ggml.c 743 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120221212212222123221242212522126221272212822129221302213122132221332213422135221362213722138221392214022141221422214322144221452214622147221482214922150221512215222153221542215522156221572215822159221602216122162221632216422165221662216722168221692217022171221722217322174221752217622177221782217922180221812218222183221842218522186221872218822189221902219122192221932219422195221962219722198221992220022201222022220322204222052220622207222082220922210222112221222213222142221522216222172221822219222202222122222222232222422225222262222722228222292223022231222322223322234222352223622237222382223922240222412224222243222442224522246222472224822249222502225122252222532225422255222562225722258222592226022261222622226322264222652226622267222682226922270222712227222273222742227522276222772227822279222802228122282222832228422285222862228722288222892229022291222922229322294222952229622297222982229922300223012230222303223042230522306223072230822309223102231122312223132231422315223162231722318223192232022321223222232322324223252232622327223282232922330223312233222333223342233522336223372233822339223402234122342223432234422345223462234722348223492235022351223522235322354223552235622357223582235922360223612236222363223642236522366223672236822369223702237122372223732237422375223762237722378223792238022381223822238322384223852238622387223882238922390223912239222393223942239522396223972239822399224002240122402224032240422405224062240722408224092241022411224122241322414224152241622417224182241922420224212242222423224242242522426224272242822429224302243122432224332243422435224362243722438224392244022441224422244322444224452244622447224482244922450224512245222453224542245522456224572245822459224602246122462224632246422465224662246722468224692247022471224722247322474224752247622477224782247922480224812248222483224842248522486224872248822489224902249122492224932249422495224962249722498224992250022501225022250322504225052250622507225082250922510225112251222513225142251522516225172251822519225202252122522225232252422525225262252722528225292253022531225322253322534225352253622537225382253922540225412254222543225442254522546225472254822549225502255122552225532255422555225562255722558225592256022561225622256322564225652256622567225682256922570225712257222573225742257522576225772257822579225802258122582225832258422585225862258722588225892259022591225922259322594225952259622597225982259922600226012260222603226042260522606226072260822609226102261122612226132261422615226162261722618226192262022621226222262322624226252262622627226282262922630226312263222633226342263522636226372263822639226402264122642226432264422645226462264722648226492265022651226522265322654226552265622657226582265922660226612266222663226642266522666226672266822669226702267122672226732267422675226762267722678226792268022681226822268322684226852268622687226882268922690226912269222693226942269522696226972269822699227002270122702227032270422705227062270722708227092271022711227122271322714227152271622717227182271922720227212272222723227242272522726227272272822729227302273122732227332273422735227362273722738227392274022741227422274322744227452274622747227482274922750227512275222753227542275522756227572275822759227602276122762227632276422765227662276722768227692277022771227722277322774227752277622777227782277922780227812278222783227842278522786227872278822789227902279122792227932279422795227962279722798227992280022801228022280322804228052280622807228082280922810228112281222813228142281522816228172281822819228202282122822228232282422825228262282722828228292283022831228322283322834228352283622837228382283922840228412284222843228442284522846228472284822849228502285122852228532285422855228562285722858228592286022861228622286322864228652286622867228682286922870228712287222873228742287522876228772287822879228802288122882228832288422885228862288722888228892289022891228922289322894228952289622897228982289922900229012290222903229042290522906229072290822909229102291122912229132291422915229162291722918229192292022921229222292322924229252292622927229282292922930229312293222933229342293522936229372293822939229402294122942229432294422945229462294722948229492295022951229522295322954
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  252. #include "ggml-opencl.h"
  253. #endif
  254. #elif defined(GGML_USE_OPENBLAS)
  255. #if defined(GGML_BLAS_USE_MKL)
  256. #include <mkl.h>
  257. #else
  258. #include <cblas.h>
  259. #endif
  260. #elif defined(GGML_USE_CLBLAST)
  261. #include "ggml-opencl.h"
  262. #endif
  263. // floating point type used to accumulate sums
  264. typedef double ggml_float;
  265. #undef MIN
  266. #undef MAX
  267. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  268. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  269. //
  270. // global data
  271. //
  272. // precomputed gelu table for f16 (128 KB)
  273. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  274. // precomputed quick gelu table for f16 (128 KB)
  275. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  276. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  277. float ggml_table_f32_f16[1 << 16];
  278. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  279. switch (status) {
  280. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  281. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  282. case GGML_STATUS_SUCCESS: return "GGML status: success";
  283. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  284. }
  285. return "GGML status: unknown";
  286. }
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  289. return GGML_FP16_TO_FP32(x);
  290. }
  291. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  292. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  293. return GGML_FP32_TO_FP16(x);
  294. }
  295. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  296. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  297. return GGML_BF16_TO_FP32(x); // it just left shifts
  298. }
  299. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  300. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  301. return GGML_FP32_TO_BF16(x);
  302. }
  303. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  304. for (int64_t i = 0; i < n; i++) {
  305. y[i] = GGML_FP16_TO_FP32(x[i]);
  306. }
  307. }
  308. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  309. int64_t i = 0;
  310. #if defined(__F16C__)
  311. for (; i + 7 < n; i += 8) {
  312. __m256 x_vec = _mm256_loadu_ps(x + i);
  313. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  315. }
  316. for(; i + 3 < n; i += 4) {
  317. __m128 x_vec = _mm_loadu_ps(x + i);
  318. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  320. }
  321. #endif
  322. for (; i < n; i++) {
  323. y[i] = GGML_FP32_TO_FP16(x[i]);
  324. }
  325. }
  326. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  327. int64_t i = 0;
  328. #if defined(__AVX512F__)
  329. for (; i + 16 <= n; i += 16) {
  330. _mm512_storeu_ps(y + i,
  331. _mm512_castsi512_ps(
  332. _mm512_slli_epi32(
  333. _mm512_cvtepu16_epi32(
  334. _mm256_loadu_si256(
  335. (const __m256i *)(x + i))),
  336. 16)));
  337. }
  338. #elif defined(__AVX2__)
  339. for (; i + 8 <= n; i += 8) {
  340. _mm256_storeu_ps(y + i,
  341. _mm256_castsi256_ps(
  342. _mm256_slli_epi32(
  343. _mm256_cvtepu16_epi32(
  344. _mm_loadu_si128(
  345. (const __m128i *)(x + i))),
  346. 16)));
  347. }
  348. #endif
  349. for (; i < n; i++) {
  350. y[i] = GGML_BF16_TO_FP32(x[i]);
  351. }
  352. }
  353. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  354. int i = 0;
  355. #if defined(__AVX512BF16__)
  356. for (; i + 32 <= n; i += 32) {
  357. _mm512_storeu_si512(
  358. (__m512i *)(y + i),
  359. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  360. _mm512_loadu_ps(x + i))));
  361. }
  362. #endif
  363. for (; i < n; i++) {
  364. y[i] = GGML_FP32_TO_BF16(x[i]);
  365. }
  366. }
  367. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  368. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  369. }
  370. //
  371. // timing
  372. //
  373. #if defined(_MSC_VER) || defined(__MINGW32__)
  374. static int64_t timer_freq, timer_start;
  375. void ggml_time_init(void) {
  376. LARGE_INTEGER t;
  377. QueryPerformanceFrequency(&t);
  378. timer_freq = t.QuadPart;
  379. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  380. // and the uptime is high enough.
  381. // We subtract the program start time to reduce the likelihood of that happening.
  382. QueryPerformanceCounter(&t);
  383. timer_start = t.QuadPart;
  384. }
  385. int64_t ggml_time_ms(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  389. }
  390. int64_t ggml_time_us(void) {
  391. LARGE_INTEGER t;
  392. QueryPerformanceCounter(&t);
  393. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  394. }
  395. #else
  396. void ggml_time_init(void) {}
  397. int64_t ggml_time_ms(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  401. }
  402. int64_t ggml_time_us(void) {
  403. struct timespec ts;
  404. clock_gettime(CLOCK_MONOTONIC, &ts);
  405. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  406. }
  407. #endif
  408. int64_t ggml_cycles(void) {
  409. return clock();
  410. }
  411. int64_t ggml_cycles_per_ms(void) {
  412. return CLOCKS_PER_SEC/1000;
  413. }
  414. #ifdef GGML_PERF
  415. #define ggml_perf_time_ms() ggml_time_ms()
  416. #define ggml_perf_time_us() ggml_time_us()
  417. #define ggml_perf_cycles() ggml_cycles()
  418. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  419. #else
  420. #define ggml_perf_time_ms() 0
  421. #define ggml_perf_time_us() 0
  422. #define ggml_perf_cycles() 0
  423. #define ggml_perf_cycles_per_ms() 0
  424. #endif
  425. //
  426. // cross-platform UTF-8 file paths
  427. //
  428. #ifdef _WIN32
  429. static wchar_t * ggml_mbstowcs(const char * mbs) {
  430. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  431. if (!wlen) {
  432. errno = EINVAL;
  433. return NULL;
  434. }
  435. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  436. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  437. if (!wlen) {
  438. GGML_FREE(wbuf);
  439. errno = EINVAL;
  440. return NULL;
  441. }
  442. return wbuf;
  443. }
  444. #endif
  445. FILE * ggml_fopen(const char * fname, const char * mode) {
  446. #ifdef _WIN32
  447. FILE * file = NULL;
  448. // convert fname (UTF-8)
  449. wchar_t * wfname = ggml_mbstowcs(fname);
  450. if (wfname) {
  451. // convert mode (ANSI)
  452. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  453. wchar_t * wmode_p = wmode;
  454. do {
  455. *wmode_p++ = (wchar_t)*mode;
  456. } while (*mode++);
  457. // open file
  458. file = _wfopen(wfname, wmode);
  459. GGML_FREE(wfname);
  460. GGML_FREE(wmode);
  461. }
  462. return file;
  463. #else
  464. return fopen(fname, mode);
  465. #endif
  466. }
  467. //
  468. // cache line
  469. //
  470. #if defined(__cpp_lib_hardware_interference_size)
  471. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  472. #else
  473. #if defined(__POWER9_VECTOR__)
  474. #define CACHE_LINE_SIZE 128
  475. #else
  476. #define CACHE_LINE_SIZE 64
  477. #endif
  478. #endif
  479. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  480. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  481. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  482. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  483. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  484. [GGML_TYPE_I8] = {
  485. .type_name = "i8",
  486. .blck_size = 1,
  487. .type_size = sizeof(int8_t),
  488. .is_quantized = false,
  489. },
  490. [GGML_TYPE_I16] = {
  491. .type_name = "i16",
  492. .blck_size = 1,
  493. .type_size = sizeof(int16_t),
  494. .is_quantized = false,
  495. },
  496. [GGML_TYPE_I32] = {
  497. .type_name = "i32",
  498. .blck_size = 1,
  499. .type_size = sizeof(int32_t),
  500. .is_quantized = false,
  501. },
  502. [GGML_TYPE_I64] = {
  503. .type_name = "i64",
  504. .blck_size = 1,
  505. .type_size = sizeof(int64_t),
  506. .is_quantized = false,
  507. },
  508. [GGML_TYPE_F64] = {
  509. .type_name = "f64",
  510. .blck_size = 1,
  511. .type_size = sizeof(double),
  512. .is_quantized = false,
  513. .nrows = 1,
  514. },
  515. [GGML_TYPE_F32] = {
  516. .type_name = "f32",
  517. .blck_size = 1,
  518. .type_size = sizeof(float),
  519. .is_quantized = false,
  520. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  521. .vec_dot_type = GGML_TYPE_F32,
  522. .nrows = 1,
  523. },
  524. [GGML_TYPE_F16] = {
  525. .type_name = "f16",
  526. .blck_size = 1,
  527. .type_size = sizeof(ggml_fp16_t),
  528. .is_quantized = false,
  529. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  530. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  531. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  532. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  533. .vec_dot_type = GGML_TYPE_F16,
  534. .nrows = 1,
  535. },
  536. [GGML_TYPE_Q4_0] = {
  537. .type_name = "q4_0",
  538. .blck_size = QK4_0,
  539. .type_size = sizeof(block_q4_0),
  540. .is_quantized = true,
  541. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  542. .from_float = quantize_row_q4_0,
  543. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  544. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  545. .vec_dot_type = GGML_TYPE_Q8_0,
  546. #if defined (__ARM_FEATURE_MATMUL_INT8)
  547. .nrows = 2,
  548. #else
  549. .nrows = 1,
  550. #endif
  551. },
  552. [GGML_TYPE_Q4_1] = {
  553. .type_name = "q4_1",
  554. .blck_size = QK4_1,
  555. .type_size = sizeof(block_q4_1),
  556. .is_quantized = true,
  557. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  558. .from_float = quantize_row_q4_1,
  559. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  560. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  561. .vec_dot_type = GGML_TYPE_Q8_1,
  562. #if defined (__ARM_FEATURE_MATMUL_INT8)
  563. .nrows = 2,
  564. #else
  565. .nrows = 1,
  566. #endif
  567. },
  568. [4] = { // GGML_TYPE_Q4_2
  569. .type_name = "DEPRECATED",
  570. .blck_size = 0,
  571. .type_size = 0,
  572. .is_quantized = false,
  573. .to_float = NULL,
  574. .from_float = NULL,
  575. .from_float_reference = NULL,
  576. .vec_dot = NULL,
  577. .vec_dot_type = GGML_TYPE_COUNT,
  578. .nrows = 1,
  579. },
  580. [5] = { // GGML_TYPE_Q4_3
  581. .type_name = "DEPRECATED",
  582. .blck_size = 0,
  583. .type_size = 0,
  584. .is_quantized = false,
  585. .to_float = NULL,
  586. .from_float = NULL,
  587. .from_float_reference = NULL,
  588. .vec_dot = NULL,
  589. .vec_dot_type = GGML_TYPE_COUNT,
  590. .nrows = 1,
  591. },
  592. [GGML_TYPE_Q5_0] = {
  593. .type_name = "q5_0",
  594. .blck_size = QK5_0,
  595. .type_size = sizeof(block_q5_0),
  596. .is_quantized = true,
  597. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  598. .from_float = quantize_row_q5_0,
  599. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  600. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  601. .vec_dot_type = GGML_TYPE_Q8_0,
  602. .nrows = 1,
  603. },
  604. [GGML_TYPE_Q5_1] = {
  605. .type_name = "q5_1",
  606. .blck_size = QK5_1,
  607. .type_size = sizeof(block_q5_1),
  608. .is_quantized = true,
  609. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  610. .from_float = quantize_row_q5_1,
  611. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  612. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  613. .vec_dot_type = GGML_TYPE_Q8_1,
  614. .nrows = 1,
  615. },
  616. [GGML_TYPE_Q8_0] = {
  617. .type_name = "q8_0",
  618. .blck_size = QK8_0,
  619. .type_size = sizeof(block_q8_0),
  620. .is_quantized = true,
  621. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  622. .from_float = quantize_row_q8_0,
  623. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  624. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  625. .vec_dot_type = GGML_TYPE_Q8_0,
  626. #if defined (__ARM_FEATURE_MATMUL_INT8)
  627. .nrows = 2,
  628. #else
  629. .nrows = 1,
  630. #endif
  631. },
  632. [GGML_TYPE_Q8_1] = {
  633. .type_name = "q8_1",
  634. .blck_size = QK8_1,
  635. .type_size = sizeof(block_q8_1),
  636. .is_quantized = true,
  637. .from_float = quantize_row_q8_1,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  639. .vec_dot_type = GGML_TYPE_Q8_1,
  640. .nrows = 1,
  641. },
  642. [GGML_TYPE_Q2_K] = {
  643. .type_name = "q2_K",
  644. .blck_size = QK_K,
  645. .type_size = sizeof(block_q2_K),
  646. .is_quantized = true,
  647. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  648. .from_float = quantize_row_q2_K,
  649. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  650. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  651. .vec_dot_type = GGML_TYPE_Q8_K,
  652. .nrows = 1,
  653. },
  654. [GGML_TYPE_Q3_K] = {
  655. .type_name = "q3_K",
  656. .blck_size = QK_K,
  657. .type_size = sizeof(block_q3_K),
  658. .is_quantized = true,
  659. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  660. .from_float = quantize_row_q3_K,
  661. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  662. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  663. .vec_dot_type = GGML_TYPE_Q8_K,
  664. .nrows = 1,
  665. },
  666. [GGML_TYPE_Q4_K] = {
  667. .type_name = "q4_K",
  668. .blck_size = QK_K,
  669. .type_size = sizeof(block_q4_K),
  670. .is_quantized = true,
  671. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  672. .from_float = quantize_row_q4_K,
  673. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  674. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  675. .vec_dot_type = GGML_TYPE_Q8_K,
  676. .nrows = 1,
  677. },
  678. [GGML_TYPE_Q5_K] = {
  679. .type_name = "q5_K",
  680. .blck_size = QK_K,
  681. .type_size = sizeof(block_q5_K),
  682. .is_quantized = true,
  683. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  684. .from_float = quantize_row_q5_K,
  685. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  686. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  687. .vec_dot_type = GGML_TYPE_Q8_K,
  688. .nrows = 1,
  689. },
  690. [GGML_TYPE_Q6_K] = {
  691. .type_name = "q6_K",
  692. .blck_size = QK_K,
  693. .type_size = sizeof(block_q6_K),
  694. .is_quantized = true,
  695. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  696. .from_float = quantize_row_q6_K,
  697. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  698. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  699. .vec_dot_type = GGML_TYPE_Q8_K,
  700. .nrows = 1,
  701. },
  702. [GGML_TYPE_IQ2_XXS] = {
  703. .type_name = "iq2_xxs",
  704. .blck_size = QK_K,
  705. .type_size = sizeof(block_iq2_xxs),
  706. .is_quantized = true,
  707. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  708. .from_float = NULL,
  709. .from_float_reference = NULL,
  710. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  711. .vec_dot_type = GGML_TYPE_Q8_K,
  712. .nrows = 1,
  713. },
  714. [GGML_TYPE_IQ2_XS] = {
  715. .type_name = "iq2_xs",
  716. .blck_size = QK_K,
  717. .type_size = sizeof(block_iq2_xs),
  718. .is_quantized = true,
  719. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  720. .from_float = NULL,
  721. .from_float_reference = NULL,
  722. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  723. .vec_dot_type = GGML_TYPE_Q8_K,
  724. .nrows = 1,
  725. },
  726. [GGML_TYPE_IQ3_XXS] = {
  727. .type_name = "iq3_xxs",
  728. .blck_size = QK_K,
  729. .type_size = sizeof(block_iq3_xxs),
  730. .is_quantized = true,
  731. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  732. .from_float = quantize_row_iq3_xxs,
  733. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  734. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  735. .vec_dot_type = GGML_TYPE_Q8_K,
  736. .nrows = 1,
  737. },
  738. [GGML_TYPE_IQ3_S] = {
  739. .type_name = "iq3_s",
  740. .blck_size = QK_K,
  741. .type_size = sizeof(block_iq3_s),
  742. .is_quantized = true,
  743. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  744. .from_float = quantize_row_iq3_s,
  745. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  746. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  747. .vec_dot_type = GGML_TYPE_Q8_K,
  748. .nrows = 1,
  749. },
  750. [GGML_TYPE_IQ2_S] = {
  751. .type_name = "iq2_s",
  752. .blck_size = QK_K,
  753. .type_size = sizeof(block_iq2_s),
  754. .is_quantized = true,
  755. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  756. .from_float = quantize_row_iq2_s,
  757. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  758. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  759. .vec_dot_type = GGML_TYPE_Q8_K,
  760. .nrows = 1,
  761. },
  762. [GGML_TYPE_IQ1_S] = {
  763. .type_name = "iq1_s",
  764. .blck_size = QK_K,
  765. .type_size = sizeof(block_iq1_s),
  766. .is_quantized = true,
  767. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  768. .from_float = NULL,
  769. .from_float_reference = NULL,
  770. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  771. .vec_dot_type = GGML_TYPE_Q8_K,
  772. .nrows = 1,
  773. },
  774. [GGML_TYPE_IQ1_M] = {
  775. .type_name = "iq1_m",
  776. .blck_size = QK_K,
  777. .type_size = sizeof(block_iq1_m),
  778. .is_quantized = true,
  779. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  780. .from_float = NULL,
  781. .from_float_reference = NULL,
  782. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  783. .vec_dot_type = GGML_TYPE_Q8_K,
  784. .nrows = 1,
  785. },
  786. [GGML_TYPE_IQ4_NL] = {
  787. .type_name = "iq4_nl",
  788. .blck_size = QK4_NL,
  789. .type_size = sizeof(block_iq4_nl),
  790. .is_quantized = true,
  791. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  792. .from_float = quantize_row_iq4_nl,
  793. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  794. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  795. .vec_dot_type = GGML_TYPE_Q8_0,
  796. .nrows = 1,
  797. },
  798. [GGML_TYPE_IQ4_XS] = {
  799. .type_name = "iq4_xs",
  800. .blck_size = QK_K,
  801. .type_size = sizeof(block_iq4_xs),
  802. .is_quantized = true,
  803. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  804. .from_float = quantize_row_iq4_xs,
  805. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  806. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  807. .vec_dot_type = GGML_TYPE_Q8_K,
  808. .nrows = 1,
  809. },
  810. [GGML_TYPE_Q8_K] = {
  811. .type_name = "q8_K",
  812. .blck_size = QK_K,
  813. .type_size = sizeof(block_q8_K),
  814. .is_quantized = true,
  815. .from_float = quantize_row_q8_K,
  816. },
  817. [GGML_TYPE_BF16] = {
  818. .type_name = "bf16",
  819. .blck_size = 1,
  820. .type_size = sizeof(ggml_bf16_t),
  821. .is_quantized = false,
  822. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  823. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  824. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  825. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  826. .vec_dot_type = GGML_TYPE_BF16,
  827. .nrows = 1,
  828. }
  829. };
  830. // For internal test use
  831. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  832. GGML_ASSERT(type < GGML_TYPE_COUNT);
  833. return type_traits[type];
  834. }
  835. //
  836. // simd mappings
  837. //
  838. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  839. // we then implement the fundamental computation operations below using only these macros
  840. // adding support for new architectures requires to define the corresponding SIMD macros
  841. //
  842. // GGML_F32_STEP / GGML_F16_STEP
  843. // number of elements to process in a single step
  844. //
  845. // GGML_F32_EPR / GGML_F16_EPR
  846. // number of elements to fit in a single register
  847. //
  848. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  849. #define GGML_SIMD
  850. // F32 NEON
  851. #define GGML_F32_STEP 16
  852. #define GGML_F32_EPR 4
  853. #define GGML_F32x4 float32x4_t
  854. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  855. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  856. #define GGML_F32x4_LOAD vld1q_f32
  857. #define GGML_F32x4_STORE vst1q_f32
  858. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  859. #define GGML_F32x4_ADD vaddq_f32
  860. #define GGML_F32x4_MUL vmulq_f32
  861. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  862. #define GGML_F32x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F32_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = vaddq_f32(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = vaddq_f32(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = vaddq_f32(x[i], x[offset+i]); \
  875. } \
  876. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  877. }
  878. #define GGML_F32_VEC GGML_F32x4
  879. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  880. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  881. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  882. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  883. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  884. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  885. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  886. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  887. // F16 NEON
  888. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  889. #define GGML_F16_STEP 32
  890. #define GGML_F16_EPR 8
  891. #define GGML_F16x8 float16x8_t
  892. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  893. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  894. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  895. #define GGML_F16x8_STORE vst1q_f16
  896. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  897. #define GGML_F16x8_ADD vaddq_f16
  898. #define GGML_F16x8_MUL vmulq_f16
  899. #define GGML_F16x8_REDUCE(res, x) \
  900. do { \
  901. int offset = GGML_F16_ARR >> 1; \
  902. for (int i = 0; i < offset; ++i) { \
  903. x[i] = vaddq_f16(x[i], x[offset+i]); \
  904. } \
  905. offset >>= 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = vaddq_f16(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = vaddq_f16(x[i], x[offset+i]); \
  912. } \
  913. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  914. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  915. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  916. } while (0)
  917. #define GGML_F16_VEC GGML_F16x8
  918. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  922. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  923. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  924. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  926. #else
  927. // if FP16 vector arithmetic is not supported, we use FP32 instead
  928. // and take advantage of the vcvt_ functions to convert to/from FP16
  929. #define GGML_F16_STEP 16
  930. #define GGML_F16_EPR 4
  931. #define GGML_F32Cx4 float32x4_t
  932. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  933. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  934. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  935. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  936. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  937. #define GGML_F32Cx4_ADD vaddq_f32
  938. #define GGML_F32Cx4_MUL vmulq_f32
  939. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  940. #define GGML_F16_VEC GGML_F32Cx4
  941. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  942. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  943. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  944. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  945. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  946. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  947. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  948. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  949. #endif
  950. #elif defined(__AVX512F__)
  951. #define GGML_SIMD
  952. // F32 AVX512
  953. #define GGML_F32_STEP 64
  954. #define GGML_F32_EPR 16
  955. #define GGML_F32x16 __m512
  956. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  957. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  958. #define GGML_F32x16_LOAD _mm512_loadu_ps
  959. #define GGML_F32x16_STORE _mm512_storeu_ps
  960. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  961. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  962. #define GGML_F32x16_ADD _mm512_add_ps
  963. #define GGML_F32x16_MUL _mm512_mul_ps
  964. #define GGML_F32x16_REDUCE(res, x) \
  965. do { \
  966. int offset = GGML_F32_ARR >> 1; \
  967. for (int i = 0; i < offset; ++i) { \
  968. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  969. } \
  970. offset >>= 1; \
  971. for (int i = 0; i < offset; ++i) { \
  972. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  973. } \
  974. offset >>= 1; \
  975. for (int i = 0; i < offset; ++i) { \
  976. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  977. } \
  978. res = _mm512_reduce_add_ps(x[0]); \
  979. } while (0)
  980. // TODO: is this optimal ?
  981. #define GGML_F32_VEC GGML_F32x16
  982. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  983. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  984. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  985. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  986. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  987. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  988. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  989. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  990. // F16 AVX512
  991. // F16 AVX
  992. #define GGML_F16_STEP 64
  993. #define GGML_F16_EPR 16
  994. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  995. #define GGML_F32Cx16 __m512
  996. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  997. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  998. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  999. // so F16C guard isn't required
  1000. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1001. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1002. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1003. #define GGML_F32Cx16_ADD _mm512_add_ps
  1004. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1005. #define GGML_F32Cx16_REDUCE(res, x) \
  1006. do { \
  1007. int offset = GGML_F32_ARR >> 1; \
  1008. for (int i = 0; i < offset; ++i) { \
  1009. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1010. } \
  1011. offset >>= 1; \
  1012. for (int i = 0; i < offset; ++i) { \
  1013. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1014. } \
  1015. offset >>= 1; \
  1016. for (int i = 0; i < offset; ++i) { \
  1017. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1018. } \
  1019. res = _mm512_reduce_add_ps(x[0]); \
  1020. } while (0)
  1021. #define GGML_F16_VEC GGML_F32Cx16
  1022. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1023. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1024. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1025. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1026. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1027. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1028. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1029. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1030. #elif defined(__AVX__)
  1031. #define GGML_SIMD
  1032. // F32 AVX
  1033. #define GGML_F32_STEP 32
  1034. #define GGML_F32_EPR 8
  1035. #define GGML_F32x8 __m256
  1036. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1037. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1038. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1039. #define GGML_F32x8_STORE _mm256_storeu_ps
  1040. #if defined(__FMA__)
  1041. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1042. #else
  1043. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1044. #endif
  1045. #define GGML_F32x8_ADD _mm256_add_ps
  1046. #define GGML_F32x8_MUL _mm256_mul_ps
  1047. #define GGML_F32x8_REDUCE(res, x) \
  1048. do { \
  1049. int offset = GGML_F32_ARR >> 1; \
  1050. for (int i = 0; i < offset; ++i) { \
  1051. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1052. } \
  1053. offset >>= 1; \
  1054. for (int i = 0; i < offset; ++i) { \
  1055. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1056. } \
  1057. offset >>= 1; \
  1058. for (int i = 0; i < offset; ++i) { \
  1059. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1060. } \
  1061. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1062. _mm256_extractf128_ps(x[0], 1)); \
  1063. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1064. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1065. } while (0)
  1066. // TODO: is this optimal ?
  1067. #define GGML_F32_VEC GGML_F32x8
  1068. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1069. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1070. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1071. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1072. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1073. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1074. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1075. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1076. // F16 AVX
  1077. #define GGML_F16_STEP 32
  1078. #define GGML_F16_EPR 8
  1079. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1080. #define GGML_F32Cx8 __m256
  1081. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1082. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1083. #if defined(__F16C__)
  1084. // the _mm256_cvt intrinsics require F16C
  1085. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1086. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1087. #else
  1088. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1089. float tmp[8];
  1090. for (int i = 0; i < 8; i++) {
  1091. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1092. }
  1093. return _mm256_loadu_ps(tmp);
  1094. }
  1095. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1096. float arr[8];
  1097. _mm256_storeu_ps(arr, y);
  1098. for (int i = 0; i < 8; i++)
  1099. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1100. }
  1101. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1102. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1103. #endif
  1104. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1105. #define GGML_F32Cx8_ADD _mm256_add_ps
  1106. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1107. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1108. #define GGML_F16_VEC GGML_F32Cx8
  1109. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1111. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1112. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1113. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1114. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1115. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1116. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1117. #elif defined(__POWER9_VECTOR__)
  1118. #define GGML_SIMD
  1119. // F32 POWER9
  1120. #define GGML_F32_STEP 32
  1121. #define GGML_F32_EPR 4
  1122. #define GGML_F32x4 vector float
  1123. #define GGML_F32x4_ZERO 0.0f
  1124. #define GGML_F32x4_SET1 vec_splats
  1125. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1126. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1127. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1128. #define GGML_F32x4_ADD vec_add
  1129. #define GGML_F32x4_MUL vec_mul
  1130. #define GGML_F32x4_REDUCE(res, x) \
  1131. { \
  1132. int offset = GGML_F32_ARR >> 1; \
  1133. for (int i = 0; i < offset; ++i) { \
  1134. x[i] = vec_add(x[i], x[offset+i]); \
  1135. } \
  1136. offset >>= 1; \
  1137. for (int i = 0; i < offset; ++i) { \
  1138. x[i] = vec_add(x[i], x[offset+i]); \
  1139. } \
  1140. offset >>= 1; \
  1141. for (int i = 0; i < offset; ++i) { \
  1142. x[i] = vec_add(x[i], x[offset+i]); \
  1143. } \
  1144. res = vec_extract(x[0], 0) + \
  1145. vec_extract(x[0], 1) + \
  1146. vec_extract(x[0], 2) + \
  1147. vec_extract(x[0], 3); \
  1148. }
  1149. #define GGML_F32_VEC GGML_F32x4
  1150. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1151. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1152. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1153. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1154. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1155. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1156. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1157. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1158. // F16 POWER9
  1159. #define GGML_F16_STEP GGML_F32_STEP
  1160. #define GGML_F16_EPR GGML_F32_EPR
  1161. #define GGML_F16_VEC GGML_F32x4
  1162. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1163. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1164. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1165. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1166. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1167. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1168. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1169. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1170. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1171. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1172. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1173. #define GGML_F16_VEC_STORE(p, r, i) \
  1174. if (i & 0x1) \
  1175. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1176. r[i - GGML_ENDIAN_BYTE(0)]), \
  1177. 0, p - GGML_F16_EPR)
  1178. #elif defined(__wasm_simd128__)
  1179. #define GGML_SIMD
  1180. // F32 WASM
  1181. #define GGML_F32_STEP 16
  1182. #define GGML_F32_EPR 4
  1183. #define GGML_F32x4 v128_t
  1184. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F32x4_LOAD wasm_v128_load
  1187. #define GGML_F32x4_STORE wasm_v128_store
  1188. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1189. #define GGML_F32x4_ADD wasm_f32x4_add
  1190. #define GGML_F32x4_MUL wasm_f32x4_mul
  1191. #define GGML_F32x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F32_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F32_VEC GGML_F32x4
  1211. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1212. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1213. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1214. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1215. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1216. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1217. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1218. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1219. // F16 WASM
  1220. #define GGML_F16_STEP 16
  1221. #define GGML_F16_EPR 4
  1222. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1223. float tmp[4];
  1224. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1225. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1226. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1227. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1228. return wasm_v128_load(tmp);
  1229. }
  1230. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1231. float tmp[4];
  1232. wasm_v128_store(tmp, x);
  1233. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1234. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1235. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1236. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1237. }
  1238. #define GGML_F16x4 v128_t
  1239. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1240. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1241. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1242. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1243. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1244. #define GGML_F16x4_ADD wasm_f32x4_add
  1245. #define GGML_F16x4_MUL wasm_f32x4_mul
  1246. #define GGML_F16x4_REDUCE(res, x) \
  1247. { \
  1248. int offset = GGML_F16_ARR >> 1; \
  1249. for (int i = 0; i < offset; ++i) { \
  1250. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1251. } \
  1252. offset >>= 1; \
  1253. for (int i = 0; i < offset; ++i) { \
  1254. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1255. } \
  1256. offset >>= 1; \
  1257. for (int i = 0; i < offset; ++i) { \
  1258. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1259. } \
  1260. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1261. wasm_f32x4_extract_lane(x[0], 1) + \
  1262. wasm_f32x4_extract_lane(x[0], 2) + \
  1263. wasm_f32x4_extract_lane(x[0], 3); \
  1264. }
  1265. #define GGML_F16_VEC GGML_F16x4
  1266. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1267. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1268. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1269. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1270. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1271. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1272. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1273. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1274. #elif defined(__SSE3__)
  1275. #define GGML_SIMD
  1276. // F32 SSE
  1277. #define GGML_F32_STEP 32
  1278. #define GGML_F32_EPR 4
  1279. #define GGML_F32x4 __m128
  1280. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1281. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1282. #define GGML_F32x4_LOAD _mm_loadu_ps
  1283. #define GGML_F32x4_STORE _mm_storeu_ps
  1284. #if defined(__FMA__)
  1285. // TODO: Does this work?
  1286. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1287. #else
  1288. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1289. #endif
  1290. #define GGML_F32x4_ADD _mm_add_ps
  1291. #define GGML_F32x4_MUL _mm_mul_ps
  1292. #define GGML_F32x4_REDUCE(res, x) \
  1293. { \
  1294. int offset = GGML_F32_ARR >> 1; \
  1295. for (int i = 0; i < offset; ++i) { \
  1296. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1297. } \
  1298. offset >>= 1; \
  1299. for (int i = 0; i < offset; ++i) { \
  1300. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1301. } \
  1302. offset >>= 1; \
  1303. for (int i = 0; i < offset; ++i) { \
  1304. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1305. } \
  1306. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1307. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1308. }
  1309. // TODO: is this optimal ?
  1310. #define GGML_F32_VEC GGML_F32x4
  1311. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1312. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1313. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1314. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1315. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1316. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1317. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1318. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1319. // F16 SSE
  1320. #define GGML_F16_STEP 32
  1321. #define GGML_F16_EPR 4
  1322. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1323. float tmp[4];
  1324. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1325. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1326. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1327. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1328. return _mm_loadu_ps(tmp);
  1329. }
  1330. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1331. float arr[4];
  1332. _mm_storeu_ps(arr, y);
  1333. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1334. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1335. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1336. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1337. }
  1338. #define GGML_F32Cx4 __m128
  1339. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1340. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1341. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1342. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1343. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1344. #define GGML_F32Cx4_ADD _mm_add_ps
  1345. #define GGML_F32Cx4_MUL _mm_mul_ps
  1346. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1347. #define GGML_F16_VEC GGML_F32Cx4
  1348. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1349. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1350. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1351. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1352. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1353. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1354. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1355. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1356. #elif defined(__loongarch_asx)
  1357. #define GGML_SIMD
  1358. // F32 LASX
  1359. #define GGML_F32_STEP 32
  1360. #define GGML_F32_EPR 8
  1361. #define GGML_F32x8 __m256
  1362. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1363. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1364. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1365. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1366. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1367. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1368. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1369. #define GGML_F32x8_REDUCE(res, x) \
  1370. do { \
  1371. int offset = GGML_F32_ARR >> 1; \
  1372. for (int i = 0; i < offset; ++i) { \
  1373. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1374. } \
  1375. offset >>= 1; \
  1376. for (int i = 0; i < offset; ++i) { \
  1377. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1378. } \
  1379. offset >>= 1; \
  1380. for (int i = 0; i < offset; ++i) { \
  1381. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1382. } \
  1383. float *tmp_p = (float *)&x[0]; \
  1384. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1385. } while (0)
  1386. // TODO: is this optimal ?
  1387. #define GGML_F32_VEC GGML_F32x8
  1388. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1389. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1390. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1391. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1392. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1393. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1394. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1395. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1396. // F16 LASX
  1397. #define GGML_F16_STEP 32
  1398. #define GGML_F16_EPR 8
  1399. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1400. #define GGML_F32Cx8 __m256
  1401. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1402. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1403. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1404. float tmp[8];
  1405. for (int i = 0; i < 8; i++) {
  1406. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1407. }
  1408. return (__m256)__lasx_xvld(tmp, 0);
  1409. }
  1410. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1411. float arr[8];
  1412. __lasx_xvst(y, arr, 0);
  1413. for (int i = 0; i < 8; i++) {
  1414. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1415. }
  1416. }
  1417. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1418. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1419. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1420. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1421. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1422. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1423. #define GGML_F16_VEC GGML_F32Cx8
  1424. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1425. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1426. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1427. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1428. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1429. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1430. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1431. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1432. #elif defined(__loongarch_sx)
  1433. #define GGML_SIMD
  1434. // F32 LSX
  1435. #define GGML_F32_STEP 32
  1436. #define GGML_F32_EPR 4
  1437. #define GGML_F32x4 __m128
  1438. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1439. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1440. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1441. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1442. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1443. #define GGML_F32x4_ADD __lsx_vfadd_s
  1444. #define GGML_F32x4_MUL __lsx_vfmul_s
  1445. #define GGML_F32x4_REDUCE(res, x) \
  1446. { \
  1447. int offset = GGML_F32_ARR >> 1; \
  1448. for (int i = 0; i < offset; ++i) { \
  1449. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1450. } \
  1451. offset >>= 1; \
  1452. for (int i = 0; i < offset; ++i) { \
  1453. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1454. } \
  1455. offset >>= 1; \
  1456. for (int i = 0; i < offset; ++i) { \
  1457. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1458. } \
  1459. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1460. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1461. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1462. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1463. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1464. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1465. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1466. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1467. }
  1468. #define GGML_F32_VEC GGML_F32x4
  1469. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1470. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1471. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1472. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1473. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1474. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1475. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1476. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1477. // F16 LSX
  1478. #define GGML_F16_STEP 32
  1479. #define GGML_F16_EPR 4
  1480. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1481. float tmp[4];
  1482. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1483. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1484. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1485. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1486. return __lsx_vld(tmp, 0);
  1487. }
  1488. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1489. float arr[4];
  1490. __lsx_vst(y, arr, 0);
  1491. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1492. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1493. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1494. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1495. }
  1496. #define GGML_F32Cx4 __m128
  1497. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1498. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1499. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1500. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1501. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1502. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1503. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1504. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1505. #define GGML_F16_VEC GGML_F32Cx4
  1506. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1507. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1508. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1509. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1510. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1511. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1512. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1513. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1514. #endif
  1515. // GGML_F32_ARR / GGML_F16_ARR
  1516. // number of registers to use per step
  1517. #ifdef GGML_SIMD
  1518. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1519. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1520. #endif
  1521. //
  1522. // ggml context
  1523. //
  1524. struct ggml_context {
  1525. size_t mem_size;
  1526. void* mem_buffer;
  1527. bool mem_buffer_owned;
  1528. bool no_alloc;
  1529. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1530. int n_objects;
  1531. struct ggml_object* objects_begin;
  1532. struct ggml_object* objects_end;
  1533. struct ggml_scratch scratch;
  1534. struct ggml_scratch scratch_save;
  1535. };
  1536. struct ggml_context_container {
  1537. bool used;
  1538. struct ggml_context context;
  1539. };
  1540. struct ggml_compute_state_shared {
  1541. const struct ggml_cgraph* cgraph;
  1542. const struct ggml_cplan* cplan;
  1543. int64_t perf_node_start_cycles;
  1544. int64_t perf_node_start_time_us;
  1545. int n_threads;
  1546. // synchronization primitives
  1547. atomic_int n_active; // num active threads
  1548. atomic_int node_n; // active graph node
  1549. atomic_int node_task; // active graph node task phase
  1550. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1551. void* abort_callback_data;
  1552. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1553. };
  1554. struct ggml_compute_state {
  1555. ggml_thread_t thrd;
  1556. int ith;
  1557. struct ggml_compute_state_shared* shared;
  1558. enum ggml_status ec;
  1559. };
  1560. //
  1561. // fundamental operations
  1562. //
  1563. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1564. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1565. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1566. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1567. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1568. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1569. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1570. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1571. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1572. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1573. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1574. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1575. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1576. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1577. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1578. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1579. assert(nrc == 1);
  1580. UNUSED(nrc);
  1581. UNUSED(bx);
  1582. UNUSED(by);
  1583. UNUSED(bs);
  1584. #if defined(GGML_SIMD)
  1585. float sumf = 0.0f;
  1586. const int np = (n & ~(GGML_F32_STEP - 1));
  1587. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1588. GGML_F32_VEC ax[GGML_F32_ARR];
  1589. GGML_F32_VEC ay[GGML_F32_ARR];
  1590. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1591. for (int j = 0; j < GGML_F32_ARR; j++) {
  1592. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1593. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1594. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1595. }
  1596. }
  1597. // reduce sum0..sum3 to sum0
  1598. GGML_F32_VEC_REDUCE(sumf, sum);
  1599. // leftovers
  1600. for (int i = np; i < n; ++i) {
  1601. sumf += x[i]*y[i];
  1602. }
  1603. #else
  1604. // scalar
  1605. ggml_float sumf = 0.0;
  1606. for (int i = 0; i < n; ++i) {
  1607. sumf += (ggml_float)(x[i]*y[i]);
  1608. }
  1609. #endif
  1610. *s = sumf;
  1611. }
  1612. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1613. assert(nrc == 1);
  1614. UNUSED(nrc);
  1615. UNUSED(bx);
  1616. UNUSED(by);
  1617. UNUSED(bs);
  1618. int i = 0;
  1619. ggml_float sumf = 0;
  1620. #if defined(__AVX512BF16__)
  1621. __m512 c1 = _mm512_setzero_ps();
  1622. __m512 c2 = _mm512_setzero_ps();
  1623. for (; i + 64 <= n; i += 64) {
  1624. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1625. m512bh(_mm512_loadu_si512((y + i))));
  1626. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1627. m512bh(_mm512_loadu_si512((y + i + 32))));
  1628. }
  1629. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1630. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1631. #elif defined(__AVX512F__)
  1632. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1633. __m512 c1 = _mm512_setzero_ps();
  1634. __m512 c2 = _mm512_setzero_ps();
  1635. for (; i + 32 <= n; i += 32) {
  1636. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1637. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1638. }
  1639. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1640. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1641. #undef LOAD
  1642. #elif defined(__AVX2__)
  1643. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1644. __m256 c1 = _mm256_setzero_ps();
  1645. __m256 c2 = _mm256_setzero_ps();
  1646. __m256 c3 = _mm256_setzero_ps();
  1647. __m256 c4 = _mm256_setzero_ps();
  1648. for (; i + 32 <= n; i += 32) {
  1649. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1650. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1651. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1652. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1653. }
  1654. __m128 g;
  1655. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1656. _mm256_add_ps(c2, c4));
  1657. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1658. _mm256_castps256_ps128(c1));
  1659. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1660. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1661. sumf += (ggml_float)_mm_cvtss_f32(g);
  1662. #undef LOAD
  1663. #endif
  1664. for (; i < n; ++i) {
  1665. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1666. GGML_BF16_TO_FP32(y[i]));
  1667. }
  1668. *s = sumf;
  1669. }
  1670. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1671. assert(nrc == 1);
  1672. UNUSED(nrc);
  1673. UNUSED(bx);
  1674. UNUSED(by);
  1675. UNUSED(bs);
  1676. ggml_float sumf = 0.0;
  1677. #if defined(GGML_SIMD)
  1678. const int np = (n & ~(GGML_F16_STEP - 1));
  1679. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1680. GGML_F16_VEC ax[GGML_F16_ARR];
  1681. GGML_F16_VEC ay[GGML_F16_ARR];
  1682. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1683. for (int j = 0; j < GGML_F16_ARR; j++) {
  1684. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1685. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1686. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1687. }
  1688. }
  1689. // reduce sum0..sum3 to sum0
  1690. GGML_F16_VEC_REDUCE(sumf, sum);
  1691. // leftovers
  1692. for (int i = np; i < n; ++i) {
  1693. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1694. }
  1695. #else
  1696. for (int i = 0; i < n; ++i) {
  1697. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1698. }
  1699. #endif
  1700. *s = sumf;
  1701. }
  1702. // compute GGML_VEC_DOT_UNROLL dot products at once
  1703. // xs - x row stride in bytes
  1704. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1705. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1706. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1707. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1708. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1709. }
  1710. #if defined(GGML_SIMD)
  1711. const int np = (n & ~(GGML_F16_STEP - 1));
  1712. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1713. GGML_F16_VEC ax[GGML_F16_ARR];
  1714. GGML_F16_VEC ay[GGML_F16_ARR];
  1715. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1716. for (int j = 0; j < GGML_F16_ARR; j++) {
  1717. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1718. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1719. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1720. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1721. }
  1722. }
  1723. }
  1724. // reduce sum0..sum3 to sum0
  1725. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1726. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1727. }
  1728. // leftovers
  1729. for (int i = np; i < n; ++i) {
  1730. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1731. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1732. }
  1733. }
  1734. #else
  1735. for (int i = 0; i < n; ++i) {
  1736. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1737. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1738. }
  1739. }
  1740. #endif
  1741. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1742. s[i] = sumf[i];
  1743. }
  1744. }
  1745. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1746. #if defined(GGML_SIMD)
  1747. const int np = (n & ~(GGML_F32_STEP - 1));
  1748. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1749. GGML_F32_VEC ax[GGML_F32_ARR];
  1750. GGML_F32_VEC ay[GGML_F32_ARR];
  1751. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1752. for (int j = 0; j < GGML_F32_ARR; j++) {
  1753. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1754. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1755. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1756. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1757. }
  1758. }
  1759. // leftovers
  1760. for (int i = np; i < n; ++i) {
  1761. y[i] += x[i]*v;
  1762. }
  1763. #else
  1764. // scalar
  1765. for (int i = 0; i < n; ++i) {
  1766. y[i] += x[i]*v;
  1767. }
  1768. #endif
  1769. }
  1770. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1771. #if defined(GGML_SIMD)
  1772. const int np = (n & ~(GGML_F16_STEP - 1));
  1773. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1774. GGML_F16_VEC ax[GGML_F16_ARR];
  1775. GGML_F16_VEC ay[GGML_F16_ARR];
  1776. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1777. for (int j = 0; j < GGML_F16_ARR; j++) {
  1778. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1779. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1780. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1781. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1782. }
  1783. }
  1784. // leftovers
  1785. for (int i = np; i < n; ++i) {
  1786. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1787. }
  1788. #else
  1789. // scalar
  1790. for (int i = 0; i < n; ++i) {
  1791. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1792. }
  1793. #endif
  1794. }
  1795. // xs and vs are byte strides of x and v
  1796. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1797. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1798. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1799. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1800. x[i] = (const float *) ((const char *) xv + i*xs);
  1801. v[i] = (const float *) ((const char *) vv + i*vs);
  1802. }
  1803. #if defined(GGML_SIMD)
  1804. const int np = (n & ~(GGML_F32_STEP - 1));
  1805. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1806. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1807. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1808. }
  1809. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1810. GGML_F32_VEC ay[GGML_F32_ARR];
  1811. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1812. for (int j = 0; j < GGML_F32_ARR; j++) {
  1813. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1814. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1815. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1816. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1817. }
  1818. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1819. }
  1820. }
  1821. // leftovers
  1822. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1823. for (int i = np; i < n; ++i) {
  1824. y[i] += x[k][i]*v[k][0];
  1825. }
  1826. }
  1827. #else
  1828. // scalar
  1829. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1830. for (int i = 0; i < n; ++i) {
  1831. y[i] += x[k][i]*v[k][0];
  1832. }
  1833. }
  1834. #endif
  1835. }
  1836. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1837. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1838. #if defined(GGML_USE_ACCELERATE)
  1839. vDSP_vsmul(y, 1, &v, y, 1, n);
  1840. #elif defined(GGML_SIMD)
  1841. const int np = (n & ~(GGML_F32_STEP - 1));
  1842. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1843. GGML_F32_VEC ay[GGML_F32_ARR];
  1844. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1845. for (int j = 0; j < GGML_F32_ARR; j++) {
  1846. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1847. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1848. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1849. }
  1850. }
  1851. // leftovers
  1852. for (int i = np; i < n; ++i) {
  1853. y[i] *= v;
  1854. }
  1855. #else
  1856. // scalar
  1857. for (int i = 0; i < n; ++i) {
  1858. y[i] *= v;
  1859. }
  1860. #endif
  1861. }
  1862. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1863. #if defined(GGML_SIMD)
  1864. const int np = (n & ~(GGML_F16_STEP - 1));
  1865. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1866. GGML_F16_VEC ay[GGML_F16_ARR];
  1867. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1868. for (int j = 0; j < GGML_F16_ARR; j++) {
  1869. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1870. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1871. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1872. }
  1873. }
  1874. // leftovers
  1875. for (int i = np; i < n; ++i) {
  1876. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1877. }
  1878. #else
  1879. // scalar
  1880. for (int i = 0; i < n; ++i) {
  1881. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1882. }
  1883. #endif
  1884. }
  1885. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1886. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1887. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1888. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1889. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1890. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1891. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1892. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1893. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1894. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1895. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1896. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1897. // TODO: optimize performance
  1898. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1899. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1900. static const float GELU_COEF_A = 0.044715f;
  1901. static const float GELU_QUICK_COEF = -1.702f;
  1902. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1903. inline static float ggml_gelu_f32(float x) {
  1904. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1905. }
  1906. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1907. const uint16_t * i16 = (const uint16_t *) x;
  1908. for (int i = 0; i < n; ++i) {
  1909. y[i] = ggml_table_gelu_f16[i16[i]];
  1910. }
  1911. }
  1912. #ifdef GGML_GELU_FP16
  1913. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1914. uint16_t t;
  1915. for (int i = 0; i < n; ++i) {
  1916. if (x[i] <= -10.0f) {
  1917. y[i] = 0.0f;
  1918. } else if (x[i] >= 10.0f) {
  1919. y[i] = x[i];
  1920. } else {
  1921. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1922. memcpy(&t, &fp16, sizeof(uint16_t));
  1923. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1924. }
  1925. }
  1926. }
  1927. #else
  1928. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1929. for (int i = 0; i < n; ++i) {
  1930. y[i] = ggml_gelu_f32(x[i]);
  1931. }
  1932. }
  1933. #endif
  1934. inline static float ggml_gelu_quick_f32(float x) {
  1935. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1936. }
  1937. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1938. // const uint16_t * i16 = (const uint16_t *) x;
  1939. // for (int i = 0; i < n; ++i) {
  1940. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1941. // }
  1942. //}
  1943. #ifdef GGML_GELU_QUICK_FP16
  1944. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1945. uint16_t t;
  1946. for (int i = 0; i < n; ++i) {
  1947. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1948. memcpy(&t, &fp16, sizeof(uint16_t));
  1949. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1950. }
  1951. }
  1952. #else
  1953. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1954. for (int i = 0; i < n; ++i) {
  1955. y[i] = ggml_gelu_quick_f32(x[i]);
  1956. }
  1957. }
  1958. #endif
  1959. // Sigmoid Linear Unit (SiLU) function
  1960. inline static float ggml_silu_f32(float x) {
  1961. return x/(1.0f + expf(-x));
  1962. }
  1963. #if __FINITE_MATH_ONLY__
  1964. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1965. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1966. #endif
  1967. #if defined(__ARM_NEON) && defined(__aarch64__)
  1968. // adapted from arm limited optimized routine
  1969. // the maximum error is 1.45358 plus 0.5 ulps
  1970. // numbers above 88.38 will flush to infinity
  1971. // numbers beneath -103.97 will flush to zero
  1972. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1973. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1974. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1975. const float32x4_t n = vsubq_f32(z, r);
  1976. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1977. vdupq_n_f32(0x1.7f7d1cp-20f));
  1978. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1979. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1980. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1981. const float32x4_t u = vmulq_f32(b, b);
  1982. const float32x4_t j = vfmaq_f32(
  1983. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1984. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1985. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1986. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1987. return vfmaq_f32(k, j, k);
  1988. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1989. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1990. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1991. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1992. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1993. }
  1994. // computes silu x/(1+exp(-x)) in single precision vector
  1995. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1996. const float32x4_t one = vdupq_n_f32(1.0f);
  1997. const float32x4_t zero = vdupq_n_f32(0.0f);
  1998. const float32x4_t neg_x = vsubq_f32(zero, x);
  1999. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2000. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2001. return vdivq_f32(x, one_plus_exp_neg_x);
  2002. }
  2003. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2004. // adapted from arm limited optimized routine
  2005. // the maximum error is 1.45358 plus 0.5 ulps
  2006. // numbers above 88.38 will flush to infinity
  2007. // numbers beneath -103.97 will flush to zero
  2008. inline static __m512 ggml_v_expf(__m512 x) {
  2009. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2010. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2011. const __m512 n = _mm512_sub_ps(z, r);
  2012. const __m512 b =
  2013. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2014. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2015. const __mmask16 d =
  2016. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2017. const __m512 u = _mm512_mul_ps(b, b);
  2018. const __m512 j = _mm512_fmadd_ps(
  2019. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2020. _mm512_set1_ps(0x1.573e2ep-5f)),
  2021. u,
  2022. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2023. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2024. u,
  2025. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2026. const __m512 res = _mm512_scalef_ps(j, n);
  2027. if (_mm512_kortestz(d, d))
  2028. return res;
  2029. const __m512 zero = _mm512_setzero_ps();
  2030. const __m512 alt = _mm512_mask_blend_ps(
  2031. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2032. return _mm512_mask_blend_ps(d, res, alt);
  2033. }
  2034. // computes silu x/(1+exp(-x)) in single precision vector
  2035. inline static __m512 ggml_v_silu(__m512 x) {
  2036. const __m512 one = _mm512_set1_ps(1);
  2037. const __m512 zero = _mm512_setzero_ps();
  2038. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2039. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2040. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2041. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2042. }
  2043. #elif defined(__AVX2__) && defined(__FMA__)
  2044. // adapted from arm limited optimized routine
  2045. // the maximum error is 1.45358 plus 0.5 ulps
  2046. // numbers above 88.38 will flush to infinity
  2047. // numbers beneath -103.97 will flush to zero
  2048. inline static __m256 ggml_v_expf(__m256 x) {
  2049. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2050. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2051. const __m256 n = _mm256_sub_ps(z, r);
  2052. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2053. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2054. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2055. const __m256 k = _mm256_castsi256_ps(
  2056. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2057. const __m256i c = _mm256_castps_si256(
  2058. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2059. _mm256_set1_ps(126), _CMP_GT_OQ));
  2060. const __m256 u = _mm256_mul_ps(b, b);
  2061. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2062. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2063. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2064. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2065. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2066. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2067. return _mm256_fmadd_ps(j, k, k);
  2068. const __m256i g = _mm256_and_si256(
  2069. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2070. _mm256_set1_epi32(0x82000000u));
  2071. const __m256 s1 =
  2072. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2073. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2074. const __m256i d = _mm256_castps_si256(
  2075. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2076. _mm256_set1_ps(192), _CMP_GT_OQ));
  2077. return _mm256_or_ps(
  2078. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2079. _mm256_andnot_ps(
  2080. _mm256_castsi256_ps(d),
  2081. _mm256_or_ps(
  2082. _mm256_and_ps(_mm256_castsi256_ps(c),
  2083. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2084. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2085. }
  2086. // computes silu x/(1+exp(-x)) in single precision vector
  2087. inline static __m256 ggml_v_silu(__m256 x) {
  2088. const __m256 one = _mm256_set1_ps(1);
  2089. const __m256 zero = _mm256_setzero_ps();
  2090. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2091. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2092. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2093. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2094. }
  2095. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2096. #if defined(__FMA__)
  2097. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2098. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2099. #else
  2100. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2101. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2102. #endif
  2103. // adapted from arm limited optimized routine
  2104. // the maximum error is 1.45358 plus 0.5 ulps
  2105. // numbers above 88.38 will flush to infinity
  2106. // numbers beneath -103.97 will flush to zero
  2107. inline static __m128 ggml_v_expf(__m128 x) {
  2108. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2109. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2110. const __m128 n = _mm_sub_ps(z, r);
  2111. const __m128 b =
  2112. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2113. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2114. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2115. const __m128i c =
  2116. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2117. const __m128 u = _mm_mul_ps(b, b);
  2118. const __m128 j =
  2119. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2120. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2121. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2122. if (!_mm_movemask_epi8(c))
  2123. return MADD128(j, k, k);
  2124. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2125. _mm_set1_epi32(0x82000000u));
  2126. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2127. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2128. const __m128i d =
  2129. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2130. return _mm_or_ps(
  2131. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2132. _mm_andnot_ps(_mm_castsi128_ps(d),
  2133. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2134. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2135. }
  2136. // computes silu x/(1+exp(-x)) in single precision vector
  2137. inline static __m128 ggml_v_silu(__m128 x) {
  2138. const __m128 one = _mm_set1_ps(1);
  2139. const __m128 zero = _mm_setzero_ps();
  2140. const __m128 neg_x = _mm_sub_ps(zero, x);
  2141. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2142. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2143. return _mm_div_ps(x, one_plus_exp_neg_x);
  2144. }
  2145. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2146. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2147. int i = 0;
  2148. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2149. for (; i + 15 < n; i += 16) {
  2150. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2151. }
  2152. #elif defined(__AVX2__) && defined(__FMA__)
  2153. for (; i + 7 < n; i += 8) {
  2154. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2155. }
  2156. #elif defined(__SSE2__)
  2157. for (; i + 3 < n; i += 4) {
  2158. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2159. }
  2160. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2161. for (; i + 3 < n; i += 4) {
  2162. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2163. }
  2164. #endif
  2165. for (; i < n; ++i) {
  2166. y[i] = ggml_silu_f32(x[i]);
  2167. }
  2168. }
  2169. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2170. int i = 0;
  2171. ggml_float sum = 0;
  2172. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2173. for (; i + 15 < n; i += 16) {
  2174. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2175. _mm512_set1_ps(max)));
  2176. _mm512_storeu_ps(y + i, val);
  2177. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2178. }
  2179. #elif defined(__AVX2__) && defined(__FMA__)
  2180. for (; i + 7 < n; i += 8) {
  2181. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2182. _mm256_set1_ps(max)));
  2183. _mm256_storeu_ps(y + i, val);
  2184. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2185. _mm256_castps256_ps128(val));
  2186. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2187. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2188. sum += (ggml_float)_mm_cvtss_f32(val2);
  2189. }
  2190. #elif defined(__SSE2__)
  2191. for (; i + 3 < n; i += 4) {
  2192. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2193. _mm_set1_ps(max)));
  2194. _mm_storeu_ps(y + i, val);
  2195. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2196. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2197. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2198. #else
  2199. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2200. val = _mm_add_ps(val, tmp);
  2201. tmp = _mm_movehl_ps(tmp, val);
  2202. val = _mm_add_ss(val, tmp);
  2203. #endif
  2204. sum += (ggml_float)_mm_cvtss_f32(val);
  2205. }
  2206. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2207. for (; i + 3 < n; i += 4) {
  2208. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2209. vdupq_n_f32(max)));
  2210. vst1q_f32(y + i, val);
  2211. sum += (ggml_float)vaddvq_f32(val);
  2212. }
  2213. #endif
  2214. for (; i < n; ++i) {
  2215. float val = expf(x[i] - max);
  2216. sum += (ggml_float)val;
  2217. y[i] = val;
  2218. }
  2219. return sum;
  2220. }
  2221. inline static float ggml_silu_backward_f32(float x, float dy) {
  2222. const float s = 1.0f/(1.0f + expf(-x));
  2223. return dy*s*(1.0f + x*(1.0f - s));
  2224. }
  2225. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2226. for (int i = 0; i < n; ++i) {
  2227. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2228. }
  2229. }
  2230. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2231. #ifndef GGML_USE_ACCELERATE
  2232. ggml_float sum = 0.0;
  2233. for (int i = 0; i < n; ++i) {
  2234. sum += (ggml_float)x[i];
  2235. }
  2236. *s = sum;
  2237. #else
  2238. vDSP_sve(x, 1, s, n);
  2239. #endif
  2240. }
  2241. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2242. ggml_float sum = 0.0;
  2243. for (int i = 0; i < n; ++i) {
  2244. sum += (ggml_float)x[i];
  2245. }
  2246. *s = sum;
  2247. }
  2248. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2249. float sum = 0.0f;
  2250. for (int i = 0; i < n; ++i) {
  2251. sum += GGML_FP16_TO_FP32(x[i]);
  2252. }
  2253. *s = sum;
  2254. }
  2255. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2256. float sum = 0.0f;
  2257. for (int i = 0; i < n; ++i) {
  2258. sum += GGML_BF16_TO_FP32(x[i]);
  2259. }
  2260. *s = sum;
  2261. }
  2262. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2263. #ifndef GGML_USE_ACCELERATE
  2264. float max = -INFINITY;
  2265. for (int i = 0; i < n; ++i) {
  2266. max = MAX(max, x[i]);
  2267. }
  2268. *s = max;
  2269. #else
  2270. vDSP_maxv(x, 1, s, n);
  2271. #endif
  2272. }
  2273. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2274. ggml_vec_norm_f32(n, s, x);
  2275. *s = 1.f/(*s);
  2276. }
  2277. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2278. float max = -INFINITY;
  2279. int idx = 0;
  2280. for (int i = 0; i < n; ++i) {
  2281. max = MAX(max, x[i]);
  2282. if (max == x[i]) { idx = i; }
  2283. }
  2284. *s = idx;
  2285. }
  2286. //
  2287. // data types
  2288. //
  2289. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2290. "NONE",
  2291. "DUP",
  2292. "ADD",
  2293. "ADD1",
  2294. "ACC",
  2295. "SUB",
  2296. "MUL",
  2297. "DIV",
  2298. "SQR",
  2299. "SQRT",
  2300. "LOG",
  2301. "SUM",
  2302. "SUM_ROWS",
  2303. "MEAN",
  2304. "ARGMAX",
  2305. "REPEAT",
  2306. "REPEAT_BACK",
  2307. "CONCAT",
  2308. "SILU_BACK",
  2309. "NORM",
  2310. "RMS_NORM",
  2311. "RMS_NORM_BACK",
  2312. "GROUP_NORM",
  2313. "MUL_MAT",
  2314. "MUL_MAT_ID",
  2315. "OUT_PROD",
  2316. "SCALE",
  2317. "SET",
  2318. "CPY",
  2319. "CONT",
  2320. "RESHAPE",
  2321. "VIEW",
  2322. "PERMUTE",
  2323. "TRANSPOSE",
  2324. "GET_ROWS",
  2325. "GET_ROWS_BACK",
  2326. "DIAG",
  2327. "DIAG_MASK_INF",
  2328. "DIAG_MASK_ZERO",
  2329. "SOFT_MAX",
  2330. "SOFT_MAX_BACK",
  2331. "ROPE",
  2332. "ROPE_BACK",
  2333. "CLAMP",
  2334. "CONV_TRANSPOSE_1D",
  2335. "IM2COL",
  2336. "CONV_TRANSPOSE_2D",
  2337. "POOL_1D",
  2338. "POOL_2D",
  2339. "UPSCALE",
  2340. "PAD",
  2341. "ARANGE",
  2342. "TIMESTEP_EMBEDDING",
  2343. "ARGSORT",
  2344. "LEAKY_RELU",
  2345. "FLASH_ATTN_EXT",
  2346. "FLASH_ATTN_BACK",
  2347. "SSM_CONV",
  2348. "SSM_SCAN",
  2349. "WIN_PART",
  2350. "WIN_UNPART",
  2351. "GET_REL_POS",
  2352. "ADD_REL_POS",
  2353. "UNARY",
  2354. "MAP_UNARY",
  2355. "MAP_BINARY",
  2356. "MAP_CUSTOM1_F32",
  2357. "MAP_CUSTOM2_F32",
  2358. "MAP_CUSTOM3_F32",
  2359. "MAP_CUSTOM1",
  2360. "MAP_CUSTOM2",
  2361. "MAP_CUSTOM3",
  2362. "CROSS_ENTROPY_LOSS",
  2363. "CROSS_ENTROPY_LOSS_BACK",
  2364. };
  2365. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2366. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2367. "none",
  2368. "x",
  2369. "x+y",
  2370. "x+y",
  2371. "view(x,nb,offset)+=y->x",
  2372. "x-y",
  2373. "x*y",
  2374. "x/y",
  2375. "x^2",
  2376. "√x",
  2377. "log(x)",
  2378. "Σx",
  2379. "Σx_k",
  2380. "Σx/n",
  2381. "argmax(x)",
  2382. "repeat(x)",
  2383. "repeat_back(x)",
  2384. "concat(x, y)",
  2385. "silu_back(x)",
  2386. "norm(x)",
  2387. "rms_norm(x)",
  2388. "rms_norm_back(x)",
  2389. "group_norm(x)",
  2390. "X*Y",
  2391. "X[i]*Y",
  2392. "X*Y",
  2393. "x*v",
  2394. "y-\\>view(x)",
  2395. "x-\\>y",
  2396. "cont(x)",
  2397. "reshape(x)",
  2398. "view(x)",
  2399. "permute(x)",
  2400. "transpose(x)",
  2401. "get_rows(x)",
  2402. "get_rows_back(x)",
  2403. "diag(x)",
  2404. "diag_mask_inf(x)",
  2405. "diag_mask_zero(x)",
  2406. "soft_max(x)",
  2407. "soft_max_back(x)",
  2408. "rope(x)",
  2409. "rope_back(x)",
  2410. "clamp(x)",
  2411. "conv_transpose_1d(x)",
  2412. "im2col(x)",
  2413. "conv_transpose_2d(x)",
  2414. "pool_1d(x)",
  2415. "pool_2d(x)",
  2416. "upscale(x)",
  2417. "pad(x)",
  2418. "arange(start, stop, step)",
  2419. "timestep_embedding(timesteps, dim, max_period)",
  2420. "argsort(x)",
  2421. "leaky_relu(x)",
  2422. "flash_attn_ext(x)",
  2423. "flash_attn_back(x)",
  2424. "ssm_conv(x)",
  2425. "ssm_scan(x)",
  2426. "win_part(x)",
  2427. "win_unpart(x)",
  2428. "get_rel_pos(x)",
  2429. "add_rel_pos(x)",
  2430. "unary(x)",
  2431. "f(x)",
  2432. "f(x,y)",
  2433. "custom_f32(x)",
  2434. "custom_f32(x,y)",
  2435. "custom_f32(x,y,z)",
  2436. "custom(x)",
  2437. "custom(x,y)",
  2438. "custom(x,y,z)",
  2439. "cross_entropy_loss(x,y)",
  2440. "cross_entropy_loss_back(x,y)",
  2441. };
  2442. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2443. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2444. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2445. "ABS",
  2446. "SGN",
  2447. "NEG",
  2448. "STEP",
  2449. "TANH",
  2450. "ELU",
  2451. "RELU",
  2452. "SIGMOID",
  2453. "GELU",
  2454. "GELU_QUICK",
  2455. "SILU",
  2456. "HARDSWISH",
  2457. "HARDSIGMOID",
  2458. };
  2459. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2460. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2461. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2462. // WARN:
  2463. // Mis-configuration can lead to problem that's hard to reason about:
  2464. // * At best it crash or talks nosense.
  2465. // * At worst it talks slightly difference but hard to perceive.
  2466. //
  2467. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2468. // Take care about compile options (e.g., GGML_USE_xxx).
