convert-hf-to-gguf.py 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import logging
  4. import argparse
  5. import contextlib
  6. import json
  7. import os
  8. import re
  9. import sys
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from hashlib import sha256
  13. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  14. import math
  15. import numpy as np
  16. import torch
  17. if TYPE_CHECKING:
  18. from torch import Tensor
  19. if 'NO_LOCAL_GGUF' not in os.environ:
  20. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  21. import gguf
  22. logger = logging.getLogger("hf-to-gguf")
  23. ###### MODEL DEFINITIONS ######
  24. class SentencePieceTokenTypes(IntEnum):
  25. NORMAL = 1
  26. UNKNOWN = 2
  27. CONTROL = 3
  28. USER_DEFINED = 4
  29. UNUSED = 5
  30. BYTE = 6
  31. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  32. class Model:
  33. _model_classes: dict[str, type[Model]] = {}
  34. dir_model: Path
  35. ftype: int
  36. is_big_endian: bool
  37. endianess: gguf.GGUFEndian
  38. use_temp_file: bool
  39. lazy: bool
  40. part_names: list[str]
  41. is_safetensors: bool
  42. hparams: dict[str, Any]
  43. block_count: int
  44. tensor_map: gguf.TensorNameMap
  45. tensor_names: set[str] | None
  46. fname_out: Path
  47. gguf_writer: gguf.GGUFWriter
  48. # subclasses should define this!
  49. model_arch: gguf.MODEL_ARCH
  50. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
  51. if type(self) is Model:
  52. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  53. self.dir_model = dir_model
  54. self.ftype = ftype
  55. self.is_big_endian = is_big_endian
  56. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  57. self.use_temp_file = use_temp_file
  58. self.lazy = not eager
  59. self.part_names = Model.get_model_part_names(self.dir_model, ".safetensors")
  60. self.is_safetensors = len(self.part_names) > 0
  61. if not self.is_safetensors:
  62. self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
  63. self.hparams = Model.load_hparams(self.dir_model)
  64. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  65. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  66. self.tensor_names = None
  67. if self.ftype == gguf.LlamaFileType.GUESSED:
  68. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  69. _, first_tensor = next(self.get_tensors())
  70. if first_tensor.dtype == torch.float16:
  71. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  72. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  73. else:
  74. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  75. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  76. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  77. ftype_lw: str = ftype_up.lower()
  78. # allow templating the file name with the output ftype, useful with the "auto" ftype
  79. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  80. self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
  81. @classmethod
  82. def __init_subclass__(cls):
  83. # can't use an abstract property, because overriding it without type errors
  84. # would require using decorated functions instead of simply defining the property
  85. if "model_arch" not in cls.__dict__:
  86. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  87. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  88. key = next((k for k in keys if k in self.hparams), None)
  89. if key is not None:
  90. return self.hparams[key]
  91. if optional:
  92. return None
  93. raise KeyError(f"could not find any of: {keys}")
  94. def set_vocab(self):
  95. self._set_vocab_gpt2()
  96. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  97. tensor_names_from_parts: set[str] = set()
  98. if len(self.part_names) > 1:
  99. self.tensor_names = set()
  100. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  101. index_name += ".index.json"
  102. logger.info(f"gguf: loading model weight map from '{index_name}'")
  103. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  104. index: dict[str, Any] = json.load(f)
  105. weight_map = index.get("weight_map")
  106. if weight_map is None or not isinstance(weight_map, dict):
  107. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  108. self.tensor_names.update(weight_map.keys())
  109. else:
  110. self.tensor_names = tensor_names_from_parts
  111. for part_name in self.part_names:
  112. logger.info(f"gguf: loading model part '{part_name}'")
  113. ctx: ContextManager[Any]
  114. if self.is_safetensors:
  115. from safetensors import safe_open
  116. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  117. else:
  118. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  119. with ctx as model_part:
  120. tensor_names_from_parts.update(model_part.keys())
  121. for name in model_part.keys():
  122. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  123. if self.lazy:
  124. data = LazyTorchTensor.from_eager(data)
  125. yield name, data
  126. # only verify tensor name presence; it doesn't matter if they are not in the right files
  127. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  128. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  129. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  130. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  131. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  132. name: str = gguf.TENSOR_NAMES[key]
  133. if "{bid}" in name:
  134. assert bid is not None
  135. name = name.format(bid=bid)
  136. return name + suffix
  137. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  138. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  139. return False
  140. key_name: str = gguf.TENSOR_NAMES[key]
  141. if "{bid}" in key_name:
  142. if bid is None:
  143. return False
  144. key_name = key_name.format(bid=bid)
  145. else:
  146. if bid is not None:
  147. return False
  148. return name == (key_name + suffix)
  149. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  150. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  151. if new_name is None:
  152. raise ValueError(f"Can not map tensor {name!r}")
  153. return new_name
  154. def set_gguf_parameters(self):
  155. self.gguf_writer.add_name(self.dir_model.name)
  156. self.gguf_writer.add_block_count(self.block_count)
  157. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  158. self.gguf_writer.add_context_length(n_ctx)
  159. logger.info(f"gguf: context length = {n_ctx}")
  160. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  161. self.gguf_writer.add_embedding_length(n_embd)
  162. logger.info(f"gguf: embedding length = {n_embd}")
  163. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  164. self.gguf_writer.add_feed_forward_length(n_ff)
  165. logger.info(f"gguf: feed forward length = {n_ff}")
  166. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  167. self.gguf_writer.add_head_count(n_head)
  168. logger.info(f"gguf: head count = {n_head}")
  169. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  170. self.gguf_writer.add_head_count_kv(n_head_kv)
  171. logger.info(f"gguf: key-value head count = {n_head_kv}")
  172. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  173. self.gguf_writer.add_rope_freq_base(rope_theta)
  174. logger.info(f"gguf: rope theta = {rope_theta}")
  175. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  176. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  177. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  178. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  179. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  180. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  181. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  182. self.gguf_writer.add_expert_count(n_experts)
  183. logger.info(f"gguf: expert count = {n_experts}")
  184. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  185. self.gguf_writer.add_expert_used_count(n_experts_used)
  186. logger.info(f"gguf: experts used count = {n_experts_used}")
  187. self.gguf_writer.add_file_type(self.ftype)
  188. logger.info(f"gguf: file type = {self.ftype}")
  189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  190. del bid # unused
  191. return [(self.map_tensor_name(name), data_torch)]
  192. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  193. del name, new_name, bid, n_dims # unused
  194. return False
  195. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  196. del name, new_name, bid, n_dims # unused
  197. return False
  198. def write_tensors(self):
  199. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  200. for name, data_torch in self.get_tensors():
  201. # we don't need these
  202. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  203. continue
  204. old_dtype = data_torch.dtype
  205. # convert any unsupported data types to float32
  206. if data_torch.dtype not in (torch.float16, torch.float32):
  207. data_torch = data_torch.to(torch.float32)
  208. # use the first number-like part of the tensor name as the block id
  209. bid = None
  210. for part in name.split("."):
  211. if part.isdecimal():
  212. bid = int(part)
  213. break
  214. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  215. data: np.ndarray = data # type hint
  216. n_dims = len(data.shape)
  217. data_dtype = data.dtype
  218. data_qtype: gguf.GGMLQuantizationType | None = None
  219. # when both are True, f32 should win
  220. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  221. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  222. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  223. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  224. extra_f32 = any(cond for cond in (
  225. extra_f32,
  226. n_dims == 1,
  227. new_name.endswith("_norm.weight"),
  228. ))
  229. # Some tensor types are always in float32
  230. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  231. gguf.MODEL_TENSOR.FFN_GATE_INP,
  232. gguf.MODEL_TENSOR.POS_EMBD,
  233. gguf.MODEL_TENSOR.TOKEN_TYPES,
  234. ))
  235. # if f16 desired, convert any float32 2-dim weight tensors to float16
  236. extra_f16 = any(cond for cond in (
  237. extra_f16,
  238. (name.endswith(".weight") and n_dims >= 2),
  239. ))
  240. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  241. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  242. data = gguf.quantize_bf16(data)
  243. assert data.dtype == np.int16
  244. data_qtype = gguf.GGMLQuantizationType.BF16
  245. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  246. data = gguf.quantize_q8_0(data)
  247. assert data.dtype == np.uint8
  248. data_qtype = gguf.GGMLQuantizationType.Q8_0
  249. else: # default to float16 for quantized tensors
  250. if data_dtype != np.float16:
  251. data = data.astype(np.float16)
  252. data_qtype = gguf.GGMLQuantizationType.F16
  253. if data_qtype is None: # by default, convert to float32
  254. if data_dtype != np.float32:
  255. data = data.astype(np.float32)
  256. data_qtype = gguf.GGMLQuantizationType.F32
  257. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  258. # reverse shape to make it similar to the internal ggml dimension order
  259. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  260. # n_dims is implicit in the shape
  261. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  262. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  263. def write(self):
  264. self.write_tensors()
  265. self.gguf_writer.write_header_to_file()
  266. self.gguf_writer.write_kv_data_to_file()
  267. self.gguf_writer.write_tensors_to_file(progress=True)
  268. self.gguf_writer.close()
  269. def write_vocab(self):
  270. self.gguf_writer.write_header_to_file()
  271. self.gguf_writer.write_kv_data_to_file()
  272. self.gguf_writer.close()
  273. @staticmethod
  274. def get_model_part_names(dir_model: Path, suffix: str) -> list[str]:
  275. part_names: list[str] = []
  276. for filename in os.listdir(dir_model):
  277. if filename.endswith(suffix):
  278. part_names.append(filename)
  279. part_names.sort()
  280. return part_names
  281. @staticmethod
  282. def load_hparams(dir_model: Path):
  283. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  284. return json.load(f)
  285. @classmethod
  286. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  287. assert names
  288. def func(modelcls: AnyModel) -> AnyModel:
  289. for name in names:
  290. cls._model_classes[name] = modelcls
  291. return modelcls
  292. return func
  293. @classmethod
  294. def from_model_architecture(cls, arch: str) -> type[Model]:
  295. try:
  296. return cls._model_classes[arch]
  297. except KeyError:
  298. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  299. # used for GPT-2 BPE and WordPiece vocabs
  300. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  301. tokens: list[str] = []
  302. toktypes: list[int] = []
  303. from transformers import AutoTokenizer
  304. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  305. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  306. assert max(tokenizer.vocab.values()) < vocab_size
  307. tokpre = self.get_vocab_base_pre(tokenizer)
  308. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  309. added_vocab = tokenizer.get_added_vocab()
  310. for i in range(vocab_size):
  311. if i not in reverse_vocab:
  312. tokens.append(f"[PAD{i}]")
  313. toktypes.append(gguf.TokenType.USER_DEFINED)
  314. elif reverse_vocab[i] in added_vocab:
  315. tokens.append(reverse_vocab[i])
  316. if tokenizer.added_tokens_decoder[i].special:
  317. toktypes.append(gguf.TokenType.CONTROL)
  318. else:
  319. toktypes.append(gguf.TokenType.USER_DEFINED)
  320. else:
  321. tokens.append(reverse_vocab[i])
  322. toktypes.append(gguf.TokenType.NORMAL)
  323. return tokens, toktypes, tokpre
  324. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  325. # do not modify it manually!
