ggml.h 56 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[2, 1] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[0, 2] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_SRC 6
  195. #define GGML_MAX_NAME 48
  196. #define GGML_MAX_OP_PARAMS 32
  197. #define GGML_DEFAULT_N_THREADS 4
  198. #define GGML_EXIT_SUCCESS 0
  199. #define GGML_EXIT_ABORTED 1
  200. #define GGML_UNUSED(x) (void)(x)
  201. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  202. #define GGML_ASSERT(x) \
  203. do { \
  204. if (!(x)) { \
  205. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  206. abort(); \
  207. } \
  208. } while (0)
  209. // used to copy the number of elements and stride in bytes of tensors into local variables.
  210. // main purpose is to reduce code duplication and improve readability.
  211. //
  212. // example:
  213. //
  214. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  215. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  216. //
  217. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  218. const type prefix##0 = (pointer)->array[0]; \
  219. GGML_UNUSED(prefix##0);
  220. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  221. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  222. const type prefix##1 = (pointer)->array[1]; \
  223. GGML_UNUSED(prefix##1);
  224. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  225. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  226. const type prefix##2 = (pointer)->array[2]; \
  227. GGML_UNUSED(prefix##2);
  228. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  229. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  230. const type prefix##3 = (pointer)->array[3]; \
  231. GGML_UNUSED(prefix##3);
  232. #ifdef __cplusplus
  233. extern "C" {
  234. #endif
  235. #ifdef __ARM_NEON
  236. // we use the built-in 16-bit float type
  237. typedef __fp16 ggml_fp16_t;
  238. #else
  239. typedef uint16_t ggml_fp16_t;
  240. #endif
  241. // convert FP16 <-> FP32
  242. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  243. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  244. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  245. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  246. struct ggml_object;
  247. struct ggml_context;
  248. enum ggml_type {
  249. GGML_TYPE_F32 = 0,
  250. GGML_TYPE_F16 = 1,
  251. GGML_TYPE_Q4_0 = 2,
  252. GGML_TYPE_Q4_1 = 3,
  253. // GGML_TYPE_Q4_2 = 4, support has been removed
  254. // GGML_TYPE_Q4_3 (5) support has been removed
  255. GGML_TYPE_Q5_0 = 6,
  256. GGML_TYPE_Q5_1 = 7,
  257. GGML_TYPE_Q8_0 = 8,
  258. GGML_TYPE_Q8_1 = 9,
  259. // k-quantizations
  260. GGML_TYPE_Q2_K = 10,
  261. GGML_TYPE_Q3_K = 11,
  262. GGML_TYPE_Q4_K = 12,
  263. GGML_TYPE_Q5_K = 13,
  264. GGML_TYPE_Q6_K = 14,
  265. GGML_TYPE_Q8_K = 15,
  266. GGML_TYPE_I8,
  267. GGML_TYPE_I16,
  268. GGML_TYPE_I32,
  269. GGML_TYPE_COUNT,
  270. };
  271. enum ggml_backend {
  272. GGML_BACKEND_CPU = 0,
  273. GGML_BACKEND_GPU = 10,
  274. GGML_BACKEND_GPU_SPLIT = 20,
  275. };
  276. // model file types
  277. enum ggml_ftype {
  278. GGML_FTYPE_UNKNOWN = -1,
  279. GGML_FTYPE_ALL_F32 = 0,
  280. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  281. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  282. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  283. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  284. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  285. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  286. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  287. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  288. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  289. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  290. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  291. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  292. };