  2469. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2470. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2471. static void ggml_setup_op_has_task_pass(void) {
  2472. { // INIT
  2473. bool * p = GGML_OP_HAS_INIT;
  2474. p[GGML_OP_ACC ] = true;
  2475. p[GGML_OP_MUL_MAT ] = true;
  2476. p[GGML_OP_MUL_MAT_ID ] = true;
  2477. p[GGML_OP_OUT_PROD ] = true;
  2478. p[GGML_OP_SET ] = true;
  2479. p[GGML_OP_GET_ROWS_BACK ] = true;
  2480. p[GGML_OP_DIAG_MASK_INF ] = true;
  2481. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2482. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2483. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2484. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2485. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2486. p[GGML_OP_ADD_REL_POS ] = true;
  2487. }
  2488. { // FINALIZE
  2489. bool * p = GGML_OP_HAS_FINALIZE;
  2490. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2491. }
  2492. }
  2493. //
  2494. // NUMA support
  2495. //
  2496. #define GGML_NUMA_MAX_NODES 8
  2497. #define GGML_NUMA_MAX_CPUS 512
  2498. struct ggml_numa_node {
  2499. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2500. uint32_t n_cpus;
  2501. };
  2502. struct ggml_numa_nodes {
  2503. enum ggml_numa_strategy numa_strategy;
  2504. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2505. uint32_t n_nodes;
  2506. uint32_t total_cpus; // hardware threads on system
  2507. uint32_t current_node; // node on which main process is execting
  2508. #if defined(__gnu_linux__)
  2509. cpu_set_t cpuset; // cpuset from numactl
  2510. #else
  2511. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2512. #endif
  2513. };
  2514. //
  2515. // ggml state
  2516. //
  2517. struct ggml_state {
  2518. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2519. struct ggml_numa_nodes numa;
  2520. };
  2521. // global state
  2522. static struct ggml_state g_state;
  2523. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2524. // barrier via spin lock
  2525. inline static void ggml_critical_section_start(void) {
  2526. while (atomic_flag_test_and_set(&g_state_critical)) {
  2527. // spin
  2528. sched_yield();
  2529. }
  2530. }
  2531. // TODO: make this somehow automatically executed
  2532. // some sort of "sentry" mechanism
  2533. inline static void ggml_critical_section_end(void) {
  2534. atomic_flag_clear(&g_state_critical);
  2535. }
  2536. #if defined(__gnu_linux__)
  2537. static cpu_set_t ggml_get_numa_affinity(void) {
  2538. cpu_set_t cpuset;
  2539. pthread_t thread;
  2540. thread = pthread_self();
  2541. CPU_ZERO(&cpuset);
  2542. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2543. return cpuset;
  2544. }
  2545. #else
  2546. static uint32_t ggml_get_numa_affinity(void) {
  2547. return 0; // no NUMA support
  2548. }
  2549. #endif
  2550. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2551. if (g_state.numa.n_nodes > 0) {
  2552. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2553. return;
  2554. }
  2555. #if defined(__gnu_linux__)
  2556. struct stat st;
  2557. char path[256];
  2558. int rv;
  2559. // set numa scheme
  2560. g_state.numa.numa_strategy = numa_flag;
  2561. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2562. g_state.numa.cpuset = ggml_get_numa_affinity();
  2563. // enumerate nodes
  2564. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2565. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2566. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2567. if (stat(path, &st) != 0) { break; }
  2568. ++g_state.numa.n_nodes;
  2569. }
  2570. // enumerate CPUs
  2571. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2572. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2573. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2574. if (stat(path, &st) != 0) { break; }
  2575. ++g_state.numa.total_cpus;
  2576. }
  2577. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2578. // figure out which node we're on
  2579. uint current_cpu;
  2580. int getcpu_ret = 0;
  2581. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2582. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2583. #else
  2584. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2585. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2586. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2587. # endif
  2588. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2589. #endif
  2590. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2591. g_state.numa.n_nodes = 0;
  2592. return;
  2593. }
  2594. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2595. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2596. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2597. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2598. node->n_cpus = 0;
  2599. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2600. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2601. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2602. if (stat(path, &st) == 0) {
  2603. node->cpus[node->n_cpus++] = c;
  2604. GGML_PRINT_DEBUG(" %u", c);
  2605. }
  2606. }
  2607. GGML_PRINT_DEBUG("\n");
  2608. }
  2609. if (ggml_is_numa()) {
  2610. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2611. if (fptr != NULL) {
  2612. char buf[42];
  2613. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2614. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2615. }
  2616. fclose(fptr);
  2617. }
  2618. }
  2619. #else
  2620. GGML_UNUSED(numa_flag);
  2621. // TODO
  2622. #endif
  2623. }
  2624. bool ggml_is_numa(void) {
  2625. return g_state.numa.n_nodes > 1;
  2626. }
  2627. ////////////////////////////////////////////////////////////////////////////////
  2628. void ggml_print_object(const struct ggml_object * obj) {
  2629. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2630. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2631. }
  2632. void ggml_print_objects(const struct ggml_context * ctx) {
  2633. struct ggml_object * obj = ctx->objects_begin;
  2634. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2635. while (obj != NULL) {
  2636. ggml_print_object(obj);
  2637. obj = obj->next;
  2638. }
  2639. GGML_PRINT("%s: --- end ---\n", __func__);
  2640. }
  2641. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2642. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2643. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2644. }
  2645. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2646. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2647. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2648. }
  2649. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2650. size_t nbytes;
  2651. size_t blck_size = ggml_blck_size(tensor->type);
  2652. if (blck_size == 1) {
  2653. nbytes = ggml_type_size(tensor->type);
  2654. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2655. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2656. }
  2657. }
  2658. else {
  2659. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2660. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2661. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2662. }
  2663. }
  2664. return nbytes;
  2665. }
  2666. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2667. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2668. }
  2669. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2670. return type_traits[type].blck_size;
  2671. }
  2672. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2673. return type_traits[type].type_size;
  2674. }
  2675. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2676. assert(ne % ggml_blck_size(type) == 0);
  2677. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2678. }
  2679. double ggml_type_sizef(enum ggml_type type) {
  2680. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2681. }
  2682. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2683. return type_traits[type].type_name;
  2684. }
  2685. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2686. return type_traits[type].is_quantized;
  2687. }
  2688. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2689. return GGML_OP_NAME[op];
  2690. }
  2691. const char * ggml_op_symbol(enum ggml_op op) {
  2692. return GGML_OP_SYMBOL[op];
  2693. }
  2694. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2695. return GGML_UNARY_OP_NAME[op];
  2696. }
  2697. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2698. if (t->op == GGML_OP_UNARY) {
  2699. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2700. return ggml_unary_op_name(uop);
  2701. }
  2702. else {
  2703. return ggml_op_name(t->op);
  2704. }
  2705. }
  2706. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2707. return ggml_type_size(tensor->type);
  2708. }
  2709. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2710. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2711. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2712. }
  2713. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2714. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2715. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2716. }
  2717. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2718. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2719. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2720. }
  2721. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2722. return tensor->ne[3] == 1;
  2723. }
  2724. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2725. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2726. if (tensor->ne[i] > 1) {
  2727. return i + 1;
  2728. }
  2729. }
  2730. return 1;
  2731. }
  2732. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2733. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2734. return (t0->ne[0] == t1->ne[0]) &&
  2735. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2736. (t1->ne[3]%t0->ne[3] == 0);
  2737. }
  2738. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2739. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2740. return (t0->ne[1] == t1->ne[1]) &&
  2741. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2742. (t1->ne[3]%t0->ne[3] == 0);
  2743. }
  2744. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2745. enum ggml_type wtype = GGML_TYPE_COUNT;
  2746. switch (ftype) {
  2747. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2748. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2749. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2750. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2751. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2752. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2753. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2754. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2755. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2756. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2757. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2758. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2759. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2760. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2761. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2762. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2763. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2764. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2765. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2766. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2767. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2768. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2769. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2770. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2771. }
  2772. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2773. return wtype;
  2774. }
  2775. size_t ggml_tensor_overhead(void) {
  2776. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2777. }
  2778. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2779. return tensor->nb[0] > tensor->nb[1];
  2780. }
  2781. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2782. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2783. return
  2784. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2785. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2786. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2787. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2788. }
  2789. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2790. return ggml_is_contiguous(tensor);
  2791. }
  2792. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2793. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2794. return
  2795. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2796. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2797. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2798. }
  2799. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2800. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2801. return
  2802. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2803. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2804. }
  2805. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2806. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2807. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2808. }
  2809. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2810. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2811. return
  2812. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2813. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2814. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2815. }
  2816. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2817. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2818. if (tensor->ne[i] == 0) {
  2819. // empty if any dimension has no elements
  2820. return true;
  2821. }
  2822. }
  2823. return false;
  2824. }
  2825. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2827. return
  2828. (t0->ne[0] == t1->ne[0] ) &&
  2829. (t0->ne[1] == t1->ne[1] ) &&
  2830. (t0->ne[2] == t1->ne[2] ) &&
  2831. (t0->ne[3] == t1->ne[3] );
  2832. }
  2833. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2834. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2835. return
  2836. (t0->nb[0] == t1->nb[0] ) &&
  2837. (t0->nb[1] == t1->nb[1] ) &&
  2838. (t0->nb[2] == t1->nb[2] ) &&
  2839. (t0->nb[3] == t1->nb[3] );
  2840. }
  2841. // check if t1 can be represented as a repeatition of t0
  2842. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2843. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2844. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2845. (t1->ne[0]%t0->ne[0] == 0) &&
  2846. (t1->ne[1]%t0->ne[1] == 0) &&
  2847. (t1->ne[2]%t0->ne[2] == 0) &&
  2848. (t1->ne[3]%t0->ne[3] == 0);
  2849. }
  2850. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2851. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2852. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2853. }
  2854. static inline int ggml_up32(int n) {
  2855. return (n + 31) & ~31;
  2856. }
  2857. //static inline int ggml_up64(int n) {
  2858. // return (n + 63) & ~63;
  2859. //}
  2860. static inline int ggml_up(int n, int m) {
  2861. // assert m is a power of 2
  2862. GGML_ASSERT((m & (m - 1)) == 0);
  2863. return (n + m - 1) & ~(m - 1);
  2864. }
  2865. // assert that pointer is aligned to GGML_MEM_ALIGN
  2866. #define ggml_assert_aligned(ptr) \
  2867. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2868. ////////////////////////////////////////////////////////////////////////////////
  2869. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2870. // make this function thread safe
  2871. ggml_critical_section_start();
  2872. static bool is_first_call = true;
  2873. if (is_first_call) {
  2874. // initialize time system (required on Windows)
  2875. ggml_time_init();
  2876. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2877. {
  2878. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2879. for (int i = 0; i < (1 << 16); ++i) {
  2880. union {
  2881. uint16_t u16;
  2882. ggml_fp16_t fp16;
  2883. } u = {i};
  2884. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2885. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2886. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2887. }
  2888. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2889. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2890. }
  2891. // initialize g_state
  2892. {
  2893. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2894. g_state = (struct ggml_state) {
  2895. /*.contexts =*/ { { 0 } },
  2896. /*.numa =*/ {
  2897. .n_nodes = 0,
  2898. .total_cpus = 0,
  2899. },
  2900. };
  2901. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2902. g_state.contexts[i].used = false;
  2903. }
  2904. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2905. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2906. }
  2907. #if defined(GGML_USE_CLBLAST)
  2908. ggml_cl_init();
  2909. #endif
  2910. ggml_setup_op_has_task_pass();
  2911. is_first_call = false;
  2912. }
  2913. // find non-used context in g_state
  2914. struct ggml_context * ctx = NULL;
  2915. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2916. if (!g_state.contexts[i].used) {
  2917. g_state.contexts[i].used = true;
  2918. ctx = &g_state.contexts[i].context;
  2919. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2920. break;
  2921. }
  2922. }
  2923. if (ctx == NULL) {
  2924. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2925. ggml_critical_section_end();
  2926. return NULL;
  2927. }
  2928. // allow to call ggml_init with 0 size
  2929. if (params.mem_size == 0) {
  2930. params.mem_size = GGML_MEM_ALIGN;
  2931. }
  2932. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2933. *ctx = (struct ggml_context) {
  2934. /*.mem_size =*/ mem_size,
  2935. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2936. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2937. /*.no_alloc =*/ params.no_alloc,
  2938. /*.no_alloc_save =*/ params.no_alloc,
  2939. /*.n_objects =*/ 0,
  2940. /*.objects_begin =*/ NULL,
  2941. /*.objects_end =*/ NULL,
  2942. /*.scratch =*/ { 0, 0, NULL, },
  2943. /*.scratch_save =*/ { 0, 0, NULL, },
  2944. };
  2945. GGML_ASSERT(ctx->mem_buffer != NULL);
  2946. ggml_assert_aligned(ctx->mem_buffer);
  2947. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2948. ggml_critical_section_end();
  2949. return ctx;
  2950. }
  2951. void ggml_free(struct ggml_context * ctx) {
  2952. if (ctx == NULL) {
  2953. return;
  2954. }
  2955. // make this function thread safe
  2956. ggml_critical_section_start();
  2957. bool found = false;
  2958. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2959. if (&g_state.contexts[i].context == ctx) {
  2960. g_state.contexts[i].used = false;
  2961. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2962. __func__, i, ggml_used_mem(ctx));
  2963. if (ctx->mem_buffer_owned) {
  2964. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2965. }
  2966. found = true;
  2967. break;
  2968. }
  2969. }
  2970. if (!found) {
  2971. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2972. }
  2973. ggml_critical_section_end();
  2974. }
  2975. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2976. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2977. }
  2978. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2979. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2980. ctx->scratch = scratch;
  2981. return result;
  2982. }
  2983. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2984. return ctx->no_alloc;
  2985. }
  2986. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2987. ctx->no_alloc = no_alloc;
  2988. }
  2989. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2990. return ctx->mem_buffer;
  2991. }
  2992. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2993. return ctx->mem_size;
  2994. }
  2995. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2996. size_t max_size = 0;
  2997. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2998. size_t bytes = ggml_nbytes(tensor);
  2999. max_size = MAX(max_size, bytes);
  3000. }
  3001. return max_size;
  3002. }
  3003. // IMPORTANT:
  3004. // when creating "opt" tensors, always save and load the scratch buffer
  3005. // this is an error prone process, but it is necessary to support inplace
  3006. // operators when using scratch buffers
  3007. // TODO: implement a better way
  3008. static void ggml_scratch_save(struct ggml_context * ctx) {
  3009. // this is needed to allow opt tensors to store their data
  3010. // TODO: again, need to find a better way
  3011. ctx->no_alloc_save = ctx->no_alloc;
  3012. ctx->no_alloc = false;
  3013. ctx->scratch_save = ctx->scratch;
  3014. ctx->scratch.data = NULL;
  3015. }
  3016. static void ggml_scratch_load(struct ggml_context * ctx) {
  3017. ctx->no_alloc = ctx->no_alloc_save;
  3018. ctx->scratch = ctx->scratch_save;
  3019. }
  3020. ////////////////////////////////////////////////////////////////////////////////
  3021. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3022. // always insert objects at the end of the context's memory pool
  3023. struct ggml_object * obj_cur = ctx->objects_end;
  3024. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3025. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3026. const size_t cur_end = cur_offs + cur_size;
  3027. // align to GGML_MEM_ALIGN
  3028. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3029. char * const mem_buffer = ctx->mem_buffer;
  3030. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3031. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3032. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3033. __func__, cur_end + size_needed, ctx->mem_size);
  3034. assert(false);
  3035. return NULL;
  3036. }
  3037. *obj_new = (struct ggml_object) {
  3038. .offs = cur_end + GGML_OBJECT_SIZE,
  3039. .size = size_needed,
  3040. .next = NULL,
  3041. .type = type,
  3042. };
  3043. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3044. if (obj_cur != NULL) {
  3045. obj_cur->next = obj_new;
  3046. } else {
  3047. // this is the first object in this context
  3048. ctx->objects_begin = obj_new;
  3049. }
  3050. ctx->objects_end = obj_new;
  3051. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3052. return obj_new;
  3053. }
  3054. static struct ggml_tensor * ggml_new_tensor_impl(
  3055. struct ggml_context * ctx,
  3056. enum ggml_type type,
  3057. int n_dims,
  3058. const int64_t * ne,
  3059. struct ggml_tensor * view_src,
  3060. size_t view_offs) {
  3061. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3062. // find the base tensor and absolute offset
  3063. if (view_src != NULL && view_src->view_src != NULL) {
  3064. view_offs += view_src->view_offs;
  3065. view_src = view_src->view_src;
  3066. }
  3067. size_t data_size = ggml_row_size(type, ne[0]);
  3068. for (int i = 1; i < n_dims; i++) {
  3069. data_size *= ne[i];
  3070. }
  3071. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3072. void * data = view_src != NULL ? view_src->data : NULL;
  3073. if (data != NULL) {
  3074. data = (char *) data + view_offs;
  3075. }
  3076. size_t obj_alloc_size = 0;
  3077. if (view_src == NULL && !ctx->no_alloc) {
  3078. if (ctx->scratch.data != NULL) {
  3079. // allocate tensor data in the scratch buffer
  3080. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3081. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3082. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3083. assert(false);
  3084. return NULL;
  3085. }
  3086. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3087. ctx->scratch.offs += data_size;
  3088. } else {
  3089. // allocate tensor data in the context's memory pool
  3090. obj_alloc_size = data_size;
  3091. }
  3092. }
  3093. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3094. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3095. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3096. #ifdef __clang__
  3097. // temporary until ggml_tensor::backend is removed
  3098. #pragma clang diagnostic push
  3099. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3100. #endif
  3101. *result = (struct ggml_tensor) {
  3102. /*.type =*/ type,
  3103. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3104. /*.buffer =*/ NULL,
  3105. /*.ne =*/ { 1, 1, 1, 1 },
  3106. /*.nb =*/ { 0, 0, 0, 0 },
  3107. /*.op =*/ GGML_OP_NONE,
  3108. /*.op_params =*/ { 0 },
  3109. /*.flags =*/ 0,
  3110. /*.grad =*/ NULL,
  3111. /*.src =*/ { NULL },
  3112. /*.perf_runs =*/ 0,
  3113. /*.perf_cycles =*/ 0,
  3114. /*.perf_time_us =*/ 0,
  3115. /*.view_src =*/ view_src,
  3116. /*.view_offs =*/ view_offs,
  3117. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3118. /*.name =*/ { 0 },
  3119. /*.extra =*/ NULL,
  3120. /*.padding =*/ { 0 },
  3121. };
  3122. #ifdef __clang__
  3123. #pragma clang diagnostic pop
  3124. #endif
  3125. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3126. //ggml_assert_aligned(result->data);
  3127. for (int i = 0; i < n_dims; i++) {
  3128. result->ne[i] = ne[i];
  3129. }
  3130. result->nb[0] = ggml_type_size(type);
  3131. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3132. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3133. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3134. }
  3135. ctx->n_objects++;
  3136. return result;
  3137. }
  3138. struct ggml_tensor * ggml_new_tensor(
  3139. struct ggml_context * ctx,
  3140. enum ggml_type type,
  3141. int n_dims,
  3142. const int64_t * ne) {
  3143. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3144. }
  3145. struct ggml_tensor * ggml_new_tensor_1d(
  3146. struct ggml_context * ctx,
  3147. enum ggml_type type,
  3148. int64_t ne0) {
  3149. return ggml_new_tensor(ctx, type, 1, &ne0);
  3150. }
  3151. struct ggml_tensor * ggml_new_tensor_2d(
  3152. struct ggml_context * ctx,
  3153. enum ggml_type type,
  3154. int64_t ne0,
  3155. int64_t ne1) {
  3156. const int64_t ne[2] = { ne0, ne1 };
  3157. return ggml_new_tensor(ctx, type, 2, ne);
  3158. }
  3159. struct ggml_tensor * ggml_new_tensor_3d(
  3160. struct ggml_context * ctx,
  3161. enum ggml_type type,
  3162. int64_t ne0,
  3163. int64_t ne1,
  3164. int64_t ne2) {
  3165. const int64_t ne[3] = { ne0, ne1, ne2 };
  3166. return ggml_new_tensor(ctx, type, 3, ne);
  3167. }
  3168. struct ggml_tensor * ggml_new_tensor_4d(
  3169. struct ggml_context * ctx,
  3170. enum ggml_type type,
  3171. int64_t ne0,
  3172. int64_t ne1,
  3173. int64_t ne2,
  3174. int64_t ne3) {
  3175. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3176. return ggml_new_tensor(ctx, type, 4, ne);
  3177. }
  3178. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3179. ggml_scratch_save(ctx);
  3180. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3181. ggml_scratch_load(ctx);
  3182. ggml_set_i32(result, value);
  3183. return result;
  3184. }
  3185. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3186. ggml_scratch_save(ctx);
  3187. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3188. ggml_scratch_load(ctx);
  3189. ggml_set_f32(result, value);
  3190. return result;
  3191. }
  3192. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3193. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3194. }
  3195. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3196. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3197. assert(params_size <= GGML_MAX_OP_PARAMS);
  3198. memcpy(tensor->op_params, params, params_size);
  3199. }
  3200. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3201. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3202. return ((const int32_t *)(tensor->op_params))[i];
  3203. }
  3204. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3205. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3206. return ((const float *)(tensor->op_params))[i];
  3207. }
  3208. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3209. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3210. ((int32_t *)(tensor->op_params))[i] = value;
  3211. }
  3212. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3213. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3214. ((float *)(tensor->op_params))[i] = value;
  3215. }
  3216. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3217. memset(tensor->data, 0, ggml_nbytes(tensor));
  3218. return tensor;
  3219. }
  3220. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3221. const int n = ggml_nrows(tensor);
  3222. const int nc = tensor->ne[0];
  3223. const size_t n1 = tensor->nb[1];
  3224. char * const data = tensor->data;
  3225. switch (tensor->type) {
  3226. case GGML_TYPE_I8:
  3227. {
  3228. assert(tensor->nb[0] == sizeof(int8_t));
  3229. for (int i = 0; i < n; i++) {
  3230. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3231. }
  3232. } break;
  3233. case GGML_TYPE_I16:
  3234. {
  3235. assert(tensor->nb[0] == sizeof(int16_t));
  3236. for (int i = 0; i < n; i++) {
  3237. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3238. }
  3239. } break;
  3240. case GGML_TYPE_I32:
  3241. {
  3242. assert(tensor->nb[0] == sizeof(int32_t));
  3243. for (int i = 0; i < n; i++) {
  3244. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3245. }
  3246. } break;
  3247. case GGML_TYPE_F16:
  3248. {
  3249. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3250. for (int i = 0; i < n; i++) {
  3251. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3252. }
  3253. } break;
  3254. case GGML_TYPE_BF16:
  3255. {
  3256. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3257. for (int i = 0; i < n; i++) {
  3258. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3259. }
  3260. } break;
  3261. case GGML_TYPE_F32:
  3262. {
  3263. assert(tensor->nb[0] == sizeof(float));
  3264. for (int i = 0; i < n; i++) {
  3265. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3266. }
  3267. } break;
  3268. default:
  3269. {
  3270. GGML_ASSERT(false);
  3271. } break;
  3272. }
  3273. return tensor;
  3274. }
  3275. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3276. const int n = ggml_nrows(tensor);
  3277. const int nc = tensor->ne[0];
  3278. const size_t n1 = tensor->nb[1];
  3279. char * const data = tensor->data;
  3280. switch (tensor->type) {
  3281. case GGML_TYPE_I8:
  3282. {
  3283. assert(tensor->nb[0] == sizeof(int8_t));
  3284. for (int i = 0; i < n; i++) {
  3285. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3286. }
  3287. } break;
  3288. case GGML_TYPE_I16:
  3289. {
  3290. assert(tensor->nb[0] == sizeof(int16_t));
  3291. for (int i = 0; i < n; i++) {
  3292. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3293. }
  3294. } break;
  3295. case GGML_TYPE_I32:
  3296. {
  3297. assert(tensor->nb[0] == sizeof(int32_t));
  3298. for (int i = 0; i < n; i++) {
  3299. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3300. }
  3301. } break;
  3302. case GGML_TYPE_F16:
  3303. {
  3304. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3305. for (int i = 0; i < n; i++) {
  3306. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3307. }
  3308. } break;
  3309. case GGML_TYPE_BF16:
  3310. {
  3311. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3312. for (int i = 0; i < n; i++) {
  3313. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3314. }
  3315. } break;
  3316. case GGML_TYPE_F32:
  3317. {
  3318. assert(tensor->nb[0] == sizeof(float));
  3319. for (int i = 0; i < n; i++) {
  3320. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3321. }
  3322. } break;
  3323. default:
  3324. {
  3325. GGML_ASSERT(false);
  3326. } break;
  3327. }
  3328. return tensor;
  3329. }
  3330. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3331. const int64_t ne2 = tensor->ne[2];
  3332. const int64_t ne1 = tensor->ne[1];
  3333. const int64_t ne0 = tensor->ne[0];
  3334. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3335. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3336. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3337. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3338. if (i0) {
  3339. * i0 = i0_;
  3340. }
  3341. if (i1) {
  3342. * i1 = i1_;
  3343. }
  3344. if (i2) {
  3345. * i2 = i2_;
  3346. }
  3347. if (i3) {
  3348. * i3 = i3_;
  3349. }
  3350. }
  3351. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3352. if (!ggml_is_contiguous(tensor)) {
  3353. int64_t id[4] = { 0, 0, 0, 0 };
  3354. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3355. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3356. }
  3357. switch (tensor->type) {
  3358. case GGML_TYPE_I8:
  3359. {
  3360. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3361. return ((int8_t *)(tensor->data))[i];
  3362. }
  3363. case GGML_TYPE_I16:
  3364. {
  3365. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3366. return ((int16_t *)(tensor->data))[i];
  3367. }
  3368. case GGML_TYPE_I32:
  3369. {
  3370. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3371. return ((int32_t *)(tensor->data))[i];
  3372. }
  3373. case GGML_TYPE_F16:
  3374. {
  3375. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3376. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3377. }
  3378. case GGML_TYPE_BF16:
  3379. {
  3380. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3381. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3382. }
  3383. case GGML_TYPE_F32:
  3384. {
  3385. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3386. return ((float *)(tensor->data))[i];
  3387. }
  3388. default:
  3389. {
  3390. GGML_ASSERT(false);
  3391. }
  3392. }
  3393. return 0.0f;
  3394. }
  3395. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3396. if (!ggml_is_contiguous(tensor)) {
  3397. int64_t id[4] = { 0, 0, 0, 0 };
  3398. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3399. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3400. return;
  3401. }
  3402. switch (tensor->type) {
  3403. case GGML_TYPE_I8:
  3404. {
  3405. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3406. ((int8_t *)(tensor->data))[i] = value;
  3407. } break;
  3408. case GGML_TYPE_I16:
  3409. {
  3410. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3411. ((int16_t *)(tensor->data))[i] = value;
  3412. } break;
  3413. case GGML_TYPE_I32:
  3414. {
  3415. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3416. ((int32_t *)(tensor->data))[i] = value;
  3417. } break;
  3418. case GGML_TYPE_F16:
  3419. {
  3420. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3421. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3422. } break;
  3423. case GGML_TYPE_BF16:
  3424. {
  3425. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3426. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3427. } break;
  3428. case GGML_TYPE_F32:
  3429. {
  3430. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3431. ((float *)(tensor->data))[i] = value;
  3432. } break;
  3433. default:
  3434. {
  3435. GGML_ASSERT(false);
  3436. } break;
  3437. }
  3438. }
  3439. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3440. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3441. switch (tensor->type) {
  3442. case GGML_TYPE_I8:
  3443. return ((int8_t *) data)[0];
  3444. case GGML_TYPE_I16:
  3445. return ((int16_t *) data)[0];
  3446. case GGML_TYPE_I32:
  3447. return ((int32_t *) data)[0];
  3448. case GGML_TYPE_F16:
  3449. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3450. case GGML_TYPE_BF16:
  3451. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3452. case GGML_TYPE_F32:
  3453. return ((float *) data)[0];
  3454. default:
  3455. GGML_ASSERT(false);
  3456. }
  3457. return 0.0f;
  3458. }
  3459. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3460. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3461. switch (tensor->type) {
  3462. case GGML_TYPE_I8:
  3463. {
  3464. ((int8_t *)(data))[0] = value;
  3465. } break;
  3466. case GGML_TYPE_I16:
  3467. {
  3468. ((int16_t *)(data))[0] = value;
  3469. } break;
  3470. case GGML_TYPE_I32:
  3471. {
  3472. ((int32_t *)(data))[0] = value;
  3473. } break;
  3474. case GGML_TYPE_F16:
  3475. {
  3476. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3477. } break;
  3478. case GGML_TYPE_BF16:
  3479. {
  3480. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3481. } break;
  3482. case GGML_TYPE_F32:
  3483. {
  3484. ((float *)(data))[0] = value;
  3485. } break;
  3486. default:
  3487. {
  3488. GGML_ASSERT(false);
  3489. } break;
  3490. }
  3491. }
  3492. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3493. if (!ggml_is_contiguous(tensor)) {
  3494. int64_t id[4] = { 0, 0, 0, 0 };
  3495. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3496. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3497. }
  3498. switch (tensor->type) {
  3499. case GGML_TYPE_I8:
  3500. {
  3501. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3502. return ((int8_t *)(tensor->data))[i];
  3503. }
  3504. case GGML_TYPE_I16:
  3505. {
  3506. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3507. return ((int16_t *)(tensor->data))[i];
  3508. }
  3509. case GGML_TYPE_I32:
  3510. {
  3511. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3512. return ((int32_t *)(tensor->data))[i];
  3513. }
  3514. case GGML_TYPE_F16:
  3515. {
  3516. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3517. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3518. }
  3519. case GGML_TYPE_BF16:
  3520. {
  3521. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3522. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3523. }
  3524. case GGML_TYPE_F32:
  3525. {
  3526. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3527. return ((float *)(tensor->data))[i];
  3528. }
  3529. default:
  3530. {
  3531. GGML_ASSERT(false);
  3532. }
  3533. }
  3534. return 0.0f;
  3535. }
  3536. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3537. if (!ggml_is_contiguous(tensor)) {
  3538. int64_t id[4] = { 0, 0, 0, 0 };
  3539. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3540. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3541. return;
  3542. }
  3543. switch (tensor->type) {
  3544. case GGML_TYPE_I8:
  3545. {
  3546. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3547. ((int8_t *)(tensor->data))[i] = value;
  3548. } break;
  3549. case GGML_TYPE_I16:
  3550. {
  3551. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3552. ((int16_t *)(tensor->data))[i] = value;
  3553. } break;
  3554. case GGML_TYPE_I32:
  3555. {
  3556. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3557. ((int32_t *)(tensor->data))[i] = value;
  3558. } break;
  3559. case GGML_TYPE_F16:
  3560. {
  3561. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3562. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3563. } break;
  3564. case GGML_TYPE_BF16:
  3565. {
  3566. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3567. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3568. } break;
  3569. case GGML_TYPE_F32:
  3570. {
  3571. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3572. ((float *)(tensor->data))[i] = value;
  3573. } break;
  3574. default:
  3575. {
  3576. GGML_ASSERT(false);
  3577. } break;
  3578. }
  3579. }
  3580. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3581. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3582. switch (tensor->type) {
  3583. case GGML_TYPE_I8:
  3584. return ((int8_t *) data)[0];
  3585. case GGML_TYPE_I16:
  3586. return ((int16_t *) data)[0];
  3587. case GGML_TYPE_I32:
  3588. return ((int32_t *) data)[0];
  3589. case GGML_TYPE_F16:
  3590. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3591. case GGML_TYPE_BF16:
  3592. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3593. case GGML_TYPE_F32:
  3594. return ((float *) data)[0];
  3595. default:
  3596. GGML_ASSERT(false);
  3597. }
  3598. return 0.0f;
  3599. }
  3600. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3601. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3602. switch (tensor->type) {
  3603. case GGML_TYPE_I8:
  3604. {
  3605. ((int8_t *)(data))[0] = value;
  3606. } break;
  3607. case GGML_TYPE_I16:
  3608. {
  3609. ((int16_t *)(data))[0] = value;
  3610. } break;
  3611. case GGML_TYPE_I32:
  3612. {
  3613. ((int32_t *)(data))[0] = value;
  3614. } break;
  3615. case GGML_TYPE_F16:
  3616. {
  3617. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3618. } break;
  3619. case GGML_TYPE_BF16:
  3620. {
  3621. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3622. } break;
  3623. case GGML_TYPE_F32:
  3624. {
  3625. ((float *)(data))[0] = value;
  3626. } break;
  3627. default:
  3628. {
  3629. GGML_ASSERT(false);
  3630. } break;
  3631. }
  3632. }
  3633. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3634. return tensor->data;
  3635. }
  3636. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3637. assert(tensor->type == GGML_TYPE_F32);
  3638. return (float *)(tensor->data);
  3639. }
  3640. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3641. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3642. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3643. }
  3644. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3645. return tensor->name;
  3646. }
  3647. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3648. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3649. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3650. return tensor;
  3651. }
  3652. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3653. va_list args;
  3654. va_start(args, fmt);
  3655. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3656. va_end(args);
  3657. return tensor;
  3658. }
  3659. struct ggml_tensor * ggml_view_tensor(
  3660. struct ggml_context * ctx,
  3661. struct ggml_tensor * src) {
  3662. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3663. ggml_format_name(result, "%s (view)", src->name);
  3664. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3665. result->nb[i] = src->nb[i];
  3666. }
  3667. return result;
  3668. }
  3669. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3670. struct ggml_object * obj = ctx->objects_begin;
  3671. char * const mem_buffer = ctx->mem_buffer;
  3672. while (obj != NULL) {
  3673. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3674. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3675. }
  3676. obj = obj->next;
  3677. }
  3678. return NULL;
  3679. }
  3680. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3681. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3682. obj = obj->next;
  3683. char * const mem_buffer = ctx->mem_buffer;
  3684. while (obj != NULL) {
  3685. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3686. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3687. }
  3688. obj = obj->next;
  3689. }
  3690. return NULL;
  3691. }
  3692. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3693. struct ggml_object * obj = ctx->objects_begin;
  3694. char * const mem_buffer = ctx->mem_buffer;
  3695. while (obj != NULL) {
  3696. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3697. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3698. if (strcmp(cur->name, name) == 0) {
  3699. return cur;
  3700. }
  3701. }
  3702. obj = obj->next;
  3703. }
  3704. return NULL;
  3705. }
  3706. ////////////////////////////////////////////////////////////////////////////////
  3707. // ggml_dup
  3708. static struct ggml_tensor * ggml_dup_impl(
  3709. struct ggml_context * ctx,
  3710. struct ggml_tensor * a,
  3711. bool inplace) {
  3712. bool is_node = false;
  3713. if (!inplace && (a->grad)) {
  3714. is_node = true;
  3715. }
  3716. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3717. result->op = GGML_OP_DUP;
  3718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3719. result->src[0] = a;
  3720. return result;
  3721. }
  3722. struct ggml_tensor * ggml_dup(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a) {
  3725. return ggml_dup_impl(ctx, a, false);
  3726. }
  3727. struct ggml_tensor * ggml_dup_inplace(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a) {
  3730. return ggml_dup_impl(ctx, a, true);
  3731. }
  3732. // ggml_add
  3733. static struct ggml_tensor * ggml_add_impl(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a,
  3736. struct ggml_tensor * b,
  3737. bool inplace) {
  3738. GGML_ASSERT(ggml_can_repeat(b, a));
  3739. bool is_node = false;
  3740. if (!inplace && (a->grad || b->grad)) {
  3741. // TODO: support backward pass for broadcasting
  3742. GGML_ASSERT(ggml_are_same_shape(a, b));
  3743. is_node = true;
  3744. }
  3745. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3746. result->op = GGML_OP_ADD;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. result->src[1] = b;
  3750. return result;
  3751. }
  3752. struct ggml_tensor * ggml_add(
  3753. struct ggml_context * ctx,
  3754. struct ggml_tensor * a,
  3755. struct ggml_tensor * b) {
  3756. return ggml_add_impl(ctx, a, b, false);
  3757. }
  3758. struct ggml_tensor * ggml_add_inplace(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. struct ggml_tensor * b) {
  3762. return ggml_add_impl(ctx, a, b, true);
  3763. }
  3764. // ggml_add_cast
  3765. static struct ggml_tensor * ggml_add_cast_impl(
  3766. struct ggml_context * ctx,
  3767. struct ggml_tensor * a,
  3768. struct ggml_tensor * b,
  3769. enum ggml_type type) {
  3770. // TODO: support less-strict constraint
  3771. // GGML_ASSERT(ggml_can_repeat(b, a));
  3772. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3773. // currently only supported for quantized input and f16
  3774. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3775. a->type == GGML_TYPE_F16 ||
  3776. a->type == GGML_TYPE_BF16);
  3777. bool is_node = false;
  3778. if (a->grad || b->grad) {
  3779. // TODO: support backward pass for broadcasting
  3780. GGML_ASSERT(ggml_are_same_shape(a, b));
  3781. is_node = true;
  3782. }
  3783. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3784. result->op = GGML_OP_ADD;
  3785. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3786. result->src[0] = a;
  3787. result->src[1] = b;
  3788. return result;
  3789. }
  3790. struct ggml_tensor * ggml_add_cast(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. struct ggml_tensor * b,
  3794. enum ggml_type type) {
  3795. return ggml_add_cast_impl(ctx, a, b, type);
  3796. }
  3797. // ggml_add1
  3798. static struct ggml_tensor * ggml_add1_impl(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b,
  3802. bool inplace) {
  3803. GGML_ASSERT(ggml_is_scalar(b));
  3804. GGML_ASSERT(ggml_is_padded_1d(a));
  3805. bool is_node = false;
  3806. if (a->grad || b->grad) {
  3807. is_node = true;
  3808. }
  3809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3810. result->op = GGML_OP_ADD1;
  3811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3812. result->src[0] = a;
  3813. result->src[1] = b;
  3814. return result;
  3815. }
  3816. struct ggml_tensor * ggml_add1(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b) {
  3820. return ggml_add1_impl(ctx, a, b, false);
  3821. }
  3822. struct ggml_tensor * ggml_add1_inplace(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. struct ggml_tensor * b) {
  3826. return ggml_add1_impl(ctx, a, b, true);
  3827. }
  3828. // ggml_acc
  3829. static struct ggml_tensor * ggml_acc_impl(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. struct ggml_tensor * b,
  3833. size_t nb1,
  3834. size_t nb2,
  3835. size_t nb3,
  3836. size_t offset,
  3837. bool inplace) {
  3838. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3839. GGML_ASSERT(ggml_is_contiguous(a));
  3840. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3841. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3842. bool is_node = false;
  3843. if (!inplace && (a->grad || b->grad)) {
  3844. is_node = true;
  3845. }
  3846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3847. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3848. ggml_set_op_params(result, params, sizeof(params));
  3849. result->op = GGML_OP_ACC;
  3850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3851. result->src[0] = a;
  3852. result->src[1] = b;
  3853. return result;
  3854. }
  3855. struct ggml_tensor * ggml_acc(
  3856. struct ggml_context * ctx,
  3857. struct ggml_tensor * a,
  3858. struct ggml_tensor * b,
  3859. size_t nb1,
  3860. size_t nb2,
  3861. size_t nb3,
  3862. size_t offset) {
  3863. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3864. }
  3865. struct ggml_tensor * ggml_acc_inplace(
  3866. struct ggml_context * ctx,
  3867. struct ggml_tensor * a,
  3868. struct ggml_tensor * b,
  3869. size_t nb1,
  3870. size_t nb2,
  3871. size_t nb3,
  3872. size_t offset) {
  3873. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3874. }
  3875. // ggml_sub
  3876. static struct ggml_tensor * ggml_sub_impl(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b,
  3880. bool inplace) {
  3881. GGML_ASSERT(ggml_are_same_shape(a, b));
  3882. bool is_node = false;
  3883. if (!inplace && (a->grad || b->grad)) {
  3884. is_node = true;
  3885. }
  3886. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3887. result->op = GGML_OP_SUB;
  3888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3889. result->src[0] = a;
  3890. result->src[1] = b;
  3891. return result;
  3892. }
  3893. struct ggml_tensor * ggml_sub(
  3894. struct ggml_context * ctx,
  3895. struct ggml_tensor * a,
  3896. struct ggml_tensor * b) {
  3897. return ggml_sub_impl(ctx, a, b, false);
  3898. }
  3899. struct ggml_tensor * ggml_sub_inplace(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a,
  3902. struct ggml_tensor * b) {
  3903. return ggml_sub_impl(ctx, a, b, true);
  3904. }
  3905. // ggml_mul
  3906. static struct ggml_tensor * ggml_mul_impl(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. struct ggml_tensor * b,
  3910. bool inplace) {
  3911. GGML_ASSERT(ggml_can_repeat(b, a));
  3912. bool is_node = false;
  3913. if (!inplace && (a->grad || b->grad)) {
  3914. // TODO: support backward pass for broadcasting
  3915. GGML_ASSERT(ggml_are_same_shape(a, b));
  3916. is_node = true;
  3917. }
  3918. if (inplace) {
  3919. GGML_ASSERT(!is_node);
  3920. }
  3921. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3922. result->op = GGML_OP_MUL;
  3923. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3924. result->src[0] = a;
  3925. result->src[1] = b;
  3926. return result;
  3927. }
  3928. struct ggml_tensor * ggml_mul(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. struct ggml_tensor * b) {
  3932. return ggml_mul_impl(ctx, a, b, false);
  3933. }
  3934. struct ggml_tensor * ggml_mul_inplace(
  3935. struct ggml_context * ctx,
  3936. struct ggml_tensor * a,
  3937. struct ggml_tensor * b) {
  3938. return ggml_mul_impl(ctx, a, b, true);
  3939. }
  3940. // ggml_div
  3941. static struct ggml_tensor * ggml_div_impl(
  3942. struct ggml_context * ctx,
  3943. struct ggml_tensor * a,
  3944. struct ggml_tensor * b,
  3945. bool inplace) {
  3946. GGML_ASSERT(ggml_can_repeat(b, a));
  3947. bool is_node = false;
  3948. if (!inplace && (a->grad || b->grad)) {
  3949. is_node = true;
  3950. }
  3951. if (inplace) {
  3952. GGML_ASSERT(!is_node);
  3953. }
  3954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3955. result->op = GGML_OP_DIV;
  3956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3957. result->src[0] = a;
  3958. result->src[1] = b;
  3959. return result;
  3960. }
  3961. struct ggml_tensor * ggml_div(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. struct ggml_tensor * b) {
  3965. return ggml_div_impl(ctx, a, b, false);
  3966. }
  3967. struct ggml_tensor * ggml_div_inplace(
  3968. struct ggml_context * ctx,
  3969. struct ggml_tensor * a,
  3970. struct ggml_tensor * b) {
  3971. return ggml_div_impl(ctx, a, b, true);
  3972. }
  3973. // ggml_sqr
  3974. static struct ggml_tensor * ggml_sqr_impl(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. bool inplace) {
  3978. bool is_node = false;
  3979. if (!inplace && (a->grad)) {
  3980. is_node = true;
  3981. }
  3982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3983. result->op = GGML_OP_SQR;
  3984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3985. result->src[0] = a;
  3986. return result;
  3987. }
  3988. struct ggml_tensor * ggml_sqr(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a) {
  3991. return ggml_sqr_impl(ctx, a, false);
  3992. }
  3993. struct ggml_tensor * ggml_sqr_inplace(
  3994. struct ggml_context * ctx,
  3995. struct ggml_tensor * a) {
  3996. return ggml_sqr_impl(ctx, a, true);
  3997. }
  3998. // ggml_sqrt
  3999. static struct ggml_tensor * ggml_sqrt_impl(
  4000. struct ggml_context * ctx,
  4001. struct ggml_tensor * a,
  4002. bool inplace) {
  4003. bool is_node = false;
  4004. if (!inplace && (a->grad)) {
  4005. is_node = true;
  4006. }
  4007. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4008. result->op = GGML_OP_SQRT;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src[0] = a;
  4011. return result;
  4012. }
  4013. struct ggml_tensor * ggml_sqrt(
  4014. struct ggml_context * ctx,
  4015. struct ggml_tensor * a) {
  4016. return ggml_sqrt_impl(ctx, a, false);
  4017. }
  4018. struct ggml_tensor * ggml_sqrt_inplace(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a) {
  4021. return ggml_sqrt_impl(ctx, a, true);
  4022. }
  4023. // ggml_log
  4024. static struct ggml_tensor * ggml_log_impl(
  4025. struct ggml_context * ctx,
  4026. struct ggml_tensor * a,
  4027. bool inplace) {
  4028. bool is_node = false;
  4029. if (!inplace && (a->grad)) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. result->op = GGML_OP_LOG;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src[0] = a;
  4036. return result;
  4037. }
  4038. struct ggml_tensor * ggml_log(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a) {
  4041. return ggml_log_impl(ctx, a, false);
  4042. }
  4043. struct ggml_tensor * ggml_log_inplace(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a) {
  4046. return ggml_log_impl(ctx, a, true);
  4047. }
  4048. // ggml_sum
  4049. struct ggml_tensor * ggml_sum(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a) {
  4052. bool is_node = false;
  4053. if (a->grad) {
  4054. is_node = true;
  4055. }
  4056. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4057. result->op = GGML_OP_SUM;
  4058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4059. result->src[0] = a;
  4060. return result;
  4061. }
  4062. // ggml_sum_rows
  4063. struct ggml_tensor * ggml_sum_rows(
  4064. struct ggml_context * ctx,
  4065. struct ggml_tensor * a) {
  4066. bool is_node = false;
  4067. if (a->grad) {
  4068. is_node = true;
  4069. }
  4070. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4071. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4072. ne[i] = a->ne[i];
  4073. }
  4074. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4075. result->op = GGML_OP_SUM_ROWS;
  4076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4077. result->src[0] = a;
  4078. return result;
  4079. }
  4080. // ggml_mean
  4081. struct ggml_tensor * ggml_mean(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a) {
  4084. bool is_node = false;
  4085. if (a->grad) {
  4086. GGML_ASSERT(false); // TODO: implement
  4087. is_node = true;
  4088. }
  4089. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4090. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4091. result->op = GGML_OP_MEAN;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src[0] = a;
  4094. return result;
  4095. }
  4096. // ggml_argmax
  4097. struct ggml_tensor * ggml_argmax(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a) {
  4100. GGML_ASSERT(ggml_is_matrix(a));
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. GGML_ASSERT(false);
  4104. is_node = true;
  4105. }
  4106. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4107. result->op = GGML_OP_ARGMAX;
  4108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4109. result->src[0] = a;
  4110. return result;
  4111. }
  4112. // ggml_repeat
  4113. struct ggml_tensor * ggml_repeat(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a,
  4116. struct ggml_tensor * b) {
  4117. GGML_ASSERT(ggml_can_repeat(a, b));
  4118. bool is_node = false;
  4119. if (a->grad) {
  4120. is_node = true;
  4121. }
  4122. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4123. result->op = GGML_OP_REPEAT;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src[0] = a;
  4126. return result;
  4127. }
  4128. // ggml_repeat_back
  4129. struct ggml_tensor * ggml_repeat_back(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. struct ggml_tensor * b) {
  4133. GGML_ASSERT(ggml_can_repeat(b, a));
  4134. bool is_node = false;
  4135. if (a->grad) {
  4136. is_node = true;
  4137. }
  4138. if (ggml_are_same_shape(a, b) && !is_node) {
  4139. return a;
  4140. }
  4141. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4142. result->op = GGML_OP_REPEAT_BACK;
  4143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4144. result->src[0] = a;
  4145. return result;
  4146. }
  4147. // ggml_concat
  4148. struct ggml_tensor * ggml_concat(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. struct ggml_tensor * b,
  4152. int dim) {
  4153. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4154. int64_t ne[GGML_MAX_DIMS];
  4155. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4156. if (d == dim) {
  4157. ne[d] = a->ne[d] + b->ne[d];
  4158. continue;
  4159. }
  4160. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4161. ne[d] = a->ne[d];
  4162. }
  4163. bool is_node = false;
  4164. if (a->grad || b->grad) {
  4165. is_node = true;
  4166. }
  4167. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4168. ggml_set_op_params_i32(result, 0, dim);
  4169. result->op = GGML_OP_CONCAT;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src[0] = a;
  4172. result->src[1] = b;
  4173. return result;
  4174. }
  4175. // ggml_abs
  4176. struct ggml_tensor * ggml_abs(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a) {
  4179. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4180. }
  4181. struct ggml_tensor * ggml_abs_inplace(
  4182. struct ggml_context * ctx,
  4183. struct ggml_tensor * a) {
  4184. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4185. }
  4186. // ggml_sgn
  4187. struct ggml_tensor * ggml_sgn(
  4188. struct ggml_context * ctx,
  4189. struct ggml_tensor * a) {
  4190. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4191. }
  4192. struct ggml_tensor * ggml_sgn_inplace(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a) {
  4195. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4196. }
  4197. // ggml_neg
  4198. struct ggml_tensor * ggml_neg(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a) {
  4201. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4202. }
  4203. struct ggml_tensor * ggml_neg_inplace(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a) {
  4206. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4207. }
  4208. // ggml_step
  4209. struct ggml_tensor * ggml_step(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4213. }
  4214. struct ggml_tensor * ggml_step_inplace(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a) {
  4217. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4218. }
  4219. // ggml_tanh
  4220. struct ggml_tensor * ggml_tanh(
  4221. struct ggml_context * ctx,
  4222. struct ggml_tensor * a) {
  4223. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4224. }
  4225. struct ggml_tensor * ggml_tanh_inplace(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a) {
  4228. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4229. }
  4230. // ggml_elu
  4231. struct ggml_tensor * ggml_elu(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4235. }
  4236. struct ggml_tensor * ggml_elu_inplace(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a) {
  4239. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4240. }
  4241. // ggml_relu
  4242. struct ggml_tensor * ggml_relu(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a) {
  4245. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4246. }
  4247. struct ggml_tensor * ggml_relu_inplace(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a) {
  4250. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4251. }
  4252. // ggml_leaky_relu
  4253. struct ggml_tensor * ggml_leaky_relu(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4256. bool is_node = false;
  4257. if (!inplace && (a->grad)) {
  4258. is_node = true;
  4259. }
  4260. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4261. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4262. result->op = GGML_OP_LEAKY_RELU;
  4263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4264. result->src[0] = a;
  4265. return result;
  4266. }
  4267. // ggml_sigmoid
  4268. struct ggml_tensor * ggml_sigmoid(
  4269. struct ggml_context * ctx,
  4270. struct ggml_tensor * a) {
  4271. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4272. }
  4273. struct ggml_tensor * ggml_sigmoid_inplace(
  4274. struct ggml_context * ctx,
  4275. struct ggml_tensor * a) {
  4276. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4277. }
  4278. // ggml_gelu
  4279. struct ggml_tensor * ggml_gelu(
  4280. struct ggml_context * ctx,
  4281. struct ggml_tensor * a) {
  4282. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4283. }
  4284. struct ggml_tensor * ggml_gelu_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4288. }
  4289. // ggml_gelu_quick
  4290. struct ggml_tensor * ggml_gelu_quick(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4294. }
  4295. struct ggml_tensor * ggml_gelu_quick_inplace(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4299. }
  4300. // ggml_silu
  4301. struct ggml_tensor * ggml_silu(
  4302. struct ggml_context * ctx,
  4303. struct ggml_tensor * a) {
  4304. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4305. }
  4306. struct ggml_tensor * ggml_silu_inplace(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4310. }
  4311. // ggml_silu_back
  4312. struct ggml_tensor * ggml_silu_back(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a,
  4315. struct ggml_tensor * b) {
  4316. bool is_node = false;
  4317. if (a->grad || b->grad) {
  4318. // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4322. result->op = GGML_OP_SILU_BACK;
  4323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4324. result->src[0] = a;
  4325. result->src[1] = b;
  4326. return result;
  4327. }
  4328. // ggml hardswish
  4329. struct ggml_tensor * ggml_hardswish(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a) {
  4332. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4333. }
  4334. // ggml hardsigmoid
  4335. struct ggml_tensor * ggml_hardsigmoid(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4339. }
  4340. // ggml_norm
  4341. static struct ggml_tensor * ggml_norm_impl(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. float eps,
  4345. bool inplace) {
  4346. bool is_node = false;
  4347. if (!inplace && (a->grad)) {
  4348. GGML_ASSERT(false); // TODO: implement backward
  4349. is_node = true;
  4350. }
  4351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4352. ggml_set_op_params(result, &eps, sizeof(eps));
  4353. result->op = GGML_OP_NORM;
  4354. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4355. result->src[0] = a;
  4356. return result;
  4357. }
  4358. struct ggml_tensor * ggml_norm(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a,
  4361. float eps) {
  4362. return ggml_norm_impl(ctx, a, eps, false);
  4363. }
  4364. struct ggml_tensor * ggml_norm_inplace(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a,
  4367. float eps) {
  4368. return ggml_norm_impl(ctx, a, eps, true);
  4369. }
  4370. // ggml_rms_norm
  4371. static struct ggml_tensor * ggml_rms_norm_impl(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. float eps,
  4375. bool inplace) {
  4376. bool is_node = false;
  4377. if (!inplace && (a->grad)) {
  4378. is_node = true;
  4379. }
  4380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4381. ggml_set_op_params(result, &eps, sizeof(eps));
  4382. result->op = GGML_OP_RMS_NORM;
  4383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4384. result->src[0] = a;
  4385. return result;
  4386. }
  4387. struct ggml_tensor * ggml_rms_norm(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a,
  4390. float eps) {
  4391. return ggml_rms_norm_impl(ctx, a, eps, false);
  4392. }
  4393. struct ggml_tensor * ggml_rms_norm_inplace(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a,
  4396. float eps) {
  4397. return ggml_rms_norm_impl(ctx, a, eps, true);
  4398. }
  4399. // ggml_rms_norm_back
  4400. struct ggml_tensor * ggml_rms_norm_back(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. struct ggml_tensor * b,
  4404. float eps) {
  4405. bool is_node = false;
  4406. if (a->grad) {
  4407. // TODO: implement backward
  4408. is_node = true;
  4409. }
  4410. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4411. ggml_set_op_params(result, &eps, sizeof(eps));
  4412. result->op = GGML_OP_RMS_NORM_BACK;
  4413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4414. result->src[0] = a;
  4415. result->src[1] = b;
  4416. return result;
  4417. }
  4418. // ggml_group_norm
  4419. static struct ggml_tensor * ggml_group_norm_impl(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. int n_groups,
  4423. bool inplace) {
  4424. bool is_node = false;
  4425. if (!inplace && (a->grad)) {
  4426. GGML_ASSERT(false); // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4430. result->op_params[0] = n_groups;
  4431. result->op = GGML_OP_GROUP_NORM;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src[0] = a;
  4434. return result;
  4435. }
  4436. struct ggml_tensor * ggml_group_norm(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a,
  4439. int n_groups) {
  4440. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4441. }
  4442. struct ggml_tensor * ggml_group_norm_inplace(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. int n_groups) {
  4446. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4447. }
  4448. // ggml_mul_mat
  4449. struct ggml_tensor * ggml_mul_mat(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a,
  4452. struct ggml_tensor * b) {
  4453. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4454. GGML_ASSERT(!ggml_is_transposed(a));
  4455. bool is_node = false;
  4456. if (a->grad || b->grad) {
  4457. is_node = true;
  4458. }
  4459. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4460. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4461. result->op = GGML_OP_MUL_MAT;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src[0] = a;
  4464. result->src[1] = b;
  4465. return result;
  4466. }
  4467. void ggml_mul_mat_set_prec(
  4468. struct ggml_tensor * a,
  4469. enum ggml_prec prec) {
  4470. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4471. const int32_t prec_i32 = (int32_t) prec;
  4472. ggml_set_op_params_i32(a, 0, prec_i32);
  4473. }
  4474. // ggml_mul_mat_id
  4475. /*
  4476. c = ggml_mul_mat_id(ctx, as, b, ids);
  4477. as -> [cols, rows, n_expert]
  4478. ids -> [n_experts_used, n_tokens] (i32)
  4479. b -> [cols, n_expert_used, n_tokens]
  4480. c -> [cols, n_expert_used, n_tokens]
  4481. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4482. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4483. */
  4484. struct ggml_tensor * ggml_mul_mat_id(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * as,
  4487. struct ggml_tensor * b,
  4488. struct ggml_tensor * ids) {
  4489. GGML_ASSERT(!ggml_is_transposed(as));
  4490. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4491. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4492. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4493. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4494. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4495. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4496. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4497. bool is_node = false;
  4498. if (as->grad || b->grad) {
  4499. is_node = true;
  4500. }
  4501. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4502. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4503. result->op = GGML_OP_MUL_MAT_ID;
  4504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4505. result->src[0] = as;
  4506. result->src[1] = b;
  4507. result->src[2] = ids;
  4508. return result;
  4509. }
  4510. // ggml_out_prod
  4511. struct ggml_tensor * ggml_out_prod(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b) {
  4515. GGML_ASSERT(ggml_can_out_prod(a, b));
  4516. GGML_ASSERT(!ggml_is_transposed(a));
  4517. bool is_node = false;
  4518. if (a->grad || b->grad) {
  4519. is_node = true;
  4520. }
  4521. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4522. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4523. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4524. result->op = GGML_OP_OUT_PROD;
  4525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4526. result->src[0] = a;
  4527. result->src[1] = b;
  4528. return result;
  4529. }
  4530. // ggml_scale
  4531. static struct ggml_tensor * ggml_scale_impl(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. float s,
  4535. bool inplace) {
  4536. GGML_ASSERT(ggml_is_padded_1d(a));
  4537. bool is_node = false;
  4538. if (a->grad) {
  4539. is_node = true;
  4540. }
  4541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4542. ggml_set_op_params(result, &s, sizeof(s));
  4543. result->op = GGML_OP_SCALE;
  4544. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4545. result->src[0] = a;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_scale(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a,
  4551. float s) {
  4552. return ggml_scale_impl(ctx, a, s, false);
  4553. }
  4554. struct ggml_tensor * ggml_scale_inplace(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. float s) {
  4558. return ggml_scale_impl(ctx, a, s, true);
  4559. }
  4560. // ggml_set
  4561. static struct ggml_tensor * ggml_set_impl(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. size_t nb1,
  4566. size_t nb2,
  4567. size_t nb3,
  4568. size_t offset,
  4569. bool inplace) {
  4570. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4571. bool is_node = false;
  4572. if (a->grad || b->grad) {
  4573. is_node = true;
  4574. }
  4575. // make a view of the destination
  4576. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4577. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4578. ggml_set_op_params(result, params, sizeof(params));
  4579. result->op = GGML_OP_SET;
  4580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4581. result->src[0] = a;
  4582. result->src[1] = b;
  4583. return result;
  4584. }
  4585. struct ggml_tensor * ggml_set(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. struct ggml_tensor * b,
  4589. size_t nb1,
  4590. size_t nb2,
  4591. size_t nb3,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4594. }
  4595. struct ggml_tensor * ggml_set_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t nb1,
  4600. size_t nb2,
  4601. size_t nb3,
  4602. size_t offset) {
  4603. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4604. }
  4605. struct ggml_tensor * ggml_set_1d(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b,
  4609. size_t offset) {
  4610. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4611. }
  4612. struct ggml_tensor * ggml_set_1d_inplace(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. struct ggml_tensor * b,
  4616. size_t offset) {
  4617. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4618. }
  4619. struct ggml_tensor * ggml_set_2d(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b,
  4623. size_t nb1,
  4624. size_t offset) {
  4625. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4626. }
  4627. struct ggml_tensor * ggml_set_2d_inplace(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b,
  4631. size_t nb1,
  4632. size_t offset) {
  4633. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4634. }
  4635. // ggml_cpy
  4636. static struct ggml_tensor * ggml_cpy_impl(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. struct ggml_tensor * b) {
  4640. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4641. bool is_node = false;
  4642. if (a->grad || b->grad) {
  4643. // inplace is false and either one have a grad
  4644. is_node = true;
  4645. }
  4646. // make a view of the destination
  4647. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4648. if (strlen(b->name) > 0) {
  4649. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4650. } else {
  4651. ggml_format_name(result, "%s (copy)", a->name);
  4652. }
  4653. result->op = GGML_OP_CPY;
  4654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4655. result->src[0] = a;
  4656. result->src[1] = b;
  4657. return result;
  4658. }
  4659. struct ggml_tensor * ggml_cpy(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a,
  4662. struct ggml_tensor * b) {
  4663. return ggml_cpy_impl(ctx, a, b);
  4664. }
  4665. struct ggml_tensor * ggml_cast(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. enum ggml_type type) {
  4669. bool is_node = false;
  4670. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4671. ggml_format_name(result, "%s (copy)", a->name);
  4672. result->op = GGML_OP_CPY;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src[0] = a;
  4675. result->src[1] = result;
  4676. return result;
  4677. }
  4678. // ggml_cont
  4679. static struct ggml_tensor * ggml_cont_impl(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a) {
  4682. bool is_node = false;
  4683. if (a->grad) {
  4684. is_node = true;
  4685. }
  4686. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4687. ggml_format_name(result, "%s (cont)", a->name);
  4688. result->op = GGML_OP_CONT;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src[0] = a;
  4691. return result;
  4692. }
  4693. struct ggml_tensor * ggml_cont(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a) {
  4696. return ggml_cont_impl(ctx, a);
  4697. }
  4698. // make contiguous, with new shape
  4699. GGML_API struct ggml_tensor * ggml_cont_1d(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. int64_t ne0) {
  4703. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4704. }
  4705. GGML_API struct ggml_tensor * ggml_cont_2d(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. int64_t ne0,
  4709. int64_t ne1) {
  4710. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4711. }
  4712. GGML_API struct ggml_tensor * ggml_cont_3d(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. int64_t ne0,
  4716. int64_t ne1,
  4717. int64_t ne2) {
  4718. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4719. }
  4720. struct ggml_tensor * ggml_cont_4d(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. int64_t ne0,
  4724. int64_t ne1,
  4725. int64_t ne2,
  4726. int64_t ne3) {
  4727. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4728. bool is_node = false;
  4729. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4730. ggml_format_name(result, "%s (cont)", a->name);
  4731. result->op = GGML_OP_CONT;
  4732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4733. result->src[0] = a;
  4734. return result;
  4735. }
  4736. // ggml_reshape
  4737. struct ggml_tensor * ggml_reshape(
  4738. struct ggml_context * ctx,
  4739. struct ggml_tensor * a,
  4740. struct ggml_tensor * b) {
  4741. GGML_ASSERT(ggml_is_contiguous(a));
  4742. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4743. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4744. bool is_node = false;
  4745. if (a->grad) {
  4746. is_node = true;
  4747. }
  4748. if (b->grad) {
  4749. // gradient propagation is not supported
  4750. //GGML_ASSERT(false);
  4751. }
  4752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4753. ggml_format_name(result, "%s (reshaped)", a->name);
  4754. result->op = GGML_OP_RESHAPE;
  4755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4756. result->src[0] = a;
  4757. return result;
  4758. }
  4759. struct ggml_tensor * ggml_reshape_1d(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a,
  4762. int64_t ne0) {
  4763. GGML_ASSERT(ggml_is_contiguous(a));
  4764. GGML_ASSERT(ggml_nelements(a) == ne0);
  4765. bool is_node = false;
  4766. if (a->grad) {
  4767. is_node = true;
  4768. }
  4769. const int64_t ne[1] = { ne0 };
  4770. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4771. ggml_format_name(result, "%s (reshaped)", a->name);
  4772. result->op = GGML_OP_RESHAPE;
  4773. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4774. result->src[0] = a;
  4775. return result;
  4776. }
  4777. struct ggml_tensor * ggml_reshape_2d(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a,
  4780. int64_t ne0,
  4781. int64_t ne1) {
  4782. GGML_ASSERT(ggml_is_contiguous(a));
  4783. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4784. bool is_node = false;
  4785. if (a->grad) {
  4786. is_node = true;
  4787. }
  4788. const int64_t ne[2] = { ne0, ne1 };
  4789. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4790. ggml_format_name(result, "%s (reshaped)", a->name);
  4791. result->op = GGML_OP_RESHAPE;
  4792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4793. result->src[0] = a;
  4794. return result;
  4795. }
  4796. struct ggml_tensor * ggml_reshape_3d(
  4797. struct ggml_context * ctx,
  4798. struct ggml_tensor * a,
  4799. int64_t ne0,
  4800. int64_t ne1,
  4801. int64_t ne2) {
  4802. GGML_ASSERT(ggml_is_contiguous(a));
  4803. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4804. bool is_node = false;
  4805. if (a->grad) {
  4806. is_node = true;
  4807. }
  4808. const int64_t ne[3] = { ne0, ne1, ne2 };
  4809. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4810. ggml_format_name(result, "%s (reshaped)", a->name);
  4811. result->op = GGML_OP_RESHAPE;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src[0] = a;
  4814. return result;
  4815. }
  4816. struct ggml_tensor * ggml_reshape_4d(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. int64_t ne0,
  4820. int64_t ne1,
  4821. int64_t ne2,
  4822. int64_t ne3) {
  4823. GGML_ASSERT(ggml_is_contiguous(a));
  4824. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4825. bool is_node = false;
  4826. if (a->grad) {
  4827. is_node = true;
  4828. }
  4829. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4830. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4831. ggml_format_name(result, "%s (reshaped)", a->name);
  4832. result->op = GGML_OP_RESHAPE;
  4833. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4834. result->src[0] = a;
  4835. return result;
  4836. }
  4837. static struct ggml_tensor * ggml_view_impl(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. int n_dims,
  4841. const int64_t * ne,
  4842. size_t offset) {
  4843. bool is_node = false;
  4844. if (a->grad) {
  4845. is_node = true;
  4846. }
  4847. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4848. ggml_format_name(result, "%s (view)", a->name);
  4849. ggml_set_op_params(result, &offset, sizeof(offset));
  4850. result->op = GGML_OP_VIEW;
  4851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4852. result->src[0] = a;
  4853. return result;
  4854. }
  4855. // ggml_view_1d
  4856. struct ggml_tensor * ggml_view_1d(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. int64_t ne0,
  4860. size_t offset) {
  4861. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4862. return result;
  4863. }
  4864. // ggml_view_2d
  4865. struct ggml_tensor * ggml_view_2d(
  4866. struct ggml_context * ctx,
  4867. struct ggml_tensor * a,
  4868. int64_t ne0,
  4869. int64_t ne1,
  4870. size_t nb1,
  4871. size_t offset) {
  4872. const int64_t ne[2] = { ne0, ne1 };
  4873. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4874. result->nb[1] = nb1;
  4875. result->nb[2] = result->nb[1]*ne1;
  4876. result->nb[3] = result->nb[2];
  4877. return result;
  4878. }
  4879. // ggml_view_3d
  4880. struct ggml_tensor * ggml_view_3d(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. int64_t ne0,
  4884. int64_t ne1,
  4885. int64_t ne2,
  4886. size_t nb1,
  4887. size_t nb2,
  4888. size_t offset) {
  4889. const int64_t ne[3] = { ne0, ne1, ne2 };
  4890. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4891. result->nb[1] = nb1;
  4892. result->nb[2] = nb2;
  4893. result->nb[3] = result->nb[2]*ne2;
  4894. return result;
  4895. }
  4896. // ggml_view_4d
  4897. struct ggml_tensor * ggml_view_4d(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. int64_t ne0,
  4901. int64_t ne1,
  4902. int64_t ne2,
  4903. int64_t ne3,
  4904. size_t nb1,
  4905. size_t nb2,
  4906. size_t nb3,
  4907. size_t offset) {
  4908. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4909. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4910. result->nb[1] = nb1;
  4911. result->nb[2] = nb2;
  4912. result->nb[3] = nb3;
  4913. return result;
  4914. }
  4915. // ggml_permute
  4916. struct ggml_tensor * ggml_permute(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a,
  4919. int axis0,
  4920. int axis1,
  4921. int axis2,
  4922. int axis3) {
  4923. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4924. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4925. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4926. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4927. GGML_ASSERT(axis0 != axis1);
  4928. GGML_ASSERT(axis0 != axis2);
  4929. GGML_ASSERT(axis0 != axis3);
  4930. GGML_ASSERT(axis1 != axis2);
  4931. GGML_ASSERT(axis1 != axis3);
  4932. GGML_ASSERT(axis2 != axis3);
  4933. bool is_node = false;
  4934. if (a->grad) {
  4935. is_node = true;
  4936. }
  4937. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4938. ggml_format_name(result, "%s (permuted)", a->name);
  4939. int ne[GGML_MAX_DIMS];
  4940. int nb[GGML_MAX_DIMS];
  4941. ne[axis0] = a->ne[0];
  4942. ne[axis1] = a->ne[1];
  4943. ne[axis2] = a->ne[2];
  4944. ne[axis3] = a->ne[3];
  4945. nb[axis0] = a->nb[0];
  4946. nb[axis1] = a->nb[1];
  4947. nb[axis2] = a->nb[2];
  4948. nb[axis3] = a->nb[3];
  4949. result->ne[0] = ne[0];
  4950. result->ne[1] = ne[1];
  4951. result->ne[2] = ne[2];
  4952. result->ne[3] = ne[3];
  4953. result->nb[0] = nb[0];
  4954. result->nb[1] = nb[1];
  4955. result->nb[2] = nb[2];
  4956. result->nb[3] = nb[3];
  4957. result->op = GGML_OP_PERMUTE;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = a;
  4960. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4961. ggml_set_op_params(result, params, sizeof(params));
  4962. return result;
  4963. }
  4964. // ggml_transpose
  4965. struct ggml_tensor * ggml_transpose(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a) {
  4968. bool is_node = false;
  4969. if (a->grad) {
  4970. is_node = true;
  4971. }
  4972. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4973. ggml_format_name(result, "%s (transposed)", a->name);
  4974. result->ne[0] = a->ne[1];
  4975. result->ne[1] = a->ne[0];
  4976. result->nb[0] = a->nb[1];
  4977. result->nb[1] = a->nb[0];
  4978. result->op = GGML_OP_TRANSPOSE;
  4979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4980. result->src[0] = a;
  4981. return result;
  4982. }
  4983. // ggml_get_rows
  4984. struct ggml_tensor * ggml_get_rows(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. struct ggml_tensor * b) {
  4988. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4989. GGML_ASSERT(b->ne[3] == 1);
  4990. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4991. bool is_node = false;
  4992. if (a->grad || b->grad) {
  4993. is_node = true;
  4994. }
  4995. // TODO: implement non F32 return
  4996. enum ggml_type type = GGML_TYPE_F32;
  4997. if (a->type == GGML_TYPE_I32) {
  4998. type = a->type;
  4999. }
  5000. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5001. result->op = GGML_OP_GET_ROWS;
  5002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5003. result->src[0] = a;
  5004. result->src[1] = b;
  5005. return result;
  5006. }
  5007. // ggml_get_rows_back
  5008. struct ggml_tensor * ggml_get_rows_back(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * a,
  5011. struct ggml_tensor * b,
  5012. struct ggml_tensor * c) {
  5013. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5014. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5015. bool is_node = false;
  5016. if (a->grad || b->grad) {
  5017. is_node = true;
  5018. }
  5019. // TODO: implement non F32 return
  5020. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5021. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5022. result->op = GGML_OP_GET_ROWS_BACK;
  5023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5024. result->src[0] = a;
  5025. result->src[1] = b;
  5026. return result;
  5027. }
  5028. // ggml_diag
  5029. struct ggml_tensor * ggml_diag(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a) {
  5032. GGML_ASSERT(a->ne[1] == 1);
  5033. bool is_node = false;
  5034. if (a->grad) {
  5035. is_node = true;
  5036. }
  5037. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5038. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5039. result->op = GGML_OP_DIAG;
  5040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5041. result->src[0] = a;
  5042. return result;
  5043. }
  5044. // ggml_diag_mask_inf
  5045. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. int n_past,
  5049. bool inplace) {
  5050. bool is_node = false;
  5051. if (a->grad) {
  5052. is_node = true;
  5053. }
  5054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5055. int32_t params[] = { n_past };
  5056. ggml_set_op_params(result, params, sizeof(params));
  5057. result->op = GGML_OP_DIAG_MASK_INF;
  5058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5059. result->src[0] = a;
  5060. return result;
  5061. }
  5062. struct ggml_tensor * ggml_diag_mask_inf(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. int n_past) {
  5066. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5067. }
  5068. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. int n_past) {
  5072. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5073. }
  5074. // ggml_diag_mask_zero
  5075. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int n_past,
  5079. bool inplace) {
  5080. bool is_node = false;
  5081. if (a->grad) {
  5082. is_node = true;
  5083. }
  5084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5085. int32_t params[] = { n_past };
  5086. ggml_set_op_params(result, params, sizeof(params));
  5087. result->op = GGML_OP_DIAG_MASK_ZERO;
  5088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5089. result->src[0] = a;
  5090. return result;
  5091. }
  5092. struct ggml_tensor * ggml_diag_mask_zero(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. int n_past) {
  5096. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5097. }
  5098. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. int n_past) {
  5102. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5103. }
  5104. // ggml_soft_max
  5105. static struct ggml_tensor * ggml_soft_max_impl(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. struct ggml_tensor * mask,
  5109. float scale,
  5110. float max_bias,
  5111. bool inplace) {
  5112. GGML_ASSERT(ggml_is_contiguous(a));
  5113. if (mask) {
  5114. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5115. GGML_ASSERT(ggml_is_contiguous(mask));
  5116. GGML_ASSERT(ggml_is_matrix(mask));
  5117. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5118. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5119. }
  5120. if (max_bias > 0.0f) {
  5121. GGML_ASSERT(mask);
  5122. }
  5123. bool is_node = false;
  5124. if (a->grad) {
  5125. is_node = true;
  5126. }
  5127. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5128. float params[] = { scale, max_bias };
  5129. ggml_set_op_params(result, params, sizeof(params));
  5130. result->op = GGML_OP_SOFT_MAX;
  5131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5132. result->src[0] = a;
  5133. result->src[1] = mask;
  5134. return result;
  5135. }
  5136. struct ggml_tensor * ggml_soft_max(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a) {
  5139. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5140. }
  5141. struct ggml_tensor * ggml_soft_max_inplace(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a) {
  5144. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5145. }
  5146. struct ggml_tensor * ggml_soft_max_ext(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. struct ggml_tensor * mask,
  5150. float scale,
  5151. float max_bias) {
  5152. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5153. }
  5154. // ggml_soft_max_back
  5155. static struct ggml_tensor * ggml_soft_max_back_impl(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b,
  5159. bool inplace) {
  5160. bool is_node = false;
  5161. if (a->grad || b->grad) {
  5162. is_node = true; // TODO : implement backward pass
  5163. }
  5164. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5165. result->op = GGML_OP_SOFT_MAX_BACK;
  5166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5167. result->src[0] = a;
  5168. result->src[1] = b;
  5169. return result;
  5170. }
  5171. struct ggml_tensor * ggml_soft_max_back(
  5172. struct ggml_context * ctx,
  5173. struct ggml_tensor * a,
  5174. struct ggml_tensor * b) {
  5175. return ggml_soft_max_back_impl(ctx, a, b, false);
  5176. }
  5177. struct ggml_tensor * ggml_soft_max_back_inplace(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. struct ggml_tensor * b) {
  5181. return ggml_soft_max_back_impl(ctx, a, b, true);
  5182. }
  5183. // ggml_rope
  5184. static struct ggml_tensor * ggml_rope_impl(
  5185. struct ggml_context * ctx,
  5186. struct ggml_tensor * a,
  5187. struct ggml_tensor * b,
  5188. struct ggml_tensor * c,
  5189. int n_dims,
  5190. int mode,
  5191. int n_ctx,
  5192. int n_orig_ctx,
  5193. float freq_base,
  5194. float freq_scale,
  5195. float ext_factor,
  5196. float attn_factor,
  5197. float beta_fast,
  5198. float beta_slow,
  5199. float xpos_base,
  5200. bool xpos_down,
  5201. bool inplace) {
  5202. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5203. GGML_ASSERT(ggml_is_vector(b));
  5204. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5205. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5206. if (c) {
  5207. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5208. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5209. }
  5210. bool is_node = false;
  5211. if (a->grad) {
  5212. is_node = true;
  5213. }
  5214. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5215. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5216. memcpy(params + 5, &freq_base, sizeof(float));
  5217. memcpy(params + 6, &freq_scale, sizeof(float));
  5218. memcpy(params + 7, &ext_factor, sizeof(float));
  5219. memcpy(params + 8, &attn_factor, sizeof(float));
  5220. memcpy(params + 9, &beta_fast, sizeof(float));
  5221. memcpy(params + 10, &beta_slow, sizeof(float));
  5222. memcpy(params + 11, &xpos_base, sizeof(float));
  5223. memcpy(params + 12, &xpos_down, sizeof(bool));
  5224. ggml_set_op_params(result, params, sizeof(params));
  5225. result->op = GGML_OP_ROPE;
  5226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5227. result->src[0] = a;
  5228. result->src[1] = b;
  5229. result->src[2] = c;
  5230. return result;
  5231. }
  5232. struct ggml_tensor * ggml_rope(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. struct ggml_tensor * b,
  5236. int n_dims,
  5237. int mode,
  5238. int n_ctx) {
  5239. return ggml_rope_impl(
  5240. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5241. );
  5242. }
  5243. struct ggml_tensor * ggml_rope_inplace(
  5244. struct ggml_context * ctx,
  5245. struct ggml_tensor * a,
  5246. struct ggml_tensor * b,
  5247. int n_dims,
  5248. int mode,
  5249. int n_ctx) {
  5250. return ggml_rope_impl(
  5251. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5252. );
  5253. }
  5254. struct ggml_tensor * ggml_rope_ext(
  5255. struct ggml_context * ctx,
  5256. struct ggml_tensor * a,
  5257. struct ggml_tensor * b,
  5258. struct ggml_tensor * c,
  5259. int n_dims,
  5260. int mode,
  5261. int n_ctx,
  5262. int n_orig_ctx,
  5263. float freq_base,
  5264. float freq_scale,
  5265. float ext_factor,
  5266. float attn_factor,
  5267. float beta_fast,
  5268. float beta_slow) {
  5269. return ggml_rope_impl(
  5270. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5271. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5272. );
  5273. }
  5274. struct ggml_tensor * ggml_rope_ext_inplace(
  5275. struct ggml_context * ctx,
  5276. struct ggml_tensor * a,
  5277. struct ggml_tensor * b,
  5278. struct ggml_tensor * c,
  5279. int n_dims,
  5280. int mode,
  5281. int n_ctx,
  5282. int n_orig_ctx,
  5283. float freq_base,
  5284. float freq_scale,
  5285. float ext_factor,
  5286. float attn_factor,
  5287. float beta_fast,
  5288. float beta_slow) {
  5289. return ggml_rope_impl(
  5290. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5291. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5292. );
  5293. }
  5294. struct ggml_tensor * ggml_rope_custom(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a,
  5297. struct ggml_tensor * b,
  5298. int n_dims,
  5299. int mode,
  5300. int n_ctx,
  5301. int n_orig_ctx,
  5302. float freq_base,
  5303. float freq_scale,
  5304. float ext_factor,
  5305. float attn_factor,
  5306. float beta_fast,
  5307. float beta_slow) {
  5308. return ggml_rope_impl(
  5309. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5310. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5311. );
  5312. }
  5313. struct ggml_tensor * ggml_rope_custom_inplace(
  5314. struct ggml_context * ctx,
  5315. struct ggml_tensor * a,
  5316. struct ggml_tensor * b,
  5317. int n_dims,
  5318. int mode,
  5319. int n_ctx,
  5320. int n_orig_ctx,
  5321. float freq_base,
  5322. float freq_scale,
  5323. float ext_factor,
  5324. float attn_factor,
  5325. float beta_fast,
  5326. float beta_slow) {
  5327. return ggml_rope_impl(
  5328. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5329. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5330. );
  5331. }
  5332. struct ggml_tensor * ggml_rope_xpos_inplace(
  5333. struct ggml_context * ctx,
  5334. struct ggml_tensor * a,
  5335. struct ggml_tensor * b,
  5336. int n_dims,
  5337. float base,
  5338. bool down) {
  5339. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5340. }
  5341. // ggml_rope_back
  5342. struct ggml_tensor * ggml_rope_back(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. struct ggml_tensor * b,
  5346. struct ggml_tensor * c,
  5347. int n_dims,
  5348. int mode,
  5349. int n_ctx,
  5350. int n_orig_ctx,
  5351. float freq_base,
  5352. float freq_scale,
  5353. float ext_factor,
  5354. float attn_factor,
  5355. float beta_fast,
  5356. float beta_slow,
  5357. float xpos_base,
  5358. bool xpos_down) {
  5359. GGML_ASSERT(ggml_is_vector(b));
  5360. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5361. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5362. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5363. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5364. bool is_node = false;
  5365. if (a->grad) {
  5366. is_node = false; // TODO: implement backward
  5367. }
  5368. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5369. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5370. memcpy(params + 5, &freq_base, sizeof(float));
  5371. memcpy(params + 6, &freq_scale, sizeof(float));
  5372. memcpy(params + 7, &ext_factor, sizeof(float));
  5373. memcpy(params + 8, &attn_factor, sizeof(float));
  5374. memcpy(params + 9, &beta_fast, sizeof(float));
  5375. memcpy(params + 10, &beta_slow, sizeof(float));
  5376. memcpy(params + 11, &xpos_base, sizeof(float));
  5377. memcpy(params + 12, &xpos_down, sizeof(bool));
  5378. ggml_set_op_params(result, params, sizeof(params));
  5379. result->op = GGML_OP_ROPE_BACK;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src[0] = a;
  5382. result->src[1] = b;
  5383. return result;
  5384. }
  5385. // ggml_clamp
  5386. struct ggml_tensor * ggml_clamp(
  5387. struct ggml_context * ctx,
  5388. struct ggml_tensor * a,
  5389. float min,
  5390. float max) {
  5391. bool is_node = false;
  5392. if (a->grad) {
  5393. GGML_ASSERT(false); // TODO: implement backward
  5394. is_node = true;
  5395. }
  5396. // TODO: when implement backward, fix this:
  5397. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5398. float params[] = { min, max };
  5399. ggml_set_op_params(result, params, sizeof(params));
  5400. result->op = GGML_OP_CLAMP;
  5401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5402. result->src[0] = a;
  5403. return result;
  5404. }
  5405. // ggml_conv_1d
  5406. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5407. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5408. }
  5409. GGML_API struct ggml_tensor * ggml_conv_1d(
  5410. struct ggml_context * ctx,
  5411. struct ggml_tensor * a,
  5412. struct ggml_tensor * b,
  5413. int s0,
  5414. int p0,
  5415. int d0) {
  5416. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5417. struct ggml_tensor * result =
  5418. ggml_mul_mat(ctx,
  5419. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5420. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5421. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5422. return result;
  5423. }
  5424. // ggml_conv_1d_ph
  5425. struct ggml_tensor* ggml_conv_1d_ph(
  5426. struct ggml_context * ctx,
  5427. struct ggml_tensor * a,
  5428. struct ggml_tensor * b,
  5429. int s,
  5430. int d) {
  5431. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5432. }
  5433. // ggml_conv_transpose_1d
  5434. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5435. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5436. }
  5437. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. struct ggml_tensor * b,
  5441. int s0,
  5442. int p0,
  5443. int d0) {
  5444. GGML_ASSERT(ggml_is_matrix(b));
  5445. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5446. GGML_ASSERT(a->ne[3] == 1);
  5447. GGML_ASSERT(p0 == 0);
  5448. GGML_ASSERT(d0 == 1);
  5449. bool is_node = false;
  5450. if (a->grad || b->grad) {
  5451. GGML_ASSERT(false); // TODO: implement backward
  5452. is_node = true;
  5453. }
  5454. const int64_t ne[4] = {
  5455. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5456. a->ne[1], b->ne[2], 1,
  5457. };
  5458. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5459. int32_t params[] = { s0, p0, d0 };
  5460. ggml_set_op_params(result, params, sizeof(params));
  5461. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5463. result->src[0] = a;
  5464. result->src[1] = b;
  5465. return result;
  5466. }
  5467. // ggml_conv_depthwise
  5468. struct ggml_tensor * ggml_conv_depthwise_2d(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. struct ggml_tensor * b,
  5472. int s0,
  5473. int s1,
  5474. int p0,
  5475. int p1,
  5476. int d0,
  5477. int d1) {
  5478. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5479. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5480. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5481. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5482. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5483. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5484. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5485. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5486. return result;
  5487. }
  5488. // ggml_conv_2d
  5489. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5490. // a: [OC,IC, KH, KW]
  5491. // b: [N, IC, IH, IW]
  5492. // result: [N, OH, OW, IC*KH*KW]
  5493. struct ggml_tensor * ggml_im2col(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. struct ggml_tensor * b,
  5497. int s0,
  5498. int s1,
  5499. int p0,
  5500. int p1,
  5501. int d0,
  5502. int d1,
  5503. bool is_2D,
  5504. enum ggml_type dst_type) {
  5505. if(is_2D) {
  5506. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5507. } else {
  5508. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5509. }
  5510. bool is_node = false;
  5511. if (a->grad || b->grad) {
  5512. GGML_ASSERT(false); // TODO: implement backward
  5513. is_node = true;
  5514. }
  5515. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5516. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5517. const int64_t ne[4] = {
  5518. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5519. OW,
  5520. is_2D ? OH : b->ne[2],
  5521. is_2D ? b->ne[3] : 1,
  5522. };
  5523. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5524. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5525. ggml_set_op_params(result, params, sizeof(params));
  5526. result->op = GGML_OP_IM2COL;
  5527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5528. result->src[0] = a;
  5529. result->src[1] = b;
  5530. return result;
  5531. }
  5532. // a: [OC,IC, KH, KW]
  5533. // b: [N, IC, IH, IW]
  5534. // result: [N, OC, OH, OW]
  5535. struct ggml_tensor * ggml_conv_2d(
  5536. struct ggml_context * ctx,
  5537. struct ggml_tensor * a,
  5538. struct ggml_tensor * b,
  5539. int s0,
  5540. int s1,
  5541. int p0,
  5542. int p1,
  5543. int d0,
  5544. int d1) {
  5545. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5546. struct ggml_tensor * result =
  5547. ggml_mul_mat(ctx,
  5548. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5549. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5550. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5551. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5552. return result;
  5553. }
  5554. // ggml_conv_2d_sk_p0
  5555. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b) {
  5559. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5560. }
  5561. // ggml_conv_2d_s1_ph
  5562. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5563. struct ggml_context * ctx,
  5564. struct ggml_tensor * a,
  5565. struct ggml_tensor * b) {
  5566. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5567. }
  5568. // ggml_conv_transpose_2d_p0
  5569. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5570. return (ins - 1) * s - 2 * p + ks;
  5571. }
  5572. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. struct ggml_tensor * b,
  5576. int stride) {
  5577. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5578. bool is_node = false;
  5579. if (a->grad || b->grad) {
  5580. GGML_ASSERT(false); // TODO: implement backward
  5581. is_node = true;
  5582. }
  5583. const int64_t ne[4] = {
  5584. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5585. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5586. a->ne[2], b->ne[3],
  5587. };
  5588. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5589. ggml_set_op_params_i32(result, 0, stride);
  5590. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5591. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5592. result->src[0] = a;
  5593. result->src[1] = b;
  5594. return result;
  5595. }
  5596. // ggml_pool_*
  5597. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5598. return (ins + 2 * p - ks) / s + 1;
  5599. }
  5600. // ggml_pool_1d
  5601. struct ggml_tensor * ggml_pool_1d(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * a,
  5604. enum ggml_op_pool op,
  5605. int k0,
  5606. int s0,
  5607. int p0) {
  5608. bool is_node = false;
  5609. if (a->grad) {
  5610. GGML_ASSERT(false); // TODO: implement backward
  5611. is_node = true;
  5612. }
  5613. const int64_t ne[4] = {
  5614. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5615. a->ne[1],
  5616. a->ne[2],
  5617. a->ne[3],
  5618. };
  5619. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5620. int32_t params[] = { op, k0, s0, p0 };
  5621. ggml_set_op_params(result, params, sizeof(params));
  5622. result->op = GGML_OP_POOL_1D;
  5623. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5624. result->src[0] = a;
  5625. return result;
  5626. }
  5627. // ggml_pool_2d
  5628. struct ggml_tensor * ggml_pool_2d(
  5629. struct ggml_context * ctx,
  5630. struct ggml_tensor * a,
  5631. enum ggml_op_pool op,
  5632. int k0,
  5633. int k1,
  5634. int s0,
  5635. int s1,
  5636. float p0,
  5637. float p1) {
  5638. bool is_node = false;
  5639. if (a->grad) {
  5640. GGML_ASSERT(false); // TODO: implement backward
  5641. is_node = true;
  5642. }
  5643. struct ggml_tensor * result;
  5644. const int64_t ne[3] = {
  5645. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5646. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5647. a->ne[2],
  5648. };
  5649. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5650. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5651. ggml_set_op_params(result, params, sizeof(params));
  5652. result->op = GGML_OP_POOL_2D;
  5653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5654. result->src[0] = a;
  5655. return result;
  5656. }
  5657. // ggml_upscale
  5658. static struct ggml_tensor * ggml_upscale_impl(
  5659. struct ggml_context * ctx,
  5660. struct ggml_tensor * a,
  5661. int ne0,
  5662. int ne1,
  5663. int ne2,
  5664. int ne3) {
  5665. bool is_node = false;
  5666. if (a->grad) {
  5667. GGML_ASSERT(false); // TODO: implement backward
  5668. is_node = true;
  5669. }
  5670. GGML_ASSERT(a->ne[0] <= ne0);
  5671. GGML_ASSERT(a->ne[1] <= ne1);
  5672. GGML_ASSERT(a->ne[2] <= ne2);
  5673. GGML_ASSERT(a->ne[3] <= ne3);
  5674. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5675. ne0,
  5676. ne1,
  5677. ne2,
  5678. ne3
  5679. );
  5680. result->op = GGML_OP_UPSCALE;
  5681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5682. result->src[0] = a;
  5683. return result;
  5684. }
  5685. struct ggml_tensor * ggml_upscale(
  5686. struct ggml_context * ctx,
  5687. struct ggml_tensor * a,
  5688. int scale_factor) {
  5689. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5690. }
  5691. struct ggml_tensor * ggml_upscale_ext(
  5692. struct ggml_context * ctx,
  5693. struct ggml_tensor * a,
  5694. int ne0,
  5695. int ne1,
  5696. int ne2,
  5697. int ne3) {
  5698. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5699. }
  5700. // ggml_pad
  5701. struct ggml_tensor * ggml_pad(
  5702. struct ggml_context * ctx,
  5703. struct ggml_tensor * a,
  5704. int p0, int p1, int p2, int p3) {
  5705. bool is_node = false;
  5706. if (a->grad) {
  5707. GGML_ASSERT(false); // TODO: implement backward
  5708. is_node = true;
  5709. }
  5710. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5711. a->ne[0] + p0,
  5712. a->ne[1] + p1,
  5713. a->ne[2] + p2,
  5714. a->ne[3] + p3);
  5715. result->op = GGML_OP_PAD;
  5716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5717. result->src[0] = a;
  5718. return result;
  5719. }
  5720. // ggml_arange
  5721. struct ggml_tensor * ggml_arange(
  5722. struct ggml_context * ctx,
  5723. float start,
  5724. float stop,
  5725. float step) {
  5726. GGML_ASSERT(stop > start);
  5727. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5728. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5729. result->op = GGML_OP_ARANGE;
  5730. ggml_set_op_params_f32(result, 0, start);
  5731. ggml_set_op_params_f32(result, 1, stop);
  5732. ggml_set_op_params_f32(result, 2, step);
  5733. return result;
  5734. }
  5735. // ggml_timestep_embedding
  5736. struct ggml_tensor * ggml_timestep_embedding(
  5737. struct ggml_context * ctx,
  5738. struct ggml_tensor * timesteps,
  5739. int dim,
  5740. int max_period) {
  5741. bool is_node = false;
  5742. if (timesteps->grad) {
  5743. GGML_ASSERT(false); // TODO: implement backward
  5744. is_node = true;
  5745. }
  5746. int actual_dim = dim;
  5747. if (dim % 2 != 0) {
  5748. actual_dim = dim + 1;
  5749. }
  5750. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5751. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5752. ggml_set_op_params_i32(result, 0, dim);
  5753. ggml_set_op_params_i32(result, 1, max_period);
  5754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5755. result->src[0] = timesteps;
  5756. return result;
  5757. }
  5758. // ggml_argsort
  5759. struct ggml_tensor * ggml_argsort(
  5760. struct ggml_context * ctx,
  5761. struct ggml_tensor * a,
  5762. enum ggml_sort_order order) {
  5763. bool is_node = false;
  5764. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5765. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5766. result->op = GGML_OP_ARGSORT;
  5767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5768. result->src[0] = a;
  5769. return result;
  5770. }
  5771. // ggml_top_k
  5772. struct ggml_tensor * ggml_top_k(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * a,
  5775. int k) {
  5776. GGML_ASSERT(a->ne[0] >= k);
  5777. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5778. result = ggml_view_4d(ctx, result,
  5779. k, result->ne[1], result->ne[2], result->ne[3],
  5780. result->nb[1], result->nb[2], result->nb[3],
  5781. 0);
  5782. return result;
  5783. }
  5784. // ggml_flash_attn_ext
  5785. struct ggml_tensor * ggml_flash_attn_ext(
  5786. struct ggml_context * ctx,
  5787. struct ggml_tensor * q,
  5788. struct ggml_tensor * k,
  5789. struct ggml_tensor * v,
  5790. struct ggml_tensor * mask,
  5791. float scale,
  5792. float max_bias) {
  5793. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5794. // TODO: check if vT can be multiplied by (k*qT)
  5795. if (mask) {
  5796. GGML_ASSERT(ggml_is_contiguous(mask));
  5797. GGML_ASSERT(mask->ne[2] == 1);
  5798. GGML_ASSERT(mask->ne[3] == 1);
  5799. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5800. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5801. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5802. }
  5803. if (max_bias > 0.0f) {
  5804. GGML_ASSERT(mask);
  5805. }
  5806. bool is_node = false;
  5807. if (q->grad || k->grad || v->grad) {
  5808. is_node = true;
  5809. }
  5810. // permute(0, 2, 1, 3)
  5811. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5812. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5813. float params[] = { scale, max_bias };
  5814. ggml_set_op_params(result, params, sizeof(params));
  5815. result->op = GGML_OP_FLASH_ATTN_EXT;
  5816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5817. result->src[0] = q;
  5818. result->src[1] = k;
  5819. result->src[2] = v;
  5820. result->src[3] = mask;
  5821. return result;
  5822. }
  5823. void ggml_flash_attn_ext_set_prec(
  5824. struct ggml_tensor * a,
  5825. enum ggml_prec prec) {
  5826. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5827. const int32_t prec_i32 = (int32_t) prec;
  5828. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5829. }
  5830. // ggml_flash_attn_back
  5831. struct ggml_tensor * ggml_flash_attn_back(
  5832. struct ggml_context * ctx,
  5833. struct ggml_tensor * q,
  5834. struct ggml_tensor * k,
  5835. struct ggml_tensor * v,
  5836. struct ggml_tensor * d,
  5837. bool masked) {
  5838. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5839. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5840. // TODO: check if vT can be multiplied by (k*qT)
  5841. // d shape [D,N,ne2,ne3]
  5842. // q shape [D,N,ne2,ne3]
  5843. // k shape [D,M,kvne2,ne3]
  5844. // v shape [M,D,kvne2,ne3]
  5845. const int64_t D = q->ne[0];
  5846. const int64_t N = q->ne[1];
  5847. const int64_t M = k->ne[1];
  5848. const int64_t ne2 = q->ne[2];
  5849. const int64_t ne3 = q->ne[3];
  5850. const int64_t kvne2 = k->ne[2];
  5851. GGML_ASSERT(k->ne[0] == D);
  5852. GGML_ASSERT(v->ne[0] == M);
  5853. GGML_ASSERT(v->ne[1] == D);
  5854. GGML_ASSERT(d->ne[0] == D);
  5855. GGML_ASSERT(d->ne[1] == N);
  5856. GGML_ASSERT(k->ne[2] == kvne2);
  5857. GGML_ASSERT(k->ne[3] == ne3);
  5858. GGML_ASSERT(v->ne[2] == kvne2);
  5859. GGML_ASSERT(v->ne[3] == ne3);
  5860. GGML_ASSERT(d->ne[2] == ne2);
  5861. GGML_ASSERT(d->ne[3] == ne3);
  5862. GGML_ASSERT(ne2 % kvne2 == 0);
  5863. bool is_node = false;
  5864. if (q->grad || k->grad || v->grad) {
  5865. // when using this operation (in backwards pass) these grads are set.