  326. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  327. # Marker: Start get_vocab_base_pre
  328. def get_vocab_base_pre(self, tokenizer) -> str:
  329. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  330. # is specific for the BPE pre-tokenizer used by the model
  331. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  332. # use in llama.cpp to implement the same pre-tokenizer
  333. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  334. chktok = tokenizer.encode(chktxt)
  335. chkhsh = sha256(str(chktok).encode()).hexdigest()
  336. logger.debug(f"chktok: {chktok}")
  337. logger.debug(f"chkhsh: {chkhsh}")
  338. res = None
  339. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  340. # or pull the latest version of the model from Huggingface
  341. # don't edit the hashes manually!
  342. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  343. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  344. res = "llama-bpe"
  345. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  346. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  347. res = "deepseek-llm"
  348. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  349. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  350. res = "deepseek-coder"
  351. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  352. # ref: https://huggingface.co/tiiuae/falcon-7b
  353. res = "falcon"
  354. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  355. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  356. res = "bert-bge"
  357. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  358. # ref: https://huggingface.co/mosaicml/mpt-7b
  359. res = "mpt"
  360. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  361. # ref: https://huggingface.co/bigcode/starcoder2-3b
  362. res = "starcoder"
  363. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  364. # ref: https://huggingface.co/openai-community/gpt2
  365. res = "gpt-2"
  366. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  367. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  368. res = "stablelm2"
  369. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  370. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  371. res = "refact"
  372. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  373. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  374. res = "command-r"
  375. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  376. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  377. res = "qwen2"
  378. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  379. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  380. res = "olmo"
  381. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  382. # ref: https://huggingface.co/databricks/dbrx-base
  383. res = "dbrx"
  384. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  385. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  386. res = "jina-v2-en"
  387. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  388. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  389. res = "jina-v2-es"
  390. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  391. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  392. res = "jina-v2-de"
  393. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  394. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  395. res = "smaug-bpe"
  396. if res is None:
  397. logger.warning("\n")
  398. logger.warning("**************************************************************************************")
  399. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  400. logger.warning("** There are 2 possible reasons for this:")
  401. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  402. logger.warning("** - the pre-tokenization config has changed upstream")
  403. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  404. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  405. logger.warning("**")
  406. logger.warning(f"** chkhsh: {chkhsh}")
  407. logger.warning("**************************************************************************************")
  408. logger.warning("\n")
  409. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  410. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  411. logger.debug(f"chkhsh: {chkhsh}")
  412. return res
  413. # Marker: End get_vocab_base_pre
  414. def _set_vocab_gpt2(self) -> None:
  415. tokens, toktypes, tokpre = self.get_vocab_base()
  416. self.gguf_writer.add_tokenizer_model("gpt2")
  417. self.gguf_writer.add_tokenizer_pre(tokpre)
  418. self.gguf_writer.add_token_list(tokens)
  419. self.gguf_writer.add_token_types(toktypes)
  420. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  421. special_vocab.add_to_gguf(self.gguf_writer)
  422. def _set_vocab_qwen(self):
  423. dir_model = self.dir_model
  424. hparams = self.hparams
  425. tokens: list[str] = []
  426. toktypes: list[int] = []
  427. from transformers import AutoTokenizer
  428. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  429. vocab_size = hparams["vocab_size"]
  430. assert max(tokenizer.get_vocab().values()) < vocab_size
  431. tokpre = self.get_vocab_base_pre(tokenizer)
  432. merges = []
  433. vocab = {}
  434. mergeable_ranks = tokenizer.mergeable_ranks
  435. for token, rank in mergeable_ranks.items():
  436. vocab[QwenModel.token_bytes_to_string(token)] = rank
  437. if len(token) == 1:
  438. continue
  439. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  440. assert len(merged) == 2
  441. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  442. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  443. added_vocab = tokenizer.special_tokens
  444. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  445. for i in range(vocab_size):
  446. if i not in reverse_vocab:
  447. tokens.append(f"[PAD{i}]")
  448. toktypes.append(gguf.TokenType.USER_DEFINED)
  449. elif reverse_vocab[i] in added_vocab:
  450. tokens.append(reverse_vocab[i])
  451. toktypes.append(gguf.TokenType.CONTROL)
  452. else:
  453. tokens.append(reverse_vocab[i])
  454. toktypes.append(gguf.TokenType.NORMAL)
  455. self.gguf_writer.add_tokenizer_model("gpt2")
  456. self.gguf_writer.add_tokenizer_pre(tokpre)
  457. self.gguf_writer.add_token_list(tokens)
  458. self.gguf_writer.add_token_types(toktypes)
  459. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  460. special_vocab.merges = merges
  461. # only add special tokens when they were not already loaded from config.json
  462. if len(special_vocab.special_token_ids) == 0:
  463. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  464. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  465. # this one is usually not in config.json anyway
  466. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  467. special_vocab.add_to_gguf(self.gguf_writer)
  468. def _set_vocab_sentencepiece(self):
  469. from sentencepiece import SentencePieceProcessor
  470. tokenizer_path = self.dir_model / 'tokenizer.model'
  471. tokens: list[bytes] = []
  472. scores: list[float] = []
  473. toktypes: list[int] = []
  474. if not tokenizer_path.is_file():
  475. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  476. tokenizer = SentencePieceProcessor()
  477. tokenizer.LoadFromFile(str(tokenizer_path))
  478. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  479. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  480. scores: list[float] = [-10000.0] * vocab_size
  481. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  482. for token_id in range(tokenizer.vocab_size()):
  483. piece = tokenizer.IdToPiece(token_id)
  484. text = piece.encode("utf-8")
  485. score = tokenizer.GetScore(token_id)
  486. toktype = SentencePieceTokenTypes.NORMAL
  487. if tokenizer.IsUnknown(token_id):
  488. toktype = SentencePieceTokenTypes.UNKNOWN
  489. elif tokenizer.IsControl(token_id):
  490. toktype = SentencePieceTokenTypes.CONTROL
  491. elif tokenizer.IsUnused(token_id):
  492. toktype = SentencePieceTokenTypes.UNUSED
  493. elif tokenizer.IsByte(token_id):
  494. toktype = SentencePieceTokenTypes.BYTE
  495. tokens[token_id] = text
  496. scores[token_id] = score
  497. toktypes[token_id] = toktype
  498. added_tokens_file = self.dir_model / 'added_tokens.json'
  499. if added_tokens_file.is_file():
  500. with open(added_tokens_file, "r", encoding="utf-8") as f:
  501. added_tokens_json = json.load(f)
  502. for key in added_tokens_json:
  503. token_id = added_tokens_json[key]
  504. if (token_id >= vocab_size):
  505. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  506. continue
  507. tokens[token_id] = key.encode("utf-8")
  508. scores[token_id] = -1000.0
  509. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  510. if vocab_size > len(tokens):
  511. pad_count = vocab_size - len(tokens)
  512. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  513. for i in range(1, pad_count + 1):
  514. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  515. scores.append(-1000.0)
  516. toktypes.append(SentencePieceTokenTypes.UNUSED)
  517. self.gguf_writer.add_tokenizer_model("llama")
  518. self.gguf_writer.add_tokenizer_pre("default")
  519. self.gguf_writer.add_token_list(tokens)
  520. self.gguf_writer.add_token_scores(scores)
  521. self.gguf_writer.add_token_types(toktypes)
  522. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  523. special_vocab.add_to_gguf(self.gguf_writer)
  524. def _set_vocab_llama_hf(self):
  525. vocab = gguf.LlamaHfVocab(self.dir_model)
  526. tokens = []
  527. scores = []
  528. toktypes = []
  529. for text, score, toktype in vocab.all_tokens():
  530. tokens.append(text)
  531. scores.append(score)
  532. toktypes.append(toktype)
  533. assert len(tokens) == vocab.vocab_size
  534. self.gguf_writer.add_tokenizer_model("llama")
  535. self.gguf_writer.add_tokenizer_pre("default")
  536. self.gguf_writer.add_token_list(tokens)
  537. self.gguf_writer.add_token_scores(scores)
  538. self.gguf_writer.add_token_types(toktypes)
  539. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  540. special_vocab.add_to_gguf(self.gguf_writer)
  541. @Model.register("GPTNeoXForCausalLM")
  542. class GPTNeoXModel(Model):
  543. model_arch = gguf.MODEL_ARCH.GPTNEOX
  544. def set_gguf_parameters(self):
  545. block_count = self.hparams["num_hidden_layers"]
  546. self.gguf_writer.add_name(self.dir_model.name)
  547. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  548. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  549. self.gguf_writer.add_block_count(block_count)
  550. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  551. self.gguf_writer.add_rope_dimension_count(
  552. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  553. )
  554. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  555. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  556. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  557. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  558. del bid # unused
  559. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  560. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  561. tensors: list[tuple[str, Tensor]] = []
  562. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  563. # Map bloom-style qkv_linear to gpt-style qkv_linear
  564. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  565. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  566. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  567. data_torch = torch.cat(
  568. (
  569. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  570. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  571. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  572. ),
  573. dim=0,
  574. )
  575. logger.info("re-format attention.linear_qkv.weight")
  576. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  577. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  578. data_torch = torch.cat(
  579. (
  580. qkv_bias[:, 0, :].reshape((n_embed,)),
  581. qkv_bias[:, 1, :].reshape((n_embed,)),
  582. qkv_bias[:, 2, :].reshape((n_embed,)),
  583. ),
  584. dim=0,
  585. )
  586. logger.info("re-format attention.linear_qkv.bias")
  587. tensors.append((self.map_tensor_name(name), data_torch))
  588. return tensors
  589. @Model.register("BloomForCausalLM")
  590. class BloomModel(Model):
  591. model_arch = gguf.MODEL_ARCH.BLOOM
  592. def set_gguf_parameters(self):
  593. self.gguf_writer.add_name("Bloom")
  594. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  595. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  596. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  597. self.gguf_writer.add_embedding_length(n_embed)
  598. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  599. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  600. self.gguf_writer.add_head_count(n_head)
  601. self.gguf_writer.add_head_count_kv(n_head)
  602. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  603. self.gguf_writer.add_file_type(self.ftype)
  604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  605. del bid # unused
  606. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  607. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  608. name = re.sub(r'transformer\.', '', name)
  609. tensors: list[tuple[str, Tensor]] = []
  610. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  611. # Map bloom-style qkv_linear to gpt-style qkv_linear
