERT(false); // TODO: implement
  4155. }
  4156. }
  4157. return;
  4158. }
  4159. // dst counters
  4160. int64_t i10 = 0;
  4161. int64_t i11 = 0;
  4162. int64_t i12 = 0;
  4163. int64_t i13 = 0;
  4164. if (dst->type == GGML_TYPE_F32) {
  4165. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4166. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4167. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4168. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4169. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4170. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4171. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4172. if (++i10 == dst->ne[0]) {
  4173. i10 = 0;
  4174. if (++i11 == dst->ne[1]) {
  4175. i11 = 0;
  4176. if (++i12 == dst->ne[2]) {
  4177. i12 = 0;
  4178. if (++i13 == dst->ne[3]) {
  4179. i13 = 0;
  4180. }
  4181. }
  4182. }
  4183. }
  4184. }
  4185. }
  4186. }
  4187. }
  4188. } else if (dst->type == GGML_TYPE_F16) {
  4189. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4190. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4191. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4192. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4193. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4194. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4195. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  4196. if (++i10 == dst->ne[0]) {
  4197. i10 = 0;
  4198. if (++i11 == dst->ne[1]) {
  4199. i11 = 0;
  4200. if (++i12 == dst->ne[2]) {
  4201. i12 = 0;
  4202. if (++i13 == dst->ne[3]) {
  4203. i13 = 0;
  4204. }
  4205. }
  4206. }
  4207. }
  4208. }
  4209. }
  4210. }
  4211. }
  4212. } else {
  4213. GGML_ASSERT(false); // TODO: implement
  4214. }
  4215. }
  4216. static void ggml_compute_forward_dup(
  4217. const struct ggml_compute_params * params,
  4218. const struct ggml_tensor * src0,
  4219. struct ggml_tensor * dst) {
  4220. switch (src0->type) {
  4221. case GGML_TYPE_F16:
  4222. {
  4223. ggml_compute_forward_dup_f16(params, src0, dst);
  4224. } break;
  4225. case GGML_TYPE_F32:
  4226. {
  4227. ggml_compute_forward_dup_f32(params, src0, dst);
  4228. } break;
  4229. case GGML_TYPE_Q4_0:
  4230. case GGML_TYPE_Q4_1:
  4231. case GGML_TYPE_I8:
  4232. case GGML_TYPE_I16:
  4233. case GGML_TYPE_I32:
  4234. case GGML_TYPE_COUNT:
  4235. {
  4236. GGML_ASSERT(false);
  4237. } break;
  4238. }
  4239. }
  4240. // ggml_compute_forward_add
  4241. static void ggml_compute_forward_add_f32(
  4242. const struct ggml_compute_params * params,
  4243. const struct ggml_tensor * src0,
  4244. const struct ggml_tensor * src1,
  4245. struct ggml_tensor * dst) {
  4246. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4248. return;
  4249. }
  4250. const int ith = params->ith;
  4251. const int nth = params->nth;
  4252. const int n = ggml_nrows(src0);
  4253. const int nc = src0->ne[0];
  4254. const size_t nb00 = src0->nb[0];
  4255. const size_t nb01 = src0->nb[1];
  4256. const size_t nb10 = src1->nb[0];
  4257. const size_t nb11 = src1->nb[1];
  4258. const size_t nb0 = dst->nb[0];
  4259. const size_t nb1 = dst->nb[1];
  4260. GGML_ASSERT( nb0 == sizeof(float));
  4261. GGML_ASSERT(nb00 == sizeof(float));
  4262. if (nb10 == sizeof(float)) {
  4263. for (int j = ith; j < n; j += nth) {
  4264. #ifdef GGML_USE_ACCELERATE
  4265. vDSP_vadd(
  4266. (float *) ((char *) src0->data + j*nb01), 1,
  4267. (float *) ((char *) src1->data + j*nb11), 1,
  4268. (float *) ((char *) dst->data + j*nb1), 1, nc);
  4269. #else
  4270. ggml_vec_add_f32(nc,
  4271. (float *) ((char *) dst->data + j*nb1),
  4272. (float *) ((char *) src0->data + j*nb01),
  4273. (float *) ((char *) src1->data + j*nb11));
  4274. #endif
  4275. }
  4276. } else {
  4277. // src1 is not contiguous
  4278. for (int j = ith; j < n; j += nth) {
  4279. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4280. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4281. for (int i = 0; i < nc; i++) {
  4282. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4283. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4284. }
  4285. }
  4286. }
  4287. }
  4288. static void ggml_compute_forward_add(
  4289. const struct ggml_compute_params * params,
  4290. const struct ggml_tensor * src0,
  4291. const struct ggml_tensor * src1,
  4292. struct ggml_tensor * dst) {
  4293. switch (src0->type) {
  4294. case GGML_TYPE_F32:
  4295. {
  4296. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4297. } break;
  4298. case GGML_TYPE_Q4_0:
  4299. case GGML_TYPE_Q4_1:
  4300. case GGML_TYPE_I8:
  4301. case GGML_TYPE_I16:
  4302. case GGML_TYPE_I32:
  4303. case GGML_TYPE_F16:
  4304. case GGML_TYPE_COUNT:
  4305. {
  4306. GGML_ASSERT(false);
  4307. } break;
  4308. }
  4309. }
  4310. // ggml_compute_forward_sub
  4311. static void ggml_compute_forward_sub_f32(
  4312. const struct ggml_compute_params * params,
  4313. const struct ggml_tensor * src0,
  4314. const struct ggml_tensor * src1,
  4315. struct ggml_tensor * dst) {
  4316. assert(params->ith == 0);
  4317. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4319. return;
  4320. }
  4321. const int n = ggml_nrows(src0);
  4322. const int nc = src0->ne[0];
  4323. assert( dst->nb[0] == sizeof(float));
  4324. assert(src0->nb[0] == sizeof(float));
  4325. assert(src1->nb[0] == sizeof(float));
  4326. for (int i = 0; i < n; i++) {
  4327. ggml_vec_sub_f32(nc,
  4328. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4329. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4330. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4331. }
  4332. }
  4333. static void ggml_compute_forward_sub(
  4334. const struct ggml_compute_params * params,
  4335. const struct ggml_tensor * src0,
  4336. const struct ggml_tensor * src1,
  4337. struct ggml_tensor * dst) {
  4338. switch (src0->type) {
  4339. case GGML_TYPE_F32:
  4340. {
  4341. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4342. } break;
  4343. case GGML_TYPE_Q4_0:
  4344. case GGML_TYPE_Q4_1:
  4345. case GGML_TYPE_I8:
  4346. case GGML_TYPE_I16:
  4347. case GGML_TYPE_I32:
  4348. case GGML_TYPE_F16:
  4349. case GGML_TYPE_COUNT:
  4350. {
  4351. GGML_ASSERT(false);
  4352. } break;
  4353. }
  4354. }
  4355. // ggml_compute_forward_mul
  4356. static void ggml_compute_forward_mul_f32(
  4357. const struct ggml_compute_params * params,
  4358. const struct ggml_tensor * src0,
  4359. const struct ggml_tensor * src1,
  4360. struct ggml_tensor * dst) {
  4361. assert(params->ith == 0);
  4362. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4364. return;
  4365. }
  4366. const int n = ggml_nrows(src0);
  4367. const int nc = src0->ne[0];
  4368. assert( dst->nb[0] == sizeof(float));
  4369. assert(src0->nb[0] == sizeof(float));
  4370. assert(src1->nb[0] == sizeof(float));
  4371. for (int i = 0; i < n; i++) {
  4372. ggml_vec_mul_f32(nc,
  4373. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4374. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4375. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4376. }
  4377. }
  4378. static void ggml_compute_forward_mul(
  4379. const struct ggml_compute_params * params,
  4380. const struct ggml_tensor * src0,
  4381. const struct ggml_tensor * src1,
  4382. struct ggml_tensor * dst) {
  4383. switch (src0->type) {
  4384. case GGML_TYPE_F32:
  4385. {
  4386. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4387. } break;
  4388. case GGML_TYPE_Q4_0:
  4389. case GGML_TYPE_Q4_1:
  4390. case GGML_TYPE_I8:
  4391. case GGML_TYPE_I16:
  4392. case GGML_TYPE_I32:
  4393. case GGML_TYPE_F16:
  4394. case GGML_TYPE_COUNT:
  4395. {
  4396. GGML_ASSERT(false);
  4397. } break;
  4398. }
  4399. }
  4400. // ggml_compute_forward_div
  4401. static void ggml_compute_forward_div_f32(
  4402. const struct ggml_compute_params * params,
  4403. const struct ggml_tensor * src0,
  4404. const struct ggml_tensor * src1,
  4405. struct ggml_tensor * dst) {
  4406. assert(params->ith == 0);
  4407. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4409. return;
  4410. }
  4411. const int n = ggml_nrows(src0);
  4412. const int nc = src0->ne[0];
  4413. assert( dst->nb[0] == sizeof(float));
  4414. assert(src0->nb[0] == sizeof(float));
  4415. assert(src1->nb[0] == sizeof(float));
  4416. for (int i = 0; i < n; i++) {
  4417. ggml_vec_div_f32(nc,
  4418. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4419. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4420. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4421. }
  4422. }
  4423. static void ggml_compute_forward_div(
  4424. const struct ggml_compute_params * params,
  4425. const struct ggml_tensor * src0,
  4426. const struct ggml_tensor * src1,
  4427. struct ggml_tensor * dst) {
  4428. switch (src0->type) {
  4429. case GGML_TYPE_F32:
  4430. {
  4431. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4432. } break;
  4433. case GGML_TYPE_Q4_0:
  4434. case GGML_TYPE_Q4_1:
  4435. case GGML_TYPE_I8:
  4436. case GGML_TYPE_I16:
  4437. case GGML_TYPE_I32:
  4438. case GGML_TYPE_F16:
  4439. case GGML_TYPE_COUNT:
  4440. {
  4441. GGML_ASSERT(false);
  4442. } break;
  4443. }
  4444. }
  4445. // ggml_compute_forward_sqr
  4446. static void ggml_compute_forward_sqr_f32(
  4447. const struct ggml_compute_params * params,
  4448. const struct ggml_tensor * src0,
  4449. struct ggml_tensor * dst) {
  4450. assert(params->ith == 0);
  4451. assert(ggml_are_same_shape(src0, dst));
  4452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4453. return;
  4454. }
  4455. const int n = ggml_nrows(src0);
  4456. const int nc = src0->ne[0];
  4457. assert( dst->nb[0] == sizeof(float));
  4458. assert(src0->nb[0] == sizeof(float));
  4459. for (int i = 0; i < n; i++) {
  4460. ggml_vec_sqr_f32(nc,
  4461. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4462. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4463. }
  4464. }
  4465. static void ggml_compute_forward_sqr(
  4466. const struct ggml_compute_params * params,
  4467. const struct ggml_tensor * src0,
  4468. struct ggml_tensor * dst) {
  4469. switch (src0->type) {
  4470. case GGML_TYPE_F32:
  4471. {
  4472. ggml_compute_forward_sqr_f32(params, src0, dst);
  4473. } break;
  4474. case GGML_TYPE_Q4_0:
  4475. case GGML_TYPE_Q4_1:
  4476. case GGML_TYPE_I8:
  4477. case GGML_TYPE_I16:
  4478. case GGML_TYPE_I32:
  4479. case GGML_TYPE_F16:
  4480. case GGML_TYPE_COUNT:
  4481. {
  4482. GGML_ASSERT(false);
  4483. } break;
  4484. }
  4485. }
  4486. // ggml_compute_forward_sqrt
  4487. static void ggml_compute_forward_sqrt_f32(
  4488. const struct ggml_compute_params * params,
  4489. const struct ggml_tensor * src0,
  4490. struct ggml_tensor * dst) {
  4491. assert(params->ith == 0);
  4492. assert(ggml_are_same_shape(src0, dst));
  4493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4494. return;
  4495. }
  4496. const int n = ggml_nrows(src0);
  4497. const int nc = src0->ne[0];
  4498. assert( dst->nb[0] == sizeof(float));
  4499. assert(src0->nb[0] == sizeof(float));
  4500. for (int i = 0; i < n; i++) {
  4501. ggml_vec_sqrt_f32(nc,
  4502. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4503. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4504. }
  4505. }
  4506. static void ggml_compute_forward_sqrt(
  4507. const struct ggml_compute_params * params,
  4508. const struct ggml_tensor * src0,
  4509. struct ggml_tensor * dst) {
  4510. switch (src0->type) {
  4511. case GGML_TYPE_F32:
  4512. {
  4513. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4514. } break;
  4515. case GGML_TYPE_Q4_0:
  4516. case GGML_TYPE_Q4_1:
  4517. case GGML_TYPE_I8:
  4518. case GGML_TYPE_I16:
  4519. case GGML_TYPE_I32:
  4520. case GGML_TYPE_F16:
  4521. case GGML_TYPE_COUNT:
  4522. {
  4523. GGML_ASSERT(false);
  4524. } break;
  4525. }
  4526. }
  4527. // ggml_compute_forward_sum
  4528. static void ggml_compute_forward_sum_f32(
  4529. const struct ggml_compute_params * params,
  4530. const struct ggml_tensor * src0,
  4531. struct ggml_tensor * dst) {
  4532. assert(params->ith == 0);
  4533. assert(ggml_is_scalar(dst));
  4534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4535. return;
  4536. }
  4537. assert(ggml_is_scalar(dst));
  4538. assert(src0->nb[0] == sizeof(float));
  4539. const int64_t ne00 = src0->ne[0];
  4540. const int64_t ne01 = src0->ne[1];
  4541. const int64_t ne02 = src0->ne[2];
  4542. const int64_t ne03 = src0->ne[3];
  4543. const size_t nb01 = src0->nb[1];
  4544. const size_t nb02 = src0->nb[2];
  4545. const size_t nb03 = src0->nb[3];
  4546. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4547. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4548. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4549. ggml_vec_sum_f32(ne00,
  4550. (float *) (dst->data),
  4551. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4552. }
  4553. }
  4554. }
  4555. }
  4556. static void ggml_compute_forward_sum(
  4557. const struct ggml_compute_params * params,
  4558. const struct ggml_tensor * src0,
  4559. struct ggml_tensor * dst) {
  4560. switch (src0->type) {
  4561. case GGML_TYPE_F32:
  4562. {
  4563. ggml_compute_forward_sum_f32(params, src0, dst);
  4564. } break;
  4565. case GGML_TYPE_Q4_0:
  4566. case GGML_TYPE_Q4_1:
  4567. case GGML_TYPE_I8:
  4568. case GGML_TYPE_I16:
  4569. case GGML_TYPE_I32:
  4570. case GGML_TYPE_F16:
  4571. case GGML_TYPE_COUNT:
  4572. {
  4573. GGML_ASSERT(false);
  4574. } break;
  4575. }
  4576. }
  4577. // ggml_compute_forward_mean
  4578. static void ggml_compute_forward_mean_f32(
  4579. const struct ggml_compute_params * params,
  4580. const struct ggml_tensor * src0,
  4581. struct ggml_tensor * dst) {
  4582. assert(params->ith == 0);
  4583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4584. return;
  4585. }
  4586. assert(src0->nb[0] == sizeof(float));
  4587. const int64_t ne00 = src0->ne[0];
  4588. const int64_t ne01 = src0->ne[1];
  4589. const int64_t ne02 = src0->ne[2];
  4590. const int64_t ne03 = src0->ne[3];
  4591. const size_t nb01 = src0->nb[1];
  4592. const size_t nb02 = src0->nb[2];
  4593. const size_t nb03 = src0->nb[3];
  4594. const int64_t ne0 = dst->ne[0];
  4595. const int64_t ne1 = dst->ne[1];
  4596. const int64_t ne2 = dst->ne[2];
  4597. const int64_t ne3 = dst->ne[3];
  4598. assert(ne0 == 1);
  4599. assert(ne1 == ne01);
  4600. assert(ne2 == ne02);
  4601. assert(ne3 == ne03);
  4602. UNUSED(ne0);
  4603. UNUSED(ne1);
  4604. UNUSED(ne2);
  4605. UNUSED(ne3);
  4606. const size_t nb1 = dst->nb[1];
  4607. const size_t nb2 = dst->nb[2];
  4608. const size_t nb3 = dst->nb[3];
  4609. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4610. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4611. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4612. ggml_vec_sum_f32(ne00,
  4613. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4614. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4615. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4616. }
  4617. }
  4618. }
  4619. }
  4620. static void ggml_compute_forward_mean(
  4621. const struct ggml_compute_params * params,
  4622. const struct ggml_tensor * src0,
  4623. struct ggml_tensor * dst) {
  4624. switch (src0->type) {
  4625. case GGML_TYPE_F32:
  4626. {
  4627. ggml_compute_forward_mean_f32(params, src0, dst);
  4628. } break;
  4629. case GGML_TYPE_Q4_0:
  4630. case GGML_TYPE_Q4_1:
  4631. case GGML_TYPE_I8:
  4632. case GGML_TYPE_I16:
  4633. case GGML_TYPE_I32:
  4634. case GGML_TYPE_F16:
  4635. case GGML_TYPE_COUNT:
  4636. {
  4637. GGML_ASSERT(false);
  4638. } break;
  4639. }
  4640. }
  4641. // ggml_compute_forward_repeat
  4642. static void ggml_compute_forward_repeat_f32(
  4643. const struct ggml_compute_params * params,
  4644. const struct ggml_tensor * src0,
  4645. struct ggml_tensor * dst) {
  4646. assert(params->ith == 0);
  4647. assert(ggml_can_repeat(src0, dst));
  4648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4649. return;
  4650. }
  4651. // TODO: implement support for rank > 2 tensors
  4652. assert(src0->ne[2] == 1);
  4653. assert(src0->ne[3] == 1);
  4654. assert( dst->ne[2] == 1);
  4655. assert( dst->ne[3] == 1);
  4656. const int nc = dst->ne[0];
  4657. const int nr = dst->ne[1];
  4658. const int nc0 = src0->ne[0];
  4659. const int nr0 = src0->ne[1];
  4660. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4661. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4662. // TODO: support for transposed / permuted tensors
  4663. assert( dst->nb[0] == sizeof(float));
  4664. assert(src0->nb[0] == sizeof(float));
  4665. // TODO: maybe this is not optimal?