  5866. // we don't want to create (big) grad of our result, so is_node is false.
  5867. is_node = false;
  5868. }
  5869. // store gradients of q, k and v as continuous tensors concatenated in result.
  5870. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5871. const int64_t elem_q = ggml_nelements(q);
  5872. const int64_t elem_k = ggml_nelements(k);
  5873. const int64_t elem_v = ggml_nelements(v);
  5874. enum ggml_type result_type = GGML_TYPE_F32;
  5875. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5876. const size_t tsize = ggml_type_size(result_type);
  5877. const size_t offs_q = 0;
  5878. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5879. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5880. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5881. const size_t nelements = (end + tsize - 1)/tsize;
  5882. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5883. int32_t masked_i = masked ? 1 : 0;
  5884. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5885. result->op = GGML_OP_FLASH_ATTN_BACK;
  5886. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5887. result->src[0] = q;
  5888. result->src[1] = k;
  5889. result->src[2] = v;
  5890. result->src[3] = d;
  5891. return result;
  5892. }
  5893. // ggml_ssm_conv
  5894. struct ggml_tensor * ggml_ssm_conv(
  5895. struct ggml_context * ctx,
  5896. struct ggml_tensor * s,
  5897. struct ggml_tensor * x,
  5898. struct ggml_tensor * c,
  5899. struct ggml_tensor * sq) {
  5900. GGML_ASSERT(ggml_is_3d(s));
  5901. GGML_ASSERT(ggml_is_matrix(x));
  5902. GGML_ASSERT(ggml_is_matrix(c));
  5903. GGML_ASSERT(ggml_is_matrix(sq));
  5904. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5905. const int64_t d_conv = c->ne[0];
  5906. const int64_t d_inner = c->ne[1];
  5907. const int64_t n_tokens = x->ne[1];
  5908. const int64_t n_kv = s->ne[2];
  5909. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5910. GGML_ASSERT( s->ne[1] == d_inner);
  5911. GGML_ASSERT( x->ne[0] == d_inner);
  5912. GGML_ASSERT(sq->ne[0] == n_kv);
  5913. GGML_ASSERT(sq->ne[1] == n_tokens);
  5914. bool is_node = false;
  5915. if (s->grad || x->grad || c->grad || sq->grad) {
  5916. GGML_ASSERT(false); // TODO: implement
  5917. is_node = true;
  5918. }
  5919. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5920. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5921. result->op = GGML_OP_SSM_CONV;
  5922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5923. result->src[0] = s;
  5924. result->src[1] = x;
  5925. result->src[2] = c;
  5926. result->src[3] = sq;
  5927. return result;
  5928. }
  5929. // ggml_ssm_scan
  5930. struct ggml_tensor * ggml_ssm_scan(
  5931. struct ggml_context * ctx,
  5932. struct ggml_tensor * s,
  5933. struct ggml_tensor * x,
  5934. struct ggml_tensor * dt,
  5935. struct ggml_tensor * A,
  5936. struct ggml_tensor * B,
  5937. struct ggml_tensor * C,
  5938. struct ggml_tensor * sq) {
  5939. GGML_ASSERT(ggml_is_contiguous(s));
  5940. GGML_ASSERT(ggml_is_contiguous(x));
  5941. GGML_ASSERT(ggml_is_contiguous(dt));
  5942. GGML_ASSERT(ggml_is_contiguous(A));
  5943. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5944. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5945. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5946. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5947. {
  5948. const int64_t d_state = s->ne[0];
  5949. const int64_t d_inner = s->ne[1];
  5950. const int64_t n_tokens = x->ne[1];
  5951. GGML_ASSERT(x->ne[0] == d_inner);
  5952. GGML_ASSERT(A->ne[0] == d_state);
  5953. GGML_ASSERT(A->ne[1] == d_inner);
  5954. GGML_ASSERT(B->ne[0] == d_state);
  5955. GGML_ASSERT(B->ne[1] == n_tokens);
  5956. GGML_ASSERT(C->ne[0] == d_state);
  5957. GGML_ASSERT(C->ne[1] == n_tokens);
  5958. }
  5959. bool is_node = false;
  5960. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5961. GGML_ASSERT(false); // TODO: implement
  5962. is_node = true;
  5963. }
  5964. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5965. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5966. result->op = GGML_OP_SSM_SCAN;
  5967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5968. result->src[0] = s;
  5969. result->src[1] = x;
  5970. result->src[2] = dt;
  5971. result->src[3] = A;
  5972. result->src[4] = B;
  5973. result->src[5] = C;
  5974. result->src[6] = sq;
  5975. return result;
  5976. }
  5977. // ggml_win_part
  5978. struct ggml_tensor * ggml_win_part(
  5979. struct ggml_context * ctx,
  5980. struct ggml_tensor * a,
  5981. int w) {
  5982. GGML_ASSERT(a->ne[3] == 1);
  5983. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5984. bool is_node = false;
  5985. if (a->grad) {
  5986. GGML_ASSERT(false); // TODO: implement backward
  5987. is_node = true;
  5988. }
  5989. // padding
  5990. const int px = (w - a->ne[1]%w)%w;
  5991. const int py = (w - a->ne[2]%w)%w;
  5992. const int npx = (px + a->ne[1])/w;
  5993. const int npy = (py + a->ne[2])/w;
  5994. const int np = npx*npy;
  5995. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5996. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5997. int32_t params[] = { npx, npy, w };
  5998. ggml_set_op_params(result, params, sizeof(params));
  5999. result->op = GGML_OP_WIN_PART;
  6000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6001. result->src[0] = a;
  6002. return result;
  6003. }
  6004. // ggml_win_unpart
  6005. struct ggml_tensor * ggml_win_unpart(
  6006. struct ggml_context * ctx,
  6007. struct ggml_tensor * a,
  6008. int w0,
  6009. int h0,
  6010. int w) {
  6011. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6012. bool is_node = false;
  6013. if (a->grad) {
  6014. GGML_ASSERT(false); // TODO: implement backward
  6015. is_node = true;
  6016. }
  6017. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6018. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6019. int32_t params[] = { w };
  6020. ggml_set_op_params(result, params, sizeof(params));
  6021. result->op = GGML_OP_WIN_UNPART;
  6022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6023. result->src[0] = a;
  6024. return result;
  6025. }
  6026. // ggml_get_rel_pos
  6027. struct ggml_tensor * ggml_get_rel_pos(
  6028. struct ggml_context * ctx,
  6029. struct ggml_tensor * a,
  6030. int qh,
  6031. int kh) {
  6032. GGML_ASSERT(qh == kh);
  6033. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6034. bool is_node = false;
  6035. if (a->grad) {
  6036. GGML_ASSERT(false); // TODO: implement backward
  6037. is_node = true;
  6038. }
  6039. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6040. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6041. result->op = GGML_OP_GET_REL_POS;
  6042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6043. result->src[0] = a;
  6044. return result;
  6045. }
  6046. // ggml_add_rel_pos
  6047. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6048. struct ggml_context * ctx,
  6049. struct ggml_tensor * a,
  6050. struct ggml_tensor * pw,
  6051. struct ggml_tensor * ph,
  6052. bool inplace) {
  6053. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6054. GGML_ASSERT(ggml_is_contiguous(a));
  6055. GGML_ASSERT(ggml_is_contiguous(pw));
  6056. GGML_ASSERT(ggml_is_contiguous(ph));
  6057. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6058. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6059. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6060. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6061. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6062. bool is_node = false;
  6063. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6064. is_node = true;
  6065. }
  6066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6067. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6068. result->op = GGML_OP_ADD_REL_POS;
  6069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6070. result->src[0] = a;
  6071. result->src[1] = pw;
  6072. result->src[2] = ph;
  6073. return result;
  6074. }
  6075. struct ggml_tensor * ggml_add_rel_pos(
  6076. struct ggml_context * ctx,
  6077. struct ggml_tensor * a,
  6078. struct ggml_tensor * pw,
  6079. struct ggml_tensor * ph) {
  6080. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6081. }
  6082. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6083. struct ggml_context * ctx,
  6084. struct ggml_tensor * a,
  6085. struct ggml_tensor * pw,
  6086. struct ggml_tensor * ph) {
  6087. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6088. }
  6089. // gmml_unary
  6090. static struct ggml_tensor * ggml_unary_impl(
  6091. struct ggml_context * ctx,
  6092. struct ggml_tensor * a,
  6093. enum ggml_unary_op op,
  6094. bool inplace) {
  6095. bool is_node = false;
  6096. if (!inplace && (a->grad)) {
  6097. is_node = true;
  6098. }
  6099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6100. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6101. result->op = GGML_OP_UNARY;
  6102. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6103. result->src[0] = a;
  6104. return result;
  6105. }
  6106. struct ggml_tensor * ggml_unary(
  6107. struct ggml_context * ctx,
  6108. struct ggml_tensor * a,
  6109. enum ggml_unary_op op) {
  6110. return ggml_unary_impl(ctx, a, op, false);
  6111. }
  6112. struct ggml_tensor * ggml_unary_inplace(
  6113. struct ggml_context * ctx,
  6114. struct ggml_tensor * a,
  6115. enum ggml_unary_op op) {
  6116. return ggml_unary_impl(ctx, a, op, true);
  6117. }
  6118. // ggml_map_unary
  6119. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6120. struct ggml_context * ctx,
  6121. struct ggml_tensor * a,
  6122. const ggml_unary_op_f32_t fun,
  6123. bool inplace) {
  6124. bool is_node = false;
  6125. if (!inplace && a->grad) {
  6126. is_node = true;
  6127. }
  6128. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6129. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6130. result->op = GGML_OP_MAP_UNARY;
  6131. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6132. result->src[0] = a;
  6133. return result;
  6134. }
  6135. struct ggml_tensor * ggml_map_unary_f32(
  6136. struct ggml_context * ctx,
  6137. struct ggml_tensor * a,
  6138. const ggml_unary_op_f32_t fun) {
  6139. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6140. }
  6141. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * a,
  6144. const ggml_unary_op_f32_t fun) {
  6145. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6146. }
  6147. // ggml_map_binary
  6148. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6149. struct ggml_context * ctx,
  6150. struct ggml_tensor * a,
  6151. struct ggml_tensor * b,
  6152. const ggml_binary_op_f32_t fun,
  6153. bool inplace) {
  6154. GGML_ASSERT(ggml_are_same_shape(a, b));
  6155. bool is_node = false;
  6156. if (!inplace && (a->grad || b->grad)) {
  6157. is_node = true;
  6158. }
  6159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6160. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6161. result->op = GGML_OP_MAP_BINARY;
  6162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6163. result->src[0] = a;
  6164. result->src[1] = b;
  6165. return result;
  6166. }
  6167. struct ggml_tensor * ggml_map_binary_f32(
  6168. struct ggml_context * ctx,
  6169. struct ggml_tensor * a,
  6170. struct ggml_tensor * b,
  6171. const ggml_binary_op_f32_t fun) {
  6172. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6173. }
  6174. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6175. struct ggml_context * ctx,
  6176. struct ggml_tensor * a,
  6177. struct ggml_tensor * b,
  6178. const ggml_binary_op_f32_t fun) {
  6179. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6180. }
  6181. // ggml_map_custom1_f32
  6182. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6183. struct ggml_context * ctx,
  6184. struct ggml_tensor * a,
  6185. const ggml_custom1_op_f32_t fun,
  6186. bool inplace) {
  6187. bool is_node = false;
  6188. if (!inplace && a->grad) {
  6189. is_node = true;
  6190. }
  6191. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6192. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6193. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6195. result->src[0] = a;
  6196. return result;
  6197. }
  6198. struct ggml_tensor * ggml_map_custom1_f32(
  6199. struct ggml_context * ctx,
  6200. struct ggml_tensor * a,
  6201. const ggml_custom1_op_f32_t fun) {
  6202. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6203. }
  6204. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6205. struct ggml_context * ctx,
  6206. struct ggml_tensor * a,
  6207. const ggml_custom1_op_f32_t fun) {
  6208. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6209. }
  6210. // ggml_map_custom2_f32
  6211. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6212. struct ggml_context * ctx,
  6213. struct ggml_tensor * a,
  6214. struct ggml_tensor * b,
  6215. const ggml_custom2_op_f32_t fun,
  6216. bool inplace) {
  6217. bool is_node = false;
  6218. if (!inplace && (a->grad || b->grad)) {
  6219. is_node = true;
  6220. }
  6221. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6222. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6223. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6225. result->src[0] = a;
  6226. result->src[1] = b;
  6227. return result;
  6228. }
  6229. struct ggml_tensor * ggml_map_custom2_f32(
  6230. struct ggml_context * ctx,
  6231. struct ggml_tensor * a,
  6232. struct ggml_tensor * b,
  6233. const ggml_custom2_op_f32_t fun) {
  6234. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6235. }
  6236. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6237. struct ggml_context * ctx,
  6238. struct ggml_tensor * a,
  6239. struct ggml_tensor * b,
  6240. const ggml_custom2_op_f32_t fun) {
  6241. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6242. }
  6243. // ggml_map_custom3_f32
  6244. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6245. struct ggml_context * ctx,
  6246. struct ggml_tensor * a,
  6247. struct ggml_tensor * b,
  6248. struct ggml_tensor * c,
  6249. const ggml_custom3_op_f32_t fun,
  6250. bool inplace) {
  6251. bool is_node = false;
  6252. if (!inplace && (a->grad || b->grad || c->grad)) {
  6253. is_node = true;
  6254. }
  6255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6256. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6257. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6259. result->src[0] = a;
  6260. result->src[1] = b;
  6261. result->src[2] = c;
  6262. return result;
  6263. }
  6264. struct ggml_tensor * ggml_map_custom3_f32(
  6265. struct ggml_context * ctx,
  6266. struct ggml_tensor * a,
  6267. struct ggml_tensor * b,
  6268. struct ggml_tensor * c,
  6269. const ggml_custom3_op_f32_t fun) {
  6270. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6271. }
  6272. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6273. struct ggml_context * ctx,
  6274. struct ggml_tensor * a,
  6275. struct ggml_tensor * b,
  6276. struct ggml_tensor * c,
  6277. const ggml_custom3_op_f32_t fun) {
  6278. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6279. }
  6280. // ggml_map_custom1
  6281. struct ggml_map_custom1_op_params {
  6282. ggml_custom1_op_t fun;
  6283. int n_tasks;
  6284. void * userdata;
  6285. };
  6286. static struct ggml_tensor * ggml_map_custom1_impl(
  6287. struct ggml_context * ctx,
  6288. struct ggml_tensor * a,
  6289. const ggml_custom1_op_t fun,
  6290. int n_tasks,
  6291. void * userdata,
  6292. bool inplace) {
  6293. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6294. bool is_node = false;
  6295. if (!inplace && a->grad) {
  6296. is_node = true;
  6297. }
  6298. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6299. struct ggml_map_custom1_op_params params = {
  6300. /*.fun =*/ fun,
  6301. /*.n_tasks =*/ n_tasks,
  6302. /*.userdata =*/ userdata
  6303. };
  6304. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6305. result->op = GGML_OP_MAP_CUSTOM1;
  6306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6307. result->src[0] = a;
  6308. return result;
  6309. }
  6310. struct ggml_tensor * ggml_map_custom1(
  6311. struct ggml_context * ctx,
  6312. struct ggml_tensor * a,
  6313. const ggml_custom1_op_t fun,
  6314. int n_tasks,
  6315. void * userdata) {
  6316. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6317. }
  6318. struct ggml_tensor * ggml_map_custom1_inplace(
  6319. struct ggml_context * ctx,
  6320. struct ggml_tensor * a,
  6321. const ggml_custom1_op_t fun,
  6322. int n_tasks,
  6323. void * userdata) {
  6324. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6325. }
  6326. // ggml_map_custom2
  6327. struct ggml_map_custom2_op_params {
  6328. ggml_custom2_op_t fun;
  6329. int n_tasks;
  6330. void * userdata;
  6331. };
  6332. static struct ggml_tensor * ggml_map_custom2_impl(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. struct ggml_tensor * b,
  6336. const ggml_custom2_op_t fun,
  6337. int n_tasks,
  6338. void * userdata,
  6339. bool inplace) {
  6340. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6341. bool is_node = false;
  6342. if (!inplace && (a->grad || b->grad)) {
  6343. is_node = true;
  6344. }
  6345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6346. struct ggml_map_custom2_op_params params = {
  6347. /*.fun =*/ fun,
  6348. /*.n_tasks =*/ n_tasks,
  6349. /*.userdata =*/ userdata
  6350. };
  6351. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6352. result->op = GGML_OP_MAP_CUSTOM2;
  6353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6354. result->src[0] = a;
  6355. result->src[1] = b;
  6356. return result;
  6357. }
  6358. struct ggml_tensor * ggml_map_custom2(
  6359. struct ggml_context * ctx,
  6360. struct ggml_tensor * a,
  6361. struct ggml_tensor * b,
  6362. const ggml_custom2_op_t fun,
  6363. int n_tasks,
  6364. void * userdata) {
  6365. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6366. }
  6367. struct ggml_tensor * ggml_map_custom2_inplace(
  6368. struct ggml_context * ctx,
  6369. struct ggml_tensor * a,
  6370. struct ggml_tensor * b,
  6371. const ggml_custom2_op_t fun,
  6372. int n_tasks,
  6373. void * userdata) {
  6374. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6375. }
  6376. // ggml_map_custom3
  6377. struct ggml_map_custom3_op_params {
  6378. ggml_custom3_op_t fun;
  6379. int n_tasks;
  6380. void * userdata;
  6381. };
  6382. static struct ggml_tensor * ggml_map_custom3_impl(
  6383. struct ggml_context * ctx,
  6384. struct ggml_tensor * a,
  6385. struct ggml_tensor * b,
  6386. struct ggml_tensor * c,
  6387. const ggml_custom3_op_t fun,
  6388. int n_tasks,
  6389. void * userdata,
  6390. bool inplace) {
  6391. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6392. bool is_node = false;
  6393. if (!inplace && (a->grad || b->grad || c->grad)) {
  6394. is_node = true;
  6395. }
  6396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6397. struct ggml_map_custom3_op_params params = {
  6398. /*.fun =*/ fun,
  6399. /*.n_tasks =*/ n_tasks,
  6400. /*.userdata =*/ userdata
  6401. };
  6402. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6403. result->op = GGML_OP_MAP_CUSTOM3;
  6404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6405. result->src[0] = a;
  6406. result->src[1] = b;
  6407. result->src[2] = c;
  6408. return result;
  6409. }
  6410. struct ggml_tensor * ggml_map_custom3(
  6411. struct ggml_context * ctx,
  6412. struct ggml_tensor * a,
  6413. struct ggml_tensor * b,
  6414. struct ggml_tensor * c,
  6415. const ggml_custom3_op_t fun,
  6416. int n_tasks,
  6417. void * userdata) {
  6418. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6419. }
  6420. struct ggml_tensor * ggml_map_custom3_inplace(
  6421. struct ggml_context * ctx,
  6422. struct ggml_tensor * a,
  6423. struct ggml_tensor * b,
  6424. struct ggml_tensor * c,
  6425. const ggml_custom3_op_t fun,
  6426. int n_tasks,
  6427. void * userdata) {
  6428. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6429. }
  6430. // ggml_cross_entropy_loss
  6431. struct ggml_tensor * ggml_cross_entropy_loss(
  6432. struct ggml_context * ctx,
  6433. struct ggml_tensor * a,
  6434. struct ggml_tensor * b) {
  6435. GGML_ASSERT(ggml_are_same_shape(a, b));
  6436. bool is_node = false;
  6437. if (a->grad || b->grad) {
  6438. is_node = true;
  6439. }
  6440. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6441. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6443. result->src[0] = a;
  6444. result->src[1] = b;
  6445. return result;
  6446. }
  6447. // ggml_cross_entropy_loss_back
  6448. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6449. struct ggml_context * ctx,
  6450. struct ggml_tensor * a,
  6451. struct ggml_tensor * b,
  6452. struct ggml_tensor * c) {
  6453. GGML_ASSERT(ggml_are_same_shape(a, b));
  6454. GGML_ASSERT(ggml_is_scalar(c));
  6455. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6456. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6457. result->grad = NULL;
  6458. result->src[0] = a;
  6459. result->src[1] = b;
  6460. result->src[2] = c;
  6461. return result;
  6462. }
  6463. ////////////////////////////////////////////////////////////////////////////////
  6464. void ggml_set_param(
  6465. struct ggml_context * ctx,
  6466. struct ggml_tensor * tensor) {
  6467. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6468. GGML_ASSERT(tensor->grad == NULL);
  6469. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6470. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6471. }
  6472. // ggml_compute_forward_dup
  6473. static void ggml_compute_forward_dup_same_cont(
  6474. const struct ggml_compute_params * params,
  6475. struct ggml_tensor * dst) {
  6476. const struct ggml_tensor * src0 = dst->src[0];
  6477. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6478. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6479. GGML_ASSERT(src0->type == dst->type);
  6480. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6481. return;
  6482. }
  6483. const size_t nb00 = src0->nb[0];
  6484. const size_t nb0 = dst->nb[0];
  6485. const int ith = params->ith; // thread index
  6486. const int nth = params->nth; // number of threads
  6487. // parallelize by elements
  6488. const int ne = ggml_nelements(dst);
  6489. const int dr = (ne + nth - 1) / nth;
  6490. const int ie0 = dr * ith;
  6491. const int ie1 = MIN(ie0 + dr, ne);
  6492. if (ie0 < ie1) {
  6493. memcpy(
  6494. ((char *) dst->data + ie0*nb0),
  6495. ((char *) src0->data + ie0*nb00),
  6496. (ie1 - ie0) * ggml_type_size(src0->type));
  6497. }
  6498. }
  6499. static void ggml_compute_forward_dup_f16(
  6500. const struct ggml_compute_params * params,
  6501. struct ggml_tensor * dst) {
  6502. const struct ggml_tensor * src0 = dst->src[0];
  6503. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6504. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6505. return;
  6506. }
  6507. GGML_TENSOR_UNARY_OP_LOCALS
  6508. const int ith = params->ith; // thread index
  6509. const int nth = params->nth; // number of threads
  6510. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6511. ggml_compute_forward_dup_same_cont(params, dst);
  6512. return;
  6513. }
  6514. // parallelize by rows
  6515. const int nr = ne01;
  6516. // number of rows per thread
  6517. const int dr = (nr + nth - 1) / nth;
  6518. // row range for this thread
  6519. const int ir0 = dr * ith;
  6520. const int ir1 = MIN(ir0 + dr, nr);
  6521. if (src0->type == dst->type &&
  6522. ne00 == ne0 &&
  6523. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6524. // copy by rows
  6525. const size_t rs = ne00*nb00;
  6526. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6527. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6528. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6529. memcpy(
  6530. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6531. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6532. rs);
  6533. }
  6534. }
  6535. }
  6536. return;
  6537. }
  6538. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6539. if (ggml_is_contiguous(dst)) {
  6540. if (nb00 == sizeof(ggml_fp16_t)) {
  6541. if (dst->type == GGML_TYPE_F16) {
  6542. size_t id = 0;
  6543. const size_t rs = ne00 * nb00;
  6544. char * dst_ptr = (char *) dst->data;
  6545. for (int i03 = 0; i03 < ne03; i03++) {
  6546. for (int i02 = 0; i02 < ne02; i02++) {
  6547. id += rs * ir0;
  6548. for (int i01 = ir0; i01 < ir1; i01++) {
  6549. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6550. memcpy(dst_ptr + id, src0_ptr, rs);
  6551. id += rs;
  6552. }
  6553. id += rs * (ne01 - ir1);
  6554. }
  6555. }
  6556. } else if (dst->type == GGML_TYPE_F32) {
  6557. size_t id = 0;
  6558. float * dst_ptr = (float *) dst->data;
  6559. for (int i03 = 0; i03 < ne03; i03++) {
  6560. for (int i02 = 0; i02 < ne02; i02++) {
  6561. id += ne00 * ir0;
  6562. for (int i01 = ir0; i01 < ir1; i01++) {
  6563. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6564. for (int i00 = 0; i00 < ne00; i00++) {
  6565. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6566. id++;
  6567. }
  6568. }
  6569. id += ne00 * (ne01 - ir1);
  6570. }
  6571. }
  6572. } else if (type_traits[dst->type].from_float) {
  6573. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6574. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6575. size_t id = 0;
  6576. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6577. char * dst_ptr = (char *) dst->data;
  6578. for (int i03 = 0; i03 < ne03; i03++) {
  6579. for (int i02 = 0; i02 < ne02; i02++) {
  6580. id += rs * ir0;
  6581. for (int i01 = ir0; i01 < ir1; i01++) {
  6582. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6583. for (int i00 = 0; i00 < ne00; i00++) {
  6584. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6585. }
  6586. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6587. id += rs;
  6588. }
  6589. id += rs * (ne01 - ir1);
  6590. }
  6591. }
  6592. } else {
  6593. GGML_ASSERT(false); // TODO: implement
  6594. }
  6595. } else {
  6596. //printf("%s: this is not optimal - fix me\n", __func__);
  6597. if (dst->type == GGML_TYPE_F32) {
  6598. size_t id = 0;
  6599. float * dst_ptr = (float *) dst->data;
  6600. for (int i03 = 0; i03 < ne03; i03++) {
  6601. for (int i02 = 0; i02 < ne02; i02++) {
  6602. id += ne00 * ir0;
  6603. for (int i01 = ir0; i01 < ir1; i01++) {
  6604. for (int i00 = 0; i00 < ne00; i00++) {
  6605. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6606. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6607. id++;
  6608. }
  6609. }
  6610. id += ne00 * (ne01 - ir1);
  6611. }
  6612. }
  6613. } else if (dst->type == GGML_TYPE_F16) {
  6614. size_t id = 0;
  6615. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6616. for (int i03 = 0; i03 < ne03; i03++) {
  6617. for (int i02 = 0; i02 < ne02; i02++) {
  6618. id += ne00 * ir0;
  6619. for (int i01 = ir0; i01 < ir1; i01++) {
  6620. for (int i00 = 0; i00 < ne00; i00++) {
  6621. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6622. dst_ptr[id] = *src0_ptr;
  6623. id++;
  6624. }
  6625. }
  6626. id += ne00 * (ne01 - ir1);
  6627. }
  6628. }
  6629. } else {
  6630. GGML_ASSERT(false); // TODO: implement
  6631. }
  6632. }
  6633. return;
  6634. }
  6635. // dst counters
  6636. int64_t i10 = 0;
  6637. int64_t i11 = 0;
  6638. int64_t i12 = 0;
  6639. int64_t i13 = 0;
  6640. if (dst->type == GGML_TYPE_F16) {
  6641. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6642. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6643. i10 += ne00 * ir0;
  6644. while (i10 >= ne0) {
  6645. i10 -= ne0;
  6646. if (++i11 == ne1) {
  6647. i11 = 0;
  6648. if (++i12 == ne2) {
  6649. i12 = 0;
  6650. if (++i13 == ne3) {
  6651. i13 = 0;
  6652. }
  6653. }
  6654. }
  6655. }
  6656. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6657. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6658. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6659. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6660. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6661. if (++i10 == ne00) {
  6662. i10 = 0;
  6663. if (++i11 == ne01) {
  6664. i11 = 0;
  6665. if (++i12 == ne02) {
  6666. i12 = 0;
  6667. if (++i13 == ne03) {
  6668. i13 = 0;
  6669. }
  6670. }
  6671. }
  6672. }
  6673. }
  6674. }
  6675. i10 += ne00 * (ne01 - ir1);
  6676. while (i10 >= ne0) {
  6677. i10 -= ne0;
  6678. if (++i11 == ne1) {
  6679. i11 = 0;
  6680. if (++i12 == ne2) {
  6681. i12 = 0;
  6682. if (++i13 == ne3) {
  6683. i13 = 0;
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. }
  6690. } else if (dst->type == GGML_TYPE_F32) {
  6691. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6692. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6693. i10 += ne00 * ir0;
  6694. while (i10 >= ne0) {
  6695. i10 -= ne0;
  6696. if (++i11 == ne1) {
  6697. i11 = 0;
  6698. if (++i12 == ne2) {
  6699. i12 = 0;
  6700. if (++i13 == ne3) {
  6701. i13 = 0;
  6702. }
  6703. }
  6704. }
  6705. }
  6706. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6707. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6708. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6709. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6710. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6711. if (++i10 == ne0) {
  6712. i10 = 0;
  6713. if (++i11 == ne1) {
  6714. i11 = 0;
  6715. if (++i12 == ne2) {
  6716. i12 = 0;
  6717. if (++i13 == ne3) {
  6718. i13 = 0;
  6719. }
  6720. }
  6721. }
  6722. }
  6723. }
  6724. }
  6725. i10 += ne00 * (ne01 - ir1);
  6726. while (i10 >= ne0) {
  6727. i10 -= ne0;
  6728. if (++i11 == ne1) {
  6729. i11 = 0;
  6730. if (++i12 == ne2) {
  6731. i12 = 0;
  6732. if (++i13 == ne3) {
  6733. i13 = 0;
  6734. }
  6735. }
  6736. }
  6737. }
  6738. }
  6739. }
  6740. } else {
  6741. GGML_ASSERT(false); // TODO: implement
  6742. }
  6743. }
  6744. static void ggml_compute_forward_dup_bf16(
  6745. const struct ggml_compute_params * params,
  6746. struct ggml_tensor * dst) {
  6747. const struct ggml_tensor * src0 = dst->src[0];
  6748. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6749. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6750. return;
  6751. }
  6752. GGML_TENSOR_UNARY_OP_LOCALS
  6753. const int ith = params->ith; // thread index
  6754. const int nth = params->nth; // number of threads
  6755. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6756. ggml_compute_forward_dup_same_cont(params, dst);
  6757. return;
  6758. }
  6759. // parallelize by rows
  6760. const int nr = ne01;
  6761. // number of rows per thread
  6762. const int dr = (nr + nth - 1) / nth;
  6763. // row range for this thread
  6764. const int ir0 = dr * ith;
  6765. const int ir1 = MIN(ir0 + dr, nr);
  6766. if (src0->type == dst->type &&
  6767. ne00 == ne0 &&
  6768. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6769. // copy by rows
  6770. const size_t rs = ne00*nb00;
  6771. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6772. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6773. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6774. memcpy(
  6775. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6776. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6777. rs);
  6778. }
  6779. }
  6780. }
  6781. return;
  6782. }
  6783. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6784. if (ggml_is_contiguous(dst)) {
  6785. if (nb00 == sizeof(ggml_bf16_t)) {
  6786. if (dst->type == GGML_TYPE_BF16) {
  6787. size_t id = 0;
  6788. const size_t rs = ne00 * nb00;
  6789. char * dst_ptr = (char *) dst->data;
  6790. for (int i03 = 0; i03 < ne03; i03++) {
  6791. for (int i02 = 0; i02 < ne02; i02++) {
  6792. id += rs * ir0;
  6793. for (int i01 = ir0; i01 < ir1; i01++) {
  6794. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6795. memcpy(dst_ptr + id, src0_ptr, rs);
  6796. id += rs;
  6797. }
  6798. id += rs * (ne01 - ir1);
  6799. }
  6800. }
  6801. } else if (dst->type == GGML_TYPE_F16) {
  6802. size_t id = 0;
  6803. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6804. for (int i03 = 0; i03 < ne03; i03++) {
  6805. for (int i02 = 0; i02 < ne02; i02++) {
  6806. id += ne00 * ir0;
  6807. for (int i01 = ir0; i01 < ir1; i01++) {
  6808. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6809. for (int i00 = 0; i00 < ne00; i00++) {
  6810. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6811. id++;
  6812. }
  6813. }
  6814. id += ne00 * (ne01 - ir1);
  6815. }
  6816. }
  6817. } else if (dst->type == GGML_TYPE_F32) {
  6818. size_t id = 0;
  6819. float * dst_ptr = (float *) dst->data;
  6820. for (int i03 = 0; i03 < ne03; i03++) {
  6821. for (int i02 = 0; i02 < ne02; i02++) {
  6822. id += ne00 * ir0;
  6823. for (int i01 = ir0; i01 < ir1; i01++) {
  6824. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6825. for (int i00 = 0; i00 < ne00; i00++) {
  6826. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6827. id++;
  6828. }
  6829. }
  6830. id += ne00 * (ne01 - ir1);
  6831. }
  6832. }
  6833. } else if (type_traits[dst->type].from_float) {
  6834. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6835. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6836. size_t id = 0;
  6837. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6838. char * dst_ptr = (char *) dst->data;
  6839. for (int i03 = 0; i03 < ne03; i03++) {
  6840. for (int i02 = 0; i02 < ne02; i02++) {
  6841. id += rs * ir0;
  6842. for (int i01 = ir0; i01 < ir1; i01++) {
  6843. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6844. for (int i00 = 0; i00 < ne00; i00++) {
  6845. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6846. }
  6847. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6848. id += rs;
  6849. }
  6850. id += rs * (ne01 - ir1);
  6851. }
  6852. }
  6853. } else {
  6854. GGML_ASSERT(false); // TODO: implement
  6855. }
  6856. } else {
  6857. //printf("%s: this is not optimal - fix me\n", __func__);
  6858. if (dst->type == GGML_TYPE_F32) {
  6859. size_t id = 0;
  6860. float * dst_ptr = (float *) dst->data;
  6861. for (int i03 = 0; i03 < ne03; i03++) {
  6862. for (int i02 = 0; i02 < ne02; i02++) {
  6863. id += ne00 * ir0;
  6864. for (int i01 = ir0; i01 < ir1; i01++) {
  6865. for (int i00 = 0; i00 < ne00; i00++) {
  6866. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6867. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6868. id++;
  6869. }
  6870. }
  6871. id += ne00 * (ne01 - ir1);
  6872. }
  6873. }
  6874. } else if (dst->type == GGML_TYPE_BF16) {
  6875. size_t id = 0;
  6876. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6877. for (int i03 = 0; i03 < ne03; i03++) {
  6878. for (int i02 = 0; i02 < ne02; i02++) {
  6879. id += ne00 * ir0;
  6880. for (int i01 = ir0; i01 < ir1; i01++) {
  6881. for (int i00 = 0; i00 < ne00; i00++) {
  6882. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6883. dst_ptr[id] = *src0_ptr;
  6884. id++;
  6885. }
  6886. }
  6887. id += ne00 * (ne01 - ir1);
  6888. }
  6889. }
  6890. } else if (dst->type == GGML_TYPE_F16) {
  6891. size_t id = 0;
  6892. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6893. for (int i03 = 0; i03 < ne03; i03++) {
  6894. for (int i02 = 0; i02 < ne02; i02++) {
  6895. id += ne00 * ir0;
  6896. for (int i01 = ir0; i01 < ir1; i01++) {
  6897. for (int i00 = 0; i00 < ne00; i00++) {
  6898. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6899. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6900. id++;
  6901. }
  6902. }
  6903. id += ne00 * (ne01 - ir1);
  6904. }
  6905. }
  6906. } else {
  6907. GGML_ASSERT(false); // TODO: implement
  6908. }
  6909. }
  6910. return;
  6911. }
  6912. // dst counters
  6913. int64_t i10 = 0;
  6914. int64_t i11 = 0;
  6915. int64_t i12 = 0;
  6916. int64_t i13 = 0;
  6917. if (dst->type == GGML_TYPE_BF16) {
  6918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6920. i10 += ne00 * ir0;
  6921. while (i10 >= ne0) {
  6922. i10 -= ne0;
  6923. if (++i11 == ne1) {
  6924. i11 = 0;
  6925. if (++i12 == ne2) {
  6926. i12 = 0;
  6927. if (++i13 == ne3) {
  6928. i13 = 0;
  6929. }
  6930. }
  6931. }
  6932. }
  6933. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6934. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6935. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6936. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6937. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6938. if (++i10 == ne00) {
  6939. i10 = 0;
  6940. if (++i11 == ne01) {
  6941. i11 = 0;
  6942. if (++i12 == ne02) {
  6943. i12 = 0;
  6944. if (++i13 == ne03) {
  6945. i13 = 0;
  6946. }
  6947. }
  6948. }
  6949. }
  6950. }
  6951. }
  6952. i10 += ne00 * (ne01 - ir1);
  6953. while (i10 >= ne0) {
  6954. i10 -= ne0;
  6955. if (++i11 == ne1) {
  6956. i11 = 0;
  6957. if (++i12 == ne2) {
  6958. i12 = 0;
  6959. if (++i13 == ne3) {
  6960. i13 = 0;
  6961. }
  6962. }
  6963. }
  6964. }
  6965. }
  6966. }
  6967. } else if (dst->type == GGML_TYPE_F16) {
  6968. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6969. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6970. i10 += ne00 * ir0;
  6971. while (i10 >= ne0) {
  6972. i10 -= ne0;
  6973. if (++i11 == ne1) {
  6974. i11 = 0;
  6975. if (++i12 == ne2) {
  6976. i12 = 0;
  6977. if (++i13 == ne3) {
  6978. i13 = 0;
  6979. }
  6980. }
  6981. }
  6982. }
  6983. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6985. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6986. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6987. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6988. if (++i10 == ne0) {
  6989. i10 = 0;
  6990. if (++i11 == ne1) {
  6991. i11 = 0;
  6992. if (++i12 == ne2) {
  6993. i12 = 0;
  6994. if (++i13 == ne3) {
  6995. i13 = 0;
  6996. }
  6997. }
  6998. }
  6999. }
  7000. }
  7001. }
  7002. i10 += ne00 * (ne01 - ir1);
  7003. while (i10 >= ne0) {
  7004. i10 -= ne0;
  7005. if (++i11 == ne1) {
  7006. i11 = 0;
  7007. if (++i12 == ne2) {
  7008. i12 = 0;
  7009. if (++i13 == ne3) {
  7010. i13 = 0;
  7011. }
  7012. }
  7013. }
  7014. }
  7015. }
  7016. }
  7017. } else if (dst->type == GGML_TYPE_F32) {
  7018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7020. i10 += ne00 * ir0;
  7021. while (i10 >= ne0) {
  7022. i10 -= ne0;
  7023. if (++i11 == ne1) {
  7024. i11 = 0;
  7025. if (++i12 == ne2) {
  7026. i12 = 0;
  7027. if (++i13 == ne3) {
  7028. i13 = 0;
  7029. }
  7030. }
  7031. }
  7032. }
  7033. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7035. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7036. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7037. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7038. if (++i10 == ne0) {
  7039. i10 = 0;
  7040. if (++i11 == ne1) {
  7041. i11 = 0;
  7042. if (++i12 == ne2) {
  7043. i12 = 0;
  7044. if (++i13 == ne3) {
  7045. i13 = 0;
  7046. }
  7047. }
  7048. }
  7049. }
  7050. }
  7051. }
  7052. i10 += ne00 * (ne01 - ir1);
  7053. while (i10 >= ne0) {
  7054. i10 -= ne0;
  7055. if (++i11 == ne1) {
  7056. i11 = 0;
  7057. if (++i12 == ne2) {
  7058. i12 = 0;
  7059. if (++i13 == ne3) {
  7060. i13 = 0;
  7061. }
  7062. }
  7063. }
  7064. }
  7065. }
  7066. }
  7067. } else {
  7068. GGML_ASSERT(false); // TODO: implement
  7069. }
  7070. }
  7071. static void ggml_compute_forward_dup_f32(
  7072. const struct ggml_compute_params * params,
  7073. struct ggml_tensor * dst) {
  7074. const struct ggml_tensor * src0 = dst->src[0];
  7075. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7076. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7077. return;
  7078. }
  7079. GGML_TENSOR_UNARY_OP_LOCALS
  7080. const int ith = params->ith; // thread index
  7081. const int nth = params->nth; // number of threads
  7082. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7083. ggml_compute_forward_dup_same_cont(params, dst);
  7084. return;
  7085. }
  7086. // parallelize by rows
  7087. const int nr = ne01;
  7088. // number of rows per thread
  7089. const int dr = (nr + nth - 1) / nth;
  7090. // row range for this thread
  7091. const int ir0 = dr * ith;
  7092. const int ir1 = MIN(ir0 + dr, nr);
  7093. if (src0->type == dst->type &&
  7094. ne00 == ne0 &&
  7095. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7096. // copy by rows
  7097. const size_t rs = ne00*nb00;
  7098. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7099. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7100. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7101. memcpy(
  7102. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7103. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7104. rs);
  7105. }
  7106. }
  7107. }
  7108. return;
  7109. }
  7110. if (ggml_is_contiguous(dst)) {
  7111. // TODO: simplify
  7112. if (nb00 == sizeof(float)) {
  7113. if (dst->type == GGML_TYPE_F32) {
  7114. size_t id = 0;
  7115. const size_t rs = ne00 * nb00;
  7116. char * dst_ptr = (char *) dst->data;
  7117. for (int i03 = 0; i03 < ne03; i03++) {
  7118. for (int i02 = 0; i02 < ne02; i02++) {
  7119. id += rs * ir0;
  7120. for (int i01 = ir0; i01 < ir1; i01++) {
  7121. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7122. memcpy(dst_ptr + id, src0_ptr, rs);
  7123. id += rs;
  7124. }
  7125. id += rs * (ne01 - ir1);
  7126. }
  7127. }
  7128. } else if (type_traits[dst->type].from_float) {
  7129. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7130. size_t id = 0;
  7131. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7132. char * dst_ptr = (char *) dst->data;
  7133. for (int i03 = 0; i03 < ne03; i03++) {
  7134. for (int i02 = 0; i02 < ne02; i02++) {
  7135. id += rs * ir0;
  7136. for (int i01 = ir0; i01 < ir1; i01++) {
  7137. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7138. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7139. id += rs;
  7140. }
  7141. id += rs * (ne01 - ir1);
  7142. }
  7143. }
  7144. } else {
  7145. GGML_ASSERT(false); // TODO: implement
  7146. }
  7147. } else {
  7148. //printf("%s: this is not optimal - fix me\n", __func__);
  7149. if (dst->type == GGML_TYPE_F32) {
  7150. size_t id = 0;
  7151. float * dst_ptr = (float *) dst->data;
  7152. for (int i03 = 0; i03 < ne03; i03++) {
  7153. for (int i02 = 0; i02 < ne02; i02++) {
  7154. id += ne00 * ir0;
  7155. for (int i01 = ir0; i01 < ir1; i01++) {
  7156. for (int i00 = 0; i00 < ne00; i00++) {
  7157. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7158. dst_ptr[id] = *src0_ptr;
  7159. id++;
  7160. }
  7161. }
  7162. id += ne00 * (ne01 - ir1);
  7163. }
  7164. }
  7165. } else if (dst->type == GGML_TYPE_F16) {
  7166. size_t id = 0;
  7167. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7168. for (int i03 = 0; i03 < ne03; i03++) {
  7169. for (int i02 = 0; i02 < ne02; i02++) {
  7170. id += ne00 * ir0;
  7171. for (int i01 = ir0; i01 < ir1; i01++) {
  7172. for (int i00 = 0; i00 < ne00; i00++) {
  7173. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7174. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7175. id++;
  7176. }
  7177. }
  7178. id += ne00 * (ne01 - ir1);
  7179. }
  7180. }
  7181. } else if (dst->type == GGML_TYPE_BF16) {
  7182. size_t id = 0;
  7183. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7184. for (int i03 = 0; i03 < ne03; i03++) {
  7185. for (int i02 = 0; i02 < ne02; i02++) {
  7186. id += ne00 * ir0;
  7187. for (int i01 = ir0; i01 < ir1; i01++) {
  7188. for (int i00 = 0; i00 < ne00; i00++) {
  7189. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7190. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7191. id++;
  7192. }
  7193. }
  7194. id += ne00 * (ne01 - ir1);
  7195. }
  7196. }
  7197. } else {
  7198. GGML_ASSERT(false); // TODO: implement
  7199. }
  7200. }
  7201. return;
  7202. }
  7203. // dst counters
  7204. int64_t i10 = 0;
  7205. int64_t i11 = 0;
  7206. int64_t i12 = 0;
  7207. int64_t i13 = 0;
  7208. if (dst->type == GGML_TYPE_F32) {
  7209. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7210. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7211. i10 += ne00 * ir0;
  7212. while (i10 >= ne0) {
  7213. i10 -= ne0;
  7214. if (++i11 == ne1) {
  7215. i11 = 0;
  7216. if (++i12 == ne2) {
  7217. i12 = 0;
  7218. if (++i13 == ne3) {
  7219. i13 = 0;
  7220. }
  7221. }
  7222. }
  7223. }
  7224. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7225. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7226. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7227. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7228. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7229. if (++i10 == ne0) {
  7230. i10 = 0;
  7231. if (++i11 == ne1) {
  7232. i11 = 0;
  7233. if (++i12 == ne2) {
  7234. i12 = 0;
  7235. if (++i13 == ne3) {
  7236. i13 = 0;
  7237. }
  7238. }
  7239. }
  7240. }
  7241. }
  7242. }
  7243. i10 += ne00 * (ne01 - ir1);
  7244. while (i10 >= ne0) {
  7245. i10 -= ne0;
  7246. if (++i11 == ne1) {
  7247. i11 = 0;
  7248. if (++i12 == ne2) {
  7249. i12 = 0;
  7250. if (++i13 == ne3) {
  7251. i13 = 0;
  7252. }
  7253. }
  7254. }
  7255. }
  7256. }
  7257. }
  7258. } else if (dst->type == GGML_TYPE_F16) {
  7259. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7260. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7261. i10 += ne00 * ir0;
  7262. while (i10 >= ne0) {
  7263. i10 -= ne0;
  7264. if (++i11 == ne1) {
  7265. i11 = 0;
  7266. if (++i12 == ne2) {
  7267. i12 = 0;
  7268. if (++i13 == ne3) {
  7269. i13 = 0;
  7270. }
  7271. }
  7272. }
  7273. }
  7274. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7275. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7276. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7277. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7278. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7279. if (++i10 == ne0) {
  7280. i10 = 0;
  7281. if (++i11 == ne1) {
  7282. i11 = 0;
  7283. if (++i12 == ne2) {
  7284. i12 = 0;
  7285. if (++i13 == ne3) {
  7286. i13 = 0;
  7287. }
  7288. }
  7289. }
  7290. }
  7291. }
  7292. }
  7293. i10 += ne00 * (ne01 - ir1);
  7294. while (i10 >= ne0) {
  7295. i10 -= ne0;
  7296. if (++i11 == ne1) {
  7297. i11 = 0;
  7298. if (++i12 == ne2) {
  7299. i12 = 0;
  7300. if (++i13 == ne3) {
  7301. i13 = 0;
  7302. }
  7303. }
  7304. }
  7305. }
  7306. }
  7307. }
  7308. } else if (dst->type == GGML_TYPE_BF16) {
  7309. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7310. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7311. i10 += ne00 * ir0;
  7312. while (i10 >= ne0) {
  7313. i10 -= ne0;
  7314. if (++i11 == ne1) {
  7315. i11 = 0;
  7316. if (++i12 == ne2) {
  7317. i12 = 0;
  7318. if (++i13 == ne3) {
  7319. i13 = 0;
  7320. }
  7321. }
  7322. }
  7323. }
  7324. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7326. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7327. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7328. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7329. if (++i10 == ne0) {
  7330. i10 = 0;
  7331. if (++i11 == ne1) {
  7332. i11 = 0;
  7333. if (++i12 == ne2) {
  7334. i12 = 0;
  7335. if (++i13 == ne3) {
  7336. i13 = 0;
  7337. }
  7338. }
  7339. }
  7340. }
  7341. }
  7342. }
  7343. i10 += ne00 * (ne01 - ir1);
  7344. while (i10 >= ne0) {
  7345. i10 -= ne0;
  7346. if (++i11 == ne1) {
  7347. i11 = 0;
  7348. if (++i12 == ne2) {
  7349. i12 = 0;
  7350. if (++i13 == ne3) {
  7351. i13 = 0;
  7352. }
  7353. }
  7354. }
  7355. }
  7356. }
  7357. }
  7358. } else {
  7359. GGML_ASSERT(false); // TODO: implement
  7360. }
  7361. }
  7362. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7363. static void ggml_compute_forward_dup_bytes(
  7364. const struct ggml_compute_params * params,
  7365. struct ggml_tensor * dst) {
  7366. const struct ggml_tensor * src0 = dst->src[0];
  7367. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7368. GGML_ASSERT(src0->type == dst->type);
  7369. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7370. return;
  7371. }
  7372. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7373. ggml_compute_forward_dup_same_cont(params, dst);
  7374. return;
  7375. }
  7376. GGML_TENSOR_UNARY_OP_LOCALS;
  7377. const size_t type_size = ggml_type_size(src0->type);
  7378. const int ith = params->ith; // thread index
  7379. const int nth = params->nth; // number of threads
  7380. // parallelize by rows
  7381. const int nr = ne01;
  7382. // number of rows per thread
  7383. const int dr = (nr + nth - 1) / nth;
  7384. // row range for this thread
  7385. const int ir0 = dr * ith;
  7386. const int ir1 = MIN(ir0 + dr, nr);
  7387. if (src0->type == dst->type &&
  7388. ne00 == ne0 &&
  7389. nb00 == type_size && nb0 == type_size) {
  7390. // copy by rows
  7391. const size_t rs = ne00 * type_size;
  7392. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7393. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7394. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7395. memcpy(
  7396. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7397. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7398. rs);
  7399. }
  7400. }
  7401. }
  7402. return;
  7403. }
  7404. if (ggml_is_contiguous(dst)) {
  7405. size_t id = 0;
  7406. char * dst_ptr = (char *) dst->data;
  7407. const size_t rs = ne00 * type_size;
  7408. if (nb00 == type_size) {
  7409. // src0 is contigous on first dimension, copy by rows
  7410. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7411. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7412. id += rs * ir0;
  7413. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7414. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7415. memcpy(dst_ptr + id, src0_ptr, rs);
  7416. id += rs;
  7417. }
  7418. id += rs * (ne01 - ir1);
  7419. }
  7420. }
  7421. } else {
  7422. //printf("%s: this is not optimal - fix me\n", __func__);
  7423. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7424. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7425. id += rs * ir0;
  7426. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7427. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7428. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7429. memcpy(dst_ptr + id, src0_ptr, type_size);
  7430. id += type_size;
  7431. }
  7432. }
  7433. id += rs * (ne01 - ir1);
  7434. }
  7435. }
  7436. }
  7437. return;
  7438. }
  7439. // dst counters
  7440. int64_t i10 = 0;
  7441. int64_t i11 = 0;
  7442. int64_t i12 = 0;
  7443. int64_t i13 = 0;
  7444. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7445. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7446. i10 += ne00 * ir0;
  7447. while (i10 >= ne0) {
  7448. i10 -= ne0;
  7449. if (++i11 == ne1) {
  7450. i11 = 0;
  7451. if (++i12 == ne2) {
  7452. i12 = 0;
  7453. if (++i13 == ne3) {
  7454. i13 = 0;
  7455. }
  7456. }
  7457. }
  7458. }
  7459. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7460. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7461. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7462. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7463. memcpy(dst_ptr, src0_ptr, type_size);
  7464. if (++i10 == ne0) {
  7465. i10 = 0;
  7466. if (++i11 == ne1) {
  7467. i11 = 0;
  7468. if (++i12 == ne2) {
  7469. i12 = 0;
  7470. if (++i13 == ne3) {
  7471. i13 = 0;
  7472. }
  7473. }
  7474. }
  7475. }
  7476. }
  7477. }
  7478. i10 += ne00 * (ne01 - ir1);
  7479. while (i10 >= ne0) {
  7480. i10 -= ne0;
  7481. if (++i11 == ne1) {
  7482. i11 = 0;
  7483. if (++i12 == ne2) {
  7484. i12 = 0;
  7485. if (++i13 == ne3) {
  7486. i13 = 0;
  7487. }
  7488. }
  7489. }
  7490. }
  7491. }
  7492. }
  7493. }
  7494. static void ggml_compute_forward_dup(
  7495. const struct ggml_compute_params * params,
  7496. struct ggml_tensor * dst) {
  7497. const struct ggml_tensor * src0 = dst->src[0];
  7498. if (src0->type == dst->type) {
  7499. ggml_compute_forward_dup_bytes(params, dst);
  7500. return;
  7501. }
  7502. switch (src0->type) {
  7503. case GGML_TYPE_F16:
  7504. {
  7505. ggml_compute_forward_dup_f16(params, dst);
  7506. } break;
  7507. case GGML_TYPE_BF16:
  7508. {
  7509. ggml_compute_forward_dup_bf16(params, dst);
  7510. } break;
  7511. case GGML_TYPE_F32:
  7512. {
  7513. ggml_compute_forward_dup_f32(params, dst);
  7514. } break;
  7515. default:
  7516. {
  7517. GGML_ASSERT(false);
  7518. } break;
  7519. }
  7520. }
  7521. // ggml_compute_forward_add
  7522. static void ggml_compute_forward_add_f32(
  7523. const struct ggml_compute_params * params,
  7524. struct ggml_tensor * dst) {
  7525. const struct ggml_tensor * src0 = dst->src[0];
  7526. const struct ggml_tensor * src1 = dst->src[1];
  7527. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7528. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7529. return;
  7530. }
  7531. const int ith = params->ith;
  7532. const int nth = params->nth;
  7533. #ifdef GGML_USE_CLBLAST
  7534. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7535. // TODO: OpenCL kernel support full broadcast
  7536. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7537. if (ith == 0) {
  7538. ggml_cl_add(src0, src1, dst);
  7539. }
  7540. return;
  7541. }
  7542. #endif
  7543. const int nr = ggml_nrows(src0);
  7544. GGML_TENSOR_BINARY_OP_LOCALS
  7545. GGML_ASSERT( nb0 == sizeof(float));
  7546. GGML_ASSERT(nb00 == sizeof(float));
  7547. // rows per thread
  7548. const int dr = (nr + nth - 1)/nth;
  7549. // row range for this thread
  7550. const int ir0 = dr*ith;
  7551. const int ir1 = MIN(ir0 + dr, nr);
  7552. if (nb10 == sizeof(float)) {
  7553. for (int ir = ir0; ir < ir1; ++ir) {
  7554. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7555. const int64_t i03 = ir/(ne02*ne01);
  7556. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7557. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7558. const int64_t i13 = i03 % ne13;
  7559. const int64_t i12 = i02 % ne12;
  7560. const int64_t i11 = i01 % ne11;
  7561. const int64_t nr0 = ne00 / ne10;
  7562. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7563. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7564. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7565. for (int64_t r = 0; r < nr0; ++r) {
  7566. #ifdef GGML_USE_ACCELERATE
  7567. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7568. #else
  7569. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7570. #endif
  7571. }
  7572. }
  7573. } else {
  7574. // src1 is not contiguous
  7575. for (int ir = ir0; ir < ir1; ++ir) {
  7576. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7577. const int64_t i03 = ir/(ne02*ne01);
  7578. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7579. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7580. const int64_t i13 = i03 % ne13;
  7581. const int64_t i12 = i02 % ne12;
  7582. const int64_t i11 = i01 % ne11;
  7583. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7584. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7585. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7586. const int64_t i10 = i0 % ne10;
  7587. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7588. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7589. }
  7590. }
  7591. }
  7592. }
  7593. static void ggml_compute_forward_add_f16_f32(
  7594. const struct ggml_compute_params * params,
  7595. struct ggml_tensor * dst) {
  7596. const struct ggml_tensor * src0 = dst->src[0];
  7597. const struct ggml_tensor * src1 = dst->src[1];
  7598. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7599. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7600. return;
  7601. }
  7602. const int ith = params->ith;
  7603. const int nth = params->nth;
  7604. const int nr = ggml_nrows(src0);
  7605. GGML_TENSOR_BINARY_OP_LOCALS
  7606. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7607. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7608. if (dst->type == GGML_TYPE_F32) {
  7609. GGML_ASSERT( nb0 == sizeof(float));
  7610. }
  7611. else {
  7612. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7613. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7614. }
  7615. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7616. // rows per thread
  7617. const int dr = (nr + nth - 1)/nth;
  7618. // row range for this thread
  7619. const int ir0 = dr*ith;
  7620. const int ir1 = MIN(ir0 + dr, nr);
  7621. if (nb10 == sizeof(float)) {
  7622. if (dst->type == GGML_TYPE_F16) {
  7623. for (int ir = ir0; ir < ir1; ++ir) {
  7624. // src0, src1 and dst are same shape => same indices
  7625. const int i3 = ir/(ne2*ne1);
  7626. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7627. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7628. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7629. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7630. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7631. for (int i = 0; i < ne0; i++) {
  7632. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7633. }
  7634. }
  7635. } else {
  7636. for (int ir = ir0; ir < ir1; ++ir) {
  7637. // src0, src1 and dst are same shape => same indices
  7638. const int i3 = ir/(ne2*ne1);
  7639. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7640. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7641. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7642. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7643. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7644. for (int i = 0; i < ne0; i++) {
  7645. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7646. }
  7647. }
  7648. }
  7649. }
  7650. else {
  7651. // src1 is not contiguous
  7652. GGML_ASSERT(false);
  7653. }
  7654. }
  7655. static void ggml_compute_forward_add_bf16_f32(
  7656. const struct ggml_compute_params * params,
  7657. struct ggml_tensor * dst) {
  7658. const struct ggml_tensor * src0 = dst->src[0];
  7659. const struct ggml_tensor * src1 = dst->src[1];
  7660. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7661. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7662. return;
  7663. }
  7664. const int ith = params->ith;
  7665. const int nth = params->nth;
  7666. const int nr = ggml_nrows(src0);
  7667. GGML_TENSOR_BINARY_OP_LOCALS
  7668. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7669. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7670. if (dst->type == GGML_TYPE_F32) {
  7671. GGML_ASSERT( nb0 == sizeof(float));
  7672. }
  7673. else {
  7674. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7675. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7676. }
  7677. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7678. // rows per thread
  7679. const int dr = (nr + nth - 1)/nth;
  7680. // row range for this thread
  7681. const int ir0 = dr*ith;
  7682. const int ir1 = MIN(ir0 + dr, nr);
  7683. if (nb10 == sizeof(float)) {
  7684. if (dst->type == GGML_TYPE_BF16) {
  7685. for (int ir = ir0; ir < ir1; ++ir) {
  7686. // src0, src1 and dst are same shape => same indices
  7687. const int i3 = ir/(ne2*ne1);
  7688. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7689. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7690. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7691. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7692. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7693. for (int i = 0; i < ne0; i++) {
  7694. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7695. }
  7696. }
  7697. } else {
  7698. for (int ir = ir0; ir < ir1; ++ir) {
  7699. // src0, src1 and dst are same shape => same indices
  7700. const int i3 = ir/(ne2*ne1);
  7701. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7702. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7703. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7704. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7705. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7706. for (int i = 0; i < ne0; i++) {
  7707. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7708. }
  7709. }
  7710. }
  7711. }
  7712. else {
  7713. // src1 is not contiguous
  7714. GGML_ASSERT(false);
  7715. }
  7716. }
  7717. static void ggml_compute_forward_add_f16_f16(
  7718. const struct ggml_compute_params * params,
  7719. struct ggml_tensor * dst) {
  7720. const struct ggml_tensor * src0 = dst->src[0];
  7721. const struct ggml_tensor * src1 = dst->src[1];
  7722. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7724. return;
  7725. }
  7726. const int ith = params->ith;
  7727. const int nth = params->nth;
  7728. const int nr = ggml_nrows(src0);
  7729. GGML_TENSOR_BINARY_OP_LOCALS
  7730. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7731. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7732. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7733. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7734. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7735. // rows per thread
  7736. const int dr = (nr + nth - 1)/nth;
  7737. // row range for this thread
  7738. const int ir0 = dr*ith;
  7739. const int ir1 = MIN(ir0 + dr, nr);
  7740. if (nb10 == sizeof(ggml_fp16_t)) {
  7741. for (int ir = ir0; ir < ir1; ++ir) {
  7742. // src0, src1 and dst are same shape => same indices
  7743. const int i3 = ir/(ne2*ne1);
  7744. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7745. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7746. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7747. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7748. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7749. for (int i = 0; i < ne0; i++) {
  7750. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7751. }
  7752. }
  7753. }
  7754. else {
  7755. // src1 is not contiguous
  7756. GGML_ASSERT(false);
  7757. }
  7758. }
  7759. static void ggml_compute_forward_add_bf16_bf16(
  7760. const struct ggml_compute_params * params,
  7761. struct ggml_tensor * dst) {
  7762. const struct ggml_tensor * src0 = dst->src[0];
  7763. const struct ggml_tensor * src1 = dst->src[1];
  7764. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7765. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7766. return;
  7767. }
  7768. const int ith = params->ith;
  7769. const int nth = params->nth;
  7770. const int nr = ggml_nrows(src0);
  7771. GGML_TENSOR_BINARY_OP_LOCALS
  7772. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7773. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7774. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7775. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7776. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7777. // rows per thread
  7778. const int dr = (nr + nth - 1)/nth;
  7779. // row range for this thread
  7780. const int ir0 = dr*ith;
  7781. const int ir1 = MIN(ir0 + dr, nr);
  7782. if (nb10 == sizeof(ggml_bf16_t)) {
  7783. for (int ir = ir0; ir < ir1; ++ir) {
  7784. // src0, src1 and dst are same shape => same indices
  7785. const int i3 = ir/(ne2*ne1);
  7786. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7787. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7788. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7789. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7790. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7791. for (int i = 0; i < ne0; i++) {
  7792. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7793. }
  7794. }
  7795. }
  7796. else {
  7797. // src1 is not contiguous
  7798. GGML_ASSERT(false);
  7799. }
  7800. }
  7801. static void ggml_compute_forward_add_q_f32(
  7802. const struct ggml_compute_params * params,
  7803. struct ggml_tensor * dst) {
  7804. const struct ggml_tensor * src0 = dst->src[0];
  7805. const struct ggml_tensor * src1 = dst->src[1];
  7806. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7807. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7808. return;
  7809. }
  7810. const int nr = ggml_nrows(src0);
  7811. GGML_TENSOR_BINARY_OP_LOCALS
  7812. const int ith = params->ith;
  7813. const int nth = params->nth;
  7814. const enum ggml_type type = src0->type;
  7815. const enum ggml_type dtype = dst->type;
  7816. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7817. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7818. // we don't support permuted src0 or src1
  7819. GGML_ASSERT(nb00 == ggml_type_size(type));
  7820. GGML_ASSERT(nb10 == sizeof(float));
  7821. // dst cannot be transposed or permuted
  7822. GGML_ASSERT(nb0 <= nb1);
  7823. GGML_ASSERT(nb1 <= nb2);
  7824. GGML_ASSERT(nb2 <= nb3);
  7825. GGML_ASSERT(ggml_is_quantized(src0->type));
  7826. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7827. // rows per thread
  7828. const int dr = (nr + nth - 1)/nth;
  7829. // row range for this thread
  7830. const int ir0 = dr*ith;
  7831. const int ir1 = MIN(ir0 + dr, nr);
  7832. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7833. for (int ir = ir0; ir < ir1; ++ir) {
  7834. // src0 indices
  7835. const int i03 = ir/(ne02*ne01);
  7836. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7837. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7838. // src1 and dst are same shape as src0 => same indices
  7839. const int i13 = i03;
  7840. const int i12 = i02;
  7841. const int i11 = i01;
  7842. const int i3 = i03;
  7843. const int i2 = i02;
  7844. const int i1 = i01;
  7845. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7846. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7847. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7848. assert(ne00 % 32 == 0);
  7849. // unquantize row from src0 to temp buffer
  7850. dequantize_row_q(src0_row, wdata, ne00);
  7851. // add src1
  7852. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7853. // quantize row to dst
  7854. if (quantize_row_q != NULL) {
  7855. quantize_row_q(wdata, dst_row, ne00);
  7856. } else {
  7857. memcpy(dst_row, wdata, ne0*nb0);
  7858. }
  7859. }
  7860. }
  7861. static void ggml_compute_forward_add(
  7862. const struct ggml_compute_params * params,
  7863. struct ggml_tensor * dst) {
  7864. const struct ggml_tensor * src0 = dst->src[0];
  7865. const struct ggml_tensor * src1 = dst->src[1];
  7866. switch (src0->type) {
  7867. case GGML_TYPE_F32:
  7868. {
  7869. if (src1->type == GGML_TYPE_F32) {
  7870. ggml_compute_forward_add_f32(params, dst);
  7871. }
  7872. else {
  7873. GGML_ASSERT(false);
  7874. }
  7875. } break;
  7876. case GGML_TYPE_F16:
  7877. {
  7878. if (src1->type == GGML_TYPE_F16) {
  7879. ggml_compute_forward_add_f16_f16(params, dst);
  7880. }
  7881. else if (src1->type == GGML_TYPE_F32) {
  7882. ggml_compute_forward_add_f16_f32(params, dst);
  7883. }
  7884. else {
  7885. GGML_ASSERT(false);
  7886. }
  7887. } break;
  7888. case GGML_TYPE_BF16:
  7889. {
  7890. if (src1->type == GGML_TYPE_BF16) {
  7891. ggml_compute_forward_add_bf16_bf16(params, dst);
  7892. }
  7893. else if (src1->type == GGML_TYPE_F32) {
  7894. ggml_compute_forward_add_bf16_f32(params, dst);
  7895. }
  7896. else {
  7897. GGML_ASSERT(false);
  7898. }
  7899. } break;
  7900. case GGML_TYPE_Q4_0:
  7901. case GGML_TYPE_Q4_1:
  7902. case GGML_TYPE_Q5_0:
  7903. case GGML_TYPE_Q5_1:
  7904. case GGML_TYPE_Q8_0:
  7905. case GGML_TYPE_Q2_K:
  7906. case GGML_TYPE_Q3_K:
  7907. case GGML_TYPE_Q4_K:
  7908. case GGML_TYPE_Q5_K:
  7909. case GGML_TYPE_Q6_K:
  7910. case GGML_TYPE_IQ2_XXS:
  7911. case GGML_TYPE_IQ2_XS:
  7912. case GGML_TYPE_IQ3_XXS:
  7913. case GGML_TYPE_IQ1_S:
  7914. case GGML_TYPE_IQ1_M:
  7915. case GGML_TYPE_IQ4_NL:
  7916. case GGML_TYPE_IQ4_XS:
  7917. case GGML_TYPE_IQ3_S:
  7918. case GGML_TYPE_IQ2_S:
  7919. {
  7920. ggml_compute_forward_add_q_f32(params, dst);
  7921. } break;
  7922. default:
  7923. {
  7924. GGML_ASSERT(false);
  7925. } break;
  7926. }
  7927. }
  7928. // ggml_compute_forward_add1
  7929. static void ggml_compute_forward_add1_f32(
  7930. const struct ggml_compute_params * params,
  7931. struct ggml_tensor * dst) {
  7932. const struct ggml_tensor * src0 = dst->src[0];
  7933. const struct ggml_tensor * src1 = dst->src[1];
  7934. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7935. GGML_ASSERT(ggml_is_scalar(src1));
  7936. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7937. return;
  7938. }
  7939. const int ith = params->ith;
  7940. const int nth = params->nth;
  7941. const int nr = ggml_nrows(src0);
  7942. GGML_TENSOR_UNARY_OP_LOCALS
  7943. GGML_ASSERT( nb0 == sizeof(float));
  7944. GGML_ASSERT(nb00 == sizeof(float));
  7945. // rows per thread
  7946. const int dr = (nr + nth - 1)/nth;
  7947. // row range for this thread
  7948. const int ir0 = dr*ith;
  7949. const int ir1 = MIN(ir0 + dr, nr);
  7950. for (int ir = ir0; ir < ir1; ++ir) {
  7951. // src0 and dst are same shape => same indices
  7952. const int i3 = ir/(ne2*ne1);
  7953. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7954. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7955. #ifdef GGML_USE_ACCELERATE
  7956. UNUSED(ggml_vec_add1_f32);
  7957. vDSP_vadd(
  7958. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7959. (float *) ((char *) src1->data), 0,
  7960. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7961. ne0);
  7962. #else
  7963. ggml_vec_add1_f32(ne0,
  7964. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7965. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7966. *(float *) src1->data);
  7967. #endif
  7968. }
  7969. }
  7970. static void ggml_compute_forward_add1_f16_f32(
  7971. const struct ggml_compute_params * params,
  7972. struct ggml_tensor * dst) {
  7973. const struct ggml_tensor * src0 = dst->src[0];
  7974. const struct ggml_tensor * src1 = dst->src[1];
  7975. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7976. GGML_ASSERT(ggml_is_scalar(src1));
  7977. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7978. return;
  7979. }
  7980. // scalar to add
  7981. const float v = *(float *) src1->data;
  7982. const int ith = params->ith;
  7983. const int nth = params->nth;
  7984. const int nr = ggml_nrows(src0);
  7985. GGML_TENSOR_UNARY_OP_LOCALS
  7986. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7987. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7988. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7989. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7990. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7991. // rows per thread
  7992. const int dr = (nr + nth - 1)/nth;
  7993. // row range for this thread
  7994. const int ir0 = dr*ith;
  7995. const int ir1 = MIN(ir0 + dr, nr);
  7996. for (int ir = ir0; ir < ir1; ++ir) {
  7997. // src0 and dst are same shape => same indices
  7998. const int i3 = ir/(ne2*ne1);
  7999. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8000. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8001. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8002. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8003. for (int i = 0; i < ne0; i++) {
  8004. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8005. }
  8006. }
  8007. }
  8008. static void ggml_compute_forward_add1_f16_f16(
  8009. const struct ggml_compute_params * params,
  8010. struct ggml_tensor * dst) {
  8011. const struct ggml_tensor * src0 = dst->src[0];
  8012. const struct ggml_tensor * src1 = dst->src[1];
  8013. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8014. GGML_ASSERT(ggml_is_scalar(src1));
  8015. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8016. return;
  8017. }
  8018. // scalar to add
  8019. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8020. const int ith = params->ith;
  8021. const int nth = params->nth;
  8022. const int nr = ggml_nrows(src0);
  8023. GGML_TENSOR_UNARY_OP_LOCALS
  8024. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8025. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8026. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8027. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8028. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8029. // rows per thread
  8030. const int dr = (nr + nth - 1)/nth;
  8031. // row range for this thread
  8032. const int ir0 = dr*ith;
  8033. const int ir1 = MIN(ir0 + dr, nr);
  8034. for (int ir = ir0; ir < ir1; ++ir) {
  8035. // src0 and dst are same shape => same indices
  8036. const int i3 = ir/(ne2*ne1);
  8037. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8038. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8039. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8040. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8041. for (int i = 0; i < ne0; i++) {
  8042. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8043. }
  8044. }
  8045. }
  8046. static void ggml_compute_forward_add1_q_f32(
  8047. const struct ggml_compute_params * params,
  8048. struct ggml_tensor * dst) {
  8049. const struct ggml_tensor * src0 = dst->src[0];
  8050. const struct ggml_tensor * src1 = dst->src[1];
  8051. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8052. GGML_ASSERT(ggml_is_scalar(src1));
  8053. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8054. return;
  8055. }
  8056. // scalar to add
  8057. const float v = *(float *) src1->data;
  8058. const int ith = params->ith;
  8059. const int nth = params->nth;
  8060. const int nr = ggml_nrows(src0);
  8061. GGML_TENSOR_UNARY_OP_LOCALS
  8062. const enum ggml_type type = src0->type;
  8063. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8064. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8065. // we don't support permuted src0
  8066. GGML_ASSERT(nb00 == ggml_type_size(type));
  8067. // dst cannot be transposed or permuted
  8068. GGML_ASSERT(nb0 <= nb1);
  8069. GGML_ASSERT(nb1 <= nb2);
  8070. GGML_ASSERT(nb2 <= nb3);
  8071. GGML_ASSERT(ggml_is_quantized(src0->type));
  8072. GGML_ASSERT(dst->type == src0->type);
  8073. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8074. // rows per thread
  8075. const int dr = (nr + nth - 1)/nth;
  8076. // row range for this thread
  8077. const int ir0 = dr*ith;
  8078. const int ir1 = MIN(ir0 + dr, nr);
  8079. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8080. for (int ir = ir0; ir < ir1; ++ir) {
  8081. // src0 and dst are same shape => same indices
  8082. const int i3 = ir/(ne2*ne1);
  8083. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8084. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8085. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8086. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8087. assert(ne0 % 32 == 0);
  8088. // unquantize row from src0 to temp buffer
  8089. dequantize_row_q(src0_row, wdata, ne0);
  8090. // add src1
  8091. ggml_vec_acc1_f32(ne0, wdata, v);
  8092. // quantize row to dst
  8093. quantize_row_q(wdata, dst_row, ne0);
  8094. }
  8095. }
  8096. static void ggml_compute_forward_add1_bf16_f32(
  8097. const struct ggml_compute_params * params,
  8098. struct ggml_tensor * dst) {
  8099. const struct ggml_tensor * src0 = dst->src[0];
  8100. const struct ggml_tensor * src1 = dst->src[1];
  8101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8102. GGML_ASSERT(ggml_is_scalar(src1));
  8103. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8104. return;
  8105. }
  8106. // scalar to add
  8107. const float v = *(float *) src1->data;
  8108. const int ith = params->ith;
  8109. const int nth = params->nth;
  8110. const int nr = ggml_nrows(src0);
  8111. GGML_TENSOR_UNARY_OP_LOCALS
  8112. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8113. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8114. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8115. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8116. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8117. // rows per thread
  8118. const int dr = (nr + nth - 1)/nth;
  8119. // row range for this thread
  8120. const int ir0 = dr*ith;
  8121. const int ir1 = MIN(ir0 + dr, nr);
  8122. for (int ir = ir0; ir < ir1; ++ir) {
  8123. // src0 and dst are same shape => same indices
  8124. const int i3 = ir/(ne2*ne1);
  8125. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8126. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8127. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8128. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8129. for (int i = 0; i < ne0; i++) {
  8130. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8131. }
  8132. }
  8133. }
  8134. static void ggml_compute_forward_add1_bf16_bf16(
  8135. const struct ggml_compute_params * params,
  8136. struct ggml_tensor * dst) {
  8137. const struct ggml_tensor * src0 = dst->src[0];
  8138. const struct ggml_tensor * src1 = dst->src[1];
  8139. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8140. GGML_ASSERT(ggml_is_scalar(src1));
  8141. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8142. return;
  8143. }
  8144. // scalar to add
  8145. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8146. const int ith = params->ith;
  8147. const int nth = params->nth;
  8148. const int nr = ggml_nrows(src0);
  8149. GGML_TENSOR_UNARY_OP_LOCALS
  8150. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8151. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8152. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8153. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8154. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8155. // rows per thread
  8156. const int dr = (nr + nth - 1)/nth;
  8157. // row range for this thread
  8158. const int ir0 = dr*ith;
  8159. const int ir1 = MIN(ir0 + dr, nr);
  8160. for (int ir = ir0; ir < ir1; ++ir) {
  8161. // src0 and dst are same shape => same indices
  8162. const int i3 = ir/(ne2*ne1);
  8163. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8164. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8165. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8166. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8167. for (int i = 0; i < ne0; i++) {
  8168. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8169. }
  8170. }
  8171. }
  8172. static void ggml_compute_forward_add1(
  8173. const struct ggml_compute_params * params,
  8174. struct ggml_tensor * dst) {
  8175. const struct ggml_tensor * src0 = dst->src[0];
  8176. const struct ggml_tensor * src1 = dst->src[1];
  8177. switch (src0->type) {
  8178. case GGML_TYPE_F32:
  8179. {
  8180. ggml_compute_forward_add1_f32(params, dst);
  8181. } break;
  8182. case GGML_TYPE_F16:
  8183. {
  8184. if (src1->type == GGML_TYPE_F16) {
  8185. ggml_compute_forward_add1_f16_f16(params, dst);
  8186. }
  8187. else if (src1->type == GGML_TYPE_F32) {
  8188. ggml_compute_forward_add1_f16_f32(params, dst);
  8189. }
  8190. else {
  8191. GGML_ASSERT(false);
  8192. }
  8193. } break;
  8194. case GGML_TYPE_BF16:
  8195. {
  8196. if (src1->type == GGML_TYPE_BF16) {
  8197. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8198. }
  8199. else if (src1->type == GGML_TYPE_F32) {
  8200. ggml_compute_forward_add1_bf16_f32(params, dst);
  8201. }
  8202. else {
  8203. GGML_ASSERT(false);
  8204. }
  8205. } break;
  8206. case GGML_TYPE_Q4_0:
  8207. case GGML_TYPE_Q4_1:
  8208. case GGML_TYPE_Q5_0:
  8209. case GGML_TYPE_Q5_1:
  8210. case GGML_TYPE_Q8_0:
  8211. case GGML_TYPE_Q8_1:
  8212. case GGML_TYPE_Q2_K:
  8213. case GGML_TYPE_Q3_K:
  8214. case GGML_TYPE_Q4_K:
  8215. case GGML_TYPE_Q5_K:
  8216. case GGML_TYPE_Q6_K:
  8217. case GGML_TYPE_IQ2_XXS:
  8218. case GGML_TYPE_IQ2_XS:
  8219. case GGML_TYPE_IQ3_XXS:
  8220. case GGML_TYPE_IQ1_S:
  8221. case GGML_TYPE_IQ1_M:
  8222. case GGML_TYPE_IQ4_NL:
  8223. case GGML_TYPE_IQ4_XS:
  8224. case GGML_TYPE_IQ3_S:
  8225. case GGML_TYPE_IQ2_S:
  8226. {
  8227. ggml_compute_forward_add1_q_f32(params, dst);
  8228. } break;
  8229. default:
  8230. {
  8231. GGML_ASSERT(false);
  8232. } break;
  8233. }
  8234. }
  8235. // ggml_compute_forward_acc
  8236. static void ggml_compute_forward_acc_f32(
  8237. const struct ggml_compute_params * params,
  8238. struct ggml_tensor * dst) {
  8239. const struct ggml_tensor * src0 = dst->src[0];
  8240. const struct ggml_tensor * src1 = dst->src[1];
  8241. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8242. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8243. // view src0 and dst with these strides and data offset inbytes during acc
  8244. // nb0 is implicitly element_size because src0 and dst are contiguous
  8245. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8246. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8247. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8248. size_t offset = ((int32_t *) dst->op_params)[3];
  8249. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8250. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8251. if (params->ith != 0) {
  8252. return;
  8253. }
  8254. // memcpy needs to be synchronized across threads to avoid race conditions.