  612. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  613. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  614. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  615. data_torch = torch.cat(
  616. (
  617. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  618. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  619. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  620. ),
  621. dim=0,
  622. )
  623. logger.info("re-format attention.linear_qkv.weight")
  624. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  625. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  626. data_torch = torch.cat(
  627. (
  628. qkv_bias[:, 0, :].reshape((n_embed,)),
  629. qkv_bias[:, 1, :].reshape((n_embed,)),
  630. qkv_bias[:, 2, :].reshape((n_embed,)),
  631. ),
  632. dim=0,
  633. )
  634. logger.info("re-format attention.linear_qkv.bias")
  635. tensors.append((self.map_tensor_name(name), data_torch))
  636. if name == "word_embeddings.weight":
  637. assert self.tensor_names is not None
  638. # TODO: tie them at runtime, don't duplicate in the model file
  639. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  640. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  641. return tensors
  642. @Model.register("MPTForCausalLM")
  643. class MPTModel(Model):
  644. model_arch = gguf.MODEL_ARCH.MPT
  645. def set_vocab(self):
  646. try:
  647. self._set_vocab_gpt2()
  648. except Exception:
  649. # Fallback for SEA-LION model
  650. self._set_vocab_sentencepiece()
  651. self.gguf_writer.add_add_bos_token(False)
  652. self.gguf_writer.add_pad_token_id(3)
  653. self.gguf_writer.add_eos_token_id(1)
  654. self.gguf_writer.add_unk_token_id(0)
  655. def set_gguf_parameters(self):
  656. block_count = self.hparams["n_layers"]
  657. self.gguf_writer.add_name(self.dir_model.name)
  658. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  659. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  660. self.gguf_writer.add_block_count(block_count)
  661. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  662. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  663. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  664. self.gguf_writer.add_head_count_kv(kv_n_heads)
  665. self.gguf_writer.add_layer_norm_eps(1e-5)
  666. if self.hparams["attn_config"]["clip_qkv"] is not None:
  667. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  668. if self.hparams["attn_config"]["alibi"]:
  669. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  670. else:
  671. self.gguf_writer.add_max_alibi_bias(0.0)
  672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  673. del bid # unused
  674. if "scales" in name:
  675. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  676. new_name = new_name.replace("scales", "act.scales")
  677. else:
  678. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  679. return [(new_name, data_torch)]
  680. @Model.register("OrionForCausalLM")
  681. class OrionModel(Model):
  682. model_arch = gguf.MODEL_ARCH.ORION
  683. def set_vocab(self):
  684. self._set_vocab_sentencepiece()
  685. def set_gguf_parameters(self):
  686. block_count = self.hparams["num_hidden_layers"]
  687. head_count = self.hparams["num_attention_heads"]
  688. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  689. hf_repo = self.hparams.get("_name_or_path", "")
  690. ctx_length = 0
  691. if "max_sequence_length" in self.hparams:
  692. ctx_length = self.hparams["max_sequence_length"]
  693. elif "max_position_embeddings" in self.hparams:
  694. ctx_length = self.hparams["max_position_embeddings"]
  695. elif "model_max_length" in self.hparams:
  696. ctx_length = self.hparams["model_max_length"]
  697. else:
  698. raise ValueError("gguf: can not find ctx length parameter.")
  699. self.gguf_writer.add_file_type(self.ftype)
  700. self.gguf_writer.add_name(self.dir_model.name)
  701. self.gguf_writer.add_source_hf_repo(hf_repo)
  702. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  703. self.gguf_writer.add_context_length(ctx_length)
  704. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  705. self.gguf_writer.add_block_count(block_count)
  706. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  707. self.gguf_writer.add_head_count(head_count)
  708. self.gguf_writer.add_head_count_kv(head_count_kv)
  709. # note: config provides rms norm but it is actually layer norm
  710. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  711. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  712. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  713. class BaichuanModel(Model):
  714. model_arch = gguf.MODEL_ARCH.BAICHUAN
  715. def set_vocab(self):
  716. self._set_vocab_sentencepiece()
  717. def set_gguf_parameters(self):
  718. block_count = self.hparams["num_hidden_layers"]
  719. head_count = self.hparams["num_attention_heads"]
  720. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  721. hf_repo = self.hparams.get("_name_or_path", "")
  722. ctx_length = 0
  723. if "max_sequence_length" in self.hparams:
  724. ctx_length = self.hparams["max_sequence_length"]
  725. elif "max_position_embeddings" in self.hparams:
  726. ctx_length = self.hparams["max_position_embeddings"]
  727. elif "model_max_length" in self.hparams:
  728. ctx_length = self.hparams["model_max_length"]
  729. else:
  730. raise ValueError("gguf: can not find ctx length parameter.")
  731. self.gguf_writer.add_name(self.dir_model.name)
  732. self.gguf_writer.add_source_hf_repo(hf_repo)
  733. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  734. self.gguf_writer.add_context_length(ctx_length)
  735. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  736. self.gguf_writer.add_block_count(block_count)
  737. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  738. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  739. self.gguf_writer.add_head_count(head_count)
  740. self.gguf_writer.add_head_count_kv(head_count_kv)
  741. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  742. self.gguf_writer.add_file_type(self.ftype)
  743. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  744. if self.hparams["rope_scaling"].get("type") == "linear":
  745. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  746. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  747. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  748. head_count = self.hparams["num_attention_heads"]
  749. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  750. tensors: list[tuple[str, Tensor]] = []
  751. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  752. logger.info(f"Unpacking and permuting layer {bid}")
  753. tensors = [
  754. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  755. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  756. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  757. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  758. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  759. self._reverse_hf_part(data_torch, 2)),
  760. ]
  761. else:
  762. tensors = [(self.map_tensor_name(name), data_torch)]
  763. return tensors
  764. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  765. if n_kv_head is not None and n_head != n_kv_head:
  766. n_head //= n_kv_head
  767. return (
  768. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  769. .swapaxes(1, 2)
  770. .reshape(weights.shape)
  771. )
  772. def _reverse_hf_permute_part(
  773. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  774. ) -> Tensor:
  775. r = weights.shape[0] // 3
  776. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  777. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  778. r = weights.shape[0] // 3
  779. return weights[r * n_part:r * n_part + r, ...]
  780. @Model.register("XverseForCausalLM")
  781. class XverseModel(Model):
  782. model_arch = gguf.MODEL_ARCH.XVERSE
  783. def set_vocab(self):
  784. assert (self.dir_model / "tokenizer.json").is_file()
  785. dir_model = self.dir_model
  786. hparams = self.hparams
  787. tokens: list[bytes] = []
  788. toktypes: list[int] = []
  789. from transformers import AutoTokenizer
  790. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  791. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  792. assert max(tokenizer.vocab.values()) < vocab_size
  793. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  794. added_vocab = tokenizer.get_added_vocab()
  795. for token_id in range(vocab_size):
  796. token_text = reverse_vocab[token_id].encode('utf-8')
  797. # replace "\x00" to string with length > 0
  798. if token_text == b"\x00":
  799. toktype = gguf.TokenType.BYTE # special
  800. token_text = f"<{token_text}>".encode('utf-8')
  801. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  802. toktype = gguf.TokenType.BYTE # special
  803. elif reverse_vocab[token_id] in added_vocab:
  804. if tokenizer.added_tokens_decoder[token_id].special:
  805. toktype = gguf.TokenType.CONTROL
  806. else:
  807. toktype = gguf.TokenType.USER_DEFINED
  808. else:
  809. toktype = gguf.TokenType.NORMAL
  810. tokens.append(token_text)
  811. toktypes.append(toktype)
  812. self.gguf_writer.add_tokenizer_model("llama")
  813. self.gguf_writer.add_tokenizer_pre("default")
  814. self.gguf_writer.add_token_list(tokens)
  815. self.gguf_writer.add_token_types(toktypes)
  816. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  817. special_vocab.add_to_gguf(self.gguf_writer)
  818. def set_gguf_parameters(self):
  819. block_count = self.hparams["num_hidden_layers"]
  820. head_count = self.hparams["num_attention_heads"]
  821. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  822. hf_repo = self.hparams.get("_name_or_path", "")
  823. ctx_length = 0
  824. if "max_sequence_length" in self.hparams:
  825. ctx_length = self.hparams["max_sequence_length"]
  826. elif "max_position_embeddings" in self.hparams:
  827. ctx_length = self.hparams["max_position_embeddings"]
  828. elif "model_max_length" in self.hparams:
  829. ctx_length = self.hparams["model_max_length"]
  830. else:
  831. raise ValueError("gguf: can not find ctx length parameter.")
  832. self.gguf_writer.add_name(self.dir_model.name)
  833. self.gguf_writer.add_source_hf_repo(hf_repo)
  834. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  835. self.gguf_writer.add_context_length(ctx_length)
  836. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  837. self.gguf_writer.add_block_count(block_count)
  838. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  839. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  840. self.gguf_writer.add_head_count(head_count)
  841. self.gguf_writer.add_head_count_kv(head_count_kv)
  842. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  843. self.gguf_writer.add_file_type(self.ftype)
  844. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  845. if self.hparams["rope_scaling"].get("type") == "linear":
  846. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  847. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  848. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  849. del bid # unused
  850. head_count = self.hparams["num_attention_heads"]
  851. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  852. # HF models permute some of the tensors, so we need to undo that
  853. if name.endswith("q_proj.weight"):
  854. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  855. if name.endswith("k_proj.weight"):
  856. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  857. return [(self.map_tensor_name(name), data_torch)]
  858. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  859. if n_kv_head is not None and n_head != n_kv_head:
  860. n_head //= n_kv_head
  861. return (
  862. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  863. .swapaxes(1, 2)
  864. .reshape(weights.shape)
  865. )
  866. @Model.register("FalconForCausalLM", "RWForCausalLM")
  867. class FalconModel(Model):
  868. model_arch = gguf.MODEL_ARCH.FALCON
  869. def set_gguf_parameters(self):
  870. block_count = self.hparams.get("num_hidden_layers")
  871. if block_count is None:
  872. block_count = self.hparams["n_layer"] # old name
  873. n_head = self.hparams.get("num_attention_heads")
  874. if n_head is None:
  875. n_head = self.hparams["n_head"] # old name
  876. n_head_kv = self.hparams.get("num_kv_heads")
  877. if n_head_kv is None:
  878. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  879. self.gguf_writer.add_name("Falcon")
  880. self.gguf_writer.add_context_length(2048) # not in config.json
  881. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  882. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  883. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  884. self.gguf_writer.add_block_count(block_count)
  885. self.gguf_writer.add_head_count(n_head)
  886. self.gguf_writer.add_head_count_kv(n_head_kv)
  887. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  888. self.gguf_writer.add_file_type(self.ftype)
  889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  890. del bid # unused
  891. # QKV tensor transform
  892. # The original query_key_value tensor contains n_head_kv "kv groups",
  893. # each consisting of n_head/n_head_kv query weights followed by one key
  894. # and one value weight (shared by all query heads in the kv group).