  293. // available tensor operations:
  294. enum ggml_op {
  295. GGML_OP_NONE = 0,
  296. GGML_OP_DUP,
  297. GGML_OP_ADD,
  298. GGML_OP_ADD1,
  299. GGML_OP_ACC,
  300. GGML_OP_SUB,
  301. GGML_OP_MUL,
  302. GGML_OP_DIV,
  303. GGML_OP_SQR,
  304. GGML_OP_SQRT,
  305. GGML_OP_LOG,
  306. GGML_OP_SUM,
  307. GGML_OP_SUM_ROWS,
  308. GGML_OP_MEAN,
  309. GGML_OP_ARGMAX,
  310. GGML_OP_REPEAT,
  311. GGML_OP_REPEAT_BACK,
  312. GGML_OP_SILU_BACK,
  313. GGML_OP_NORM, // normalize
  314. GGML_OP_RMS_NORM,
  315. GGML_OP_RMS_NORM_BACK,
  316. GGML_OP_MUL_MAT,
  317. GGML_OP_OUT_PROD,
  318. GGML_OP_SCALE,
  319. GGML_OP_SET,
  320. GGML_OP_CPY,
  321. GGML_OP_CONT,
  322. GGML_OP_RESHAPE,
  323. GGML_OP_VIEW,
  324. GGML_OP_PERMUTE,
  325. GGML_OP_TRANSPOSE,
  326. GGML_OP_GET_ROWS,
  327. GGML_OP_GET_ROWS_BACK,
  328. GGML_OP_DIAG,
  329. GGML_OP_DIAG_MASK_INF,
  330. GGML_OP_DIAG_MASK_ZERO,
  331. GGML_OP_SOFT_MAX,
  332. GGML_OP_SOFT_MAX_BACK,
  333. GGML_OP_ROPE,
  334. GGML_OP_ROPE_BACK,
  335. GGML_OP_ALIBI,
  336. GGML_OP_CLAMP,
  337. GGML_OP_CONV_1D,
  338. GGML_OP_CONV_2D,
  339. GGML_OP_POOL_1D,
  340. GGML_OP_POOL_2D,
  341. GGML_OP_FLASH_ATTN,
  342. GGML_OP_FLASH_FF,
  343. GGML_OP_FLASH_ATTN_BACK,
  344. GGML_OP_WIN_PART,
  345. GGML_OP_WIN_UNPART,
  346. GGML_OP_UNARY,
  347. GGML_OP_MAP_UNARY,
  348. GGML_OP_MAP_BINARY,
  349. GGML_OP_MAP_CUSTOM1,
  350. GGML_OP_MAP_CUSTOM2,
  351. GGML_OP_MAP_CUSTOM3,
  352. GGML_OP_CROSS_ENTROPY_LOSS,
  353. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  354. GGML_OP_COUNT,
  355. };
  356. enum ggml_unary_op {
  357. GGML_UNARY_OP_ABS,
  358. GGML_UNARY_OP_SGN,
  359. GGML_UNARY_OP_NEG,
  360. GGML_UNARY_OP_STEP,
  361. GGML_UNARY_OP_TANH,
  362. GGML_UNARY_OP_ELU,
  363. GGML_UNARY_OP_RELU,
  364. GGML_UNARY_OP_GELU,
  365. GGML_UNARY_OP_GELU_QUICK,
  366. GGML_UNARY_OP_SILU,
  367. };
  368. enum ggml_object_type {
  369. GGML_OBJECT_TENSOR,
  370. GGML_OBJECT_GRAPH,
  371. GGML_OBJECT_WORK_BUFFER
  372. };
  373. // ggml object
  374. struct ggml_object {
  375. size_t offs;
  376. size_t size;
  377. struct ggml_object * next;
  378. enum ggml_object_type type;
  379. char padding[4];
  380. };
  381. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  382. // n-dimensional tensor
  383. struct ggml_tensor {
  384. enum ggml_type type;
  385. enum ggml_backend backend;
  386. int n_dims;
  387. int64_t ne[GGML_MAX_DIMS]; // number of elements
  388. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  389. // nb[0] = sizeof(type)
  390. // nb[1] = nb[0] * ne[0] + padding
  391. // nb[i] = nb[i-1] * ne[i-1]
  392. // compute data
  393. enum ggml_op op;
  394. // op params - allocated as int32_t for alignment
  395. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  396. bool is_param;
  397. struct ggml_tensor * grad;
  398. struct ggml_tensor * src[GGML_MAX_SRC];
  399. // performance
  400. int perf_runs;
  401. int64_t perf_cycles;
  402. int64_t perf_time_us;
  403. void * data;
  404. char name[GGML_MAX_NAME];
  405. void * extra; // extra things e.g. for ggml-cuda.cu
  406. char padding[4];
  407. };
  408. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  409. // the compute plan that needs to be prepared for ggml_graph_compute()
  410. // since https://github.com/ggerganov/ggml/issues/287
  411. struct ggml_cplan {
  412. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  413. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  414. int n_threads;
  415. // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
  416. int n_tasks[GGML_MAX_NODES];
  417. // abort ggml_graph_compute when true
  418. bool (*abort_callback)(void * data);
  419. void * abort_callback_data;
  420. };
  421. // next prime after GGML_MAX_NODES
  422. // #define GGML_GRAPH_HASHTABLE_SIZE 4099
  423. // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