  8255. // => do it in INIT phase
  8256. memcpy(
  8257. ((char *) dst->data),
  8258. ((char *) src0->data),
  8259. ggml_nbytes(dst));
  8260. }
  8261. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8262. return;
  8263. }
  8264. const int ith = params->ith;
  8265. const int nth = params->nth;
  8266. const int nr = ggml_nrows(src1);
  8267. const int nc = src1->ne[0];
  8268. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8269. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8270. // src0 and dst as viewed during acc
  8271. const size_t nb0 = ggml_element_size(src0);
  8272. const size_t nb00 = nb0;
  8273. const size_t nb01 = nb1;
  8274. const size_t nb02 = nb2;
  8275. const size_t nb03 = nb3;
  8276. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8277. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8278. GGML_ASSERT(nb10 == sizeof(float));
  8279. // rows per thread
  8280. const int dr = (nr + nth - 1)/nth;
  8281. // row range for this thread
  8282. const int ir0 = dr*ith;
  8283. const int ir1 = MIN(ir0 + dr, nr);
  8284. for (int ir = ir0; ir < ir1; ++ir) {
  8285. // src0 and dst are viewed with shape of src1 and offset
  8286. // => same indices
  8287. const int i3 = ir/(ne12*ne11);
  8288. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8289. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8290. #ifdef GGML_USE_ACCELERATE
  8291. vDSP_vadd(
  8292. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8293. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8294. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8295. #else
  8296. ggml_vec_add_f32(nc,
  8297. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8298. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8299. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8300. #endif
  8301. }
  8302. }
  8303. static void ggml_compute_forward_acc(
  8304. const struct ggml_compute_params * params,
  8305. struct ggml_tensor * dst) {
  8306. const struct ggml_tensor * src0 = dst->src[0];
  8307. switch (src0->type) {
  8308. case GGML_TYPE_F32:
  8309. {
  8310. ggml_compute_forward_acc_f32(params, dst);
  8311. } break;
  8312. case GGML_TYPE_F16:
  8313. case GGML_TYPE_BF16:
  8314. case GGML_TYPE_Q4_0:
  8315. case GGML_TYPE_Q4_1:
  8316. case GGML_TYPE_Q5_0:
  8317. case GGML_TYPE_Q5_1:
  8318. case GGML_TYPE_Q8_0:
  8319. case GGML_TYPE_Q8_1:
  8320. case GGML_TYPE_Q2_K:
  8321. case GGML_TYPE_Q3_K:
  8322. case GGML_TYPE_Q4_K:
  8323. case GGML_TYPE_Q5_K:
  8324. case GGML_TYPE_Q6_K:
  8325. case GGML_TYPE_IQ2_XXS:
  8326. case GGML_TYPE_IQ2_XS:
  8327. case GGML_TYPE_IQ3_XXS:
  8328. case GGML_TYPE_IQ1_S:
  8329. case GGML_TYPE_IQ1_M:
  8330. case GGML_TYPE_IQ4_NL:
  8331. case GGML_TYPE_IQ4_XS:
  8332. case GGML_TYPE_IQ3_S:
  8333. case GGML_TYPE_IQ2_S:
  8334. default:
  8335. {
  8336. GGML_ASSERT(false);
  8337. } break;
  8338. }
  8339. }
  8340. // ggml_compute_forward_sub
  8341. static void ggml_compute_forward_sub_f32(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. const struct ggml_tensor * src1 = dst->src[1];
  8346. assert(params->ith == 0);
  8347. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8348. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8349. return;
  8350. }
  8351. const int nr = ggml_nrows(src0);
  8352. GGML_TENSOR_BINARY_OP_LOCALS
  8353. GGML_ASSERT( nb0 == sizeof(float));
  8354. GGML_ASSERT(nb00 == sizeof(float));
  8355. if (nb10 == sizeof(float)) {
  8356. for (int ir = 0; ir < nr; ++ir) {
  8357. // src0, src1 and dst are same shape => same indices
  8358. const int i3 = ir/(ne2*ne1);
  8359. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8360. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8361. #ifdef GGML_USE_ACCELERATE
  8362. vDSP_vsub(
  8363. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8364. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8365. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8366. ne0);
  8367. #else
  8368. ggml_vec_sub_f32(ne0,
  8369. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8370. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8371. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8372. #endif
  8373. // }
  8374. // }
  8375. }
  8376. } else {
  8377. // src1 is not contiguous
  8378. for (int ir = 0; ir < nr; ++ir) {
  8379. // src0, src1 and dst are same shape => same indices
  8380. const int i3 = ir/(ne2*ne1);
  8381. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8382. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8383. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8384. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8385. for (int i0 = 0; i0 < ne0; i0++) {
  8386. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8387. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8388. }
  8389. }
  8390. }
  8391. }
  8392. static void ggml_compute_forward_sub(
  8393. const struct ggml_compute_params * params,
  8394. struct ggml_tensor * dst) {
  8395. const struct ggml_tensor * src0 = dst->src[0];
  8396. switch (src0->type) {
  8397. case GGML_TYPE_F32:
  8398. {
  8399. ggml_compute_forward_sub_f32(params, dst);
  8400. } break;
  8401. default:
  8402. {
  8403. GGML_ASSERT(false);
  8404. } break;
  8405. }
  8406. }
  8407. // ggml_compute_forward_mul
  8408. static void ggml_compute_forward_mul_f32(
  8409. const struct ggml_compute_params * params,
  8410. struct ggml_tensor * dst) {
  8411. const struct ggml_tensor * src0 = dst->src[0];
  8412. const struct ggml_tensor * src1 = dst->src[1];
  8413. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8414. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8415. return;
  8416. }
  8417. const int ith = params->ith;
  8418. const int nth = params->nth;
  8419. #if defined(GGML_USE_CLBLAST)
  8420. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8421. // TODO: OpenCL kernel support full broadcast
  8422. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8423. if (ith == 0) {
  8424. ggml_cl_mul(src0, src1, dst);
  8425. }
  8426. return;
  8427. }
  8428. #endif
  8429. const int64_t nr = ggml_nrows(src0);
  8430. GGML_TENSOR_BINARY_OP_LOCALS
  8431. GGML_ASSERT( nb0 == sizeof(float));
  8432. GGML_ASSERT(nb00 == sizeof(float));
  8433. if (nb10 == sizeof(float)) {
  8434. for (int64_t ir = ith; ir < nr; ir += nth) {
  8435. // src0 and dst are same shape => same indices
  8436. const int64_t i03 = ir/(ne02*ne01);
  8437. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8438. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8439. const int64_t i13 = i03 % ne13;
  8440. const int64_t i12 = i02 % ne12;
  8441. const int64_t i11 = i01 % ne11;
  8442. const int64_t nr0 = ne00 / ne10;
  8443. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8444. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8445. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8446. for (int64_t r = 0 ; r < nr0; ++r) {
  8447. #ifdef GGML_USE_ACCELERATE
  8448. UNUSED(ggml_vec_mul_f32);
  8449. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8450. #else
  8451. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8452. #endif
  8453. }
  8454. }
  8455. } else {
  8456. // src1 is not contiguous
  8457. for (int64_t ir = ith; ir < nr; ir += nth) {
  8458. // src0 and dst are same shape => same indices
  8459. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8460. const int64_t i03 = ir/(ne02*ne01);
  8461. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8462. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8463. const int64_t i13 = i03 % ne13;
  8464. const int64_t i12 = i02 % ne12;
  8465. const int64_t i11 = i01 % ne11;
  8466. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8467. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8468. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8469. const int64_t i10 = i0 % ne10;
  8470. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8471. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8472. }
  8473. }
  8474. }
  8475. }
  8476. static void ggml_compute_forward_mul(
  8477. const struct ggml_compute_params * params,
  8478. struct ggml_tensor * dst) {
  8479. const struct ggml_tensor * src0 = dst->src[0];
  8480. const struct ggml_tensor * src1 = dst->src[1];
  8481. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8482. switch (src0->type) {
  8483. case GGML_TYPE_F32:
  8484. {
  8485. ggml_compute_forward_mul_f32(params, dst);
  8486. } break;
  8487. default:
  8488. {
  8489. GGML_ASSERT(false);
  8490. } break;
  8491. }
  8492. }
  8493. // ggml_compute_forward_div
  8494. static void ggml_compute_forward_div_f32(
  8495. const struct ggml_compute_params * params,
  8496. struct ggml_tensor * dst) {
  8497. const struct ggml_tensor * src0 = dst->src[0];
  8498. const struct ggml_tensor * src1 = dst->src[1];
  8499. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8500. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8501. return;
  8502. }
  8503. const int ith = params->ith;
  8504. const int nth = params->nth;
  8505. const int64_t nr = ggml_nrows(src0);
  8506. GGML_TENSOR_BINARY_OP_LOCALS
  8507. GGML_ASSERT( nb0 == sizeof(float));
  8508. GGML_ASSERT(nb00 == sizeof(float));
  8509. if (nb10 == sizeof(float)) {
  8510. for (int64_t ir = ith; ir < nr; ir += nth) {
  8511. // src0 and dst are same shape => same indices
  8512. const int64_t i03 = ir/(ne02*ne01);
  8513. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8514. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8515. const int64_t i13 = i03 % ne13;
  8516. const int64_t i12 = i02 % ne12;
  8517. const int64_t i11 = i01 % ne11;
  8518. const int64_t nr0 = ne00 / ne10;
  8519. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8520. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8521. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8522. for (int64_t r = 0; r < nr0; ++r) {
  8523. #ifdef GGML_USE_ACCELERATE
  8524. UNUSED(ggml_vec_div_f32);
  8525. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8526. #else
  8527. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8528. #endif
  8529. }
  8530. }
  8531. } else {
  8532. // src1 is not contiguous
  8533. for (int64_t ir = ith; ir < nr; ir += nth) {
  8534. // src0 and dst are same shape => same indices
  8535. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8536. const int64_t i03 = ir/(ne02*ne01);
  8537. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8538. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8539. const int64_t i13 = i03 % ne13;
  8540. const int64_t i12 = i02 % ne12;
  8541. const int64_t i11 = i01 % ne11;
  8542. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8543. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8544. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8545. const int64_t i10 = i0 % ne10;
  8546. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8547. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8548. }
  8549. }
  8550. }
  8551. }
  8552. static void ggml_compute_forward_div(
  8553. const struct ggml_compute_params * params,
  8554. struct ggml_tensor * dst) {
  8555. const struct ggml_tensor * src0 = dst->src[0];
  8556. switch (src0->type) {
  8557. case GGML_TYPE_F32:
  8558. {
  8559. ggml_compute_forward_div_f32(params, dst);
  8560. } break;
  8561. default:
  8562. {
  8563. GGML_ASSERT(false);
  8564. } break;
  8565. }
  8566. }
  8567. // ggml_compute_forward_sqr
  8568. static void ggml_compute_forward_sqr_f32(
  8569. const struct ggml_compute_params * params,
  8570. struct ggml_tensor * dst) {
  8571. const struct ggml_tensor * src0 = dst->src[0];
  8572. assert(params->ith == 0);
  8573. assert(ggml_are_same_shape(src0, dst));
  8574. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8575. return;
  8576. }
  8577. const int n = ggml_nrows(src0);
  8578. const int nc = src0->ne[0];
  8579. assert( dst->nb[0] == sizeof(float));
  8580. assert(src0->nb[0] == sizeof(float));
  8581. for (int i = 0; i < n; i++) {
  8582. ggml_vec_sqr_f32(nc,
  8583. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8584. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8585. }
  8586. }
  8587. static void ggml_compute_forward_sqr(
  8588. const struct ggml_compute_params * params,
  8589. struct ggml_tensor * dst) {
  8590. const struct ggml_tensor * src0 = dst->src[0];
  8591. switch (src0->type) {
  8592. case GGML_TYPE_F32:
  8593. {
  8594. ggml_compute_forward_sqr_f32(params, dst);
  8595. } break;
  8596. default:
  8597. {
  8598. GGML_ASSERT(false);
  8599. } break;
  8600. }
  8601. }
  8602. // ggml_compute_forward_sqrt
  8603. static void ggml_compute_forward_sqrt_f32(
  8604. const struct ggml_compute_params * params,
  8605. struct ggml_tensor * dst) {
  8606. const struct ggml_tensor * src0 = dst->src[0];
  8607. assert(params->ith == 0);
  8608. assert(ggml_are_same_shape(src0, dst));
  8609. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8610. return;
  8611. }
  8612. const int n = ggml_nrows(src0);
  8613. const int nc = src0->ne[0];
  8614. assert( dst->nb[0] == sizeof(float));
  8615. assert(src0->nb[0] == sizeof(float));
  8616. for (int i = 0; i < n; i++) {
  8617. ggml_vec_sqrt_f32(nc,
  8618. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8619. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8620. }
  8621. }
  8622. static void ggml_compute_forward_sqrt(
  8623. const struct ggml_compute_params * params,
  8624. struct ggml_tensor * dst) {
  8625. const struct ggml_tensor * src0 = dst->src[0];
  8626. switch (src0->type) {
  8627. case GGML_TYPE_F32:
  8628. {
  8629. ggml_compute_forward_sqrt_f32(params, dst);
  8630. } break;
  8631. default:
  8632. {
  8633. GGML_ASSERT(false);
  8634. } break;
  8635. }
  8636. }
  8637. // ggml_compute_forward_log
  8638. static void ggml_compute_forward_log_f32(
  8639. const struct ggml_compute_params * params,
  8640. struct ggml_tensor * dst) {
  8641. const struct ggml_tensor * src0 = dst->src[0];
  8642. GGML_ASSERT(params->ith == 0);
  8643. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8644. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8645. return;
  8646. }
  8647. const int n = ggml_nrows(src0);
  8648. const int nc = src0->ne[0];
  8649. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8650. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8651. for (int i = 0; i < n; i++) {
  8652. ggml_vec_log_f32(nc,
  8653. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8654. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8655. }
  8656. }
  8657. static void ggml_compute_forward_log(
  8658. const struct ggml_compute_params * params,
  8659. struct ggml_tensor * dst) {
  8660. const struct ggml_tensor * src0 = dst->src[0];
  8661. switch (src0->type) {
  8662. case GGML_TYPE_F32:
  8663. {
  8664. ggml_compute_forward_log_f32(params, dst);
  8665. } break;
  8666. default:
  8667. {
  8668. GGML_ASSERT(false);
  8669. } break;
  8670. }
  8671. }
  8672. // ggml_compute_forward_sum
  8673. static void ggml_compute_forward_sum_f32(
  8674. const struct ggml_compute_params * params,
  8675. struct ggml_tensor * dst) {
  8676. const struct ggml_tensor * src0 = dst->src[0];
  8677. assert(params->ith == 0);
  8678. assert(ggml_is_scalar(dst));
  8679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8680. return;
  8681. }
  8682. assert(ggml_is_scalar(dst));
  8683. assert(src0->nb[0] == sizeof(float));
  8684. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8685. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8686. ggml_float sum = 0;
  8687. ggml_float row_sum = 0;
  8688. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8689. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8690. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8691. ggml_vec_sum_f32_ggf(ne00,
  8692. &row_sum,
  8693. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8694. sum += row_sum;
  8695. }
  8696. }
  8697. }
  8698. ((float *) dst->data)[0] = sum;
  8699. }
  8700. static void ggml_compute_forward_sum_f16(
  8701. const struct ggml_compute_params * params,
  8702. struct ggml_tensor * dst) {
  8703. const struct ggml_tensor * src0 = dst->src[0];
  8704. assert(params->ith == 0);
  8705. assert(ggml_is_scalar(dst));
  8706. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8707. return;
  8708. }
  8709. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8710. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8711. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8712. float sum = 0;
  8713. float row_sum = 0;
  8714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8716. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8717. ggml_vec_sum_f16_ggf(ne00,
  8718. &row_sum,
  8719. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8720. sum += row_sum;
  8721. }
  8722. }
  8723. }
  8724. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8725. }
  8726. static void ggml_compute_forward_sum_bf16(
  8727. const struct ggml_compute_params * params,
  8728. struct ggml_tensor * dst) {
  8729. const struct ggml_tensor * src0 = dst->src[0];
  8730. assert(params->ith == 0);
  8731. assert(ggml_is_scalar(dst));
  8732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8733. return;
  8734. }
  8735. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8736. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8737. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8738. float sum = 0;
  8739. float row_sum = 0;
  8740. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8741. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8742. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8743. ggml_vec_sum_bf16_ggf(ne00,
  8744. &row_sum,
  8745. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8746. sum += row_sum;
  8747. }
  8748. }
  8749. }
  8750. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8751. }
  8752. static void ggml_compute_forward_sum(
  8753. const struct ggml_compute_params * params,
  8754. struct ggml_tensor * dst) {
  8755. const struct ggml_tensor * src0 = dst->src[0];
  8756. switch (src0->type) {
  8757. case GGML_TYPE_F32:
  8758. {
  8759. ggml_compute_forward_sum_f32(params, dst);
  8760. } break;
  8761. case GGML_TYPE_F16:
  8762. {
  8763. ggml_compute_forward_sum_f16(params, dst);
  8764. } break;
  8765. case GGML_TYPE_BF16:
  8766. {
  8767. ggml_compute_forward_sum_bf16(params, dst);
  8768. } break;
  8769. default:
  8770. {
  8771. GGML_ASSERT(false);
  8772. } break;
  8773. }
  8774. }
  8775. // ggml_compute_forward_sum_rows
  8776. static void ggml_compute_forward_sum_rows_f32(
  8777. const struct ggml_compute_params * params,
  8778. struct ggml_tensor * dst) {
  8779. const struct ggml_tensor * src0 = dst->src[0];
  8780. GGML_ASSERT(params->ith == 0);
  8781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8782. return;
  8783. }
  8784. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8785. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8786. GGML_TENSOR_UNARY_OP_LOCALS
  8787. GGML_ASSERT(ne0 == 1);
  8788. GGML_ASSERT(ne1 == ne01);
  8789. GGML_ASSERT(ne2 == ne02);
  8790. GGML_ASSERT(ne3 == ne03);
  8791. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8792. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8793. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8794. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8795. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8796. float row_sum = 0;
  8797. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8798. dst_row[0] = row_sum;
  8799. }
  8800. }
  8801. }
  8802. }
  8803. static void ggml_compute_forward_sum_rows(
  8804. const struct ggml_compute_params * params,
  8805. struct ggml_tensor * dst) {
  8806. const struct ggml_tensor * src0 = dst->src[0];
  8807. switch (src0->type) {
  8808. case GGML_TYPE_F32:
  8809. {
  8810. ggml_compute_forward_sum_rows_f32(params, dst);
  8811. } break;
  8812. default:
  8813. {
  8814. GGML_ASSERT(false);
  8815. } break;
  8816. }
  8817. }
  8818. // ggml_compute_forward_mean
  8819. static void ggml_compute_forward_mean_f32(
  8820. const struct ggml_compute_params * params,
  8821. struct ggml_tensor * dst) {
  8822. const struct ggml_tensor * src0 = dst->src[0];
  8823. assert(params->ith == 0);
  8824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8825. return;
  8826. }
  8827. assert(src0->nb[0] == sizeof(float));
  8828. GGML_TENSOR_UNARY_OP_LOCALS
  8829. assert(ne0 == 1);
  8830. assert(ne1 == ne01);
  8831. assert(ne2 == ne02);
  8832. assert(ne3 == ne03);
  8833. UNUSED(ne0);
  8834. UNUSED(ne1);
  8835. UNUSED(ne2);
  8836. UNUSED(ne3);
  8837. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8838. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8839. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8840. ggml_vec_sum_f32(ne00,
  8841. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8842. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8843. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8844. }
  8845. }
  8846. }
  8847. }
  8848. static void ggml_compute_forward_mean(
  8849. const struct ggml_compute_params * params,
  8850. struct ggml_tensor * dst) {
  8851. const struct ggml_tensor * src0 = dst->src[0];
  8852. switch (src0->type) {
  8853. case GGML_TYPE_F32:
  8854. {
  8855. ggml_compute_forward_mean_f32(params, dst);
  8856. } break;
  8857. default:
  8858. {
  8859. GGML_ASSERT(false);
  8860. } break;
  8861. }
  8862. }
  8863. // ggml_compute_forward_argmax
  8864. static void ggml_compute_forward_argmax_f32(
  8865. const struct ggml_compute_params * params,
  8866. struct ggml_tensor * dst) {
  8867. const struct ggml_tensor * src0 = dst->src[0];
  8868. assert(params->ith == 0);
  8869. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8870. return;
  8871. }
  8872. assert(src0->nb[0] == sizeof(float));
  8873. assert(dst->nb[0] == sizeof(float));
  8874. const int64_t ne00 = src0->ne[0];
  8875. const int64_t ne01 = src0->ne[1];
  8876. const size_t nb01 = src0->nb[1];
  8877. const size_t nb0 = dst->nb[0];
  8878. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8879. float * src = (float *) ((char *) src0->data + i1*nb01);
  8880. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8881. int v = 0;
  8882. ggml_vec_argmax_f32(ne00, &v, src);
  8883. dst_[0] = v;
  8884. }
  8885. }
  8886. static void ggml_compute_forward_argmax(
  8887. const struct ggml_compute_params * params,
  8888. struct ggml_tensor * dst) {
  8889. const struct ggml_tensor * src0 = dst->src[0];
  8890. switch (src0->type) {
  8891. case GGML_TYPE_F32:
  8892. {
  8893. ggml_compute_forward_argmax_f32(params, dst);
  8894. } break;
  8895. default:
  8896. {
  8897. GGML_ASSERT(false);
  8898. } break;
  8899. }
  8900. }
  8901. // ggml_compute_forward_repeat
  8902. static void ggml_compute_forward_repeat_f32(
  8903. const struct ggml_compute_params * params,
  8904. struct ggml_tensor * dst) {
  8905. const struct ggml_tensor * src0 = dst->src[0];
  8906. GGML_ASSERT(params->ith == 0);
  8907. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8908. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8909. return;
  8910. }
  8911. GGML_TENSOR_UNARY_OP_LOCALS
  8912. // guaranteed to be an integer due to the check in ggml_can_repeat
  8913. const int nr0 = (int)(ne0/ne00);
  8914. const int nr1 = (int)(ne1/ne01);
  8915. const int nr2 = (int)(ne2/ne02);
  8916. const int nr3 = (int)(ne3/ne03);
  8917. // TODO: support for transposed / permuted tensors
  8918. GGML_ASSERT(nb0 == sizeof(float));
  8919. GGML_ASSERT(nb00 == sizeof(float));
  8920. // TODO: maybe this is not optimal?
  8921. for (int i3 = 0; i3 < nr3; i3++) {
  8922. for (int k3 = 0; k3 < ne03; k3++) {
  8923. for (int i2 = 0; i2 < nr2; i2++) {
  8924. for (int k2 = 0; k2 < ne02; k2++) {
  8925. for (int i1 = 0; i1 < nr1; i1++) {
  8926. for (int k1 = 0; k1 < ne01; k1++) {
  8927. for (int i0 = 0; i0 < nr0; i0++) {
  8928. ggml_vec_cpy_f32(ne00,
  8929. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8930. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8931. }
  8932. }
  8933. }
  8934. }
  8935. }
  8936. }
  8937. }
  8938. }
  8939. static void ggml_compute_forward_repeat_f16(
  8940. const struct ggml_compute_params * params,
  8941. struct ggml_tensor * dst) {
  8942. const struct ggml_tensor * src0 = dst->src[0];
  8943. GGML_ASSERT(params->ith == 0);
  8944. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8945. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8946. return;
  8947. }
  8948. GGML_TENSOR_UNARY_OP_LOCALS
  8949. // guaranteed to be an integer due to the check in ggml_can_repeat
  8950. const int nr0 = (int)(ne0/ne00);
  8951. const int nr1 = (int)(ne1/ne01);
  8952. const int nr2 = (int)(ne2/ne02);
  8953. const int nr3 = (int)(ne3/ne03);
  8954. // TODO: support for transposed / permuted tensors
  8955. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8956. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8957. // TODO: maybe this is not optimal?
  8958. for (int i3 = 0; i3 < nr3; i3++) {
  8959. for (int k3 = 0; k3 < ne03; k3++) {
  8960. for (int i2 = 0; i2 < nr2; i2++) {
  8961. for (int k2 = 0; k2 < ne02; k2++) {
  8962. for (int i1 = 0; i1 < nr1; i1++) {
  8963. for (int k1 = 0; k1 < ne01; k1++) {
  8964. for (int i0 = 0; i0 < nr0; i0++) {
  8965. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8966. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8967. // ggml_vec_cpy_f16(ne00, y, x)
  8968. for (int i = 0; i < ne00; ++i) {
  8969. y[i] = x[i];
  8970. }
  8971. }
  8972. }
  8973. }
  8974. }
  8975. }
  8976. }
  8977. }
  8978. }
  8979. static void ggml_compute_forward_repeat(
  8980. const struct ggml_compute_params * params,
  8981. struct ggml_tensor * dst) {
  8982. const struct ggml_tensor * src0 = dst->src[0];
  8983. switch (src0->type) {
  8984. case GGML_TYPE_F16:
  8985. case GGML_TYPE_BF16:
  8986. case GGML_TYPE_I16:
  8987. {
  8988. ggml_compute_forward_repeat_f16(params, dst);
  8989. } break;
  8990. case GGML_TYPE_F32:
  8991. case GGML_TYPE_I32:
  8992. {
  8993. ggml_compute_forward_repeat_f32(params, dst);
  8994. } break;
  8995. default:
  8996. {
  8997. GGML_ASSERT(false);
  8998. } break;
  8999. }
  9000. }
  9001. // ggml_compute_forward_repeat_back
  9002. static void ggml_compute_forward_repeat_back_f32(
  9003. const struct ggml_compute_params * params,
  9004. struct ggml_tensor * dst) {
  9005. const struct ggml_tensor * src0 = dst->src[0];
  9006. GGML_ASSERT(params->ith == 0);
  9007. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9008. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9009. return;
  9010. }
  9011. GGML_TENSOR_UNARY_OP_LOCALS
  9012. // guaranteed to be an integer due to the check in ggml_can_repeat
  9013. const int nr0 = (int)(ne00/ne0);
  9014. const int nr1 = (int)(ne01/ne1);
  9015. const int nr2 = (int)(ne02/ne2);
  9016. const int nr3 = (int)(ne03/ne3);
  9017. // TODO: support for transposed / permuted tensors
  9018. GGML_ASSERT(nb0 == sizeof(float));
  9019. GGML_ASSERT(nb00 == sizeof(float));
  9020. if (ggml_is_contiguous(dst)) {
  9021. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9022. } else {
  9023. for (int k3 = 0; k3 < ne3; k3++) {
  9024. for (int k2 = 0; k2 < ne2; k2++) {
  9025. for (int k1 = 0; k1 < ne1; k1++) {
  9026. ggml_vec_set_f32(ne0,
  9027. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9028. 0);
  9029. }
  9030. }
  9031. }
  9032. }
  9033. // TODO: maybe this is not optimal?
  9034. for (int i3 = 0; i3 < nr3; i3++) {
  9035. for (int k3 = 0; k3 < ne3; k3++) {
  9036. for (int i2 = 0; i2 < nr2; i2++) {
  9037. for (int k2 = 0; k2 < ne2; k2++) {
  9038. for (int i1 = 0; i1 < nr1; i1++) {
  9039. for (int k1 = 0; k1 < ne1; k1++) {
  9040. for (int i0 = 0; i0 < nr0; i0++) {
  9041. ggml_vec_acc_f32(ne0,
  9042. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9043. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9044. }
  9045. }
  9046. }
  9047. }
  9048. }
  9049. }
  9050. }
  9051. }
  9052. static void ggml_compute_forward_repeat_back(
  9053. const struct ggml_compute_params * params,
  9054. struct ggml_tensor * dst) {
  9055. const struct ggml_tensor * src0 = dst->src[0];
  9056. switch (src0->type) {
  9057. case GGML_TYPE_F32:
  9058. {
  9059. ggml_compute_forward_repeat_back_f32(params, dst);
  9060. } break;
  9061. default:
  9062. {
  9063. GGML_ASSERT(false);
  9064. } break;
  9065. }
  9066. }
  9067. // ggml_compute_forward_concat
  9068. static void ggml_compute_forward_concat_f32(
  9069. const struct ggml_compute_params * params,
  9070. struct ggml_tensor * dst) {
  9071. const struct ggml_tensor * src0 = dst->src[0];
  9072. const struct ggml_tensor * src1 = dst->src[1];
  9073. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9074. return;
  9075. }
  9076. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9077. const int ith = params->ith;
  9078. const int nth = params->nth;
  9079. GGML_TENSOR_BINARY_OP_LOCALS
  9080. // TODO: support for transposed / permuted tensors
  9081. GGML_ASSERT(nb0 == sizeof(float));
  9082. GGML_ASSERT(nb00 == sizeof(float));
  9083. GGML_ASSERT(nb10 == sizeof(float));
  9084. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9085. GGML_ASSERT(dim >= 0 && dim < 4);
  9086. int64_t o[4] = {0, 0, 0, 0};
  9087. o[dim] = src0->ne[dim];
  9088. const float * x;
  9089. // TODO: smarter multi-theading
  9090. for (int i3 = 0; i3 < ne3; i3++) {
  9091. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9092. for (int i1 = 0; i1 < ne1; i1++) {
  9093. for (int i0 = 0; i0 < ne0; i0++) {
  9094. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9095. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9096. } else {
  9097. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9098. }
  9099. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9100. *y = *x;
  9101. }
  9102. }
  9103. }
  9104. }
  9105. }
  9106. static void ggml_compute_forward_concat(
  9107. const struct ggml_compute_params * params,
  9108. struct ggml_tensor * dst) {
  9109. const struct ggml_tensor * src0 = dst->src[0];
  9110. switch (src0->type) {
  9111. case GGML_TYPE_F32:
  9112. case GGML_TYPE_I32:
  9113. {
  9114. ggml_compute_forward_concat_f32(params, dst);
  9115. } break;
  9116. default:
  9117. {
  9118. GGML_ASSERT(false);
  9119. } break;
  9120. }
  9121. }
  9122. // ggml_compute_forward_abs
  9123. static void ggml_compute_forward_abs_f32(
  9124. const struct ggml_compute_params * params,
  9125. struct ggml_tensor * dst) {
  9126. const struct ggml_tensor * src0 = dst->src[0];
  9127. assert(params->ith == 0);
  9128. assert(ggml_are_same_shape(src0, dst));
  9129. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9130. return;
  9131. }
  9132. const int n = ggml_nrows(src0);
  9133. const int nc = src0->ne[0];
  9134. assert(dst->nb[0] == sizeof(float));
  9135. assert(src0->nb[0] == sizeof(float));
  9136. for (int i = 0; i < n; i++) {
  9137. ggml_vec_abs_f32(nc,
  9138. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9139. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9140. }
  9141. }
  9142. static void ggml_compute_forward_abs(
  9143. const struct ggml_compute_params * params,
  9144. struct ggml_tensor * dst) {
  9145. const struct ggml_tensor * src0 = dst->src[0];
  9146. switch (src0->type) {
  9147. case GGML_TYPE_F32:
  9148. {
  9149. ggml_compute_forward_abs_f32(params, dst);
  9150. } break;
  9151. default:
  9152. {
  9153. GGML_ASSERT(false);
  9154. } break;
  9155. }
  9156. }
  9157. // ggml_compute_forward_sgn
  9158. static void ggml_compute_forward_sgn_f32(
  9159. const struct ggml_compute_params * params,
  9160. struct ggml_tensor * dst) {
  9161. const struct ggml_tensor * src0 = dst->src[0];
  9162. assert(params->ith == 0);
  9163. assert(ggml_are_same_shape(src0, dst));
  9164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9165. return;
  9166. }
  9167. const int n = ggml_nrows(src0);
  9168. const int nc = src0->ne[0];
  9169. assert(dst->nb[0] == sizeof(float));
  9170. assert(src0->nb[0] == sizeof(float));
  9171. for (int i = 0; i < n; i++) {
  9172. ggml_vec_sgn_f32(nc,
  9173. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9174. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9175. }
  9176. }
  9177. static void ggml_compute_forward_sgn(
  9178. const struct ggml_compute_params * params,
  9179. struct ggml_tensor * dst) {
  9180. const struct ggml_tensor * src0 = dst->src[0];
  9181. switch (src0->type) {
  9182. case GGML_TYPE_F32:
  9183. {
  9184. ggml_compute_forward_sgn_f32(params, dst);
  9185. } break;
  9186. default:
  9187. {
  9188. GGML_ASSERT(false);
  9189. } break;
  9190. }
  9191. }
  9192. // ggml_compute_forward_neg
  9193. static void ggml_compute_forward_neg_f32(
  9194. const struct ggml_compute_params * params,
  9195. struct ggml_tensor * dst) {
  9196. const struct ggml_tensor * src0 = dst->src[0];
  9197. assert(params->ith == 0);
  9198. assert(ggml_are_same_shape(src0, dst));
  9199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9200. return;
  9201. }
  9202. const int n = ggml_nrows(src0);
  9203. const int nc = src0->ne[0];
  9204. assert(dst->nb[0] == sizeof(float));
  9205. assert(src0->nb[0] == sizeof(float));
  9206. for (int i = 0; i < n; i++) {
  9207. ggml_vec_neg_f32(nc,
  9208. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9209. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9210. }
  9211. }
  9212. static void ggml_compute_forward_neg(
  9213. const struct ggml_compute_params * params,
  9214. struct ggml_tensor * dst) {
  9215. const struct ggml_tensor * src0 = dst->src[0];
  9216. switch (src0->type) {
  9217. case GGML_TYPE_F32:
  9218. {
  9219. ggml_compute_forward_neg_f32(params, dst);
  9220. } break;
  9221. default:
  9222. {
  9223. GGML_ASSERT(false);
  9224. } break;
  9225. }
  9226. }
  9227. // ggml_compute_forward_step
  9228. static void ggml_compute_forward_step_f32(
  9229. const struct ggml_compute_params * params,
  9230. struct ggml_tensor * dst) {
  9231. const struct ggml_tensor * src0 = dst->src[0];
  9232. assert(params->ith == 0);
  9233. assert(ggml_are_same_shape(src0, dst));
  9234. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9235. return;
  9236. }
  9237. const int n = ggml_nrows(src0);
  9238. const int nc = src0->ne[0];
  9239. assert(dst->nb[0] == sizeof(float));
  9240. assert(src0->nb[0] == sizeof(float));
  9241. for (int i = 0; i < n; i++) {
  9242. ggml_vec_step_f32(nc,
  9243. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9244. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9245. }
  9246. }
  9247. static void ggml_compute_forward_step(
  9248. const struct ggml_compute_params * params,
  9249. struct ggml_tensor * dst) {
  9250. const struct ggml_tensor * src0 = dst->src[0];
  9251. switch (src0->type) {
  9252. case GGML_TYPE_F32:
  9253. {
  9254. ggml_compute_forward_step_f32(params, dst);
  9255. } break;
  9256. default:
  9257. {
  9258. GGML_ASSERT(false);
  9259. } break;
  9260. }
  9261. }
  9262. // ggml_compute_forward_tanh
  9263. static void ggml_compute_forward_tanh_f32(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. assert(params->ith == 0);
  9268. assert(ggml_are_same_shape(src0, dst));
  9269. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9270. return;
  9271. }
  9272. const int n = ggml_nrows(src0);
  9273. const int nc = src0->ne[0];
  9274. assert(dst->nb[0] == sizeof(float));
  9275. assert(src0->nb[0] == sizeof(float));
  9276. for (int i = 0; i < n; i++) {
  9277. ggml_vec_tanh_f32(nc,
  9278. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9279. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9280. }
  9281. }
  9282. static void ggml_compute_forward_tanh(
  9283. const struct ggml_compute_params * params,
  9284. struct ggml_tensor * dst) {
  9285. const struct ggml_tensor * src0 = dst->src[0];
  9286. switch (src0->type) {
  9287. case GGML_TYPE_F32:
  9288. {
  9289. ggml_compute_forward_tanh_f32(params, dst);
  9290. } break;
  9291. default:
  9292. {
  9293. GGML_ASSERT(false);
  9294. } break;
  9295. }
  9296. }
  9297. // ggml_compute_forward_elu
  9298. static void ggml_compute_forward_elu_f32(
  9299. const struct ggml_compute_params * params,
  9300. struct ggml_tensor * dst) {
  9301. const struct ggml_tensor * src0 = dst->src[0];
  9302. assert(params->ith == 0);
  9303. assert(ggml_are_same_shape(src0, dst));
  9304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9305. return;
  9306. }
  9307. const int n = ggml_nrows(src0);
  9308. const int nc = src0->ne[0];
  9309. assert(dst->nb[0] == sizeof(float));
  9310. assert(src0->nb[0] == sizeof(float));
  9311. for (int i = 0; i < n; i++) {
  9312. ggml_vec_elu_f32(nc,
  9313. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9314. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9315. }
  9316. }
  9317. static void ggml_compute_forward_elu(
  9318. const struct ggml_compute_params * params,
  9319. struct ggml_tensor * dst) {
  9320. const struct ggml_tensor * src0 = dst->src[0];
  9321. switch (src0->type) {
  9322. case GGML_TYPE_F32:
  9323. {
  9324. ggml_compute_forward_elu_f32(params, dst);
  9325. } break;
  9326. default:
  9327. {
  9328. GGML_ASSERT(false);
  9329. } break;
  9330. }
  9331. }
  9332. // ggml_compute_forward_relu
  9333. static void ggml_compute_forward_relu_f32(
  9334. const struct ggml_compute_params * params,
  9335. struct ggml_tensor * dst) {
  9336. const struct ggml_tensor * src0 = dst->src[0];
  9337. assert(params->ith == 0);
  9338. assert(ggml_are_same_shape(src0, dst));
  9339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9340. return;
  9341. }
  9342. const int n = ggml_nrows(src0);
  9343. const int nc = src0->ne[0];
  9344. assert(dst->nb[0] == sizeof(float));
  9345. assert(src0->nb[0] == sizeof(float));
  9346. for (int i = 0; i < n; i++) {
  9347. ggml_vec_relu_f32(nc,
  9348. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9349. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9350. }
  9351. }
  9352. static void ggml_compute_forward_relu(
  9353. const struct ggml_compute_params * params,
  9354. struct ggml_tensor * dst) {
  9355. const struct ggml_tensor * src0 = dst->src[0];
  9356. switch (src0->type) {
  9357. case GGML_TYPE_F32:
  9358. {
  9359. ggml_compute_forward_relu_f32(params, dst);
  9360. } break;
  9361. default:
  9362. {
  9363. GGML_ASSERT(false);
  9364. } break;
  9365. }
  9366. }
  9367. // ggml_compute_forward_sigmoid
  9368. static void ggml_compute_forward_sigmoid_f32(
  9369. const struct ggml_compute_params * params,
  9370. struct ggml_tensor * dst) {
  9371. const struct ggml_tensor * src0 = dst->src[0];
  9372. assert(params->ith == 0);
  9373. assert(ggml_are_same_shape(src0, dst));
  9374. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9375. return;
  9376. }
  9377. const int n = ggml_nrows(src0);
  9378. const int nc = src0->ne[0];
  9379. assert(dst->nb[0] == sizeof(float));
  9380. assert(src0->nb[0] == sizeof(float));
  9381. for (int i = 0; i < n; i++) {
  9382. ggml_vec_sigmoid_f32(nc,
  9383. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9384. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9385. }
  9386. }
  9387. static void ggml_compute_forward_sigmoid(
  9388. const struct ggml_compute_params * params,
  9389. struct ggml_tensor * dst) {
  9390. const struct ggml_tensor * src0 = dst->src[0];
  9391. switch (src0->type) {
  9392. case GGML_TYPE_F32:
  9393. {
  9394. ggml_compute_forward_sigmoid_f32(params, dst);
  9395. } break;
  9396. default:
  9397. {
  9398. GGML_ASSERT(false);
  9399. } break;
  9400. }
  9401. }
  9402. // ggml_compute_forward_gelu
  9403. static void ggml_compute_forward_gelu_f32(
  9404. const struct ggml_compute_params * params,
  9405. struct ggml_tensor * dst) {
  9406. const struct ggml_tensor * src0 = dst->src[0];
  9407. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9408. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9409. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9410. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9411. return;
  9412. }
  9413. const int ith = params->ith;
  9414. const int nth = params->nth;
  9415. const int nc = src0->ne[0];
  9416. const int nr = ggml_nrows(src0);
  9417. // rows per thread
  9418. const int dr = (nr + nth - 1)/nth;
  9419. // row range for this thread
  9420. const int ir0 = dr*ith;
  9421. const int ir1 = MIN(ir0 + dr, nr);
  9422. for (int i1 = ir0; i1 < ir1; i1++) {
  9423. ggml_vec_gelu_f32(nc,
  9424. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9425. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9426. #ifndef NDEBUG
  9427. for (int k = 0; k < nc; k++) {
  9428. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9429. UNUSED(x);
  9430. assert(!isnan(x));
  9431. assert(!isinf(x));
  9432. }
  9433. #endif
  9434. }
  9435. }
  9436. static void ggml_compute_forward_gelu(
  9437. const struct ggml_compute_params * params,
  9438. struct ggml_tensor * dst) {
  9439. const struct ggml_tensor * src0 = dst->src[0];
  9440. switch (src0->type) {
  9441. case GGML_TYPE_F32:
  9442. {
  9443. ggml_compute_forward_gelu_f32(params, dst);
  9444. } break;
  9445. default:
  9446. {
  9447. GGML_ASSERT(false);
  9448. } break;
  9449. }
  9450. }
  9451. // ggml_compute_forward_gelu_quick
  9452. static void ggml_compute_forward_gelu_quick_f32(
  9453. const struct ggml_compute_params * params,
  9454. struct ggml_tensor * dst) {
  9455. const struct ggml_tensor * src0 = dst->src[0];
  9456. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9457. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9458. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9459. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9460. return;
  9461. }
  9462. const int ith = params->ith;
  9463. const int nth = params->nth;
  9464. const int nc = src0->ne[0];
  9465. const int nr = ggml_nrows(src0);
  9466. // rows per thread
  9467. const int dr = (nr + nth - 1)/nth;
  9468. // row range for this thread
  9469. const int ir0 = dr*ith;
  9470. const int ir1 = MIN(ir0 + dr, nr);
  9471. for (int i1 = ir0; i1 < ir1; i1++) {
  9472. ggml_vec_gelu_quick_f32(nc,
  9473. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9474. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9475. #ifndef NDEBUG
  9476. for (int k = 0; k < nc; k++) {
  9477. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9478. UNUSED(x);
  9479. assert(!isnan(x));
  9480. assert(!isinf(x));
  9481. }
  9482. #endif
  9483. }
  9484. }
  9485. static void ggml_compute_forward_gelu_quick(
  9486. const struct ggml_compute_params * params,
  9487. struct ggml_tensor * dst) {
  9488. const struct ggml_tensor * src0 = dst->src[0];
  9489. switch (src0->type) {
  9490. case GGML_TYPE_F32:
  9491. {
  9492. ggml_compute_forward_gelu_quick_f32(params, dst);
  9493. } break;
  9494. default:
  9495. {
  9496. GGML_ASSERT(false);
  9497. } break;
  9498. }
  9499. }
  9500. // ggml_compute_forward_silu
  9501. static void ggml_compute_forward_silu_f32(
  9502. const struct ggml_compute_params * params,
  9503. struct ggml_tensor * dst) {
  9504. const struct ggml_tensor * src0 = dst->src[0];
  9505. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9506. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9508. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9509. return;
  9510. }
  9511. const int ith = params->ith;
  9512. const int nth = params->nth;
  9513. const int nc = src0->ne[0];
  9514. const int nr = ggml_nrows(src0);
  9515. // rows per thread
  9516. const int dr = (nr + nth - 1)/nth;
  9517. // row range for this thread
  9518. const int ir0 = dr*ith;
  9519. const int ir1 = MIN(ir0 + dr, nr);
  9520. for (int i1 = ir0; i1 < ir1; i1++) {
  9521. ggml_vec_silu_f32(nc,
  9522. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9523. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9524. #ifndef NDEBUG
  9525. for (int k = 0; k < nc; k++) {
  9526. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9527. UNUSED(x);
  9528. assert(!isnan(x));
  9529. assert(!isinf(x));
  9530. }
  9531. #endif
  9532. }
  9533. }
  9534. static void ggml_compute_forward_silu(
  9535. const struct ggml_compute_params * params,
  9536. struct ggml_tensor * dst) {
  9537. const struct ggml_tensor * src0 = dst->src[0];
  9538. switch (src0->type) {
  9539. case GGML_TYPE_F32:
  9540. {
  9541. ggml_compute_forward_silu_f32(params, dst);
  9542. } break;
  9543. default:
  9544. {
  9545. GGML_ASSERT(false);
  9546. } break;
  9547. }
  9548. }
  9549. // ggml_compute_forward_leaky_relu
  9550. static void ggml_compute_forward_leaky_relu_f32(
  9551. const struct ggml_compute_params * params,
  9552. struct ggml_tensor * dst) {
  9553. const struct ggml_tensor * src0 = dst->src[0];
  9554. assert(params->ith == 0);
  9555. assert(ggml_are_same_shape(src0, dst));
  9556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9557. return;
  9558. }
  9559. const int n = ggml_nrows(src0);
  9560. const int nc = src0->ne[0];
  9561. float negative_slope;
  9562. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9563. assert(dst->nb[0] == sizeof(float));
  9564. assert(src0->nb[0] == sizeof(float));
  9565. for (int i = 0; i < n; i++) {
  9566. ggml_vec_leaky_relu_f32(nc,
  9567. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9568. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9569. }
  9570. }
  9571. static void ggml_compute_forward_leaky_relu(
  9572. const struct ggml_compute_params * params,
  9573. struct ggml_tensor * dst) {
  9574. const struct ggml_tensor * src0 = dst->src[0];
  9575. switch (src0->type) {
  9576. case GGML_TYPE_F32:
  9577. {
  9578. ggml_compute_forward_leaky_relu_f32(params, dst);
  9579. } break;
  9580. default:
  9581. {
  9582. GGML_ASSERT(false);
  9583. } break;
  9584. }
  9585. }
  9586. // ggml_compute_forward_silu_back
  9587. static void ggml_compute_forward_silu_back_f32(
  9588. const struct ggml_compute_params * params,
  9589. struct ggml_tensor * dst) {
  9590. const struct ggml_tensor * src0 = dst->src[0];
  9591. const struct ggml_tensor * grad = dst->src[1];
  9592. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9593. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9594. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9595. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9596. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9597. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9598. return;
  9599. }
  9600. const int ith = params->ith;
  9601. const int nth = params->nth;
  9602. const int nc = src0->ne[0];
  9603. const int nr = ggml_nrows(src0);
  9604. // rows per thread
  9605. const int dr = (nr + nth - 1)/nth;
  9606. // row range for this thread
  9607. const int ir0 = dr*ith;
  9608. const int ir1 = MIN(ir0 + dr, nr);
  9609. for (int i1 = ir0; i1 < ir1; i1++) {
  9610. ggml_vec_silu_backward_f32(nc,
  9611. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9612. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9613. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9614. #ifndef NDEBUG
  9615. for (int k = 0; k < nc; k++) {
  9616. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9617. UNUSED(x);
  9618. assert(!isnan(x));
  9619. assert(!isinf(x));
  9620. }
  9621. #endif
  9622. }
  9623. }
  9624. static void ggml_compute_forward_silu_back(
  9625. const struct ggml_compute_params * params,
  9626. struct ggml_tensor * dst) {
  9627. const struct ggml_tensor * src0 = dst->src[0];
  9628. switch (src0->type) {
  9629. case GGML_TYPE_F32:
  9630. {
  9631. ggml_compute_forward_silu_back_f32(params, dst);
  9632. } break;
  9633. default:
  9634. {
  9635. GGML_ASSERT(false);
  9636. } break;
  9637. }
  9638. }
  9639. static void ggml_compute_forward_hardswish_f32(
  9640. const struct ggml_compute_params * params,
  9641. struct ggml_tensor * dst) {
  9642. const struct ggml_tensor * src0 = dst->src[0];
  9643. assert(params->ith == 0);
  9644. assert(ggml_are_same_shape(src0, dst));
  9645. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9646. return;
  9647. }
  9648. const int n = ggml_nrows(src0);
  9649. const int nc = src0->ne[0];
  9650. assert(dst->nb[0] == sizeof(float));
  9651. assert(src0->nb[0] == sizeof(float));
  9652. for (int i = 0; i < n; i++) {
  9653. ggml_vec_hardswish_f32(nc,
  9654. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9655. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9656. }
  9657. }
  9658. static void ggml_compute_forward_hardswish(
  9659. const struct ggml_compute_params * params,
  9660. struct ggml_tensor * dst) {
  9661. const struct ggml_tensor * src0 = dst->src[0];
  9662. switch (src0->type) {
  9663. case GGML_TYPE_F32:
  9664. {
  9665. ggml_compute_forward_hardswish_f32(params, dst);
  9666. } break;
  9667. default:
  9668. {
  9669. GGML_ASSERT(false);
  9670. } break;
  9671. }
  9672. }
  9673. static void ggml_compute_forward_hardsigmoid_f32(
  9674. const struct ggml_compute_params * params,
  9675. struct ggml_tensor * dst) {
  9676. const struct ggml_tensor * src0 = dst->src[0];
  9677. assert(params->ith == 0);
  9678. assert(ggml_are_same_shape(src0, dst));
  9679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9680. return;
  9681. }
  9682. const int n = ggml_nrows(src0);
  9683. const int nc = src0->ne[0];
  9684. assert(dst->nb[0] == sizeof(float));
  9685. assert(src0->nb[0] == sizeof(float));
  9686. for (int i = 0; i < n; i++) {
  9687. ggml_vec_hardsigmoid_f32(nc,
  9688. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9689. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9690. }
  9691. }
  9692. static void ggml_compute_forward_hardsigmoid(
  9693. const struct ggml_compute_params * params,
  9694. struct ggml_tensor * dst) {
  9695. const struct ggml_tensor * src0 = dst->src[0];
  9696. switch (src0->type) {
  9697. case GGML_TYPE_F32:
  9698. {
  9699. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9700. } break;
  9701. default:
  9702. {
  9703. GGML_ASSERT(false);
  9704. } break;
  9705. }
  9706. }
  9707. // ggml_compute_forward_norm
  9708. static void ggml_compute_forward_norm_f32(
  9709. const struct ggml_compute_params * params,
  9710. struct ggml_tensor * dst) {
  9711. const struct ggml_tensor * src0 = dst->src[0];
  9712. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9714. return;
  9715. }
  9716. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9717. const int ith = params->ith;
  9718. const int nth = params->nth;
  9719. GGML_TENSOR_UNARY_OP_LOCALS
  9720. float eps;
  9721. memcpy(&eps, dst->op_params, sizeof(float));
  9722. GGML_ASSERT(eps > 0.0f);
  9723. // TODO: optimize
  9724. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9725. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9726. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9727. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9728. ggml_float sum = 0.0;
  9729. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9730. sum += (ggml_float)x[i00];
  9731. }
  9732. float mean = sum/ne00;
  9733. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9734. ggml_float sum2 = 0.0;
  9735. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9736. float v = x[i00] - mean;
  9737. y[i00] = v;
  9738. sum2 += (ggml_float)(v*v);
  9739. }
  9740. float variance = sum2/ne00;
  9741. const float scale = 1.0f/sqrtf(variance + eps);
  9742. ggml_vec_scale_f32(ne00, y, scale);
  9743. }
  9744. }
  9745. }
  9746. }
  9747. static void ggml_compute_forward_norm(
  9748. const struct ggml_compute_params * params,
  9749. struct ggml_tensor * dst) {
  9750. const struct ggml_tensor * src0 = dst->src[0];
  9751. switch (src0->type) {
  9752. case GGML_TYPE_F32:
  9753. {
  9754. ggml_compute_forward_norm_f32(params, dst);
  9755. } break;
  9756. default:
  9757. {
  9758. GGML_ASSERT(false);
  9759. } break;
  9760. }
  9761. }
  9762. // ggml_compute_forward_group_rms_norm
  9763. static void ggml_compute_forward_rms_norm_f32(
  9764. const struct ggml_compute_params * params,
  9765. struct ggml_tensor * dst) {
  9766. const struct ggml_tensor * src0 = dst->src[0];
  9767. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9768. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9769. return;
  9770. }
  9771. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9772. const int ith = params->ith;
  9773. const int nth = params->nth;
  9774. GGML_TENSOR_UNARY_OP_LOCALS
  9775. float eps;
  9776. memcpy(&eps, dst->op_params, sizeof(float));
  9777. GGML_ASSERT(eps > 0.0f);
  9778. // TODO: optimize
  9779. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9780. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9781. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9782. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9783. ggml_float sum = 0.0;
  9784. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9785. sum += (ggml_float)(x[i00] * x[i00]);
  9786. }
  9787. const float mean = sum/ne00;
  9788. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9789. memcpy(y, x, ne00 * sizeof(float));
  9790. // for (int i00 = 0; i00 < ne00; i00++) {
  9791. // y[i00] = x[i00];
  9792. // }
  9793. const float scale = 1.0f/sqrtf(mean + eps);
  9794. ggml_vec_scale_f32(ne00, y, scale);
  9795. }
  9796. }
  9797. }
  9798. }
  9799. static void ggml_compute_forward_rms_norm(
  9800. const struct ggml_compute_params * params,
  9801. struct ggml_tensor * dst) {
  9802. const struct ggml_tensor * src0 = dst->src[0];
  9803. switch (src0->type) {
  9804. case GGML_TYPE_F32:
  9805. {
  9806. ggml_compute_forward_rms_norm_f32(params, dst);
  9807. } break;
  9808. default:
  9809. {
  9810. GGML_ASSERT(false);
  9811. } break;
  9812. }
  9813. }
  9814. static void ggml_compute_forward_rms_norm_back_f32(
  9815. const struct ggml_compute_params * params,
  9816. struct ggml_tensor * dst) {
  9817. const struct ggml_tensor * src0 = dst->src[0];
  9818. const struct ggml_tensor * src1 = dst->src[1];
  9819. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9820. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9821. return;
  9822. }
  9823. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9824. const int ith = params->ith;
  9825. const int nth = params->nth;
  9826. GGML_TENSOR_BINARY_OP_LOCALS
  9827. float eps;
  9828. memcpy(&eps, dst->op_params, sizeof(float));
  9829. // TODO: optimize
  9830. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9831. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9832. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9833. // src1 is same shape as src0 => same indices
  9834. const int64_t i11 = i01;
  9835. const int64_t i12 = i02;
  9836. const int64_t i13 = i03;
  9837. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9838. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9839. ggml_float sum_xx = 0.0;
  9840. ggml_float sum_xdz = 0.0;
  9841. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9842. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9843. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9844. }
  9845. //const float mean = (float)(sum_xx)/ne00;
  9846. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9847. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9848. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9849. // we could cache rms from forward pass to improve performance.