  895. # This layout makes it a big pain to work with in GGML.
  896. # So we rearrange them here,, so that we have n_head query weights
  897. # followed by n_head_kv key weights followed by n_head_kv value weights,
  898. # in contiguous fashion.
  899. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  900. if "query_key_value" in name:
  901. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  902. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  903. head_dim = self.hparams["hidden_size"] // n_head
  904. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  905. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  906. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  907. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  908. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  909. return [(self.map_tensor_name(name), data_torch)]
  910. @Model.register("GPTBigCodeForCausalLM")
  911. class StarCoderModel(Model):
  912. model_arch = gguf.MODEL_ARCH.STARCODER
  913. def set_gguf_parameters(self):
  914. block_count = self.hparams["n_layer"]
  915. self.gguf_writer.add_name("StarCoder")
  916. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  917. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  918. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  919. self.gguf_writer.add_block_count(block_count)
  920. self.gguf_writer.add_head_count(self.hparams["n_head"])
  921. self.gguf_writer.add_head_count_kv(1)
  922. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  923. self.gguf_writer.add_file_type(self.ftype)
  924. @Model.register("GPTRefactForCausalLM")
  925. class RefactModel(Model):
  926. model_arch = gguf.MODEL_ARCH.REFACT
  927. def set_vocab(self):
  928. super().set_vocab()
  929. # TODO: how to determine special FIM tokens automatically?
  930. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  931. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  932. special_vocab._set_special_token("prefix", 1)
  933. special_vocab._set_special_token("suffix", 3)
  934. special_vocab._set_special_token("middle", 2)
  935. special_vocab._set_special_token("fsep", 4) # is this correct?
  936. special_vocab.add_to_gguf(self.gguf_writer)
  937. def set_gguf_parameters(self):
  938. hidden_dim = self.hparams["n_embd"]
  939. inner_dim = 4 * hidden_dim
  940. hidden_dim = int(2 * inner_dim / 3)
  941. multiple_of = 256
  942. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  943. block_count = self.hparams["n_layer"]
  944. self.gguf_writer.add_name("Refact")
  945. # refact uses Alibi. So this is from config.json which might be used by training.
  946. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  947. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  948. self.gguf_writer.add_feed_forward_length(ff_dim)
  949. self.gguf_writer.add_block_count(block_count)
  950. self.gguf_writer.add_head_count(self.hparams["n_head"])
  951. self.gguf_writer.add_head_count_kv(1)
  952. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  953. self.gguf_writer.add_file_type(self.ftype)
  954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  955. hidden_dim = self.hparams["n_embd"]
  956. inner_dim = 4 * hidden_dim
  957. hidden_dim = int(2 * inner_dim / 3)
  958. multiple_of = 256
  959. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  960. n_head = self.hparams["n_head"]
  961. n_head_kv = 1
  962. head_dim = self.hparams["n_embd"] // n_head
  963. tensors: list[tuple[str, Tensor]] = []
  964. if bid is not None:
  965. if name == f"transformer.h.{bid}.attn.kv.weight":
  966. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  967. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  968. elif name == f"transformer.h.{bid}.attn.q.weight":
  969. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  970. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  971. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  972. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  973. if len(tensors) == 0:
  974. tensors.append((self.map_tensor_name(name), data_torch))
  975. return tensors
  976. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  977. class StableLMModel(Model):
  978. model_arch = gguf.MODEL_ARCH.STABLELM
  979. def set_vocab(self):
  980. if (self.dir_model / "tokenizer.json").is_file():
  981. self._set_vocab_gpt2()
  982. else:
  983. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  984. self._set_vocab_qwen()
  985. def set_gguf_parameters(self):
  986. hparams = self.hparams
  987. block_count = hparams["num_hidden_layers"]
  988. self.gguf_writer.add_name(self.dir_model.name)
  989. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  990. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  991. self.gguf_writer.add_block_count(block_count)
  992. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  993. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  994. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  995. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  996. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  997. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  998. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  999. self.gguf_writer.add_file_type(self.ftype)
  1000. _q_norms: list[dict[str, Tensor]] | None = None
  1001. _k_norms: list[dict[str, Tensor]] | None = None
  1002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1003. n_head = self.hparams["num_attention_heads"]
  1004. n_kv_head = self.hparams["num_key_value_heads"]
  1005. if name.find("q_layernorm.norms") != -1:
  1006. assert bid is not None
  1007. if self._q_norms is None:
  1008. self._q_norms = [{} for _ in range(self.block_count)]
  1009. self._q_norms[bid][name] = data_torch
  1010. if len(self._q_norms[bid]) >= n_head:
  1011. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1012. else:
  1013. return []
  1014. if name.find("k_layernorm.norms") != -1:
  1015. assert bid is not None
  1016. if self._k_norms is None:
  1017. self._k_norms = [{} for _ in range(self.block_count)]
  1018. self._k_norms[bid][name] = data_torch
  1019. if len(self._k_norms[bid]) >= n_kv_head:
  1020. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1021. else:
  1022. return []
  1023. return [(self.map_tensor_name(name), data_torch)]
  1024. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1025. datas: list[Tensor] = []
  1026. # extract the norms in order
  1027. for xid in range(n_head):
  1028. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1029. datas.append(norms[ename])
  1030. del norms[ename]
  1031. data_torch = torch.stack(datas, dim=0)
  1032. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1033. new_name = self.map_tensor_name(merged_name)
  1034. return [(new_name, data_torch)]
  1035. def write_tensors(self):
  1036. super().write_tensors()
  1037. if self._q_norms is not None or self._k_norms is not None:
  1038. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1039. norms = (
  1040. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1041. ) + (
  1042. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1043. )
  1044. if len(norms) > 0:
  1045. raise ValueError(f"Unprocessed norms: {norms}")
  1046. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1047. class LlamaModel(Model):
  1048. model_arch = gguf.MODEL_ARCH.LLAMA
  1049. def set_vocab(self):
  1050. try:
  1051. self. _set_vocab_sentencepiece()
  1052. except FileNotFoundError:
  1053. try:
  1054. self._set_vocab_llama_hf()
  1055. except (FileNotFoundError, TypeError):
  1056. # Llama 3
  1057. self._set_vocab_gpt2()
  1058. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1059. if self.hparams.get("vocab_size", 32000) == 32016:
  1060. special_vocab = gguf.SpecialVocab(
  1061. self.dir_model, load_merges=False,
  1062. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1063. )
  1064. special_vocab._set_special_token("prefix", 32007)
  1065. special_vocab._set_special_token("suffix", 32008)
  1066. special_vocab._set_special_token("middle", 32009)
  1067. special_vocab._set_special_token("eot", 32010)
  1068. special_vocab.add_to_gguf(self.gguf_writer)
  1069. def set_gguf_parameters(self):
  1070. super().set_gguf_parameters()
  1071. hparams = self.hparams
  1072. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1073. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1074. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1075. if self.hparams["rope_scaling"].get("type") == "linear":
  1076. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1077. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1078. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1079. if tokenizer_config_file.is_file():
  1080. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1081. tokenizer_config_json = json.load(f)
  1082. if "add_prefix_space" in tokenizer_config_json:
  1083. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1084. # Apply to granite small models only
  1085. if self.hparams.get("vocab_size", 32000) == 49152:
  1086. self.gguf_writer.add_add_bos_token(False)
  1087. @staticmethod
  1088. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1089. if n_head_kv is not None and n_head != n_head_kv:
  1090. n_head = n_head_kv
  1091. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1092. .swapaxes(1, 2)
  1093. .reshape(weights.shape))
  1094. _experts: list[dict[str, Tensor]] | None = None
  1095. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1096. n_head = self.hparams["num_attention_heads"]
  1097. n_kv_head = self.hparams.get("num_key_value_heads")
  1098. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1099. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1100. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1101. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1102. # process the experts separately
  1103. if name.find("block_sparse_moe.experts") != -1:
  1104. n_experts = self.hparams["num_local_experts"]
  1105. assert bid is not None
  1106. if self._experts is None:
  1107. self._experts = [{} for _ in range(self.block_count)]
  1108. self._experts[bid][name] = data_torch
  1109. if len(self._experts[bid]) >= n_experts * 3:
  1110. tensors: list[tuple[str, Tensor]] = []
  1111. # merge the experts into a single 3d tensor
  1112. for wid in ["w1", "w2", "w3"]:
  1113. datas: list[Tensor] = []
  1114. for xid in range(n_experts):
  1115. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1116. datas.append(self._experts[bid][ename])
  1117. del self._experts[bid][ename]
  1118. data_torch = torch.stack(datas, dim=0)
  1119. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1120. new_name = self.map_tensor_name(merged_name)
  1121. tensors.append((new_name, data_torch))
  1122. return tensors
  1123. else:
  1124. return []
  1125. return [(self.map_tensor_name(name), data_torch)]
  1126. def write_tensors(self):
  1127. super().write_tensors()
  1128. if self._experts is not None:
  1129. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1130. experts = [k for d in self._experts for k in d.keys()]
  1131. if len(experts) > 0:
  1132. raise ValueError(f"Unprocessed experts: {experts}")
  1133. @Model.register("GrokForCausalLM")
  1134. class GrokModel(Model):
  1135. model_arch = gguf.MODEL_ARCH.GROK
  1136. def set_vocab(self):
  1137. self._set_vocab_sentencepiece()
  1138. def __init__(self, *args, **kwargs):
  1139. super().__init__(*args, **kwargs)
  1140. def set_gguf_parameters(self):
  1141. super().set_gguf_parameters()
  1142. self.gguf_writer.add_name("Grok")
  1143. _experts: list[dict[str, Tensor]] | None = None
  1144. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1145. # process the experts separately
  1146. if name.find(".moe.") != -1:
  1147. n_experts = self.hparams["num_local_experts"]
  1148. assert bid is not None
  1149. if self._experts is None:
  1150. self._experts = [{} for _ in range(self.block_count)]
  1151. self._experts[bid][name] = data_torch
  1152. if len(self._experts[bid]) >= n_experts * 3:
  1153. tensors: list[tuple[str, Tensor]] = []
  1154. # merge the experts into a single 3d tensor
  1155. for wid in ["linear", "linear_1", "linear_v"]:
  1156. datas: list[Tensor] = []
  1157. for xid in range(n_experts):
  1158. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1159. datas.append(self._experts[bid][ename])
  1160. del self._experts[bid][ename]
  1161. data_torch = torch.stack(datas, dim=0)
  1162. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1163. new_name = self.map_tensor_name(merged_name)