  4666. for (int i = 0; i < nrr; i++) {
  4667. for (int j = 0; j < ncr; j++) {
  4668. for (int k = 0; k < nr0; k++) {
  4669. ggml_vec_cpy_f32(nc0,
  4670. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4671. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4672. }
  4673. }
  4674. }
  4675. }
  4676. static void ggml_compute_forward_repeat(
  4677. const struct ggml_compute_params * params,
  4678. const struct ggml_tensor * src0,
  4679. struct ggml_tensor * dst) {
  4680. switch (src0->type) {
  4681. case GGML_TYPE_F32:
  4682. {
  4683. ggml_compute_forward_repeat_f32(params, src0, dst);
  4684. } break;
  4685. case GGML_TYPE_Q4_0:
  4686. case GGML_TYPE_Q4_1:
  4687. case GGML_TYPE_I8:
  4688. case GGML_TYPE_I16:
  4689. case GGML_TYPE_I32:
  4690. case GGML_TYPE_F16:
  4691. case GGML_TYPE_COUNT:
  4692. {
  4693. GGML_ASSERT(false);
  4694. } break;
  4695. }
  4696. }
  4697. // ggml_compute_forward_abs
  4698. static void ggml_compute_forward_abs_f32(
  4699. const struct ggml_compute_params * params,
  4700. const struct ggml_tensor * src0,
  4701. struct ggml_tensor * dst) {
  4702. assert(params->ith == 0);
  4703. assert(ggml_are_same_shape(src0, dst));
  4704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4705. return;
  4706. }
  4707. const int n = ggml_nrows(src0);
  4708. const int nc = src0->ne[0];
  4709. assert(dst->nb[0] == sizeof(float));
  4710. assert(src0->nb[0] == sizeof(float));
  4711. for (int i = 0; i < n; i++) {
  4712. ggml_vec_abs_f32(nc,
  4713. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4714. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4715. }
  4716. }
  4717. static void ggml_compute_forward_abs(
  4718. const struct ggml_compute_params * params,
  4719. const struct ggml_tensor * src0,
  4720. struct ggml_tensor * dst) {
  4721. switch (src0->type) {
  4722. case GGML_TYPE_F32:
  4723. {
  4724. ggml_compute_forward_abs_f32(params, src0, dst);
  4725. } break;
  4726. case GGML_TYPE_Q4_0:
  4727. case GGML_TYPE_Q4_1:
  4728. case GGML_TYPE_I8:
  4729. case GGML_TYPE_I16:
  4730. case GGML_TYPE_I32:
  4731. case GGML_TYPE_F16:
  4732. case GGML_TYPE_COUNT:
  4733. {
  4734. GGML_ASSERT(false);
  4735. } break;
  4736. }
  4737. }
  4738. // ggml_compute_forward_sgn
  4739. static void ggml_compute_forward_sgn_f32(
  4740. const struct ggml_compute_params * params,
  4741. const struct ggml_tensor * src0,
  4742. struct ggml_tensor * dst) {
  4743. assert(params->ith == 0);
  4744. assert(ggml_are_same_shape(src0, dst));
  4745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4746. return;
  4747. }
  4748. const int n = ggml_nrows(src0);
  4749. const int nc = src0->ne[0];
  4750. assert(dst->nb[0] == sizeof(float));
  4751. assert(src0->nb[0] == sizeof(float));
  4752. for (int i = 0; i < n; i++) {
  4753. ggml_vec_sgn_f32(nc,
  4754. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4755. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4756. }
  4757. }
  4758. static void ggml_compute_forward_sgn(
  4759. const struct ggml_compute_params * params,
  4760. const struct ggml_tensor * src0,
  4761. struct ggml_tensor * dst) {
  4762. switch (src0->type) {
  4763. case GGML_TYPE_F32:
  4764. {
  4765. ggml_compute_forward_sgn_f32(params, src0, dst);
  4766. } break;
  4767. case GGML_TYPE_Q4_0:
  4768. case GGML_TYPE_Q4_1:
  4769. case GGML_TYPE_I8:
  4770. case GGML_TYPE_I16:
  4771. case GGML_TYPE_I32:
  4772. case GGML_TYPE_F16:
  4773. case GGML_TYPE_COUNT:
  4774. {
  4775. GGML_ASSERT(false);
  4776. } break;
  4777. }
  4778. }
  4779. // ggml_compute_forward_neg
  4780. static void ggml_compute_forward_neg_f32(
  4781. const struct ggml_compute_params * params,
  4782. const struct ggml_tensor * src0,
  4783. struct ggml_tensor * dst) {
  4784. assert(params->ith == 0);
  4785. assert(ggml_are_same_shape(src0, dst));
  4786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4787. return;
  4788. }
  4789. const int n = ggml_nrows(src0);
  4790. const int nc = src0->ne[0];
  4791. assert(dst->nb[0] == sizeof(float));
  4792. assert(src0->nb[0] == sizeof(float));
  4793. for (int i = 0; i < n; i++) {
  4794. ggml_vec_neg_f32(nc,
  4795. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4796. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4797. }
  4798. }
  4799. static void ggml_compute_forward_neg(
  4800. const struct ggml_compute_params * params,
  4801. const struct ggml_tensor * src0,
  4802. struct ggml_tensor * dst) {
  4803. switch (src0->type) {
  4804. case GGML_TYPE_F32:
  4805. {
  4806. ggml_compute_forward_neg_f32(params, src0, dst);
  4807. } break;
  4808. case GGML_TYPE_Q4_0:
  4809. case GGML_TYPE_Q4_1:
  4810. case GGML_TYPE_I8:
  4811. case GGML_TYPE_I16:
  4812. case GGML_TYPE_I32:
  4813. case GGML_TYPE_F16:
  4814. case GGML_TYPE_COUNT:
  4815. {
  4816. GGML_ASSERT(false);
  4817. } break;
  4818. }
  4819. }
  4820. // ggml_compute_forward_step
  4821. static void ggml_compute_forward_step_f32(
  4822. const struct ggml_compute_params * params,
  4823. const struct ggml_tensor * src0,
  4824. struct ggml_tensor * dst) {
  4825. assert(params->ith == 0);
  4826. assert(ggml_are_same_shape(src0, dst));
  4827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4828. return;
  4829. }
  4830. const int n = ggml_nrows(src0);
  4831. const int nc = src0->ne[0];
  4832. assert(dst->nb[0] == sizeof(float));
  4833. assert(src0->nb[0] == sizeof(float));
  4834. for (int i = 0; i < n; i++) {
  4835. ggml_vec_step_f32(nc,
  4836. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4837. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4838. }
  4839. }
  4840. static void ggml_compute_forward_step(
  4841. const struct ggml_compute_params * params,
  4842. const struct ggml_tensor * src0,
  4843. struct ggml_tensor * dst) {
  4844. switch (src0->type) {
  4845. case GGML_TYPE_F32:
  4846. {
  4847. ggml_compute_forward_step_f32(params, src0, dst);
  4848. } break;
  4849. case GGML_TYPE_Q4_0:
  4850. case GGML_TYPE_Q4_1:
  4851. case GGML_TYPE_I8:
  4852. case GGML_TYPE_I16:
  4853. case GGML_TYPE_I32:
  4854. case GGML_TYPE_F16:
  4855. case GGML_TYPE_COUNT:
  4856. {
  4857. GGML_ASSERT(false);
  4858. } break;
  4859. }
  4860. }
  4861. // ggml_compute_forward_relu
  4862. static void ggml_compute_forward_relu_f32(
  4863. const struct ggml_compute_params * params,
  4864. const struct ggml_tensor * src0,
  4865. struct ggml_tensor * dst) {
  4866. assert(params->ith == 0);
  4867. assert(ggml_are_same_shape(src0, dst));
  4868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4869. return;
  4870. }
  4871. const int n = ggml_nrows(src0);
  4872. const int nc = src0->ne[0];
  4873. assert(dst->nb[0] == sizeof(float));
  4874. assert(src0->nb[0] == sizeof(float));
  4875. for (int i = 0; i < n; i++) {
  4876. ggml_vec_relu_f32(nc,
  4877. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4878. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4879. }
  4880. }
  4881. static void ggml_compute_forward_relu(
  4882. const struct ggml_compute_params * params,
  4883. const struct ggml_tensor * src0,
  4884. struct ggml_tensor * dst) {
  4885. switch (src0->type) {
  4886. case GGML_TYPE_F32:
  4887. {
  4888. ggml_compute_forward_relu_f32(params, src0, dst);
  4889. } break;
  4890. case GGML_TYPE_Q4_0:
  4891. case GGML_TYPE_Q4_1:
  4892. case GGML_TYPE_I8:
  4893. case GGML_TYPE_I16:
  4894. case GGML_TYPE_I32:
  4895. case GGML_TYPE_F16:
  4896. case GGML_TYPE_COUNT:
  4897. {
  4898. GGML_ASSERT(false);
  4899. } break;
  4900. }
  4901. }
  4902. // ggml_compute_forward_gelu
  4903. static void ggml_compute_forward_gelu_f32(
  4904. const struct ggml_compute_params * params,
  4905. const struct ggml_tensor * src0,
  4906. struct ggml_tensor * dst) {
  4907. GGML_ASSERT(ggml_is_contiguous(src0));
  4908. GGML_ASSERT(ggml_is_contiguous(dst));
  4909. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4911. return;
  4912. }
  4913. const int ith = params->ith;
  4914. const int nth = params->nth;
  4915. const int nc = src0->ne[0];
  4916. const int nr = ggml_nrows(src0);
  4917. // rows per thread
  4918. const int dr = (nr + nth - 1)/nth;
  4919. // row range for this thread
  4920. const int ir0 = dr*ith;
  4921. const int ir1 = MIN(ir0 + dr, nr);
  4922. for (int i1 = ir0; i1 < ir1; i1++) {
  4923. ggml_vec_gelu_f32(nc,
  4924. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4925. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4926. #ifndef NDEBUG
  4927. for (int k = 0; k < nc; k++) {
  4928. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4929. UNUSED(x);
  4930. assert(!isnan(x));
  4931. assert(!isinf(x));
  4932. }
  4933. #endif
  4934. }
  4935. }
  4936. static void ggml_compute_forward_gelu(
  4937. const struct ggml_compute_params * params,
  4938. const struct ggml_tensor * src0,
  4939. struct ggml_tensor * dst) {
  4940. switch (src0->type) {
  4941. case GGML_TYPE_F32:
  4942. {
  4943. ggml_compute_forward_gelu_f32(params, src0, dst);
  4944. } break;
  4945. case GGML_TYPE_Q4_0:
  4946. case GGML_TYPE_Q4_1:
  4947. case GGML_TYPE_I8:
  4948. case GGML_TYPE_I16:
  4949. case GGML_TYPE_I32:
  4950. case GGML_TYPE_F16:
  4951. case GGML_TYPE_COUNT:
  4952. {
  4953. GGML_ASSERT(false);
  4954. } break;
  4955. }
  4956. //printf("XXXXXXXX gelu\n");
  4957. }
  4958. // ggml_compute_forward_silu
  4959. static void ggml_compute_forward_silu_f32(
  4960. const struct ggml_compute_params * params,
  4961. const struct ggml_tensor * src0,
  4962. struct ggml_tensor * dst) {
  4963. GGML_ASSERT(ggml_is_contiguous(src0));
  4964. GGML_ASSERT(ggml_is_contiguous(dst));
  4965. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4966. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4967. return;
  4968. }
  4969. const int ith = params->ith;
  4970. const int nth = params->nth;
  4971. const int nc = src0->ne[0];
  4972. const int nr = ggml_nrows(src0);
  4973. // rows per thread
  4974. const int dr = (nr + nth - 1)/nth;
  4975. // row range for this thread
  4976. const int ir0 = dr*ith;
  4977. const int ir1 = MIN(ir0 + dr, nr);
  4978. for (int i1 = ir0; i1 < ir1; i1++) {
  4979. ggml_vec_silu_f32(nc,
  4980. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4981. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4982. #ifndef NDEBUG
  4983. for (int k = 0; k < nc; k++) {
  4984. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4985. UNUSED(x);
  4986. assert(!isnan(x));
  4987. assert(!isinf(x));
  4988. }
  4989. #endif
  4990. }
  4991. }
  4992. static void ggml_compute_forward_silu(
  4993. const struct ggml_compute_params * params,
  4994. const struct ggml_tensor * src0,
  4995. struct ggml_tensor * dst) {
  4996. switch (src0->type) {
  4997. case GGML_TYPE_F32:
  4998. {
  4999. ggml_compute_forward_silu_f32(params, src0, dst);
  5000. } break;
  5001. case GGML_TYPE_Q4_0:
  5002. case GGML_TYPE_Q4_1:
  5003. case GGML_TYPE_I8:
  5004. case GGML_TYPE_I16:
  5005. case GGML_TYPE_I32:
  5006. case GGML_TYPE_F16:
  5007. case GGML_TYPE_COUNT:
  5008. {
  5009. GGML_ASSERT(false);
  5010. } break;
  5011. }
  5012. }
  5013. // ggml_compute_forward_norm
  5014. static void ggml_compute_forward_norm_f32(
  5015. const struct ggml_compute_params * params,
  5016. const struct ggml_tensor * src0,
  5017. struct ggml_tensor * dst) {
  5018. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5019. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5020. return;
  5021. }
  5022. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5023. const int ith = params->ith;
  5024. const int nth = params->nth;
  5025. const int64_t ne00 = src0->ne[0];
  5026. const int64_t ne01 = src0->ne[1];
  5027. const int64_t ne02 = src0->ne[2];
  5028. const int64_t ne03 = src0->ne[3];
  5029. const size_t nb01 = src0->nb[1];
  5030. const size_t nb02 = src0->nb[2];
  5031. const size_t nb03 = src0->nb[3];
  5032. const size_t nb1 = dst->nb[1];
  5033. const size_t nb2 = dst->nb[2];
  5034. const size_t nb3 = dst->nb[3];
  5035. const float eps = 1e-5f; // TODO: make this a parameter
  5036. // TODO: optimize
  5037. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5038. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5039. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5040. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5041. ggml_float sum = 0.0;
  5042. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5043. sum += (ggml_float)x[i00];
  5044. }
  5045. float mean = sum/ne00;
  5046. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5047. ggml_float sum2 = 0.0;
  5048. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5049. float v = x[i00] - mean;
  5050. y[i00] = v;
  5051. sum2 += (ggml_float)(v*v);
  5052. }
  5053. float variance = sum2/ne00;
  5054. const float scale = 1.0f/sqrtf(variance + eps);
  5055. ggml_vec_scale_f32(ne00, y, scale);
  5056. }
  5057. }
  5058. }
  5059. }
  5060. static void ggml_compute_forward_norm(
  5061. const struct ggml_compute_params * params,
  5062. const struct ggml_tensor * src0,
  5063. struct ggml_tensor * dst) {
  5064. switch (src0->type) {
  5065. case GGML_TYPE_F32:
  5066. {
  5067. ggml_compute_forward_norm_f32(params, src0, dst);
  5068. } break;
  5069. case GGML_TYPE_Q4_0:
  5070. case GGML_TYPE_Q4_1:
  5071. case GGML_TYPE_I8:
  5072. case GGML_TYPE_I16:
  5073. case GGML_TYPE_I32:
  5074. case GGML_TYPE_F16:
  5075. case GGML_TYPE_COUNT:
  5076. {
  5077. GGML_ASSERT(false);
  5078. } break;
  5079. }
  5080. }
  5081. static void ggml_compute_forward_rms_norm_f32(
  5082. const struct ggml_compute_params * params,
  5083. const struct ggml_tensor * src0,
  5084. struct ggml_tensor * dst) {
  5085. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5087. return;
  5088. }
  5089. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5090. const int ith = params->ith;
  5091. const int nth = params->nth;
  5092. const int64_t ne00 = src0->ne[0];
  5093. const int64_t ne01 = src0->ne[1];
  5094. const int64_t ne02 = src0->ne[2];
  5095. const int64_t ne03 = src0->ne[3];
  5096. const size_t nb01 = src0->nb[1];
  5097. const size_t nb02 = src0->nb[2];
  5098. const size_t nb03 = src0->nb[3];
  5099. const size_t nb1 = dst->nb[1];
  5100. const size_t nb2 = dst->nb[2];
  5101. const size_t nb3 = dst->nb[3];
  5102. const float eps = 1e-6f; // TODO: make this a parameter
  5103. // TODO: optimize
  5104. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5105. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5106. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5107. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5108. ggml_float sum = 0.0;
  5109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5110. sum += (ggml_float)(x[i00] * x[i00]);
  5111. }
  5112. float mean = sum/ne00;
  5113. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5114. memcpy(y, x, ne00 * sizeof(float));
  5115. // for (int i00 = 0; i00 < ne00; i00++) {
  5116. // y[i00] = x[i00];
  5117. // }
  5118. const float scale = 1.0f/sqrtf(mean + eps);
  5119. ggml_vec_scale_f32(ne00, y, scale);
  5120. }
  5121. }
  5122. }
  5123. }
  5124. static void ggml_compute_forward_rms_norm(
  5125. const struct ggml_compute_params * params,
  5126. const struct ggml_tensor * src0,
  5127. struct ggml_tensor * dst) {
  5128. switch (src0->type) {
  5129. case GGML_TYPE_F32:
  5130. {
  5131. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  5132. } break;
  5133. case GGML_TYPE_Q4_0:
  5134. case GGML_TYPE_Q4_1:
  5135. case GGML_TYPE_I8:
  5136. case GGML_TYPE_I16:
  5137. case GGML_TYPE_I32:
  5138. case GGML_TYPE_F16:
  5139. case GGML_TYPE_COUNT:
  5140. {
  5141. GGML_ASSERT(false);
  5142. } break;
  5143. }
  5144. }
  5145. // ggml_compute_forward_mul_mat
  5146. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5147. // helper function to determine if it is better to use BLAS or not
  5148. // for large matrices, BLAS is faster
  5149. static bool ggml_compute_forward_mul_mat_use_blas(
  5150. const struct ggml_tensor * src0,
  5151. const struct ggml_tensor * src1,
  5152. struct ggml_tensor * dst) {
  5153. //const int64_t ne00 = src0->ne[0];
  5154. //const int64_t ne01 = src0->ne[1];
  5155. const int64_t ne10 = src1->ne[0];
  5156. const int64_t ne0 = dst->ne[0];
  5157. const int64_t ne1 = dst->ne[1];
  5158. // TODO: find the optimal values for these
  5159. if (ggml_is_contiguous(src0) &&
  5160. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  5161. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  5162. return true;
  5163. }
  5164. return false;
  5165. }
  5166. #endif
  5167. static void ggml_compute_forward_mul_mat_f32(
  5168. const struct ggml_compute_params * params,
  5169. const struct ggml_tensor * src0,
  5170. const struct ggml_tensor * src1,
  5171. struct ggml_tensor * dst) {
  5172. int64_t t0 = ggml_perf_time_us();
  5173. UNUSED(t0);
  5174. const int64_t ne00 = src0->ne[0];
  5175. const int64_t ne01 = src0->ne[1];
  5176. const int64_t ne02 = src0->ne[2];
  5177. const int64_t ne03 = src0->ne[3];
  5178. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5179. const int64_t ne10 = src1->ne[0];
  5180. #endif
  5181. const int64_t ne11 = src1->ne[1];
  5182. #ifndef NDEBUG
  5183. const int64_t ne12 = src1->ne[2];
  5184. const int64_t ne13 = src1->ne[3];
  5185. const int64_t ne0 = dst->ne[0];
  5186. const int64_t ne1 = dst->ne[1];
  5187. const int64_t ne2 = dst->ne[2];
  5188. const int64_t ne3 = dst->ne[3];
  5189. const int nb00 = src0->nb[0];
  5190. #endif
  5191. const int nb01 = src0->nb[1];
  5192. const int nb02 = src0->nb[2];
  5193. const int nb03 = src0->nb[3];
  5194. #ifndef NDEBUG
  5195. const int nb10 = src1->nb[0];
  5196. #endif
  5197. const int nb11 = src1->nb[1];
  5198. const int nb12 = src1->nb[2];
  5199. const int nb13 = src1->nb[3];
  5200. const int nb0 = dst->nb[0];
  5201. const int nb1 = dst->nb[1];
  5202. const int nb2 = dst->nb[2];
  5203. const int nb3 = dst->nb[3];
  5204. const int ith = params->ith;
  5205. const int nth = params->nth;
  5206. assert(ne02 == ne12);
  5207. assert(ne03 == ne13);
  5208. assert(ne2 == ne12);
  5209. assert(ne3 == ne13);
  5210. // we don't support permuted src0 or src1
  5211. assert(nb00 == sizeof(float));
  5212. assert(nb10 == sizeof(float));
  5213. // dst cannot be transposed or permuted
  5214. assert(nb0 == sizeof(float));
  5215. assert(nb0 <= nb1);
  5216. assert(nb1 <= nb2);
  5217. assert(nb2 <= nb3);
  5218. assert(ne0 == ne01);
  5219. assert(ne1 == ne11);
  5220. assert(ne2 == ne02);
  5221. assert(ne3 == ne03);
  5222. // nb01 >= nb00 - src0 is not transposed
  5223. // compute by src0 rows
  5224. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5225. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5226. if (params->ith != 0) {
  5227. return;
  5228. }
  5229. if (params->type == GGML_TASK_INIT) {
  5230. return;
  5231. }
  5232. if (params->type == GGML_TASK_FINALIZE) {
  5233. return;
  5234. }
  5235. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5236. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5237. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5238. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5239. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5240. // zT = y * xT
  5241. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5242. ne11, ne01, ne10,
  5243. 1.0f, y, ne10,
  5244. x, ne00,
  5245. 0.0f, d, ne01);
  5246. }
  5247. }
  5248. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5249. return;
  5250. }
  5251. #endif
  5252. if (params->type == GGML_TASK_INIT) {
  5253. return;
  5254. }
  5255. if (params->type == GGML_TASK_FINALIZE) {
  5256. return;
  5257. }
  5258. // parallelize by src0 rows using ggml_vec_dot_f32
  5259. // total rows in src0
  5260. const int nr = ne01*ne02*ne03;
  5261. // rows per thread
  5262. const int dr = (nr + nth - 1)/nth;
  5263. // row range for this thread
  5264. const int ir0 = dr*ith;
  5265. const int ir1 = MIN(ir0 + dr, nr);
  5266. for (int ir = ir0; ir < ir1; ++ir) {
  5267. // src0 indices
  5268. const int i03 = ir/(ne02*ne01);
  5269. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5270. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5271. for (int64_t ic = 0; ic < ne11; ++ic) {
  5272. // src1 indices
  5273. const int i13 = i03;
  5274. const int i12 = i02;
  5275. const int i11 = ic;