  9850. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9851. //const float rms = sqrtf(mean_eps);
  9852. const float rrms = 1.0f / sqrtf(mean_eps);
  9853. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9854. {
  9855. // z = rms_norm(x)
  9856. //
  9857. // rms_norm(src0) =
  9858. // scale(
  9859. // src0,
  9860. // div(
  9861. // 1,
  9862. // sqrt(
  9863. // add(
  9864. // scale(
  9865. // sum(
  9866. // sqr(
  9867. // src0)),
  9868. // (1.0/N)),
  9869. // eps))));
  9870. // postorder:
  9871. // ## op args grad
  9872. // 00 param src0 grad[#00]
  9873. // 01 const 1
  9874. // 02 sqr (#00) grad[#02]
  9875. // 03 sum (#02) grad[#03]
  9876. // 04 const 1/N
  9877. // 05 scale (#03, #04) grad[#05]
  9878. // 06 const eps
  9879. // 07 add (#05, #06) grad[#07]
  9880. // 08 sqrt (#07) grad[#08]
  9881. // 09 div (#01,#08) grad[#09]
  9882. // 10 scale (#00,#09) grad[#10]
  9883. //
  9884. // backward pass, given grad[#10]
  9885. // #10: scale
  9886. // grad[#00] += scale(grad[#10],#09)
  9887. // grad[#09] += sum(mul(grad[#10],#00))
  9888. // #09: div
  9889. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9890. // #08: sqrt
  9891. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9892. // #07: add
  9893. // grad[#05] += grad[#07]
  9894. // #05: scale
  9895. // grad[#03] += scale(grad[#05],#04)
  9896. // #03: sum
  9897. // grad[#02] += repeat(grad[#03], #02)
  9898. // #02:
  9899. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9900. //
  9901. // substitute and simplify:
  9902. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9903. // grad[#02] = repeat(grad[#03], #02)
  9904. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9905. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9906. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9907. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9908. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9909. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9910. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9911. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9912. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9913. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9914. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9915. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9916. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9917. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9918. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9919. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9920. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9921. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9922. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9923. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9924. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9925. // a = b*c + d*e
  9926. // a = b*c*f/f + d*e*f/f
  9927. // a = (b*c*f + d*e*f)*(1/f)
  9928. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9929. // a = (b + d*e/c)*c
  9930. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9931. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9932. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9933. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9934. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9935. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9936. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9937. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9938. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9939. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9940. }
  9941. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9942. // post-order:
  9943. // dx := x
  9944. // dx := scale(dx,-mean_xdz/mean_eps)
  9945. // dx := add(dx, dz)
  9946. // dx := scale(dx, rrms)
  9947. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9948. ggml_vec_cpy_f32 (ne00, dx, x);
  9949. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9950. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9951. ggml_vec_acc_f32 (ne00, dx, dz);
  9952. ggml_vec_scale_f32(ne00, dx, rrms);
  9953. }
  9954. }
  9955. }
  9956. }
  9957. static void ggml_compute_forward_rms_norm_back(
  9958. const struct ggml_compute_params * params,
  9959. struct ggml_tensor * dst) {
  9960. const struct ggml_tensor * src0 = dst->src[0];
  9961. switch (src0->type) {
  9962. case GGML_TYPE_F32:
  9963. {
  9964. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9965. } break;
  9966. default:
  9967. {
  9968. GGML_ASSERT(false);
  9969. } break;
  9970. }
  9971. }
  9972. // ggml_compute_forward_group_norm
  9973. static void ggml_compute_forward_group_norm_f32(
  9974. const struct ggml_compute_params * params,
  9975. struct ggml_tensor * dst) {
  9976. const struct ggml_tensor * src0 = dst->src[0];
  9977. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9978. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9979. return;
  9980. }
  9981. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9982. const int ith = params->ith;
  9983. const int nth = params->nth;
  9984. GGML_TENSOR_UNARY_OP_LOCALS
  9985. const float eps = 1e-6f; // TODO: make this a parameter
  9986. // TODO: optimize
  9987. int n_channels = src0->ne[2];
  9988. int n_groups = dst->op_params[0];
  9989. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9990. for (int i = ith; i < n_groups; i += nth) {
  9991. int start = i * n_channels_per_group;
  9992. int end = start + n_channels_per_group;
  9993. if (end > n_channels) {
  9994. end = n_channels;
  9995. }
  9996. int step = end - start;
  9997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9998. ggml_float sum = 0.0;
  9999. for (int64_t i02 = start; i02 < end; i02++) {
  10000. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10001. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10002. ggml_float sumr = 0.0;
  10003. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10004. sumr += (ggml_float)x[i00];
  10005. }
  10006. sum += sumr;
  10007. }
  10008. }
  10009. const float mean = sum / (ne00 * ne01 * step);
  10010. ggml_float sum2 = 0.0;
  10011. for (int64_t i02 = start; i02 < end; i02++) {
  10012. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10013. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  10014. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10015. ggml_float sumr = 0.0;
  10016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10017. float v = x[i00] - mean;
  10018. y[i00] = v;
  10019. sumr += (ggml_float)(v * v);
  10020. }
  10021. sum2 += sumr;
  10022. }
  10023. }
  10024. const float variance = sum2 / (ne00 * ne01 * step);
  10025. const float scale = 1.0f / sqrtf(variance + eps);
  10026. for (int64_t i02 = start; i02 < end; i02++) {
  10027. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10028. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10029. ggml_vec_scale_f32(ne00, y, scale);
  10030. }
  10031. }
  10032. }
  10033. }
  10034. }
  10035. static void ggml_compute_forward_group_norm(
  10036. const struct ggml_compute_params * params,
  10037. struct ggml_tensor * dst) {
  10038. const struct ggml_tensor * src0 = dst->src[0];
  10039. switch (src0->type) {
  10040. case GGML_TYPE_F32:
  10041. {
  10042. ggml_compute_forward_group_norm_f32(params, dst);
  10043. } break;
  10044. default:
  10045. {
  10046. GGML_ASSERT(false);
  10047. } break;
  10048. }
  10049. }
  10050. // ggml_compute_forward_mul_mat
  10051. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10052. // helper function to determine if it is better to use BLAS or not
  10053. // for large matrices, BLAS is faster
  10054. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10055. const struct ggml_tensor * src0 = dst->src[0];
  10056. const struct ggml_tensor * src1 = dst->src[1];
  10057. //const int64_t ne00 = src0->ne[0];
  10058. //const int64_t ne01 = src0->ne[1];
  10059. const int64_t ne10 = src1->ne[0];
  10060. const int64_t ne0 = dst->ne[0];
  10061. const int64_t ne1 = dst->ne[1];
  10062. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10063. // all the experts for each batch element and the processing would become incredibly slow
  10064. // TODO: find the optimal values for these
  10065. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10066. ggml_is_contiguous(src0) &&
  10067. ggml_is_contiguous(src1) &&
  10068. //src0->type == GGML_TYPE_F32 &&
  10069. src1->type == GGML_TYPE_F32 &&
  10070. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10071. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10072. return true;
  10073. }
  10074. return false;
  10075. }
  10076. #endif
  10077. static void ggml_compute_forward_mul_mat_one_chunk(
  10078. const struct ggml_compute_params * params,
  10079. struct ggml_tensor * dst,
  10080. const int64_t num_rows_per_vec_dot,
  10081. const int64_t ir0_start,
  10082. const int64_t ir0_end,
  10083. const int64_t ir1_start,
  10084. const int64_t ir1_end) {
  10085. const struct ggml_tensor * src0 = dst->src[0];
  10086. const struct ggml_tensor * src1 = dst->src[1];
  10087. GGML_TENSOR_BINARY_OP_LOCALS
  10088. const enum ggml_type type = src0->type;
  10089. const bool src1_cont = ggml_is_contiguous(src1);
  10090. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10091. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10092. // broadcast factors
  10093. const int64_t r2 = ne12 / ne02;
  10094. const int64_t r3 = ne13 / ne03;
  10095. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10096. // threads with no work simply yield (not sure if it helps)
  10097. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10098. return;
  10099. }
  10100. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10101. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10102. assert(ne12 % ne02 == 0);
  10103. assert(ne13 % ne03 == 0);
  10104. // block-tiling attempt
  10105. const int64_t blck_0 = 16;
  10106. const int64_t blck_1 = 16;
  10107. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10108. // attempt to reduce false-sharing (does not seem to make a difference)
  10109. // 16 * 2, accounting for mmla kernels
  10110. float tmp[32];
  10111. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10112. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10113. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10114. const int64_t i13 = (ir1 / (ne12 * ne1));
  10115. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10116. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10117. // broadcast src0 into src1
  10118. const int64_t i03 = i13 / r3;
  10119. const int64_t i02 = i12 / r2;
  10120. const int64_t i1 = i11;
  10121. const int64_t i2 = i12;
  10122. const int64_t i3 = i13;
  10123. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10124. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10125. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10126. // the original src1 data pointer, so we should index using the indices directly
  10127. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10128. const char * src1_col = (const char*)wdata +
  10129. (src1_cont || src1->type != vec_dot_type
  10130. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10131. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10132. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10133. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10134. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10135. //}
  10136. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10137. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10138. }
  10139. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10140. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10141. }
  10142. }
  10143. }
  10144. }
  10145. }
  10146. static void ggml_compute_forward_mul_mat(
  10147. const struct ggml_compute_params * params,
  10148. struct ggml_tensor * dst,
  10149. struct ggml_compute_state * state) {
  10150. const struct ggml_tensor * src0 = dst->src[0];
  10151. const struct ggml_tensor * src1 = dst->src[1];
  10152. int64_t t0 = ggml_perf_time_us();
  10153. UNUSED(t0);
  10154. GGML_TENSOR_BINARY_OP_LOCALS
  10155. const int ith = params->ith;
  10156. const int nth = params->nth;
  10157. const enum ggml_type type = src0->type;
  10158. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10159. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10160. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10161. GGML_ASSERT(ne0 == ne01);
  10162. GGML_ASSERT(ne1 == ne11);
  10163. GGML_ASSERT(ne2 == ne12);
  10164. GGML_ASSERT(ne3 == ne13);
  10165. // we don't support permuted src0 or src1
  10166. GGML_ASSERT(nb00 == ggml_type_size(type));
  10167. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10168. // dst cannot be transposed or permuted
  10169. GGML_ASSERT(nb0 == sizeof(float));
  10170. GGML_ASSERT(nb0 <= nb1);
  10171. GGML_ASSERT(nb1 <= nb2);
  10172. GGML_ASSERT(nb2 <= nb3);
  10173. // broadcast factors
  10174. const int64_t r2 = ne12 / ne02;
  10175. const int64_t r3 = ne13 / ne03;
  10176. UNUSED(r2);
  10177. UNUSED(r3);
  10178. // nb01 >= nb00 - src0 is not transposed
  10179. // compute by src0 rows
  10180. #if defined(GGML_USE_CLBLAST)
  10181. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  10182. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  10183. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  10184. }
  10185. return;
  10186. }
  10187. #endif
  10188. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10189. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10190. const int64_t ne_plane = ne01*ne00;
  10191. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10192. UNUSED(desired_wsize);
  10193. if (params->type == GGML_TASK_TYPE_INIT) {
  10194. if (type != GGML_TYPE_F32) {
  10195. assert(params->wsize >= desired_wsize);
  10196. // parallelize by src0 rows
  10197. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10198. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10199. // broadcast src0 into src1 across 2nd,3rd dimension
  10200. const int64_t i03 = i13/r3;
  10201. const int64_t i02 = i12/r2;
  10202. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10203. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10204. ggml_to_float_t const to_float = type_traits[type].to_float;
  10205. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10206. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10207. }
  10208. }
  10209. }
  10210. }
  10211. return;
  10212. }
  10213. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10214. return;
  10215. }
  10216. // perform sgemm, parallelization controlled by blas lib
  10217. if (ith != 0) {
  10218. return;
  10219. }
  10220. //const int64_t tgemm0 = ggml_perf_time_us();
  10221. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10222. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10223. const int64_t i03 = i13/r3;
  10224. const int64_t i02 = i12/r2;
  10225. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10226. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10227. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10228. if (type != GGML_TYPE_F32) {
  10229. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10230. }
  10231. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10232. ne1, ne01, ne10,
  10233. 1.0f, y, ne10,
  10234. x, ne00,
  10235. 0.0f, d, ne01);
  10236. }
  10237. }
  10238. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10239. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10240. return;
  10241. }
  10242. #endif
  10243. #if GGML_USE_LLAMAFILE
  10244. const bool src1_cont = ggml_is_contiguous(src1);
  10245. if (src1_cont) {
  10246. for (int64_t i13 = 0; i13 < ne13; i13++)
  10247. for (int64_t i12 = 0; i12 < ne12; i12++)
  10248. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10249. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10250. nb01/ggml_type_size(src0->type),
  10251. (const char *)src1->data + i12*nb12 + i13*nb13,
  10252. nb11/ggml_type_size(src1->type),
  10253. (char *)dst->data + i12*nb2 + i13*nb3,
  10254. nb1/ggml_type_size(dst->type),
  10255. ith, nth,
  10256. params->type,
  10257. src0->type,
  10258. src1->type,
  10259. dst->type))
  10260. goto UseGgmlGemm1;
  10261. return;
  10262. }
  10263. UseGgmlGemm1:;
  10264. #endif
  10265. if (params->type == GGML_TASK_TYPE_INIT) {
  10266. if (ith != 0) {
  10267. return;
  10268. }
  10269. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10270. atomic_store(&state->shared->current_chunk, nth);
  10271. if (src1->type != vec_dot_type) {
  10272. char * wdata = params->wdata;
  10273. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10274. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10275. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10276. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10277. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10278. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10279. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10280. wdata += row_size;
  10281. }
  10282. }
  10283. }
  10284. }
  10285. return;
  10286. }
  10287. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10288. return;
  10289. }
  10290. #if GGML_USE_LLAMAFILE
  10291. if (src1->type != vec_dot_type) {
  10292. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10293. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10294. for (int64_t i13 = 0; i13 < ne13; i13++)
  10295. for (int64_t i12 = 0; i12 < ne12; i12++)
  10296. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10297. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10298. nb01/ggml_type_size(src0->type),
  10299. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10300. row_size/ggml_type_size(vec_dot_type),
  10301. (char *)dst->data + i12*nb2 + i13*nb3,
  10302. nb1/ggml_type_size(dst->type),
  10303. ith, nth,
  10304. params->type,
  10305. src0->type,
  10306. vec_dot_type,
  10307. dst->type))
  10308. goto UseGgmlGemm2;
  10309. return;
  10310. }
  10311. UseGgmlGemm2:;
  10312. #endif
  10313. #ifdef GGML_PERF
  10314. int chunks_executed = 0;
  10315. UNUSED(chunks_executed);
  10316. #endif
  10317. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10318. const int64_t nr0 = ne0;
  10319. // This is the size of the rest of the dimensions of the result
  10320. const int64_t nr1 = ne1 * ne2 * ne3;
  10321. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10322. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10323. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10324. // this check can be removed once they are extended to support odd numbered rows/cols too
  10325. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10326. num_rows_per_vec_dot = 1;
  10327. }
  10328. // Now select a reasonable chunk size.
  10329. int chunk_size = 16;
  10330. // We need to step up the size if it's small
  10331. if (nr0 == 1 || nr1 == 1) {
  10332. chunk_size = 64;
  10333. }
  10334. // distribute the work across the inner or outer loop based on which one is larger
  10335. // The number of chunks in the 0/1 dim.
  10336. // CEIL(nr0/chunk_size)
  10337. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10338. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10339. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10340. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10341. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10342. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10343. // distribute the thread work across the inner or outer loop based on which one is larger
  10344. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10345. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10346. }
  10347. // The number of elements in each chunk
  10348. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10349. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10350. //if (ith == 0)
  10351. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10352. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10353. int current_chunk = ith;
  10354. while (current_chunk < nchunk0 * nchunk1) {
  10355. const int64_t ith0 = current_chunk % nchunk0;
  10356. const int64_t ith1 = current_chunk / nchunk0;
  10357. const int64_t ir0_start = dr0 * ith0;
  10358. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10359. const int64_t ir1_start = dr1 * ith1;
  10360. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10361. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10362. #ifdef GGML_PERF
  10363. chunks_executed++;
  10364. #endif
  10365. if (nth >= nchunk0 * nchunk1) {
  10366. break;
  10367. }
  10368. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10369. }
  10370. #ifdef GGML_PERF
  10371. // These numbers are useful when trying to measure how well the threading scheduling works.
  10372. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10373. //float time = (ggml_perf_time_us() - t0);
  10374. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10375. #endif
  10376. }
  10377. // ggml_compute_forward_mul_mat_id
  10378. static void ggml_compute_forward_mul_mat_id(
  10379. const struct ggml_compute_params * params,
  10380. struct ggml_tensor * dst) {
  10381. const struct ggml_tensor * src0 = dst->src[0];
  10382. const struct ggml_tensor * src1 = dst->src[1];
  10383. const struct ggml_tensor * ids = dst->src[2];
  10384. GGML_TENSOR_BINARY_OP_LOCALS
  10385. const int ith = params->ith;
  10386. const int nth = params->nth;
  10387. const enum ggml_type type = src0->type;
  10388. const bool src1_cont = ggml_is_contiguous(src1);
  10389. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10390. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10391. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10392. // we don't support permuted src0 or src1
  10393. GGML_ASSERT(nb00 == ggml_type_size(type));
  10394. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10395. // dst cannot be transposed or permuted
  10396. GGML_ASSERT(nb0 == sizeof(float));
  10397. GGML_ASSERT(nb0 <= nb1);
  10398. GGML_ASSERT(nb1 <= nb2);
  10399. GGML_ASSERT(nb2 <= nb3);
  10400. // row groups
  10401. const int n_ids = ids->ne[0]; // n_expert_used
  10402. const int n_as = ne02; // n_expert
  10403. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10404. (char *) params->wdata :
  10405. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10406. struct mmid_row_mapping {
  10407. int32_t i1;
  10408. int32_t i2;
  10409. };
  10410. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10411. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10412. if (params->type == GGML_TASK_TYPE_INIT) {
  10413. if (ith != 0) {
  10414. return;
  10415. }
  10416. char * wdata = params->wdata;
  10417. if (src1->type != vec_dot_type) {
  10418. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10419. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10420. assert(src1->type == GGML_TYPE_F32);
  10421. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10422. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10423. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10424. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10425. wdata += row_size;
  10426. }
  10427. }
  10428. }
  10429. }
  10430. // initialize matrix_row_counts
  10431. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10432. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10433. // group rows by src0 matrix
  10434. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10435. for (int id = 0; id < n_ids; ++id) {
  10436. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10437. assert(i02 >= 0 && i02 < n_as);
  10438. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10439. matrix_row_counts[i02] += 1;
  10440. }
  10441. }
  10442. return;
  10443. }
  10444. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10445. return;
  10446. }
  10447. // compute each matrix multiplication in sequence
  10448. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10449. const int64_t cne1 = matrix_row_counts[cur_a];
  10450. if (cne1 == 0) {
  10451. continue;
  10452. }
  10453. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10454. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10455. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10456. const int64_t nr0 = ne01; // src0 rows
  10457. const int64_t nr1 = cne1; // src1 rows
  10458. // distribute the thread work across the inner or outer loop based on which one is larger
  10459. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10460. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10461. const int64_t ith0 = ith % nth0;
  10462. const int64_t ith1 = ith / nth0;
  10463. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10464. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10465. const int64_t ir010 = dr0*ith0;
  10466. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10467. const int64_t ir110 = dr1*ith1;
  10468. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10469. // threads with no work simply yield (not sure if it helps)
  10470. //if (ir010 >= ir011 || ir110 >= ir111) {
  10471. // sched_yield();
  10472. // continue;
  10473. //}
  10474. // block-tiling attempt
  10475. const int64_t blck_0 = 16;
  10476. const int64_t blck_1 = 16;
  10477. // attempt to reduce false-sharing (does not seem to make a difference)
  10478. float tmp[16];
  10479. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10480. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10481. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10482. const int64_t _i12 = ir1; // logical row index for this expert
  10483. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10484. const int id = row_mapping.i1; // selected expert index
  10485. const int64_t i11 = id % ne11;
  10486. const int64_t i12 = row_mapping.i2; // row index in src1
  10487. const int64_t i1 = id; // selected expert index
  10488. const int64_t i2 = i12; // row
  10489. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10490. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10491. // the original src1 data pointer, so we should index using the indices directly
  10492. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10493. const char * src1_col = (const char *) wdata +
  10494. (src1_cont || src1->type != vec_dot_type
  10495. ? (i11 + i12*ne11)*row_size
  10496. : (i11*nb11 + i12*nb12));
  10497. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10498. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10499. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10500. //}
  10501. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10502. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10503. }
  10504. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10505. }
  10506. }
  10507. }
  10508. }
  10509. #undef MMID_MATRIX_ROW
  10510. }
  10511. // ggml_compute_forward_out_prod
  10512. static void ggml_compute_forward_out_prod_f32(
  10513. const struct ggml_compute_params * params,
  10514. struct ggml_tensor * dst) {
  10515. const struct ggml_tensor * src0 = dst->src[0];
  10516. const struct ggml_tensor * src1 = dst->src[1];
  10517. // int64_t t0 = ggml_perf_time_us();
  10518. // UNUSED(t0);
  10519. GGML_TENSOR_BINARY_OP_LOCALS
  10520. const int ith = params->ith;
  10521. const int nth = params->nth;
  10522. GGML_ASSERT(ne0 == ne00);
  10523. GGML_ASSERT(ne1 == ne10);
  10524. GGML_ASSERT(ne2 == ne02);
  10525. GGML_ASSERT(ne02 == ne12);
  10526. GGML_ASSERT(ne3 == ne13);
  10527. GGML_ASSERT(ne03 == ne13);
  10528. // we don't support permuted src0 or src1
  10529. GGML_ASSERT(nb00 == sizeof(float));
  10530. // dst cannot be transposed or permuted
  10531. GGML_ASSERT(nb0 == sizeof(float));
  10532. // GGML_ASSERT(nb0 <= nb1);
  10533. // GGML_ASSERT(nb1 <= nb2);
  10534. // GGML_ASSERT(nb2 <= nb3);
  10535. // nb01 >= nb00 - src0 is not transposed
  10536. // compute by src0 rows
  10537. // TODO: #if defined(GGML_USE_CLBLAST)
  10538. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10539. bool use_blas = ggml_is_matrix(src0) &&
  10540. ggml_is_matrix(src1) &&
  10541. ggml_is_contiguous(src0) &&
  10542. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10543. #endif
  10544. if (params->type == GGML_TASK_TYPE_INIT) {
  10545. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10546. if (use_blas) {
  10547. return;
  10548. }
  10549. #endif
  10550. if (ith != 0) {
  10551. return;
  10552. }
  10553. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10554. return;
  10555. }
  10556. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10557. return;
  10558. }
  10559. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10560. if (use_blas) {
  10561. if (params->ith != 0) { // All threads other than the first do no work.
  10562. return;
  10563. }
  10564. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10565. // src0: (k,n)
  10566. // src1: (k,m)
  10567. // dst: (m,n)
  10568. //
  10569. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10570. // Also expressed as (major,minor)
  10571. // a: (m,k): so src1 transposed
  10572. // b: (k,n): so src0
  10573. // c: (m,n)
  10574. //
  10575. // However, if ggml_is_transposed(src1) is true, then
  10576. // src1->data already contains a transposed version, so sgemm mustn't
  10577. // transpose it further.
  10578. int n = src0->ne[0];
  10579. int k = src0->ne[1];
  10580. int m = src1->ne[0];
  10581. int transposeA, lda;
  10582. if (!ggml_is_transposed(src1)) {
  10583. transposeA = CblasTrans;
  10584. lda = m;
  10585. } else {
  10586. transposeA = CblasNoTrans;
  10587. lda = k;
  10588. }
  10589. float * a = (float *) ((char *) src1->data);
  10590. float * b = (float *) ((char *) src0->data);
  10591. float * c = (float *) ((char *) dst->data);
  10592. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10593. return;
  10594. }
  10595. #endif
  10596. // dst[:,:,:,:] = 0
  10597. // for i2,i3:
  10598. // for i1:
  10599. // for i01:
  10600. // for i0:
  10601. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10602. // parallelize by last three dimensions
  10603. // total rows in dst
  10604. const int64_t nr = ne1*ne2*ne3;
  10605. // rows per thread
  10606. const int64_t dr = (nr + nth - 1)/nth;
  10607. // row range for this thread
  10608. const int64_t ir0 = dr*ith;
  10609. const int64_t ir1 = MIN(ir0 + dr, nr);
  10610. // block-tiling attempt
  10611. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10612. const int64_t blck_1 = 16;
  10613. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10614. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10615. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10616. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10617. for (int64_t ir = bir; ir < bir1; ++ir) {
  10618. // dst indices
  10619. const int64_t i3 = ir/(ne2*ne1);
  10620. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10621. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10622. const int64_t i02 = i2;
  10623. const int64_t i03 = i3;
  10624. //const int64_t i10 = i1;
  10625. const int64_t i12 = i2;
  10626. const int64_t i13 = i3;
  10627. #if GGML_VEC_MAD_UNROLL > 2
  10628. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10629. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10630. const int64_t i11 = i01;
  10631. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10632. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10633. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10634. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10635. }
  10636. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10637. const int64_t i11 = i01;
  10638. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10639. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10640. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10641. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10642. }
  10643. #else
  10644. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10645. const int64_t i11 = i01;
  10646. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10647. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10648. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10649. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10650. }
  10651. #endif
  10652. }
  10653. }
  10654. }
  10655. //int64_t t1 = ggml_perf_time_us();
  10656. //static int64_t acc = 0;
  10657. //acc += t1 - t0;
  10658. //if (t1 - t0 > 10) {
  10659. // printf("\n");
  10660. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10661. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10662. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10663. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10664. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10665. //}
  10666. }
  10667. static void ggml_compute_forward_out_prod_q_f32(
  10668. const struct ggml_compute_params * params,
  10669. struct ggml_tensor * dst) {
  10670. const struct ggml_tensor * src0 = dst->src[0];
  10671. const struct ggml_tensor * src1 = dst->src[1];
  10672. // int64_t t0 = ggml_perf_time_us();
  10673. // UNUSED(t0);
  10674. GGML_TENSOR_BINARY_OP_LOCALS;
  10675. const int ith = params->ith;
  10676. const int nth = params->nth;
  10677. const enum ggml_type type = src0->type;
  10678. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10679. GGML_ASSERT(ne02 == ne12);
  10680. GGML_ASSERT(ne03 == ne13);
  10681. GGML_ASSERT(ne2 == ne12);
  10682. GGML_ASSERT(ne3 == ne13);
  10683. // we don't support permuted src0 dim0
  10684. GGML_ASSERT(nb00 == ggml_type_size(type));
  10685. // dst dim0 cannot be transposed or permuted
  10686. GGML_ASSERT(nb0 == sizeof(float));
  10687. // GGML_ASSERT(nb0 <= nb1);
  10688. // GGML_ASSERT(nb1 <= nb2);
  10689. // GGML_ASSERT(nb2 <= nb3);
  10690. GGML_ASSERT(ne0 == ne00);
  10691. GGML_ASSERT(ne1 == ne10);
  10692. GGML_ASSERT(ne2 == ne02);
  10693. GGML_ASSERT(ne3 == ne03);
  10694. // nb01 >= nb00 - src0 is not transposed
  10695. // compute by src0 rows
  10696. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10697. if (params->type == GGML_TASK_TYPE_INIT) {
  10698. if (ith != 0) {
  10699. return;
  10700. }
  10701. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10702. return;
  10703. }
  10704. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10705. return;
  10706. }
  10707. // parallelize by last three dimensions
  10708. // total rows in dst
  10709. const int64_t nr = ne1*ne2*ne3;
  10710. // rows per thread
  10711. const int64_t dr = (nr + nth - 1)/nth;
  10712. // row range for this thread
  10713. const int64_t ir0 = dr*ith;
  10714. const int64_t ir1 = MIN(ir0 + dr, nr);
  10715. // dst[:,:,:,:] = 0
  10716. // for i2,i3:
  10717. // for i1:
  10718. // for i01:
  10719. // for i0:
  10720. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10721. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10722. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10723. // dst indices
  10724. const int64_t i3 = ir/(ne2*ne1);
  10725. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10726. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10727. const int64_t i02 = i2;
  10728. const int64_t i03 = i3;
  10729. //const int64_t i10 = i1;
  10730. const int64_t i12 = i2;
  10731. const int64_t i13 = i3;
  10732. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10733. const int64_t i11 = i01;
  10734. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10735. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10736. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10737. dequantize_row_q(s0, wdata, ne0);
  10738. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10739. }
  10740. }
  10741. //int64_t t1 = ggml_perf_time_us();
  10742. //static int64_t acc = 0;
  10743. //acc += t1 - t0;
  10744. //if (t1 - t0 > 10) {
  10745. // printf("\n");
  10746. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10747. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10748. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10749. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10750. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10751. //}
  10752. }
  10753. static void ggml_compute_forward_out_prod(
  10754. const struct ggml_compute_params * params,
  10755. struct ggml_tensor * dst) {
  10756. const struct ggml_tensor * src0 = dst->src[0];
  10757. switch (src0->type) {
  10758. case GGML_TYPE_Q4_0:
  10759. case GGML_TYPE_Q4_1:
  10760. case GGML_TYPE_Q5_0:
  10761. case GGML_TYPE_Q5_1:
  10762. case GGML_TYPE_Q8_0:
  10763. case GGML_TYPE_Q2_K:
  10764. case GGML_TYPE_Q3_K:
  10765. case GGML_TYPE_Q4_K:
  10766. case GGML_TYPE_Q5_K:
  10767. case GGML_TYPE_Q6_K:
  10768. case GGML_TYPE_IQ2_XXS:
  10769. case GGML_TYPE_IQ2_XS:
  10770. case GGML_TYPE_IQ3_XXS:
  10771. case GGML_TYPE_IQ1_S:
  10772. case GGML_TYPE_IQ1_M:
  10773. case GGML_TYPE_IQ4_NL:
  10774. case GGML_TYPE_IQ4_XS:
  10775. case GGML_TYPE_IQ3_S:
  10776. case GGML_TYPE_IQ2_S:
  10777. {
  10778. ggml_compute_forward_out_prod_q_f32(params, dst);
  10779. } break;
  10780. case GGML_TYPE_F16:
  10781. {
  10782. GGML_ASSERT(false); // todo
  10783. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10784. } break;
  10785. case GGML_TYPE_F32:
  10786. {
  10787. ggml_compute_forward_out_prod_f32(params, dst);
  10788. } break;
  10789. default:
  10790. {
  10791. GGML_ASSERT(false);
  10792. } break;
  10793. }
  10794. }
  10795. // ggml_compute_forward_scale
  10796. static void ggml_compute_forward_scale_f32(
  10797. const struct ggml_compute_params * params,
  10798. struct ggml_tensor * dst) {
  10799. const struct ggml_tensor * src0 = dst->src[0];
  10800. GGML_ASSERT(ggml_is_contiguous(src0));
  10801. GGML_ASSERT(ggml_is_contiguous(dst));
  10802. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10804. return;
  10805. }
  10806. // scale factor
  10807. float v;
  10808. memcpy(&v, dst->op_params, sizeof(float));
  10809. const int ith = params->ith;
  10810. const int nth = params->nth;
  10811. const int nc = src0->ne[0];
  10812. const int nr = ggml_nrows(src0);
  10813. // rows per thread
  10814. const int dr = (nr + nth - 1)/nth;
  10815. // row range for this thread
  10816. const int ir0 = dr*ith;
  10817. const int ir1 = MIN(ir0 + dr, nr);
  10818. const size_t nb01 = src0->nb[1];
  10819. const size_t nb1 = dst->nb[1];
  10820. for (int i1 = ir0; i1 < ir1; i1++) {
  10821. if (dst->data != src0->data) {
  10822. // src0 is same shape as dst => same indices
  10823. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10824. }
  10825. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10826. }
  10827. }
  10828. static void ggml_compute_forward_scale(
  10829. const struct ggml_compute_params * params,
  10830. struct ggml_tensor * dst) {
  10831. const struct ggml_tensor * src0 = dst->src[0];
  10832. switch (src0->type) {
  10833. case GGML_TYPE_F32:
  10834. {
  10835. ggml_compute_forward_scale_f32(params, dst);
  10836. } break;
  10837. default:
  10838. {
  10839. GGML_ASSERT(false);
  10840. } break;
  10841. }
  10842. }
  10843. // ggml_compute_forward_set
  10844. static void ggml_compute_forward_set_f32(
  10845. const struct ggml_compute_params * params,
  10846. struct ggml_tensor * dst) {
  10847. const struct ggml_tensor * src0 = dst->src[0];
  10848. const struct ggml_tensor * src1 = dst->src[1];
  10849. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10850. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10851. // view src0 and dst with these strides and data offset inbytes during set
  10852. // nb0 is implicitly element_size because src0 and dst are contiguous
  10853. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10854. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10855. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10856. size_t offset = ((int32_t *) dst->op_params)[3];
  10857. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10858. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10859. if (params->ith != 0) {
  10860. return;
  10861. }
  10862. // memcpy needs to be synchronized across threads to avoid race conditions.
  10863. // => do it in INIT phase
  10864. memcpy(
  10865. ((char *) dst->data),
  10866. ((char *) src0->data),
  10867. ggml_nbytes(dst));
  10868. }
  10869. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10870. return;
  10871. }
  10872. const int ith = params->ith;
  10873. const int nth = params->nth;
  10874. const int nr = ggml_nrows(src1);
  10875. const int nc = src1->ne[0];
  10876. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10877. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10878. // src0 and dst as viewed during set
  10879. const size_t nb0 = ggml_element_size(src0);
  10880. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10881. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10882. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10883. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10884. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10885. GGML_ASSERT(nb10 == sizeof(float));
  10886. // rows per thread
  10887. const int dr = (nr + nth - 1)/nth;
  10888. // row range for this thread
  10889. const int ir0 = dr*ith;
  10890. const int ir1 = MIN(ir0 + dr, nr);
  10891. for (int ir = ir0; ir < ir1; ++ir) {
  10892. // src0 and dst are viewed with shape of src1 and offset
  10893. // => same indices
  10894. const int i3 = ir/(ne12*ne11);
  10895. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10896. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10897. ggml_vec_cpy_f32(nc,
  10898. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10899. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10900. }
  10901. }
  10902. static void ggml_compute_forward_set(
  10903. const struct ggml_compute_params * params,
  10904. struct ggml_tensor * dst) {
  10905. const struct ggml_tensor * src0 = dst->src[0];
  10906. switch (src0->type) {
  10907. case GGML_TYPE_F32:
  10908. {
  10909. ggml_compute_forward_set_f32(params, dst);
  10910. } break;
  10911. case GGML_TYPE_F16:
  10912. case GGML_TYPE_BF16:
  10913. case GGML_TYPE_Q4_0:
  10914. case GGML_TYPE_Q4_1:
  10915. case GGML_TYPE_Q5_0:
  10916. case GGML_TYPE_Q5_1:
  10917. case GGML_TYPE_Q8_0:
  10918. case GGML_TYPE_Q8_1:
  10919. case GGML_TYPE_Q2_K:
  10920. case GGML_TYPE_Q3_K:
  10921. case GGML_TYPE_Q4_K:
  10922. case GGML_TYPE_Q5_K:
  10923. case GGML_TYPE_Q6_K:
  10924. case GGML_TYPE_IQ2_XXS:
  10925. case GGML_TYPE_IQ2_XS:
  10926. case GGML_TYPE_IQ3_XXS:
  10927. case GGML_TYPE_IQ1_S:
  10928. case GGML_TYPE_IQ1_M:
  10929. case GGML_TYPE_IQ4_NL:
  10930. case GGML_TYPE_IQ4_XS:
  10931. case GGML_TYPE_IQ3_S:
  10932. case GGML_TYPE_IQ2_S:
  10933. default:
  10934. {
  10935. GGML_ASSERT(false);
  10936. } break;
  10937. }
  10938. }
  10939. // ggml_compute_forward_cpy
  10940. static void ggml_compute_forward_cpy(
  10941. const struct ggml_compute_params * params,
  10942. struct ggml_tensor * dst) {
  10943. ggml_compute_forward_dup(params, dst);
  10944. }
  10945. // ggml_compute_forward_cont
  10946. static void ggml_compute_forward_cont(
  10947. const struct ggml_compute_params * params,
  10948. struct ggml_tensor * dst) {
  10949. ggml_compute_forward_dup(params, dst);
  10950. }
  10951. // ggml_compute_forward_reshape
  10952. static void ggml_compute_forward_reshape(
  10953. const struct ggml_compute_params * params,
  10954. struct ggml_tensor * dst) {
  10955. // NOP
  10956. UNUSED(params);
  10957. UNUSED(dst);
  10958. }
  10959. // ggml_compute_forward_view
  10960. static void ggml_compute_forward_view(
  10961. const struct ggml_compute_params * params,
  10962. const struct ggml_tensor * dst) {
  10963. // NOP
  10964. UNUSED(params);
  10965. UNUSED(dst);
  10966. }
  10967. // ggml_compute_forward_permute
  10968. static void ggml_compute_forward_permute(
  10969. const struct ggml_compute_params * params,
  10970. const struct ggml_tensor * dst) {
  10971. // NOP
  10972. UNUSED(params);
  10973. UNUSED(dst);
  10974. }
  10975. // ggml_compute_forward_transpose
  10976. static void ggml_compute_forward_transpose(
  10977. const struct ggml_compute_params * params,
  10978. const struct ggml_tensor * dst) {
  10979. // NOP
  10980. UNUSED(params);
  10981. UNUSED(dst);
  10982. }
  10983. // ggml_compute_forward_get_rows
  10984. static void ggml_compute_forward_get_rows_q(
  10985. const struct ggml_compute_params * params,
  10986. struct ggml_tensor * dst) {
  10987. const struct ggml_tensor * src0 = dst->src[0];
  10988. const struct ggml_tensor * src1 = dst->src[1];
  10989. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10990. return;
  10991. }
  10992. GGML_TENSOR_BINARY_OP_LOCALS
  10993. const int64_t nc = ne00;
  10994. const int64_t nr = ggml_nelements(src1);
  10995. const enum ggml_type type = src0->type;
  10996. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10997. assert(ne0 == nc);
  10998. assert(ne02 == ne11);
  10999. assert(nb00 == ggml_type_size(type));
  11000. assert(ggml_nrows(dst) == nr);
  11001. const int ith = params->ith;
  11002. const int nth = params->nth;
  11003. // rows per thread
  11004. const int dr = (nr + nth - 1)/nth;
  11005. // row range for this thread
  11006. const int ir0 = dr*ith;
  11007. const int ir1 = MIN(ir0 + dr, nr);
  11008. for (int64_t i = ir0; i < ir1; ++i) {
  11009. const int64_t i12 = i/(ne11*ne10);
  11010. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11011. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11012. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11013. dequantize_row_q(
  11014. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11015. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11016. }
  11017. }
  11018. static void ggml_compute_forward_get_rows_f16(
  11019. const struct ggml_compute_params * params,
  11020. struct ggml_tensor * dst) {
  11021. const struct ggml_tensor * src0 = dst->src[0];
  11022. const struct ggml_tensor * src1 = dst->src[1];
  11023. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11024. return;
  11025. }
  11026. GGML_TENSOR_BINARY_OP_LOCALS
  11027. const int64_t nc = ne00;
  11028. const int64_t nr = ggml_nelements(src1);
  11029. assert(ne0 == nc);
  11030. assert(ne02 == ne11);
  11031. assert(nb00 == sizeof(ggml_fp16_t));
  11032. assert(ggml_nrows(dst) == nr);
  11033. const int ith = params->ith;
  11034. const int nth = params->nth;
  11035. // rows per thread
  11036. const int dr = (nr + nth - 1)/nth;
  11037. // row range for this thread
  11038. const int ir0 = dr*ith;
  11039. const int ir1 = MIN(ir0 + dr, nr);
  11040. for (int64_t i = ir0; i < ir1; ++i) {
  11041. const int64_t i12 = i/(ne11*ne10);
  11042. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11043. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11044. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11045. ggml_fp16_to_fp32_row(
  11046. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11047. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11048. }
  11049. }
  11050. static void ggml_compute_forward_get_rows_bf16(
  11051. const struct ggml_compute_params * params,
  11052. struct ggml_tensor * dst) {
  11053. const struct ggml_tensor * src0 = dst->src[0];
  11054. const struct ggml_tensor * src1 = dst->src[1];
  11055. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11056. return;
  11057. }
  11058. GGML_TENSOR_BINARY_OP_LOCALS
  11059. const int64_t nc = ne00;
  11060. const int64_t nr = ggml_nelements(src1);
  11061. assert(ne0 == nc);
  11062. assert(ne02 == ne11);
  11063. assert(nb00 == sizeof(ggml_bf16_t));
  11064. assert(ggml_nrows(dst) == nr);
  11065. const int ith = params->ith;
  11066. const int nth = params->nth;
  11067. // rows per thread
  11068. const int dr = (nr + nth - 1)/nth;
  11069. // row range for this thread
  11070. const int ir0 = dr*ith;
  11071. const int ir1 = MIN(ir0 + dr, nr);
  11072. for (int64_t i = ir0; i < ir1; ++i) {
  11073. const int64_t i12 = i/(ne11*ne10);
  11074. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11075. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11076. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11077. ggml_bf16_to_fp32_row(
  11078. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11079. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11080. }
  11081. }
  11082. static void ggml_compute_forward_get_rows_f32(
  11083. const struct ggml_compute_params * params,
  11084. struct ggml_tensor * dst) {
  11085. const struct ggml_tensor * src0 = dst->src[0];
  11086. const struct ggml_tensor * src1 = dst->src[1];
  11087. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11088. return;
  11089. }
  11090. GGML_TENSOR_BINARY_OP_LOCALS
  11091. const int64_t nc = ne00;
  11092. const int64_t nr = ggml_nelements(src1);
  11093. assert(ne0 == nc);
  11094. assert(ne02 == ne11);
  11095. assert(nb00 == sizeof(float));
  11096. assert(ggml_nrows(dst) == nr);
  11097. const int ith = params->ith;
  11098. const int nth = params->nth;
  11099. // rows per thread
  11100. const int dr = (nr + nth - 1)/nth;
  11101. // row range for this thread
  11102. const int ir0 = dr*ith;
  11103. const int ir1 = MIN(ir0 + dr, nr);
  11104. for (int64_t i = ir0; i < ir1; ++i) {
  11105. const int64_t i12 = i/(ne11*ne10);
  11106. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11107. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11108. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11109. ggml_vec_cpy_f32(nc,
  11110. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11111. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11112. }
  11113. }
  11114. static void ggml_compute_forward_get_rows(
  11115. const struct ggml_compute_params * params,
  11116. struct ggml_tensor * dst) {
  11117. const struct ggml_tensor * src0 = dst->src[0];
  11118. switch (src0->type) {
  11119. case GGML_TYPE_Q4_0:
  11120. case GGML_TYPE_Q4_1:
  11121. case GGML_TYPE_Q5_0:
  11122. case GGML_TYPE_Q5_1:
  11123. case GGML_TYPE_Q8_0:
  11124. case GGML_TYPE_Q8_1:
  11125. case GGML_TYPE_Q2_K:
  11126. case GGML_TYPE_Q3_K:
  11127. case GGML_TYPE_Q4_K:
  11128. case GGML_TYPE_Q5_K:
  11129. case GGML_TYPE_Q6_K:
  11130. case GGML_TYPE_IQ2_XXS:
  11131. case GGML_TYPE_IQ2_XS:
  11132. case GGML_TYPE_IQ3_XXS:
  11133. case GGML_TYPE_IQ1_S:
  11134. case GGML_TYPE_IQ1_M:
  11135. case GGML_TYPE_IQ4_NL:
  11136. case GGML_TYPE_IQ4_XS:
  11137. case GGML_TYPE_IQ3_S:
  11138. case GGML_TYPE_IQ2_S:
  11139. {
  11140. ggml_compute_forward_get_rows_q(params, dst);
  11141. } break;
  11142. case GGML_TYPE_F16:
  11143. {
  11144. ggml_compute_forward_get_rows_f16(params, dst);
  11145. } break;
  11146. case GGML_TYPE_BF16:
  11147. {
  11148. ggml_compute_forward_get_rows_bf16(params, dst);
  11149. } break;
  11150. case GGML_TYPE_F32:
  11151. case GGML_TYPE_I32:
  11152. {
  11153. ggml_compute_forward_get_rows_f32(params, dst);
  11154. } break;
  11155. default:
  11156. {
  11157. GGML_ASSERT(false);
  11158. } break;
  11159. }
  11160. //static bool first = true;
  11161. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11162. //if (first) {
  11163. // first = false;
  11164. //} else {
  11165. // for (int k = 0; k < dst->ne[1]; ++k) {
  11166. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11167. // for (int i = 0; i < 16; ++i) {
  11168. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11169. // }
  11170. // printf("\n");
  11171. // }
  11172. // printf("\n");
  11173. // }
  11174. // printf("\n");
  11175. // exit(0);
  11176. //}
  11177. }
  11178. // ggml_compute_forward_get_rows_back
  11179. static void ggml_compute_forward_get_rows_back_f32_f16(
  11180. const struct ggml_compute_params * params,
  11181. struct ggml_tensor * dst) {
  11182. const struct ggml_tensor * src0 = dst->src[0];
  11183. const struct ggml_tensor * src1 = dst->src[1];
  11184. GGML_ASSERT(params->ith == 0);
  11185. GGML_ASSERT(ggml_is_contiguous(dst));
  11186. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11187. if (params->type == GGML_TASK_TYPE_INIT) {
  11188. if (params->ith != 0) {
  11189. return;
  11190. }
  11191. memset(dst->data, 0, ggml_nbytes(dst));
  11192. }
  11193. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11194. return;
  11195. }
  11196. const int nc = src0->ne[0];
  11197. const int nr = ggml_nelements(src1);
  11198. GGML_ASSERT( dst->ne[0] == nc);
  11199. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11200. for (int i = 0; i < nr; ++i) {
  11201. const int r = ((int32_t *) src1->data)[i];
  11202. for (int j = 0; j < nc; ++j) {
  11203. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11204. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11205. }
  11206. }
  11207. }
  11208. static void ggml_compute_forward_get_rows_back_f32(
  11209. const struct ggml_compute_params * params,
  11210. struct ggml_tensor * dst) {
  11211. const struct ggml_tensor * src0 = dst->src[0];
  11212. const struct ggml_tensor * src1 = dst->src[1];
  11213. GGML_ASSERT(params->ith == 0);
  11214. GGML_ASSERT(ggml_is_contiguous(dst));
  11215. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11216. if (params->type == GGML_TASK_TYPE_INIT) {
  11217. if (params->ith != 0) {
  11218. return;
  11219. }
  11220. memset(dst->data, 0, ggml_nbytes(dst));
  11221. }
  11222. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11223. return;
  11224. }
  11225. const int nc = src0->ne[0];
  11226. const int nr = ggml_nelements(src1);
  11227. GGML_ASSERT( dst->ne[0] == nc);
  11228. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11229. for (int i = 0; i < nr; ++i) {
  11230. const int r = ((int32_t *) src1->data)[i];
  11231. ggml_vec_add_f32(nc,
  11232. (float *) ((char *) dst->data + r*dst->nb[1]),
  11233. (float *) ((char *) dst->data + r*dst->nb[1]),
  11234. (float *) ((char *) src0->data + i*src0->nb[1]));
  11235. }
  11236. }
  11237. static void ggml_compute_forward_get_rows_back(
  11238. const struct ggml_compute_params * params,
  11239. struct ggml_tensor * dst) {
  11240. const struct ggml_tensor * src0 = dst->src[0];
  11241. switch (src0->type) {
  11242. case GGML_TYPE_F16:
  11243. {
  11244. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11245. } break;
  11246. case GGML_TYPE_F32:
  11247. {
  11248. ggml_compute_forward_get_rows_back_f32(params, dst);
  11249. } break;
  11250. default:
  11251. {
  11252. GGML_ASSERT(false);
  11253. } break;
  11254. }
  11255. //static bool first = true;
  11256. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11257. //if (first) {
  11258. // first = false;
  11259. //} else {
  11260. // for (int k = 0; k < dst->ne[1]; ++k) {
  11261. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11262. // for (int i = 0; i < 16; ++i) {
  11263. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11264. // }
  11265. // printf("\n");
  11266. // }
  11267. // printf("\n");
  11268. // }
  11269. // printf("\n");
  11270. // exit(0);
  11271. //}
  11272. }
  11273. // ggml_compute_forward_diag
  11274. static void ggml_compute_forward_diag_f32(
  11275. const struct ggml_compute_params * params,
  11276. struct ggml_tensor * dst) {
  11277. const struct ggml_tensor * src0 = dst->src[0];
  11278. GGML_ASSERT(params->ith == 0);
  11279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11280. return;
  11281. }
  11282. // TODO: handle transposed/permuted matrices
  11283. GGML_TENSOR_UNARY_OP_LOCALS
  11284. GGML_ASSERT(ne00 == ne0);
  11285. GGML_ASSERT(ne00 == ne1);
  11286. GGML_ASSERT(ne01 == 1);
  11287. GGML_ASSERT(ne02 == ne2);
  11288. GGML_ASSERT(ne03 == ne3);
  11289. GGML_ASSERT(nb00 == sizeof(float));
  11290. GGML_ASSERT(nb0 == sizeof(float));
  11291. for (int i3 = 0; i3 < ne3; i3++) {
  11292. for (int i2 = 0; i2 < ne2; i2++) {
  11293. for (int i1 = 0; i1 < ne1; i1++) {
  11294. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11295. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11296. for (int i0 = 0; i0 < i1; i0++) {
  11297. d[i0] = 0;
  11298. }
  11299. d[i1] = s[i1];
  11300. for (int i0 = i1+1; i0 < ne0; i0++) {
  11301. d[i0] = 0;
  11302. }
  11303. }
  11304. }
  11305. }
  11306. }
  11307. static void ggml_compute_forward_diag(
  11308. const struct ggml_compute_params * params,
  11309. struct ggml_tensor * dst) {
  11310. const struct ggml_tensor * src0 = dst->src[0];
  11311. switch (src0->type) {
  11312. case GGML_TYPE_F32:
  11313. {
  11314. ggml_compute_forward_diag_f32(params, dst);
  11315. } break;
  11316. default:
  11317. {
  11318. GGML_ASSERT(false);
  11319. } break;
  11320. }
  11321. }
  11322. // ggml_compute_forward_diag_mask_inf
  11323. static void ggml_compute_forward_diag_mask_f32(
  11324. const struct ggml_compute_params * params,
  11325. struct ggml_tensor * dst,
  11326. const float value) {
  11327. const struct ggml_tensor * src0 = dst->src[0];
  11328. const int ith = params->ith;
  11329. const int nth = params->nth;
  11330. const int n_past = ((int32_t *) dst->op_params)[0];
  11331. const bool inplace = src0->data == dst->data;
  11332. GGML_ASSERT(n_past >= 0);
  11333. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11334. if (ith != 0) {
  11335. return;
  11336. }
  11337. // memcpy needs to be synchronized across threads to avoid race conditions.
  11338. // => do it in INIT phase
  11339. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11340. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11341. memcpy(
  11342. ((char *) dst->data),
  11343. ((char *) src0->data),
  11344. ggml_nbytes(dst));
  11345. }
  11346. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11347. return;
  11348. }
  11349. // TODO: handle transposed/permuted matrices
  11350. const int n = ggml_nrows(src0);
  11351. const int nc = src0->ne[0];
  11352. const int nr = src0->ne[1];
  11353. const int nz = n/nr;
  11354. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11355. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11356. for (int k = 0; k < nz; k++) {
  11357. for (int j = ith; j < nr; j += nth) {
  11358. for (int i = n_past; i < nc; i++) {
  11359. if (i > n_past + j) {
  11360. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11361. }
  11362. }
  11363. }
  11364. }
  11365. }
  11366. static void ggml_compute_forward_diag_mask_inf(
  11367. const struct ggml_compute_params * params,
  11368. struct ggml_tensor * dst) {
  11369. const struct ggml_tensor * src0 = dst->src[0];
  11370. switch (src0->type) {
  11371. case GGML_TYPE_F32:
  11372. {
  11373. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11374. } break;
  11375. default:
  11376. {
  11377. GGML_ASSERT(false);
  11378. } break;
  11379. }
  11380. }
  11381. static void ggml_compute_forward_diag_mask_zero(
  11382. const struct ggml_compute_params * params,
  11383. struct ggml_tensor * dst) {
  11384. const struct ggml_tensor * src0 = dst->src[0];
  11385. switch (src0->type) {
  11386. case GGML_TYPE_F32:
  11387. {
  11388. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11389. } break;
  11390. default:
  11391. {
  11392. GGML_ASSERT(false);
  11393. } break;
  11394. }
  11395. }
  11396. // ggml_compute_forward_soft_max
  11397. static void ggml_compute_forward_soft_max_f32(
  11398. const struct ggml_compute_params * params,
  11399. struct ggml_tensor * dst) {
  11400. const struct ggml_tensor * src0 = dst->src[0];
  11401. const struct ggml_tensor * src1 = dst->src[1];
  11402. assert(ggml_is_contiguous(dst));
  11403. assert(ggml_are_same_shape(src0, dst));
  11404. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11405. return;
  11406. }
  11407. float scale = 1.0f;
  11408. float max_bias = 0.0f;
  11409. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11410. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11411. // TODO: handle transposed/permuted matrices
  11412. const int ith = params->ith;
  11413. const int nth = params->nth;
  11414. GGML_TENSOR_UNARY_OP_LOCALS
  11415. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11416. // TODO: is this supposed to be ceil instead of floor?
  11417. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11418. const uint32_t n_head = ne02;
  11419. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11420. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11421. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11422. const int nc = src0->ne[0];
  11423. const int nr = ggml_nrows(src0);
  11424. // rows per thread
  11425. const int dr = (nr + nth - 1)/nth;
  11426. // row range for this thread
  11427. const int ir0 = dr*ith;
  11428. const int ir1 = MIN(ir0 + dr, nr);
  11429. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11430. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11431. for (int i1 = ir0; i1 < ir1; i1++) {
  11432. // ALiBi
  11433. const uint32_t h = (i1/ne01)%ne02; // head
  11434. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11435. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11436. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11437. // broadcast the mask across rows
  11438. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11439. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11440. ggml_vec_cpy_f32 (nc, wp, sp);
  11441. ggml_vec_scale_f32(nc, wp, scale);
  11442. if (mp_f32) {
  11443. if (use_f16) {
  11444. for (int i = 0; i < nc; ++i) {
  11445. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11446. }
  11447. } else {
  11448. for (int i = 0; i < nc; ++i) {
  11449. wp[i] += slope*mp_f32[i];
  11450. }
  11451. }
  11452. }
  11453. #ifndef NDEBUG
  11454. for (int i = 0; i < nc; ++i) {
  11455. //printf("p[%d] = %f\n", i, p[i]);
  11456. assert(!isnan(wp[i]));
  11457. }
  11458. #endif
  11459. float max = -INFINITY;
  11460. ggml_vec_max_f32(nc, &max, wp);
  11461. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11462. assert(sum > 0.0);
  11463. sum = 1.0/sum;
  11464. ggml_vec_scale_f32(nc, dp, sum);
  11465. #ifndef NDEBUG
  11466. for (int i = 0; i < nc; ++i) {
  11467. assert(!isnan(dp[i]));
  11468. assert(!isinf(dp[i]));
  11469. }
  11470. #endif
  11471. }
  11472. }
  11473. static void ggml_compute_forward_soft_max(
  11474. const struct ggml_compute_params * params,
  11475. struct ggml_tensor * dst) {
  11476. const struct ggml_tensor * src0 = dst->src[0];
  11477. switch (src0->type) {
  11478. case GGML_TYPE_F32:
  11479. {
  11480. ggml_compute_forward_soft_max_f32(params, dst);
  11481. } break;
  11482. default:
  11483. {
  11484. GGML_ASSERT(false);
  11485. } break;
  11486. }
  11487. }
  11488. // ggml_compute_forward_soft_max_back
  11489. static void ggml_compute_forward_soft_max_back_f32(
  11490. const struct ggml_compute_params * params,
  11491. struct ggml_tensor * dst) {
  11492. const struct ggml_tensor * src0 = dst->src[0];
  11493. const struct ggml_tensor * src1 = dst->src[1];
  11494. GGML_ASSERT(ggml_is_contiguous(src0));
  11495. GGML_ASSERT(ggml_is_contiguous(src1));
  11496. GGML_ASSERT(ggml_is_contiguous(dst));
  11497. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11498. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11499. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11500. return;
  11501. }
  11502. // TODO: handle transposed/permuted matrices
  11503. const int ith = params->ith;
  11504. const int nth = params->nth;
  11505. const int nc = src0->ne[0];
  11506. const int nr = ggml_nrows(src0);
  11507. // rows per thread
  11508. const int dr = (nr + nth - 1)/nth;
  11509. // row range for this thread
  11510. const int ir0 = dr*ith;
  11511. const int ir1 = MIN(ir0 + dr, nr);
  11512. for (int i1 = ir0; i1 < ir1; i1++) {
  11513. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11514. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11515. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11516. #ifndef NDEBUG
  11517. for (int i = 0; i < nc; ++i) {
  11518. //printf("p[%d] = %f\n", i, p[i]);
  11519. assert(!isnan(dy[i]));
  11520. assert(!isnan(y[i]));
  11521. }
  11522. #endif
  11523. // Jii = yi - yi*yi
  11524. // Jij = -yi*yj
  11525. // J = diag(y)-y.T*y
  11526. // dx = J * dy
  11527. // dxk = sum_i(Jki * dyi)
  11528. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11529. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11530. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11531. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11532. // dxk = -yk * dot(y, dy) + yk*dyk
  11533. // dxk = yk * (- dot(y, dy) + dyk)
  11534. // dxk = yk * (dyk - dot(y, dy))
  11535. //
  11536. // post-order:
  11537. // dot_y_dy := dot(y, dy)
  11538. // dx := dy
  11539. // dx := dx - dot_y_dy
  11540. // dx := dx * y
  11541. // linear runtime, no additional memory
  11542. float dot_y_dy = 0;
  11543. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11544. ggml_vec_cpy_f32 (nc, dx, dy);
  11545. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11546. ggml_vec_mul_f32 (nc, dx, dx, y);
  11547. #ifndef NDEBUG
  11548. for (int i = 0; i < nc; ++i) {
  11549. assert(!isnan(dx[i]));
  11550. assert(!isinf(dx[i]));
  11551. }
  11552. #endif
  11553. }
  11554. }
  11555. static void ggml_compute_forward_soft_max_back(
  11556. const struct ggml_compute_params * params,
  11557. struct ggml_tensor * dst) {
  11558. const struct ggml_tensor * src0 = dst->src[0];
  11559. switch (src0->type) {
  11560. case GGML_TYPE_F32:
  11561. {
  11562. ggml_compute_forward_soft_max_back_f32(params, dst);
  11563. } break;
  11564. default:
  11565. {
  11566. GGML_ASSERT(false);
  11567. } break;
  11568. }
  11569. }
  11570. // ggml_compute_forward_clamp
  11571. static void ggml_compute_forward_clamp_f32(
  11572. const struct ggml_compute_params * params,
  11573. struct ggml_tensor * dst) {
  11574. const struct ggml_tensor * src0 = dst->src[0];
  11575. assert(params->ith == 0);
  11576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11577. return;
  11578. }
  11579. float min;
  11580. float max;
  11581. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11582. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11583. const int ith = params->ith;
  11584. const int nth = params->nth;
  11585. const int n = ggml_nrows(src0);
  11586. const int nc = src0->ne[0];
  11587. const size_t nb00 = src0->nb[0];
  11588. const size_t nb01 = src0->nb[1];
  11589. const size_t nb0 = dst->nb[0];
  11590. const size_t nb1 = dst->nb[1];
  11591. GGML_ASSERT( nb0 == sizeof(float));
  11592. GGML_ASSERT(nb00 == sizeof(float));
  11593. for (int j = ith; j < n; j += nth) {
  11594. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11595. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11596. for (int i = 0; i < nc; i++) {
  11597. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11598. }
  11599. }
  11600. }
  11601. static void ggml_compute_forward_clamp(
  11602. const struct ggml_compute_params * params,
  11603. struct ggml_tensor * dst) {
  11604. const struct ggml_tensor * src0 = dst->src[0];
  11605. switch (src0->type) {
  11606. case GGML_TYPE_F32:
  11607. {
  11608. ggml_compute_forward_clamp_f32(params, dst);
  11609. } break;
  11610. case GGML_TYPE_F16:
  11611. case GGML_TYPE_BF16:
  11612. case GGML_TYPE_Q4_0:
  11613. case GGML_TYPE_Q4_1:
  11614. case GGML_TYPE_Q5_0:
  11615. case GGML_TYPE_Q5_1:
  11616. case GGML_TYPE_Q8_0:
  11617. case GGML_TYPE_Q8_1:
  11618. case GGML_TYPE_Q2_K:
  11619. case GGML_TYPE_Q3_K:
  11620. case GGML_TYPE_Q4_K:
  11621. case GGML_TYPE_Q5_K:
  11622. case GGML_TYPE_Q6_K:
  11623. case GGML_TYPE_IQ2_XXS:
  11624. case GGML_TYPE_IQ2_XS:
  11625. case GGML_TYPE_IQ3_XXS:
  11626. case GGML_TYPE_IQ1_S:
  11627. case GGML_TYPE_IQ1_M:
  11628. case GGML_TYPE_IQ4_NL:
  11629. case GGML_TYPE_IQ4_XS:
  11630. case GGML_TYPE_IQ3_S:
  11631. case GGML_TYPE_IQ2_S:
  11632. case GGML_TYPE_Q8_K:
  11633. case GGML_TYPE_I8:
  11634. case GGML_TYPE_I16:
  11635. case GGML_TYPE_I32:
  11636. case GGML_TYPE_I64:
  11637. case GGML_TYPE_F64:
  11638. case GGML_TYPE_COUNT:
  11639. {
  11640. GGML_ASSERT(false);
  11641. } break;
  11642. }
  11643. }
  11644. // ggml_compute_forward_rope
  11645. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11646. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11647. return 1 - MIN(1, MAX(0, y));
  11648. }
  11649. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11650. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11651. static void rope_yarn(
  11652. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11653. float * cos_theta, float * sin_theta
  11654. ) {
  11655. // Get n-d rotational scaling corrected for extrapolation
  11656. float theta_interp = freq_scale * theta_extrap;
  11657. float theta = theta_interp;
  11658. if (ext_factor != 0.0f) {
  11659. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11660. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11661. // Get n-d magnitude scaling corrected for interpolation
  11662. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11663. }
  11664. *cos_theta = cosf(theta) * mscale;
  11665. *sin_theta = sinf(theta) * mscale;
  11666. }
  11667. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11668. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11669. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11670. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11671. }
  11672. static void ggml_rope_cache_init(
  11673. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11674. float * cache, float sin_sign, float theta_scale
  11675. ) {
  11676. float theta = theta_base;
  11677. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11678. rope_yarn(
  11679. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11680. );
  11681. cache[i0 + 1] *= sin_sign;
  11682. theta *= theta_scale;
  11683. }
  11684. }
  11685. GGML_CALL void ggml_rope_yarn_corr_dims(
  11686. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11687. ) {
  11688. // start and end correction dims
  11689. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11690. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11691. dims[0] = MAX(0, start);
  11692. dims[1] = MIN(n_dims - 1, end);
  11693. }
  11694. static void ggml_compute_forward_rope_f32(
  11695. const struct ggml_compute_params * params,
  11696. struct ggml_tensor * dst,
  11697. const bool forward) {
  11698. const struct ggml_tensor * src0 = dst->src[0];
  11699. const struct ggml_tensor * src1 = dst->src[1];
  11700. const struct ggml_tensor * src2 = dst->src[2];
  11701. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11702. return;
  11703. }
  11704. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11705. // these two only relevant for xPos RoPE:
  11706. float xpos_base;
  11707. bool xpos_down;
  11708. //const int n_past = ((int32_t *) dst->op_params)[0];
  11709. const int n_dims = ((int32_t *) dst->op_params)[1];
  11710. const int mode = ((int32_t *) dst->op_params)[2];
  11711. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11712. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11713. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11714. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11715. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11716. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11717. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11718. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11719. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11720. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11721. GGML_TENSOR_UNARY_OP_LOCALS
  11722. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11723. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11724. GGML_ASSERT(nb00 == sizeof(float));
  11725. const int ith = params->ith;
  11726. const int nth = params->nth;
  11727. const int nr = ggml_nrows(dst);
  11728. GGML_ASSERT(n_dims <= ne0);
  11729. GGML_ASSERT(n_dims % 2 == 0);
  11730. // rows per thread
  11731. const int dr = (nr + nth - 1)/nth;
  11732. // row range for this thread
  11733. const int ir0 = dr*ith;
  11734. const int ir1 = MIN(ir0 + dr, nr);
  11735. // row index used to determine which thread to use
  11736. int ir = 0;
  11737. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11738. float corr_dims[2];
  11739. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11740. const bool is_neox = mode & 2;
  11741. const bool is_glm = mode & 4;
  11742. const float * freq_factors = NULL;
  11743. if (is_neox) {
  11744. if (src2 != NULL) {
  11745. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11746. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11747. freq_factors = (const float *) src2->data;
  11748. }
  11749. } else {
  11750. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11751. }
  11752. // backward process uses inverse rotation by cos and sin.
  11753. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11754. // this essentially just switches the sign of sin.
  11755. const float sin_sign = forward ? 1.0f : -1.0f;
  11756. const int32_t * pos = (const int32_t *) src1->data;
  11757. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11758. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11759. const int64_t p = pos[i2];
  11760. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11761. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11762. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11763. }
  11764. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11765. if (ir++ < ir0) continue;
  11766. if (ir > ir1) break;
  11767. float theta_base = (float)p;
  11768. if (is_glm) {
  11769. theta_base = MIN(p, n_ctx - 2);
  11770. float block_theta = MAX(p - (n_ctx - 2), 0);
  11771. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11772. const float cos_theta = cosf(theta_base);
  11773. const float sin_theta = sinf(theta_base) * sin_sign;
  11774. const float cos_block_theta = cosf(block_theta);
  11775. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11776. theta_base *= theta_scale;
  11777. block_theta *= theta_scale;
  11778. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11779. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11780. const float x0 = src[0];
  11781. const float x1 = src[n_dims/2];
  11782. const float x2 = src[n_dims];
  11783. const float x3 = src[n_dims/2*3];
  11784. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11785. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11786. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11787. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11788. }
  11789. } else if (!is_neox) {
  11790. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11791. const float cos_theta = cache[i0 + 0];
  11792. const float sin_theta = cache[i0 + 1];
  11793. // zeta scaling for xPos only:
  11794. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11795. if (xpos_down) zeta = 1.0f / zeta;
  11796. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11797. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11798. const float x0 = src[0];
  11799. const float x1 = src[1];
  11800. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11801. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11802. }
  11803. } else {
  11804. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11805. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11806. if (ic < n_dims) {
  11807. const int64_t i0 = ic/2;
  11808. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11809. float cos_theta, sin_theta;
  11810. rope_yarn(
  11811. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11812. &cos_theta, &sin_theta
  11813. );
  11814. sin_theta *= sin_sign;
  11815. theta_base *= theta_scale;
  11816. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11817. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11818. const float x0 = src[0];
  11819. const float x1 = src[n_dims/2];
  11820. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11821. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11822. } else {
  11823. const int64_t i0 = ic;
  11824. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11825. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11826. dst_data[0] = src[0];
  11827. dst_data[1] = src[1];
  11828. }
  11829. }
  11830. }
  11831. }
  11832. }
  11833. }
  11834. }
  11835. // TODO: deduplicate f16/f32 code
  11836. static void ggml_compute_forward_rope_f16(
  11837. const struct ggml_compute_params * params,
  11838. struct ggml_tensor * dst,
  11839. const bool forward) {
  11840. const struct ggml_tensor * src0 = dst->src[0];
  11841. const struct ggml_tensor * src1 = dst->src[1];
  11842. const struct ggml_tensor * src2 = dst->src[2];
  11843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11844. return;
  11845. }
  11846. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11847. //const int n_past = ((int32_t *) dst->op_params)[0];
  11848. const int n_dims = ((int32_t *) dst->op_params)[1];
  11849. const int mode = ((int32_t *) dst->op_params)[2];
  11850. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11851. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11852. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11853. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11854. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11855. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11856. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11857. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11858. GGML_TENSOR_UNARY_OP_LOCALS
  11859. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11860. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11861. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11862. const int ith = params->ith;
  11863. const int nth = params->nth;
  11864. const int nr = ggml_nrows(dst);
  11865. GGML_ASSERT(n_dims <= ne0);
  11866. GGML_ASSERT(n_dims % 2 == 0);
  11867. // rows per thread
  11868. const int dr = (nr + nth - 1)/nth;
  11869. // row range for this thread
  11870. const int ir0 = dr*ith;
  11871. const int ir1 = MIN(ir0 + dr, nr);
  11872. // row index used to determine which thread to use
  11873. int ir = 0;
  11874. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11875. float corr_dims[2];
  11876. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11877. const bool is_neox = mode & 2;
  11878. const bool is_glm = mode & 4;
  11879. const float * freq_factors = NULL;
  11880. if (is_neox) {
  11881. if (src2 != NULL) {
  11882. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11883. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11884. freq_factors = (const float *) src2->data;
  11885. }
  11886. } else {
  11887. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11888. }
  11889. // backward process uses inverse rotation by cos and sin.
  11890. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11891. // this essentially just switches the sign of sin.