  1164. tensors.append((new_name, data_torch))
  1165. return tensors
  1166. else:
  1167. return []
  1168. return [(self.map_tensor_name(name), data_torch)]
  1169. @Model.register("DbrxForCausalLM")
  1170. class DbrxModel(Model):
  1171. model_arch = gguf.MODEL_ARCH.DBRX
  1172. def set_gguf_parameters(self):
  1173. ffn_config = self.hparams["ffn_config"]
  1174. attn_config = self.hparams["attn_config"]
  1175. self.gguf_writer.add_name(self.hparams["model_type"])
  1176. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1177. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1178. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1179. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1180. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1181. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1182. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1183. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1184. self.gguf_writer.add_file_type(self.ftype)
  1185. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1186. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1187. self.gguf_writer.add_layer_norm_eps(1e-5)
  1188. self.gguf_writer.add_file_type(self.ftype)
  1189. logger.info(f"gguf: file type = {self.ftype}")
  1190. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1191. del bid # unused
  1192. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1193. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1194. n_embd = self.hparams["d_model"]
  1195. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1196. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1197. # But llama.cpp moe graph works differently
  1198. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1199. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1200. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1201. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1202. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1203. experts = False
  1204. for exp_tensor_name in exp_tensor_names.keys():
  1205. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1206. experts = True
  1207. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1208. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1209. data_torch = data_torch.permute(*permute_tensor)
  1210. break
  1211. # map tensor names
  1212. # In MoE models the ffn tensors are typically most of the model weights,
  1213. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1214. # Every other model has the weight names ending in .weight,
  1215. # let's assume that is the convention which is not the case for dbrx:
  1216. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1217. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1218. return [(new_name, data_torch)]
  1219. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1220. del name, new_name, bid # unused
  1221. return n_dims > 1
  1222. @Model.register("MiniCPMForCausalLM")
  1223. class MiniCPMModel(Model):
  1224. model_arch = gguf.MODEL_ARCH.MINICPM
  1225. def set_gguf_parameters(self):
  1226. block_count = self.hparams["num_hidden_layers"]
  1227. self.gguf_writer.add_name("MiniCPM")
  1228. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1229. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1230. self.gguf_writer.add_block_count(block_count)
  1231. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1232. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1233. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1234. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1235. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1236. self.gguf_writer.add_file_type(self.ftype)
  1237. def set_vocab(self):
  1238. self._set_vocab_llama_hf()
  1239. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1240. if n_kv_head is not None and n_head != n_kv_head:
  1241. n_head //= n_kv_head
  1242. return (
  1243. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1244. .swapaxes(1, 2)
  1245. .reshape(weights.shape)
  1246. )
  1247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1248. del bid # unused
  1249. n_head = self.hparams["num_attention_heads"]
  1250. n_kv_head = self.hparams.get("num_key_value_heads")
  1251. # HF models permute some of the tensors, so we need to undo that
  1252. if name.endswith(("q_proj.weight")):
  1253. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1254. if name.endswith(("k_proj.weight")):
  1255. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1256. return [(self.map_tensor_name(name), data_torch)]
  1257. @Model.register("QWenLMHeadModel")
  1258. class QwenModel(Model):
  1259. model_arch = gguf.MODEL_ARCH.QWEN
  1260. @staticmethod
  1261. def token_bytes_to_string(b):
  1262. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1263. byte_encoder = bytes_to_unicode()
  1264. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1265. @staticmethod
  1266. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1267. parts = [bytes([b]) for b in token]
  1268. while True:
  1269. min_idx = None
  1270. min_rank = None
  1271. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1272. rank = mergeable_ranks.get(pair[0] + pair[1])
  1273. if rank is not None and (min_rank is None or rank < min_rank):
  1274. min_idx = i
  1275. min_rank = rank
  1276. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1277. break
  1278. assert min_idx is not None
  1279. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1280. return parts
  1281. def set_vocab(self):
  1282. self._set_vocab_qwen()
  1283. def set_gguf_parameters(self):
  1284. self.gguf_writer.add_name("Qwen")
  1285. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1286. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1287. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1288. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1289. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1290. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1291. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1292. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1293. self.gguf_writer.add_file_type(self.ftype)
  1294. @Model.register("Qwen2ForCausalLM")
  1295. class Qwen2Model(Model):
  1296. model_arch = gguf.MODEL_ARCH.QWEN2
  1297. def set_vocab(self):
  1298. try:
  1299. self._set_vocab_sentencepiece()
  1300. except FileNotFoundError:
  1301. self._set_vocab_gpt2()
  1302. @Model.register("Qwen2MoeForCausalLM")
  1303. class Qwen2MoeModel(Model):
  1304. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1305. def set_gguf_parameters(self):
  1306. super().set_gguf_parameters()
  1307. if (n_experts := self.hparams.get("num_experts")) is not None:
  1308. self.gguf_writer.add_expert_count(n_experts)
  1309. _experts: list[dict[str, Tensor]] | None = None
  1310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1311. # process the experts separately
  1312. if name.find("experts") != -1:
  1313. n_experts = self.hparams["num_experts"]
  1314. assert bid is not None
  1315. if self._experts is None:
  1316. self._experts = [{} for _ in range(self.block_count)]
  1317. self._experts[bid][name] = data_torch
  1318. if len(self._experts[bid]) >= n_experts * 3:
  1319. tensors: list[tuple[str, Tensor]] = []
  1320. # merge the experts into a single 3d tensor
  1321. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1322. datas: list[Tensor] = []
  1323. for xid in range(n_experts):
  1324. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1325. datas.append(self._experts[bid][ename])
  1326. del self._experts[bid][ename]
  1327. data_torch = torch.stack(datas, dim=0)
  1328. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1329. new_name = self.map_tensor_name(merged_name)
  1330. tensors.append((new_name, data_torch))
  1331. return tensors
  1332. else:
  1333. return []
  1334. return [(self.map_tensor_name(name), data_torch)]
  1335. def write_tensors(self):
  1336. super().write_tensors()
  1337. if self._experts is not None:
  1338. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1339. experts = [k for d in self._experts for k in d.keys()]
  1340. if len(experts) > 0:
  1341. raise ValueError(f"Unprocessed experts: {experts}")
  1342. @Model.register("GPT2LMHeadModel")
  1343. class GPT2Model(Model):
  1344. model_arch = gguf.MODEL_ARCH.GPT2
  1345. def set_gguf_parameters(self):
  1346. self.gguf_writer.add_name(self.dir_model.name)
  1347. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1348. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1349. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1350. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1351. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1352. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1353. self.gguf_writer.add_file_type(self.ftype)
  1354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1355. del bid # unused
  1356. tensors: list[tuple[str, Tensor]] = []
  1357. # we don't need these
  1358. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1359. return tensors
  1360. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1361. data_torch = data_torch.transpose(1, 0)
  1362. new_name = self.map_tensor_name(name)
  1363. tensors.append((new_name, data_torch))
  1364. # note: GPT2 output is tied to (same as) wte in original model
  1365. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1366. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1367. return tensors
  1368. @Model.register("PhiForCausalLM")
  1369. class Phi2Model(Model):
  1370. model_arch = gguf.MODEL_ARCH.PHI2
  1371. def set_gguf_parameters(self):
  1372. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1373. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1374. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1375. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1376. self.gguf_writer.add_name("Phi2")
  1377. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1378. self.gguf_writer.add_embedding_length(n_embd)
  1379. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1380. self.gguf_writer.add_block_count(block_count)
  1381. self.gguf_writer.add_head_count(n_head)
  1382. self.gguf_writer.add_head_count_kv(n_head)
  1383. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1384. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1385. self.gguf_writer.add_file_type(self.ftype)
  1386. self.gguf_writer.add_add_bos_token(False)
  1387. @Model.register("Phi3ForCausalLM")
  1388. class Phi3MiniModel(Model):
  1389. model_arch = gguf.MODEL_ARCH.PHI3
  1390. def set_vocab(self):
  1391. from sentencepiece import SentencePieceProcessor
  1392. tokenizer_path = self.dir_model / 'tokenizer.model'
  1393. if not tokenizer_path.is_file():
  1394. raise ValueError(f'Error: Missing {tokenizer_path}')
  1395. tokenizer = SentencePieceProcessor()
  1396. tokenizer.LoadFromFile(str(tokenizer_path))
  1397. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1398. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1399. scores: list[float] = [-10000.0] * vocab_size
  1400. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1401. for token_id in range(tokenizer.vocab_size()):
  1402. piece = tokenizer.IdToPiece(token_id)
  1403. text = piece.encode("utf-8")
  1404. score = tokenizer.GetScore(token_id)
  1405. toktype = SentencePieceTokenTypes.NORMAL
  1406. if tokenizer.IsUnknown(token_id):
  1407. toktype = SentencePieceTokenTypes.UNKNOWN
  1408. elif tokenizer.IsControl(token_id):
  1409. toktype = SentencePieceTokenTypes.CONTROL
  1410. elif tokenizer.IsUnused(token_id):
  1411. toktype = SentencePieceTokenTypes.UNUSED
  1412. elif tokenizer.IsByte(token_id):
  1413. toktype = SentencePieceTokenTypes.BYTE
  1414. tokens[token_id] = text
  1415. scores[token_id] = score
  1416. toktypes[token_id] = toktype
  1417. added_tokens_file = self.dir_model / 'added_tokens.json'
  1418. if added_tokens_file.is_file():
  1419. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1420. added_tokens_json = json.load(f)
  1421. for key in added_tokens_json:
  1422. token_id = added_tokens_json[key]
  1423. if (token_id >= vocab_size):
  1424. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1425. continue
  1426. tokens[token_id] = key.encode("utf-8")
  1427. scores[token_id] = -1000.0
  1428. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1429. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1430. if tokenizer_config_file.is_file():