  5276. // dst indices
  5277. const int i0 = i01;
  5278. const int i1 = i11;
  5279. const int i2 = i02;
  5280. const int i3 = i03;
  5281. ggml_vec_dot_f32(ne00,
  5282. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5283. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5284. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5285. }
  5286. }
  5287. //int64_t t1 = ggml_perf_time_us();
  5288. //static int64_t acc = 0;
  5289. //acc += t1 - t0;
  5290. //if (t1 - t0 > 10) {
  5291. // printf("\n");
  5292. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5293. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5294. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5295. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5296. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5297. //}
  5298. }
  5299. static void ggml_compute_forward_mul_mat_f16_f32(
  5300. const struct ggml_compute_params * params,
  5301. const struct ggml_tensor * src0,
  5302. const struct ggml_tensor * src1,
  5303. struct ggml_tensor * dst) {
  5304. int64_t t0 = ggml_perf_time_us();
  5305. UNUSED(t0);
  5306. const int64_t ne00 = src0->ne[0];
  5307. const int64_t ne01 = src0->ne[1];
  5308. const int64_t ne02 = src0->ne[2];
  5309. const int64_t ne03 = src0->ne[3];
  5310. const int64_t ne10 = src1->ne[0];
  5311. const int64_t ne11 = src1->ne[1];
  5312. const int64_t ne12 = src1->ne[2];
  5313. const int64_t ne13 = src1->ne[3];
  5314. const int64_t ne0 = dst->ne[0];
  5315. const int64_t ne1 = dst->ne[1];
  5316. const int64_t ne2 = dst->ne[2];
  5317. const int64_t ne3 = dst->ne[3];
  5318. //const int64_t ne = ne0*ne1*ne2*ne3;
  5319. const int nb00 = src0->nb[0];
  5320. const int nb01 = src0->nb[1];
  5321. const int nb02 = src0->nb[2];
  5322. const int nb03 = src0->nb[3];
  5323. const int nb10 = src1->nb[0];
  5324. const int nb11 = src1->nb[1];
  5325. const int nb12 = src1->nb[2];
  5326. const int nb13 = src1->nb[3];
  5327. const int nb0 = dst->nb[0];
  5328. const int nb1 = dst->nb[1];
  5329. const int nb2 = dst->nb[2];
  5330. const int nb3 = dst->nb[3];
  5331. const int ith = params->ith;
  5332. const int nth = params->nth;
  5333. GGML_ASSERT(ne02 == ne12);
  5334. GGML_ASSERT(ne03 == ne13);
  5335. GGML_ASSERT(ne2 == ne12);
  5336. GGML_ASSERT(ne3 == ne13);
  5337. // TODO: we don't support permuted src0
  5338. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5339. // dst cannot be transposed or permuted
  5340. GGML_ASSERT(nb0 == sizeof(float));
  5341. GGML_ASSERT(nb0 <= nb1);
  5342. GGML_ASSERT(nb1 <= nb2);
  5343. GGML_ASSERT(nb2 <= nb3);
  5344. GGML_ASSERT(ne0 == ne01);
  5345. GGML_ASSERT(ne1 == ne11);
  5346. GGML_ASSERT(ne2 == ne02);
  5347. GGML_ASSERT(ne3 == ne03);
  5348. // nb01 >= nb00 - src0 is not transposed
  5349. // compute by src0 rows
  5350. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5351. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5352. GGML_ASSERT(nb10 == sizeof(float));
  5353. if (params->ith != 0) {
  5354. return;
  5355. }
  5356. if (params->type == GGML_TASK_INIT) {
  5357. return;
  5358. }
  5359. if (params->type == GGML_TASK_FINALIZE) {
  5360. return;
  5361. }
  5362. float * const wdata = params->wdata;
  5363. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5364. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5365. {
  5366. size_t id = 0;
  5367. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5368. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5369. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5370. }
  5371. }
  5372. }
  5373. const float * x = wdata;
  5374. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5375. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5376. // zT = y * xT
  5377. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5378. ne11, ne01, ne10,
  5379. 1.0f, y, ne10,
  5380. x, ne00,
  5381. 0.0f, d, ne01);
  5382. }
  5383. }
  5384. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5385. return;
  5386. }
  5387. #endif
  5388. if (params->type == GGML_TASK_INIT) {
  5389. ggml_fp16_t * const wdata = params->wdata;
  5390. size_t id = 0;
  5391. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5392. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5393. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5394. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5395. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5396. }
  5397. }
  5398. }
  5399. }
  5400. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5401. return;
  5402. }
  5403. if (params->type == GGML_TASK_FINALIZE) {
  5404. return;
  5405. }
  5406. // fp16 -> half the size, so divide by 2
  5407. // TODO: do not support transposed src1
  5408. assert(nb10/2 == sizeof(ggml_fp16_t));
  5409. // parallelize by src0 rows using ggml_vec_dot_f16
  5410. // total rows in src0
  5411. const int nr = ne01*ne02*ne03;
  5412. // rows per thread
  5413. const int dr = (nr + nth - 1)/nth;
  5414. // row range for this thread
  5415. const int ir0 = dr*ith;
  5416. const int ir1 = MIN(ir0 + dr, nr);
  5417. ggml_fp16_t * wdata = params->wdata;
  5418. for (int ir = ir0; ir < ir1; ++ir) {
  5419. // src0 indices
  5420. const int i03 = ir/(ne02*ne01);
  5421. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5422. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5423. const int i13 = i03;
  5424. const int i12 = i02;
  5425. const int i0 = i01;
  5426. const int i2 = i02;
  5427. const int i3 = i03;
  5428. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5429. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5430. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5431. for (int64_t ic = 0; ic < ne11; ++ic) {
  5432. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5433. }
  5434. }
  5435. //int64_t t1 = ggml_time_us();
  5436. //static int64_t acc = 0;
  5437. //acc += t1 - t0;
  5438. //if (t1 - t0 > 10) {
  5439. // printf("\n");
  5440. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5441. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5442. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5443. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5444. //}
  5445. }
  5446. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5447. [GGML_TYPE_Q4_0] = {
  5448. .dequantize_row_q = dequantize_row_q4_0,
  5449. .quantize_row_q = quantize_row_q4_0,
  5450. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  5451. .vec_dot_q = ggml_vec_dot_q4_0,
  5452. },
  5453. [GGML_TYPE_Q4_1] = {
  5454. .dequantize_row_q = dequantize_row_q4_1,
  5455. .quantize_row_q = quantize_row_q4_1,
  5456. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  5457. .vec_dot_q = ggml_vec_dot_q4_1,
  5458. },
  5459. };
  5460. // For internal test use
  5461. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  5462. GGML_ASSERT(i < GGML_TYPE_COUNT);
  5463. return quantize_fns[i];
  5464. }
  5465. static void ggml_compute_forward_mul_mat_q_f32(
  5466. const struct ggml_compute_params * params,
  5467. const struct ggml_tensor * src0,
  5468. const struct ggml_tensor * src1,
  5469. struct ggml_tensor * dst) {
  5470. int64_t t0 = ggml_perf_time_us();
  5471. UNUSED(t0);
  5472. const int64_t ne00 = src0->ne[0];
  5473. const int64_t ne01 = src0->ne[1];
  5474. const int64_t ne02 = src0->ne[2];
  5475. const int64_t ne03 = src0->ne[3];
  5476. const int64_t ne10 = src1->ne[0];
  5477. const int64_t ne11 = src1->ne[1];
  5478. const int64_t ne12 = src1->ne[2];
  5479. const int64_t ne13 = src1->ne[3];
  5480. const int64_t ne0 = dst->ne[0];
  5481. const int64_t ne1 = dst->ne[1];
  5482. const int64_t ne2 = dst->ne[2];
  5483. const int64_t ne3 = dst->ne[3];
  5484. const int nb00 = src0->nb[0];
  5485. const int nb01 = src0->nb[1];
  5486. const int nb02 = src0->nb[2];
  5487. const int nb03 = src0->nb[3];
  5488. const int nb10 = src1->nb[0];
  5489. const int nb11 = src1->nb[1];
  5490. const int nb12 = src1->nb[2];
  5491. const int nb13 = src1->nb[3];
  5492. const int nb0 = dst->nb[0];
  5493. const int nb1 = dst->nb[1];
  5494. const int nb2 = dst->nb[2];
  5495. const int nb3 = dst->nb[3];
  5496. const int ith = params->ith;
  5497. const int nth = params->nth;
  5498. GGML_ASSERT(ne02 == ne12);
  5499. GGML_ASSERT(ne03 == ne13);
  5500. GGML_ASSERT(ne2 == ne12);
  5501. GGML_ASSERT(ne3 == ne13);
  5502. const enum ggml_type type = src0->type;
  5503. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5504. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5505. // we don't support permuted src0 or src1
  5506. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5507. GGML_ASSERT(nb10 == sizeof(float));
  5508. // dst cannot be transposed or permuted
  5509. GGML_ASSERT(nb0 == sizeof(float));
  5510. GGML_ASSERT(nb0 <= nb1);
  5511. GGML_ASSERT(nb1 <= nb2);
  5512. GGML_ASSERT(nb2 <= nb3);
  5513. GGML_ASSERT(ne0 == ne01);
  5514. GGML_ASSERT(ne1 == ne11);
  5515. GGML_ASSERT(ne2 == ne02);
  5516. GGML_ASSERT(ne3 == ne03);
  5517. // nb01 >= nb00 - src0 is not transposed
  5518. // compute by src0 rows
  5519. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5520. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5521. if (params->ith != 0) {
  5522. return;
  5523. }
  5524. if (params->type == GGML_TASK_INIT) {
  5525. return;
  5526. }
  5527. if (params->type == GGML_TASK_FINALIZE) {
  5528. return;
  5529. }
  5530. float * const wdata = params->wdata;
  5531. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5532. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5533. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5534. {
  5535. size_t id = 0;
  5536. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5537. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5538. id += ne00;
  5539. }
  5540. }
  5541. const float * x = wdata;
  5542. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5543. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5544. // zT = y * xT
  5545. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5546. ne11, ne01, ne10,
  5547. 1.0f, y, ne10,
  5548. x, ne00,
  5549. 0.0f, d, ne01);
  5550. }
  5551. }
  5552. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5553. return;
  5554. }
  5555. #endif
  5556. if (params->type == GGML_TASK_INIT) {
  5557. char * wdata = params->wdata;
  5558. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5559. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5560. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5561. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5562. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5563. wdata += row_size;
  5564. }
  5565. }
  5566. }
  5567. return;
  5568. }
  5569. if (params->type == GGML_TASK_FINALIZE) {
  5570. return;
  5571. }
  5572. // parallelize by src0 rows using ggml_vec_dot_q
  5573. // total rows in src0
  5574. const int nr = ne01*ne02*ne03;
  5575. // rows per thread
  5576. const int dr = (nr + nth - 1)/nth;
  5577. // row range for this thread
  5578. const int ir0 = dr*ith;
  5579. const int ir1 = MIN(ir0 + dr, nr);
  5580. void * wdata = params->wdata;
  5581. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5582. for (int ir = ir0; ir < ir1; ++ir) {
  5583. // src0 indices
  5584. const int i03 = ir/(ne02*ne01);
  5585. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5586. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5587. const int i13 = i03;
  5588. const int i12 = i02;
  5589. const int i0 = i01;
  5590. const int i2 = i02;
  5591. const int i3 = i03;
  5592. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5593. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5594. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5595. assert(ne00 % 32 == 0);
  5596. for (int64_t ic = 0; ic < ne11; ++ic) {
  5597. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5598. }
  5599. }
  5600. //int64_t t1 = ggml_time_us();
  5601. //static int64_t acc = 0;
  5602. //acc += t1 - t0;
  5603. //if (t1 - t0 > 10) {
  5604. // printf("\n");
  5605. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5606. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5607. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5608. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5609. //}
  5610. }
  5611. static void ggml_compute_forward_mul_mat(
  5612. const struct ggml_compute_params * params,
  5613. const struct ggml_tensor * src0,
  5614. const struct ggml_tensor * src1,
  5615. struct ggml_tensor * dst) {
  5616. switch (src0->type) {
  5617. case GGML_TYPE_Q4_0:
  5618. case GGML_TYPE_Q4_1:
  5619. {
  5620. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5621. } break;
  5622. case GGML_TYPE_F16:
  5623. {
  5624. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5625. } break;
  5626. case GGML_TYPE_F32:
  5627. {
  5628. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5629. } break;
  5630. case GGML_TYPE_I8:
  5631. case GGML_TYPE_I16:
  5632. case GGML_TYPE_I32:
  5633. case GGML_TYPE_COUNT:
  5634. {
  5635. GGML_ASSERT(false);
  5636. } break;
  5637. }
  5638. #if 0
  5639. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5640. static int first = 8;
  5641. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5642. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5643. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5644. if (first) {
  5645. --first;
  5646. } else {
  5647. for (int k = 0; k < dst->ne[1]; ++k) {
  5648. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5649. for (int i = 0; i < 16; ++i) {
  5650. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5651. }
  5652. printf("\n");
  5653. }
  5654. printf("\n");
  5655. }
  5656. printf("\n");
  5657. exit(0);
  5658. }
  5659. } else {
  5660. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5661. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5662. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5663. }
  5664. #endif
  5665. }
  5666. // ggml_compute_forward_scale
  5667. static void ggml_compute_forward_scale_f32(
  5668. const struct ggml_compute_params * params,
  5669. const struct ggml_tensor * src0,
  5670. const struct ggml_tensor * src1,
  5671. struct ggml_tensor * dst) {
  5672. GGML_ASSERT(ggml_is_contiguous(src0));
  5673. GGML_ASSERT(ggml_is_contiguous(dst));
  5674. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5675. GGML_ASSERT(ggml_is_scalar(src1));
  5676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5677. return;
  5678. }
  5679. // scale factor
  5680. const float v = *(float *) src1->data;
  5681. const int ith = params->ith;
  5682. const int nth = params->nth;
  5683. const int nc = src0->ne[0];
  5684. const int nr = ggml_nrows(src0);
  5685. // rows per thread
  5686. const int dr = (nr + nth - 1)/nth;
  5687. // row range for this thread
  5688. const int ir0 = dr*ith;
  5689. const int ir1 = MIN(ir0 + dr, nr);
  5690. for (int i1 = ir0; i1 < ir1; i1++) {
  5691. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5692. }
  5693. }
  5694. static void ggml_compute_forward_scale(
  5695. const struct ggml_compute_params * params,
  5696. const struct ggml_tensor * src0,
  5697. const struct ggml_tensor * src1,
  5698. struct ggml_tensor * dst) {
  5699. switch (src0->type) {
  5700. case GGML_TYPE_F32:
  5701. {
  5702. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5703. } break;
  5704. case GGML_TYPE_Q4_0:
  5705. case GGML_TYPE_Q4_1:
  5706. case GGML_TYPE_I8:
  5707. case GGML_TYPE_I16:
  5708. case GGML_TYPE_I32:
  5709. case GGML_TYPE_F16:
  5710. case GGML_TYPE_COUNT:
  5711. {
  5712. GGML_ASSERT(false);
  5713. } break;
  5714. }
  5715. }
  5716. // ggml_compute_forward_cpy
  5717. static void ggml_compute_forward_cpy(
  5718. const struct ggml_compute_params * params,
  5719. const struct ggml_tensor * src0,
  5720. struct ggml_tensor * dst) {
  5721. ggml_compute_forward_dup(params, src0, dst);
  5722. }
  5723. // ggml_compute_forward_cont
  5724. static void ggml_compute_forward_cont(
  5725. const struct ggml_compute_params * params,
  5726. const struct ggml_tensor * src0,
  5727. struct ggml_tensor * dst) {
  5728. ggml_compute_forward_dup(params, src0, dst);
  5729. }
  5730. // ggml_compute_forward_reshape
  5731. static void ggml_compute_forward_reshape(
  5732. const struct ggml_compute_params * params,
  5733. const struct ggml_tensor * src0,
  5734. struct ggml_tensor * dst) {
  5735. // NOP
  5736. UNUSED(params);
  5737. UNUSED(src0);
  5738. UNUSED(dst);
  5739. }
  5740. // ggml_compute_forward_view
  5741. static void ggml_compute_forward_view(
  5742. const struct ggml_compute_params * params,
  5743. const struct ggml_tensor * src0) {
  5744. // NOP
  5745. UNUSED(params);
  5746. UNUSED(src0);
  5747. }
  5748. // ggml_compute_forward_permute
  5749. static void ggml_compute_forward_permute(
  5750. const struct ggml_compute_params * params,
  5751. const struct ggml_tensor * src0) {
  5752. // NOP
  5753. UNUSED(params);
  5754. UNUSED(src0);
  5755. }
  5756. // ggml_compute_forward_transpose
  5757. static void ggml_compute_forward_transpose(
  5758. const struct ggml_compute_params * params,
  5759. const struct ggml_tensor * src0) {
  5760. // NOP
  5761. UNUSED(params);
  5762. UNUSED(src0);
  5763. }
  5764. // ggml_compute_forward_get_rows
  5765. static void ggml_compute_forward_get_rows_q(
  5766. const struct ggml_compute_params * params,
  5767. const struct ggml_tensor * src0,
  5768. const struct ggml_tensor * src1,
  5769. struct ggml_tensor * dst) {
  5770. assert(params->ith == 0);
  5771. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5772. return;
  5773. }
  5774. const int nc = src0->ne[0];
  5775. const int nr = ggml_nelements(src1);
  5776. const enum ggml_type type = src0->type;
  5777. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5778. assert( dst->ne[0] == nc);
  5779. assert( dst->ne[1] == nr);
  5780. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5781. for (int i = 0; i < nr; ++i) {
  5782. const int r = ((int32_t *) src1->data)[i];
  5783. dequantize_row_q(
  5784. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5785. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5786. }
  5787. }
  5788. static void ggml_compute_forward_get_rows_f16(
  5789. const struct ggml_compute_params * params,
  5790. const struct ggml_tensor * src0,
  5791. const struct ggml_tensor * src1,
  5792. struct ggml_tensor * dst) {
  5793. assert(params->ith == 0);
  5794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5795. return;
  5796. }
  5797. const int nc = src0->ne[0];
  5798. const int nr = ggml_nelements(src1);
  5799. assert( dst->ne[0] == nc);
  5800. assert( dst->ne[1] == nr);
  5801. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5802. for (int i = 0; i < nr; ++i) {
  5803. const int r = ((int32_t *) src1->data)[i];
  5804. for (int j = 0; j < nc; ++j) {
  5805. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5806. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5807. }
  5808. }
  5809. }
  5810. static void ggml_compute_forward_get_rows_f32(
  5811. const struct ggml_compute_params * params,
  5812. const struct ggml_tensor * src0,
  5813. const struct ggml_tensor * src1,
  5814. struct ggml_tensor * dst) {
  5815. assert(params->ith == 0);
  5816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5817. return;
  5818. }
  5819. const int nc = src0->ne[0];
  5820. const int nr = ggml_nelements(src1);
  5821. assert( dst->ne[0] == nc);
  5822. assert( dst->ne[1] == nr);
  5823. assert(src0->nb[0] == sizeof(float));
  5824. for (int i = 0; i < nr; ++i) {
  5825. const int r = ((int32_t *) src1->data)[i];
  5826. ggml_vec_cpy_f32(nc,
  5827. (float *) ((char *) dst->data + i*dst->nb[1]),
  5828. (float *) ((char *) src0->data + r*src0->nb[1]));
  5829. }
  5830. }
  5831. static void ggml_compute_forward_get_rows(
  5832. const struct ggml_compute_params * params,
  5833. const struct ggml_tensor * src0,
  5834. const struct ggml_tensor * src1,
  5835. struct ggml_tensor * dst) {
  5836. switch (src0->type) {
  5837. case GGML_TYPE_Q4_0:
  5838. case GGML_TYPE_Q4_1:
  5839. {
  5840. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5841. } break;
  5842. case GGML_TYPE_F16:
  5843. {
  5844. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5845. } break;
  5846. case GGML_TYPE_F32:
  5847. {
  5848. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5849. } break;
  5850. case GGML_TYPE_I8:
  5851. case GGML_TYPE_I16:
  5852. case GGML_TYPE_I32:
  5853. case GGML_TYPE_COUNT:
  5854. {
  5855. GGML_ASSERT(false);
  5856. } break;
  5857. }
  5858. //static bool first = true;
  5859. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5860. //if (first) {
  5861. // first = false;
  5862. //} else {
  5863. // for (int k = 0; k < dst->ne[1]; ++k) {
  5864. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5865. // for (int i = 0; i < 16; ++i) {
  5866. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5867. // }
  5868. // printf("\n");
  5869. // }
  5870. // printf("\n");
  5871. // }
  5872. // printf("\n");
  5873. // exit(0);
  5874. //}
  5875. }
  5876. // ggml_compute_forward_diag_mask_inf
  5877. static void ggml_compute_forward_diag_mask_inf_f32(
  5878. const struct ggml_compute_params * params,
  5879. const struct ggml_tensor * src0,
  5880. const struct ggml_tensor * src1,
  5881. struct ggml_tensor * dst) {
  5882. assert(params->ith == 0);
  5883. assert(src1->type == GGML_TYPE_I32);
  5884. assert(ggml_nelements(src1) == 1);
  5885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5886. return;
  5887. }
  5888. const int n_past = ((int32_t *) src1->data)[0];
  5889. // TODO: handle transposed/permuted matrices
  5890. const int n = ggml_nrows(src0);
  5891. const int nc = src0->ne[0];
  5892. const int nr = src0->ne[1];
  5893. const int nz = n/nr;
  5894. assert( dst->nb[0] == sizeof(float));
  5895. assert(src0->nb[0] == sizeof(float));
  5896. for (int k = 0; k < nz; k++) {
  5897. for (int j = 0; j < nr; j++) {
  5898. for (int i = n_past; i < nc; i++) {
  5899. if (i > n_past + j) {
  5900. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5901. }
  5902. }
  5903. }
  5904. }
  5905. }
  5906. static void ggml_compute_forward_diag_mask_inf(
  5907. const struct ggml_compute_params * params,
  5908. const struct ggml_tensor * src0,
  5909. const struct ggml_tensor * src1,
  5910. struct ggml_tensor * dst) {
  5911. switch (src0->type) {
  5912. case GGML_TYPE_F32:
  5913. {
  5914. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5915. } break;
  5916. case GGML_TYPE_Q4_0:
  5917. case GGML_TYPE_Q4_1:
  5918. case GGML_TYPE_I8:
  5919. case GGML_TYPE_I16:
  5920. case GGML_TYPE_I32:
  5921. case GGML_TYPE_F16:
  5922. case GGML_TYPE_COUNT:
  5923. {
  5924. GGML_ASSERT(false);
  5925. } break;
  5926. }
  5927. }
  5928. // ggml_compute_forward_soft_max
  5929. static void ggml_compute_forward_soft_max_f32(
  5930. const struct ggml_compute_params * params,
  5931. const struct ggml_tensor * src0,
  5932. struct ggml_tensor * dst) {
  5933. GGML_ASSERT(ggml_is_contiguous(src0));
  5934. GGML_ASSERT(ggml_is_contiguous(dst));
  5935. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5937. return;
  5938. }
  5939. // TODO: handle transposed/permuted matrices
  5940. const int ith = params->ith;
  5941. const int nth = params->nth;
  5942. const int nc = src0->ne[0];
  5943. const int nr = ggml_nrows(src0);
  5944. // rows per thread
  5945. const int dr = (nr + nth - 1)/nth;
  5946. // row range for this thread
  5947. const int ir0 = dr*ith;
  5948. const int ir1 = MIN(ir0 + dr, nr);
  5949. for (int i1 = ir0; i1 < ir1; i1++) {
  5950. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5951. #ifndef NDEBUG
  5952. for (int i = 0; i < nc; ++i) {
  5953. //printf("p[%d] = %f\n", i, p[i]);
  5954. assert(!isnan(p[i]));
  5955. }
  5956. #endif
  5957. float max = -INFINITY;
  5958. ggml_vec_max_f32(nc, &max, p);
  5959. ggml_float sum = 0.0;
  5960. uint16_t scvt;
  5961. for (int i = 0; i < nc; i++) {
  5962. if (p[i] == -INFINITY) {
  5963. p[i] = 0.0f;
  5964. } else {
  5965. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5966. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5967. memcpy(&scvt, &s, sizeof(scvt));
  5968. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5969. sum += (ggml_float)val;
  5970. p[i] = val;
  5971. }
  5972. }
  5973. assert(sum > 0.0);
  5974. sum = 1.0/sum;
  5975. ggml_vec_scale_f32(nc, p, sum);
  5976. #ifndef NDEBUG
  5977. for (int i = 0; i < nc; ++i) {
  5978. assert(!isnan(p[i]));
  5979. assert(!isinf(p[i]));
  5980. }
  5981. #endif
  5982. }
  5983. }
  5984. static void ggml_compute_forward_soft_max(
  5985. const struct ggml_compute_params * params,
  5986. const struct ggml_tensor * src0,
  5987. struct ggml_tensor * dst) {
  5988. switch (src0->type) {
  5989. case GGML_TYPE_F32:
  5990. {
  5991. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5992. } break;
  5993. case GGML_TYPE_Q4_0:
  5994. case GGML_TYPE_Q4_1:
  5995. case GGML_TYPE_I8:
  5996. case GGML_TYPE_I16:
  5997. case GGML_TYPE_I32:
  5998. case GGML_TYPE_F16:
  5999. case GGML_TYPE_COUNT:
  6000. {
  6001. GGML_ASSERT(false);
  6002. } break;
  6003. }
  6004. }
  6005. // ggml_compute_forward_rope
  6006. static void ggml_compute_forward_rope_f32(
  6007. const struct ggml_compute_params * params,
  6008. const struct ggml_tensor * src0,
  6009. const struct ggml_tensor * src1,
  6010. struct ggml_tensor * dst) {
  6011. assert(src1->type == GGML_TYPE_I32);
  6012. assert(ggml_nelements(src1) == 3);
  6013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6014. return;
  6015. }
  6016. const int n_past = ((int32_t *) src1->data)[0];
  6017. const int n_dims = ((int32_t *) src1->data)[1];
  6018. const int mode = ((int32_t *) src1->data)[2];
  6019. //const int64_t ne0 = src0->ne[0];
  6020. const int64_t ne1 = src0->ne[1];
  6021. const int64_t ne2 = src0->ne[2];
  6022. const int64_t ne3 = src0->ne[3];
  6023. const int nb0 = src0->nb[0];
  6024. const int nb1 = src0->nb[1];
  6025. const int nb2 = src0->nb[2];
  6026. const int nb3 = src0->nb[3];
  6027. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6028. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6029. assert(nb0 == sizeof(float));
  6030. const int ith = params->ith;
  6031. const int nth = params->nth;
  6032. const int nr = ggml_nrows(src0);
  6033. // rows per thread
  6034. const int dr = (nr + nth - 1)/nth;
  6035. // row range for this thread
  6036. const int ir0 = dr*ith;
  6037. const int ir1 = MIN(ir0 + dr, nr);
  6038. // row index used to determine which thread to use
  6039. int ir = 0;
  6040. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6041. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6042. const int p = (mode == 0 ? n_past + i2 : i2);
  6043. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6044. if (ir++ < ir0) continue;
  6045. if (ir > ir1) break;
  6046. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6047. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6048. const float cos_theta = cosf(p*theta);
  6049. const float sin_theta = sinf(p*theta);
  6050. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6051. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6052. const float x0 = src[0];
  6053. const float x1 = src[1];
  6054. dst_data[0] = x0*cos_theta - x1*sin_theta;
  6055. dst_data[1] = x0*sin_theta + x1*cos_theta;
  6056. }
  6057. }
  6058. }
  6059. }
  6060. }
  6061. static void ggml_compute_forward_rope_f16(
  6062. const struct ggml_compute_params * params,
  6063. const struct ggml_tensor * src0,
  6064. const struct ggml_tensor * src1,
  6065. struct ggml_tensor * dst) {
  6066. assert(src1->type == GGML_TYPE_I32);
  6067. assert(ggml_nelements(src1) == 3);
  6068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6069. return;
  6070. }
  6071. const int n_past = ((int32_t *) src1->data)[0];
  6072. const int n_dims = ((int32_t *) src1->data)[1];
  6073. const int mode = ((int32_t *) src1->data)[2];
  6074. //const int64_t ne0 = src0->ne[0];
  6075. const int64_t ne1 = src0->ne[1];
  6076. const int64_t ne2 = src0->ne[2];
  6077. const int64_t ne3 = src0->ne[3];
  6078. const int nb0 = src0->nb[0];
  6079. const int nb1 = src0->nb[1];
  6080. const int nb2 = src0->nb[2];
  6081. const int nb3 = src0->nb[3];
  6082. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  6083. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  6084. assert(nb0 == sizeof(ggml_fp16_t));
  6085. const int ith = params->ith;
  6086. const int nth = params->nth;
  6087. const int nr = ggml_nrows(src0);
  6088. // rows per thread
  6089. const int dr = (nr + nth - 1)/nth;
  6090. // row range for this thread
  6091. const int ir0 = dr*ith;
  6092. const int ir1 = MIN(ir0 + dr, nr);
  6093. // row index used to determine which thread to use
  6094. int ir = 0;
  6095. for (int64_t i3 = 0; i3 < ne3; i3++) {
  6096. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  6097. const int p = (mode == 0 ? n_past + i2 : i2);
  6098. for (int64_t i1 = 0; i1 < ne1; i1++) {
  6099. if (ir++ < ir0) continue;
  6100. if (ir > ir1) break;
  6101. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  6102. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  6103. const float cos_theta = cosf(p*theta);
  6104. const float sin_theta = sinf(p*theta);
  6105. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6106. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  6107. const float x0 = ggml_fp16_to_fp32(src[0]);
  6108. const float x1 = ggml_fp16_to_fp32(src[1]);
  6109. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  6110. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  6111. }
  6112. }
  6113. }
  6114. }
  6115. }
  6116. static void ggml_compute_forward_rope(
  6117. const struct ggml_compute_params * params,
  6118. const struct ggml_tensor * src0,
  6119. const struct ggml_tensor * src1,
  6120. struct ggml_tensor * dst) {
  6121. switch (src0->type) {
  6122. case GGML_TYPE_F16:
  6123. {
  6124. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  6125. } break;
  6126. case GGML_TYPE_F32:
  6127. {
  6128. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  6129. } break;
  6130. case GGML_TYPE_Q4_0:
  6131. case GGML_TYPE_Q4_1:
  6132. case GGML_TYPE_I8:
  6133. case GGML_TYPE_I16:
  6134. case GGML_TYPE_I32:
  6135. case GGML_TYPE_COUNT:
  6136. {
  6137. GGML_ASSERT(false);
  6138. } break;
  6139. }
  6140. }
  6141. // ggml_compute_forward_conv_1d_1s
  6142. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  6143. const struct ggml_compute_params * params,
  6144. const struct ggml_tensor * src0,
  6145. const struct ggml_tensor * src1,
  6146. struct ggml_tensor * dst) {
  6147. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6148. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6149. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6150. int64_t t0 = ggml_perf_time_us();
  6151. UNUSED(t0);
  6152. const int64_t ne00 = src0->ne[0];
  6153. const int64_t ne01 = src0->ne[1];
  6154. const int64_t ne02 = src0->ne[2];
  6155. //const int64_t ne03 = src0->ne[3];
  6156. const int64_t ne10 = src1->ne[0];
  6157. const int64_t ne11 = src1->ne[1];
  6158. //const int64_t ne12 = src1->ne[2];
  6159. //const int64_t ne13 = src1->ne[3];
  6160. //const int64_t ne0 = dst->ne[0];
  6161. //const int64_t ne1 = dst->ne[1];
  6162. //const int64_t ne2 = dst->ne[2];
  6163. //const int64_t ne3 = dst->ne[3];
  6164. //const int64_t ne = ne0*ne1*ne2*ne3;
  6165. const int nb00 = src0->nb[0];
  6166. const int nb01 = src0->nb[1];
  6167. const int nb02 = src0->nb[2];
  6168. //const int nb03 = src0->nb[3];
  6169. const int nb10 = src1->nb[0];
  6170. const int nb11 = src1->nb[1];
  6171. //const int nb12 = src1->nb[2];
  6172. //const int nb13 = src1->nb[3];
  6173. //const int nb0 = dst->nb[0];
  6174. const int nb1 = dst->nb[1];
  6175. //const int nb2 = dst->nb[2];
  6176. //const int nb3 = dst->nb[3];
  6177. const int ith = params->ith;
  6178. const int nth = params->nth;
  6179. const int nk = ne00;
  6180. const int nh = nk/2;
  6181. const int ew0 = ggml_up32(ne01);
  6182. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6183. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6184. GGML_ASSERT(nb10 == sizeof(float));
  6185. if (params->type == GGML_TASK_INIT) {
  6186. // TODO: fix this memset (wsize is overestimated)
  6187. memset(params->wdata, 0, params->wsize);
  6188. // prepare kernel data (src0)
  6189. {
  6190. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6191. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6192. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6193. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6194. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6195. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6196. dst_data[i00*ew0 + i01] = src[i00];
  6197. }
  6198. }
  6199. }
  6200. }
  6201. // prepare source data (src1)
  6202. {
  6203. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6204. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6205. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6206. ggml_fp16_t * dst_data = wdata;
  6207. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6208. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6209. }
  6210. }
  6211. }
  6212. return;
  6213. }
  6214. if (params->type == GGML_TASK_FINALIZE) {
  6215. return;
  6216. }
  6217. // total rows in dst
  6218. const int nr = ne02;
  6219. // rows per thread
  6220. const int dr = (nr + nth - 1)/nth;
  6221. // row range for this thread
  6222. const int ir0 = dr*ith;
  6223. const int ir1 = MIN(ir0 + dr, nr);
  6224. for (int i1 = ir0; i1 < ir1; i1++) {
  6225. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6226. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6227. dst_data[i0] = 0;
  6228. for (int k = -nh; k <= nh; k++) {
  6229. float v = 0.0f;
  6230. ggml_vec_dot_f16(ew0, &v,
  6231. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6232. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6233. dst_data[i0] += v;
  6234. }
  6235. }
  6236. }
  6237. }
  6238. static void ggml_compute_forward_conv_1d_1s_f32(
  6239. const struct ggml_compute_params * params,
  6240. const struct ggml_tensor * src0,
  6241. const struct ggml_tensor * src1,
  6242. struct ggml_tensor * dst) {
  6243. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6244. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6245. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6246. int64_t t0 = ggml_perf_time_us();
  6247. UNUSED(t0);
  6248. const int64_t ne00 = src0->ne[0];
  6249. const int64_t ne01 = src0->ne[1];
  6250. const int64_t ne02 = src0->ne[2];
  6251. //const int64_t ne03 = src0->ne[3];
  6252. const int64_t ne10 = src1->ne[0];
  6253. const int64_t ne11 = src1->ne[1];
  6254. //const int64_t ne12 = src1->ne[2];
  6255. //const int64_t ne13 = src1->ne[3];
  6256. //const int64_t ne0 = dst->ne[0];
  6257. //const int64_t ne1 = dst->ne[1];
  6258. //const int64_t ne2 = dst->ne[2];
  6259. //const int64_t ne3 = dst->ne[3];
  6260. //const int64_t ne = ne0*ne1*ne2*ne3;
  6261. const int nb00 = src0->nb[0];
  6262. const int nb01 = src0->nb[1];
  6263. const int nb02 = src0->nb[2];
  6264. //const int nb03 = src0->nb[3];
  6265. const int nb10 = src1->nb[0];
  6266. const int nb11 = src1->nb[1];
  6267. //const int nb12 = src1->nb[2];
  6268. //const int nb13 = src1->nb[3];
  6269. //const int nb0 = dst->nb[0];
  6270. const int nb1 = dst->nb[1];
  6271. //const int nb2 = dst->nb[2];
  6272. //const int nb3 = dst->nb[3];
  6273. const int ith = params->ith;
  6274. const int nth = params->nth;
  6275. const int nk = ne00;
  6276. const int nh = nk/2;
  6277. const int ew0 = ggml_up32(ne01);
  6278. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6279. GGML_ASSERT(nb00 == sizeof(float));
  6280. GGML_ASSERT(nb10 == sizeof(float));
  6281. if (params->type == GGML_TASK_INIT) {
  6282. // TODO: fix this memset (wsize is overestimated)
  6283. memset(params->wdata, 0, params->wsize);
  6284. // prepare kernel data (src0)
  6285. {
  6286. float * const wdata = (float *) params->wdata + 0;
  6287. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6288. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6289. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6290. float * dst_data = wdata + i02*ew0*ne00;
  6291. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6292. dst_data[i00*ew0 + i01] = src[i00];
  6293. }
  6294. }
  6295. }
  6296. }
  6297. // prepare source data (src1)
  6298. {
  6299. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6300. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6301. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6302. float * dst_data = wdata;
  6303. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6304. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6305. }
  6306. }
  6307. }
  6308. return;
  6309. }
  6310. if (params->type == GGML_TASK_FINALIZE) {
  6311. return;
  6312. }
  6313. // total rows in dst
  6314. const int nr = ne02;
  6315. // rows per thread
  6316. const int dr = (nr + nth - 1)/nth;
  6317. // row range for this thread
  6318. const int ir0 = dr*ith;
  6319. const int ir1 = MIN(ir0 + dr, nr);
  6320. for (int i1 = ir0; i1 < ir1; i1++) {
  6321. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6322. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6323. dst_data[i0] = 0;
  6324. for (int k = -nh; k <= nh; k++) {
  6325. float v = 0.0f;
  6326. ggml_vec_dot_f32(ew0, &v,
  6327. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6328. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6329. dst_data[i0] += v;
  6330. }
  6331. }
  6332. }
  6333. }
  6334. static void ggml_compute_forward_conv_1d_1s(
  6335. const struct ggml_compute_params * params,
  6336. const struct ggml_tensor * src0,
  6337. const struct ggml_tensor * src1,
  6338. struct ggml_tensor * dst) {
  6339. switch (src0->type) {
  6340. case GGML_TYPE_F16:
  6341. {
  6342. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6343. } break;
  6344. case GGML_TYPE_F32:
  6345. {
  6346. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6347. } break;
  6348. case GGML_TYPE_Q4_0:
  6349. case GGML_TYPE_Q4_1:
  6350. case GGML_TYPE_I8:
  6351. case GGML_TYPE_I16:
  6352. case GGML_TYPE_I32:
  6353. case GGML_TYPE_COUNT:
  6354. {
  6355. GGML_ASSERT(false);
  6356. } break;
  6357. }
  6358. }
  6359. // ggml_compute_forward_conv_1d_2s
  6360. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6361. const struct ggml_compute_params * params,
  6362. const struct ggml_tensor * src0,
  6363. const struct ggml_tensor * src1,
  6364. struct ggml_tensor * dst) {
  6365. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6366. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6367. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6368. int64_t t0 = ggml_perf_time_us();
  6369. UNUSED(t0);
  6370. const int64_t ne00 = src0->ne[0];
  6371. const int64_t ne01 = src0->ne[1];
  6372. const int64_t ne02 = src0->ne[2];
  6373. //const int64_t ne03 = src0->ne[3];
  6374. const int64_t ne10 = src1->ne[0];
  6375. const int64_t ne11 = src1->ne[1];
  6376. //const int64_t ne12 = src1->ne[2];
  6377. //const int64_t ne13 = src1->ne[3];
  6378. //const int64_t ne0 = dst->ne[0];
  6379. //const int64_t ne1 = dst->ne[1];
  6380. //const int64_t ne2 = dst->ne[2];
  6381. //const int64_t ne3 = dst->ne[3];
  6382. //const int64_t ne = ne0*ne1*ne2*ne3;
  6383. const int nb00 = src0->nb[0];
  6384. const int nb01 = src0->nb[1];
  6385. const int nb02 = src0->nb[2];
  6386. //const int nb03 = src0->nb[3];
  6387. const int nb10 = src1->nb[0];
  6388. const int nb11 = src1->nb[1];
  6389. //const int nb12 = src1->nb[2];
  6390. //const int nb13 = src1->nb[3];
  6391. //const int nb0 = dst->nb[0];
  6392. const int nb1 = dst->nb[1];
  6393. //const int nb2 = dst->nb[2];
  6394. //const int nb3 = dst->nb[3];
  6395. const int ith = params->ith;
  6396. const int nth = params->nth;
  6397. const int nk = ne00;
  6398. const int nh = nk/2;
  6399. const int ew0 = ggml_up32(ne01);
  6400. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6401. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6402. GGML_ASSERT(nb10 == sizeof(float));
  6403. if (params->type == GGML_TASK_INIT) {
  6404. // TODO: fix this memset (wsize is overestimated)
  6405. memset(params->wdata, 0, params->wsize);
  6406. // prepare kernel data (src0)
  6407. {
  6408. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6409. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6410. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6411. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6412. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6413. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6414. dst_data[i00*ew0 + i01] = src[i00];