  11892. const float sin_sign = forward ? 1.0f : -1.0f;
  11893. const int32_t * pos = (const int32_t *) src1->data;
  11894. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11895. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11896. const int64_t p = pos[i2];
  11897. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11898. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11899. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11900. }
  11901. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11902. if (ir++ < ir0) continue;
  11903. if (ir > ir1) break;
  11904. float theta_base = (float)p;
  11905. if (is_glm) {
  11906. theta_base = MIN(p, n_ctx - 2);
  11907. float block_theta = MAX(p - (n_ctx - 2), 0);
  11908. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11909. const float cos_theta = cosf(theta_base);
  11910. const float sin_theta = sinf(theta_base) * sin_sign;
  11911. const float cos_block_theta = cosf(block_theta);
  11912. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11913. theta_base *= theta_scale;
  11914. block_theta *= theta_scale;
  11915. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11916. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11917. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11918. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11919. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11920. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11921. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11922. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11923. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11924. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11925. }
  11926. } else if (!is_neox) {
  11927. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11928. const float cos_theta = cache[i0 + 0];
  11929. const float sin_theta = cache[i0 + 1];
  11930. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11931. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11932. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11933. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11934. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11935. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11936. }
  11937. } else {
  11938. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11939. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11940. if (ic < n_dims) {
  11941. const int64_t i0 = ic/2;
  11942. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11943. float cos_theta, sin_theta;
  11944. rope_yarn(
  11945. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11946. &cos_theta, &sin_theta
  11947. );
  11948. sin_theta *= sin_sign;
  11949. theta_base *= theta_scale;
  11950. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11951. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11952. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11953. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11954. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11955. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11956. } else {
  11957. const int64_t i0 = ic;
  11958. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11959. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11960. dst_data[0] = src[0];
  11961. dst_data[1] = src[1];
  11962. }
  11963. }
  11964. }
  11965. }
  11966. }
  11967. }
  11968. }
  11969. static void ggml_compute_forward_rope(
  11970. const struct ggml_compute_params * params,
  11971. struct ggml_tensor * dst) {
  11972. const struct ggml_tensor * src0 = dst->src[0];
  11973. switch (src0->type) {
  11974. case GGML_TYPE_F16:
  11975. {
  11976. ggml_compute_forward_rope_f16(params, dst, true);
  11977. } break;
  11978. case GGML_TYPE_F32:
  11979. {
  11980. ggml_compute_forward_rope_f32(params, dst, true);
  11981. } break;
  11982. default:
  11983. {
  11984. GGML_ASSERT(false);
  11985. } break;
  11986. }
  11987. }
  11988. // ggml_compute_forward_rope_back
  11989. static void ggml_compute_forward_rope_back(
  11990. const struct ggml_compute_params * params,
  11991. struct ggml_tensor * dst) {
  11992. const struct ggml_tensor * src0 = dst->src[0];
  11993. switch (src0->type) {
  11994. case GGML_TYPE_F16:
  11995. {
  11996. ggml_compute_forward_rope_f16(params, dst, false);
  11997. } break;
  11998. case GGML_TYPE_F32:
  11999. {
  12000. ggml_compute_forward_rope_f32(params, dst, false);
  12001. } break;
  12002. default:
  12003. {
  12004. GGML_ASSERT(false);
  12005. } break;
  12006. }
  12007. }
  12008. // ggml_compute_forward_conv_transpose_1d
  12009. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  12010. const struct ggml_compute_params * params,
  12011. struct ggml_tensor * dst) {
  12012. const struct ggml_tensor * src0 = dst->src[0];
  12013. const struct ggml_tensor * src1 = dst->src[1];
  12014. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12015. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12016. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12017. int64_t t0 = ggml_perf_time_us();
  12018. UNUSED(t0);
  12019. GGML_TENSOR_BINARY_OP_LOCALS
  12020. const int ith = params->ith;
  12021. const int nth = params->nth;
  12022. const int nk = ne00*ne01*ne02;
  12023. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12024. GGML_ASSERT(nb10 == sizeof(float));
  12025. if (params->type == GGML_TASK_TYPE_INIT) {
  12026. if (ith != 0) {
  12027. return;
  12028. }
  12029. memset(params->wdata, 0, params->wsize);
  12030. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12031. {
  12032. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12033. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12035. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  12036. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12037. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12038. dst_data[i00*ne02 + i02] = src[i00];
  12039. }
  12040. }
  12041. }
  12042. }
  12043. // permute source data (src1) from (L x Cin) to (Cin x L)
  12044. {
  12045. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12046. ggml_fp16_t * dst_data = wdata;
  12047. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12048. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12049. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12050. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12051. }
  12052. }
  12053. }
  12054. // need to zero dst since we are accumulating into it
  12055. memset(dst->data, 0, ggml_nbytes(dst));
  12056. return;
  12057. }
  12058. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12059. return;
  12060. }
  12061. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12062. // total rows in dst
  12063. const int nr = ne1;
  12064. // rows per thread
  12065. const int dr = (nr + nth - 1)/nth;
  12066. // row range for this thread
  12067. const int ir0 = dr*ith;
  12068. const int ir1 = MIN(ir0 + dr, nr);
  12069. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12070. ggml_fp16_t * const wdata_src = wdata + nk;
  12071. for (int i1 = ir0; i1 < ir1; i1++) {
  12072. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12073. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12074. for (int i10 = 0; i10 < ne10; i10++) {
  12075. const int i1n = i10*ne11;
  12076. for (int i00 = 0; i00 < ne00; i00++) {
  12077. float v = 0;
  12078. ggml_vec_dot_f16(ne02, &v, 0,
  12079. (ggml_fp16_t *) wdata_src + i1n, 0,
  12080. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12081. dst_data[i10*s0 + i00] += v;
  12082. }
  12083. }
  12084. }
  12085. }
  12086. static void ggml_compute_forward_conv_transpose_1d_f32(
  12087. const struct ggml_compute_params * params,
  12088. struct ggml_tensor * dst) {
  12089. const struct ggml_tensor * src0 = dst->src[0];
  12090. const struct ggml_tensor * src1 = dst->src[1];
  12091. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12092. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12093. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12094. int64_t t0 = ggml_perf_time_us();
  12095. UNUSED(t0);
  12096. GGML_TENSOR_BINARY_OP_LOCALS
  12097. const int ith = params->ith;
  12098. const int nth = params->nth;
  12099. const int nk = ne00*ne01*ne02;
  12100. GGML_ASSERT(nb00 == sizeof(float));
  12101. GGML_ASSERT(nb10 == sizeof(float));
  12102. if (params->type == GGML_TASK_TYPE_INIT) {
  12103. if (ith != 0) {
  12104. return;
  12105. }
  12106. memset(params->wdata, 0, params->wsize);
  12107. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12108. {
  12109. float * const wdata = (float *) params->wdata + 0;
  12110. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12112. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12113. float * dst_data = wdata + i01*ne00*ne02;
  12114. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12115. dst_data[i00*ne02 + i02] = src[i00];
  12116. }
  12117. }
  12118. }
  12119. }
  12120. // prepare source data (src1)
  12121. {
  12122. float * const wdata = (float *) params->wdata + nk;
  12123. float * dst_data = wdata;
  12124. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12125. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12126. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12127. dst_data[i10*ne11 + i11] = src[i10];
  12128. }
  12129. }
  12130. }
  12131. // need to zero dst since we are accumulating into it
  12132. memset(dst->data, 0, ggml_nbytes(dst));
  12133. return;
  12134. }
  12135. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12136. return;
  12137. }
  12138. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12139. // total rows in dst
  12140. const int nr = ne1;
  12141. // rows per thread
  12142. const int dr = (nr + nth - 1)/nth;
  12143. // row range for this thread
  12144. const int ir0 = dr*ith;
  12145. const int ir1 = MIN(ir0 + dr, nr);
  12146. float * const wdata = (float *) params->wdata + 0;
  12147. float * const wdata_src = wdata + nk;
  12148. for (int i1 = ir0; i1 < ir1; i1++) {
  12149. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12150. float * wdata_kernel = wdata + i1*ne02*ne00;
  12151. for (int i10 = 0; i10 < ne10; i10++) {
  12152. const int i1n = i10*ne11;
  12153. for (int i00 = 0; i00 < ne00; i00++) {
  12154. float v = 0;
  12155. ggml_vec_dot_f32(ne02, &v, 0,
  12156. wdata_src + i1n, 0,
  12157. wdata_kernel + i00*ne02, 0, 1);
  12158. dst_data[i10*s0 + i00] += v;
  12159. }
  12160. }
  12161. }
  12162. }
  12163. static void ggml_compute_forward_conv_transpose_1d(
  12164. const struct ggml_compute_params * params,
  12165. struct ggml_tensor * dst) {
  12166. const struct ggml_tensor * src0 = dst->src[0];
  12167. switch (src0->type) {
  12168. case GGML_TYPE_F16:
  12169. {
  12170. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12171. } break;
  12172. case GGML_TYPE_F32:
  12173. {
  12174. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12175. } break;
  12176. default:
  12177. {
  12178. GGML_ASSERT(false);
  12179. } break;
  12180. }
  12181. }
  12182. // src0: kernel [OC, IC, KH, KW]
  12183. // src1: image [N, IC, IH, IW]
  12184. // dst: result [N, OH, OW, IC*KH*KW]
  12185. static void ggml_compute_forward_im2col_f32(
  12186. const struct ggml_compute_params * params,
  12187. struct ggml_tensor * dst) {
  12188. const struct ggml_tensor * src0 = dst->src[0];
  12189. const struct ggml_tensor * src1 = dst->src[1];
  12190. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12191. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12192. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12193. int64_t t0 = ggml_perf_time_us();
  12194. UNUSED(t0);
  12195. GGML_TENSOR_BINARY_OP_LOCALS;
  12196. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12197. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12198. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12199. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12200. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12201. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12202. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12203. const int ith = params->ith;
  12204. const int nth = params->nth;
  12205. const int64_t N = is_2D ? ne13 : ne12;
  12206. const int64_t IC = is_2D ? ne12 : ne11;
  12207. const int64_t IH = is_2D ? ne11 : 1;
  12208. const int64_t IW = ne10;
  12209. const int64_t KH = is_2D ? ne01 : 1;
  12210. const int64_t KW = ne00;
  12211. const int64_t OH = is_2D ? ne2 : 1;
  12212. const int64_t OW = ne1;
  12213. int ofs0 = is_2D ? nb13 : nb12;
  12214. int ofs1 = is_2D ? nb12 : nb11;
  12215. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12216. GGML_ASSERT(nb10 == sizeof(float));
  12217. if (params->type == GGML_TASK_TYPE_INIT) {
  12218. return;
  12219. }
  12220. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12221. return;
  12222. }
  12223. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12224. {
  12225. float * const wdata = (float *) dst->data;
  12226. for (int64_t in = 0; in < N; in++) {
  12227. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12228. for (int64_t iow = 0; iow < OW; iow++) {
  12229. for (int64_t iic = ith; iic < IC; iic += nth) {
  12230. // micro kernel
  12231. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12232. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12233. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12234. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12235. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12236. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12237. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12238. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12239. } else {
  12240. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12241. }
  12242. }
  12243. }
  12244. }
  12245. }
  12246. }
  12247. }
  12248. }
  12249. }
  12250. // src0: kernel [OC, IC, KH, KW]
  12251. // src1: image [N, IC, IH, IW]
  12252. // dst: result [N, OH, OW, IC*KH*KW]
  12253. static void ggml_compute_forward_im2col_f16(
  12254. const struct ggml_compute_params * params,
  12255. struct ggml_tensor * dst) {
  12256. const struct ggml_tensor * src0 = dst->src[0];
  12257. const struct ggml_tensor * src1 = dst->src[1];
  12258. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12259. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12260. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12261. int64_t t0 = ggml_perf_time_us();
  12262. UNUSED(t0);
  12263. GGML_TENSOR_BINARY_OP_LOCALS;
  12264. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12265. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12266. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12267. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12268. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12269. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12270. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12271. const int ith = params->ith;
  12272. const int nth = params->nth;
  12273. const int64_t N = is_2D ? ne13 : ne12;
  12274. const int64_t IC = is_2D ? ne12 : ne11;
  12275. const int64_t IH = is_2D ? ne11 : 1;
  12276. const int64_t IW = ne10;
  12277. const int64_t KH = is_2D ? ne01 : 1;
  12278. const int64_t KW = ne00;
  12279. const int64_t OH = is_2D ? ne2 : 1;
  12280. const int64_t OW = ne1;
  12281. int ofs0 = is_2D ? nb13 : nb12;
  12282. int ofs1 = is_2D ? nb12 : nb11;
  12283. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12284. GGML_ASSERT(nb10 == sizeof(float));
  12285. if (params->type == GGML_TASK_TYPE_INIT) {
  12286. return;
  12287. }
  12288. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12289. return;
  12290. }
  12291. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12292. {
  12293. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12294. for (int64_t in = 0; in < N; in++) {
  12295. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12296. for (int64_t iow = 0; iow < OW; iow++) {
  12297. for (int64_t iic = ith; iic < IC; iic += nth) {
  12298. // micro kernel
  12299. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12300. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12301. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12302. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12303. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12304. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12305. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12306. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12307. } else {
  12308. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12309. }
  12310. }
  12311. }
  12312. }
  12313. }
  12314. }
  12315. }
  12316. }
  12317. }
  12318. static void ggml_compute_forward_im2col(
  12319. const struct ggml_compute_params * params,
  12320. struct ggml_tensor * dst) {
  12321. switch (dst->type) {
  12322. case GGML_TYPE_F16:
  12323. {
  12324. ggml_compute_forward_im2col_f16(params, dst);
  12325. } break;
  12326. case GGML_TYPE_F32:
  12327. {
  12328. ggml_compute_forward_im2col_f32(params, dst);
  12329. } break;
  12330. default:
  12331. {
  12332. GGML_ASSERT(false);
  12333. } break;
  12334. }
  12335. }
  12336. // ggml_compute_forward_conv_transpose_2d
  12337. static void ggml_compute_forward_conv_transpose_2d(
  12338. const struct ggml_compute_params * params,
  12339. struct ggml_tensor * dst) {
  12340. const struct ggml_tensor * src0 = dst->src[0];
  12341. const struct ggml_tensor * src1 = dst->src[1];
  12342. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12343. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12344. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12345. int64_t t0 = ggml_perf_time_us();
  12346. UNUSED(t0);
  12347. GGML_TENSOR_BINARY_OP_LOCALS
  12348. const int ith = params->ith;
  12349. const int nth = params->nth;
  12350. const int nk = ne00*ne01*ne02*ne03;
  12351. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12352. GGML_ASSERT(nb10 == sizeof(float));
  12353. if (params->type == GGML_TASK_TYPE_INIT) {
  12354. if (ith != 0) {
  12355. return;
  12356. }
  12357. memset(params->wdata, 0, params->wsize);
  12358. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12359. {
  12360. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12361. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12362. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12363. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12364. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12365. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12366. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12367. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12368. }
  12369. }
  12370. }
  12371. }
  12372. }
  12373. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12374. {
  12375. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12376. for (int i12 = 0; i12 < ne12; i12++) {
  12377. for (int i11 = 0; i11 < ne11; i11++) {
  12378. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12379. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12380. for (int i10 = 0; i10 < ne10; i10++) {
  12381. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12382. }
  12383. }
  12384. }
  12385. }
  12386. memset(dst->data, 0, ggml_nbytes(dst));
  12387. return;
  12388. }
  12389. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12390. return;
  12391. }
  12392. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12393. // total patches in dst
  12394. const int np = ne2;
  12395. // patches per thread
  12396. const int dp = (np + nth - 1)/nth;
  12397. // patch range for this thread
  12398. const int ip0 = dp*ith;
  12399. const int ip1 = MIN(ip0 + dp, np);
  12400. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12401. ggml_fp16_t * const wdata_src = wdata + nk;
  12402. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12403. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12404. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12405. for (int i11 = 0; i11 < ne11; i11++) {
  12406. for (int i10 = 0; i10 < ne10; i10++) {
  12407. const int i1n = i11*ne10*ne12 + i10*ne12;
  12408. for (int i01 = 0; i01 < ne01; i01++) {
  12409. for (int i00 = 0; i00 < ne00; i00++) {
  12410. float v = 0;
  12411. ggml_vec_dot_f16(ne03, &v, 0,
  12412. wdata_src + i1n, 0,
  12413. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12414. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12415. }
  12416. }
  12417. }
  12418. }
  12419. }
  12420. }
  12421. // ggml_compute_forward_pool_1d_sk_p0
  12422. static void ggml_compute_forward_pool_1d_sk_p0(
  12423. const struct ggml_compute_params * params,
  12424. const enum ggml_op_pool op,
  12425. const int k,
  12426. struct ggml_tensor * dst) {
  12427. const struct ggml_tensor * src = dst->src[0];
  12428. assert(src->type == GGML_TYPE_F32);
  12429. assert(params->ith == 0);
  12430. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12431. return;
  12432. }
  12433. const char * cdata = (const char *)src->data;
  12434. const char * const data_end = cdata + ggml_nbytes(src);
  12435. float * drow = (float *)dst->data;
  12436. const int64_t rs = dst->ne[0];
  12437. while (cdata < data_end) {
  12438. const float * const srow = (const float *)cdata;
  12439. int j = 0;
  12440. for (int64_t i = 0; i < rs; ++i) {
  12441. switch (op) {
  12442. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12443. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12444. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12445. }
  12446. for (int ki = 0; ki < k; ++ki) {
  12447. switch (op) {
  12448. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12449. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12450. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12451. }
  12452. ++j;
  12453. }
  12454. switch (op) {
  12455. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12456. case GGML_OP_POOL_MAX: break;
  12457. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12458. }
  12459. }
  12460. cdata += src->nb[1];
  12461. drow += rs;
  12462. }
  12463. }
  12464. // ggml_compute_forward_pool_1d
  12465. static void ggml_compute_forward_pool_1d(
  12466. const struct ggml_compute_params * params,
  12467. struct ggml_tensor * dst) {
  12468. const int32_t * opts = (const int32_t *)dst->op_params;
  12469. enum ggml_op_pool op = opts[0];
  12470. const int k0 = opts[1];
  12471. const int s0 = opts[2];
  12472. const int p0 = opts[3];
  12473. GGML_ASSERT(p0 == 0); // padding not supported
  12474. GGML_ASSERT(k0 == s0); // only s = k supported
  12475. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12476. }
  12477. // ggml_compute_forward_pool_2d
  12478. static void ggml_compute_forward_pool_2d(
  12479. const struct ggml_compute_params * params,
  12480. struct ggml_tensor * dst) {
  12481. const struct ggml_tensor * src = dst->src[0];
  12482. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12483. GGML_ASSERT(params->ith == 0);
  12484. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12485. return;
  12486. }
  12487. const int32_t * opts = (const int32_t *)dst->op_params;
  12488. enum ggml_op_pool op = opts[0];
  12489. const int k0 = opts[1];
  12490. const int k1 = opts[2];
  12491. const int s0 = opts[3];
  12492. const int s1 = opts[4];
  12493. const int p0 = opts[5];
  12494. const int p1 = opts[6];
  12495. const char * cdata = (const char*)src->data;
  12496. const char * const data_end = cdata + ggml_nbytes(src);
  12497. const int64_t px = dst->ne[0];
  12498. const int64_t py = dst->ne[1];
  12499. const int64_t pa = px * py;
  12500. float * dplane = (float *)dst->data;
  12501. const int ka = k0 * k1;
  12502. const int offset0 = -p0;
  12503. const int offset1 = -p1;
  12504. while (cdata < data_end) {
  12505. for (int oy = 0; oy < py; ++oy) {
  12506. float * const drow = dplane + oy * px;
  12507. for (int ox = 0; ox < px; ++ox) {
  12508. float * const out = drow + ox;
  12509. switch (op) {
  12510. case GGML_OP_POOL_AVG: *out = 0; break;
  12511. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12512. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12513. }
  12514. const int ix = offset0 + ox * s0;
  12515. const int iy = offset1 + oy * s1;
  12516. for (int ky = 0; ky < k1; ++ky) {
  12517. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12518. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12519. for (int kx = 0; kx < k0; ++kx) {
  12520. int j = ix + kx;
  12521. if (j < 0 || j >= src->ne[0]) continue;
  12522. switch (op) {
  12523. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12524. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12525. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12526. }
  12527. }
  12528. }
  12529. switch (op) {
  12530. case GGML_OP_POOL_AVG: *out /= ka; break;
  12531. case GGML_OP_POOL_MAX: break;
  12532. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12533. }
  12534. }
  12535. }
  12536. cdata += src->nb[2];
  12537. dplane += pa;
  12538. }
  12539. }
  12540. // ggml_compute_forward_upscale
  12541. static void ggml_compute_forward_upscale_f32(
  12542. const struct ggml_compute_params * params,
  12543. struct ggml_tensor * dst) {
  12544. const struct ggml_tensor * src0 = dst->src[0];
  12545. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12546. return;
  12547. }
  12548. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12549. const int ith = params->ith;
  12550. const int nth = params->nth;
  12551. GGML_TENSOR_UNARY_OP_LOCALS
  12552. const float sf0 = (float)ne0/src0->ne[0];
  12553. const float sf1 = (float)ne1/src0->ne[1];
  12554. const float sf2 = (float)ne2/src0->ne[2];
  12555. const float sf3 = (float)ne3/src0->ne[3];
  12556. // TODO: optimize
  12557. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12558. const int64_t i03 = i3 / sf3;
  12559. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12560. const int64_t i02 = i2 / sf2;
  12561. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12562. const int64_t i01 = i1 / sf1;
  12563. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12564. const int64_t i00 = i0 / sf0;
  12565. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12566. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12567. *y = *x;
  12568. }
  12569. }
  12570. }
  12571. }
  12572. }
  12573. static void ggml_compute_forward_upscale(
  12574. const struct ggml_compute_params * params,
  12575. struct ggml_tensor * dst) {
  12576. const struct ggml_tensor * src0 = dst->src[0];
  12577. switch (src0->type) {
  12578. case GGML_TYPE_F32:
  12579. {
  12580. ggml_compute_forward_upscale_f32(params, dst);
  12581. } break;
  12582. default:
  12583. {
  12584. GGML_ASSERT(false);
  12585. } break;
  12586. }
  12587. }
  12588. // ggml_compute_forward_pad
  12589. static void ggml_compute_forward_pad_f32(
  12590. const struct ggml_compute_params * params,
  12591. struct ggml_tensor * dst) {
  12592. const struct ggml_tensor * src0 = dst->src[0];
  12593. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12594. return;
  12595. }
  12596. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12597. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12598. const int ith = params->ith;
  12599. const int nth = params->nth;
  12600. GGML_TENSOR_UNARY_OP_LOCALS
  12601. float * dst_ptr = (float *) dst->data;
  12602. // TODO: optimize
  12603. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12604. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12605. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12606. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12607. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12608. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12609. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12610. dst_ptr[dst_idx] = *src_ptr;
  12611. } else {
  12612. dst_ptr[dst_idx] = 0;
  12613. }
  12614. }
  12615. }
  12616. }
  12617. }
  12618. }
  12619. static void ggml_compute_forward_pad(
  12620. const struct ggml_compute_params * params,
  12621. struct ggml_tensor * dst) {
  12622. const struct ggml_tensor * src0 = dst->src[0];
  12623. switch (src0->type) {
  12624. case GGML_TYPE_F32:
  12625. {
  12626. ggml_compute_forward_pad_f32(params, dst);
  12627. } break;
  12628. default:
  12629. {
  12630. GGML_ASSERT(false);
  12631. } break;
  12632. }
  12633. }
  12634. // ggml_compute_forward_arange
  12635. static void ggml_compute_forward_arange_f32(
  12636. const struct ggml_compute_params * params,
  12637. struct ggml_tensor * dst) {
  12638. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12639. return;
  12640. }
  12641. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12642. const int ith = params->ith;
  12643. const int nth = params->nth;
  12644. const float start = ggml_get_op_params_f32(dst, 0);
  12645. const float stop = ggml_get_op_params_f32(dst, 1);
  12646. const float step = ggml_get_op_params_f32(dst, 2);
  12647. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12648. GGML_ASSERT(ggml_nelements(dst) == steps);
  12649. for (int64_t i = ith; i < steps; i+= nth) {
  12650. float value = start + step * i;
  12651. ((float *)dst->data)[i] = value;
  12652. }
  12653. }
  12654. static void ggml_compute_forward_arange(
  12655. const struct ggml_compute_params * params,
  12656. struct ggml_tensor * dst) {
  12657. switch (dst->type) {
  12658. case GGML_TYPE_F32:
  12659. {
  12660. ggml_compute_forward_arange_f32(params, dst);
  12661. } break;
  12662. default:
  12663. {
  12664. GGML_ASSERT(false);
  12665. } break;
  12666. }
  12667. }
  12668. static void ggml_compute_forward_timestep_embedding_f32(
  12669. const struct ggml_compute_params * params,
  12670. struct ggml_tensor * dst) {
  12671. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12672. return;
  12673. }
  12674. const struct ggml_tensor * src0 = dst->src[0];
  12675. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12676. const int ith = params->ith;
  12677. const int nth = params->nth;
  12678. GGML_TENSOR_UNARY_OP_LOCALS
  12679. const int dim = ggml_get_op_params_i32(dst, 0);
  12680. const int max_period = ggml_get_op_params_i32(dst, 1);
  12681. int half = dim / 2;
  12682. for (int64_t i = 0; i < ne00; i++) {
  12683. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12684. for (int64_t j = ith; j < half; j += nth) {
  12685. float timestep = ((float *)src0->data)[i];
  12686. float freq = (float)expf(-logf(max_period) * j / half);
  12687. float arg = timestep * freq;
  12688. embed_data[j] = cosf(arg);
  12689. embed_data[j + half] = sinf(arg);
  12690. }
  12691. if (dim % 2 != 0 && ith == 0) {
  12692. embed_data[dim] = 0.f;
  12693. }
  12694. }
  12695. }
  12696. static void ggml_compute_forward_timestep_embedding(
  12697. const struct ggml_compute_params * params,
  12698. struct ggml_tensor * dst) {
  12699. const struct ggml_tensor * src0 = dst->src[0];
  12700. switch (src0->type) {
  12701. case GGML_TYPE_F32:
  12702. {
  12703. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12704. } break;
  12705. default:
  12706. {
  12707. GGML_ASSERT(false);
  12708. } break;
  12709. }
  12710. }
  12711. // ggml_compute_forward_argsort
  12712. static void ggml_compute_forward_argsort_f32(
  12713. const struct ggml_compute_params * params,
  12714. struct ggml_tensor * dst) {
  12715. const struct ggml_tensor * src0 = dst->src[0];
  12716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12717. return;
  12718. }
  12719. GGML_TENSOR_UNARY_OP_LOCALS
  12720. GGML_ASSERT(nb0 == sizeof(float));
  12721. const int ith = params->ith;
  12722. const int nth = params->nth;
  12723. const int64_t nr = ggml_nrows(src0);
  12724. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12725. for (int64_t i = ith; i < nr; i += nth) {
  12726. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12727. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12728. for (int64_t j = 0; j < ne0; j++) {
  12729. dst_data[j] = j;
  12730. }
  12731. // C doesn't have a functional sort, so we do a bubble sort instead
  12732. for (int64_t j = 0; j < ne0; j++) {
  12733. for (int64_t k = j + 1; k < ne0; k++) {
  12734. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12735. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12736. int32_t tmp = dst_data[j];
  12737. dst_data[j] = dst_data[k];
  12738. dst_data[k] = tmp;
  12739. }
  12740. }
  12741. }
  12742. }
  12743. }
  12744. static void ggml_compute_forward_argsort(
  12745. const struct ggml_compute_params * params,
  12746. struct ggml_tensor * dst) {
  12747. const struct ggml_tensor * src0 = dst->src[0];
  12748. switch (src0->type) {
  12749. case GGML_TYPE_F32:
  12750. {
  12751. ggml_compute_forward_argsort_f32(params, dst);
  12752. } break;
  12753. default:
  12754. {
  12755. GGML_ASSERT(false);
  12756. } break;
  12757. }
  12758. }
  12759. // ggml_compute_forward_flash_attn_ext
  12760. static void ggml_compute_forward_flash_attn_ext_f16(
  12761. const struct ggml_compute_params * params,
  12762. const struct ggml_tensor * q,
  12763. const struct ggml_tensor * k,
  12764. const struct ggml_tensor * v,
  12765. const struct ggml_tensor * mask,
  12766. struct ggml_tensor * dst) {
  12767. int64_t t0 = ggml_perf_time_us();
  12768. UNUSED(t0);
  12769. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12770. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12771. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12772. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12773. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12774. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12775. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12776. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12777. const int ith = params->ith;
  12778. const int nth = params->nth;
  12779. const int64_t D = neq0;
  12780. const int64_t N = neq1;
  12781. GGML_ASSERT(ne0 == D);
  12782. GGML_ASSERT(ne2 == N);
  12783. // input tensor rows must be contiguous
  12784. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12785. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12786. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12787. GGML_ASSERT(neq0 == D);
  12788. GGML_ASSERT(nek0 == D);
  12789. GGML_ASSERT(nev0 == D);
  12790. GGML_ASSERT(neq1 == N);
  12791. GGML_ASSERT(nev0 == D);
  12792. // dst cannot be transposed or permuted
  12793. GGML_ASSERT(nb0 == sizeof(float));
  12794. GGML_ASSERT(nb0 <= nb1);
  12795. GGML_ASSERT(nb1 <= nb2);
  12796. GGML_ASSERT(nb2 <= nb3);
  12797. // broadcast factors
  12798. const int64_t rk2 = neq2/nek2;
  12799. const int64_t rk3 = neq3/nek3;
  12800. const int64_t rv2 = neq2/nev2;
  12801. const int64_t rv3 = neq3/nev3;
  12802. if (params->type == GGML_TASK_TYPE_INIT) {
  12803. return;
  12804. }
  12805. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12806. return;
  12807. }
  12808. // parallelize by q rows using ggml_vec_dot_f32
  12809. // total rows in q
  12810. const int nr = neq1*neq2*neq3;
  12811. // rows per thread
  12812. const int dr = (nr + nth - 1)/nth;
  12813. // row range for this thread
  12814. const int ir0 = dr*ith;
  12815. const int ir1 = MIN(ir0 + dr, nr);
  12816. float scale = 1.0f;
  12817. float max_bias = 0.0f;
  12818. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12819. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12820. const uint32_t n_head = neq2;
  12821. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12822. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12823. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12824. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12825. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12826. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12827. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12828. // loop over n_batch and n_head
  12829. for (int ir = ir0; ir < ir1; ++ir) {
  12830. // q indices
  12831. const int iq3 = ir/(neq2*neq1);
  12832. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12833. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12834. const uint32_t h = iq2; // head index
  12835. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12836. float S = 0.0f; // sum
  12837. float M = -INFINITY; // maximum KQ value
  12838. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12839. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12840. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12841. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12842. if (v->type == GGML_TYPE_F16) {
  12843. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12844. } else {
  12845. memset(VKQ32, 0, D*sizeof(float));
  12846. }
  12847. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12848. // k indices
  12849. const int ik3 = iq3 / rk3;
  12850. const int ik2 = iq2 / rk2;
  12851. // v indices
  12852. const int iv3 = iq3 / rv3;
  12853. const int iv2 = iq2 / rv2;
  12854. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12855. q_to_vec_dot(pq, Q_q, D);
  12856. // online softmax / attention
  12857. // loop over n_kv and n_head_kv
  12858. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12859. for (int64_t ic = 0; ic < nek1; ++ic) {
  12860. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12861. if (mv == -INFINITY) {
  12862. continue;
  12863. }
  12864. float s; // KQ value
  12865. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12866. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12867. s = s*scale + mv; // scale KQ value and apply mask
  12868. const float Mold = M;
  12869. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12870. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12871. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12872. if (v->type== GGML_TYPE_F16) {
  12873. if (s > M) {
  12874. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12875. M = s;
  12876. ms = expf(Mold - M);
  12877. // V = V*expf(Mold - M)
  12878. ggml_vec_scale_f16(D, VKQ16, ms);
  12879. } else {
  12880. // no new maximum, ms == 1.0f, vs != 1.0f
  12881. vs = expf(s - M);
  12882. }
  12883. // V += v*expf(s - M)
  12884. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12885. } else {
  12886. if (s > M) {
  12887. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12888. M = s;
  12889. ms = expf(Mold - M);
  12890. // V = V*expf(Mold - M)
  12891. ggml_vec_scale_f32(D, VKQ32, ms);
  12892. } else {
  12893. // no new maximum, ms == 1.0f, vs != 1.0f
  12894. vs = expf(s - M);
  12895. }
  12896. v_to_float(v_data, V32, D);
  12897. // V += v*expf(s - M)
  12898. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12899. }
  12900. S = S*ms + vs; // scale and increment sum with partial sum
  12901. }
  12902. if (v->type == GGML_TYPE_F16) {
  12903. for (int64_t d = 0; d < D; ++d) {
  12904. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12905. }
  12906. }
  12907. // V /= S
  12908. const float S_inv = 1.0f/S;
  12909. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12910. // dst indices
  12911. const int i1 = iq1;
  12912. const int i2 = iq2;
  12913. const int i3 = iq3;
  12914. // original
  12915. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12916. // permute(0, 2, 1, 3)
  12917. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12918. }
  12919. }
  12920. static void ggml_compute_forward_flash_attn_ext(
  12921. const struct ggml_compute_params * params,
  12922. const struct ggml_tensor * q,
  12923. const struct ggml_tensor * k,
  12924. const struct ggml_tensor * v,
  12925. const struct ggml_tensor * mask,
  12926. struct ggml_tensor * dst) {
  12927. switch (dst->op_params[2]) {
  12928. case GGML_PREC_DEFAULT:
  12929. case GGML_PREC_F32:
  12930. {
  12931. // uses F32 accumulators
  12932. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12933. } break;
  12934. default:
  12935. {
  12936. GGML_ASSERT(false);
  12937. } break;
  12938. }
  12939. }
  12940. // ggml_compute_forward_flash_attn_back
  12941. static void ggml_compute_forward_flash_attn_back_f32(
  12942. const struct ggml_compute_params * params,
  12943. const bool masked,
  12944. struct ggml_tensor * dst) {
  12945. const struct ggml_tensor * q = dst->src[0];
  12946. const struct ggml_tensor * k = dst->src[1];
  12947. const struct ggml_tensor * v = dst->src[2];
  12948. const struct ggml_tensor * d = dst->src[3];
  12949. int64_t t0 = ggml_perf_time_us();
  12950. UNUSED(t0);
  12951. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12952. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12953. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12954. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12955. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12956. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12957. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12958. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12959. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12960. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12961. const int ith = params->ith;
  12962. const int nth = params->nth;
  12963. const int64_t D = neq0;
  12964. const int64_t N = neq1;
  12965. const int64_t P = nek1 - N;
  12966. const int64_t M = P + N;
  12967. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12968. const int mxDM = MAX(D, Mup);
  12969. // GGML_ASSERT(ne0 == D);
  12970. // GGML_ASSERT(ne1 == N);
  12971. GGML_ASSERT(P >= 0);
  12972. GGML_ASSERT(nbq0 == sizeof(float));
  12973. GGML_ASSERT(nbk0 == sizeof(float));
  12974. GGML_ASSERT(nbv0 == sizeof(float));
  12975. GGML_ASSERT(neq0 == D);
  12976. GGML_ASSERT(nek0 == D);
  12977. GGML_ASSERT(nev1 == D);
  12978. GGML_ASSERT(ned0 == D);
  12979. GGML_ASSERT(neq1 == N);
  12980. GGML_ASSERT(nek1 == N + P);
  12981. GGML_ASSERT(nev1 == D);
  12982. GGML_ASSERT(ned1 == N);
  12983. // dst cannot be transposed or permuted
  12984. GGML_ASSERT(nb0 == sizeof(float));
  12985. GGML_ASSERT(nb0 <= nb1);
  12986. GGML_ASSERT(nb1 <= nb2);
  12987. GGML_ASSERT(nb2 <= nb3);
  12988. if (params->type == GGML_TASK_TYPE_INIT) {
  12989. if (ith == 0) {
  12990. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12991. }
  12992. return;
  12993. }
  12994. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12995. return;
  12996. }
  12997. const int64_t elem_q = ggml_nelements(q);
  12998. const int64_t elem_k = ggml_nelements(k);
  12999. enum ggml_type result_type = dst->type;
  13000. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13001. const size_t tsize = ggml_type_size(result_type);
  13002. const size_t offs_q = 0;
  13003. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13004. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13005. void * grad_q = (char *) dst->data;
  13006. void * grad_k = (char *) dst->data + offs_k;
  13007. void * grad_v = (char *) dst->data + offs_v;
  13008. const size_t nbgq1 = nb0*neq0;
  13009. const size_t nbgq2 = nb0*neq0*neq1;
  13010. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  13011. const size_t nbgk1 = nb0*nek0;
  13012. const size_t nbgk2 = nb0*nek0*nek1;
  13013. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  13014. const size_t nbgv1 = nb0*nev0;
  13015. const size_t nbgv2 = nb0*nev0*nev1;
  13016. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13017. // parallelize by k rows using ggml_vec_dot_f32
  13018. // total rows in k
  13019. const int nr = nek2*nek3;
  13020. // rows per thread
  13021. const int dr = (nr + nth - 1)/nth;
  13022. // row range for this thread
  13023. const int ir0 = dr*ith;
  13024. const int ir1 = MIN(ir0 + dr, nr);
  13025. const float scale = 1.0f/sqrtf(D);
  13026. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13027. // how often k2 (and v2) is repeated in q2
  13028. int nrep = neq2/nek2;
  13029. for (int ir = ir0; ir < ir1; ++ir) {
  13030. // q indices
  13031. const int ik3 = ir/(nek2);
  13032. const int ik2 = ir - ik3*nek2;
  13033. const int iq3 = ik3;
  13034. const int id3 = ik3;
  13035. const int iv3 = ik3;
  13036. const int iv2 = ik2;
  13037. for (int irep = 0; irep < nrep; ++irep) {
  13038. const int iq2 = ik2 + irep*nek2;
  13039. const int id2 = iq2;
  13040. // (ik2 + irep*nek2) % nek2 == ik2
  13041. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13042. const int id1 = iq1;
  13043. // not sure about CACHE_LINE_SIZE_F32..
  13044. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13045. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13046. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13047. for (int i = M; i < Mup; ++i) {
  13048. S[i] = -INFINITY;
  13049. }
  13050. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13051. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13052. // k indices
  13053. const int ik1 = ic;
  13054. // S indices
  13055. const int i1 = ik1;
  13056. ggml_vec_dot_f32(neq0,
  13057. S + i1, 0,
  13058. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13059. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13060. }
  13061. // scale
  13062. ggml_vec_scale_f32(masked_begin, S, scale);
  13063. for (int64_t i = masked_begin; i < M; i++) {
  13064. S[i] = -INFINITY;
  13065. }
  13066. // softmax
  13067. // exclude known -INF S[..] values from max and loop
  13068. // dont forget to set their SM values to zero
  13069. {
  13070. float max = -INFINITY;
  13071. ggml_vec_max_f32(masked_begin, &max, S);
  13072. ggml_float sum = 0.0;
  13073. {
  13074. #ifdef GGML_SOFT_MAX_ACCELERATE
  13075. max = -max;
  13076. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13077. vvexpf(SM, SM, &Mup);
  13078. ggml_vec_sum_f32(Mup, &sum, SM);
  13079. #else
  13080. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13081. #endif
  13082. }
  13083. assert(sum > 0.0);
  13084. sum = 1.0/sum;
  13085. ggml_vec_scale_f32(masked_begin, SM, sum);
  13086. }
  13087. // step-by-step explanation
  13088. {
  13089. // forward-process shape grads from backward process
  13090. // parallel_for ik2,ik3:
  13091. // for irep:
  13092. // iq2 = ik2 + irep*nek2
  13093. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13094. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13095. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13096. // for iq1:
  13097. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13098. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13099. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13100. // S0 = -Inf [D,1,1,1]
  13101. // ~S1[i] = dot(kcur[:D,i], qcur)
  13102. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13103. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13104. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13105. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13106. // ~S5[i] = dot(vcur[:,i], S4)
  13107. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13108. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13109. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13110. // dst backward-/ grad[dst] = d
  13111. //
  13112. // output gradients with their dependencies:
  13113. //
  13114. // grad[kcur] = grad[S1].T @ qcur
  13115. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13116. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13117. // grad[S4] = grad[S5] @ vcur
  13118. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13119. // grad[qcur] = grad[S1] @ kcur
  13120. // grad[vcur] = grad[S5].T @ S4
  13121. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13122. //
  13123. // in post-order:
  13124. //
  13125. // S1 = qcur @ kcur.T
  13126. // S2 = S1 * scale
  13127. // S3 = diag_mask_inf(S2, P)
  13128. // S4 = softmax(S3)
  13129. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13130. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13131. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13132. // grad[qcur] = grad[S1] @ kcur
  13133. // grad[kcur] = grad[S1].T @ qcur
  13134. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13135. //
  13136. // using less variables (SM=S4):
  13137. //
  13138. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13139. // SM = softmax(S)
  13140. // S = d[:D,iq1,iq2,iq3] @ vcur
  13141. // dot_SM_gradSM = dot(SM, S)
  13142. // S = SM * (S - dot(SM, S))
  13143. // S = diag_mask_zero(S, P) * scale
  13144. //
  13145. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13146. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13147. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13148. }
  13149. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13150. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13151. // for ic:
  13152. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13153. // exclude known future zero S[..] values from operation
  13154. ggml_vec_set_f32(masked_begin, S, 0);
  13155. for (int64_t ic = 0; ic < D; ++ic) {
  13156. ggml_vec_mad_f32(masked_begin,
  13157. S,
  13158. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13159. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13160. }
  13161. // S = SM * (S - dot(SM, S))
  13162. float dot_SM_gradSM = 0;
  13163. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13164. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13165. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13166. // S = diag_mask_zero(S, P) * scale
  13167. // already done by above ggml_vec_set_f32
  13168. // exclude known zero S[..] values from operation
  13169. ggml_vec_scale_f32(masked_begin, S, scale);
  13170. // S shape [M,1]
  13171. // SM shape [M,1]
  13172. // kcur shape [D,M]
  13173. // qcur shape [D,1]
  13174. // vcur shape [M,D]
  13175. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13176. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13177. // for ic:
  13178. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13179. // exclude known zero S[..] values from loop
  13180. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13181. ggml_vec_mad_f32(D,
  13182. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13183. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13184. S[ic]);
  13185. }
  13186. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13187. // for ic:
  13188. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13189. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13190. // exclude known zero S[..] values from loop
  13191. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13192. ggml_vec_mad_f32(D,
  13193. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13194. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13195. S[ic]);
  13196. }
  13197. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13198. // for ic:
  13199. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13200. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13201. // exclude known zero SM[..] values from mad
  13202. for (int64_t ic = 0; ic < D; ++ic) {
  13203. ggml_vec_mad_f32(masked_begin,
  13204. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13205. SM,
  13206. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13207. }
  13208. }
  13209. }
  13210. }
  13211. }
  13212. static void ggml_compute_forward_flash_attn_back(
  13213. const struct ggml_compute_params * params,
  13214. const bool masked,
  13215. struct ggml_tensor * dst) {
  13216. const struct ggml_tensor * q = dst->src[0];
  13217. switch (q->type) {
  13218. case GGML_TYPE_F32:
  13219. {
  13220. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13221. } break;
  13222. default:
  13223. {
  13224. GGML_ASSERT(false);
  13225. } break;
  13226. }
  13227. }
  13228. // ggml_compute_forward_ssm_conv
  13229. static void ggml_compute_forward_ssm_conv_f32(
  13230. const struct ggml_compute_params * params,
  13231. struct ggml_tensor * dst) {
  13232. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13233. return;
  13234. }
  13235. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13236. const struct ggml_tensor * src1 = dst->src[1]; // x
  13237. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13238. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13239. const int ith = params->ith;
  13240. const int nth = params->nth;
  13241. const int nc = src2->ne[0]; // d_conv
  13242. const int nr = src0->ne[1]; // d_inner
  13243. const int n_t = src1->ne[1]; // n_tokens
  13244. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13245. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13246. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13247. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13248. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13249. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13250. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13251. // for use with the destination state offset between sequences
  13252. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13253. // rows per thread
  13254. const int dr = (nr + nth - 1)/nth;
  13255. // row range for this thread
  13256. const int ir0 = dr*ith;
  13257. const int ir1 = MIN(ir0 + dr, nr);
  13258. const int ir = ir1 - ir0;
  13259. if (n_kv > 1) {
  13260. // multiple sequences means it's hard to know when it's the first time a state is read,
  13261. // so copy them all over to the destination, just to be sure.
  13262. for (int i3 = 0; i3 < n_kv; ++i3) {
  13263. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13264. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13265. // can't use memcpy because of d_conv vs d_conv - 1
  13266. for (int i1 = 0; i1 < ir; ++i1) {
  13267. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13268. // copy s0 to last (d_conv - 1) columns of s
  13269. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13270. }
  13271. }
  13272. }
  13273. }
  13274. for (int i2 = 0; i2 < n_t; ++i2) {
  13275. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13276. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13277. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13278. float * s0; // {d_conv - 1, d_inner, n_kv}
  13279. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13280. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13281. int ne0s0;
  13282. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13283. // avoid needing to copy the state for the first token
  13284. if (i2 == 0) {
  13285. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13286. ne0s0 = src0->ne[0];
  13287. } else {
  13288. // the source is the last (d_conv - 1) columns of the destination
  13289. s0 = s + 1;
  13290. ne0s0 = nc;
  13291. }
  13292. // d_inner
  13293. for (int i1 = 0; i1 < ir; ++i1) {
  13294. // shift state left
  13295. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13296. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13297. }
  13298. // insert x on the last column
  13299. s[(nc - 1) + i1*nc] = x0[i1];
  13300. }
  13301. // handle copies when there are multiple output states
  13302. for (int i3 = 1; i3 < n_kv; ++i3) {
  13303. int32_t seq = sq[i3];
  13304. if (0 <= seq && seq < n_kv) {
  13305. float * s1 = s + (seq - sq[0])*nc*nr;
  13306. memcpy(s1, s, nc*ir*sizeof(float));
  13307. } else {
  13308. // stop at negative or too big seq_ids
  13309. break;
  13310. }
  13311. }
  13312. // it seems a little faster when this is separate from the state shift
  13313. for (int i1 = 0; i1 < ir; ++i1) {
  13314. // rowwise dot product
  13315. float sumf = 0.0f;
  13316. for (int i0 = 0; i0 < nc; ++i0) {
  13317. int i = i0 + i1*nc;
  13318. sumf += s[i] * c[i];
  13319. }
  13320. x[i1] = sumf;
  13321. }
  13322. }
  13323. }
  13324. static void ggml_compute_forward_ssm_conv(
  13325. const struct ggml_compute_params * params,
  13326. struct ggml_tensor * dst) {
  13327. switch (dst->src[0]->type) {
  13328. case GGML_TYPE_F32:
  13329. {
  13330. ggml_compute_forward_ssm_conv_f32(params, dst);
  13331. } break;
  13332. default:
  13333. {
  13334. GGML_ASSERT(false);
  13335. } break;
  13336. }
  13337. }
  13338. // ggml_compute_forward_ssm_scan
  13339. static void ggml_compute_forward_ssm_scan_f32(
  13340. const struct ggml_compute_params * params,
  13341. struct ggml_tensor * dst) {
  13342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13343. return;
  13344. }
  13345. const struct ggml_tensor * src0 = dst->src[0]; // s
  13346. const struct ggml_tensor * src1 = dst->src[1]; // x
  13347. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13348. const struct ggml_tensor * src3 = dst->src[3]; // A
  13349. const struct ggml_tensor * src4 = dst->src[4]; // B
  13350. const struct ggml_tensor * src5 = dst->src[5]; // C
  13351. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13352. const int ith = params->ith;
  13353. const int nth = params->nth;
  13354. const int64_t nc = src0->ne[0]; // d_state
  13355. const int64_t nr = src0->ne[1]; // d_inner
  13356. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13357. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13358. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13359. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13360. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13361. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13362. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13363. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13364. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13365. // required for the dot product between s and C, and when copying the states
  13366. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13367. // required for per-sequence offsets for states
  13368. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13369. // required to get correct offset for state destination (i.e. src1->nb[2])
  13370. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13371. // rows per thread
  13372. const int dr = (nr + nth - 1)/nth;
  13373. // row range for this thread
  13374. const int ir0 = dr*ith;
  13375. const int ir1 = MIN(ir0 + dr, nr);
  13376. const int ir = ir1 - ir0;
  13377. if (n_kv > 1) {
  13378. // it's hard to know if the source states have already been copied
  13379. // when there are multiple, so copy them already.
  13380. for (int i3 = 0; i3 < n_kv; ++i3) {
  13381. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13382. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13383. memcpy(s, s0, nc*ir*sizeof(float));
  13384. }
  13385. }
  13386. for (int i2 = 0; i2 < n_t; ++i2) {
  13387. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13388. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13389. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13390. float * s0;
  13391. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13392. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13393. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13394. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13395. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13396. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13397. // avoid needing to copy the state for the first token
  13398. if (i2 == 0) {
  13399. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13400. } else {
  13401. // otherwise the source is the same as the destination
  13402. s0 = s;
  13403. }
  13404. // d_inner
  13405. for (int i1 = 0; i1 < ir; ++i1) {
  13406. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13407. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13408. float x_dt = x[i1] * dt_soft_plus;
  13409. float sumf = 0.0f;
  13410. // d_state
  13411. for (int i0 = 0; i0 < nc; ++i0) {
  13412. int i = i0 + i1*nc;
  13413. // state = prev_state * dA + dB * x
  13414. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13415. // y = rowwise_dotprod(state, C)
  13416. sumf += state * C[i0];
  13417. s[i] = state;
  13418. }
  13419. y[i1] = sumf;
  13420. }
  13421. // handle copies when there are multiple output states
  13422. for (int i3 = 1; i3 < n_kv; ++i3) {
  13423. int32_t seq = sq[i3];
  13424. if (0 <= seq && seq < n_kv) {
  13425. float * s1 = s + (seq - sq[0])*nc*nr;
  13426. memcpy(s1, s, nc*ir*sizeof(float));
  13427. } else {
  13428. // stop at negative or too big seq_ids
  13429. break;
  13430. }
  13431. }
  13432. }
  13433. }
  13434. static void ggml_compute_forward_ssm_scan(
  13435. const struct ggml_compute_params * params,
  13436. struct ggml_tensor * dst) {
  13437. switch (dst->src[0]->type) {
  13438. case GGML_TYPE_F32:
  13439. {
  13440. ggml_compute_forward_ssm_scan_f32(params, dst);
  13441. } break;
  13442. default:
  13443. {
  13444. GGML_ASSERT(false);
  13445. } break;
  13446. }
  13447. }
  13448. // ggml_compute_forward_win_part
  13449. static void ggml_compute_forward_win_part_f32(
  13450. const struct ggml_compute_params * params,
  13451. struct ggml_tensor * dst) {
  13452. const struct ggml_tensor * src0 = dst->src[0];
  13453. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13454. return;
  13455. }
  13456. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13457. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13458. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13459. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13460. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13461. assert(ne00 == ne0);
  13462. assert(ne3 == nep0*nep1);
  13463. // TODO: optimize / multi-thread
  13464. for (int py = 0; py < nep1; ++py) {
  13465. for (int px = 0; px < nep0; ++px) {
  13466. const int64_t i3 = py*nep0 + px;
  13467. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13468. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13469. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13470. const int64_t i02 = py*w + i2;
  13471. const int64_t i01 = px*w + i1;
  13472. const int64_t i00 = i0;
  13473. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13474. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13475. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13476. ((float *) dst->data)[i] = 0.0f;
  13477. } else {
  13478. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13479. }
  13480. }
  13481. }
  13482. }
  13483. }
  13484. }
  13485. }
  13486. static void ggml_compute_forward_win_part(
  13487. const struct ggml_compute_params * params,
  13488. struct ggml_tensor * dst) {
  13489. const struct ggml_tensor * src0 = dst->src[0];
  13490. switch (src0->type) {
  13491. case GGML_TYPE_F32:
  13492. {
  13493. ggml_compute_forward_win_part_f32(params, dst);
  13494. } break;
  13495. default:
  13496. {
  13497. GGML_ASSERT(false);
  13498. } break;
  13499. }
  13500. }
  13501. // ggml_compute_forward_win_unpart
  13502. static void ggml_compute_forward_win_unpart_f32(
  13503. const struct ggml_compute_params * params,
  13504. struct ggml_tensor * dst) {
  13505. const struct ggml_tensor * src0 = dst->src[0];
  13506. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13507. return;
  13508. }
  13509. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13510. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13511. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13512. // padding
  13513. const int px = (w - ne1%w)%w;
  13514. //const int py = (w - ne2%w)%w;
  13515. const int npx = (px + ne1)/w;
  13516. //const int npy = (py + ne2)/w;
  13517. assert(ne0 == ne00);
  13518. // TODO: optimize / multi-thread
  13519. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13520. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13521. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13522. const int ip2 = i2/w;
  13523. const int ip1 = i1/w;
  13524. const int64_t i02 = i2%w;
  13525. const int64_t i01 = i1%w;
  13526. const int64_t i00 = i0;
  13527. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13528. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13529. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13530. }
  13531. }
  13532. }
  13533. }
  13534. static void ggml_compute_forward_win_unpart(
  13535. const struct ggml_compute_params * params,
  13536. struct ggml_tensor * dst) {
  13537. const struct ggml_tensor * src0 = dst->src[0];
  13538. switch (src0->type) {
  13539. case GGML_TYPE_F32:
  13540. {
  13541. ggml_compute_forward_win_unpart_f32(params, dst);
  13542. } break;
  13543. default:
  13544. {
  13545. GGML_ASSERT(false);
  13546. } break;
  13547. }
  13548. }
  13549. //gmml_compute_forward_unary
  13550. static void ggml_compute_forward_unary(
  13551. const struct ggml_compute_params * params,
  13552. struct ggml_tensor * dst) {
  13553. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13554. switch (op) {
  13555. case GGML_UNARY_OP_ABS:
  13556. {
  13557. ggml_compute_forward_abs(params, dst);
  13558. } break;
  13559. case GGML_UNARY_OP_SGN:
  13560. {
  13561. ggml_compute_forward_sgn(params, dst);
  13562. } break;
  13563. case GGML_UNARY_OP_NEG:
  13564. {
  13565. ggml_compute_forward_neg(params, dst);
  13566. } break;
  13567. case GGML_UNARY_OP_STEP:
  13568. {
  13569. ggml_compute_forward_step(params, dst);
  13570. } break;
  13571. case GGML_UNARY_OP_TANH:
  13572. {
  13573. ggml_compute_forward_tanh(params, dst);
  13574. } break;
  13575. case GGML_UNARY_OP_ELU:
  13576. {
  13577. ggml_compute_forward_elu(params, dst);
  13578. } break;
  13579. case GGML_UNARY_OP_RELU:
  13580. {
  13581. ggml_compute_forward_relu(params, dst);
  13582. } break;
  13583. case GGML_UNARY_OP_SIGMOID:
  13584. {
  13585. ggml_compute_forward_sigmoid(params, dst);
  13586. } break;
  13587. case GGML_UNARY_OP_GELU:
  13588. {
  13589. ggml_compute_forward_gelu(params, dst);
  13590. } break;
  13591. case GGML_UNARY_OP_GELU_QUICK:
  13592. {
  13593. ggml_compute_forward_gelu_quick(params, dst);
  13594. } break;
  13595. case GGML_UNARY_OP_SILU:
  13596. {
  13597. ggml_compute_forward_silu(params, dst);
  13598. } break;
  13599. case GGML_UNARY_OP_HARDSWISH:
  13600. {
  13601. ggml_compute_forward_hardswish(params, dst);
  13602. } break;
  13603. case GGML_UNARY_OP_HARDSIGMOID:
  13604. {
  13605. ggml_compute_forward_hardsigmoid(params, dst);
  13606. } break;
  13607. default:
  13608. {
  13609. GGML_ASSERT(false);
  13610. } break;
  13611. }
  13612. }
  13613. // ggml_compute_forward_get_rel_pos
  13614. static void ggml_compute_forward_get_rel_pos_f16(
  13615. const struct ggml_compute_params * params,
  13616. struct ggml_tensor * dst) {
  13617. const struct ggml_tensor * src0 = dst->src[0];
  13618. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13619. return;
  13620. }
  13621. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13622. GGML_TENSOR_UNARY_OP_LOCALS
  13623. const int64_t w = ne1;
  13624. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13625. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13626. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13627. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13628. const int64_t pos = (w - i1 - 1) + i2;
  13629. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13630. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13631. }
  13632. }
  13633. }
  13634. }
  13635. static void ggml_compute_forward_get_rel_pos(
  13636. const struct ggml_compute_params * params,
  13637. struct ggml_tensor * dst) {
  13638. const struct ggml_tensor * src0 = dst->src[0];
  13639. switch (src0->type) {
  13640. case GGML_TYPE_F16:
  13641. case GGML_TYPE_BF16:
  13642. {
  13643. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13644. } break;
  13645. default:
  13646. {
  13647. GGML_ASSERT(false);
  13648. } break;
  13649. }
  13650. }
  13651. // ggml_compute_forward_add_rel_pos
  13652. static void ggml_compute_forward_add_rel_pos_f32(
  13653. const struct ggml_compute_params * params,
  13654. struct ggml_tensor * dst) {
  13655. const struct ggml_tensor * src0 = dst->src[0];
  13656. const struct ggml_tensor * src1 = dst->src[1];
  13657. const struct ggml_tensor * src2 = dst->src[2];
  13658. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13659. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13660. if (params->ith != 0) {
  13661. return;
  13662. }
  13663. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13664. return;
  13665. }
  13666. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13667. return;
  13668. }
  13669. int64_t t0 = ggml_perf_time_us();
  13670. UNUSED(t0);
  13671. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13672. float * src1_data = (float *) src1->data;
  13673. float * src2_data = (float *) src2->data;
  13674. float * dst_data = (float *) dst->data;
  13675. const int64_t ne10 = src1->ne[0];
  13676. const int64_t ne11 = src1->ne[1];
  13677. const int64_t ne12 = src1->ne[2];
  13678. const int64_t ne13 = src1->ne[3];
  13679. const int ith = params->ith;
  13680. const int nth = params->nth;
  13681. // total patches in dst
  13682. const int np = ne13;
  13683. // patches per thread
  13684. const int dp = (np + nth - 1)/nth;
  13685. // patch range for this thread
  13686. const int ip0 = dp*ith;
  13687. const int ip1 = MIN(ip0 + dp, np);
  13688. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13689. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13690. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13691. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13692. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13693. const int64_t jp0 = jp1 + i10;
  13694. const float src1_e = src1_data[jp0];
  13695. const float src2_e = src2_data[jp0];
  13696. const int64_t jdh = jp0 * ne10;
  13697. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13698. for (int64_t j = 0; j < ne10; ++j) {
  13699. dst_data[jdh + j ] += src2_e;
  13700. dst_data[jdw + j*ne10] += src1_e;
  13701. }
  13702. }
  13703. }
  13704. }
  13705. }
  13706. }
  13707. static void ggml_compute_forward_add_rel_pos(
  13708. const struct ggml_compute_params * params,
  13709. struct ggml_tensor * dst) {
  13710. const struct ggml_tensor * src0 = dst->src[0];
  13711. switch (src0->type) {
  13712. case GGML_TYPE_F32:
  13713. {
  13714. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13715. } break;
  13716. default:
  13717. {
  13718. GGML_ASSERT(false);
  13719. } break;
  13720. }
  13721. }
  13722. // ggml_compute_forward_map_unary
  13723. static void ggml_compute_forward_map_unary_f32(
  13724. const struct ggml_compute_params * params,
  13725. struct ggml_tensor * dst,
  13726. const ggml_unary_op_f32_t fun) {
  13727. const struct ggml_tensor * src0 = dst->src[0];
  13728. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13729. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13730. return;
  13731. }
  13732. const int n = ggml_nrows(src0);
  13733. const int nc = src0->ne[0];
  13734. assert( dst->nb[0] == sizeof(float));
  13735. assert(src0->nb[0] == sizeof(float));
  13736. for (int i = 0; i < n; i++) {
  13737. fun(nc,
  13738. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13739. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13740. }
  13741. }
  13742. static void ggml_compute_forward_map_unary(
  13743. const struct ggml_compute_params * params,
  13744. struct ggml_tensor * dst,
  13745. const ggml_unary_op_f32_t fun) {
  13746. const struct ggml_tensor * src0 = dst->src[0];
  13747. switch (src0->type) {
  13748. case GGML_TYPE_F32:
  13749. {
  13750. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13751. } break;
  13752. default:
  13753. {
  13754. GGML_ASSERT(false);
  13755. } break;
  13756. }
  13757. }
  13758. // ggml_compute_forward_map_binary
  13759. static void ggml_compute_forward_map_binary_f32(
  13760. const struct ggml_compute_params * params,
  13761. struct ggml_tensor * dst,
  13762. const ggml_binary_op_f32_t fun) {
  13763. const struct ggml_tensor * src0 = dst->src[0];
  13764. const struct ggml_tensor * src1 = dst->src[1];
  13765. assert(params->ith == 0);
  13766. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13767. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13768. return;
  13769. }
  13770. const int n = ggml_nrows(src0);
  13771. const int nc = src0->ne[0];
  13772. assert( dst->nb[0] == sizeof(float));
  13773. assert(src0->nb[0] == sizeof(float));
  13774. assert(src1->nb[0] == sizeof(float));
  13775. for (int i = 0; i < n; i++) {
  13776. fun(nc,
  13777. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13778. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13779. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13780. }
  13781. }
  13782. static void ggml_compute_forward_map_binary(
  13783. const struct ggml_compute_params * params,
  13784. struct ggml_tensor * dst,
  13785. const ggml_binary_op_f32_t fun) {
  13786. const struct ggml_tensor * src0 = dst->src[0];
  13787. switch (src0->type) {
  13788. case GGML_TYPE_F32:
  13789. {
  13790. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13791. } break;
  13792. default:
  13793. {
  13794. GGML_ASSERT(false);
  13795. } break;
  13796. }
  13797. }
  13798. // ggml_compute_forward_map_custom1
  13799. static void ggml_compute_forward_map_custom1_f32(
  13800. const struct ggml_compute_params * params,
  13801. struct ggml_tensor * dst,
  13802. const ggml_custom1_op_f32_t fun) {
  13803. const struct ggml_tensor * a = dst->src[0];
  13804. assert(params->ith == 0);
  13805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13806. return;
  13807. }
  13808. fun(dst, a);
  13809. }
  13810. // ggml_compute_forward_map_custom2
  13811. static void ggml_compute_forward_map_custom2_f32(
  13812. const struct ggml_compute_params * params,
  13813. struct ggml_tensor * dst,
  13814. const ggml_custom2_op_f32_t fun) {
  13815. const struct ggml_tensor * a = dst->src[0];
  13816. const struct ggml_tensor * b = dst->src[1];
  13817. assert(params->ith == 0);
  13818. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13819. return;
  13820. }
  13821. fun(dst, a, b);
  13822. }
  13823. // ggml_compute_forward_map_custom3
  13824. static void ggml_compute_forward_map_custom3_f32(
  13825. const struct ggml_compute_params * params,
  13826. struct ggml_tensor * dst,
  13827. const ggml_custom3_op_f32_t fun) {
  13828. const struct ggml_tensor * a = dst->src[0];
  13829. const struct ggml_tensor * b = dst->src[1];
  13830. const struct ggml_tensor * c = dst->src[1];
  13831. assert(params->ith == 0);
  13832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13833. return;
  13834. }
  13835. fun(dst, a, b, c);
  13836. }
  13837. // ggml_compute_forward_map_custom1
  13838. static void ggml_compute_forward_map_custom1(
  13839. const struct ggml_compute_params * params,
  13840. struct ggml_tensor * dst) {
  13841. const struct ggml_tensor * a = dst->src[0];
  13842. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13843. return;
  13844. }
  13845. struct ggml_map_custom1_op_params p;
  13846. memcpy(&p, dst->op_params, sizeof(p));
  13847. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13848. }
  13849. // ggml_compute_forward_map_custom2
  13850. static void ggml_compute_forward_map_custom2(
  13851. const struct ggml_compute_params * params,
  13852. struct ggml_tensor * dst) {
  13853. const struct ggml_tensor * a = dst->src[0];
  13854. const struct ggml_tensor * b = dst->src[1];
  13855. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13856. return;
  13857. }
  13858. struct ggml_map_custom2_op_params p;
  13859. memcpy(&p, dst->op_params, sizeof(p));
  13860. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13861. }
  13862. // ggml_compute_forward_map_custom3
  13863. static void ggml_compute_forward_map_custom3(
  13864. const struct ggml_compute_params * params,
  13865. struct ggml_tensor * dst) {
  13866. const struct ggml_tensor * a = dst->src[0];
  13867. const struct ggml_tensor * b = dst->src[1];
  13868. const struct ggml_tensor * c = dst->src[2];
  13869. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13870. return;
  13871. }
  13872. struct ggml_map_custom3_op_params p;
  13873. memcpy(&p, dst->op_params, sizeof(p));
  13874. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13875. }
  13876. // ggml_compute_forward_cross_entropy_loss
  13877. static void ggml_compute_forward_cross_entropy_loss_f32(
  13878. const struct ggml_compute_params * params,
  13879. struct ggml_tensor * dst) {
  13880. const struct ggml_tensor * src0 = dst->src[0];
  13881. const struct ggml_tensor * src1 = dst->src[1];
  13882. GGML_ASSERT(ggml_is_contiguous(src0));
  13883. GGML_ASSERT(ggml_is_contiguous(src1));
  13884. GGML_ASSERT(ggml_is_scalar(dst));
  13885. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13886. const int ith = params->ith;
  13887. const int nth = params->nth;
  13888. float * sums = (float *) params->wdata;
  13889. // TODO: handle transposed/permuted matrices
  13890. const int nc = src0->ne[0];
  13891. const int nr = ggml_nrows(src0);
  13892. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13893. if (params->type == GGML_TASK_TYPE_INIT) {
  13894. if (ith == 0) {
  13895. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13896. }
  13897. return;
  13898. }
  13899. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13900. if (ith == 0) {
  13901. float * dp = (float *) dst->data;
  13902. ggml_vec_sum_f32(nth, dp, sums);
  13903. dp[0] *= -1.0f / (float) nr;
  13904. }
  13905. return;
  13906. }
  13907. const double eps = 1e-9;
  13908. // rows per thread
  13909. const int dr = (nr + nth - 1)/nth;
  13910. // row range for this thread
  13911. const int ir0 = dr*ith;
  13912. const int ir1 = MIN(ir0 + dr, nr);
  13913. for (int i1 = ir0; i1 < ir1; i1++) {
  13914. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13915. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13916. float * st = ((float *) params->wdata) + nth + ith*nc;
  13917. #ifndef NDEBUG
  13918. for (int i = 0; i < nc; ++i) {
  13919. //printf("p[%d] = %f\n", i, p[i]);
  13920. assert(!isnan(s0[i]));
  13921. assert(!isnan(s1[i]));
  13922. }
  13923. #endif
  13924. // soft_max
  13925. float max = -INFINITY;
  13926. ggml_vec_max_f32(nc, &max, s0);
  13927. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13928. assert(sum > 0.0);
  13929. sum = (1.0 - eps) / sum;
  13930. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13931. ggml_vec_scale_f32(nc, st, sum);
  13932. ggml_vec_add1_f32(nc, st, st, eps);
  13933. ggml_vec_log_f32(nc, st, st);
  13934. ggml_vec_mul_f32(nc, st, st, s1);
  13935. float st_sum = 0;
  13936. ggml_vec_sum_f32(nc, &st_sum, st);
  13937. sums[ith] += st_sum;
  13938. #ifndef NDEBUG
  13939. for (int i = 0; i < nc; ++i) {
  13940. assert(!isnan(st[i]));
  13941. assert(!isinf(st[i]));
  13942. }
  13943. #endif
  13944. }
  13945. }
  13946. static void ggml_compute_forward_cross_entropy_loss(
  13947. const struct ggml_compute_params * params,
  13948. struct ggml_tensor * dst) {
  13949. const struct ggml_tensor * src0 = dst->src[0];
  13950. switch (src0->type) {
  13951. case GGML_TYPE_F32:
  13952. {
  13953. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13954. } break;
  13955. default:
  13956. {
  13957. GGML_ASSERT(false);
  13958. } break;
  13959. }
  13960. }
  13961. // ggml_compute_forward_cross_entropy_loss_back
  13962. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13963. const struct ggml_compute_params * params,
  13964. struct ggml_tensor * dst) {
  13965. const struct ggml_tensor * src0 = dst->src[0];
  13966. const struct ggml_tensor * src1 = dst->src[1];
  13967. const struct ggml_tensor * opt0 = dst->src[2];
  13968. GGML_ASSERT(ggml_is_contiguous(dst));
  13969. GGML_ASSERT(ggml_is_contiguous(src0));
  13970. GGML_ASSERT(ggml_is_contiguous(src1));
  13971. GGML_ASSERT(ggml_is_contiguous(opt0));
  13972. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13973. const int64_t ith = params->ith;
  13974. const int64_t nth = params->nth;
  13975. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13976. return;
  13977. }
  13978. const double eps = 1e-9;
  13979. // TODO: handle transposed/permuted matrices
  13980. const int64_t nc = src0->ne[0];
  13981. const int64_t nr = ggml_nrows(src0);
  13982. // rows per thread
  13983. const int64_t dr = (nr + nth - 1)/nth;
  13984. // row range for this thread