  1431. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1432. tokenizer_config_json = json.load(f)
  1433. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1434. for token_id, foken_data in added_tokens_decoder.items():
  1435. token_id = int(token_id)
  1436. token = foken_data["content"].encode("utf-8")
  1437. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1438. assert tokens[token_id] == token
  1439. tokens[token_id] = token
  1440. scores[token_id] = -1000.0
  1441. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1442. if foken_data.get("special"):
  1443. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1444. tokenizer_file = self.dir_model / 'tokenizer.json'
  1445. if tokenizer_file.is_file():
  1446. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1447. tokenizer_json = json.load(f)
  1448. added_tokens = tokenizer_json.get("added_tokens", [])
  1449. for foken_data in added_tokens:
  1450. token_id = int(foken_data["id"])
  1451. token = foken_data["content"].encode("utf-8")
  1452. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1453. assert tokens[token_id] == token
  1454. tokens[token_id] = token
  1455. scores[token_id] = -1000.0
  1456. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1457. if foken_data.get("special"):
  1458. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1459. self.gguf_writer.add_tokenizer_model("llama")
  1460. self.gguf_writer.add_tokenizer_pre("default")
  1461. self.gguf_writer.add_token_list(tokens)
  1462. self.gguf_writer.add_token_scores(scores)
  1463. self.gguf_writer.add_token_types(toktypes)
  1464. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1465. special_vocab.add_to_gguf(self.gguf_writer)
  1466. def set_gguf_parameters(self):
  1467. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1468. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1469. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1470. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1471. rms_eps = self.find_hparam(["rms_norm_eps"])
  1472. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1473. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1474. rope_dims = n_embd // n_head
  1475. self.gguf_writer.add_name("Phi3")
  1476. self.gguf_writer.add_context_length(max_pos_embds)
  1477. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1478. self.gguf_writer.add_embedding_length(n_embd)
  1479. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1480. self.gguf_writer.add_block_count(block_count)
  1481. self.gguf_writer.add_head_count(n_head)
  1482. self.gguf_writer.add_head_count_kv(n_head_kv)
  1483. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1484. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1485. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1486. self.gguf_writer.add_file_type(self.ftype)
  1487. # write rope scaling for long context (128k) model
  1488. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1489. if (rope_scaling is None):
  1490. return
  1491. scale = max_pos_embds / orig_max_pos_embds
  1492. rope_scaling_type = rope_scaling.get('type', '').lower()
  1493. if len(rope_scaling_type) == 0:
  1494. raise KeyError('Missing the required key rope_scaling.type')
  1495. if rope_scaling_type == 'su':
  1496. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1497. elif rope_scaling_type == 'yarn':
  1498. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1499. else:
  1500. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1501. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1502. long_factors = rope_scaling.get('long_factor', None)
  1503. short_factors = rope_scaling.get('short_factor', None)
  1504. if long_factors is None or short_factors is None:
  1505. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1506. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1507. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1508. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1509. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1510. @Model.register("PlamoForCausalLM")
  1511. class PlamoModel(Model):
  1512. model_arch = gguf.MODEL_ARCH.PLAMO
  1513. def set_vocab(self):
  1514. self._set_vocab_sentencepiece()
  1515. def set_gguf_parameters(self):
  1516. hparams = self.hparams
  1517. block_count = hparams["num_hidden_layers"]
  1518. self.gguf_writer.add_name("PLaMo")
  1519. self.gguf_writer.add_context_length(4096) # not in config.json
  1520. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1521. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1522. self.gguf_writer.add_block_count(block_count)
  1523. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1524. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1525. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1526. self.gguf_writer.add_file_type(self.ftype)
  1527. def shuffle_attn_q_weight(self, data_torch):
  1528. assert data_torch.size() == (5120, 5120)
  1529. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1530. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1531. data_torch = torch.reshape(data_torch, (5120, 5120))
  1532. return data_torch
  1533. def shuffle_attn_output_weight(self, data_torch):
  1534. assert data_torch.size() == (5120, 5120)
  1535. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1536. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1537. data_torch = torch.reshape(data_torch, (5120, 5120))
  1538. return data_torch
  1539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1540. del bid # unused
  1541. new_name = self.map_tensor_name(name)
  1542. # shuffle for broadcasting of gqa in ggml_mul_mat
  1543. if new_name.endswith("attn_q.weight"):
  1544. data_torch = self.shuffle_attn_q_weight(data_torch)
  1545. elif new_name.endswith("attn_output.weight"):
  1546. data_torch = self.shuffle_attn_output_weight(data_torch)
  1547. return [(new_name, data_torch)]
  1548. @Model.register("CodeShellForCausalLM")
  1549. class CodeShellModel(Model):
  1550. model_arch = gguf.MODEL_ARCH.CODESHELL
  1551. def set_gguf_parameters(self):
  1552. block_count = self.hparams["n_layer"]
  1553. self.gguf_writer.add_name("CodeShell")
  1554. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1555. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1556. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1557. self.gguf_writer.add_block_count(block_count)
  1558. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1559. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1560. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1561. self.gguf_writer.add_file_type(self.ftype)
  1562. self.gguf_writer.add_rope_freq_base(10000.0)
  1563. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1564. self.gguf_writer.add_rope_scaling_factor(1.0)
  1565. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1566. del bid # unused
  1567. new_name = self.map_tensor_name(name)
  1568. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1569. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1570. assert self.tensor_names is not None
  1571. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1572. # copy tok_embd.weight to output.weight
  1573. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1574. return tensors
  1575. @Model.register("InternLM2ForCausalLM")
  1576. class InternLM2Model(Model):
  1577. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1578. def set_vocab(self):
  1579. # (TODO): Is there a better way?
  1580. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1581. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1582. # recognized as an empty string in C++.
  1583. from sentencepiece import SentencePieceProcessor
  1584. from sentencepiece import sentencepiece_model_pb2 as model
  1585. tokenizer_path = self.dir_model / 'tokenizer.model'
  1586. tokens: list[bytes] = []
  1587. scores: list[float] = []
  1588. toktypes: list[int] = []
  1589. if not tokenizer_path.is_file():
  1590. logger.error(f'Error: Missing {tokenizer_path}')
  1591. sys.exit(1)
  1592. sentencepiece_model = model.ModelProto()
  1593. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1594. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1595. tokenizer = SentencePieceProcessor()
  1596. tokenizer.LoadFromFile(str(tokenizer_path))
  1597. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1598. for token_id in range(vocab_size):
  1599. piece = tokenizer.IdToPiece(token_id)
  1600. text = piece.encode("utf-8")
  1601. score = tokenizer.GetScore(token_id)
  1602. if text == b"\x00":
  1603. # (TODO): fixme
  1604. # Hack here and replace the \x00 characters.
  1605. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1606. text = "🐉".encode("utf-8")
  1607. toktype = SentencePieceTokenTypes.NORMAL
  1608. if tokenizer.IsUnknown(token_id):
  1609. toktype = SentencePieceTokenTypes.UNKNOWN
  1610. elif tokenizer.IsControl(token_id):
  1611. toktype = SentencePieceTokenTypes.CONTROL
  1612. elif tokenizer.IsUnused(token_id):
  1613. toktype = SentencePieceTokenTypes.UNUSED
  1614. elif tokenizer.IsByte(token_id):
  1615. toktype = SentencePieceTokenTypes.BYTE
  1616. tokens.append(text)
  1617. scores.append(score)
  1618. toktypes.append(toktype)
  1619. added_tokens_file = self.dir_model / 'added_tokens.json'
  1620. if added_tokens_file.is_file():
  1621. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1622. added_tokens_json = json.load(f)
  1623. for key in added_tokens_json:
  1624. tokens.append(key.encode("utf-8"))
  1625. scores.append(-1000.0)
  1626. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1627. self.gguf_writer.add_tokenizer_model("llama")
  1628. self.gguf_writer.add_tokenizer_pre("default")
  1629. self.gguf_writer.add_token_list(tokens)
  1630. self.gguf_writer.add_token_scores(scores)
  1631. self.gguf_writer.add_token_types(toktypes)
  1632. self.gguf_writer.add_add_space_prefix(add_prefix)
  1633. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1634. old_eos = special_vocab.special_token_ids["eos"]
  1635. if "chat" in os.path.basename(self.dir_model.absolute()):
  1636. # For the chat model, we replace the eos with '<|im_end|>'.
  1637. # TODO: this is a hack, should be fixed
  1638. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1639. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1640. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1641. in chat mode so that the conversation can end normally.")
  1642. special_vocab.add_to_gguf(self.gguf_writer)
  1643. def _try_get_sft_eos(self, tokenizer):
  1644. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1645. im_end_list = tokenizer.Encode('<|im_end|>')
  1646. eos_token = None
  1647. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1648. if len(unused_145_list) == 1:
  1649. eos_token = unused_145_list[0]
  1650. if len(im_end_list) == 1:
  1651. eos_token = im_end_list[0]
  1652. assert eos_token
  1653. return eos_token
  1654. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1655. if n_head_kv is not None and n_head != n_head_kv:
  1656. n_head = n_head_kv
  1657. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1658. .swapaxes(1, 2)
  1659. .reshape(weights.shape))
  1660. def set_gguf_parameters(self):
  1661. self.gguf_writer.add_name("InternLM2")
  1662. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1663. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1664. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1665. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1666. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1667. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1668. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1669. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1670. self.gguf_writer.add_file_type(self.ftype)
  1671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1672. num_heads = self.hparams["num_attention_heads"]
  1673. num_kv_heads = self.hparams["num_key_value_heads"]
  1674. hidden_size = self.hparams["hidden_size"]
  1675. q_per_kv = num_heads // num_kv_heads
  1676. head_dim = hidden_size // num_heads
  1677. num_groups = num_heads // q_per_kv
  1678. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1679. if re.match(qkv_pattern, name):
  1680. bid = re.findall(qkv_pattern, name)[0]
  1681. qkv = data_torch
  1682. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1683. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1684. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1685. # The model weights of q and k equire additional reshape.