  6415. }
  6416. }
  6417. }
  6418. }
  6419. // prepare source data (src1)
  6420. {
  6421. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6422. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6423. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6424. ggml_fp16_t * dst_data = wdata;
  6425. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6426. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6427. }
  6428. }
  6429. }
  6430. return;
  6431. }
  6432. if (params->type == GGML_TASK_FINALIZE) {
  6433. return;
  6434. }
  6435. // total rows in dst
  6436. const int nr = ne02;
  6437. // rows per thread
  6438. const int dr = (nr + nth - 1)/nth;
  6439. // row range for this thread
  6440. const int ir0 = dr*ith;
  6441. const int ir1 = MIN(ir0 + dr, nr);
  6442. for (int i1 = ir0; i1 < ir1; i1++) {
  6443. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6444. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6445. dst_data[i0/2] = 0;
  6446. for (int k = -nh; k <= nh; k++) {
  6447. float v = 0.0f;
  6448. ggml_vec_dot_f16(ew0, &v,
  6449. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6450. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6451. dst_data[i0/2] += v;
  6452. }
  6453. }
  6454. }
  6455. }
  6456. static void ggml_compute_forward_conv_1d_2s_f32(
  6457. const struct ggml_compute_params * params,
  6458. const struct ggml_tensor * src0,
  6459. const struct ggml_tensor * src1,
  6460. struct ggml_tensor * dst) {
  6461. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6462. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6463. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6464. int64_t t0 = ggml_perf_time_us();
  6465. UNUSED(t0);
  6466. const int64_t ne00 = src0->ne[0];
  6467. const int64_t ne01 = src0->ne[1];
  6468. const int64_t ne02 = src0->ne[2];
  6469. //const int64_t ne03 = src0->ne[3];
  6470. const int64_t ne10 = src1->ne[0];
  6471. const int64_t ne11 = src1->ne[1];
  6472. //const int64_t ne12 = src1->ne[2];
  6473. //const int64_t ne13 = src1->ne[3];
  6474. //const int64_t ne0 = dst->ne[0];
  6475. //const int64_t ne1 = dst->ne[1];
  6476. //const int64_t ne2 = dst->ne[2];
  6477. //const int64_t ne3 = dst->ne[3];
  6478. //const int64_t ne = ne0*ne1*ne2*ne3;
  6479. const int nb00 = src0->nb[0];
  6480. const int nb01 = src0->nb[1];
  6481. const int nb02 = src0->nb[2];
  6482. //const int nb03 = src0->nb[3];
  6483. const int nb10 = src1->nb[0];
  6484. const int nb11 = src1->nb[1];
  6485. //const int nb12 = src1->nb[2];
  6486. //const int nb13 = src1->nb[3];
  6487. //const int nb0 = dst->nb[0];
  6488. const int nb1 = dst->nb[1];
  6489. //const int nb2 = dst->nb[2];
  6490. //const int nb3 = dst->nb[3];
  6491. const int ith = params->ith;
  6492. const int nth = params->nth;
  6493. const int nk = ne00;
  6494. const int nh = nk/2;
  6495. const int ew0 = ggml_up32(ne01);
  6496. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6497. GGML_ASSERT(nb00 == sizeof(float));
  6498. GGML_ASSERT(nb10 == sizeof(float));
  6499. if (params->type == GGML_TASK_INIT) {
  6500. // TODO: fix this memset (wsize is overestimated)
  6501. memset(params->wdata, 0, params->wsize);
  6502. // prepare kernel data (src0)
  6503. {
  6504. float * const wdata = (float *) params->wdata + 0;
  6505. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6506. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6507. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6508. float * dst_data = wdata + i02*ew0*ne00;
  6509. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6510. dst_data[i00*ew0 + i01] = src[i00];
  6511. }
  6512. }
  6513. }
  6514. }
  6515. // prepare source data (src1)
  6516. {
  6517. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6518. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6519. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6520. float * dst_data = wdata;
  6521. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6522. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6523. }
  6524. }
  6525. }
  6526. return;
  6527. }
  6528. if (params->type == GGML_TASK_FINALIZE) {
  6529. return;
  6530. }
  6531. // total rows in dst
  6532. const int nr = ne02;
  6533. // rows per thread
  6534. const int dr = (nr + nth - 1)/nth;
  6535. // row range for this thread
  6536. const int ir0 = dr*ith;
  6537. const int ir1 = MIN(ir0 + dr, nr);
  6538. for (int i1 = ir0; i1 < ir1; i1++) {
  6539. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6540. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6541. dst_data[i0/2] = 0;
  6542. for (int k = -nh; k <= nh; k++) {
  6543. float v = 0.0f;
  6544. ggml_vec_dot_f32(ew0, &v,
  6545. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6546. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6547. dst_data[i0/2] += v;
  6548. }
  6549. }
  6550. }
  6551. }
  6552. static void ggml_compute_forward_conv_1d_2s(
  6553. const struct ggml_compute_params * params,
  6554. const struct ggml_tensor * src0,
  6555. const struct ggml_tensor * src1,
  6556. struct ggml_tensor * dst) {
  6557. switch (src0->type) {
  6558. case GGML_TYPE_F16:
  6559. {
  6560. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6561. } break;
  6562. case GGML_TYPE_F32:
  6563. {
  6564. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6565. } break;
  6566. case GGML_TYPE_Q4_0:
  6567. case GGML_TYPE_Q4_1:
  6568. case GGML_TYPE_I8:
  6569. case GGML_TYPE_I16:
  6570. case GGML_TYPE_I32:
  6571. case GGML_TYPE_COUNT:
  6572. {
  6573. GGML_ASSERT(false);
  6574. } break;
  6575. }
  6576. }
  6577. // ggml_compute_forward_flash_attn
  6578. static void ggml_compute_forward_flash_attn_f32(
  6579. const struct ggml_compute_params * params,
  6580. const struct ggml_tensor * q,
  6581. const struct ggml_tensor * k,
  6582. const struct ggml_tensor * v,
  6583. const bool masked,
  6584. struct ggml_tensor * dst) {
  6585. int64_t t0 = ggml_perf_time_us();
  6586. UNUSED(t0);
  6587. const int64_t neq0 = q->ne[0];
  6588. const int64_t neq1 = q->ne[1];
  6589. const int64_t neq2 = q->ne[2];
  6590. const int64_t neq3 = q->ne[3];
  6591. const int64_t nek0 = k->ne[0];
  6592. const int64_t nek1 = k->ne[1];
  6593. //const int64_t nek2 = k->ne[2];
  6594. //const int64_t nek3 = k->ne[3];
  6595. //const int64_t nev0 = v->ne[0];
  6596. const int64_t nev1 = v->ne[1];
  6597. //const int64_t nev2 = v->ne[2];
  6598. //const int64_t nev3 = v->ne[3];
  6599. const int64_t ne0 = dst->ne[0];
  6600. const int64_t ne1 = dst->ne[1];
  6601. //const int64_t ne2 = dst->ne[2];
  6602. //const int64_t ne3 = dst->ne[3];
  6603. const int nbk0 = k->nb[0];
  6604. const int nbk1 = k->nb[1];
  6605. const int nbk2 = k->nb[2];
  6606. const int nbk3 = k->nb[3];
  6607. const int nbq0 = q->nb[0];
  6608. const int nbq1 = q->nb[1];
  6609. const int nbq2 = q->nb[2];
  6610. const int nbq3 = q->nb[3];
  6611. const int nbv0 = v->nb[0];
  6612. const int nbv1 = v->nb[1];
  6613. const int nbv2 = v->nb[2];
  6614. const int nbv3 = v->nb[3];
  6615. const int nb0 = dst->nb[0];
  6616. const int nb1 = dst->nb[1];
  6617. const int nb2 = dst->nb[2];
  6618. const int nb3 = dst->nb[3];
  6619. const int ith = params->ith;
  6620. const int nth = params->nth;
  6621. const int64_t D = neq0;
  6622. const int64_t N = neq1;
  6623. const int64_t P = nek1 - N;
  6624. const int64_t M = P + N;
  6625. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6626. GGML_ASSERT(ne0 == D);
  6627. GGML_ASSERT(ne1 == N);
  6628. GGML_ASSERT(P >= 0);
  6629. GGML_ASSERT(nbq0 == sizeof(float));
  6630. GGML_ASSERT(nbk0 == sizeof(float));
  6631. GGML_ASSERT(nbv0 == sizeof(float));
  6632. GGML_ASSERT(neq0 == D);
  6633. GGML_ASSERT(nek0 == D);
  6634. GGML_ASSERT(nev1 == D);
  6635. GGML_ASSERT(neq1 == N);
  6636. GGML_ASSERT(nek1 == N + P);
  6637. GGML_ASSERT(nev1 == D);
  6638. // dst cannot be transposed or permuted
  6639. GGML_ASSERT(nb0 == sizeof(float));
  6640. GGML_ASSERT(nb0 <= nb1);
  6641. GGML_ASSERT(nb1 <= nb2);
  6642. GGML_ASSERT(nb2 <= nb3);
  6643. if (params->type == GGML_TASK_INIT) {
  6644. return;
  6645. }
  6646. if (params->type == GGML_TASK_FINALIZE) {
  6647. return;
  6648. }
  6649. // parallelize by q rows using ggml_vec_dot_f32
  6650. // total rows in q
  6651. const int nr = neq1*neq2*neq3;
  6652. // rows per thread
  6653. const int dr = (nr + nth - 1)/nth;
  6654. // row range for this thread
  6655. const int ir0 = dr*ith;
  6656. const int ir1 = MIN(ir0 + dr, nr);
  6657. const float scale = 1.0f/sqrtf(D);
  6658. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6659. for (int ir = ir0; ir < ir1; ++ir) {
  6660. // q indices
  6661. const int iq3 = ir/(neq2*neq1);
  6662. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6663. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6664. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6665. for (int i = M; i < Mup; ++i) {
  6666. S[i] = -INFINITY;
  6667. }
  6668. for (int64_t ic = 0; ic < nek1; ++ic) {
  6669. // k indices
  6670. const int ik3 = iq3;
  6671. const int ik2 = iq2;
  6672. const int ik1 = ic;
  6673. // S indices
  6674. const int i1 = ik1;
  6675. ggml_vec_dot_f32(neq0,
  6676. S + i1,
  6677. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6678. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6679. }
  6680. // scale
  6681. ggml_vec_scale_f32(nek1, S, scale);
  6682. if (masked) {
  6683. for (int64_t i = P; i < M; i++) {
  6684. if (i > P + iq1) {
  6685. S[i] = -INFINITY;
  6686. }
  6687. }
  6688. }
  6689. // softmax
  6690. {
  6691. float max = -INFINITY;
  6692. ggml_vec_max_f32(M, &max, S);
  6693. ggml_float sum = 0.0;
  6694. {
  6695. #ifdef GGML_SOFT_MAX_ACCELERATE
  6696. max = -max;
  6697. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6698. vvexpf(S, S, &Mup);
  6699. ggml_vec_sum_f32(Mup, &sum, S);
  6700. #else
  6701. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6702. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6703. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6704. float * SS = S + i;
  6705. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6706. if (SS[j] == -INFINITY) {
  6707. SS[j] = 0.0f;
  6708. } else {
  6709. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6710. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6711. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6712. sump[j] += (ggml_float)val;
  6713. SS[j] = val;
  6714. }
  6715. }
  6716. }
  6717. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6718. sum += sump[i];
  6719. }
  6720. #endif
  6721. }
  6722. assert(sum > 0.0);
  6723. sum = 1.0/sum;
  6724. ggml_vec_scale_f32(M, S, sum);
  6725. #ifndef NDEBUG
  6726. for (int i = 0; i < M; ++i) {
  6727. assert(!isnan(S[i]));
  6728. assert(!isinf(S[i]));
  6729. }
  6730. #endif
  6731. }
  6732. for (int64_t ic = 0; ic < nev1; ++ic) {
  6733. // dst indices
  6734. const int i1 = iq1;
  6735. const int i2 = iq2;
  6736. const int i3 = iq3;
  6737. ggml_vec_dot_f32(nek1,
  6738. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6739. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6740. S);
  6741. }
  6742. }
  6743. }
  6744. static void ggml_compute_forward_flash_attn_f16(
  6745. const struct ggml_compute_params * params,
  6746. const struct ggml_tensor * q,
  6747. const struct ggml_tensor * k,
  6748. const struct ggml_tensor * v,
  6749. const bool masked,
  6750. struct ggml_tensor * dst) {
  6751. int64_t t0 = ggml_perf_time_us();
  6752. UNUSED(t0);
  6753. const int64_t neq0 = q->ne[0];
  6754. const int64_t neq1 = q->ne[1];
  6755. const int64_t neq2 = q->ne[2];
  6756. const int64_t neq3 = q->ne[3];
  6757. const int64_t nek0 = k->ne[0];
  6758. const int64_t nek1 = k->ne[1];
  6759. //const int64_t nek2 = k->ne[2];
  6760. //const int64_t nek3 = k->ne[3];
  6761. //const int64_t nev0 = v->ne[0];
  6762. const int64_t nev1 = v->ne[1];
  6763. //const int64_t nev2 = v->ne[2];
  6764. //const int64_t nev3 = v->ne[3];
  6765. const int64_t ne0 = dst->ne[0];
  6766. const int64_t ne1 = dst->ne[1];
  6767. //const int64_t ne2 = dst->ne[2];
  6768. //const int64_t ne3 = dst->ne[3];
  6769. const int nbk0 = k->nb[0];
  6770. const int nbk1 = k->nb[1];
  6771. const int nbk2 = k->nb[2];
  6772. const int nbk3 = k->nb[3];
  6773. const int nbq0 = q->nb[0];
  6774. const int nbq1 = q->nb[1];
  6775. const int nbq2 = q->nb[2];
  6776. const int nbq3 = q->nb[3];
  6777. const int nbv0 = v->nb[0];
  6778. const int nbv1 = v->nb[1];
  6779. const int nbv2 = v->nb[2];
  6780. const int nbv3 = v->nb[3];
  6781. const int nb0 = dst->nb[0];
  6782. const int nb1 = dst->nb[1];
  6783. const int nb2 = dst->nb[2];
  6784. const int nb3 = dst->nb[3];
  6785. const int ith = params->ith;
  6786. const int nth = params->nth;
  6787. const int64_t D = neq0;
  6788. const int64_t N = neq1;
  6789. const int64_t P = nek1 - N;
  6790. const int64_t M = P + N;
  6791. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6792. GGML_ASSERT(ne0 == D);
  6793. GGML_ASSERT(ne1 == N);
  6794. GGML_ASSERT(P >= 0);
  6795. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6796. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6797. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6798. GGML_ASSERT(neq0 == D);
  6799. GGML_ASSERT(nek0 == D);
  6800. GGML_ASSERT(nev1 == D);
  6801. GGML_ASSERT(neq1 == N);
  6802. GGML_ASSERT(nek1 == N + P);
  6803. GGML_ASSERT(nev1 == D);
  6804. // dst cannot be transposed or permuted
  6805. GGML_ASSERT(nb0 == sizeof(float));
  6806. GGML_ASSERT(nb0 <= nb1);
  6807. GGML_ASSERT(nb1 <= nb2);
  6808. GGML_ASSERT(nb2 <= nb3);
  6809. if (params->type == GGML_TASK_INIT) {
  6810. return;
  6811. }
  6812. if (params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. // parallelize by q rows using ggml_vec_dot_f32
  6816. // total rows in q
  6817. const int nr = neq1*neq2*neq3;
  6818. // rows per thread
  6819. const int dr = (nr + nth - 1)/nth;
  6820. // row range for this thread
  6821. const int ir0 = dr*ith;
  6822. const int ir1 = MIN(ir0 + dr, nr);
  6823. const float scale = 1.0f/sqrtf(D);
  6824. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6825. for (int ir = ir0; ir < ir1; ++ir) {
  6826. // q indices
  6827. const int iq3 = ir/(neq2*neq1);
  6828. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6829. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6830. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6831. for (int i = M; i < Mup; ++i) {
  6832. S[i] = -INFINITY;
  6833. }
  6834. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6835. for (int64_t ic = 0; ic < nek1; ++ic) {
  6836. // k indices
  6837. const int ik3 = iq3;
  6838. const int ik2 = iq2;
  6839. const int ik1 = ic;
  6840. // S indices
  6841. const int i1 = ik1;
  6842. ggml_vec_dot_f16(neq0,
  6843. S + i1,
  6844. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6845. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6846. }
  6847. } else {
  6848. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6849. // k indices
  6850. const int ik3 = iq3;
  6851. const int ik2 = iq2;
  6852. const int ik1 = ic;
  6853. // S indices
  6854. const int i1 = ik1;
  6855. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6856. S + i1,
  6857. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6858. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6859. }
  6860. }
  6861. // scale
  6862. ggml_vec_scale_f32(nek1, S, scale);
  6863. if (masked) {
  6864. for (int64_t i = P; i < M; i++) {
  6865. if (i > P + iq1) {
  6866. S[i] = -INFINITY;
  6867. }
  6868. }
  6869. }
  6870. // softmax
  6871. {
  6872. float max = -INFINITY;
  6873. ggml_vec_max_f32(M, &max, S);
  6874. ggml_float sum = 0.0;
  6875. {
  6876. #ifdef GGML_SOFT_MAX_ACCELERATE
  6877. max = -max;
  6878. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6879. vvexpf(S, S, &Mup);
  6880. ggml_vec_sum_f32(Mup, &sum, S);
  6881. #else
  6882. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6883. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6884. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6885. float * SS = S + i;
  6886. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6887. if (SS[j] == -INFINITY) {
  6888. SS[j] = 0.0f;
  6889. } else {
  6890. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6891. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6892. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6893. sump[j] += (ggml_float)val;
  6894. SS[j] = val;
  6895. }
  6896. }
  6897. }
  6898. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6899. sum += sump[i];
  6900. }
  6901. #endif
  6902. }
  6903. assert(sum > 0.0);
  6904. sum = 1.0/sum;
  6905. ggml_vec_scale_f32(M, S, sum);
  6906. #ifndef NDEBUG
  6907. for (int i = 0; i < M; ++i) {
  6908. assert(!isnan(S[i]));
  6909. assert(!isinf(S[i]));
  6910. }
  6911. #endif
  6912. }
  6913. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6914. for (int64_t i = 0; i < M; i++) {
  6915. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6916. }
  6917. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6918. for (int64_t ic = 0; ic < nev1; ++ic) {
  6919. // dst indices
  6920. const int i1 = iq1;
  6921. const int i2 = iq2;
  6922. const int i3 = iq3;
  6923. ggml_vec_dot_f16(nek1,
  6924. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6925. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6926. S16);
  6927. }
  6928. } else {
  6929. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6930. // dst indices
  6931. const int i1 = iq1;
  6932. const int i2 = iq2;
  6933. const int i3 = iq3;
  6934. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6935. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6936. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6937. S16);
  6938. }
  6939. }
  6940. }
  6941. }
  6942. static void ggml_compute_forward_flash_attn(
  6943. const struct ggml_compute_params * params,
  6944. const struct ggml_tensor * q,
  6945. const struct ggml_tensor * k,
  6946. const struct ggml_tensor * v,
  6947. const bool masked,
  6948. struct ggml_tensor * dst) {
  6949. switch (q->type) {
  6950. case GGML_TYPE_F16:
  6951. {
  6952. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6953. } break;
  6954. case GGML_TYPE_F32:
  6955. {
  6956. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6957. } break;
  6958. case GGML_TYPE_Q4_0:
  6959. case GGML_TYPE_Q4_1:
  6960. case GGML_TYPE_I8:
  6961. case GGML_TYPE_I16:
  6962. case GGML_TYPE_I32:
  6963. case GGML_TYPE_COUNT:
  6964. {
  6965. GGML_ASSERT(false);
  6966. } break;
  6967. }
  6968. }
  6969. // ggml_compute_forward_flash_ff
  6970. static void ggml_compute_forward_flash_ff_f16(
  6971. const struct ggml_compute_params * params,
  6972. const struct ggml_tensor * a, // F16
  6973. const struct ggml_tensor * b0, // F16 fc_w
  6974. const struct ggml_tensor * b1, // F32 fc_b
  6975. const struct ggml_tensor * c0, // F16 proj_w
  6976. const struct ggml_tensor * c1, // F32 proj_b
  6977. struct ggml_tensor * dst) {
  6978. int64_t t0 = ggml_perf_time_us();
  6979. UNUSED(t0);
  6980. const int64_t nea0 = a->ne[0];
  6981. const int64_t nea1 = a->ne[1];
  6982. const int64_t nea2 = a->ne[2];
  6983. const int64_t nea3 = a->ne[3];
  6984. const int64_t neb00 = b0->ne[0];
  6985. const int64_t neb01 = b0->ne[1];
  6986. //const int64_t neb02 = b0->ne[2];
  6987. //const int64_t neb03 = b0->ne[3];
  6988. const int64_t neb10 = b1->ne[0];
  6989. const int64_t neb11 = b1->ne[1];
  6990. //const int64_t neb12 = b1->ne[2];
  6991. //const int64_t neb13 = b1->ne[3];
  6992. const int64_t nec00 = c0->ne[0];
  6993. const int64_t nec01 = c0->ne[1];
  6994. //const int64_t nec02 = c0->ne[2];
  6995. //const int64_t nec03 = c0->ne[3];
  6996. const int64_t nec10 = c1->ne[0];
  6997. const int64_t nec11 = c1->ne[1];
  6998. //const int64_t nec12 = c1->ne[2];
  6999. //const int64_t nec13 = c1->ne[3];
  7000. const int64_t ne0 = dst->ne[0];
  7001. const int64_t ne1 = dst->ne[1];
  7002. const int64_t ne2 = dst->ne[2];
  7003. //const int64_t ne3 = dst->ne[3];
  7004. const int nba0 = a->nb[0];
  7005. const int nba1 = a->nb[1];
  7006. const int nba2 = a->nb[2];
  7007. const int nba3 = a->nb[3];
  7008. const int nbb00 = b0->nb[0];
  7009. const int nbb01 = b0->nb[1];