  13985. const int64_t ir0 = dr*ith;
  13986. const int64_t ir1 = MIN(ir0 + dr, nr);
  13987. float * d = (float *) opt0->data;
  13988. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13989. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13990. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13991. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13992. #ifndef NDEBUG
  13993. for (int i = 0; i < nc; ++i) {
  13994. //printf("p[%d] = %f\n", i, p[i]);
  13995. assert(!isnan(s0[i]));
  13996. assert(!isnan(s1[i]));
  13997. }
  13998. #endif
  13999. // soft_max
  14000. float max = -INFINITY;
  14001. ggml_vec_max_f32(nc, &max, s0);
  14002. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  14003. assert(sum > 0.0);
  14004. sum = (1.0 - eps) / sum;
  14005. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14006. ggml_vec_scale_f32(nc, ds0, sum);
  14007. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14008. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14009. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14010. #ifndef NDEBUG
  14011. for (int i = 0; i < nc; ++i) {
  14012. assert(!isnan(ds0[i]));
  14013. assert(!isinf(ds0[i]));
  14014. }
  14015. #endif
  14016. }
  14017. }
  14018. static void ggml_compute_forward_cross_entropy_loss_back(
  14019. const struct ggml_compute_params * params,
  14020. struct ggml_tensor * dst) {
  14021. const struct ggml_tensor * src0 = dst->src[0];
  14022. switch (src0->type) {
  14023. case GGML_TYPE_F32:
  14024. {
  14025. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14026. } break;
  14027. default:
  14028. {
  14029. GGML_ASSERT(false);
  14030. } break;
  14031. }
  14032. }
  14033. /////////////////////////////////
  14034. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  14035. GGML_ASSERT(params);
  14036. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14037. return;
  14038. }
  14039. switch (tensor->op) {
  14040. case GGML_OP_DUP:
  14041. {
  14042. ggml_compute_forward_dup(params, tensor);
  14043. } break;
  14044. case GGML_OP_ADD:
  14045. {
  14046. ggml_compute_forward_add(params, tensor);
  14047. } break;
  14048. case GGML_OP_ADD1:
  14049. {
  14050. ggml_compute_forward_add1(params, tensor);
  14051. } break;
  14052. case GGML_OP_ACC:
  14053. {
  14054. ggml_compute_forward_acc(params, tensor);
  14055. } break;
  14056. case GGML_OP_SUB:
  14057. {
  14058. ggml_compute_forward_sub(params, tensor);
  14059. } break;
  14060. case GGML_OP_MUL:
  14061. {
  14062. ggml_compute_forward_mul(params, tensor);
  14063. } break;
  14064. case GGML_OP_DIV:
  14065. {
  14066. ggml_compute_forward_div(params, tensor);
  14067. } break;
  14068. case GGML_OP_SQR:
  14069. {
  14070. ggml_compute_forward_sqr(params, tensor);
  14071. } break;
  14072. case GGML_OP_SQRT:
  14073. {
  14074. ggml_compute_forward_sqrt(params, tensor);
  14075. } break;
  14076. case GGML_OP_LOG:
  14077. {
  14078. ggml_compute_forward_log(params, tensor);
  14079. } break;
  14080. case GGML_OP_SUM:
  14081. {
  14082. ggml_compute_forward_sum(params, tensor);
  14083. } break;
  14084. case GGML_OP_SUM_ROWS:
  14085. {
  14086. ggml_compute_forward_sum_rows(params, tensor);
  14087. } break;
  14088. case GGML_OP_MEAN:
  14089. {
  14090. ggml_compute_forward_mean(params, tensor);
  14091. } break;
  14092. case GGML_OP_ARGMAX:
  14093. {
  14094. ggml_compute_forward_argmax(params, tensor);
  14095. } break;
  14096. case GGML_OP_REPEAT:
  14097. {
  14098. ggml_compute_forward_repeat(params, tensor);
  14099. } break;
  14100. case GGML_OP_REPEAT_BACK:
  14101. {
  14102. ggml_compute_forward_repeat_back(params, tensor);
  14103. } break;
  14104. case GGML_OP_CONCAT:
  14105. {
  14106. ggml_compute_forward_concat(params, tensor);
  14107. } break;
  14108. case GGML_OP_SILU_BACK:
  14109. {
  14110. ggml_compute_forward_silu_back(params, tensor);
  14111. } break;
  14112. case GGML_OP_NORM:
  14113. {
  14114. ggml_compute_forward_norm(params, tensor);
  14115. } break;
  14116. case GGML_OP_RMS_NORM:
  14117. {
  14118. ggml_compute_forward_rms_norm(params, tensor);
  14119. } break;
  14120. case GGML_OP_RMS_NORM_BACK:
  14121. {
  14122. ggml_compute_forward_rms_norm_back(params, tensor);
  14123. } break;
  14124. case GGML_OP_GROUP_NORM:
  14125. {
  14126. ggml_compute_forward_group_norm(params, tensor);
  14127. } break;
  14128. case GGML_OP_MUL_MAT:
  14129. {
  14130. ggml_compute_forward_mul_mat(params, tensor, state);
  14131. } break;
  14132. case GGML_OP_MUL_MAT_ID:
  14133. {
  14134. ggml_compute_forward_mul_mat_id(params, tensor);
  14135. } break;
  14136. case GGML_OP_OUT_PROD:
  14137. {
  14138. ggml_compute_forward_out_prod(params, tensor);
  14139. } break;
  14140. case GGML_OP_SCALE:
  14141. {
  14142. ggml_compute_forward_scale(params, tensor);
  14143. } break;
  14144. case GGML_OP_SET:
  14145. {
  14146. ggml_compute_forward_set(params, tensor);
  14147. } break;
  14148. case GGML_OP_CPY:
  14149. {
  14150. ggml_compute_forward_cpy(params, tensor);
  14151. } break;
  14152. case GGML_OP_CONT:
  14153. {
  14154. ggml_compute_forward_cont(params, tensor);
  14155. } break;
  14156. case GGML_OP_RESHAPE:
  14157. {
  14158. ggml_compute_forward_reshape(params, tensor);
  14159. } break;
  14160. case GGML_OP_VIEW:
  14161. {
  14162. ggml_compute_forward_view(params, tensor);
  14163. } break;
  14164. case GGML_OP_PERMUTE:
  14165. {
  14166. ggml_compute_forward_permute(params, tensor);
  14167. } break;
  14168. case GGML_OP_TRANSPOSE:
  14169. {
  14170. ggml_compute_forward_transpose(params, tensor);
  14171. } break;
  14172. case GGML_OP_GET_ROWS:
  14173. {
  14174. ggml_compute_forward_get_rows(params, tensor);
  14175. } break;
  14176. case GGML_OP_GET_ROWS_BACK:
  14177. {
  14178. ggml_compute_forward_get_rows_back(params, tensor);
  14179. } break;
  14180. case GGML_OP_DIAG:
  14181. {
  14182. ggml_compute_forward_diag(params, tensor);
  14183. } break;
  14184. case GGML_OP_DIAG_MASK_INF:
  14185. {
  14186. ggml_compute_forward_diag_mask_inf(params, tensor);
  14187. } break;
  14188. case GGML_OP_DIAG_MASK_ZERO:
  14189. {
  14190. ggml_compute_forward_diag_mask_zero(params, tensor);
  14191. } break;
  14192. case GGML_OP_SOFT_MAX:
  14193. {
  14194. ggml_compute_forward_soft_max(params, tensor);
  14195. } break;
  14196. case GGML_OP_SOFT_MAX_BACK:
  14197. {
  14198. ggml_compute_forward_soft_max_back(params, tensor);
  14199. } break;
  14200. case GGML_OP_ROPE:
  14201. {
  14202. ggml_compute_forward_rope(params, tensor);
  14203. } break;
  14204. case GGML_OP_ROPE_BACK:
  14205. {
  14206. ggml_compute_forward_rope_back(params, tensor);
  14207. } break;
  14208. case GGML_OP_CLAMP:
  14209. {
  14210. ggml_compute_forward_clamp(params, tensor);
  14211. } break;
  14212. case GGML_OP_CONV_TRANSPOSE_1D:
  14213. {
  14214. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14215. } break;
  14216. case GGML_OP_IM2COL:
  14217. {
  14218. ggml_compute_forward_im2col(params, tensor);
  14219. } break;
  14220. case GGML_OP_CONV_TRANSPOSE_2D:
  14221. {
  14222. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14223. } break;
  14224. case GGML_OP_POOL_1D:
  14225. {
  14226. ggml_compute_forward_pool_1d(params, tensor);
  14227. } break;
  14228. case GGML_OP_POOL_2D:
  14229. {
  14230. ggml_compute_forward_pool_2d(params, tensor);
  14231. } break;
  14232. case GGML_OP_UPSCALE:
  14233. {
  14234. ggml_compute_forward_upscale(params, tensor);
  14235. } break;
  14236. case GGML_OP_PAD:
  14237. {
  14238. ggml_compute_forward_pad(params, tensor);
  14239. } break;
  14240. case GGML_OP_ARANGE:
  14241. {
  14242. ggml_compute_forward_arange(params, tensor);
  14243. } break;
  14244. case GGML_OP_TIMESTEP_EMBEDDING:
  14245. {
  14246. ggml_compute_forward_timestep_embedding(params, tensor);
  14247. } break;
  14248. case GGML_OP_ARGSORT:
  14249. {
  14250. ggml_compute_forward_argsort(params, tensor);
  14251. } break;
  14252. case GGML_OP_LEAKY_RELU:
  14253. {
  14254. ggml_compute_forward_leaky_relu(params, tensor);
  14255. } break;
  14256. case GGML_OP_FLASH_ATTN_EXT:
  14257. {
  14258. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14259. } break;
  14260. case GGML_OP_FLASH_ATTN_BACK:
  14261. {
  14262. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14263. GGML_ASSERT(t == 0 || t == 1);
  14264. bool masked = t != 0;
  14265. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14266. } break;
  14267. case GGML_OP_SSM_CONV:
  14268. {
  14269. ggml_compute_forward_ssm_conv(params, tensor);
  14270. } break;
  14271. case GGML_OP_SSM_SCAN:
  14272. {
  14273. ggml_compute_forward_ssm_scan(params, tensor);
  14274. } break;
  14275. case GGML_OP_WIN_PART:
  14276. {
  14277. ggml_compute_forward_win_part(params, tensor);
  14278. } break;
  14279. case GGML_OP_WIN_UNPART:
  14280. {
  14281. ggml_compute_forward_win_unpart(params, tensor);
  14282. } break;
  14283. case GGML_OP_UNARY:
  14284. {
  14285. ggml_compute_forward_unary(params, tensor);
  14286. } break;
  14287. case GGML_OP_GET_REL_POS:
  14288. {
  14289. ggml_compute_forward_get_rel_pos(params, tensor);
  14290. } break;
  14291. case GGML_OP_ADD_REL_POS:
  14292. {
  14293. ggml_compute_forward_add_rel_pos(params, tensor);
  14294. } break;
  14295. case GGML_OP_MAP_UNARY:
  14296. {
  14297. ggml_unary_op_f32_t fun;
  14298. memcpy(&fun, tensor->op_params, sizeof(fun));
  14299. ggml_compute_forward_map_unary(params, tensor, fun);
  14300. }
  14301. break;
  14302. case GGML_OP_MAP_BINARY:
  14303. {
  14304. ggml_binary_op_f32_t fun;
  14305. memcpy(&fun, tensor->op_params, sizeof(fun));
  14306. ggml_compute_forward_map_binary(params, tensor, fun);
  14307. }
  14308. break;
  14309. case GGML_OP_MAP_CUSTOM1_F32:
  14310. {
  14311. ggml_custom1_op_f32_t fun;
  14312. memcpy(&fun, tensor->op_params, sizeof(fun));
  14313. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14314. }
  14315. break;
  14316. case GGML_OP_MAP_CUSTOM2_F32:
  14317. {
  14318. ggml_custom2_op_f32_t fun;
  14319. memcpy(&fun, tensor->op_params, sizeof(fun));
  14320. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14321. }
  14322. break;
  14323. case GGML_OP_MAP_CUSTOM3_F32:
  14324. {
  14325. ggml_custom3_op_f32_t fun;
  14326. memcpy(&fun, tensor->op_params, sizeof(fun));
  14327. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14328. }
  14329. break;
  14330. case GGML_OP_MAP_CUSTOM1:
  14331. {
  14332. ggml_compute_forward_map_custom1(params, tensor);
  14333. }
  14334. break;
  14335. case GGML_OP_MAP_CUSTOM2:
  14336. {
  14337. ggml_compute_forward_map_custom2(params, tensor);
  14338. }
  14339. break;
  14340. case GGML_OP_MAP_CUSTOM3:
  14341. {
  14342. ggml_compute_forward_map_custom3(params, tensor);
  14343. }
  14344. break;
  14345. case GGML_OP_CROSS_ENTROPY_LOSS:
  14346. {
  14347. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14348. }
  14349. break;
  14350. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14351. {
  14352. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14353. }
  14354. break;
  14355. case GGML_OP_NONE:
  14356. {
  14357. // nop
  14358. } break;
  14359. case GGML_OP_COUNT:
  14360. {
  14361. GGML_ASSERT(false);
  14362. } break;
  14363. }
  14364. }
  14365. ////////////////////////////////////////////////////////////////////////////////
  14366. static size_t ggml_hash_size(size_t min_sz) {
  14367. // next primes after powers of two
  14368. static const size_t primes[] = {
  14369. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14370. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14371. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14372. 16777259, 33554467, 67108879, 134217757, 268435459,
  14373. 536870923, 1073741827, 2147483659
  14374. };
  14375. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14376. // find the smallest prime that is larger or equal to min_sz
  14377. size_t l = 0;
  14378. size_t r = n_primes;
  14379. while (l < r) {
  14380. size_t m = (l + r)/2;
  14381. if (primes[m] < min_sz) {
  14382. l = m + 1;
  14383. } else {
  14384. r = m;
  14385. }
  14386. }
  14387. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14388. return sz;
  14389. }
  14390. static size_t ggml_hash(const void * p) {
  14391. return (size_t)p;
  14392. }
  14393. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14394. size_t h = ggml_hash(key) % hash_set.size;
  14395. // linear probing
  14396. size_t i = h;
  14397. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14398. i = (i + 1) % hash_set.size;
  14399. if (i == h) {
  14400. // visited all hash table entries -> not found
  14401. return GGML_HASHTABLE_FULL;
  14402. }
  14403. }
  14404. return i;
  14405. }
  14406. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14407. size_t i = ggml_hash_find(hash_set, key);
  14408. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14409. }
  14410. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14411. size_t i = ggml_hash_find(hash_set, key);
  14412. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14413. if (hash_set.keys[i] == key) {
  14414. return GGML_HASHTABLE_ALREADY_EXISTS;
  14415. }
  14416. // insert
  14417. GGML_ASSERT(hash_set.keys[i] == NULL);
  14418. hash_set.keys[i] = key;
  14419. return i;
  14420. }
  14421. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14422. size_t i = ggml_hash_find(hash_set, key);
  14423. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14424. hash_set.keys[i] = key;
  14425. return i;
  14426. }
  14427. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14428. size = ggml_hash_size(size);
  14429. struct ggml_hash_set result;
  14430. result.size = size;
  14431. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14432. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14433. return result;
  14434. }
  14435. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14436. GGML_FREE(hash_set.keys);
  14437. }
  14438. struct hash_map {
  14439. struct ggml_hash_set set;
  14440. struct ggml_tensor ** vals;
  14441. };
  14442. static struct hash_map * ggml_new_hash_map(size_t size) {
  14443. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14444. result->set = ggml_hash_set_new(size);
  14445. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14446. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14447. return result;
  14448. }
  14449. static void ggml_hash_map_free(struct hash_map * map) {
  14450. ggml_hash_set_free(map->set);
  14451. GGML_FREE(map->vals);
  14452. GGML_FREE(map);
  14453. }
  14454. // gradient checkpointing
  14455. static struct ggml_tensor * ggml_recompute_graph_node(
  14456. struct ggml_context * ctx,
  14457. struct ggml_cgraph * graph,
  14458. struct hash_map * replacements,
  14459. struct ggml_tensor * node) {
  14460. if (node == NULL) {
  14461. return NULL;
  14462. }
  14463. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14464. return node;
  14465. }
  14466. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14467. return node;
  14468. }
  14469. int count_children = 0;
  14470. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14471. if (node->src[k]) {
  14472. ++count_children;
  14473. }
  14474. }
  14475. if (count_children == 0) {
  14476. return node;
  14477. }
  14478. size_t i = ggml_hash_find(replacements->set, node);
  14479. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14480. if (replacements->set.keys[i] == node) {
  14481. return replacements->vals[i];
  14482. }
  14483. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14484. // insert clone into replacements
  14485. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14486. replacements->set.keys[i] = node;
  14487. replacements->vals[i] = clone;
  14488. clone->op = node->op;
  14489. clone->grad = node->grad;
  14490. clone->flags = node->flags;
  14491. clone->extra = node->extra;
  14492. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14493. clone->nb[k] = node->nb[k];
  14494. }
  14495. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14496. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14497. }
  14498. if (node->view_src != NULL) {
  14499. clone->data = (node->view_src->data == NULL)
  14500. ? NULL // view_src not yet allocated
  14501. : (char *) node->view_src->data // view_src already allocated
  14502. + node->view_offs;
  14503. clone->view_src = node->view_src;
  14504. clone->view_offs = node->view_offs;
  14505. }
  14506. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14507. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14508. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14509. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14510. return clone;
  14511. }
  14512. void ggml_build_backward_gradient_checkpointing(
  14513. struct ggml_context * ctx,
  14514. struct ggml_cgraph * gf,
  14515. struct ggml_cgraph * gb,
  14516. struct ggml_cgraph * gb_tmp,
  14517. struct ggml_tensor * * checkpoints,
  14518. int n_checkpoints) {
  14519. ggml_graph_cpy(gf, gb_tmp);
  14520. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14521. if (n_checkpoints <= 0) {
  14522. ggml_graph_cpy(gb_tmp, gb);
  14523. return;
  14524. }
  14525. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14526. // insert checkpoints in replacements
  14527. for (int i = 0; i < n_checkpoints; ++i) {
  14528. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14529. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14530. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14531. replacements->set.keys[k] = checkpoints[i];
  14532. replacements->vals[k] = checkpoints[i];
  14533. }
  14534. ggml_graph_cpy(gf, gb);
  14535. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14536. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14537. // by recomputing them from checkpoints
  14538. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14539. struct ggml_tensor * node = gb_tmp->nodes[i];
  14540. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14541. // insert new tensors recomputing src, reusing already made replacements,
  14542. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14543. // recurse for input tensors,
  14544. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14545. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14546. }
  14547. // insert rewritten backward node with replacements made into resulting backward graph gb
  14548. ggml_build_forward_expand(gb, node);
  14549. }
  14550. ggml_hash_map_free(replacements);
  14551. }
  14552. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14553. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14554. if (ggml_hash_contains(zero_table, a)) {
  14555. return b;
  14556. } else {
  14557. return ggml_add_impl(ctx, a, b, false);
  14558. }
  14559. }
  14560. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14561. if (ggml_hash_contains(zero_table, a)) {
  14562. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14563. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14564. } else {
  14565. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14566. }
  14567. }
  14568. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14569. if (ggml_hash_contains(zero_table, a)) {
  14570. return ggml_repeat(ctx, b, a);
  14571. } else {
  14572. return ggml_add1_impl(ctx, a, b, false);
  14573. }
  14574. }
  14575. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14576. if (ggml_hash_contains(zero_table, a)) {
  14577. return ggml_neg(ctx, b);
  14578. } else {
  14579. return ggml_sub_impl(ctx, a, b, false);
  14580. }
  14581. }
  14582. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14583. struct ggml_tensor * src0 = tensor->src[0];
  14584. struct ggml_tensor * src1 = tensor->src[1];
  14585. struct ggml_tensor * src2 = tensor->src[2];
  14586. switch (tensor->op) {
  14587. case GGML_OP_DUP:
  14588. {
  14589. if (src0->grad) {
  14590. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14591. }
  14592. } break;
  14593. case GGML_OP_ADD:
  14594. {
  14595. if (src0->grad) {
  14596. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14597. }
  14598. if (src1->grad) {
  14599. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14600. }
  14601. } break;
  14602. case GGML_OP_ADD1:
  14603. {
  14604. if (src0->grad) {
  14605. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14606. }
  14607. if (src1->grad) {
  14608. src1->grad = ggml_add_or_set(ctx,
  14609. src1->grad,
  14610. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14611. zero_table);
  14612. }
  14613. } break;
  14614. case GGML_OP_ACC:
  14615. {
  14616. if (src0->grad) {
  14617. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14618. }
  14619. if (src1->grad) {
  14620. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14621. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14622. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14623. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14624. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14625. tensor->grad,
  14626. src1->grad->ne[0],
  14627. src1->grad->ne[1],
  14628. src1->grad->ne[2],
  14629. src1->grad->ne[3],
  14630. nb1, nb2, nb3, offset);
  14631. src1->grad =
  14632. ggml_add_or_set(ctx,
  14633. src1->grad,
  14634. ggml_reshape(ctx,
  14635. ggml_cont(ctx, tensor_grad_view),
  14636. src1->grad),
  14637. zero_table);
  14638. }
  14639. } break;
  14640. case GGML_OP_SUB:
  14641. {
  14642. if (src0->grad) {
  14643. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14644. }
  14645. if (src1->grad) {
  14646. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14647. }
  14648. } break;
  14649. case GGML_OP_MUL:
  14650. {
  14651. if (src0->grad) {
  14652. src0->grad =
  14653. ggml_add_or_set(ctx,
  14654. src0->grad,
  14655. ggml_mul(ctx, src1, tensor->grad),
  14656. zero_table);
  14657. }
  14658. if (src1->grad) {
  14659. src1->grad =
  14660. ggml_add_or_set(ctx,
  14661. src1->grad,
  14662. ggml_mul(ctx, src0, tensor->grad),
  14663. zero_table);
  14664. }
  14665. } break;
  14666. case GGML_OP_DIV:
  14667. {
  14668. if (src0->grad) {
  14669. src0->grad =
  14670. ggml_add_or_set(ctx,
  14671. src0->grad,
  14672. ggml_div(ctx, tensor->grad, src1),
  14673. zero_table);
  14674. }
  14675. if (src1->grad) {
  14676. src1->grad =
  14677. ggml_sub_or_set(ctx,
  14678. src1->grad,
  14679. ggml_mul(ctx,
  14680. tensor->grad,
  14681. ggml_div(ctx, tensor, src1)),
  14682. zero_table);
  14683. }
  14684. } break;
  14685. case GGML_OP_SQR:
  14686. {
  14687. if (src0->grad) {
  14688. src0->grad =
  14689. ggml_add_or_set(ctx,
  14690. src0->grad,
  14691. ggml_scale(ctx,
  14692. ggml_mul(ctx, src0, tensor->grad),
  14693. 2.0f),
  14694. zero_table);
  14695. }
  14696. } break;
  14697. case GGML_OP_SQRT:
  14698. {
  14699. if (src0->grad) {
  14700. src0->grad =
  14701. ggml_add_or_set(ctx,
  14702. src0->grad,
  14703. ggml_scale(ctx,
  14704. ggml_div(ctx,
  14705. tensor->grad,
  14706. tensor),
  14707. 0.5f),
  14708. zero_table);
  14709. }
  14710. } break;
  14711. case GGML_OP_LOG:
  14712. {
  14713. if (src0->grad) {
  14714. src0->grad =
  14715. ggml_add_or_set(ctx,
  14716. src0->grad,
  14717. ggml_div(ctx,
  14718. tensor->grad,
  14719. src0),
  14720. zero_table);
  14721. }
  14722. } break;
  14723. case GGML_OP_SUM:
  14724. {
  14725. if (src0->grad) {
  14726. src0->grad =
  14727. ggml_add1_or_set(ctx,
  14728. src0->grad,
  14729. tensor->grad,
  14730. zero_table);
  14731. }
  14732. } break;
  14733. case GGML_OP_SUM_ROWS:
  14734. {
  14735. if (src0->grad) {
  14736. src0->grad =
  14737. ggml_add_or_set(ctx,
  14738. src0->grad,
  14739. ggml_repeat(ctx,
  14740. tensor->grad,
  14741. src0->grad),
  14742. zero_table);
  14743. }
  14744. } break;
  14745. case GGML_OP_MEAN:
  14746. case GGML_OP_ARGMAX:
  14747. {
  14748. GGML_ASSERT(false); // TODO: implement
  14749. } break;
  14750. case GGML_OP_REPEAT:
  14751. {
  14752. // necessary for llama
  14753. if (src0->grad) {
  14754. src0->grad = ggml_add_or_set(ctx,
  14755. src0->grad,
  14756. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14757. zero_table);
  14758. }
  14759. } break;
  14760. case GGML_OP_REPEAT_BACK:
  14761. {
  14762. if (src0->grad) {
  14763. // TODO: test this
  14764. src0->grad = ggml_add_or_set(ctx,
  14765. src0->grad,
  14766. ggml_repeat(ctx, tensor->grad, src0->grad),
  14767. zero_table);
  14768. }
  14769. } break;
  14770. case GGML_OP_CONCAT:
  14771. {
  14772. GGML_ASSERT(false); // TODO: implement
  14773. } break;
  14774. case GGML_OP_SILU_BACK:
  14775. {
  14776. GGML_ASSERT(false); // TODO: not implemented
  14777. } break;
  14778. case GGML_OP_NORM:
  14779. {
  14780. GGML_ASSERT(false); // TODO: not implemented
  14781. } break;
  14782. case GGML_OP_RMS_NORM:
  14783. {
  14784. // necessary for llama
  14785. if (src0->grad) {
  14786. float eps;
  14787. memcpy(&eps, tensor->op_params, sizeof(float));
  14788. src0->grad = ggml_add_or_set(ctx,
  14789. src0->grad,
  14790. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14791. zero_table);
  14792. }
  14793. } break;
  14794. case GGML_OP_RMS_NORM_BACK:
  14795. {
  14796. GGML_ASSERT(false); // TODO: not implemented
  14797. } break;
  14798. case GGML_OP_GROUP_NORM:
  14799. {
  14800. GGML_ASSERT(false); // TODO: not implemented
  14801. } break;
  14802. case GGML_OP_MUL_MAT:
  14803. {
  14804. // https://cs231n.github.io/optimization-2/#staged
  14805. // # forward pass
  14806. // s0 = np.random.randn(5, 10)
  14807. // s1 = np.random.randn(10, 3)
  14808. // t = s0.dot(s1)
  14809. // # now suppose we had the gradient on t from above in the circuit
  14810. // dt = np.random.randn(*t.shape) # same shape as t
  14811. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14812. // ds1 = t.T.dot(dt)
  14813. // tensor.shape [m,p,qq,rr]
  14814. // src0.shape [n,m,q1,r1]
  14815. // src1.shape [n,p,qq,rr]
  14816. // necessary for llama
  14817. if (src0->grad) {
  14818. struct ggml_tensor * s1_tg =
  14819. ggml_out_prod(ctx, // [n,m,qq,rr]
  14820. src1, // [n,p,qq,rr]
  14821. tensor->grad); // [m,p,qq,rr]
  14822. const int64_t qq = s1_tg->ne[2];
  14823. const int64_t rr = s1_tg->ne[3];
  14824. const int64_t q1 = src0->ne[2];
  14825. const int64_t r1 = src0->ne[3];
  14826. const bool ne2_broadcasted = qq > q1;
  14827. const bool ne3_broadcasted = rr > r1;
  14828. if (ne2_broadcasted || ne3_broadcasted) {
  14829. // sum broadcast repetitions of s1_tg into shape of src0
  14830. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14831. }
  14832. src0->grad =
  14833. ggml_add_or_set(ctx,
  14834. src0->grad, // [n,m,q1,r1]
  14835. s1_tg, // [n,m,q1,r1]
  14836. zero_table);
  14837. }
  14838. if (src1->grad) {
  14839. src1->grad =
  14840. ggml_add_or_set(ctx,
  14841. src1->grad, // [n,p,qq,rr]
  14842. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14843. // ggml_cont(ctx, // [m,n,q1,r1]
  14844. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14845. // tensor->grad), // [m,p,qq,rr]
  14846. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14847. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14848. // // and then use ggml_out_prod
  14849. ggml_out_prod(ctx, // [n,p,qq,rr]
  14850. src0, // [n,m,q1,r1]
  14851. ggml_transpose(ctx, // [p,m,qq,rr]
  14852. tensor->grad)), // [m,p,qq,rr]
  14853. zero_table);
  14854. }
  14855. } break;
  14856. case GGML_OP_MUL_MAT_ID:
  14857. {
  14858. GGML_ASSERT(false); // TODO: not implemented
  14859. } break;
  14860. case GGML_OP_OUT_PROD:
  14861. {
  14862. GGML_ASSERT(false); // TODO: not implemented
  14863. } break;
  14864. case GGML_OP_SCALE:
  14865. {
  14866. // necessary for llama
  14867. if (src0->grad) {
  14868. float s;
  14869. memcpy(&s, tensor->op_params, sizeof(float));
  14870. src0->grad =
  14871. ggml_add_or_set(ctx,
  14872. src0->grad,
  14873. ggml_scale_impl(ctx, tensor->grad, s, false),
  14874. zero_table);
  14875. }
  14876. } break;
  14877. case GGML_OP_SET:
  14878. {
  14879. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14880. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14881. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14882. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14883. struct ggml_tensor * tensor_grad_view = NULL;
  14884. if (src0->grad || src1->grad) {
  14885. GGML_ASSERT(src0->type == tensor->type);
  14886. GGML_ASSERT(tensor->grad->type == tensor->type);
  14887. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14888. tensor_grad_view = ggml_view_4d(ctx,
  14889. tensor->grad,
  14890. src1->grad->ne[0],
  14891. src1->grad->ne[1],
  14892. src1->grad->ne[2],
  14893. src1->grad->ne[3],
  14894. nb1, nb2, nb3, offset);
  14895. }
  14896. if (src0->grad) {
  14897. src0->grad = ggml_add_or_set(ctx,
  14898. src0->grad,
  14899. ggml_acc_impl(ctx,
  14900. tensor->grad,
  14901. ggml_neg(ctx, tensor_grad_view),
  14902. nb1, nb2, nb3, offset, false),
  14903. zero_table);
  14904. }
  14905. if (src1->grad) {
  14906. src1->grad =
  14907. ggml_add_or_set(ctx,
  14908. src1->grad,
  14909. ggml_reshape(ctx,
  14910. ggml_cont(ctx, tensor_grad_view),
  14911. src1->grad),
  14912. zero_table);
  14913. }
  14914. } break;
  14915. case GGML_OP_CPY:
  14916. {
  14917. // necessary for llama
  14918. // cpy overwrites value of src1 by src0 and returns view(src1)
  14919. // the overwriting is mathematically equivalent to:
  14920. // tensor = src0 * 1 + src1 * 0
  14921. if (src0->grad) {
  14922. // dsrc0 = dtensor * 1
  14923. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14924. }
  14925. if (src1->grad) {
  14926. // dsrc1 = dtensor * 0 -> noop
  14927. }
  14928. } break;
  14929. case GGML_OP_CONT:
  14930. {
  14931. // same as cpy
  14932. if (src0->grad) {
  14933. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14934. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14935. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14936. }
  14937. } break;
  14938. case GGML_OP_RESHAPE:
  14939. {
  14940. // necessary for llama
  14941. if (src0->grad) {
  14942. src0->grad =
  14943. ggml_add_or_set(ctx, src0->grad,
  14944. ggml_reshape(ctx,
  14945. ggml_is_contiguous(tensor->grad)
  14946. ? tensor->grad
  14947. : ggml_cont(ctx, tensor->grad),
  14948. src0->grad),
  14949. zero_table);
  14950. }
  14951. } break;
  14952. case GGML_OP_VIEW:
  14953. {
  14954. // necessary for llama
  14955. if (src0->grad) {
  14956. size_t offset;
  14957. memcpy(&offset, tensor->op_params, sizeof(offset));
  14958. size_t nb1 = tensor->nb[1];
  14959. size_t nb2 = tensor->nb[2];
  14960. size_t nb3 = tensor->nb[3];
  14961. if (src0->type != src0->grad->type) {
  14962. // gradient is typically F32, but src0 could be other type
  14963. size_t ng = ggml_element_size(src0->grad);
  14964. size_t n0 = ggml_element_size(src0);
  14965. GGML_ASSERT(offset % n0 == 0);
  14966. GGML_ASSERT(nb1 % n0 == 0);
  14967. GGML_ASSERT(nb2 % n0 == 0);
  14968. GGML_ASSERT(nb3 % n0 == 0);
  14969. offset = (offset / n0) * ng;
  14970. nb1 = (nb1 / n0) * ng;
  14971. nb2 = (nb2 / n0) * ng;
  14972. nb3 = (nb3 / n0) * ng;
  14973. }
  14974. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14975. }
  14976. } break;
  14977. case GGML_OP_PERMUTE:
  14978. {
  14979. // necessary for llama
  14980. if (src0->grad) {
  14981. int32_t * axes = (int32_t *) tensor->op_params;
  14982. int axis0 = axes[0] & 0x3;
  14983. int axis1 = axes[1] & 0x3;
  14984. int axis2 = axes[2] & 0x3;
  14985. int axis3 = axes[3] & 0x3;
  14986. int axes_backward[4] = {0,0,0,0};
  14987. axes_backward[axis0] = 0;
  14988. axes_backward[axis1] = 1;
  14989. axes_backward[axis2] = 2;
  14990. axes_backward[axis3] = 3;
  14991. src0->grad =
  14992. ggml_add_or_set(ctx, src0->grad,
  14993. ggml_permute(ctx,
  14994. tensor->grad,
  14995. axes_backward[0],
  14996. axes_backward[1],
  14997. axes_backward[2],
  14998. axes_backward[3]),
  14999. zero_table);
  15000. }
  15001. } break;
  15002. case GGML_OP_TRANSPOSE:
  15003. {
  15004. // necessary for llama
  15005. if (src0->grad) {
  15006. src0->grad =
  15007. ggml_add_or_set(ctx, src0->grad,
  15008. ggml_transpose(ctx, tensor->grad),
  15009. zero_table);
  15010. }
  15011. } break;
  15012. case GGML_OP_GET_ROWS:
  15013. {
  15014. // necessary for llama (only for tokenizer)
  15015. if (src0->grad) {
  15016. src0->grad =
  15017. ggml_add_or_set(ctx, src0->grad,
  15018. // last ggml_get_rows_back argument src0->grad is only
  15019. // necessary to setup correct output shape
  15020. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15021. zero_table);
  15022. }
  15023. if (src1->grad) {
  15024. // noop
  15025. }
  15026. } break;
  15027. case GGML_OP_GET_ROWS_BACK:
  15028. {
  15029. GGML_ASSERT(false); // TODO: not implemented
  15030. } break;
  15031. case GGML_OP_DIAG:
  15032. {
  15033. GGML_ASSERT(false); // TODO: not implemented
  15034. } break;
  15035. case GGML_OP_DIAG_MASK_INF:
  15036. {
  15037. // necessary for llama
  15038. if (src0->grad) {
  15039. const int n_past = ((int32_t *) tensor->op_params)[0];
  15040. src0->grad =
  15041. ggml_add_or_set(ctx, src0->grad,
  15042. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15043. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15044. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15045. zero_table);
  15046. }
  15047. } break;
  15048. case GGML_OP_DIAG_MASK_ZERO:
  15049. {
  15050. // necessary for llama
  15051. if (src0->grad) {
  15052. const int n_past = ((int32_t *) tensor->op_params)[0];
  15053. src0->grad =
  15054. ggml_add_or_set(ctx, src0->grad,
  15055. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15056. zero_table);
  15057. }
  15058. } break;
  15059. case GGML_OP_SOFT_MAX:
  15060. {
  15061. // necessary for llama
  15062. if (src0->grad) {
  15063. src0->grad =
  15064. ggml_add_or_set(ctx, src0->grad,
  15065. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15066. zero_table);
  15067. }
  15068. } break;
  15069. case GGML_OP_SOFT_MAX_BACK:
  15070. {
  15071. GGML_ASSERT(false); // TODO: not implemented
  15072. } break;
  15073. case GGML_OP_ROPE:
  15074. {
  15075. // necessary for llama
  15076. if (src0->grad) {
  15077. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15078. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15079. const int mode = ((int32_t *) tensor->op_params)[2];
  15080. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15081. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15082. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15083. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15084. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15085. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15086. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15087. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15088. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15089. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15090. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15091. src0->grad = ggml_add_or_set(ctx,
  15092. src0->grad,
  15093. ggml_rope_back(ctx,
  15094. tensor->grad,
  15095. src1,
  15096. src2,
  15097. n_dims,
  15098. mode,
  15099. n_ctx,
  15100. n_orig_ctx,
  15101. freq_base,
  15102. freq_scale,
  15103. ext_factor,
  15104. attn_factor,
  15105. beta_fast,
  15106. beta_slow,
  15107. xpos_base,
  15108. xpos_down),
  15109. zero_table);
  15110. }
  15111. } break;
  15112. case GGML_OP_ROPE_BACK:
  15113. {
  15114. if (src0->grad) {
  15115. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15116. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15117. const int mode = ((int32_t *) tensor->op_params)[2];
  15118. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15119. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15120. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15121. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15122. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15123. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15124. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15125. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15126. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15127. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15128. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15129. src0->grad = ggml_add_or_set(ctx,
  15130. src0->grad,
  15131. ggml_rope_impl(ctx,
  15132. tensor->grad,
  15133. src1,
  15134. src2,
  15135. n_dims,
  15136. mode,
  15137. n_ctx,
  15138. n_orig_ctx,
  15139. freq_base,
  15140. freq_scale,
  15141. ext_factor,
  15142. attn_factor,
  15143. beta_fast,
  15144. beta_slow,
  15145. xpos_base,
  15146. xpos_down,
  15147. false),
  15148. zero_table);
  15149. }
  15150. } break;
  15151. case GGML_OP_CLAMP:
  15152. {
  15153. GGML_ASSERT(false); // TODO: not implemented
  15154. } break;
  15155. case GGML_OP_CONV_TRANSPOSE_1D:
  15156. {
  15157. GGML_ASSERT(false); // TODO: not implemented
  15158. } break;
  15159. case GGML_OP_IM2COL:
  15160. {
  15161. GGML_ASSERT(false); // TODO: not implemented
  15162. } break;
  15163. case GGML_OP_CONV_TRANSPOSE_2D:
  15164. {
  15165. GGML_ASSERT(false); // TODO: not implemented
  15166. } break;
  15167. case GGML_OP_POOL_1D:
  15168. {
  15169. GGML_ASSERT(false); // TODO: not implemented
  15170. } break;
  15171. case GGML_OP_POOL_2D:
  15172. {
  15173. GGML_ASSERT(false); // TODO: not implemented
  15174. } break;
  15175. case GGML_OP_UPSCALE:
  15176. {
  15177. GGML_ASSERT(false); // TODO: not implemented
  15178. } break;
  15179. case GGML_OP_PAD:
  15180. {
  15181. GGML_ASSERT(false); // TODO: not implemented
  15182. } break;
  15183. case GGML_OP_ARANGE:
  15184. {
  15185. GGML_ASSERT(false); // TODO: not implemented
  15186. } break;
  15187. case GGML_OP_TIMESTEP_EMBEDDING:
  15188. {
  15189. GGML_ASSERT(false); // TODO: not implemented
  15190. } break;
  15191. case GGML_OP_ARGSORT:
  15192. {
  15193. GGML_ASSERT(false); // TODO: not implemented
  15194. } break;
  15195. case GGML_OP_LEAKY_RELU:
  15196. {
  15197. GGML_ASSERT(false); // TODO: not implemented
  15198. } break;
  15199. case GGML_OP_FLASH_ATTN_EXT:
  15200. {
  15201. struct ggml_tensor * flash_grad = NULL;
  15202. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15203. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15204. GGML_ASSERT(t == 0 || t == 1);
  15205. bool masked = t != 0;
  15206. flash_grad =
  15207. ggml_flash_attn_back(ctx,
  15208. src0,
  15209. src1,
  15210. tensor->src[2],
  15211. tensor->grad,
  15212. masked);
  15213. }
  15214. const int64_t elem_q = ggml_nelements(src0);
  15215. const int64_t elem_k = ggml_nelements(src1);
  15216. const int64_t elem_v = ggml_nelements(src2);
  15217. enum ggml_type result_type = flash_grad->type;
  15218. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15219. const size_t tsize = ggml_type_size(result_type);
  15220. const size_t offs_q = 0;
  15221. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15222. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15223. if (src0->grad) {
  15224. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15225. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15226. src0->grad = ggml_add_or_set(ctx,
  15227. src0->grad,
  15228. grad_q,
  15229. zero_table);
  15230. }
  15231. if (src1->grad) {
  15232. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15233. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15234. src1->grad = ggml_add_or_set(ctx,
  15235. src1->grad,
  15236. grad_k,
  15237. zero_table);
  15238. }
  15239. if (src2->grad) {
  15240. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15241. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15242. src2->grad = ggml_add_or_set(ctx,
  15243. src2->grad,
  15244. grad_v,
  15245. zero_table);
  15246. }
  15247. } break;
  15248. case GGML_OP_FLASH_ATTN_BACK:
  15249. {
  15250. GGML_ASSERT(false); // not supported
  15251. } break;
  15252. case GGML_OP_SSM_CONV:
  15253. case GGML_OP_SSM_SCAN:
  15254. {
  15255. GGML_ASSERT(false); // TODO: not implemented
  15256. } break;
  15257. case GGML_OP_WIN_PART:
  15258. case GGML_OP_WIN_UNPART:
  15259. case GGML_OP_UNARY:
  15260. {
  15261. switch (ggml_get_unary_op(tensor)) {
  15262. case GGML_UNARY_OP_ABS:
  15263. {
  15264. if (src0->grad) {
  15265. src0->grad =
  15266. ggml_add_or_set(ctx,
  15267. src0->grad,
  15268. ggml_mul(ctx,
  15269. ggml_sgn(ctx, src0),
  15270. tensor->grad),
  15271. zero_table);
  15272. }
  15273. } break;
  15274. case GGML_UNARY_OP_SGN:
  15275. {
  15276. if (src0->grad) {
  15277. // noop
  15278. }
  15279. } break;
  15280. case GGML_UNARY_OP_NEG:
  15281. {
  15282. if (src0->grad) {
  15283. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15284. }
  15285. } break;
  15286. case GGML_UNARY_OP_STEP:
  15287. {
  15288. if (src0->grad) {
  15289. // noop
  15290. }
  15291. } break;
  15292. case GGML_UNARY_OP_TANH:
  15293. {
  15294. GGML_ASSERT(false); // TODO: not implemented
  15295. } break;
  15296. case GGML_UNARY_OP_ELU:
  15297. {
  15298. GGML_ASSERT(false); // TODO: not implemented
  15299. } break;
  15300. case GGML_UNARY_OP_RELU:
  15301. {
  15302. if (src0->grad) {
  15303. src0->grad = ggml_add_or_set(ctx,
  15304. src0->grad,
  15305. ggml_mul(ctx,
  15306. ggml_step(ctx, src0),
  15307. tensor->grad),
  15308. zero_table);
  15309. }
  15310. } break;
  15311. case GGML_UNARY_OP_SIGMOID:
  15312. {
  15313. GGML_ASSERT(false); // TODO: not implemented
  15314. } break;
  15315. case GGML_UNARY_OP_GELU:
  15316. {
  15317. GGML_ASSERT(false); // TODO: not implemented
  15318. } break;
  15319. case GGML_UNARY_OP_GELU_QUICK:
  15320. {
  15321. GGML_ASSERT(false); // TODO: not implemented
  15322. } break;
  15323. case GGML_UNARY_OP_SILU:
  15324. {
  15325. // necessary for llama
  15326. if (src0->grad) {
  15327. src0->grad = ggml_add_or_set(ctx,
  15328. src0->grad,
  15329. ggml_silu_back(ctx, src0, tensor->grad),
  15330. zero_table);
  15331. }
  15332. } break;
  15333. default:
  15334. GGML_ASSERT(false);
  15335. }
  15336. } break;
  15337. case GGML_OP_GET_REL_POS:
  15338. case GGML_OP_ADD_REL_POS:
  15339. case GGML_OP_MAP_UNARY:
  15340. case GGML_OP_MAP_BINARY:
  15341. case GGML_OP_MAP_CUSTOM1_F32:
  15342. case GGML_OP_MAP_CUSTOM2_F32:
  15343. case GGML_OP_MAP_CUSTOM3_F32:
  15344. case GGML_OP_MAP_CUSTOM1:
  15345. case GGML_OP_MAP_CUSTOM2:
  15346. case GGML_OP_MAP_CUSTOM3:
  15347. {
  15348. GGML_ASSERT(false); // not supported
  15349. } break;
  15350. case GGML_OP_CROSS_ENTROPY_LOSS:
  15351. {
  15352. if (src0->grad) {
  15353. src0->grad = ggml_add_or_set(ctx,
  15354. src0->grad,
  15355. ggml_cross_entropy_loss_back(ctx,
  15356. src0,
  15357. src1,
  15358. tensor->grad),
  15359. zero_table);
  15360. }
  15361. } break;
  15362. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15363. {
  15364. GGML_ASSERT(false); // not supported
  15365. } break;
  15366. case GGML_OP_NONE:
  15367. {
  15368. // nop
  15369. } break;
  15370. case GGML_OP_COUNT:
  15371. {
  15372. GGML_ASSERT(false);
  15373. } break;
  15374. }
  15375. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15376. if (tensor->src[i] && tensor->src[i]->grad) {
  15377. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15378. }
  15379. }
  15380. }
  15381. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15382. if (node->grad == NULL) {
  15383. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15384. // it can also happen during forward pass, if the user performs computations with constants
  15385. if (node->op != GGML_OP_NONE) {
  15386. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15387. }
  15388. }
  15389. // check if already visited
  15390. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15391. return;
  15392. }
  15393. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15394. const int k =
  15395. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15396. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15397. /* unknown order, just fall back to using i*/ i;
  15398. if (node->src[k]) {
  15399. ggml_visit_parents(cgraph, node->src[k]);
  15400. }
  15401. }
  15402. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15403. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15404. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15405. if (strlen(node->name) == 0) {
  15406. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15407. }
  15408. cgraph->leafs[cgraph->n_leafs] = node;
  15409. cgraph->n_leafs++;
  15410. } else {
  15411. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15412. if (strlen(node->name) == 0) {
  15413. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15414. }
  15415. cgraph->nodes[cgraph->n_nodes] = node;
  15416. if (cgraph->grads) {
  15417. cgraph->grads[cgraph->n_nodes] = node->grad;
  15418. }
  15419. cgraph->n_nodes++;
  15420. }
  15421. }
  15422. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15423. if (!expand) {
  15424. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15425. ggml_graph_clear(cgraph);
  15426. }
  15427. const int n0 = cgraph->n_nodes;
  15428. UNUSED(n0);
  15429. ggml_visit_parents(cgraph, tensor);
  15430. const int n_new = cgraph->n_nodes - n0;
  15431. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15432. if (n_new > 0) {
  15433. // the last added node should always be starting point
  15434. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15435. }
  15436. }
  15437. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15438. ggml_build_forward_impl(cgraph, tensor, true);
  15439. }
  15440. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15441. GGML_ASSERT(gf->n_nodes > 0);
  15442. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15443. if (keep) {
  15444. for (int i = 0; i < gf->n_nodes; i++) {
  15445. struct ggml_tensor * node = gf->nodes[i];
  15446. if (node->grad) {
  15447. node->grad = ggml_dup_tensor(ctx, node);
  15448. gf->grads[i] = node->grad;
  15449. }
  15450. }
  15451. }
  15452. // remember original gradients which start with zero values
  15453. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15454. for (int i = 0; i < gf->n_nodes; i++) {
  15455. if (gf->grads[i]) {
  15456. ggml_hash_insert(zero_table, gf->grads[i]);
  15457. }
  15458. }
  15459. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15460. struct ggml_tensor * node = gf->nodes[i];
  15461. // inplace operations to add gradients are not created by ggml_compute_backward
  15462. // use allocator to automatically make inplace operations
  15463. if (node->grad) {
  15464. ggml_compute_backward(ctx, node, zero_table);
  15465. }
  15466. }
  15467. for (int i = 0; i < gf->n_nodes; i++) {
  15468. struct ggml_tensor * node = gf->nodes[i];
  15469. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15470. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15471. ggml_build_forward_expand(gb, node->grad);
  15472. }
  15473. }
  15474. ggml_hash_set_free(zero_table);
  15475. }
  15476. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15477. size_t nbytes = sizeof(struct ggml_cgraph);
  15478. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15479. if (grads) {
  15480. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15481. }
  15482. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15483. return nbytes;
  15484. }
  15485. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15486. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15487. }
  15488. size_t ggml_graph_overhead(void) {
  15489. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15490. }
  15491. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15492. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15493. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15494. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15495. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15496. size_t hash_size = ggml_hash_size(size * 2);
  15497. struct ggml_tensor ** nodes_ptr = data_start;
  15498. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15499. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15500. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15501. // check that we allocated the correct amount of memory
  15502. assert(obj_size == (size_t) (
  15503. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15504. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15505. *cgraph = (struct ggml_cgraph) {
  15506. /*.size =*/ size,
  15507. /*.n_nodes =*/ 0,
  15508. /*.n_leafs =*/ 0,
  15509. /*.nodes =*/ nodes_ptr,
  15510. /*.grads =*/ grads_ptr,
  15511. /*.leafs =*/ leafs_ptr,
  15512. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15513. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15514. /*.perf_runs =*/ 0,
  15515. /*.perf_cycles =*/ 0,
  15516. /*.perf_time_us =*/ 0,
  15517. };
  15518. return cgraph;
  15519. }
  15520. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15521. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15522. }
  15523. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15524. struct ggml_cgraph cgraph = {
  15525. /*.size =*/ 0,
  15526. /*.n_nodes =*/ i1 - i0,
  15527. /*.n_leafs =*/ 0,
  15528. /*.nodes =*/ cgraph0->nodes + i0,
  15529. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15530. /*.leafs =*/ NULL,
  15531. /*.hash_table =*/ { 0, NULL },
  15532. /*.order =*/ cgraph0->order,
  15533. /*.perf_runs =*/ 0,
  15534. /*.perf_cycles =*/ 0,
  15535. /*.perf_time_us =*/ 0,
  15536. };
  15537. return cgraph;
  15538. }
  15539. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15540. GGML_ASSERT(dst->size >= src->n_leafs);
  15541. GGML_ASSERT(dst->size >= src->n_nodes);
  15542. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15543. dst->n_leafs = src->n_leafs;
  15544. dst->n_nodes = src->n_nodes;
  15545. dst->order = src->order;
  15546. for (int i = 0; i < src->n_leafs; ++i) {
  15547. dst->leafs[i] = src->leafs[i];
  15548. }
  15549. for (int i = 0; i < src->n_nodes; ++i) {
  15550. dst->nodes[i] = src->nodes[i];
  15551. }
  15552. if (src->grads) {
  15553. GGML_ASSERT(dst->grads != NULL);
  15554. for (int i = 0; i < src->n_nodes; ++i) {
  15555. dst->grads[i] = src->grads[i];
  15556. }
  15557. }
  15558. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15559. if (src->visited_hash_table.keys[i]) {
  15560. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15561. }
  15562. }
  15563. }
  15564. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15565. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15566. ggml_graph_cpy(cgraph, result);
  15567. return result;
  15568. }
  15569. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15570. GGML_ASSERT(cgraph->grads != NULL);
  15571. for (int i = 0; i < cgraph->n_nodes; i++) {
  15572. struct ggml_tensor * grad = cgraph->grads[i];
  15573. if (grad) {
  15574. ggml_set_zero(grad);
  15575. }
  15576. }
  15577. }
  15578. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15579. cgraph->n_leafs = 0;
  15580. cgraph->n_nodes = 0;
  15581. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15582. }
  15583. //
  15584. // thread data
  15585. //
  15586. // synchronization is done via busy loops
  15587. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15588. //
  15589. #ifdef __APPLE__
  15590. //#include <os/lock.h>
  15591. //
  15592. //typedef os_unfair_lock ggml_lock_t;
  15593. //
  15594. //#define ggml_lock_init(x) UNUSED(x)
  15595. //#define ggml_lock_destroy(x) UNUSED(x)
  15596. //#define ggml_lock_lock os_unfair_lock_lock
  15597. //#define ggml_lock_unlock os_unfair_lock_unlock
  15598. //
  15599. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15600. typedef int ggml_lock_t;
  15601. #define ggml_lock_init(x) UNUSED(x)
  15602. #define ggml_lock_destroy(x) UNUSED(x)
  15603. #define ggml_lock_lock(x) UNUSED(x)
  15604. #define ggml_lock_unlock(x) UNUSED(x)
  15605. #define GGML_LOCK_INITIALIZER 0
  15606. #define ggml_thread_create pthread_create
  15607. #define ggml_thread_join pthread_join
  15608. #else
  15609. //typedef pthread_spinlock_t ggml_lock_t;
  15610. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15611. //#define ggml_lock_destroy pthread_spin_destroy
  15612. //#define ggml_lock_lock pthread_spin_lock
  15613. //#define ggml_lock_unlock pthread_spin_unlock
  15614. typedef int ggml_lock_t;
  15615. #define ggml_lock_init(x) UNUSED(x)
  15616. #define ggml_lock_destroy(x) UNUSED(x)
  15617. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15618. #define ggml_lock_lock(x) _mm_pause()
  15619. #else
  15620. #define ggml_lock_lock(x) UNUSED(x)
  15621. #endif
  15622. #define ggml_lock_unlock(x) UNUSED(x)
  15623. #define GGML_LOCK_INITIALIZER 0
  15624. #define ggml_thread_create pthread_create
  15625. #define ggml_thread_join pthread_join
  15626. #endif
  15627. // Android's libc implementation "bionic" does not support setting affinity
  15628. #if defined(__gnu_linux__)
  15629. static void set_numa_thread_affinity(int thread_n) {
  15630. if (!ggml_is_numa()) {
  15631. return;
  15632. }
  15633. int node_num;
  15634. int rv;
  15635. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15636. switch(g_state.numa.numa_strategy) {
  15637. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15638. // run thread on node_num thread_n / (threads per node)
  15639. node_num = thread_n % g_state.numa.n_nodes;
  15640. break;
  15641. case GGML_NUMA_STRATEGY_ISOLATE:
  15642. // run thread on current_node
  15643. node_num = g_state.numa.current_node;
  15644. break;
  15645. case GGML_NUMA_STRATEGY_NUMACTL:
  15646. // use the cpuset that numactl gave us
  15647. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15648. if (rv) {
  15649. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15650. }
  15651. return;
  15652. default:
  15653. return;
  15654. }
  15655. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15656. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15657. CPU_ZERO_S(setsize, cpus);
  15658. for (size_t i = 0; i < node->n_cpus; ++i) {
  15659. CPU_SET_S(node->cpus[i], setsize, cpus);
  15660. }
  15661. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15662. if (rv) {
  15663. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15664. }
  15665. CPU_FREE(cpus);
  15666. }
  15667. static void clear_numa_thread_affinity(void) {
  15668. if (!ggml_is_numa()) {
  15669. return;
  15670. }
  15671. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15672. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15673. CPU_ZERO_S(setsize, cpus);
  15674. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15675. CPU_SET_S(i, setsize, cpus);
  15676. }
  15677. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15678. if (rv) {
  15679. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15680. }
  15681. CPU_FREE(cpus);
  15682. }
  15683. #else
  15684. // TODO: Windows etc.
  15685. // (the linux implementation may also work on BSD, someone should test)
  15686. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15687. static void clear_numa_thread_affinity(void) {}
  15688. #endif
  15689. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15690. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15691. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15692. node->perf_runs++;
  15693. node->perf_cycles += cycles_cur;
  15694. node->perf_time_us += time_us_cur;
  15695. }
  15696. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15697. int n_tasks = 0;
  15698. if (ggml_is_empty(node)) {
  15699. // no need to multi-thread a no-op
  15700. n_tasks = 1;
  15701. return n_tasks;
  15702. }
  15703. switch (node->op) {
  15704. case GGML_OP_CPY:
  15705. case GGML_OP_DUP:
  15706. case GGML_OP_ADD:
  15707. case GGML_OP_ADD1:
  15708. case GGML_OP_ACC:
  15709. {
  15710. n_tasks = n_threads;
  15711. } break;
  15712. case GGML_OP_SUB:
  15713. case GGML_OP_SQR:
  15714. case GGML_OP_SQRT:
  15715. case GGML_OP_LOG:
  15716. case GGML_OP_SUM:
  15717. case GGML_OP_SUM_ROWS:
  15718. case GGML_OP_MEAN:
  15719. case GGML_OP_ARGMAX:
  15720. case GGML_OP_REPEAT:
  15721. case GGML_OP_REPEAT_BACK:
  15722. case GGML_OP_LEAKY_RELU:
  15723. {
  15724. n_tasks = 1;
  15725. } break;
  15726. case GGML_OP_UNARY:
  15727. switch (ggml_get_unary_op(node)) {
  15728. case GGML_UNARY_OP_ABS:
  15729. case GGML_UNARY_OP_SGN:
  15730. case GGML_UNARY_OP_NEG:
  15731. case GGML_UNARY_OP_STEP:
  15732. case GGML_UNARY_OP_TANH:
  15733. case GGML_UNARY_OP_ELU:
  15734. case GGML_UNARY_OP_RELU:
  15735. case GGML_UNARY_OP_SIGMOID:
  15736. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15737. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15738. {
  15739. n_tasks = 1;
  15740. } break;
  15741. case GGML_UNARY_OP_GELU:
  15742. case GGML_UNARY_OP_GELU_QUICK:
  15743. case GGML_UNARY_OP_SILU:
  15744. {
  15745. n_tasks = n_threads;
  15746. } break;
  15747. default:
  15748. GGML_ASSERT(false);
  15749. }
  15750. break;
  15751. case GGML_OP_SILU_BACK:
  15752. case GGML_OP_MUL:
  15753. case GGML_OP_DIV:
  15754. case GGML_OP_NORM:
  15755. case GGML_OP_RMS_NORM:
  15756. case GGML_OP_RMS_NORM_BACK:
  15757. case GGML_OP_GROUP_NORM:
  15758. case GGML_OP_CONCAT:
  15759. {
  15760. n_tasks = n_threads;
  15761. } break;
  15762. case GGML_OP_MUL_MAT:
  15763. {
  15764. n_tasks = n_threads;
  15765. // TODO: use different scheduling for different matrix sizes
  15766. //const int nr0 = ggml_nrows(node->src[0]);
  15767. //const int nr1 = ggml_nrows(node->src[1]);
  15768. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15769. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15770. } break;
  15771. case GGML_OP_MUL_MAT_ID:
  15772. {
  15773. n_tasks = n_threads;
  15774. } break;
  15775. case GGML_OP_OUT_PROD:
  15776. {
  15777. n_tasks = n_threads;
  15778. } break;
  15779. case GGML_OP_GET_ROWS:
  15780. {
  15781. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15782. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15783. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15784. } break;
  15785. case GGML_OP_SCALE:
  15786. case GGML_OP_SET:
  15787. case GGML_OP_CONT:
  15788. case GGML_OP_RESHAPE:
  15789. case GGML_OP_VIEW:
  15790. case GGML_OP_PERMUTE:
  15791. case GGML_OP_TRANSPOSE:
  15792. case GGML_OP_GET_ROWS_BACK:
  15793. case GGML_OP_DIAG:
  15794. {
  15795. n_tasks = 1;
  15796. } break;
  15797. case GGML_OP_DIAG_MASK_ZERO:
  15798. case GGML_OP_DIAG_MASK_INF:
  15799. case GGML_OP_SOFT_MAX_BACK:
  15800. case GGML_OP_ROPE:
  15801. case GGML_OP_ROPE_BACK:
  15802. case GGML_OP_ADD_REL_POS:
  15803. {
  15804. n_tasks = n_threads;
  15805. } break;
  15806. case GGML_OP_CLAMP:
  15807. {
  15808. n_tasks = 1; //TODO
  15809. } break;
  15810. case GGML_OP_SOFT_MAX:
  15811. {
  15812. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15813. } break;
  15814. case GGML_OP_CONV_TRANSPOSE_1D:
  15815. {
  15816. n_tasks = n_threads;
  15817. } break;
  15818. case GGML_OP_IM2COL:
  15819. {
  15820. n_tasks = n_threads;
  15821. } break;
  15822. case GGML_OP_CONV_TRANSPOSE_2D:
  15823. {
  15824. n_tasks = n_threads;
  15825. } break;
  15826. case GGML_OP_POOL_1D:
  15827. case GGML_OP_POOL_2D:
  15828. {
  15829. n_tasks = 1;
  15830. } break;
  15831. case GGML_OP_UPSCALE:
  15832. {
  15833. n_tasks = n_threads;
  15834. } break;
  15835. case GGML_OP_PAD:
  15836. {
  15837. n_tasks = n_threads;
  15838. } break;
  15839. case GGML_OP_ARANGE:
  15840. {
  15841. n_tasks = n_threads;
  15842. } break;
  15843. case GGML_OP_TIMESTEP_EMBEDDING:
  15844. {
  15845. n_tasks = n_threads;
  15846. } break;
  15847. case GGML_OP_ARGSORT:
  15848. {
  15849. n_tasks = n_threads;
  15850. } break;
  15851. case GGML_OP_FLASH_ATTN_EXT:
  15852. {
  15853. n_tasks = n_threads;
  15854. } break;
  15855. case GGML_OP_FLASH_ATTN_BACK:
  15856. {
  15857. n_tasks = n_threads;
  15858. } break;
  15859. case GGML_OP_SSM_CONV:
  15860. case GGML_OP_SSM_SCAN:
  15861. {
  15862. n_tasks = n_threads;
  15863. } break;
  15864. case GGML_OP_WIN_PART:
  15865. case GGML_OP_WIN_UNPART:
  15866. case GGML_OP_GET_REL_POS:
  15867. case GGML_OP_MAP_UNARY:
  15868. case GGML_OP_MAP_BINARY:
  15869. case GGML_OP_MAP_CUSTOM1_F32:
  15870. case GGML_OP_MAP_CUSTOM2_F32:
  15871. case GGML_OP_MAP_CUSTOM3_F32:
  15872. {
  15873. n_tasks = 1;
  15874. } break;
  15875. case GGML_OP_MAP_CUSTOM1:
  15876. {
  15877. struct ggml_map_custom1_op_params p;
  15878. memcpy(&p, node->op_params, sizeof(p));
  15879. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15880. n_tasks = n_threads;
  15881. } else {
  15882. n_tasks = MIN(p.n_tasks, n_threads);
  15883. }
  15884. } break;
  15885. case GGML_OP_MAP_CUSTOM2:
  15886. {
  15887. struct ggml_map_custom2_op_params p;
  15888. memcpy(&p, node->op_params, sizeof(p));
  15889. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15890. n_tasks = n_threads;
  15891. } else {
  15892. n_tasks = MIN(p.n_tasks, n_threads);
  15893. }
  15894. } break;
  15895. case GGML_OP_MAP_CUSTOM3:
  15896. {
  15897. struct ggml_map_custom3_op_params p;
  15898. memcpy(&p, node->op_params, sizeof(p));
  15899. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15900. n_tasks = n_threads;
  15901. } else {
  15902. n_tasks = MIN(p.n_tasks, n_threads);
  15903. }
  15904. } break;
  15905. case GGML_OP_CROSS_ENTROPY_LOSS:
  15906. {
  15907. n_tasks = n_threads;
  15908. } break;
  15909. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15910. {
  15911. n_tasks = n_threads;
  15912. } break;
  15913. case GGML_OP_NONE:
  15914. {
  15915. n_tasks = 1;
  15916. } break;
  15917. case GGML_OP_COUNT:
  15918. {
  15919. GGML_ASSERT(false);
  15920. } break;
  15921. default:
  15922. {
  15923. fprintf(stderr, "%s: op not implemented: ", __func__);
  15924. if (node->op < GGML_OP_COUNT) {
  15925. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15926. } else {
  15927. fprintf(stderr, "%d\n", node->op);
  15928. }
  15929. GGML_ASSERT(false);
  15930. } break;
  15931. }
  15932. assert(n_tasks > 0);
  15933. return n_tasks;
  15934. }
  15935. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15936. // wait for other threads to finish
  15937. const int last_node_n = * node_n;
  15938. while (true) {
  15939. if (do_yield) {
  15940. sched_yield();
  15941. }
  15942. * node_n = atomic_load(&state->shared->node_n);
  15943. if (* node_n != last_node_n) break;
  15944. #if defined(__SSE3__)
  15945. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15946. _mm_pause();
  15947. #endif
  15948. }
  15949. }
  15950. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15951. // wait for other threads to finish
  15952. const int last_task_phase = * task_phase;
  15953. while (true) {
  15954. if (do_yield) {
  15955. sched_yield();
  15956. }
  15957. * task_phase = atomic_load(&state->shared->node_task);
  15958. if (* task_phase != last_task_phase) break;
  15959. #if defined(__SSE3__)
  15960. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15961. _mm_pause();
  15962. #endif
  15963. }
  15964. }
  15965. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15966. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15967. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15968. const struct ggml_cplan * cplan = state->shared->cplan;
  15969. const int n_threads = state->shared->n_threads;
  15970. set_numa_thread_affinity(state->ith);
  15971. int node_n = -1;
  15972. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15973. while (true) {
  15974. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15975. state->shared->node_n += 1;
  15976. state->ec = GGML_STATUS_ABORTED;
  15977. return 0;
  15978. }
  15979. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15980. // all other threads are finished and spinning
  15981. // do finalize and init here so we don't have synchronize again
  15982. struct ggml_compute_params params = {
  15983. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15984. /*.ith =*/ 0,
  15985. /*.nth =*/ 0,
  15986. /*.wsize =*/ cplan->work_size,
  15987. /*.wdata =*/ cplan->work_data,
  15988. };
  15989. if (node_n != -1) {
  15990. /* FINALIZE */
  15991. struct ggml_tensor * node = cgraph->nodes[node_n];
  15992. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15993. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15994. ggml_compute_forward(&params, node, state);
  15995. }
  15996. ggml_graph_compute_perf_stats_node(node, state->shared);
  15997. }
  15998. // distribute new work or execute it direct if 1T
  15999. while (++node_n < cgraph->n_nodes) {
  16000. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16001. struct ggml_tensor * node = cgraph->nodes[node_n];
  16002. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16003. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16004. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16005. params.nth = n_tasks;
  16006. if (n_tasks == 1) {
  16007. /* INIT */
  16008. if (GGML_OP_HAS_INIT[node->op]) {
  16009. params.type = GGML_TASK_TYPE_INIT;
  16010. ggml_compute_forward(&params, node, state);
  16011. }
  16012. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16013. // they do something more efficient than spinning (?)
  16014. params.type = GGML_TASK_TYPE_COMPUTE;
  16015. ggml_compute_forward(&params, node, state);
  16016. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16017. params.type = GGML_TASK_TYPE_FINALIZE;
  16018. ggml_compute_forward(&params, node, state);
  16019. }
  16020. ggml_graph_compute_perf_stats_node(node, state->shared);
  16021. } else {
  16022. break;
  16023. }
  16024. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16025. break;
  16026. }
  16027. }
  16028. task_phase = GGML_TASK_TYPE_INIT;
  16029. atomic_store(&state->shared->n_active, n_threads);
  16030. atomic_store(&state->shared->node_n, node_n);
  16031. atomic_store(&state->shared->node_task, task_phase);
  16032. } else {
  16033. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16034. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16035. }
  16036. // check if we should stop
  16037. if (node_n >= cgraph->n_nodes) break;
  16038. /* INIT & COMPUTE */
  16039. struct ggml_tensor * node = cgraph->nodes[node_n];
  16040. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16041. struct ggml_compute_params params = {
  16042. /*.type =*/ GGML_TASK_TYPE_INIT,
  16043. /*.ith =*/ state->ith,
  16044. /*.nth =*/ n_tasks,
  16045. /*.wsize =*/ cplan->work_size,
  16046. /*.wdata =*/ cplan->work_data,
  16047. };
  16048. if (state->ith < n_tasks) {
  16049. if (GGML_OP_HAS_INIT[node->op]) {
  16050. ggml_compute_forward(&params, node, state);
  16051. }
  16052. }
  16053. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16054. task_phase = GGML_TASK_TYPE_COMPUTE;
  16055. atomic_store(&state->shared->n_active, n_threads);
  16056. atomic_store(&state->shared->node_task, task_phase);
  16057. }
  16058. else {
  16059. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16060. // depending on the workload and the operating system.
  16061. // since it is not clear what is the best approach, it should potentially become user-configurable
  16062. // ref: https://github.com/ggerganov/ggml/issues/291
  16063. // UPD: adding the do_yield flag seems to resolve the issue universally
  16064. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16065. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16066. }
  16067. if (state->ith < n_tasks) {
  16068. params.type = GGML_TASK_TYPE_COMPUTE;
  16069. ggml_compute_forward(&params, node, state);
  16070. }
  16071. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16072. task_phase = GGML_TASK_TYPE_FINALIZE;
  16073. atomic_store(&state->shared->n_active, n_threads);
  16074. atomic_store(&state->shared->node_task, task_phase);
  16075. }
  16076. else {
  16077. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16078. }
  16079. }
  16080. return 0;
  16081. }
  16082. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16083. if (n_threads <= 0) {
  16084. n_threads = GGML_DEFAULT_N_THREADS;
  16085. }
  16086. size_t work_size = 0;
  16087. struct ggml_cplan cplan;
  16088. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16089. int max_tasks = 1;
  16090. // thread scheduling for the different operations + work buffer size estimation
  16091. for (int i = 0; i < cgraph->n_nodes; i++) {
  16092. struct ggml_tensor * node = cgraph->nodes[i];
  16093. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16094. max_tasks = MAX(max_tasks, n_tasks);
  16095. size_t cur = 0;
  16096. switch (node->op) {
  16097. case GGML_OP_CPY:
  16098. case GGML_OP_DUP:
  16099. {
  16100. if (ggml_is_quantized(node->type) ||
  16101. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16102. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16103. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16104. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16105. }
  16106. } break;
  16107. case GGML_OP_ADD:
  16108. case GGML_OP_ADD1:
  16109. {
  16110. if (ggml_is_quantized(node->src[0]->type)) {
  16111. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16112. }
  16113. } break;
  16114. case GGML_OP_ACC:
  16115. {
  16116. if (ggml_is_quantized(node->src[0]->type)) {
  16117. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16118. }
  16119. } break;
  16120. case GGML_OP_MUL_MAT:
  16121. {
  16122. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16123. #if defined(GGML_USE_CLBLAST)
  16124. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16125. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16126. } else
  16127. #endif
  16128. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16129. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16130. if (node->src[0]->type != GGML_TYPE_F32) {
  16131. // here we need memory for fully dequantized matrix from src0
  16132. // take into account that src0 can be broadcasted into src1[2,3]
  16133. cur = ggml_type_size(GGML_TYPE_F32)
  16134. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16135. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16136. }
  16137. } else
  16138. #endif
  16139. if (node->src[1]->type != vec_dot_type) {
  16140. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16141. }
  16142. } break;
  16143. case GGML_OP_MUL_MAT_ID:
  16144. {
  16145. cur = 0;
  16146. const struct ggml_tensor * src0 = node->src[0];
  16147. const struct ggml_tensor * src1 = node->src[1];
  16148. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16149. if (src1->type != vec_dot_type) {
  16150. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16151. }
  16152. const int n_as = src0->ne[2];
  16153. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16154. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16155. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16156. } break;
  16157. case GGML_OP_OUT_PROD:
  16158. {
  16159. if (ggml_is_quantized(node->src[0]->type)) {
  16160. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16161. }
  16162. } break;
  16163. case GGML_OP_SOFT_MAX:
  16164. case GGML_OP_ROPE:
  16165. {
  16166. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16167. } break;
  16168. case GGML_OP_CONV_TRANSPOSE_1D:
  16169. {
  16170. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16171. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16172. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16173. const int64_t ne00 = node->src[0]->ne[0]; // K
  16174. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16175. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16176. const int64_t ne10 = node->src[1]->ne[0]; // L
  16177. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16178. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16179. node->src[0]->type == GGML_TYPE_BF16) &&
  16180. node->src[1]->type == GGML_TYPE_F32) {
  16181. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16182. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16183. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16184. node->src[1]->type == GGML_TYPE_F32) {
  16185. cur += sizeof(float)*ne00*ne01*ne02;
  16186. cur += sizeof(float)*ne10*ne11;
  16187. } else {
  16188. GGML_ASSERT(false);
  16189. }
  16190. } break;
  16191. case GGML_OP_CONV_TRANSPOSE_2D:
  16192. {
  16193. const int64_t ne00 = node->src[0]->ne[0]; // W
  16194. const int64_t ne01 = node->src[0]->ne[1]; // H
  16195. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16196. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16197. const int64_t ne10 = node->src[1]->ne[0]; // W
  16198. const int64_t ne11 = node->src[1]->ne[1]; // H
  16199. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16200. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16201. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16202. } break;
  16203. case GGML_OP_FLASH_ATTN_EXT:
  16204. {
  16205. const int64_t ne00 = node->src[0]->ne[0]; // D
  16206. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16207. } break;
  16208. case GGML_OP_FLASH_ATTN_BACK:
  16209. {
  16210. const int64_t D = node->src[0]->ne[0];
  16211. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16212. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16213. if (node->src[1]->type == GGML_TYPE_F32) {
  16214. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16215. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16216. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16217. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16218. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16219. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16220. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16221. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16222. }
  16223. } break;
  16224. case GGML_OP_CROSS_ENTROPY_LOSS:
  16225. {
  16226. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16227. } break;
  16228. case GGML_OP_COUNT:
  16229. {
  16230. GGML_ASSERT(false);
  16231. } break;
  16232. default:
  16233. break;
  16234. }
  16235. work_size = MAX(work_size, cur);
  16236. }
  16237. if (work_size > 0) {
  16238. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16239. }
  16240. cplan.n_threads = MIN(max_tasks, n_threads);
  16241. cplan.work_size = work_size;
  16242. cplan.work_data = NULL;
  16243. return cplan;
  16244. }
  16245. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  16246. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  16247. #ifdef GGML_USE_OPENMP
  16248. if (n_threads > 1) {
  16249. #pragma omp parallel num_threads(n_threads)
  16250. {
  16251. #pragma omp single
  16252. {
  16253. // update the number of threads from the actual number of threads that we got from OpenMP
  16254. n_threads = omp_get_num_threads();
  16255. workers[0].shared->n_threads = n_threads;
  16256. workers[0].shared->n_active = n_threads;
  16257. }
  16258. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  16259. }
  16260. } else {
  16261. ggml_graph_compute_thread(&workers[0]);
  16262. }
  16263. #else
  16264. // create thread pool
  16265. if (n_threads > 1) {
  16266. for (int j = 1; j < n_threads; ++j) {
  16267. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16268. GGML_ASSERT(rc == 0);
  16269. UNUSED(rc);
  16270. }
  16271. }
  16272. // this is a work thread too
  16273. ggml_graph_compute_thread(&workers[0]);
  16274. // join or kill thread pool
  16275. if (n_threads > 1) {
  16276. for (int j = 1; j < n_threads; j++) {
  16277. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16278. GGML_ASSERT(rc == 0);
  16279. UNUSED(rc);
  16280. }
  16281. }
  16282. #endif
  16283. // don't leave affinity set on the main thread
  16284. clear_numa_thread_affinity();
  16285. for (int j = 0; j < n_threads; j++) {
  16286. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  16287. compute_status = workers[j].ec;
  16288. break;
  16289. }
  16290. }
  16291. return compute_status;
  16292. }
  16293. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16294. {
  16295. GGML_ASSERT(cplan);
  16296. GGML_ASSERT(cplan->n_threads > 0);
  16297. if (cplan->work_size > 0) {
  16298. GGML_ASSERT(cplan->work_data);
  16299. }
  16300. }
  16301. int n_threads = cplan->n_threads;
  16302. #if defined(GGML_USE_OPENMP)
  16303. n_threads = MIN(n_threads, omp_get_max_threads());
  16304. #endif
  16305. struct ggml_compute_state_shared state_shared = {
  16306. /*.cgraph =*/ cgraph,
  16307. /*.cgraph_plan =*/ cplan,
  16308. /*.perf_node_start_cycles =*/ 0,
  16309. /*.perf_node_start_time_us =*/ 0,
  16310. /*.n_threads =*/ n_threads,
  16311. /*.n_active =*/ n_threads,
  16312. /*.node_n =*/ -1,
  16313. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16314. /*.abort_callback =*/ NULL,
  16315. /*.abort_callback_data =*/ NULL,
  16316. /*.current_chunk; =*/ 0,
  16317. };
  16318. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16319. const int64_t perf_start_cycles = ggml_perf_cycles();
  16320. const int64_t perf_start_time_us = ggml_perf_time_us();
  16321. for (int j = 0; j < n_threads; ++j) {
  16322. workers[j] = (struct ggml_compute_state) {
  16323. .thrd = 0,
  16324. .ith = j,
  16325. .shared = &state_shared,
  16326. .ec = GGML_STATUS_SUCCESS,
  16327. };
  16328. }
  16329. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  16330. // performance stats (graph)
  16331. {
  16332. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16333. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16334. cgraph->perf_runs++;
  16335. cgraph->perf_cycles += perf_cycles_cur;
  16336. cgraph->perf_time_us += perf_time_us_cur;
  16337. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16338. __func__, cgraph->perf_runs,
  16339. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16340. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16341. (double) perf_time_us_cur / 1000.0,
  16342. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16343. }
  16344. return compute_status;
  16345. }
  16346. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16347. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16348. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16349. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16350. return ggml_graph_compute(cgraph, &cplan);
  16351. }
  16352. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16353. for (int i = 0; i < cgraph->n_leafs; i++) {
  16354. struct ggml_tensor * leaf = cgraph->leafs[i];
  16355. if (strcmp(leaf->name, name) == 0) {
  16356. return leaf;
  16357. }
  16358. }
  16359. for (int i = 0; i < cgraph->n_nodes; i++) {
  16360. struct ggml_tensor * node = cgraph->nodes[i];
  16361. if (strcmp(node->name, name) == 0) {
  16362. return node;
  16363. }
  16364. }
  16365. return NULL;
  16366. }
  16367. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16368. const int64_t * ne = tensor->ne;
  16369. const size_t * nb = tensor->nb;
  16370. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16371. ggml_type_name(tensor->type),
  16372. ggml_op_name (tensor->op),
  16373. ggml_n_dims(tensor),
  16374. ne[0], ne[1], ne[2], ne[3],
  16375. nb[0], nb[1], nb[2], nb[3],
  16376. tensor->data,
  16377. tensor->name);
  16378. }
  16379. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16380. const int64_t * ne = tensor->ne;
  16381. const size_t * nb = tensor->nb;
  16382. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16383. arg,
  16384. ggml_type_name(tensor->type),
  16385. ggml_op_name (tensor->op),
  16386. ggml_n_dims(tensor),
  16387. ne[0], ne[1], ne[2], ne[3],
  16388. nb[0], nb[1], nb[2], nb[3],
  16389. tensor->data,
  16390. tensor->name);
  16391. }
  16392. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16393. uint64_t size_eval = 0;
  16394. // compute size of intermediate results
  16395. // TODO: does not take into account scratch buffers !!!!