  1686. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1687. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1688. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1689. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1690. # v = rearrange(v, " o g n i -> o (g n i)").T
  1691. v = v.reshape((v.shape[0], -1)).T
  1692. return [
  1693. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1694. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1695. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1696. ]
  1697. else:
  1698. return [(self.map_tensor_name(name), data_torch)]
  1699. @Model.register("BertModel", "CamembertModel")
  1700. class BertModel(Model):
  1701. model_arch = gguf.MODEL_ARCH.BERT
  1702. def __init__(self, *args, **kwargs):
  1703. super().__init__(*args, **kwargs)
  1704. self.vocab_size = None
  1705. def set_gguf_parameters(self):
  1706. super().set_gguf_parameters()
  1707. self.gguf_writer.add_causal_attention(False)
  1708. # get pooling path
  1709. pooling_path = None
  1710. module_path = self.dir_model / "modules.json"
  1711. if module_path.is_file():
  1712. with open(module_path, encoding="utf-8") as f:
  1713. modules = json.load(f)
  1714. for mod in modules:
  1715. if mod["type"] == "sentence_transformers.models.Pooling":
  1716. pooling_path = mod["path"]
  1717. break
  1718. # get pooling type
  1719. if pooling_path is not None:
  1720. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1721. pooling = json.load(f)
  1722. if pooling["pooling_mode_mean_tokens"]:
  1723. pooling_type = gguf.PoolingType.MEAN
  1724. elif pooling["pooling_mode_cls_token"]:
  1725. pooling_type = gguf.PoolingType.CLS
  1726. else:
  1727. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1728. self.gguf_writer.add_pooling_type(pooling_type)
  1729. def set_vocab(self):
  1730. tokens, toktypes, tokpre = self.get_vocab_base()
  1731. self.vocab_size = len(tokens)
  1732. # we need this to validate the size of the token_type embeddings
  1733. # though currently we are passing all zeros to the token_type embeddings
  1734. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1735. # convert to phantom space vocab
  1736. def phantom(tok):
  1737. if tok.startswith("[") and tok.endswith("]"):
  1738. return tok
  1739. if tok.startswith("##"):
  1740. return tok[2:]
  1741. return "\u2581" + tok
  1742. tokens = list(map(phantom, tokens))
  1743. # add vocab to gguf
  1744. self.gguf_writer.add_tokenizer_model("bert")
  1745. self.gguf_writer.add_tokenizer_pre(tokpre)
  1746. self.gguf_writer.add_token_list(tokens)
  1747. self.gguf_writer.add_token_types(toktypes)
  1748. # handle special tokens
  1749. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1750. special_vocab.add_to_gguf(self.gguf_writer)
  1751. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1752. del bid # unused
  1753. # we are only using BERT for embeddings so we don't need the pooling layer
  1754. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1755. return [] # we don't need these
  1756. return [(self.map_tensor_name(name), data_torch)]
  1757. @Model.register("NomicBertModel")
  1758. class NomicBertModel(BertModel):
  1759. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1760. def __init__(self, *args, **kwargs):
  1761. super().__init__(*args, **kwargs)
  1762. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1763. self.hparams["n_ctx"] = 2048
  1764. # SwigLU activation
  1765. assert self.hparams["activation_function"] == "swiglu"
  1766. # this doesn't do anything in the HF version
  1767. assert self.hparams["causal"] is False
  1768. # no bias tensors
  1769. assert self.hparams["qkv_proj_bias"] is False
  1770. assert self.hparams["mlp_fc1_bias"] is False
  1771. assert self.hparams["mlp_fc2_bias"] is False
  1772. # norm at end of layer
  1773. assert self.hparams["prenorm"] is False
  1774. # standard RoPE
  1775. assert self.hparams["rotary_emb_fraction"] == 1.0
  1776. assert self.hparams["rotary_emb_interleaved"] is False
  1777. assert self.hparams["rotary_emb_scale_base"] is None
  1778. def set_gguf_parameters(self):
  1779. super().set_gguf_parameters()
  1780. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1781. @Model.register("GemmaForCausalLM")
  1782. class GemmaModel(Model):
  1783. model_arch = gguf.MODEL_ARCH.GEMMA
  1784. def set_vocab(self):
  1785. self._set_vocab_sentencepiece()
  1786. # TODO: these special tokens should be exported only for the CodeGemma family
  1787. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1788. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1789. special_vocab._set_special_token("prefix", 67)
  1790. special_vocab._set_special_token("suffix", 69)
  1791. special_vocab._set_special_token("middle", 68)
  1792. special_vocab._set_special_token("fsep", 70)
  1793. special_vocab._set_special_token("eot", 107)
  1794. special_vocab.add_to_gguf(self.gguf_writer)
  1795. def set_gguf_parameters(self):
  1796. hparams = self.hparams
  1797. block_count = hparams["num_hidden_layers"]
  1798. self.gguf_writer.add_name(self.dir_model.name)
  1799. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1800. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1801. self.gguf_writer.add_block_count(block_count)
  1802. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1803. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1804. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1805. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1806. self.gguf_writer.add_key_length(hparams["head_dim"])
  1807. self.gguf_writer.add_value_length(hparams["head_dim"])
  1808. self.gguf_writer.add_file_type(self.ftype)
  1809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1810. del bid # unused
  1811. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1812. # To prevent errors, skip loading lm_head.weight.
  1813. if name == "lm_head.weight":
  1814. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1815. return []
  1816. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1817. if name.endswith("norm.weight"):
  1818. data_torch = data_torch + 1
  1819. return [(self.map_tensor_name(name), data_torch)]
  1820. @Model.register("Starcoder2ForCausalLM")
  1821. class StarCoder2Model(Model):
  1822. model_arch = gguf.MODEL_ARCH.STARCODER2
  1823. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1824. class MambaModel(Model):
  1825. model_arch = gguf.MODEL_ARCH.MAMBA
  1826. def set_vocab(self):
  1827. vocab_size = self.hparams["vocab_size"]
  1828. # Round vocab size to next multiple of 8
  1829. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1830. # pad using ceiling division
  1831. # ref: https://stackoverflow.com/a/17511341/22827863
  1832. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1833. self.hparams["vocab_size"] = vocab_size
  1834. if (self.dir_model / "tokenizer.json").is_file():
  1835. self._set_vocab_gpt2()
  1836. elif (self.dir_model / "tokenizer.model").is_file():
  1837. self._set_vocab_sentencepiece()
  1838. else:
  1839. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1840. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1841. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1842. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1843. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1844. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1845. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1846. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1847. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1848. assert field
  1849. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1850. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1851. assert field
  1852. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1853. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1854. assert field
  1855. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1856. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1857. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1858. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1859. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1860. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1861. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1862. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1863. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1864. def set_gguf_parameters(self):
  1865. d_model = self.find_hparam(["hidden_size", "d_model"])
  1866. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1867. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1868. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1869. # ceiling division
  1870. # ref: https://stackoverflow.com/a/17511341/22827863
  1871. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1872. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1873. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1874. # Fail early for models which don't have a block expansion factor of 2
  1875. assert d_inner == 2 * d_model
  1876. self.gguf_writer.add_name(self.dir_model.name)
  1877. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1878. self.gguf_writer.add_embedding_length(d_model)
  1879. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1880. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1881. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1882. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1883. self.gguf_writer.add_ssm_inner_size(d_inner)
  1884. self.gguf_writer.add_ssm_state_size(d_state)
  1885. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1886. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1887. self.gguf_writer.add_file_type(self.ftype)
  1888. _tok_embd = None
  1889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1890. del bid # unused
  1891. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  1892. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  1893. new_name = self.map_tensor_name(name)
  1894. if name.endswith(".A_log"):
  1895. logger.debug("A_log --> A ==> " + new_name)
  1896. data_torch = -torch.exp(data_torch)
  1897. # assuming token_embd.weight is seen before output.weight
  1898. if self._tok_embd is not None and new_name == output_name:
  1899. if torch.equal(self._tok_embd, data_torch):
  1900. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1901. return []
  1902. elif new_name == tok_embd_name:
  1903. self._tok_embd = data_torch
  1904. return [(new_name, data_torch)]
  1905. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1906. del n_dims # unused
  1907. return bid is not None and new_name in (
  1908. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  1909. gguf.MODEL_TENSOR.SSM_CONV1D,
  1910. gguf.MODEL_TENSOR.SSM_X,
  1911. gguf.MODEL_TENSOR.SSM_DT,
  1912. gguf.MODEL_TENSOR.SSM_A,
  1913. gguf.MODEL_TENSOR.SSM_D,
  1914. ]
  1915. )
  1916. @Model.register("CohereForCausalLM")
  1917. class CommandR2Model(Model):
  1918. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1919. def __init__(self, *args, **kwargs):
  1920. super().__init__(*args, **kwargs)
  1921. # max_position_embeddings = 8192 in config.json but model was actually
  1922. # trained on 128k context length
  1923. # aya-23 models don't have model_max_length specified
  1924. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  1925. def set_gguf_parameters(self):
  1926. super().set_gguf_parameters()
  1927. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1928. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1929. @Model.register("OlmoForCausalLM")
  1930. @Model.register("OLMoForCausalLM")
  1931. class OlmoModel(Model):
  1932. model_arch = gguf.MODEL_ARCH.OLMO
  1933. def set_gguf_parameters(self):
  1934. super().set_gguf_parameters()
  1935. self.gguf_writer.add_layer_norm_eps(1e-5)
  1936. clip_qkv = self.hparams.get("clip_qkv")
  1937. if clip_qkv is not None:
  1938. self.gguf_writer.add_clamp_kqv(clip_qkv)
  1939. # Same as super class, but permuting q_proj, k_proj
  1940. # Copied from: LlamaModel
  1941. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1942. del bid # unused
  1943. n_head = self.hparams["num_attention_heads"]
  1944. n_kv_head = self.hparams.get("num_key_value_heads")
  1945. if name.endswith("q_proj.weight"):
  1946. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1947. if name.endswith("k_proj.weight"):
  1948. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1949. return [(self.map_tensor_name(name), data_torch)]
  1950. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  1951. class JinaBertV2Model(BertModel):
  1952. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  1953. def __init__(self, *args, **kwargs):
  1954. super().__init__(*args, **kwargs)
  1955. self.intermediate_size = self.hparams["intermediate_size"]
  1956. def get_tensors(self):
  1957. for name, data in super().get_tensors():
  1958. if 'gated_layers' in name:
  1959. d1 = data[:self.intermediate_size, :]
  1960. name1 = name.replace('gated_layers', 'gated_layers_w')
  1961. d2 = data[self.intermediate_size:, :]
  1962. name2 = name.replace('gated_layers', 'gated_layers_v')
  1963. yield name1, d1
  1964. yield name2, d2
  1965. continue
  1966. yield name, data
  1967. def set_vocab(self, *args, **kwargs):
  1968. tokenizer_class = 'BertTokenizer'
  1969. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  1970. tokenizer_class = json.load(f)['tokenizer_class']
  1971. if tokenizer_class == 'BertTokenizer':
  1972. super().set_vocab()
  1973. elif tokenizer_class == 'RobertaTokenizer':
  1974. self._set_vocab_gpt2()
  1975. self.gguf_writer.add_token_type_count(2)
  1976. else:
  1977. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  1978. self.gguf_writer.add_add_bos_token(True)
  1979. self.gguf_writer.add_add_eos_token(True)
  1980. @Model.register("ArcticForCausalLM")
  1981. class ArcticModel(Model):
  1982. model_arch = gguf.MODEL_ARCH.ARCTIC
  1983. def set_vocab(self):
  1984. # The reason for using a custom implementation here is that the
  1985. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  1986. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  1987. from sentencepiece import SentencePieceProcessor
  1988. tokenizer_path = self.dir_model / 'tokenizer.model'
  1989. if not tokenizer_path.is_file():
  1990. logger.error(f'Error: Missing {tokenizer_path}')
  1991. sys.exit(1)
  1992. # Read the whole vocabulary from the tokenizer.model file
  1993. tokenizer = SentencePieceProcessor()
  1994. tokenizer.LoadFromFile(str(tokenizer_path))
  1995. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1996. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1997. scores: list[float] = [-10000.0] * vocab_size
  1998. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1999. for token_id in range(tokenizer.vocab_size()):
  2000. piece = tokenizer.IdToPiece(token_id)
  2001. text = piece.encode("utf-8")
  2002. score = tokenizer.GetScore(token_id)
  2003. toktype = SentencePieceTokenTypes.NORMAL
  2004. if tokenizer.IsUnknown(token_id):
  2005. toktype = SentencePieceTokenTypes.UNKNOWN
  2006. elif tokenizer.IsControl(token_id):
  2007. toktype = SentencePieceTokenTypes.CONTROL
  2008. elif tokenizer.IsUnused(token_id):
  2009. toktype = SentencePieceTokenTypes.UNUSED
  2010. elif tokenizer.IsByte(token_id):
  2011. toktype = SentencePieceTokenTypes.BYTE
  2012. tokens[token_id] = text
  2013. scores[token_id] = score
  2014. toktypes[token_id] = toktype
  2015. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2016. # of information about added/redefined tokens and modify them accordingly.