  7010. const int nbb02 = b0->nb[2];
  7011. const int nbb03 = b0->nb[3];
  7012. const int nbb10 = b1->nb[0];
  7013. //const int nbb11 = b1->nb[1];
  7014. //const int nbb12 = b1->nb[2];
  7015. //const int nbb13 = b1->nb[3];
  7016. const int nbc00 = c0->nb[0];
  7017. const int nbc01 = c0->nb[1];
  7018. const int nbc02 = c0->nb[2];
  7019. const int nbc03 = c0->nb[3];
  7020. const int nbc10 = c1->nb[0];
  7021. //const int nbc11 = c1->nb[1];
  7022. //const int nbc12 = c1->nb[2];
  7023. //const int nbc13 = c1->nb[3];
  7024. const int nb0 = dst->nb[0];
  7025. const int nb1 = dst->nb[1];
  7026. const int nb2 = dst->nb[2];
  7027. const int nb3 = dst->nb[3];
  7028. const int ith = params->ith;
  7029. const int nth = params->nth;
  7030. const int64_t D = nea0;
  7031. //const int64_t N = nea1;
  7032. const int64_t M = neb01;
  7033. GGML_ASSERT(ne0 == nea0);
  7034. GGML_ASSERT(ne1 == nea1);
  7035. GGML_ASSERT(ne2 == nea2);
  7036. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  7037. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  7038. GGML_ASSERT(nbb10 == sizeof(float));
  7039. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  7040. GGML_ASSERT(nbc10 == sizeof(float));
  7041. GGML_ASSERT(neb00 == D);
  7042. GGML_ASSERT(neb01 == M);
  7043. GGML_ASSERT(neb10 == M);
  7044. GGML_ASSERT(neb11 == 1);
  7045. GGML_ASSERT(nec00 == M);
  7046. GGML_ASSERT(nec01 == D);
  7047. GGML_ASSERT(nec10 == D);
  7048. GGML_ASSERT(nec11 == 1);
  7049. // dst cannot be transposed or permuted
  7050. GGML_ASSERT(nb0 == sizeof(float));
  7051. GGML_ASSERT(nb0 <= nb1);
  7052. GGML_ASSERT(nb1 <= nb2);
  7053. GGML_ASSERT(nb2 <= nb3);
  7054. if (params->type == GGML_TASK_INIT) {
  7055. return;
  7056. }
  7057. if (params->type == GGML_TASK_FINALIZE) {
  7058. return;
  7059. }
  7060. // parallelize by a rows using ggml_vec_dot_f32
  7061. // total rows in a
  7062. const int nr = nea1*nea2*nea3;
  7063. // rows per thread
  7064. const int dr = (nr + nth - 1)/nth;
  7065. // row range for this thread
  7066. const int ir0 = dr*ith;
  7067. const int ir1 = MIN(ir0 + dr, nr);
  7068. for (int ir = ir0; ir < ir1; ++ir) {
  7069. // a indices
  7070. const int ia3 = ir/(nea2*nea1);
  7071. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  7072. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  7073. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  7074. for (int64_t ic = 0; ic < neb01; ++ic) {
  7075. // b0 indices
  7076. const int ib03 = ia3;
  7077. const int ib02 = ia2;
  7078. const int ib01 = ic;
  7079. // S indices
  7080. const int i1 = ib01;
  7081. ggml_vec_dot_f16(nea0,
  7082. S + i1,
  7083. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  7084. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  7085. }
  7086. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  7087. //ggml_vec_gelu_f32(neb01, S, S);
  7088. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  7089. for (int64_t i = 0; i < M; i++) {
  7090. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7091. }
  7092. ggml_vec_gelu_f16(neb01, S16, S16);
  7093. {
  7094. // dst indices
  7095. const int i1 = ia1;
  7096. const int i2 = ia2;
  7097. const int i3 = ia3;
  7098. for (int64_t ic = 0; ic < nec01; ++ic) {
  7099. ggml_vec_dot_f16(neb01,
  7100. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7101. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  7102. S16);
  7103. }
  7104. ggml_vec_add_f32(nec01,
  7105. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7106. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  7107. (float *) c1->data);
  7108. }
  7109. }
  7110. }
  7111. static void ggml_compute_forward_flash_ff(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * a,
  7114. const struct ggml_tensor * b0,
  7115. const struct ggml_tensor * b1,
  7116. const struct ggml_tensor * c0,
  7117. const struct ggml_tensor * c1,
  7118. struct ggml_tensor * dst) {
  7119. switch (b0->type) {
  7120. case GGML_TYPE_F16:
  7121. {
  7122. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  7123. } break;
  7124. case GGML_TYPE_F32:
  7125. {
  7126. GGML_ASSERT(false); // TODO
  7127. } break;
  7128. case GGML_TYPE_Q4_0:
  7129. case GGML_TYPE_Q4_1:
  7130. case GGML_TYPE_I8:
  7131. case GGML_TYPE_I16:
  7132. case GGML_TYPE_I32:
  7133. case GGML_TYPE_COUNT:
  7134. {
  7135. GGML_ASSERT(false);
  7136. } break;
  7137. }
  7138. }
  7139. /////////////////////////////////
  7140. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  7141. GGML_ASSERT(params);
  7142. switch (tensor->op) {
  7143. case GGML_OP_DUP:
  7144. {
  7145. ggml_compute_forward_dup(params, tensor->src0, tensor);
  7146. } break;
  7147. case GGML_OP_ADD:
  7148. {
  7149. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  7150. } break;
  7151. case GGML_OP_SUB:
  7152. {
  7153. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  7154. } break;
  7155. case GGML_OP_MUL:
  7156. {
  7157. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  7158. } break;
  7159. case GGML_OP_DIV:
  7160. {
  7161. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  7162. } break;
  7163. case GGML_OP_SQR:
  7164. {
  7165. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  7166. } break;
  7167. case GGML_OP_SQRT:
  7168. {
  7169. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  7170. } break;
  7171. case GGML_OP_SUM:
  7172. {
  7173. ggml_compute_forward_sum(params, tensor->src0, tensor);
  7174. } break;
  7175. case GGML_OP_MEAN:
  7176. {
  7177. ggml_compute_forward_mean(params, tensor->src0, tensor);
  7178. } break;
  7179. case GGML_OP_REPEAT:
  7180. {
  7181. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  7182. } break;
  7183. case GGML_OP_ABS:
  7184. {
  7185. ggml_compute_forward_abs(params, tensor->src0, tensor);
  7186. } break;
  7187. case GGML_OP_SGN:
  7188. {
  7189. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  7190. } break;
  7191. case GGML_OP_NEG:
  7192. {
  7193. ggml_compute_forward_neg(params, tensor->src0, tensor);
  7194. } break;
  7195. case GGML_OP_STEP:
  7196. {
  7197. ggml_compute_forward_step(params, tensor->src0, tensor);
  7198. } break;
  7199. case GGML_OP_RELU:
  7200. {
  7201. ggml_compute_forward_relu(params, tensor->src0, tensor);
  7202. } break;
  7203. case GGML_OP_GELU:
  7204. {
  7205. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  7206. } break;
  7207. case GGML_OP_SILU:
  7208. {
  7209. ggml_compute_forward_silu(params, tensor->src0, tensor);
  7210. } break;
  7211. case GGML_OP_NORM:
  7212. {
  7213. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7214. } break;
  7215. case GGML_OP_RMS_NORM:
  7216. {
  7217. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7218. } break;
  7219. case GGML_OP_MUL_MAT:
  7220. {
  7221. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7222. } break;
  7223. case GGML_OP_SCALE:
  7224. {
  7225. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7226. } break;
  7227. case GGML_OP_CPY:
  7228. {
  7229. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7230. } break;
  7231. case GGML_OP_CONT:
  7232. {
  7233. ggml_compute_forward_cont(params, tensor->src0, tensor);
  7234. } break;
  7235. case GGML_OP_RESHAPE:
  7236. {
  7237. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7238. } break;
  7239. case GGML_OP_VIEW:
  7240. {
  7241. ggml_compute_forward_view(params, tensor->src0);
  7242. } break;
  7243. case GGML_OP_PERMUTE:
  7244. {
  7245. ggml_compute_forward_permute(params, tensor->src0);
  7246. } break;
  7247. case GGML_OP_TRANSPOSE:
  7248. {
  7249. ggml_compute_forward_transpose(params, tensor->src0);
  7250. } break;
  7251. case GGML_OP_GET_ROWS:
  7252. {
  7253. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7254. } break;
  7255. case GGML_OP_DIAG_MASK_INF:
  7256. {
  7257. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7258. } break;
  7259. case GGML_OP_SOFT_MAX:
  7260. {
  7261. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7262. } break;
  7263. case GGML_OP_ROPE:
  7264. {
  7265. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7266. } break;
  7267. case GGML_OP_CONV_1D_1S:
  7268. {
  7269. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7270. } break;
  7271. case GGML_OP_CONV_1D_2S:
  7272. {
  7273. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7274. } break;
  7275. case GGML_OP_FLASH_ATTN:
  7276. {
  7277. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7278. GGML_ASSERT(t == 0 || t == 1);
  7279. bool masked = t != 0;
  7280. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7281. } break;
  7282. case GGML_OP_FLASH_FF:
  7283. {
  7284. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7285. } break;
  7286. case GGML_OP_NONE:
  7287. {
  7288. // nop
  7289. } break;
  7290. case GGML_OP_COUNT:
  7291. {
  7292. GGML_ASSERT(false);
  7293. } break;
  7294. }
  7295. }
  7296. ////////////////////////////////////////////////////////////////////////////////
  7297. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7298. struct ggml_tensor * src0 = tensor->src0;
  7299. struct ggml_tensor * src1 = tensor->src1;
  7300. switch (tensor->op) {
  7301. case GGML_OP_DUP:
  7302. {
  7303. if (src0->grad) {
  7304. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7305. }
  7306. } break;
  7307. case GGML_OP_ADD:
  7308. {
  7309. if (src0->grad) {
  7310. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7311. }
  7312. if (src1->grad) {
  7313. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7314. }
  7315. } break;
  7316. case GGML_OP_SUB:
  7317. {
  7318. if (src0->grad) {
  7319. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7320. }
  7321. if (src1->grad) {
  7322. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7323. }
  7324. } break;
  7325. case GGML_OP_MUL:
  7326. {
  7327. if (src0->grad) {
  7328. src0->grad =
  7329. ggml_add_impl(ctx,
  7330. src0->grad,
  7331. ggml_mul(ctx, src1, tensor->grad),
  7332. inplace);
  7333. }
  7334. if (src1->grad) {
  7335. src1->grad =
  7336. ggml_add_impl(ctx,
  7337. src1->grad,
  7338. ggml_mul(ctx, src0, tensor->grad),
  7339. inplace);
  7340. }
  7341. } break;
  7342. case GGML_OP_DIV:
  7343. {
  7344. if (src0->grad) {
  7345. src0->grad =
  7346. ggml_add_impl(ctx,
  7347. src0->grad,
  7348. ggml_div(ctx, tensor->grad, src1),
  7349. inplace);
  7350. }
  7351. if (src1->grad) {
  7352. src1->grad =
  7353. ggml_sub_impl(ctx,
  7354. src1->grad,
  7355. ggml_mul(ctx,
  7356. tensor->grad,
  7357. ggml_div(ctx, tensor, src1)),
  7358. inplace);
  7359. }
  7360. } break;
  7361. case GGML_OP_SQR:
  7362. {
  7363. if (src0->grad) {
  7364. src0->grad =
  7365. ggml_add_impl(ctx,
  7366. src0->grad,
  7367. ggml_mul(ctx,
  7368. ggml_mul(ctx, src0, tensor->grad),
  7369. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7370. inplace);
  7371. }
  7372. } break;
  7373. case GGML_OP_SQRT:
  7374. {
  7375. if (src0->grad) {
  7376. src0->grad =
  7377. ggml_add_impl(ctx,
  7378. src0->grad,
  7379. ggml_div(ctx,
  7380. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7381. tensor),
  7382. inplace);
  7383. }
  7384. } break;
  7385. case GGML_OP_SUM:
  7386. {
  7387. if (src0->grad) {
  7388. src0->grad =
  7389. ggml_add_impl(ctx,
  7390. src0->grad,
  7391. ggml_repeat(ctx, tensor->grad, src0->grad),
  7392. inplace);
  7393. }
  7394. } break;
  7395. case GGML_OP_MEAN:
  7396. {
  7397. GGML_ASSERT(false); // TODO: implement
  7398. } break;
  7399. case GGML_OP_REPEAT:
  7400. {
  7401. if (src0->grad) {
  7402. src0->grad =
  7403. ggml_add_impl(ctx,
  7404. src0->grad,
  7405. ggml_sum(ctx, tensor->grad),
  7406. inplace);
  7407. }
  7408. } break;
  7409. case GGML_OP_ABS:
  7410. {
  7411. if (src0->grad) {
  7412. src0->grad =
  7413. ggml_add_impl(ctx,
  7414. src0->grad,
  7415. ggml_mul(ctx,
  7416. ggml_sgn(ctx, src0),
  7417. tensor->grad),
  7418. inplace);
  7419. }
  7420. } break;
  7421. case GGML_OP_SGN:
  7422. {
  7423. if (src0->grad) {
  7424. // noop
  7425. }
  7426. } break;
  7427. case GGML_OP_NEG:
  7428. {
  7429. if (src0->grad) {
  7430. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7431. }
  7432. } break;
  7433. case GGML_OP_STEP:
  7434. {
  7435. if (src0->grad) {
  7436. // noop
  7437. }
  7438. } break;
  7439. case GGML_OP_RELU:
  7440. {
  7441. if (src0->grad) {
  7442. src0->grad = ggml_sub_impl(ctx,
  7443. src0->grad,
  7444. ggml_mul(ctx,
  7445. ggml_step(ctx, src0),
  7446. tensor->grad),
  7447. inplace);
  7448. }
  7449. } break;
  7450. case GGML_OP_GELU:
  7451. {
  7452. GGML_ASSERT(false); // TODO: not implemented
  7453. } break;
  7454. case GGML_OP_SILU:
  7455. {
  7456. GGML_ASSERT(false); // TODO: not implemented
  7457. } break;
  7458. case GGML_OP_NORM:
  7459. {
  7460. GGML_ASSERT(false); // TODO: not implemented
  7461. } break;
  7462. case GGML_OP_RMS_NORM:
  7463. {
  7464. GGML_ASSERT(false); // TODO: not implemented
  7465. } break;
  7466. case GGML_OP_MUL_MAT:
  7467. {
  7468. if (src0->grad) {
  7469. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7470. GGML_ASSERT(false);
  7471. }
  7472. if (src1->grad) {
  7473. src1->grad =
  7474. ggml_add_impl(ctx,
  7475. src1->grad,
  7476. ggml_mul_mat(ctx,
  7477. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  7478. tensor->grad),
  7479. inplace);
  7480. }
  7481. } break;
  7482. case GGML_OP_SCALE:
  7483. {
  7484. GGML_ASSERT(false); // TODO: not implemented
  7485. } break;
  7486. case GGML_OP_CPY:
  7487. {
  7488. GGML_ASSERT(false); // TODO: not implemented
  7489. } break;
  7490. case GGML_OP_CONT:
  7491. {
  7492. GGML_ASSERT(false); // TODO: not implemented
  7493. } break;
  7494. case GGML_OP_RESHAPE:
  7495. {
  7496. GGML_ASSERT(false); // TODO: not implemented
  7497. } break;
  7498. case GGML_OP_VIEW:
  7499. {
  7500. GGML_ASSERT(false); // not supported
  7501. } break;
  7502. case GGML_OP_PERMUTE:
  7503. {
  7504. GGML_ASSERT(false); // TODO: not implemented
  7505. } break;
  7506. case GGML_OP_TRANSPOSE:
  7507. {
  7508. GGML_ASSERT(false); // TODO: not implemented
  7509. } break;
  7510. case GGML_OP_GET_ROWS:
  7511. {
  7512. GGML_ASSERT(false); // TODO: not implemented
  7513. } break;
  7514. case GGML_OP_DIAG_MASK_INF:
  7515. {
  7516. GGML_ASSERT(false); // TODO: not implemented
  7517. } break;
  7518. case GGML_OP_SOFT_MAX:
  7519. {
  7520. GGML_ASSERT(false); // TODO: not implemented
  7521. } break;
  7522. case GGML_OP_ROPE:
  7523. {
  7524. GGML_ASSERT(false); // TODO: not implemented
  7525. } break;
  7526. case GGML_OP_CONV_1D_1S:
  7527. {
  7528. GGML_ASSERT(false); // TODO: not implemented
  7529. } break;
  7530. case GGML_OP_CONV_1D_2S:
  7531. {
  7532. GGML_ASSERT(false); // TODO: not implemented
  7533. } break;
  7534. case GGML_OP_FLASH_ATTN:
  7535. {
  7536. GGML_ASSERT(false); // not supported
  7537. } break;
  7538. case GGML_OP_FLASH_FF:
  7539. {
  7540. GGML_ASSERT(false); // not supported
  7541. } break;
  7542. case GGML_OP_NONE:
  7543. {
  7544. // nop
  7545. } break;
  7546. case GGML_OP_COUNT:
  7547. {
  7548. GGML_ASSERT(false);
  7549. } break;
  7550. }
  7551. }
  7552. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7553. if (node->grad == NULL) {
  7554. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7555. // it can also happen during forward pass, if the user performs computations with constants
  7556. if (node->op != GGML_OP_NONE) {
  7557. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7558. }
  7559. }
  7560. // check if already visited
  7561. for (int i = 0; i < cgraph->n_nodes; i++) {
  7562. if (cgraph->nodes[i] == node) {
  7563. return;
  7564. }
  7565. }
  7566. for (int i = 0; i < cgraph->n_leafs; i++) {
  7567. if (cgraph->leafs[i] == node) {
  7568. return;
  7569. }
  7570. }
  7571. if (node->src0) {
  7572. ggml_visit_parents(cgraph, node->src0);
  7573. }
  7574. if (node->src1) {
  7575. ggml_visit_parents(cgraph, node->src1);
  7576. }
  7577. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7578. if (node->opt[i]) {
  7579. ggml_visit_parents(cgraph, node->opt[i]);
  7580. }
  7581. }
  7582. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7583. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7584. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7585. cgraph->leafs[cgraph->n_leafs] = node;
  7586. cgraph->n_leafs++;
  7587. } else {
  7588. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7589. cgraph->nodes[cgraph->n_nodes] = node;
  7590. cgraph->grads[cgraph->n_nodes] = node->grad;
  7591. cgraph->n_nodes++;
  7592. }
  7593. }
  7594. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7595. if (!expand) {
  7596. cgraph->n_nodes = 0;
  7597. cgraph->n_leafs = 0;
  7598. }
  7599. const int n0 = cgraph->n_nodes;
  7600. UNUSED(n0);
  7601. ggml_visit_parents(cgraph, tensor);
  7602. const int n_new = cgraph->n_nodes - n0;
  7603. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7604. if (n_new > 0) {
  7605. // the last added node should always be starting point
  7606. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7607. }
  7608. }
  7609. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7610. ggml_build_forward_impl(cgraph, tensor, true);
  7611. }
  7612. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7613. struct ggml_cgraph result = {
  7614. /*.n_nodes =*/ 0,
  7615. /*.n_leafs =*/ 0,
  7616. /*.n_threads =*/ 0,
  7617. /*.work_size =*/ 0,
  7618. /*.work =*/ NULL,
  7619. /*.nodes =*/ { NULL },
  7620. /*.grads =*/ { NULL },
  7621. /*.leafs =*/ { NULL },
  7622. /*.perf_runs =*/ 0,
  7623. /*.perf_cycles =*/ 0,
  7624. /*.perf_time_us =*/ 0,
  7625. };
  7626. ggml_build_forward_impl(&result, tensor, false);
  7627. return result;
  7628. }
  7629. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7630. struct ggml_cgraph result = *gf;
  7631. GGML_ASSERT(gf->n_nodes > 0);
  7632. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7633. if (keep) {
  7634. for (int i = 0; i < gf->n_nodes; i++) {
  7635. struct ggml_tensor * node = gf->nodes[i];
  7636. if (node->grad) {
  7637. node->grad = ggml_dup_tensor(ctx, node);
  7638. gf->grads[i] = node->grad;
  7639. }
  7640. }
  7641. }
  7642. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7643. struct ggml_tensor * node = gf->nodes[i];
  7644. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7645. if (node->grad) {
  7646. ggml_compute_backward(ctx, node, keep);
  7647. }
  7648. }
  7649. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7650. struct ggml_tensor * node = gf->nodes[i];
  7651. if (node->is_param) {
  7652. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7653. ggml_build_forward_impl(&result, node->grad, true);
  7654. }
  7655. }
  7656. return result;
  7657. }
  7658. //
  7659. // thread data
  7660. //
  7661. // synchronization is done via busy loops
  7662. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7663. //
  7664. #ifdef __APPLE__
  7665. //#include <os/lock.h>
  7666. //
  7667. //typedef os_unfair_lock ggml_lock_t;
  7668. //
  7669. //#define ggml_lock_init(x) UNUSED(x)
  7670. //#define ggml_lock_destroy(x) UNUSED(x)
  7671. //#define ggml_lock_lock os_unfair_lock_lock
  7672. //#define ggml_lock_unlock os_unfair_lock_unlock
  7673. //
  7674. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7675. typedef int ggml_lock_t;
  7676. #define ggml_lock_init(x) UNUSED(x)
  7677. #define ggml_lock_destroy(x) UNUSED(x)
  7678. #define ggml_lock_lock(x) UNUSED(x)
  7679. #define ggml_lock_unlock(x) UNUSED(x)
  7680. #define GGML_LOCK_INITIALIZER 0
  7681. typedef pthread_t ggml_thread_t;
  7682. #define ggml_thread_create pthread_create
  7683. #define ggml_thread_join pthread_join
  7684. #else
  7685. //typedef pthread_spinlock_t ggml_lock_t;
  7686. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7687. //#define ggml_lock_destroy pthread_spin_destroy
  7688. //#define ggml_lock_lock pthread_spin_lock
  7689. //#define ggml_lock_unlock pthread_spin_unlock
  7690. typedef int ggml_lock_t;
  7691. #define ggml_lock_init(x) UNUSED(x)
  7692. #define ggml_lock_destroy(x) UNUSED(x)
  7693. #define ggml_lock_lock(x) UNUSED(x)
  7694. #define ggml_lock_unlock(x) UNUSED(x)
  7695. #define GGML_LOCK_INITIALIZER 0
  7696. typedef pthread_t ggml_thread_t;
  7697. #define ggml_thread_create pthread_create
  7698. #define ggml_thread_join pthread_join