  16396. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16397. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16398. }
  16399. // print
  16400. {
  16401. FILE * fout = stdout;
  16402. fprintf(fout, "\n");
  16403. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16404. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16405. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16406. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16407. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16408. // header
  16409. fprintf(fout, "\n");
  16410. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16411. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16412. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16413. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16414. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16415. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16416. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16417. }
  16418. // header
  16419. fprintf(fout, "\n");
  16420. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16421. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16422. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16423. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16424. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16425. if (cgraph->nodes[i]->src[j]) {
  16426. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16427. }
  16428. }
  16429. fprintf(fout, "\n");
  16430. }
  16431. fprintf(fout, "\n");
  16432. }
  16433. // write binary data
  16434. {
  16435. FILE * fout = ggml_fopen(fname, "wb");
  16436. if (!fout) {
  16437. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16438. return;
  16439. }
  16440. // header
  16441. {
  16442. const uint32_t magic = GGML_FILE_MAGIC;
  16443. const uint32_t version = GGML_FILE_VERSION;
  16444. const uint32_t n_leafs = cgraph->n_leafs;
  16445. const uint32_t n_nodes = cgraph->n_nodes;
  16446. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16447. fwrite(&version, sizeof(uint32_t), 1, fout);
  16448. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16449. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16450. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16451. }
  16452. // leafs
  16453. {
  16454. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16455. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16456. const uint32_t type = tensor->type;
  16457. const uint32_t op = tensor->op;
  16458. fwrite(&type, sizeof(uint32_t), 1, fout);
  16459. fwrite(&op, sizeof(uint32_t), 1, fout);
  16460. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16461. const uint64_t ne = tensor->ne[j];
  16462. const uint64_t nb = tensor->nb[j];
  16463. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16464. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16465. }
  16466. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16467. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16468. // dump the data
  16469. // TODO: pad this to 32 byte boundary
  16470. {
  16471. const size_t size = ggml_nbytes(tensor);
  16472. fwrite(tensor->data, sizeof(char), size, fout);
  16473. }
  16474. }
  16475. }
  16476. // nodes
  16477. {
  16478. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16479. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16480. const uint32_t type = tensor->type;
  16481. const uint32_t op = tensor->op;
  16482. fwrite(&type, sizeof(uint32_t), 1, fout);
  16483. fwrite(&op, sizeof(uint32_t), 1, fout);
  16484. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16485. const uint64_t ne = tensor->ne[j];
  16486. const uint64_t nb = tensor->nb[j];
  16487. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16488. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16489. }
  16490. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16491. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16492. // output the op arguments
  16493. {
  16494. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16495. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16496. args[j] = tensor->src[j];
  16497. }
  16498. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16499. if (args[j]) {
  16500. int32_t idx = -1;
  16501. // check if leaf
  16502. {
  16503. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16504. if (args[j] == cgraph->leafs[k]) {
  16505. idx = k;
  16506. break;
  16507. }
  16508. }
  16509. }
  16510. // check if node
  16511. if (idx == -1) {
  16512. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16513. if (args[j] == cgraph->nodes[k]) {
  16514. idx = cgraph->n_leafs + k;
  16515. break;
  16516. }
  16517. }
  16518. }
  16519. if (idx == -1) {
  16520. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16521. fclose(fout);
  16522. return;
  16523. }
  16524. fwrite(&idx, sizeof(int32_t), 1, fout);
  16525. } else {
  16526. const int32_t nul = -1;
  16527. fwrite(&nul, sizeof(int32_t), 1, fout);
  16528. }
  16529. }
  16530. }
  16531. }
  16532. }
  16533. fclose(fout);
  16534. }
  16535. }
  16536. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16537. assert(*ctx_data == NULL);
  16538. assert(*ctx_eval == NULL);
  16539. struct ggml_cgraph * result = NULL;
  16540. struct ggml_tensor * data = NULL;
  16541. // read file into data
  16542. {
  16543. FILE * fin = ggml_fopen(fname, "rb");
  16544. if (!fin) {
  16545. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16546. return result;
  16547. }
  16548. size_t fsize = 0;
  16549. fseek(fin, 0, SEEK_END);
  16550. fsize = ftell(fin);
  16551. fseek(fin, 0, SEEK_SET);
  16552. // create the data context
  16553. {
  16554. const size_t overhead = 1*ggml_tensor_overhead();
  16555. struct ggml_init_params params = {
  16556. .mem_size = fsize + overhead,
  16557. .mem_buffer = NULL,
  16558. .no_alloc = false,
  16559. };
  16560. *ctx_data = ggml_init(params);
  16561. if (!*ctx_data) {
  16562. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16563. fclose(fin);
  16564. return result;
  16565. }
  16566. }
  16567. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16568. {
  16569. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16570. if (ret != fsize) {
  16571. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16572. fclose(fin);
  16573. return result;
  16574. }
  16575. }
  16576. fclose(fin);
  16577. }
  16578. // populate result
  16579. {
  16580. char * ptr = (char *) data->data;
  16581. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16582. if (magic != GGML_FILE_MAGIC) {
  16583. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16584. return result;
  16585. }
  16586. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16587. if (version != GGML_FILE_VERSION) {
  16588. fprintf(stderr, "%s: invalid version number\n", __func__);
  16589. return result;
  16590. }
  16591. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16592. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16593. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16594. const int graph_size = MAX(n_leafs, n_nodes);
  16595. // create the data context
  16596. {
  16597. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16598. struct ggml_init_params params = {
  16599. .mem_size = size_eval + overhead,
  16600. .mem_buffer = NULL,
  16601. .no_alloc = true,
  16602. };
  16603. *ctx_eval = ggml_init(params);
  16604. if (!*ctx_eval) {
  16605. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16606. return result;
  16607. }
  16608. }
  16609. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16610. result->n_leafs = n_leafs;
  16611. result->n_nodes = n_nodes;
  16612. // leafs
  16613. {
  16614. uint32_t type;
  16615. uint32_t op;
  16616. for (uint32_t i = 0; i < n_leafs; ++i) {
  16617. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16618. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16619. int64_t ne[GGML_MAX_DIMS];
  16620. size_t nb[GGML_MAX_DIMS];
  16621. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16622. uint64_t ne_cur;
  16623. uint64_t nb_cur;
  16624. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16625. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16626. ne[j] = ne_cur;
  16627. nb[j] = nb_cur;
  16628. }
  16629. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16630. tensor->op = (enum ggml_op) op;
  16631. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16632. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16633. tensor->data = (void *) ptr;
  16634. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16635. tensor->nb[j] = nb[j];
  16636. }
  16637. result->leafs[i] = tensor;
  16638. ptr += ggml_nbytes(tensor);
  16639. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16640. }
  16641. }
  16642. ggml_set_no_alloc(*ctx_eval, false);
  16643. // nodes
  16644. {
  16645. uint32_t type;
  16646. uint32_t op;
  16647. for (uint32_t i = 0; i < n_nodes; ++i) {
  16648. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16649. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16650. enum ggml_op eop = (enum ggml_op) op;
  16651. int64_t ne[GGML_MAX_DIMS];
  16652. size_t nb[GGML_MAX_DIMS];
  16653. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16654. uint64_t ne_cur;
  16655. uint64_t nb_cur;
  16656. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16657. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16658. ne[j] = ne_cur;
  16659. nb[j] = nb_cur;
  16660. }
  16661. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16662. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16663. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16664. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16665. // parse args
  16666. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16667. const int32_t arg_idx = ptr_arg_idx[j];
  16668. if (arg_idx == -1) {
  16669. continue;
  16670. }
  16671. if (arg_idx < result->n_leafs) {
  16672. args[j] = result->leafs[arg_idx];
  16673. } else {
  16674. args[j] = result->nodes[arg_idx - result->n_leafs];
  16675. }
  16676. }
  16677. // create the tensor
  16678. // "view" operations are handled differently
  16679. // TODO: handle inplace ops - currently a copy is always made
  16680. struct ggml_tensor * tensor = NULL;
  16681. switch (eop) {
  16682. // TODO: implement other view ops
  16683. case GGML_OP_RESHAPE:
  16684. {
  16685. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16686. } break;
  16687. case GGML_OP_VIEW:
  16688. {
  16689. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16690. size_t offs;
  16691. memcpy(&offs, ptr_op_params, sizeof(offs));
  16692. tensor->data = ((char *) tensor->data) + offs;
  16693. } break;
  16694. case GGML_OP_TRANSPOSE:
  16695. {
  16696. tensor = ggml_transpose(*ctx_eval, args[0]);
  16697. } break;
  16698. case GGML_OP_PERMUTE:
  16699. {
  16700. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16701. } break;
  16702. default:
  16703. {
  16704. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16705. tensor->op = eop;
  16706. } break;
  16707. }
  16708. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16709. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16710. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16711. tensor->nb[j] = nb[j];
  16712. }
  16713. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16714. tensor->src[j] = args[j];
  16715. }
  16716. result->nodes[i] = tensor;
  16717. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16718. }
  16719. }
  16720. }
  16721. return result;
  16722. }
  16723. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16724. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16725. GGML_PRINT("=== GRAPH ===\n");
  16726. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16727. for (int i = 0; i < cgraph->n_nodes; i++) {
  16728. struct ggml_tensor * node = cgraph->nodes[i];
  16729. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16730. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16731. i,
  16732. node->ne[0], node->ne[1], node->ne[2],
  16733. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16734. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16735. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16736. (double) node->perf_time_us / 1000.0,
  16737. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16738. }
  16739. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16740. for (int i = 0; i < cgraph->n_leafs; i++) {
  16741. struct ggml_tensor * node = cgraph->leafs[i];
  16742. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16743. i,
  16744. node->ne[0], node->ne[1],
  16745. ggml_op_name(node->op),
  16746. ggml_get_name(node));
  16747. }
  16748. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16749. if (perf_total_per_op_us[i] == 0) {
  16750. continue;
  16751. }
  16752. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16753. }
  16754. GGML_PRINT("========================================\n");
  16755. }
  16756. // check if node is part of the graph
  16757. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16758. if (cgraph == NULL) {
  16759. return true;
  16760. }
  16761. for (int i = 0; i < cgraph->n_nodes; i++) {
  16762. if (cgraph->nodes[i] == node) {
  16763. return true;
  16764. }
  16765. }
  16766. return false;
  16767. }
  16768. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16769. for (int i = 0; i < cgraph->n_nodes; i++) {
  16770. struct ggml_tensor * parent = cgraph->nodes[i];
  16771. if (parent->grad == node) {
  16772. return parent;
  16773. }
  16774. }
  16775. return NULL;
  16776. }
  16777. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16778. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16779. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16780. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16781. gparent0 ? (void *) gparent0 : (void *) parent,
  16782. gparent0 ? "g" : "x",
  16783. gparent ? (void *) gparent : (void *) node,
  16784. gparent ? "g" : "x",
  16785. gparent ? "empty" : "vee",
  16786. gparent ? "dashed" : "solid",
  16787. label);
  16788. }
  16789. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16790. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16791. (void *) parent, "x",
  16792. (void *) node, "x",
  16793. label);
  16794. }
  16795. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16796. char color[16];
  16797. FILE * fp = ggml_fopen(filename, "w");
  16798. GGML_ASSERT(fp);
  16799. fprintf(fp, "digraph G {\n");
  16800. fprintf(fp, " newrank = true;\n");
  16801. fprintf(fp, " rankdir = LR;\n");
  16802. for (int i = 0; i < gb->n_nodes; i++) {
  16803. struct ggml_tensor * node = gb->nodes[i];
  16804. if (ggml_graph_get_parent(gb, node) != NULL) {
  16805. continue;
  16806. }
  16807. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16808. snprintf(color, sizeof(color), "yellow");
  16809. } else if (node->grad) {
  16810. if (ggml_graph_find(gf, node)) {
  16811. snprintf(color, sizeof(color), "green");
  16812. } else {
  16813. snprintf(color, sizeof(color), "lightblue");
  16814. }
  16815. } else {
  16816. snprintf(color, sizeof(color), "white");
  16817. }
  16818. fprintf(fp, " \"%p\" [ "
  16819. "style = filled; fillcolor = %s; shape = record; "
  16820. "label=\"",
  16821. (void *) node, color);
  16822. if (strlen(node->name) > 0) {
  16823. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16824. } else {
  16825. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16826. }
  16827. if (ggml_is_matrix(node)) {
  16828. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16829. } else {
  16830. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16831. }
  16832. if (node->grad) {
  16833. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16834. } else {
  16835. fprintf(fp, "\"; ]\n");
  16836. }
  16837. }
  16838. for (int i = 0; i < gb->n_leafs; i++) {
  16839. struct ggml_tensor * node = gb->leafs[i];
  16840. snprintf(color, sizeof(color), "pink");
  16841. fprintf(fp, " \"%p\" [ "
  16842. "style = filled; fillcolor = %s; shape = record; "
  16843. "label=\"<x>",
  16844. (void *) node, color);
  16845. if (strlen(node->name) > 0) {
  16846. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16847. } else {
  16848. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16849. }
  16850. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16851. if (ggml_nelements(node) < 5) {
  16852. fprintf(fp, " | (");
  16853. for (int j = 0; j < ggml_nelements(node); j++) {
  16854. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16855. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16856. }
  16857. else if (node->type == GGML_TYPE_F32 ||
  16858. node->type == GGML_TYPE_F16 ||
  16859. node->type == GGML_TYPE_BF16) {
  16860. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16861. }
  16862. else {
  16863. fprintf(fp, "#");
  16864. }
  16865. if (j < ggml_nelements(node) - 1) {
  16866. fprintf(fp, ", ");
  16867. }
  16868. }
  16869. fprintf(fp, ")");
  16870. }
  16871. fprintf(fp, "\"; ]\n");
  16872. }
  16873. for (int i = 0; i < gb->n_nodes; i++) {
  16874. struct ggml_tensor * node = gb->nodes[i];
  16875. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16876. if (node->src[j]) {
  16877. char label[16];
  16878. snprintf(label, sizeof(label), "src %d", j);
  16879. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16880. }
  16881. }
  16882. }
  16883. for (int i = 0; i < gb->n_leafs; i++) {
  16884. struct ggml_tensor * node = gb->leafs[i];
  16885. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16886. if (node->src[j]) {
  16887. char label[16];
  16888. snprintf(label, sizeof(label), "src %d", j);
  16889. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16890. }
  16891. }
  16892. }
  16893. fprintf(fp, "}\n");
  16894. fclose(fp);
  16895. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16896. }
  16897. ////////////////////////////////////////////////////////////////////////////////
  16898. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16899. int i = 0;
  16900. for (int p = 0; p < np; ++p) {
  16901. const int64_t ne = ggml_nelements(ps[p]) ;
  16902. // TODO: add function to set tensor from array
  16903. for (int64_t j = 0; j < ne; ++j) {
  16904. ggml_set_f32_1d(ps[p], j, x[i++]);
  16905. }
  16906. }
  16907. }
  16908. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16909. int i = 0;
  16910. for (int p = 0; p < np; ++p) {
  16911. const int64_t ne = ggml_nelements(ps[p]) ;
  16912. // TODO: add function to get all elements at once
  16913. for (int64_t j = 0; j < ne; ++j) {
  16914. x[i++] = ggml_get_f32_1d(ps[p], j);
  16915. }
  16916. }
  16917. }
  16918. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16919. int64_t i = 0;
  16920. for (int p = 0; p < np; ++p) {
  16921. const int64_t ne = ggml_nelements(ps[p]) ;
  16922. // TODO: add function to get all elements at once
  16923. for (int64_t j = 0; j < ne; ++j) {
  16924. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16925. }
  16926. }
  16927. }
  16928. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16929. int64_t i = 0;
  16930. for (int p = 0; p < np; ++p) {
  16931. const int64_t ne = ggml_nelements(ps[p]) ;
  16932. // TODO: add function to get all elements at once
  16933. for (int64_t j = 0; j < ne; ++j) {
  16934. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16935. }
  16936. }
  16937. }
  16938. //
  16939. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16940. //
  16941. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16942. //
  16943. static enum ggml_opt_result ggml_opt_adam(
  16944. struct ggml_context * ctx,
  16945. struct ggml_opt_context * opt,
  16946. struct ggml_opt_params params,
  16947. struct ggml_tensor * f,
  16948. struct ggml_cgraph * gf,
  16949. struct ggml_cgraph * gb,
  16950. ggml_opt_callback callback,
  16951. void * callback_data) {
  16952. GGML_ASSERT(ggml_is_scalar(f));
  16953. // these will store the parameters we want to optimize
  16954. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16955. int np = 0;
  16956. int64_t nx = 0;
  16957. for (int i = 0; i < gf->n_nodes; ++i) {
  16958. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16959. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16960. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16961. ps[np++] = gf->nodes[i];
  16962. nx += ggml_nelements(gf->nodes[i]);
  16963. }
  16964. }
  16965. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16966. int iter = opt->iter;
  16967. ggml_opt_init(opt->ctx, opt, params, nx);
  16968. opt->iter = iter;
  16969. }
  16970. // constants
  16971. float sched = params.adam.sched;
  16972. const float alpha = params.adam.alpha;
  16973. const float decay = params.adam.decay * alpha;
  16974. const float beta1 = params.adam.beta1;
  16975. const float beta2 = params.adam.beta2;
  16976. const float eps = params.adam.eps;
  16977. const float gclip = params.adam.gclip;
  16978. const int decay_min_ndim = params.adam.decay_min_ndim;
  16979. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16980. const float accum_norm = 1.0f / (float) n_accum;
  16981. float * g = opt->adam.g->data; // gradients
  16982. float * m = opt->adam.m->data; // first moment
  16983. float * v = opt->adam.v->data; // second moment
  16984. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16985. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16986. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16987. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16988. bool cancel = false;
  16989. // compute the function value
  16990. float fx = 0;
  16991. ggml_set_zero(opt->adam.g);
  16992. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16993. if (callback) {
  16994. callback(callback_data, accum_step, &sched, &cancel);
  16995. if (cancel) {
  16996. return GGML_OPT_RESULT_CANCEL;
  16997. }
  16998. }
  16999. // ggml_graph_reset (gf);
  17000. ggml_set_f32 (f->grad, 1.0f);
  17001. ggml_graph_compute(gb, &cplan);
  17002. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17003. fx += ggml_get_f32_1d(f, 0);
  17004. }
  17005. fx *= accum_norm;
  17006. opt->adam.fx_prev = fx;
  17007. opt->adam.fx_best = opt->adam.fx_prev;
  17008. if (pf) {
  17009. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17010. }
  17011. opt->loss_before = opt->adam.fx_prev;
  17012. opt->loss_after = opt->adam.fx_prev;
  17013. // initialize
  17014. if (opt->just_initialized) {
  17015. opt->adam.n_no_improvement = 0;
  17016. opt->just_initialized = false;
  17017. }
  17018. float * fx_best = &opt->adam.fx_best;
  17019. float * fx_prev = &opt->adam.fx_prev;
  17020. int * n_no_improvement = &opt->adam.n_no_improvement;
  17021. int iter0 = opt->iter;
  17022. // run the optimizer
  17023. for (int t = 0; t < params.adam.n_iter; ++t) {
  17024. opt->iter = iter0 + t + 1;
  17025. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17026. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17027. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17028. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17029. for (int i = 0; i < np; ++i) {
  17030. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17031. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17032. }
  17033. const int64_t t_start_wall = ggml_time_us();
  17034. const int64_t t_start_cpu = ggml_cycles();
  17035. UNUSED(t_start_wall);
  17036. UNUSED(t_start_cpu);
  17037. {
  17038. float gnorm = 1.0f;
  17039. if (gclip > 0.0f) {
  17040. // gradient clipping
  17041. ggml_float sum = 0.0;
  17042. for (int64_t i = 0; i < nx; ++i) {
  17043. sum += (ggml_float)(g[i]*g[i]);
  17044. }
  17045. ggml_float norm = sqrt(sum);
  17046. if (norm > (ggml_float) gclip) {
  17047. gnorm = (float) ((ggml_float) gclip / norm);
  17048. }
  17049. }
  17050. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17051. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17052. int64_t i = 0;
  17053. for (int p = 0; p < np; ++p) {
  17054. const int64_t ne = ggml_nelements(ps[p]);
  17055. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17056. for (int64_t j = 0; j < ne; ++j) {
  17057. float x = ggml_get_f32_1d(ps[p], j);
  17058. float g_ = g[i]*gnorm;
  17059. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17060. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17061. float mh = m[i]*beta1h;
  17062. float vh = v[i]*beta2h;
  17063. vh = sqrtf(vh) + eps;
  17064. x = x*(1.0f - p_decay) - mh/vh;
  17065. ggml_set_f32_1d(ps[p], j, x);
  17066. ++i;
  17067. }
  17068. }
  17069. }
  17070. fx = 0;
  17071. ggml_set_zero(opt->adam.g);
  17072. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17073. if (callback) {
  17074. callback(callback_data, accum_step, &sched, &cancel);
  17075. if (cancel) {
  17076. return GGML_OPT_RESULT_CANCEL;;
  17077. }
  17078. }
  17079. // ggml_graph_reset (gf);
  17080. ggml_set_f32 (f->grad, 1.0f);
  17081. ggml_graph_compute(gb, &cplan);
  17082. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17083. fx += ggml_get_f32_1d(f, 0);
  17084. }
  17085. fx *= accum_norm;
  17086. opt->loss_after = fx;
  17087. // check convergence
  17088. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17089. GGML_PRINT_DEBUG("converged\n");
  17090. return GGML_OPT_RESULT_OK;
  17091. }
  17092. // delta-based convergence test
  17093. if (pf != NULL) {
  17094. // need at least params.past iterations to start checking for convergence
  17095. if (params.past <= iter0 + t) {
  17096. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17097. if (fabsf(rate) < params.delta) {
  17098. return GGML_OPT_RESULT_OK;
  17099. }
  17100. }
  17101. pf[(iter0 + t)%params.past] = fx;
  17102. }
  17103. // check for improvement
  17104. if (params.max_no_improvement > 0) {
  17105. if (fx_best[0] > fx) {
  17106. fx_best[0] = fx;
  17107. n_no_improvement[0] = 0;
  17108. } else {
  17109. ++n_no_improvement[0];
  17110. if (n_no_improvement[0] >= params.max_no_improvement) {
  17111. return GGML_OPT_RESULT_OK;
  17112. }
  17113. }
  17114. }
  17115. fx_prev[0] = fx;
  17116. {
  17117. const int64_t t_end_cpu = ggml_cycles();
  17118. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17119. UNUSED(t_end_cpu);
  17120. const int64_t t_end_wall = ggml_time_us();
  17121. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17122. UNUSED(t_end_wall);
  17123. }
  17124. }
  17125. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17126. }
  17127. //
  17128. // L-BFGS
  17129. //
  17130. // the L-BFGS implementation below is based on the following implementation:
  17131. //
  17132. // https://github.com/chokkan/liblbfgs
  17133. //
  17134. struct ggml_lbfgs_iteration_data {
  17135. float alpha;
  17136. float ys;
  17137. float * s;
  17138. float * y;
  17139. };
  17140. static enum ggml_opt_result linesearch_backtracking(
  17141. const struct ggml_opt_params * params,
  17142. int nx,
  17143. float * x,
  17144. float * fx,
  17145. float * g,
  17146. float * d,
  17147. float * step,
  17148. const float * xp,
  17149. struct ggml_tensor * f,
  17150. struct ggml_cgraph * gb,
  17151. struct ggml_cplan * cplan,
  17152. const int np,
  17153. struct ggml_tensor * ps[],
  17154. bool * cancel,
  17155. ggml_opt_callback callback,
  17156. void * callback_data) {
  17157. int count = 0;
  17158. float width = 0.0f;
  17159. float dg = 0.0f;
  17160. float finit = 0.0f;
  17161. float dginit = 0.0f;
  17162. float dgtest = 0.0f;
  17163. const float dec = 0.5f;
  17164. const float inc = 2.1f;
  17165. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17166. const float accum_norm = 1.0f / (float) n_accum;
  17167. if (*step <= 0.f) {
  17168. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17169. }
  17170. // compute the initial gradient in the search direction
  17171. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17172. // make sure that d points to a descent direction
  17173. if (0 < dginit) {
  17174. return GGML_LINESEARCH_FAIL;
  17175. }
  17176. // initialize local variables
  17177. finit = *fx;
  17178. dgtest = params->lbfgs.ftol*dginit;
  17179. while (true) {
  17180. ggml_vec_cpy_f32(nx, x, xp);
  17181. ggml_vec_mad_f32(nx, x, d, *step);
  17182. // evaluate the function and gradient values
  17183. {
  17184. ggml_opt_set_params(np, ps, x);
  17185. *fx = 0;
  17186. memset(g, 0, sizeof(float)*nx);
  17187. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17188. if (callback) {
  17189. // LBFG-S does not support learning rate -> ignore learning schedule
  17190. float sched = 0;
  17191. callback(callback_data, accum_step, &sched, cancel);
  17192. if (*cancel) {
  17193. return GGML_OPT_RESULT_CANCEL;
  17194. }
  17195. }
  17196. // ggml_graph_reset (gf);
  17197. ggml_set_f32 (f->grad, 1.0f);
  17198. ggml_graph_compute(gb, cplan);
  17199. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17200. *fx += ggml_get_f32_1d(f, 0);
  17201. }
  17202. *fx *= accum_norm;
  17203. }
  17204. ++count;
  17205. if (*fx > finit + (*step)*dgtest) {
  17206. width = dec;
  17207. } else {
  17208. // Armijo condition is satisfied
  17209. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17210. return count;
  17211. }
  17212. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17213. // check the Wolfe condition
  17214. if (dg < params->lbfgs.wolfe * dginit) {
  17215. width = inc;
  17216. } else {
  17217. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17218. // regular Wolfe conditions
  17219. return count;
  17220. }
  17221. if(dg > -params->lbfgs.wolfe*dginit) {
  17222. width = dec;
  17223. } else {
  17224. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17225. return count;
  17226. }
  17227. }
  17228. }
  17229. if (*step < params->lbfgs.min_step) {
  17230. return GGML_LINESEARCH_MINIMUM_STEP;
  17231. }
  17232. if (*step > params->lbfgs.max_step) {
  17233. return GGML_LINESEARCH_MAXIMUM_STEP;
  17234. }
  17235. if (params->lbfgs.max_linesearch <= count) {
  17236. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17237. }
  17238. (*step) *= width;
  17239. }
  17240. GGML_ASSERT(false && "line search failed");
  17241. return GGML_LINESEARCH_FAIL;
  17242. }
  17243. static enum ggml_opt_result ggml_opt_lbfgs(
  17244. struct ggml_context * ctx,
  17245. struct ggml_opt_context * opt,
  17246. struct ggml_opt_params params,
  17247. struct ggml_tensor * f,
  17248. struct ggml_cgraph * gf,
  17249. struct ggml_cgraph * gb,
  17250. ggml_opt_callback callback,
  17251. void * callback_data) {
  17252. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17253. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17254. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17255. return GGML_OPT_RESULT_INVALID_WOLFE;
  17256. }
  17257. }
  17258. const int m = params.lbfgs.m;
  17259. // these will store the parameters we want to optimize
  17260. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17261. int np = 0;
  17262. int nx = 0;
  17263. for (int i = 0; i < gf->n_nodes; ++i) {
  17264. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17265. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17266. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17267. ps[np++] = gf->nodes[i];
  17268. nx += ggml_nelements(gf->nodes[i]);
  17269. }
  17270. }
  17271. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17272. int iter = opt->iter;
  17273. ggml_opt_init(ctx, opt, params, nx);
  17274. opt->iter = iter;
  17275. }
  17276. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17277. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17278. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17279. float * x = opt->lbfgs.x->data; // current parameters
  17280. float * xp = opt->lbfgs.xp->data; // previous parameters
  17281. float * g = opt->lbfgs.g->data; // current gradient
  17282. float * gp = opt->lbfgs.gp->data; // previous gradient
  17283. float * d = opt->lbfgs.d->data; // search direction
  17284. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17285. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17286. const float accum_norm = 1.0f / (float) n_accum;
  17287. float fx = 0.0f; // cost function value
  17288. float xnorm = 0.0f; // ||x||
  17289. float gnorm = 0.0f; // ||g||
  17290. // initialize x from the graph nodes
  17291. ggml_opt_get_params(np, ps, x);
  17292. // the L-BFGS memory
  17293. float * lm_alpha = opt->lbfgs.lmal->data;
  17294. float * lm_ys = opt->lbfgs.lmys->data;
  17295. float * lm_s = opt->lbfgs.lms->data;
  17296. float * lm_y = opt->lbfgs.lmy->data;
  17297. bool cancel = false;
  17298. // evaluate the function value and its gradient
  17299. {
  17300. ggml_opt_set_params(np, ps, x);
  17301. fx = 0;
  17302. memset(g, 0, sizeof(float)*nx);
  17303. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17304. if (callback) {
  17305. // LBFG-S does not support learning rate -> ignore learning schedule
  17306. float sched = 0;
  17307. callback(callback_data, accum_step, &sched, &cancel);
  17308. if (cancel) {
  17309. return GGML_OPT_RESULT_CANCEL;
  17310. }
  17311. }
  17312. // ggml_graph_reset (gf);
  17313. ggml_set_f32 (f->grad, 1.0f);
  17314. ggml_graph_compute(gb, &cplan);
  17315. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17316. fx += ggml_get_f32_1d(f, 0);
  17317. }
  17318. fx *= accum_norm;
  17319. opt->loss_before = fx;
  17320. opt->loss_after = fx;
  17321. }
  17322. // search direction = -gradient
  17323. ggml_vec_neg_f32(nx, d, g);
  17324. // ||x||, ||g||
  17325. ggml_vec_norm_f32(nx, &xnorm, x);
  17326. ggml_vec_norm_f32(nx, &gnorm, g);
  17327. if (xnorm < 1.0f) {
  17328. xnorm = 1.0f;
  17329. }
  17330. // already optimized
  17331. if (gnorm/xnorm <= params.lbfgs.eps) {
  17332. return GGML_OPT_RESULT_OK;
  17333. }
  17334. if (opt->just_initialized) {
  17335. if (pf) {
  17336. pf[0] = fx;
  17337. }
  17338. opt->lbfgs.fx_best = fx;
  17339. // initial step
  17340. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17341. opt->lbfgs.j = 0;
  17342. opt->lbfgs.k = 1;
  17343. opt->lbfgs.end = 0;
  17344. opt->lbfgs.n_no_improvement = 0;
  17345. opt->just_initialized = false;
  17346. }
  17347. float * fx_best = &opt->lbfgs.fx_best;
  17348. float * step = &opt->lbfgs.step;
  17349. int * j = &opt->lbfgs.j;
  17350. int * k = &opt->lbfgs.k;
  17351. int * end = &opt->lbfgs.end;
  17352. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17353. int ls = 0;
  17354. int bound = 0;
  17355. float ys = 0.0f;
  17356. float yy = 0.0f;
  17357. float beta = 0.0f;
  17358. int it = 0;
  17359. while (true) {
  17360. // store the current position and gradient vectors
  17361. ggml_vec_cpy_f32(nx, xp, x);
  17362. ggml_vec_cpy_f32(nx, gp, g);
  17363. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17364. // to determine if the optimization should be cancelled
  17365. // this is a simple change, but not doing this atm, since I don't have a nice
  17366. // way to test and don't want to break something with so many changes lined up
  17367. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17368. if (cancel) {
  17369. return GGML_OPT_RESULT_CANCEL;
  17370. }
  17371. if (ls < 0) {
  17372. // linesearch failed - go back to the previous point and return
  17373. ggml_vec_cpy_f32(nx, x, xp);
  17374. ggml_vec_cpy_f32(nx, g, gp);
  17375. return ls;
  17376. }
  17377. opt->loss_after = fx;
  17378. ggml_vec_norm_f32(nx, &xnorm, x);
  17379. ggml_vec_norm_f32(nx, &gnorm, g);
  17380. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17381. if (xnorm < 1.0f) {
  17382. xnorm = 1.0f;
  17383. }
  17384. if (gnorm/xnorm <= params.lbfgs.eps) {
  17385. // converged
  17386. return GGML_OPT_RESULT_OK;
  17387. }
  17388. // delta-based convergence test
  17389. if (pf != NULL) {
  17390. // need at least params.past iterations to start checking for convergence
  17391. if (params.past <= k[0]) {
  17392. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17393. if (fabsf(rate) < params.delta) {
  17394. return GGML_OPT_RESULT_OK;
  17395. }
  17396. }
  17397. pf[k[0]%params.past] = fx;
  17398. }
  17399. // check for improvement
  17400. if (params.max_no_improvement > 0) {
  17401. if (fx < fx_best[0]) {
  17402. fx_best[0] = fx;
  17403. n_no_improvement[0] = 0;
  17404. } else {
  17405. n_no_improvement[0]++;
  17406. if (n_no_improvement[0] >= params.max_no_improvement) {
  17407. return GGML_OPT_RESULT_OK;
  17408. }
  17409. }
  17410. }
  17411. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17412. // reached the maximum number of iterations
  17413. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17414. }
  17415. // update vectors s and y:
  17416. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17417. // y_{k+1} = g_{k+1} - g_{k}.
  17418. //
  17419. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17420. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17421. // compute scalars ys and yy:
  17422. // ys = y^t \cdot s -> 1 / \rho.
  17423. // yy = y^t \cdot y.
  17424. //
  17425. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17426. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17427. lm_ys[end[0]] = ys;
  17428. // find new search direction
  17429. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17430. bound = (m <= k[0]) ? m : k[0];
  17431. k[0]++;
  17432. it++;
  17433. end[0] = (end[0] + 1)%m;
  17434. // initialize search direction with -g
  17435. ggml_vec_neg_f32(nx, d, g);
  17436. j[0] = end[0];
  17437. for (int i = 0; i < bound; ++i) {
  17438. j[0] = (j[0] + m - 1) % m;
  17439. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17440. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17441. lm_alpha[j[0]] /= lm_ys[j[0]];
  17442. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17443. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17444. }
  17445. ggml_vec_scale_f32(nx, d, ys/yy);
  17446. for (int i = 0; i < bound; ++i) {
  17447. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17448. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17449. beta /= lm_ys[j[0]];
  17450. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17451. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17452. j[0] = (j[0] + 1)%m;
  17453. }
  17454. step[0] = 1.0;
  17455. }
  17456. GGML_ASSERT(false && "lbfgs failed");
  17457. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17458. }
  17459. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17460. struct ggml_opt_params result;
  17461. switch (type) {
  17462. case GGML_OPT_TYPE_ADAM:
  17463. {
  17464. result = (struct ggml_opt_params) {
  17465. .type = GGML_OPT_TYPE_ADAM,
  17466. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17467. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17468. .past = 0,
  17469. .delta = 1e-5f,
  17470. .max_no_improvement = 100,
  17471. .print_forward_graph = true,
  17472. .print_backward_graph = true,
  17473. .n_gradient_accumulation = 1,
  17474. .adam = {
  17475. .n_iter = 10000,
  17476. .sched = 1.000f,
  17477. .decay = 0.0f,
  17478. .decay_min_ndim = 2,
  17479. .alpha = 0.001f,
  17480. .beta1 = 0.9f,
  17481. .beta2 = 0.999f,
  17482. .eps = 1e-8f,
  17483. .eps_f = 1e-5f,
  17484. .eps_g = 1e-3f,
  17485. .gclip = 0.0f,
  17486. },
  17487. };
  17488. } break;
  17489. case GGML_OPT_TYPE_LBFGS:
  17490. {
  17491. result = (struct ggml_opt_params) {
  17492. .type = GGML_OPT_TYPE_LBFGS,
  17493. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17494. .n_threads = 1,
  17495. .past = 0,
  17496. .delta = 1e-5f,
  17497. .max_no_improvement = 0,
  17498. .print_forward_graph = true,
  17499. .print_backward_graph = true,
  17500. .n_gradient_accumulation = 1,
  17501. .lbfgs = {
  17502. .m = 6,
  17503. .n_iter = 100,
  17504. .max_linesearch = 20,
  17505. .eps = 1e-5f,
  17506. .ftol = 1e-4f,
  17507. .wolfe = 0.9f,
  17508. .min_step = 1e-20f,
  17509. .max_step = 1e+20f,
  17510. .linesearch = GGML_LINESEARCH_DEFAULT,
  17511. },
  17512. };
  17513. } break;
  17514. }
  17515. return result;
  17516. }
  17517. GGML_API void ggml_opt_init(
  17518. struct ggml_context * ctx,
  17519. struct ggml_opt_context * opt,
  17520. struct ggml_opt_params params,
  17521. int64_t nx) {
  17522. opt->ctx = ctx;
  17523. opt->params = params;
  17524. opt->iter = 0;
  17525. opt->nx = nx;
  17526. opt->just_initialized = true;
  17527. if (opt->ctx == NULL) {
  17528. struct ggml_init_params ctx_opt_params;
  17529. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17530. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17531. if (opt->params.past > 0) {
  17532. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17533. }
  17534. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17535. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17536. if (opt->params.past > 0) {
  17537. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17538. }
  17539. }
  17540. ctx_opt_params.mem_buffer = NULL;
  17541. ctx_opt_params.no_alloc = false;
  17542. opt->ctx = ggml_init(ctx_opt_params);
  17543. }
  17544. switch (opt->params.type) {
  17545. case GGML_OPT_TYPE_ADAM:
  17546. {
  17547. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17548. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17549. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17550. opt->adam.pf = params.past > 0
  17551. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17552. : NULL;
  17553. ggml_set_zero(opt->adam.m);
  17554. ggml_set_zero(opt->adam.v);
  17555. if (opt->adam.pf) {
  17556. ggml_set_zero(opt->adam.pf);
  17557. }
  17558. } break;
  17559. case GGML_OPT_TYPE_LBFGS:
  17560. {
  17561. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17562. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17563. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17564. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17565. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17566. opt->lbfgs.pf = params.past > 0
  17567. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17568. : NULL;
  17569. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17570. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17571. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17572. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17573. ggml_set_zero(opt->lbfgs.x);
  17574. ggml_set_zero(opt->lbfgs.xp);
  17575. ggml_set_zero(opt->lbfgs.g);
  17576. ggml_set_zero(opt->lbfgs.gp);
  17577. ggml_set_zero(opt->lbfgs.d);
  17578. if (opt->lbfgs.pf) {
  17579. ggml_set_zero(opt->lbfgs.pf);
  17580. }
  17581. ggml_set_zero(opt->lbfgs.lmal);
  17582. ggml_set_zero(opt->lbfgs.lmys);
  17583. ggml_set_zero(opt->lbfgs.lms);
  17584. ggml_set_zero(opt->lbfgs.lmy);
  17585. } break;
  17586. }
  17587. }
  17588. enum ggml_opt_result ggml_opt(
  17589. struct ggml_context * ctx,
  17590. struct ggml_opt_params params,
  17591. struct ggml_tensor * f) {
  17592. bool free_ctx = false;
  17593. if (ctx == NULL) {
  17594. struct ggml_init_params params_ctx = {
  17595. .mem_size = 16*1024*1024,
  17596. .mem_buffer = NULL,
  17597. .no_alloc = false,
  17598. };
  17599. ctx = ggml_init(params_ctx);
  17600. if (ctx == NULL) {
  17601. return GGML_OPT_RESULT_NO_CONTEXT;
  17602. }
  17603. free_ctx = true;
  17604. }
  17605. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17606. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17607. ggml_opt_init(ctx, opt, params, 0);
  17608. result = ggml_opt_resume(ctx, opt, f);
  17609. if (free_ctx) {
  17610. ggml_free(ctx);
  17611. }
  17612. return result;
  17613. }
  17614. enum ggml_opt_result ggml_opt_resume(
  17615. struct ggml_context * ctx,
  17616. struct ggml_opt_context * opt,
  17617. struct ggml_tensor * f) {
  17618. // build forward + backward compute graphs
  17619. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17620. ggml_build_forward_expand(gf, f);
  17621. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17622. ggml_build_backward_expand(ctx, gf, gb, true);
  17623. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17624. }
  17625. enum ggml_opt_result ggml_opt_resume_g(
  17626. struct ggml_context * ctx,
  17627. struct ggml_opt_context * opt,
  17628. struct ggml_tensor * f,
  17629. struct ggml_cgraph * gf,
  17630. struct ggml_cgraph * gb,
  17631. ggml_opt_callback callback,
  17632. void * callback_data) {
  17633. // build forward + backward compute graphs
  17634. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17635. switch (opt->params.type) {
  17636. case GGML_OPT_TYPE_ADAM:
  17637. {
  17638. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17639. } break;
  17640. case GGML_OPT_TYPE_LBFGS:
  17641. {
  17642. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17643. } break;
  17644. }
  17645. if (opt->params.print_forward_graph) {
  17646. ggml_graph_print (gf);
  17647. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17648. }
  17649. if (opt->params.print_backward_graph) {
  17650. ggml_graph_print (gb);
  17651. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17652. }
  17653. return result;
  17654. }
  17655. ////////////////////////////////////////////////////////////////////////////////
  17656. void ggml_set_input(struct ggml_tensor * tensor) {
  17657. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17658. }
  17659. void ggml_set_output(struct ggml_tensor * tensor) {
  17660. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17661. }
  17662. ////////////////////////////////////////////////////////////////////////////////
  17663. void ggml_quantize_init(enum ggml_type type) {
  17664. ggml_critical_section_start();
  17665. switch (type) {
  17666. case GGML_TYPE_IQ2_XXS:
  17667. case GGML_TYPE_IQ2_XS:
  17668. case GGML_TYPE_IQ2_S:
  17669. case GGML_TYPE_IQ1_S:
  17670. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17671. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17672. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17673. default: // nothing
  17674. break;
  17675. }
  17676. ggml_critical_section_end();
  17677. }
  17678. void ggml_quantize_free(void) {
  17679. ggml_critical_section_start();
  17680. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17681. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17682. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17683. iq3xs_free_impl(256);
  17684. ggml_critical_section_end();
  17685. }
  17686. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17687. return
  17688. type == GGML_TYPE_IQ2_XXS ||
  17689. type == GGML_TYPE_IQ2_XS ||
  17690. type == GGML_TYPE_IQ1_S;// ||
  17691. //type == GGML_TYPE_IQ1_M;
  17692. }
  17693. size_t ggml_quantize_chunk(
  17694. enum ggml_type type,
  17695. const float * src,
  17696. void * dst,
  17697. int64_t start,
  17698. int64_t nrows,
  17699. int64_t n_per_row,
  17700. const float * imatrix) {
  17701. const int64_t n = (int64_t) nrows * n_per_row;
  17702. if (ggml_quantize_requires_imatrix(type)) {
  17703. GGML_ASSERT(imatrix != NULL);
  17704. }
  17705. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17706. GGML_ASSERT(start % n_per_row == 0);
  17707. ggml_quantize_init(type); // this is noop if already initialized
  17708. const size_t start_row = start / n_per_row;
  17709. const size_t row_size = ggml_row_size(type, n_per_row);
  17710. size_t result = 0;
  17711. switch (type) {
  17712. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17713. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17714. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17715. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17716. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17717. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17718. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17719. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17720. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17721. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17722. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17723. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17724. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17725. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17726. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17727. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17728. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17729. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17730. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17731. case GGML_TYPE_F16:
  17732. {
  17733. size_t elemsize = sizeof(ggml_fp16_t);
  17734. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17735. result = n * elemsize;
  17736. } break;
  17737. case GGML_TYPE_BF16:
  17738. {
  17739. size_t elemsize = sizeof(ggml_bf16_t);
  17740. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17741. result = n * elemsize;
  17742. } break;
  17743. case GGML_TYPE_F32:
  17744. {
  17745. size_t elemsize = sizeof(float);
  17746. result = n * elemsize;
  17747. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17748. } break;
  17749. default:
  17750. assert(false);
  17751. }
  17752. GGML_ASSERT(result == nrows * row_size);
  17753. return result;
  17754. }
  17755. ////////////////////////////////////////////////////////////////////////////////
  17756. struct gguf_str {
  17757. uint64_t n; // GGUFv2
  17758. char * data;
  17759. };
  17760. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17761. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17762. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17763. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17764. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17765. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17766. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17767. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17768. [GGUF_TYPE_BOOL] = sizeof(bool),
  17769. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17770. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17771. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17772. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17773. [GGUF_TYPE_ARRAY] = 0, // undefined
  17774. };
  17775. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17776. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17777. [GGUF_TYPE_UINT8] = "u8",
  17778. [GGUF_TYPE_INT8] = "i8",
  17779. [GGUF_TYPE_UINT16] = "u16",
  17780. [GGUF_TYPE_INT16] = "i16",
  17781. [GGUF_TYPE_UINT32] = "u32",
  17782. [GGUF_TYPE_INT32] = "i32",
  17783. [GGUF_TYPE_FLOAT32] = "f32",
  17784. [GGUF_TYPE_BOOL] = "bool",
  17785. [GGUF_TYPE_STRING] = "str",
  17786. [GGUF_TYPE_ARRAY] = "arr",
  17787. [GGUF_TYPE_UINT64] = "u64",
  17788. [GGUF_TYPE_INT64] = "i64",
  17789. [GGUF_TYPE_FLOAT64] = "f64",
  17790. };
  17791. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17792. union gguf_value {
  17793. uint8_t uint8;
  17794. int8_t int8;
  17795. uint16_t uint16;
  17796. int16_t int16;
  17797. uint32_t uint32;
  17798. int32_t int32;
  17799. float float32;
  17800. uint64_t uint64;
  17801. int64_t int64;
  17802. double float64;
  17803. bool bool_;
  17804. struct gguf_str str;
  17805. struct {
  17806. enum gguf_type type;
  17807. uint64_t n; // GGUFv2
  17808. void * data;
  17809. } arr;
  17810. };
  17811. struct gguf_kv {
  17812. struct gguf_str key;
  17813. enum gguf_type type;
  17814. union gguf_value value;
  17815. };
  17816. struct gguf_header {
  17817. char magic[4];
  17818. uint32_t version;
  17819. uint64_t n_tensors; // GGUFv2
  17820. uint64_t n_kv; // GGUFv2
  17821. };
  17822. struct gguf_tensor_info {
  17823. struct gguf_str name;
  17824. uint32_t n_dims;
  17825. uint64_t ne[GGML_MAX_DIMS];
  17826. enum ggml_type type;
  17827. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17828. // for writing API
  17829. const void * data;
  17830. size_t size;
  17831. };
  17832. struct gguf_context {
  17833. struct gguf_header header;
  17834. struct gguf_kv * kv;
  17835. struct gguf_tensor_info * infos;
  17836. size_t alignment;
  17837. size_t offset; // offset of `data` from beginning of file
  17838. size_t size; // size of `data` in bytes
  17839. //uint8_t * padding;
  17840. void * data;
  17841. };
  17842. static size_t gguf_type_size(enum gguf_type type) {
  17843. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17844. return GGUF_TYPE_SIZE[type];
  17845. }
  17846. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17847. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17848. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17849. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17850. GGML_ASSERT(info->ne[i] > 0);
  17851. }
  17852. // prevent overflow for total number of elements
  17853. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17854. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17855. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17856. }
  17857. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17858. const size_t n = fread(dst, 1, size, file);
  17859. *offset += n;
  17860. return n == size;
  17861. }
  17862. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17863. p->n = 0;
  17864. p->data = NULL;
  17865. bool ok = true;
  17866. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17867. // early exit if string length is invalid, prevents from integer overflow
  17868. if (p->n == SIZE_MAX) {
  17869. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17870. return false;
  17871. }
  17872. p->data = GGML_CALLOC(p->n + 1, 1);
  17873. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17874. return ok;
  17875. }
  17876. static void gguf_free_kv(struct gguf_kv * kv) {
  17877. if (kv->key.data) {
  17878. GGML_FREE(kv->key.data);
  17879. }
  17880. if (kv->type == GGUF_TYPE_STRING) {
  17881. if (kv->value.str.data) {
  17882. GGML_FREE(kv->value.str.data);
  17883. }
  17884. }
  17885. if (kv->type == GGUF_TYPE_ARRAY) {
  17886. if (kv->value.arr.data) {
  17887. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17888. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17889. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17890. if (str->data) {
  17891. GGML_FREE(str->data);
  17892. }
  17893. }
  17894. }
  17895. GGML_FREE(kv->value.arr.data);
  17896. }
  17897. }
  17898. }
  17899. struct gguf_context * gguf_init_empty(void) {
  17900. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17901. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17902. ctx->header.version = GGUF_VERSION;
  17903. ctx->header.n_tensors = 0;
  17904. ctx->header.n_kv = 0;
  17905. ctx->kv = NULL;
  17906. ctx->infos = NULL;
  17907. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17908. ctx->offset = 0;
  17909. ctx->size = 0;
  17910. ctx->data = NULL;
  17911. return ctx;
  17912. }
  17913. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17914. FILE * file = ggml_fopen(fname, "rb");
  17915. if (!file) {
  17916. return NULL;
  17917. }
  17918. // offset from start of file
  17919. size_t offset = 0;
  17920. char magic[4];
  17921. // check the magic before making allocations
  17922. {
  17923. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17924. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17925. if (magic[i] != GGUF_MAGIC[i]) {
  17926. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17927. fclose(file);
  17928. return NULL;
  17929. }
  17930. }
  17931. }
  17932. bool ok = true;
  17933. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17934. // read the header
  17935. {
  17936. strncpy(ctx->header.magic, magic, 4);
  17937. ctx->kv = NULL;
  17938. ctx->infos = NULL;
  17939. ctx->data = NULL;
  17940. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17941. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17942. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17943. if (ctx->header.version == 1) {
  17944. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17945. fclose(file);
  17946. gguf_free(ctx);
  17947. return NULL;
  17948. }
  17949. // sanity-checks to prevent from integer/buffer overflows
  17950. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17951. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17952. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17953. if (!ok) {
  17954. fprintf(stderr, "%s: failed to read header\n", __func__);
  17955. fclose(file);
  17956. gguf_free(ctx);
  17957. return NULL;
  17958. }
  17959. }
  17960. // read the kv pairs
  17961. {
  17962. const uint64_t n_kv = ctx->header.n_kv;
  17963. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17964. ctx->header.n_kv = 0;
  17965. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17966. for (uint64_t i = 0; i < n_kv; ++i) {
  17967. struct gguf_kv * kv = &ctx->kv[i];
  17968. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17969. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17970. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17971. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17972. switch (kv->type) {
  17973. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17974. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17975. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17976. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17977. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17978. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17979. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17980. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17981. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17982. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17983. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17984. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17985. case GGUF_TYPE_ARRAY:
  17986. {
  17987. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17988. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17989. switch (kv->value.arr.type) {
  17990. case GGUF_TYPE_UINT8:
  17991. case GGUF_TYPE_INT8:
  17992. case GGUF_TYPE_UINT16:
  17993. case GGUF_TYPE_INT16:
  17994. case GGUF_TYPE_UINT32:
  17995. case GGUF_TYPE_INT32:
  17996. case GGUF_TYPE_FLOAT32:
  17997. case GGUF_TYPE_UINT64:
  17998. case GGUF_TYPE_INT64:
  17999. case GGUF_TYPE_FLOAT64:
  18000. case GGUF_TYPE_BOOL:
  18001. {
  18002. // prevent from integer overflow in the malloc below
  18003. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18004. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18005. fclose(file);
  18006. gguf_free(ctx);
  18007. return NULL;
  18008. }
  18009. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18010. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18011. } break;
  18012. case GGUF_TYPE_STRING:
  18013. {
  18014. // prevent from integer overflow in the malloc below
  18015. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18016. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18017. fclose(file);
  18018. gguf_free(ctx);
  18019. return NULL;
  18020. }
  18021. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18022. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18023. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18024. }
  18025. } break;
  18026. case GGUF_TYPE_ARRAY:
  18027. default: GGML_ASSERT(false && "invalid type"); break;
  18028. }
  18029. } break;
  18030. default: GGML_ASSERT(false && "invalid type");
  18031. }
  18032. if (!ok) {
  18033. break;
  18034. }
  18035. ctx->header.n_kv++;
  18036. }
  18037. if (!ok) {
  18038. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18039. fclose(file);
  18040. gguf_free(ctx);
  18041. return NULL;
  18042. }
  18043. }
  18044. // read the tensor infos
  18045. if (ctx->header.n_tensors > 0) {
  18046. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18047. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18048. struct gguf_tensor_info * info = &ctx->infos[i];
  18049. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18050. info->ne[j] = 1;
  18051. }
  18052. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18053. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18054. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18055. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18056. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18057. }
  18058. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18059. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18060. // TODO: return an error instead of crashing with GGML_ASSERT
  18061. gguf_tensor_info_sanitize(info);
  18062. // make sure there is no duplicated tensor names
  18063. for (uint64_t j = 0; j < i; ++j) {
  18064. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18065. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18066. ok = false;
  18067. }
  18068. }
  18069. if (!ok) {
  18070. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18071. fclose(file);
  18072. gguf_free(ctx);
  18073. return NULL;
  18074. }
  18075. }
  18076. }
  18077. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18078. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18079. if (alignment_idx != -1) {
  18080. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18081. }
  18082. // we require the data section to be aligned, so take into account any padding
  18083. {
  18084. const size_t offset_pad = offset % ctx->alignment;
  18085. if (offset_pad != 0) {
  18086. offset += ctx->alignment - offset_pad;
  18087. fseek(file, offset, SEEK_SET);
  18088. }
  18089. }
  18090. // store the current file offset - this is where the data section starts
  18091. ctx->offset = offset;
  18092. // compute the total size of the data section, taking into account the alignment
  18093. {
  18094. ctx->size = 0;
  18095. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18096. struct gguf_tensor_info * info = &ctx->infos[i];
  18097. const int64_t ne =
  18098. (int64_t) info->ne[0] *
  18099. (int64_t) info->ne[1] *
  18100. (int64_t) info->ne[2] *
  18101. (int64_t) info->ne[3];
  18102. if (ne % ggml_blck_size(info->type) != 0) {
  18103. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18104. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18105. fclose(file);
  18106. gguf_free(ctx);
  18107. return NULL;
  18108. }
  18109. const size_t size_cur = ggml_row_size(info->type, ne);
  18110. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18111. }
  18112. }
  18113. // load the tensor data only if requested
  18114. if (params.ctx != NULL) {
  18115. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18116. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18117. // the ggml_tensor structs to the appropriate locations in the binary blob
  18118. // compute the exact size needed for the new ggml_context
  18119. const size_t mem_size =
  18120. params.no_alloc ?
  18121. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18122. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18123. struct ggml_init_params pdata = {
  18124. .mem_size = mem_size,
  18125. .mem_buffer = NULL,
  18126. .no_alloc = params.no_alloc,
  18127. };
  18128. *params.ctx = ggml_init(pdata);
  18129. struct ggml_context * ctx_data = *params.ctx;
  18130. struct ggml_tensor * data = NULL;
  18131. if (!params.no_alloc) {
  18132. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18133. ok = ok && data != NULL;
  18134. // read the binary blob with the tensor data
  18135. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18136. if (!ok) {
  18137. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18138. fclose(file);
  18139. ggml_free(ctx_data);
  18140. gguf_free(ctx);
  18141. return NULL;
  18142. }
  18143. ctx->data = data->data;
  18144. }
  18145. ggml_set_no_alloc(ctx_data, true);
  18146. // create the tensors
  18147. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18148. const int64_t ne[GGML_MAX_DIMS] = {
  18149. ctx->infos[i].ne[0],
  18150. ctx->infos[i].ne[1],
  18151. ctx->infos[i].ne[2],
  18152. ctx->infos[i].ne[3],
  18153. };
  18154. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18155. ok = ok && cur != NULL;
  18156. if (!ok) {
  18157. break;
  18158. }
  18159. ggml_set_name(cur, ctx->infos[i].name.data);
  18160. // point the data member to the appropriate location in the binary blob using the tensor infos
  18161. if (!params.no_alloc) {
  18162. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18163. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18164. }
  18165. }
  18166. if (!ok) {
  18167. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18168. fclose(file);
  18169. ggml_free(ctx_data);
  18170. gguf_free(ctx);
  18171. return NULL;
  18172. }
  18173. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18174. }
  18175. fclose(file);
  18176. return ctx;
  18177. }
  18178. void gguf_free(struct gguf_context * ctx) {
  18179. if (ctx == NULL) {
  18180. return;
  18181. }
  18182. if (ctx->kv) {
  18183. // free string memory - not great..
  18184. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18185. gguf_free_kv(&ctx->kv[i]);
  18186. }
  18187. GGML_FREE(ctx->kv);
  18188. }
  18189. if (ctx->infos) {
  18190. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18191. struct gguf_tensor_info * info = &ctx->infos[i];
  18192. if (info->name.data) {
  18193. GGML_FREE(info->name.data);
  18194. }
  18195. }
  18196. GGML_FREE(ctx->infos);
  18197. }
  18198. GGML_FREE(ctx);
  18199. }
  18200. const char * gguf_type_name(enum gguf_type type) {
  18201. return GGUF_TYPE_NAME[type];
  18202. }
  18203. int gguf_get_version(const struct gguf_context * ctx) {
  18204. return ctx->header.version;
  18205. }
  18206. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18207. return ctx->alignment;
  18208. }
  18209. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18210. return ctx->offset;
  18211. }
  18212. void * gguf_get_data(const struct gguf_context * ctx) {
  18213. return ctx->data;
  18214. }
  18215. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18216. return ctx->header.n_kv;
  18217. }
  18218. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18219. // return -1 if key not found
  18220. int keyfound = -1;
  18221. const int n_kv = gguf_get_n_kv(ctx);
  18222. for (int i = 0; i < n_kv; ++i) {
  18223. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18224. keyfound = i;
  18225. break;
  18226. }
  18227. }
  18228. return keyfound;
  18229. }
  18230. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18231. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18232. return ctx->kv[key_id].key.data;
  18233. }
  18234. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18235. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18236. return ctx->kv[key_id].type;
  18237. }
  18238. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18241. return ctx->kv[key_id].value.arr.type;
  18242. }
  18243. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18246. return ctx->kv[key_id].value.arr.data;
  18247. }
  18248. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18251. struct gguf_kv * kv = &ctx->kv[key_id];
  18252. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18253. return str->data;
  18254. }
  18255. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18256. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18257. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18258. return ctx->kv[key_id].value.arr.n;
  18259. }
  18260. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18261. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18262. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18263. return ctx->kv[key_id].value.uint8;
  18264. }
  18265. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18266. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18267. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18268. return ctx->kv[key_id].value.int8;
  18269. }
  18270. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18271. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18272. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18273. return ctx->kv[key_id].value.uint16;
  18274. }
  18275. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18276. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18277. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18278. return ctx->kv[key_id].value.int16;
  18279. }
  18280. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18281. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18282. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18283. return ctx->kv[key_id].value.uint32;
  18284. }
  18285. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18286. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18287. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18288. return ctx->kv[key_id].value.int32;
  18289. }
  18290. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18291. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18293. return ctx->kv[key_id].value.float32;
  18294. }
  18295. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18298. return ctx->kv[key_id].value.uint64;
  18299. }
  18300. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18303. return ctx->kv[key_id].value.int64;
  18304. }
  18305. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18308. return ctx->kv[key_id].value.float64;
  18309. }
  18310. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18313. return ctx->kv[key_id].value.bool_;
  18314. }
  18315. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18316. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18317. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18318. return ctx->kv[key_id].value.str.data;
  18319. }
  18320. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18322. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18323. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18324. return &ctx->kv[key_id].value;
  18325. }
  18326. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18327. return ctx->header.n_tensors;
  18328. }
  18329. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18330. // return -1 if tensor not found
  18331. int tensorfound = -1;
  18332. const int n_tensors = gguf_get_n_tensors(ctx);
  18333. for (int i = 0; i < n_tensors; ++i) {
  18334. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18335. tensorfound = i;
  18336. break;
  18337. }
  18338. }
  18339. return tensorfound;
  18340. }
  18341. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18342. return ctx->infos[i].offset;
  18343. }
  18344. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18345. return ctx->infos[i].name.data;
  18346. }
  18347. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18348. return ctx->infos[i].type;
  18349. }
  18350. // returns the index
  18351. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18352. const int idx = gguf_find_key(ctx, key);
  18353. if (idx >= 0) {
  18354. return idx;
  18355. }
  18356. const int n_kv = gguf_get_n_kv(ctx);
  18357. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18358. ctx->kv[n_kv].key.n = strlen(key);
  18359. ctx->kv[n_kv].key.data = strdup(key);
  18360. ctx->header.n_kv++;
  18361. return n_kv;
  18362. }
  18363. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18364. const int idx = gguf_find_key(ctx, key);
  18365. if (idx >= 0) {
  18366. const int n_kv = gguf_get_n_kv(ctx);
  18367. gguf_free_kv(&ctx->kv[idx]);
  18368. for (int i = idx; i < n_kv-1; ++i) {
  18369. ctx->kv[i] = ctx->kv[i+1];
  18370. }
  18371. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18372. ctx->header.n_kv--;
  18373. }
  18374. }
  18375. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18376. const int idx = gguf_get_or_add_key(ctx, key);
  18377. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18378. ctx->kv[idx].value.uint8 = val;
  18379. }
  18380. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18381. const int idx = gguf_get_or_add_key(ctx, key);
  18382. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18383. ctx->kv[idx].value.int8 = val;
  18384. }
  18385. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18386. const int idx = gguf_get_or_add_key(ctx, key);
  18387. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18388. ctx->kv[idx].value.uint16 = val;
  18389. }
  18390. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18391. const int idx = gguf_get_or_add_key(ctx, key);
  18392. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18393. ctx->kv[idx].value.int16 = val;
  18394. }
  18395. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18396. const int idx = gguf_get_or_add_key(ctx, key);
  18397. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18398. ctx->kv[idx].value.uint32 = val;
  18399. }
  18400. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18401. const int idx = gguf_get_or_add_key(ctx, key);
  18402. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18403. ctx->kv[idx].value.int32 = val;
  18404. }
  18405. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18406. const int idx = gguf_get_or_add_key(ctx, key);
  18407. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18408. ctx->kv[idx].value.float32 = val;
  18409. }
  18410. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18411. const int idx = gguf_get_or_add_key(ctx, key);
  18412. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18413. ctx->kv[idx].value.uint64 = val;
  18414. }
  18415. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18416. const int idx = gguf_get_or_add_key(ctx, key);
  18417. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18418. ctx->kv[idx].value.int64 = val;
  18419. }
  18420. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18421. const int idx = gguf_get_or_add_key(ctx, key);
  18422. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18423. ctx->kv[idx].value.float64 = val;
  18424. }
  18425. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18426. const int idx = gguf_get_or_add_key(ctx, key);
  18427. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18428. ctx->kv[idx].value.bool_ = val;
  18429. }
  18430. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18431. const int idx = gguf_get_or_add_key(ctx, key);
  18432. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18433. ctx->kv[idx].value.str.n = strlen(val);
  18434. ctx->kv[idx].value.str.data = strdup(val);
  18435. }
  18436. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18437. const int idx = gguf_get_or_add_key(ctx, key);
  18438. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18439. ctx->kv[idx].value.arr.type = type;
  18440. ctx->kv[idx].value.arr.n = n;
  18441. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18442. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18443. }
  18444. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18445. const int idx = gguf_get_or_add_key(ctx, key);
  18446. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18447. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18448. ctx->kv[idx].value.arr.n = n;
  18449. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18450. for (int i = 0; i < n; i++) {
  18451. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18452. str->n = strlen(data[i]);
  18453. str->data = strdup(data[i]);
  18454. }
  18455. }
  18456. // set or add KV pairs from another context
  18457. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18458. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18459. switch (src->kv[i].type) {
  18460. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18461. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18462. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18463. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18464. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18465. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18466. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18467. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18468. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18469. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18470. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18471. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18472. case GGUF_TYPE_ARRAY:
  18473. {
  18474. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18475. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18476. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18477. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18478. }
  18479. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18480. GGML_FREE((void *)data);
  18481. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18482. GGML_ASSERT(false && "nested arrays not supported");
  18483. } else {
  18484. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18485. }
  18486. } break;
  18487. default: GGML_ASSERT(false && "invalid type"); break;
  18488. }
  18489. }
  18490. }
  18491. void gguf_add_tensor(
  18492. struct gguf_context * ctx,
  18493. const struct ggml_tensor * tensor) {
  18494. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18495. GGML_ASSERT(false && "duplicated tensor name");
  18496. }
  18497. const int idx = ctx->header.n_tensors;
  18498. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18499. ctx->infos[idx].name.n = strlen(tensor->name);
  18500. ctx->infos[idx].name.data = strdup(tensor->name);
  18501. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18502. ctx->infos[idx].ne[i] = 1;
  18503. }
  18504. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18505. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18506. ctx->infos[idx].ne[i] = tensor->ne[i];
  18507. }
  18508. ctx->infos[idx].type = tensor->type;
  18509. ctx->infos[idx].offset = 0;
  18510. ctx->infos[idx].data = tensor->data;
  18511. ctx->infos[idx].size = ggml_nbytes(tensor);
  18512. if (ctx->header.n_tensors > 0) {
  18513. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18514. }
  18515. ctx->header.n_tensors++;
  18516. }
  18517. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18518. const int idx = gguf_find_tensor(ctx, name);
  18519. if (idx < 0) {
  18520. GGML_ASSERT(false && "tensor not found");
  18521. }
  18522. ctx->infos[idx].type = type;
  18523. }
  18524. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18525. const int idx = gguf_find_tensor(ctx, name);
  18526. if (idx < 0) {
  18527. GGML_ASSERT(false && "tensor not found");
  18528. }
  18529. ctx->infos[idx].data = data;
  18530. ctx->infos[idx].size = size;
  18531. // update offsets
  18532. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18533. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18534. }
  18535. }
  18536. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18537. // fwrite(&val->n, sizeof(val->n), 1, file);
  18538. // fwrite(val->data, sizeof(char), val->n, file);
  18539. //}
  18540. //
  18541. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18542. // fwrite(val, sizeof(char), size, file);
  18543. //}
  18544. struct gguf_buf {
  18545. void * data;
  18546. size_t size;
  18547. size_t offset;
  18548. };
  18549. static struct gguf_buf gguf_buf_init(size_t size) {
  18550. struct gguf_buf buf = {
  18551. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18552. /*buf.size =*/ size,
  18553. /*buf.offset =*/ 0,
  18554. };
  18555. return buf;
  18556. }
  18557. static void gguf_buf_free(struct gguf_buf buf) {
  18558. if (buf.data) {
  18559. GGML_FREE(buf.data);
  18560. }
  18561. }
  18562. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18563. if (buf->offset + size > buf->size) {
  18564. buf->size = 1.5*(buf->offset + size);
  18565. if (buf->data) {
  18566. buf->data = realloc(buf->data, buf->size);
  18567. }
  18568. }
  18569. }
  18570. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18571. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18572. if (buf->data) {
  18573. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18574. }
  18575. buf->offset += sizeof(val->n);
  18576. if (buf->data) {
  18577. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18578. }
  18579. buf->offset += val->n;
  18580. }
  18581. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18582. gguf_buf_grow(buf, el_size);
  18583. if (buf->data) {
  18584. memcpy((char *) buf->data + buf->offset, val, el_size);
  18585. }
  18586. buf->offset += el_size;
  18587. }
  18588. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18589. // write header
  18590. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18591. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18592. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18593. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18594. // write key-value pairs
  18595. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18596. struct gguf_kv * kv = &ctx->kv[i];
  18597. gguf_bwrite_str(buf, &kv->key);
  18598. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18599. switch (kv->type) {
  18600. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18601. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18602. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18603. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18604. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18605. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18606. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18607. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18608. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18609. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18610. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18611. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18612. case GGUF_TYPE_ARRAY:
  18613. {
  18614. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18615. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18616. switch (kv->value.arr.type) {
  18617. case GGUF_TYPE_UINT8:
  18618. case GGUF_TYPE_INT8:
  18619. case GGUF_TYPE_UINT16:
  18620. case GGUF_TYPE_INT16:
  18621. case GGUF_TYPE_UINT32:
  18622. case GGUF_TYPE_INT32:
  18623. case GGUF_TYPE_FLOAT32:
  18624. case GGUF_TYPE_UINT64:
  18625. case GGUF_TYPE_INT64:
  18626. case GGUF_TYPE_FLOAT64:
  18627. case GGUF_TYPE_BOOL:
  18628. {
  18629. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18630. } break;
  18631. case GGUF_TYPE_STRING:
  18632. {
  18633. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18634. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18635. }
  18636. } break;
  18637. case GGUF_TYPE_ARRAY:
  18638. default: GGML_ASSERT(false && "invalid type"); break;
  18639. }
  18640. } break;
  18641. default: GGML_ASSERT(false && "invalid type");
  18642. }
  18643. }
  18644. // write tensor infos
  18645. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18646. struct gguf_tensor_info * info = &ctx->infos[i];
  18647. gguf_bwrite_str(buf, &info->name);
  18648. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18649. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18650. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18651. }
  18652. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18653. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18654. }
  18655. // we require the data section to be aligned, so take into account any padding
  18656. {
  18657. const size_t offset = buf->offset;
  18658. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18659. if (offset_pad != offset) {
  18660. uint8_t pad = 0;
  18661. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18662. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18663. }
  18664. }
  18665. }
  18666. if (only_meta) {
  18667. return;
  18668. }
  18669. size_t offset = 0;
  18670. // write tensor data
  18671. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18672. struct gguf_tensor_info * info = &ctx->infos[i];
  18673. const size_t size = info->size;
  18674. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18675. gguf_bwrite_el(buf, info->data, size);
  18676. if (size_pad != size) {
  18677. uint8_t pad = 0;
  18678. for (size_t j = 0; j < size_pad - size; ++j) {
  18679. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18680. }
  18681. }
  18682. GGML_ASSERT(offset == info->offset);
  18683. offset += size_pad;
  18684. }
  18685. }
  18686. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18687. FILE * file = ggml_fopen(fname, "wb");
  18688. if (!file) {
  18689. GGML_ASSERT(false && "failed to open file for writing");
  18690. }
  18691. struct gguf_buf buf = gguf_buf_init(16*1024);
  18692. gguf_write_to_buf(ctx, &buf, only_meta);
  18693. fwrite(buf.data, 1, buf.offset, file);
  18694. gguf_buf_free(buf);
  18695. fclose(file);
  18696. }
  18697. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18698. // no allocs - only compute size
  18699. struct gguf_buf buf = gguf_buf_init(0);
  18700. gguf_write_to_buf(ctx, &buf, true);
  18701. return buf.offset;
  18702. }
  18703. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18704. struct gguf_buf buf = gguf_buf_init(16*1024);
  18705. gguf_write_to_buf(ctx, &buf, true);
  18706. memcpy(data, buf.data, buf.offset);
  18707. gguf_buf_free(buf);
  18708. }
  18709. ////////////////////////////////////////////////////////////////////////////////
  18710. int ggml_cpu_has_avx(void) {
  18711. #if defined(__AVX__)
  18712. return 1;
  18713. #else
  18714. return 0;
  18715. #endif
  18716. }
  18717. int ggml_cpu_has_avx_vnni(void) {
  18718. #if defined(__AVXVNNI__)
  18719. return 1;
  18720. #else
  18721. return 0;
  18722. #endif
  18723. }
  18724. int ggml_cpu_has_avx2(void) {
  18725. #if defined(__AVX2__)
  18726. return 1;
  18727. #else
  18728. return 0;
  18729. #endif
  18730. }
  18731. int ggml_cpu_has_avx512(void) {
  18732. #if defined(__AVX512F__)
  18733. return 1;
  18734. #else
  18735. return 0;
  18736. #endif
  18737. }
  18738. int ggml_cpu_has_avx512_vbmi(void) {
  18739. #if defined(__AVX512VBMI__)
  18740. return 1;
  18741. #else
  18742. return 0;
  18743. #endif
  18744. }
  18745. int ggml_cpu_has_avx512_vnni(void) {
  18746. #if defined(__AVX512VNNI__)
  18747. return 1;
  18748. #else
  18749. return 0;
  18750. #endif
  18751. }
  18752. int ggml_cpu_has_avx512_bf16(void) {
  18753. #if defined(__AVX512BF16__)
  18754. return 1;
  18755. #else
  18756. return 0;
  18757. #endif
  18758. }
  18759. int ggml_cpu_has_fma(void) {
  18760. #if defined(__FMA__)
  18761. return 1;
  18762. #else
  18763. return 0;
  18764. #endif
  18765. }
  18766. int ggml_cpu_has_neon(void) {
  18767. #if defined(__ARM_NEON)
  18768. return 1;
  18769. #else
  18770. return 0;
  18771. #endif
  18772. }
  18773. int ggml_cpu_has_sve(void) {
  18774. #if defined(__ARM_FEATURE_SVE)
  18775. // TODO: Currently, SVE 256 bit is only supported.
  18776. GGML_ASSERT(svcntb() == QK8_0);
  18777. return 1;
  18778. #else
  18779. return 0;
  18780. #endif
  18781. }
  18782. int ggml_cpu_has_arm_fma(void) {
  18783. #if defined(__ARM_FEATURE_FMA)
  18784. return 1;
  18785. #else
  18786. return 0;
  18787. #endif
  18788. }
  18789. int ggml_cpu_has_metal(void) {
  18790. #if defined(GGML_USE_METAL)
  18791. return 1;
  18792. #else
  18793. return 0;
  18794. #endif
  18795. }
  18796. int ggml_cpu_has_f16c(void) {
  18797. #if defined(__F16C__)
  18798. return 1;
  18799. #else
  18800. return 0;
  18801. #endif
  18802. }
  18803. int ggml_cpu_has_fp16_va(void) {
  18804. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18805. return 1;
  18806. #else
  18807. return 0;
  18808. #endif
  18809. }
  18810. int ggml_cpu_has_wasm_simd(void) {
  18811. #if defined(__wasm_simd128__)
  18812. return 1;
  18813. #else
  18814. return 0;
  18815. #endif
  18816. }
  18817. int ggml_cpu_has_blas(void) {
  18818. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18819. return 1;
  18820. #else
  18821. return 0;
  18822. #endif
  18823. }
  18824. int ggml_cpu_has_cuda(void) {
  18825. #if defined(GGML_USE_CUDA)
  18826. return 1;
  18827. #else
  18828. return 0;
  18829. #endif
  18830. }
  18831. int ggml_cpu_has_clblast(void) {
  18832. #if defined(GGML_USE_CLBLAST)
  18833. return 1;
  18834. #else
  18835. return 0;
  18836. #endif
  18837. }
  18838. int ggml_cpu_has_vulkan(void) {
  18839. #if defined(GGML_USE_VULKAN)
  18840. return 1;
  18841. #else
  18842. return 0;
  18843. #endif
  18844. }
  18845. int ggml_cpu_has_kompute(void) {
  18846. #if defined(GGML_USE_KOMPUTE)
  18847. return 1;
  18848. #else
  18849. return 0;
  18850. #endif
  18851. }
  18852. int ggml_cpu_has_sycl(void) {
  18853. #if defined(GGML_USE_SYCL)
  18854. return 1;
  18855. #else
  18856. return 0;
  18857. #endif
  18858. }
  18859. int ggml_cpu_has_rpc(void) {
  18860. #if defined(GGML_USE_RPC)
  18861. return 1;
  18862. #else
  18863. return 0;
  18864. #endif
  18865. }
  18866. int ggml_cpu_has_gpublas(void) {
  18867. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18868. ggml_cpu_has_sycl();
  18869. }
  18870. int ggml_cpu_has_sse3(void) {
  18871. #if defined(__SSE3__)
  18872. return 1;
  18873. #else
  18874. return 0;
  18875. #endif
  18876. }
  18877. int ggml_cpu_has_ssse3(void) {
  18878. #if defined(__SSSE3__)
  18879. return 1;
  18880. #else
  18881. return 0;
  18882. #endif
  18883. }
  18884. int ggml_cpu_has_vsx(void) {
  18885. #if defined(__POWER9_VECTOR__)
  18886. return 1;
  18887. #else
  18888. return 0;
  18889. #endif
  18890. }
  18891. int ggml_cpu_has_matmul_int8(void) {
  18892. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18893. return 1;
  18894. #else
  18895. return 0;
  18896. #endif
  18897. }
  18898. ////////////////////////////////////////////////////////////////////////////////