  2017. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2018. if tokenizer_config_file.is_file():
  2019. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2020. tokenizer_config_json = json.load(f)
  2021. if "added_tokens_decoder" in tokenizer_config_json:
  2022. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2023. for token_id, token_json in added_tokens_decoder.items():
  2024. token_id = int(token_id)
  2025. if (token_id >= vocab_size):
  2026. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2027. continue
  2028. token_content = token_json["content"]
  2029. token_type = SentencePieceTokenTypes.USER_DEFINED
  2030. token_score = -10000.0
  2031. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2032. # Set the score to 0.0 as in the original tokenizer.model
  2033. if ("special" in token_json) and token_json["special"]:
  2034. if token_content == tokenizer_config_json["unk_token"]:
  2035. token_type = SentencePieceTokenTypes.UNKNOWN
  2036. else:
  2037. token_type = SentencePieceTokenTypes.CONTROL
  2038. token_score = 0.0
  2039. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2040. tokens[token_id] = token_content.encode("utf-8")
  2041. toktypes[token_id] = token_type
  2042. scores[token_id] = token_score
  2043. self.gguf_writer.add_tokenizer_model("llama")
  2044. self.gguf_writer.add_tokenizer_pre("default")
  2045. self.gguf_writer.add_token_list(tokens)
  2046. self.gguf_writer.add_token_scores(scores)
  2047. self.gguf_writer.add_token_types(toktypes)
  2048. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2049. special_vocab.add_to_gguf(self.gguf_writer)
  2050. def set_gguf_parameters(self):
  2051. super().set_gguf_parameters()
  2052. hparams = self.hparams
  2053. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2054. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2055. _experts: list[dict[str, Tensor]] | None = None
  2056. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2057. n_head = self.hparams["num_attention_heads"]
  2058. n_kv_head = self.hparams.get("num_key_value_heads")
  2059. if name.endswith("q_proj.weight"):
  2060. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2061. if name.endswith("k_proj.weight"):
  2062. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2063. # process the experts separately
  2064. if name.find("block_sparse_moe.experts") != -1:
  2065. n_experts = self.hparams["num_local_experts"]
  2066. assert bid is not None
  2067. if self._experts is None:
  2068. self._experts = [{} for _ in range(self.block_count)]
  2069. self._experts[bid][name] = data_torch
  2070. if len(self._experts[bid]) >= n_experts * 3:
  2071. tensors: list[tuple[str, Tensor]] = []
  2072. # merge the experts into a single 3d tensor
  2073. for wid in ["w1", "w2", "w3"]:
  2074. datas: list[Tensor] = []
  2075. for xid in range(n_experts):
  2076. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2077. datas.append(self._experts[bid][ename])
  2078. del self._experts[bid][ename]
  2079. data_torch = torch.stack(datas, dim=0)
  2080. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2081. new_name = self.map_tensor_name(merged_name)
  2082. tensors.append((new_name, data_torch))
  2083. return tensors
  2084. else:
  2085. return []
  2086. return [(self.map_tensor_name(name), data_torch)]
  2087. def write_tensors(self):
  2088. super().write_tensors()
  2089. if self._experts is not None:
  2090. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2091. experts = [k for d in self._experts for k in d.keys()]
  2092. if len(experts) > 0:
  2093. raise ValueError(f"Unprocessed experts: {experts}")
  2094. @Model.register("DeepseekV2ForCausalLM")
  2095. class DeepseekV2Model(Model):
  2096. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2097. def set_vocab(self):
  2098. self._set_vocab_gpt2()
  2099. def set_gguf_parameters(self):
  2100. super().set_gguf_parameters()
  2101. hparams = self.hparams
  2102. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2103. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2104. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2105. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2106. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2107. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2108. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2109. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2110. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2111. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2112. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2113. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2114. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2115. if self.hparams["rope_scaling"].get("type") == "yarn":
  2116. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2117. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2118. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2119. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2120. _experts: list[dict[str, Tensor]] | None = None
  2121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2122. # process the experts separately
  2123. if name.find("mlp.experts") != -1:
  2124. n_experts = self.hparams["n_routed_experts"]
  2125. assert bid is not None
  2126. if self._experts is None:
  2127. self._experts = [{} for _ in range(self.block_count)]
  2128. self._experts[bid][name] = data_torch
  2129. if len(self._experts[bid]) >= n_experts * 3:
  2130. tensors: list[tuple[str, Tensor]] = []
  2131. # merge the experts into a single 3d tensor
  2132. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2133. datas: list[Tensor] = []
  2134. for xid in range(n_experts):
  2135. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2136. datas.append(self._experts[bid][ename])
  2137. del self._experts[bid][ename]
  2138. data_torch = torch.stack(datas, dim=0)
  2139. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2140. new_name = self.map_tensor_name(merged_name)
  2141. tensors.append((new_name, data_torch))
  2142. return tensors
  2143. else:
  2144. return []
  2145. return [(self.map_tensor_name(name), data_torch)]
  2146. def write_tensors(self):
  2147. super().write_tensors()
  2148. if self._experts is not None:
  2149. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2150. experts = [k for d in self._experts for k in d.keys()]
  2151. if len(experts) > 0:
  2152. raise ValueError(f"Unprocessed experts: {experts}")
  2153. ###### CONVERSION LOGIC ######
  2154. # tree of lazy tensors
  2155. class LazyTorchTensor(gguf.LazyBase):
  2156. _tensor_type = torch.Tensor
  2157. # to keep the type-checker happy
  2158. dtype: torch.dtype
  2159. shape: torch.Size
  2160. # only used when converting a torch.Tensor to a np.ndarray
  2161. _dtype_map: dict[torch.dtype, type] = {
  2162. torch.float16: np.float16,
  2163. torch.float32: np.float32,
  2164. }
  2165. def numpy(self) -> gguf.LazyNumpyTensor:
  2166. dtype = self._dtype_map[self.dtype]
  2167. return gguf.LazyNumpyTensor(
  2168. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2169. lazy=self._lazy,
  2170. args=(self,),
  2171. func=(lambda s: s[0].numpy())
  2172. )
  2173. @classmethod
  2174. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2175. return torch.empty(size=shape, dtype=dtype, device="meta")
  2176. @classmethod
  2177. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2178. del types # unused
  2179. if kwargs is None:
  2180. kwargs = {}
  2181. if func is torch.Tensor.numpy:
  2182. return args[0].numpy()
  2183. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2184. def parse_args() -> argparse.Namespace:
  2185. parser = argparse.ArgumentParser(
  2186. description="Convert a huggingface model to a GGML compatible file")
  2187. parser.add_argument(
  2188. "--vocab-only", action="store_true",
  2189. help="extract only the vocab",
  2190. )
  2191. parser.add_argument(
  2192. "--awq-path", type=Path, default=None,
  2193. help="Path to scale awq cache file",
  2194. )
  2195. parser.add_argument(
  2196. "--outfile", type=Path,
  2197. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2198. )
  2199. parser.add_argument(
  2200. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2201. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2202. )
  2203. parser.add_argument(
  2204. "--bigendian", action="store_true",
  2205. help="model is executed on big endian machine",
  2206. )
  2207. parser.add_argument(
  2208. "model", type=Path,
  2209. help="directory containing model file",
  2210. )
  2211. parser.add_argument(
  2212. "--use-temp-file", action="store_true",
  2213. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2214. )
  2215. parser.add_argument(
  2216. "--no-lazy", action="store_true",
  2217. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2218. )
  2219. parser.add_argument(
  2220. "--model-name", type=str, default=None,
  2221. help="name of the model",
  2222. )
  2223. parser.add_argument(
  2224. "--verbose", action="store_true",
  2225. help="increase output verbosity",
  2226. )
  2227. return parser.parse_args()
  2228. def main() -> None:
  2229. args = parse_args()
  2230. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2231. dir_model = args.model
  2232. if args.awq_path:
  2233. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2234. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2235. tmp_model_path = args.model / "weighted_model"
  2236. dir_model = tmp_model_path
  2237. if tmp_model_path.is_dir():
  2238. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2239. else:
  2240. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2241. logger.info("Saving new weighted model ...")
  2242. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2243. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2244. if not dir_model.is_dir():
  2245. logger.error(f'Error: {args.model} is not a directory')
  2246. sys.exit(1)
  2247. ftype_map: dict[str, gguf.LlamaFileType] = {
  2248. "f32": gguf.LlamaFileType.ALL_F32,
  2249. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2250. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2251. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2252. "auto": gguf.LlamaFileType.GUESSED,
  2253. }
  2254. if args.outfile is not None:
  2255. fname_out = args.outfile
  2256. else:
  2257. # output in the same directory as the model by default
  2258. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2259. logger.info(f"Loading model: {dir_model.name}")
  2260. hparams = Model.load_hparams(dir_model)
  2261. with torch.inference_mode():
  2262. try:
  2263. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2264. except NotImplementedError:
  2265. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2266. sys.exit(1)
  2267. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
  2268. logger.info("Set model parameters")
  2269. model_instance.set_gguf_parameters()
  2270. logger.info("Set model tokenizer")
  2271. model_instance.set_vocab()
  2272. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2273. if args.vocab_only:
  2274. logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
  2275. model_instance.write_vocab()
  2276. else:
  2277. logger.info(f"Exporting model to '{model_instance.fname_out}'")
  2278. model_instance.write()
  2279. logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
  2280. if __name__ == '__main__':
  2281. main()