  7699. #endif
  7700. struct ggml_compute_state_shared {
  7701. ggml_lock_t spin;
  7702. int n_threads;
  7703. // synchronization primitives
  7704. atomic_int n_ready;
  7705. atomic_bool has_work;
  7706. atomic_bool stop; // stop all threads
  7707. };
  7708. struct ggml_compute_state {
  7709. ggml_thread_t thrd;
  7710. struct ggml_compute_params params;
  7711. struct ggml_tensor * node;
  7712. struct ggml_compute_state_shared * shared;
  7713. };
  7714. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7715. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7716. const int n_threads = state->shared->n_threads;
  7717. while (true) {
  7718. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7719. atomic_store(&state->shared->has_work, false);
  7720. } else {
  7721. while (atomic_load(&state->shared->has_work)) {
  7722. if (atomic_load(&state->shared->stop)) {
  7723. return 0;
  7724. }
  7725. ggml_lock_lock (&state->shared->spin);
  7726. ggml_lock_unlock(&state->shared->spin);
  7727. }
  7728. }
  7729. atomic_fetch_sub(&state->shared->n_ready, 1);
  7730. // wait for work
  7731. while (!atomic_load(&state->shared->has_work)) {
  7732. if (atomic_load(&state->shared->stop)) {
  7733. return 0;
  7734. }
  7735. ggml_lock_lock (&state->shared->spin);
  7736. ggml_lock_unlock(&state->shared->spin);
  7737. }
  7738. // check if we should stop
  7739. if (atomic_load(&state->shared->stop)) {
  7740. break;
  7741. }
  7742. if (state->node) {
  7743. if (state->params.ith < state->params.nth) {
  7744. ggml_compute_forward(&state->params, state->node);
  7745. }
  7746. state->node = NULL;
  7747. } else {
  7748. break;
  7749. }
  7750. }
  7751. return 0;
  7752. }
  7753. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7754. const int n_threads = cgraph->n_threads;
  7755. struct ggml_compute_state_shared state_shared = {
  7756. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7757. /*.n_threads =*/ n_threads,
  7758. /*.n_ready =*/ 0,
  7759. /*.has_work =*/ false,
  7760. /*.stop =*/ false,
  7761. };
  7762. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7763. // create thread pool
  7764. if (n_threads > 1) {
  7765. ggml_lock_init(&state_shared.spin);
  7766. atomic_store(&state_shared.has_work, true);
  7767. for (int j = 0; j < n_threads - 1; j++) {
  7768. workers[j] = (struct ggml_compute_state) {
  7769. .thrd = 0,
  7770. .params = {
  7771. .type = GGML_TASK_COMPUTE,
  7772. .ith = j + 1,
  7773. .nth = n_threads,
  7774. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7775. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7776. },
  7777. .node = NULL,
  7778. .shared = &state_shared,
  7779. };
  7780. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7781. GGML_ASSERT(rc == 0);
  7782. UNUSED(rc);
  7783. }
  7784. }
  7785. // initialize tasks + work buffer
  7786. {
  7787. size_t work_size = 0;
  7788. // thread scheduling for the different operations
  7789. for (int i = 0; i < cgraph->n_nodes; i++) {
  7790. struct ggml_tensor * node = cgraph->nodes[i];
  7791. switch (node->op) {
  7792. case GGML_OP_DUP:
  7793. {
  7794. node->n_tasks = 1;
  7795. } break;
  7796. case GGML_OP_ADD:
  7797. {
  7798. node->n_tasks = n_threads;
  7799. } break;
  7800. case GGML_OP_SUB:
  7801. case GGML_OP_MUL:
  7802. case GGML_OP_DIV:
  7803. case GGML_OP_SQR:
  7804. case GGML_OP_SQRT:
  7805. case GGML_OP_SUM:
  7806. case GGML_OP_MEAN:
  7807. case GGML_OP_REPEAT:
  7808. case GGML_OP_ABS:
  7809. case GGML_OP_SGN:
  7810. case GGML_OP_NEG:
  7811. case GGML_OP_STEP:
  7812. case GGML_OP_RELU:
  7813. {
  7814. node->n_tasks = 1;
  7815. } break;
  7816. case GGML_OP_GELU:
  7817. {
  7818. node->n_tasks = n_threads;
  7819. } break;
  7820. case GGML_OP_SILU:
  7821. {
  7822. node->n_tasks = n_threads;
  7823. } break;
  7824. case GGML_OP_NORM:
  7825. case GGML_OP_RMS_NORM:
  7826. {
  7827. node->n_tasks = n_threads;
  7828. } break;
  7829. case GGML_OP_MUL_MAT:
  7830. {
  7831. node->n_tasks = n_threads;
  7832. // TODO: use different scheduling for different matrix sizes
  7833. //const int nr0 = ggml_nrows(node->src0);
  7834. //const int nr1 = ggml_nrows(node->src1);
  7835. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7836. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7837. size_t cur = 0;
  7838. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7839. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7840. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7841. node->n_tasks = 1; // TODO: this actually is doing nothing
  7842. // the threads are still spinning
  7843. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7844. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7845. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7846. //printf("cur = %zu\n", cur);
  7847. } else {
  7848. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7849. }
  7850. #else
  7851. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7852. #endif
  7853. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7854. cur = 0;
  7855. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7856. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7857. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7858. node->n_tasks = 1;
  7859. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7860. } else
  7861. #endif
  7862. {
  7863. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7864. }
  7865. } else {
  7866. GGML_ASSERT(false);
  7867. }
  7868. work_size = MAX(work_size, cur);
  7869. } break;
  7870. case GGML_OP_SCALE:
  7871. {
  7872. node->n_tasks = n_threads;
  7873. } break;
  7874. case GGML_OP_CPY:
  7875. case GGML_OP_CONT:
  7876. case GGML_OP_RESHAPE:
  7877. case GGML_OP_VIEW:
  7878. case GGML_OP_PERMUTE:
  7879. case GGML_OP_TRANSPOSE:
  7880. case GGML_OP_GET_ROWS:
  7881. case GGML_OP_DIAG_MASK_INF:
  7882. {
  7883. node->n_tasks = 1;
  7884. } break;
  7885. case GGML_OP_SOFT_MAX:
  7886. {
  7887. node->n_tasks = n_threads;
  7888. } break;
  7889. case GGML_OP_ROPE:
  7890. {
  7891. node->n_tasks = n_threads;
  7892. } break;
  7893. case GGML_OP_CONV_1D_1S:
  7894. case GGML_OP_CONV_1D_2S:
  7895. {
  7896. node->n_tasks = n_threads;
  7897. GGML_ASSERT(node->src0->ne[3] == 1);
  7898. GGML_ASSERT(node->src1->ne[2] == 1);
  7899. GGML_ASSERT(node->src1->ne[3] == 1);
  7900. size_t cur = 0;
  7901. const int nk = node->src0->ne[0];
  7902. if (node->src0->type == GGML_TYPE_F16 &&
  7903. node->src1->type == GGML_TYPE_F32) {
  7904. cur = sizeof(ggml_fp16_t)*(
  7905. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7906. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7907. );
  7908. } else if (node->src0->type == GGML_TYPE_F32 &&
  7909. node->src1->type == GGML_TYPE_F32) {
  7910. cur = sizeof(float)*(
  7911. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7912. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7913. );
  7914. } else {
  7915. GGML_ASSERT(false);
  7916. }
  7917. work_size = MAX(work_size, cur);
  7918. } break;
  7919. case GGML_OP_FLASH_ATTN:
  7920. {
  7921. node->n_tasks = n_threads;
  7922. size_t cur = 0;
  7923. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7924. if (node->src1->type == GGML_TYPE_F32) {
  7925. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7926. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7927. }
  7928. if (node->src1->type == GGML_TYPE_F16) {
  7929. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7930. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7931. }
  7932. work_size = MAX(work_size, cur);
  7933. } break;
  7934. case GGML_OP_FLASH_FF:
  7935. {
  7936. node->n_tasks = n_threads;
  7937. size_t cur = 0;
  7938. if (node->src1->type == GGML_TYPE_F32) {
  7939. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7940. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7941. }
  7942. if (node->src1->type == GGML_TYPE_F16) {
  7943. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7944. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7945. }
  7946. work_size = MAX(work_size, cur);
  7947. } break;
  7948. case GGML_OP_NONE:
  7949. {
  7950. node->n_tasks = 1;
  7951. } break;
  7952. case GGML_OP_COUNT:
  7953. {
  7954. GGML_ASSERT(false);
  7955. } break;
  7956. }
  7957. }
  7958. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7959. GGML_ASSERT(false); // TODO: better handling
  7960. }
  7961. if (work_size > 0 && cgraph->work == NULL) {
  7962. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7963. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7964. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7965. }
  7966. }
  7967. const int64_t perf_start_cycles = ggml_perf_cycles();
  7968. const int64_t perf_start_time_us = ggml_perf_time_us();
  7969. for (int i = 0; i < cgraph->n_nodes; i++) {
  7970. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7971. struct ggml_tensor * node = cgraph->nodes[i];
  7972. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7973. //if (node->grad == NULL && node->perf_runs > 0) {
  7974. // continue;
  7975. //}
  7976. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7977. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7978. // INIT
  7979. struct ggml_compute_params params = {
  7980. /*.type =*/ GGML_TASK_INIT,
  7981. /*.ith =*/ 0,
  7982. /*.nth =*/ node->n_tasks,
  7983. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7984. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7985. };
  7986. ggml_compute_forward(&params, node);
  7987. // COMPUTE
  7988. if (node->n_tasks > 1) {
  7989. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7990. atomic_store(&state_shared.has_work, false);
  7991. }
  7992. while (atomic_load(&state_shared.has_work)) {
  7993. ggml_lock_lock (&state_shared.spin);
  7994. ggml_lock_unlock(&state_shared.spin);
  7995. }
  7996. // launch thread pool
  7997. for (int j = 0; j < n_threads - 1; j++) {
  7998. workers[j].params = (struct ggml_compute_params) {
  7999. .type = GGML_TASK_COMPUTE,
  8000. .ith = j + 1,
  8001. .nth = node->n_tasks,
  8002. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8003. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8004. };
  8005. workers[j].node = node;
  8006. }
  8007. atomic_fetch_sub(&state_shared.n_ready, 1);
  8008. while (atomic_load(&state_shared.n_ready) > 0) {
  8009. ggml_lock_lock (&state_shared.spin);
  8010. ggml_lock_unlock(&state_shared.spin);
  8011. }
  8012. atomic_store(&state_shared.has_work, true);
  8013. }
  8014. params.type = GGML_TASK_COMPUTE;
  8015. ggml_compute_forward(&params, node);
  8016. // wait for thread pool
  8017. if (node->n_tasks > 1) {
  8018. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8019. atomic_store(&state_shared.has_work, false);
  8020. }
  8021. while (atomic_load(&state_shared.has_work)) {
  8022. ggml_lock_lock (&state_shared.spin);
  8023. ggml_lock_unlock(&state_shared.spin);
  8024. }
  8025. atomic_fetch_sub(&state_shared.n_ready, 1);
  8026. while (atomic_load(&state_shared.n_ready) != 0) {
  8027. ggml_lock_lock (&state_shared.spin);
  8028. ggml_lock_unlock(&state_shared.spin);
  8029. }
  8030. }
  8031. // FINALIZE
  8032. if (node->n_tasks > 1) {
  8033. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8034. atomic_store(&state_shared.has_work, false);
  8035. }
  8036. while (atomic_load(&state_shared.has_work)) {
  8037. ggml_lock_lock (&state_shared.spin);
  8038. ggml_lock_unlock(&state_shared.spin);
  8039. }
  8040. // launch thread pool
  8041. for (int j = 0; j < n_threads - 1; j++) {
  8042. workers[j].params = (struct ggml_compute_params) {
  8043. .type = GGML_TASK_FINALIZE,
  8044. .ith = j + 1,
  8045. .nth = node->n_tasks,
  8046. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8047. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8048. };
  8049. workers[j].node = node;
  8050. }
  8051. atomic_fetch_sub(&state_shared.n_ready, 1);
  8052. while (atomic_load(&state_shared.n_ready) > 0) {
  8053. ggml_lock_lock (&state_shared.spin);
  8054. ggml_lock_unlock(&state_shared.spin);
  8055. }
  8056. atomic_store(&state_shared.has_work, true);
  8057. }
  8058. params.type = GGML_TASK_FINALIZE;
  8059. ggml_compute_forward(&params, node);
  8060. // wait for thread pool
  8061. if (node->n_tasks > 1) {
  8062. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  8063. atomic_store(&state_shared.has_work, false);
  8064. }
  8065. while (atomic_load(&state_shared.has_work)) {
  8066. ggml_lock_lock (&state_shared.spin);
  8067. ggml_lock_unlock(&state_shared.spin);
  8068. }
  8069. atomic_fetch_sub(&state_shared.n_ready, 1);
  8070. while (atomic_load(&state_shared.n_ready) != 0) {
  8071. ggml_lock_lock (&state_shared.spin);
  8072. ggml_lock_unlock(&state_shared.spin);
  8073. }
  8074. }
  8075. // performance stats (node)
  8076. {
  8077. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  8078. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  8079. node->perf_runs++;
  8080. node->perf_cycles += perf_cycles_cur;
  8081. node->perf_time_us += perf_time_us_cur;
  8082. }
  8083. }
  8084. // join thread pool
  8085. if (n_threads > 1) {
  8086. atomic_store(&state_shared.stop, true);
  8087. atomic_store(&state_shared.has_work, true);
  8088. for (int j = 0; j < n_threads - 1; j++) {
  8089. int rc = ggml_thread_join(workers[j].thrd, NULL);
  8090. GGML_ASSERT(rc == 0);
  8091. UNUSED(rc);
  8092. }
  8093. ggml_lock_destroy(&state_shared.spin);
  8094. }
  8095. // performance stats (graph)
  8096. {
  8097. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  8098. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  8099. cgraph->perf_runs++;
  8100. cgraph->perf_cycles += perf_cycles_cur;
  8101. cgraph->perf_time_us += perf_time_us_cur;
  8102. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  8103. __func__, cgraph->perf_runs,
  8104. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  8105. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  8106. (double) perf_time_us_cur / 1000.0,
  8107. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  8108. }
  8109. }
  8110. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  8111. for (int i = 0; i < cgraph->n_nodes; i++) {
  8112. struct ggml_tensor * grad = cgraph->grads[i];
  8113. if (grad) {
  8114. ggml_set_zero(grad);
  8115. }
  8116. }
  8117. }
  8118. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  8119. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  8120. GGML_PRINT("=== GRAPH ===\n");
  8121. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  8122. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  8123. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  8124. for (int i = 0; i < cgraph->n_nodes; i++) {
  8125. struct ggml_tensor * node = cgraph->nodes[i];
  8126. perf_total_per_op_us[node->op] += node->perf_time_us;
  8127. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  8128. i,
  8129. node->ne[0], node->ne[1], node->ne[2],
  8130. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  8131. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  8132. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  8133. (double) node->perf_time_us / 1000.0,
  8134. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  8135. }
  8136. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  8137. for (int i = 0; i < cgraph->n_leafs; i++) {
  8138. struct ggml_tensor * node = cgraph->leafs[i];
  8139. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  8140. i,
  8141. node->ne[0], node->ne[1],
  8142. GGML_OP_LABEL[node->op]);
  8143. }
  8144. for (int i = 0; i < GGML_OP_COUNT; i++) {
  8145. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  8146. }
  8147. GGML_PRINT("========================================\n");
  8148. }
  8149. // check if node is part of the graph
  8150. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8151. if (cgraph == NULL) {
  8152. return true;
  8153. }
  8154. for (int i = 0; i < cgraph->n_nodes; i++) {
  8155. if (cgraph->nodes[i] == node) {
  8156. return true;
  8157. }
  8158. }
  8159. return false;
  8160. }
  8161. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  8162. for (int i = 0; i < cgraph->n_nodes; i++) {
  8163. struct ggml_tensor * parent = cgraph->nodes[i];
  8164. if (parent->grad == node) {
  8165. return parent;
  8166. }
  8167. }
  8168. return NULL;
  8169. }
  8170. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  8171. char color[16];
  8172. FILE * fp = fopen(filename, "w");
  8173. GGML_ASSERT(fp);
  8174. fprintf(fp, "digraph G {\n");
  8175. fprintf(fp, " newrank = true;\n");
  8176. fprintf(fp, " rankdir = LR;\n");
  8177. for (int i = 0; i < gb->n_nodes; i++) {
  8178. struct ggml_tensor * node = gb->nodes[i];
  8179. if (ggml_graph_get_parent(gb, node) != NULL) {
  8180. continue;
  8181. }
  8182. if (node->is_param) {
  8183. snprintf(color, sizeof(color), "yellow");
  8184. } else if (node->grad) {
  8185. if (ggml_graph_find(gf, node)) {
  8186. snprintf(color, sizeof(color), "green");
  8187. } else {
  8188. snprintf(color, sizeof(color), "lightblue");
  8189. }
  8190. } else {
  8191. snprintf(color, sizeof(color), "white");
  8192. }
  8193. fprintf(fp, " \"%p\" [ \
  8194. style = filled; fillcolor = %s; shape = record; \
  8195. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  8196. (void *) node, color,
  8197. i, node->ne[0], node->ne[1],
  8198. GGML_OP_SYMBOL[node->op]);
  8199. if (node->grad) {
  8200. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  8201. } else {
  8202. fprintf(fp, "\"; ]\n");
  8203. }
  8204. }
  8205. for (int i = 0; i < gb->n_leafs; i++) {
  8206. struct ggml_tensor * node = gb->leafs[i];
  8207. snprintf(color, sizeof(color), "pink");
  8208. if (ggml_nelements(node) == 1) {
  8209. fprintf(fp, " \"%p\" [ \
  8210. style = filled; fillcolor = %s; shape = record; \
  8211. label=\"<x>%.1e\"; ]\n",
  8212. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  8213. } else {
  8214. fprintf(fp, " \"%p\" [ \
  8215. style = filled; fillcolor = %s; shape = record; \
  8216. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  8217. (void *) node, color,
  8218. i, node->ne[0], node->ne[1]);
  8219. }
  8220. }
  8221. for (int i = 0; i < gb->n_nodes; i++) {
  8222. struct ggml_tensor * node = gb->nodes[i];
  8223. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8224. if (node->src0) {
  8225. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8226. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8227. parent0 ? (void *) parent0 : (void *) node->src0,
  8228. parent0 ? "g" : "x",
  8229. parent ? (void *) parent : (void *) node,
  8230. parent ? "g" : "x",
  8231. parent ? "empty" : "vee",
  8232. parent ? "dashed" : "solid");
  8233. }
  8234. if (node->src1) {
  8235. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8236. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8237. parent1 ? (void *) parent1 : (void *) node->src1,
  8238. parent1 ? "g" : "x",
  8239. parent ? (void *) parent : (void *) node,
  8240. parent ? "g" : "x",
  8241. parent ? "empty" : "vee",
  8242. parent ? "dashed" : "solid");
  8243. }
  8244. }
  8245. for (int i = 0; i < gb->n_leafs; i++) {
  8246. struct ggml_tensor * node = gb->leafs[i];
  8247. if (node->src0) {
  8248. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8249. (void *) node->src0, "x",
  8250. (void *) node, "x");
  8251. }
  8252. if (node->src1) {
  8253. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8254. (void *) node->src1, "x",
  8255. (void *) node, "x");
  8256. }
  8257. }
  8258. fprintf(fp, "}\n");
  8259. fclose(fp);
  8260. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8261. }
  8262. ////////////////////////////////////////////////////////////////////////////////
  8263. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8264. int i = 0;
  8265. for (int p = 0; p < np; ++p) {
  8266. const int64_t ne = ggml_nelements(ps[p]) ;
  8267. // TODO: add function to set tensor from array
  8268. for (int64_t j = 0; j < ne; ++j) {
  8269. ggml_set_f32_1d(ps[p], j, x[i++]);
  8270. }
  8271. }
  8272. }
  8273. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8274. int i = 0;
  8275. for (int p = 0; p < np; ++p) {
  8276. const int64_t ne = ggml_nelements(ps[p]) ;
  8277. // TODO: add function to get all elements at once
  8278. for (int64_t j = 0; j < ne; ++j) {
  8279. x[i++] = ggml_get_f32_1d(ps[p], j);
  8280. }
  8281. }
  8282. }
  8283. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8284. int i = 0;
  8285. for (int p = 0; p < np; ++p) {
  8286. const int64_t ne = ggml_nelements(ps[p]) ;
  8287. // TODO: add function to get all elements at once
  8288. for (int64_t j = 0; j < ne; ++j) {
  8289. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8290. }
  8291. }
  8292. }
  8293. //
  8294. // ADAM
  8295. //
  8296. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8297. //
  8298. static enum ggml_opt_result ggml_opt_adam(
  8299. struct ggml_context * ctx,
  8300. struct ggml_opt_params params,
  8301. struct ggml_tensor * f,
  8302. struct ggml_cgraph * gf,
  8303. struct ggml_cgraph * gb) {
  8304. GGML_ASSERT(ggml_is_scalar(f));
  8305. gf->n_threads = params.n_threads;
  8306. gb->n_threads = params.n_threads;
  8307. // these will store the parameters we want to optimize
  8308. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8309. int np = 0;
  8310. int nx = 0;
  8311. for (int i = 0; i < gf->n_nodes; ++i) {
  8312. if (gf->nodes[i]->is_param) {
  8313. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8314. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8315. ps[np++] = gf->nodes[i];
  8316. nx += ggml_nelements(gf->nodes[i]);
  8317. }
  8318. }
  8319. // constants
  8320. const float alpha = params.adam.alpha;
  8321. const float beta1 = params.adam.beta1;
  8322. const float beta2 = params.adam.beta2;
  8323. const float eps = params.adam.eps;
  8324. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8325. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8326. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8327. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8328. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8329. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8330. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8331. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8332. // initialize
  8333. ggml_vec_set_f32(nx, m, 0.0f);
  8334. ggml_vec_set_f32(nx, v, 0.0f);
  8335. // update view
  8336. ggml_opt_get_params(np, ps, x);
  8337. // compute the function value
  8338. ggml_graph_reset (gf);
  8339. ggml_set_f32 (f->grad, 1.0f);
  8340. ggml_graph_compute(ctx, gb);
  8341. float fx_prev = ggml_get_f32_1d(f, 0);
  8342. if (pf) {
  8343. pf[0] = fx_prev;
  8344. }
  8345. int n_no_improvement = 0;
  8346. float fx_best = fx_prev;
  8347. // run the optimizer
  8348. for (int t = 0; t < params.adam.n_iter; ++t) {
  8349. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8350. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8351. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8352. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8353. for (int i = 0; i < np; ++i) {
  8354. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8355. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8356. }
  8357. const int64_t t_start_wall = ggml_time_us();
  8358. const int64_t t_start_cpu = ggml_cycles();
  8359. UNUSED(t_start_wall);
  8360. UNUSED(t_start_cpu);
  8361. {
  8362. // update the gradient
  8363. ggml_opt_get_grad(np, ps, g1);
  8364. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8365. ggml_vec_scale_f32(nx, m, beta1);
  8366. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8367. // g2 = g1^2
  8368. ggml_vec_sqr_f32 (nx, g2, g1);
  8369. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8370. ggml_vec_scale_f32(nx, v, beta2);
  8371. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8372. // m^hat = m_t / (1 - beta1^t)
  8373. // v^hat = v_t / (1 - beta2^t)
  8374. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8375. ggml_vec_cpy_f32 (nx, mh, m);
  8376. ggml_vec_cpy_f32 (nx, vh, v);
  8377. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8378. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8379. ggml_vec_sqrt_f32 (nx, vh, vh);
  8380. ggml_vec_acc1_f32 (nx, vh, eps);
  8381. ggml_vec_div_f32 (nx, mh, mh, vh);
  8382. ggml_vec_sub_f32 (nx, x, x, mh);
  8383. // update the parameters
  8384. ggml_opt_set_params(np, ps, x);
  8385. }
  8386. ggml_graph_reset (gf);
  8387. ggml_set_f32 (f->grad, 1.0f);
  8388. ggml_graph_compute(ctx, gb);
  8389. const float fx = ggml_get_f32_1d(f, 0);
  8390. // check convergence
  8391. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8392. GGML_PRINT_DEBUG("converged\n");
  8393. return GGML_OPT_OK;
  8394. }
  8395. // delta-based convergence test
  8396. if (pf != NULL) {
  8397. // need at least params.past iterations to start checking for convergence
  8398. if (params.past <= t) {
  8399. const float rate = (pf[t%params.past] - fx)/fx;
  8400. if (fabsf(rate) < params.delta) {
  8401. return GGML_OPT_OK;
  8402. }
  8403. }
  8404. pf[t%params.past] = fx;
  8405. }
  8406. // check for improvement
  8407. if (params.max_no_improvement > 0) {
  8408. if (fx_best > fx) {
  8409. fx_best = fx;
  8410. n_no_improvement = 0;
  8411. } else {
  8412. ++n_no_improvement;
  8413. if (n_no_improvement >= params.max_no_improvement) {
  8414. return GGML_OPT_OK;
  8415. }
  8416. }
  8417. }
  8418. fx_prev = fx;
  8419. {
  8420. const int64_t t_end_cpu = ggml_cycles();
  8421. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8422. UNUSED(t_end_cpu);
  8423. const int64_t t_end_wall = ggml_time_us();
  8424. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8425. UNUSED(t_end_wall);
  8426. }
  8427. }
  8428. return GGML_OPT_DID_NOT_CONVERGE;
  8429. }
  8430. //
  8431. // L-BFGS
  8432. //
  8433. // the L-BFGS implementation below is based on the following implementation:
  8434. //
  8435. // https://github.com/chokkan/liblbfgs
  8436. //
  8437. struct ggml_lbfgs_iteration_data {
  8438. float alpha;
  8439. float ys;
  8440. float * s;
  8441. float * y;
  8442. };
  8443. static enum ggml_opt_result linesearch_backtracking(
  8444. struct ggml_context * ctx,
  8445. const struct ggml_opt_params * params,
  8446. int nx,
  8447. float * x,
  8448. float * fx,
  8449. float * g,
  8450. float * d,
  8451. float * step,
  8452. const float * xp,
  8453. struct ggml_tensor * f,
  8454. struct ggml_cgraph * gf,
  8455. struct ggml_cgraph * gb,
  8456. const int np,
  8457. struct ggml_tensor * ps[]) {
  8458. int count = 0;
  8459. float width = 0.0f;
  8460. float dg = 0.0f;
  8461. float finit = 0.0f;
  8462. float dginit = 0.0f;
  8463. float dgtest = 0.0f;
  8464. const float dec = 0.5f;
  8465. const float inc = 2.1f;
  8466. if (*step <= 0.f) {
  8467. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8468. }
  8469. // compute the initial gradient in the search direction
  8470. ggml_vec_dot_f32(nx, &dginit, g, d);
  8471. // make sure that d points to a descent direction
  8472. if (0 < dginit) {
  8473. return GGML_LINESEARCH_FAIL;
  8474. }
  8475. // initialize local variables
  8476. finit = *fx;
  8477. dgtest = params->lbfgs.ftol*dginit;
  8478. while (true) {
  8479. ggml_vec_cpy_f32(nx, x, xp);
  8480. ggml_vec_mad_f32(nx, x, d, *step);
  8481. // evaluate the function and gradient values
  8482. {
  8483. ggml_opt_set_params(np, ps, x);
  8484. ggml_graph_reset (gf);
  8485. ggml_set_f32 (f->grad, 1.0f);
  8486. ggml_graph_compute(ctx, gb);
  8487. ggml_opt_get_grad(np, ps, g);
  8488. *fx = ggml_get_f32_1d(f, 0);
  8489. }
  8490. ++count;
  8491. if (*fx > finit + (*step)*dgtest) {
  8492. width = dec;
  8493. } else {
  8494. // Armijo condition is satisfied
  8495. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8496. return count;
  8497. }
  8498. ggml_vec_dot_f32(nx, &dg, g, d);
  8499. // check the Wolfe condition
  8500. if (dg < params->lbfgs.wolfe * dginit) {
  8501. width = inc;
  8502. } else {
  8503. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8504. // regular Wolfe conditions
  8505. return count;
  8506. }
  8507. if(dg > -params->lbfgs.wolfe*dginit) {
  8508. width = dec;
  8509. } else {
  8510. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8511. return count;
  8512. }
  8513. return count;
  8514. }
  8515. }
  8516. if (*step < params->lbfgs.min_step) {
  8517. return GGML_LINESEARCH_MINIMUM_STEP;
  8518. }
  8519. if (*step > params->lbfgs.max_step) {
  8520. return GGML_LINESEARCH_MAXIMUM_STEP;
  8521. }
  8522. if (params->lbfgs.max_linesearch <= count) {
  8523. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8524. }
  8525. (*step) *= width;
  8526. }
  8527. return GGML_LINESEARCH_FAIL;
  8528. }
  8529. static enum ggml_opt_result ggml_opt_lbfgs(
  8530. struct ggml_context * ctx,
  8531. struct ggml_opt_params params,
  8532. struct ggml_tensor * f,
  8533. struct ggml_cgraph * gf,
  8534. struct ggml_cgraph * gb) {
  8535. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8536. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8537. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8538. return GGML_OPT_INVALID_WOLFE;
  8539. }
  8540. }
  8541. gf->n_threads = params.n_threads;
  8542. gb->n_threads = params.n_threads;
  8543. const int m = params.lbfgs.m;
  8544. // these will store the parameters we want to optimize
  8545. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8546. int np = 0;
  8547. int nx = 0;
  8548. for (int i = 0; i < gf->n_nodes; ++i) {
  8549. if (gf->nodes[i]->is_param) {
  8550. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8551. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8552. ps[np++] = gf->nodes[i];
  8553. nx += ggml_nelements(gf->nodes[i]);
  8554. }
  8555. }
  8556. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8557. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8558. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8559. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8560. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8561. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8562. float fx = 0.0f; // cost function value
  8563. float xnorm = 0.0f; // ||x||
  8564. float gnorm = 0.0f; // ||g||
  8565. float step = 0.0f;
  8566. // initialize x from the graph nodes
  8567. ggml_opt_get_params(np, ps, x);
  8568. // the L-BFGS memory
  8569. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8570. for (int i = 0; i < m; ++i) {
  8571. lm[i].alpha = 0.0f;
  8572. lm[i].ys = 0.0f;
  8573. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8574. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8575. }
  8576. // evaluate the function value and its gradient
  8577. {
  8578. ggml_opt_set_params(np, ps, x);
  8579. ggml_graph_reset (gf);
  8580. ggml_set_f32 (f->grad, 1.0f);
  8581. ggml_graph_compute(ctx, gb);
  8582. ggml_opt_get_grad(np, ps, g);
  8583. fx = ggml_get_f32_1d(f, 0);
  8584. }
  8585. if (pf) {
  8586. pf[0] = fx;
  8587. }
  8588. float fx_best = fx;
  8589. // search direction = -gradient
  8590. ggml_vec_neg_f32(nx, d, g);
  8591. // ||x||, ||g||
  8592. ggml_vec_norm_f32(nx, &xnorm, x);
  8593. ggml_vec_norm_f32(nx, &gnorm, g);
  8594. if (xnorm < 1.0f) {
  8595. xnorm = 1.0f;
  8596. }
  8597. // already optimized
  8598. if (gnorm/xnorm <= params.lbfgs.eps) {
  8599. return GGML_OPT_OK;
  8600. }
  8601. // initial step
  8602. ggml_vec_norm_inv_f32(nx, &step, d);
  8603. int j = 0;
  8604. int k = 1;
  8605. int ls = 0;
  8606. int end = 0;
  8607. int bound = 0;
  8608. int n_no_improvement = 0;
  8609. float ys = 0.0f;
  8610. float yy = 0.0f;
  8611. float beta = 0.0f;
  8612. while (true) {
  8613. // store the current position and gradient vectors
  8614. ggml_vec_cpy_f32(nx, xp, x);
  8615. ggml_vec_cpy_f32(nx, gp, g);
  8616. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8617. if (ls < 0) {
  8618. // linesearch failed - go back to the previous point and return
  8619. ggml_vec_cpy_f32(nx, x, xp);
  8620. ggml_vec_cpy_f32(nx, g, gp);
  8621. return ls;
  8622. }
  8623. ggml_vec_norm_f32(nx, &xnorm, x);
  8624. ggml_vec_norm_f32(nx, &gnorm, g);
  8625. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8626. if (xnorm < 1.0f) {
  8627. xnorm = 1.0f;
  8628. }
  8629. if (gnorm/xnorm <= params.lbfgs.eps) {
  8630. // converged
  8631. return GGML_OPT_OK;
  8632. }
  8633. // delta-based convergence test
  8634. if (pf != NULL) {
  8635. // need at least params.past iterations to start checking for convergence
  8636. if (params.past <= k) {
  8637. const float rate = (pf[k%params.past] - fx)/fx;
  8638. if (fabsf(rate) < params.delta) {
  8639. return GGML_OPT_OK;
  8640. }
  8641. }
  8642. pf[k%params.past] = fx;
  8643. }
  8644. // check for improvement
  8645. if (params.max_no_improvement > 0) {
  8646. if (fx < fx_best) {
  8647. fx_best = fx;
  8648. n_no_improvement = 0;
  8649. } else {
  8650. n_no_improvement++;
  8651. if (n_no_improvement >= params.max_no_improvement) {
  8652. return GGML_OPT_OK;
  8653. }
  8654. }
  8655. }
  8656. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8657. // reached the maximum number of iterations
  8658. return GGML_OPT_DID_NOT_CONVERGE;
  8659. }
  8660. // update vectors s and y:
  8661. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8662. // y_{k+1} = g_{k+1} - g_{k}.
  8663. //
  8664. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8665. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8666. // compute scalars ys and yy:
  8667. // ys = y^t \cdot s -> 1 / \rho.
  8668. // yy = y^t \cdot y.
  8669. //
  8670. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8671. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8672. lm[end].ys = ys;
  8673. // find new search direction
  8674. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8675. bound = (m <= k) ? m : k;
  8676. k++;
  8677. end = (end + 1)%m;
  8678. // initialize search direction with -g
  8679. ggml_vec_neg_f32(nx, d, g);
  8680. j = end;
  8681. for (int i = 0; i < bound; ++i) {
  8682. j = (j + m - 1) % m;
  8683. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8684. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8685. lm[j].alpha /= lm[j].ys;
  8686. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8687. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8688. }
  8689. ggml_vec_scale_f32(nx, d, ys/yy);
  8690. for (int i = 0; i < bound; ++i) {
  8691. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8692. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8693. beta /= lm[j].ys;
  8694. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8695. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8696. j = (j + 1)%m;
  8697. }
  8698. step = 1.0;
  8699. }
  8700. return GGML_OPT_DID_NOT_CONVERGE;
  8701. }
  8702. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8703. struct ggml_opt_params result;
  8704. switch (type) {
  8705. case GGML_OPT_ADAM:
  8706. {
  8707. result = (struct ggml_opt_params) {
  8708. .type = GGML_OPT_ADAM,
  8709. .n_threads = 1,
  8710. .past = 0,
  8711. .delta = 1e-5f,
  8712. .max_no_improvement = 100,
  8713. .print_forward_graph = true,
  8714. .print_backward_graph = true,
  8715. .adam = {
  8716. .n_iter = 10000,
  8717. .alpha = 0.001f,
  8718. .beta1 = 0.9f,
  8719. .beta2 = 0.999f,
  8720. .eps = 1e-8f,
  8721. .eps_f = 1e-5f,
  8722. .eps_g = 1e-3f,
  8723. },
  8724. };
  8725. } break;
  8726. case GGML_OPT_LBFGS:
  8727. {
  8728. result = (struct ggml_opt_params) {
  8729. .type = GGML_OPT_LBFGS,
  8730. .n_threads = 1,
  8731. .past = 0,
  8732. .delta = 1e-5f,
  8733. .max_no_improvement = 0,
  8734. .print_forward_graph = true,
  8735. .print_backward_graph = true,
  8736. .lbfgs = {
  8737. .m = 6,
  8738. .n_iter = 100,
  8739. .max_linesearch = 20,
  8740. .eps = 1e-5f,
  8741. .ftol = 1e-4f,
  8742. .wolfe = 0.9f,
  8743. .min_step = 1e-20f,
  8744. .max_step = 1e+20f,
  8745. .linesearch = GGML_LINESEARCH_DEFAULT,
  8746. },
  8747. };
  8748. } break;
  8749. }
  8750. return result;
  8751. }
  8752. enum ggml_opt_result ggml_opt(
  8753. struct ggml_context * ctx,
  8754. struct ggml_opt_params params,
  8755. struct ggml_tensor * f) {
  8756. bool free_ctx = false;
  8757. if (ctx == NULL) {
  8758. struct ggml_init_params params_ctx = {
  8759. .mem_size = 16*1024*1024,
  8760. .mem_buffer = NULL,
  8761. .no_alloc = false,
  8762. };
  8763. ctx = ggml_init(params_ctx);
  8764. if (ctx == NULL) {
  8765. return GGML_OPT_NO_CONTEXT;
  8766. }
  8767. free_ctx = true;
  8768. }
  8769. enum ggml_opt_result result = GGML_OPT_OK;
  8770. // build forward + backward compute graphs
  8771. struct ggml_cgraph gf = ggml_build_forward (f);
  8772. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8773. switch (params.type) {
  8774. case GGML_OPT_ADAM:
  8775. {
  8776. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8777. } break;
  8778. case GGML_OPT_LBFGS:
  8779. {
  8780. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8781. } break;
  8782. }
  8783. if (params.print_forward_graph) {
  8784. ggml_graph_print (&gf);
  8785. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8786. }
  8787. if (params.print_backward_graph) {
  8788. ggml_graph_print (&gb);
  8789. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8790. }
  8791. if (free_ctx) {
  8792. ggml_free(ctx);
  8793. }
  8794. return result;
  8795. }
  8796. ////////////////////////////////////////////////////////////////////////////////
  8797. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8798. assert(k % QK == 0);
  8799. const int nb = k / QK;
  8800. for (int j = 0; j < n; j += k) {
  8801. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8802. quantize_row_q4_0_reference(src + j, y, k);
  8803. for (int i = 0; i < nb; i++) {
  8804. for (int l = 0; l < QK; l += 2) {
  8805. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8806. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8807. hist[vi0]++;
  8808. hist[vi1]++;
  8809. }
  8810. }
  8811. }
  8812. return (n/QK*sizeof(block_q4_0));
  8813. }
  8814. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8815. assert(k % QK == 0);
  8816. const int nb = k / QK;
  8817. for (int j = 0; j < n; j += k) {
  8818. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8819. quantize_row_q4_1_reference(src + j, y, k);
  8820. for (int i = 0; i < nb; i++) {
  8821. for (int l = 0; l < QK; l += 2) {
  8822. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8823. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8824. hist[vi0]++;
  8825. hist[vi1]++;
  8826. }
  8827. }
  8828. }
  8829. return (n/QK*sizeof(block_q4_1));
  8830. }
  8831. ////////////////////////////////////////////////////////////////////////////////
  8832. int ggml_cpu_has_avx(void) {
  8833. #if defined(__AVX__)
  8834. return 1;
  8835. #else
  8836. return 0;
  8837. #endif
  8838. }
  8839. int ggml_cpu_has_avx2(void) {
  8840. #if defined(__AVX2__)
  8841. return 1;
  8842. #else
  8843. return 0;
  8844. #endif
  8845. }
  8846. int ggml_cpu_has_avx512(void) {
  8847. #if defined(__AVX512F__)
  8848. return 1;
  8849. #else
  8850. return 0;
  8851. #endif
  8852. }
  8853. int ggml_cpu_has_fma(void) {
  8854. #if defined(__FMA__)
  8855. return 1;
  8856. #else
  8857. return 0;
  8858. #endif
  8859. }
  8860. int ggml_cpu_has_neon(void) {
  8861. #if defined(__ARM_NEON)
  8862. return 1;
  8863. #else
  8864. return 0;
  8865. #endif
  8866. }
  8867. int ggml_cpu_has_arm_fma(void) {
  8868. #if defined(__ARM_FEATURE_FMA)
  8869. return 1;
  8870. #else
  8871. return 0;
  8872. #endif
  8873. }
  8874. int ggml_cpu_has_f16c(void) {
  8875. #if defined(__F16C__)
  8876. return 1;
  8877. #else
  8878. return 0;
  8879. #endif
  8880. }
  8881. int ggml_cpu_has_fp16_va(void) {
  8882. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8883. return 1;
  8884. #else
  8885. return 0;
  8886. #endif
  8887. }
  8888. int ggml_cpu_has_wasm_simd(void) {
  8889. #if defined(__wasm_simd128__)
  8890. return 1;
  8891. #else
  8892. return 0;
  8893. #endif
  8894. }
  8895. int ggml_cpu_has_blas(void) {
  8896. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8897. return 1;
  8898. #else
  8899. return 0;
  8900. #endif
  8901. }
  8902. int ggml_cpu_has_sse3(void) {
  8903. #if defined(__SSE3__)
  8904. return 1;
  8905. #else
  8906. return 0;
  8907. #endif
  8908. }
  8909. int ggml_cpu_has_vsx(void) {
  8910. #if defined(__POWER9_VECTOR__)
  8911. return 1;
  8912. #else
  8913. return 0;
  8914. #endif
  8915. }
  8916. ////////////////////////////////////////////////////////////////////////////////