  424. #define GGML_GRAPH_HASHTABLE_SIZE 8273
  425. // computation graph
  426. struct ggml_cgraph {
  427. int n_nodes;
  428. int n_leafs;
  429. struct ggml_tensor * nodes[GGML_MAX_NODES];
  430. struct ggml_tensor * grads[GGML_MAX_NODES];
  431. struct ggml_tensor * leafs[GGML_MAX_NODES];
  432. void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
  433. // performance
  434. int perf_runs;
  435. int64_t perf_cycles;
  436. int64_t perf_time_us;
  437. };
  438. static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
  439. // scratch buffer
  440. struct ggml_scratch {
  441. size_t offs;
  442. size_t size;
  443. void * data;
  444. };
  445. struct ggml_init_params {
  446. // memory pool
  447. size_t mem_size; // bytes
  448. void * mem_buffer; // if NULL, memory will be allocated internally
  449. bool no_alloc; // don't allocate memory for the tensor data
  450. };
  451. // compute types
  452. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  453. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  454. enum ggml_task_type {
  455. GGML_TASK_INIT = 0,
  456. GGML_TASK_COMPUTE,
  457. GGML_TASK_FINALIZE,
  458. };
  459. struct ggml_compute_params {
  460. enum ggml_task_type type;
  461. // ith = thread index, nth = number of threads
  462. int ith, nth;
  463. // work buffer for all threads
  464. size_t wsize;
  465. void * wdata;
  466. };
  467. // misc
  468. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  469. GGML_API int64_t ggml_time_ms(void);
  470. GGML_API int64_t ggml_time_us(void);
  471. GGML_API int64_t ggml_cycles(void);
  472. GGML_API int64_t ggml_cycles_per_ms(void);
  473. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  474. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  475. GGML_API void ggml_print_object (const struct ggml_object * obj);
  476. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  477. GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
  478. GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
  479. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  480. GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
  481. GGML_API int ggml_blck_size (enum ggml_type type);
  482. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  483. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  484. GGML_API const char * ggml_type_name(enum ggml_type type);
  485. GGML_API const char * ggml_op_name (enum ggml_op op);
  486. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  487. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  488. GGML_API bool ggml_is_quantized(enum ggml_type type);
  489. // TODO: temporary until model loading of ggml examples is refactored
  490. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  491. GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
  492. GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  493. GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
  494. // use this to compute the memory overhead of a tensor
  495. GGML_API size_t ggml_tensor_overhead(void);
  496. // main
  497. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  498. GGML_API void ggml_free(struct ggml_context * ctx);
  499. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  500. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  501. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  502. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  503. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  504. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  505. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  506. GGML_API struct ggml_tensor * ggml_new_tensor(
  507. struct ggml_context * ctx,
  508. enum ggml_type type,
  509. int n_dims,
  510. const int64_t *ne);
  511. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  512. struct ggml_context * ctx,
  513. enum ggml_type type,
  514. int64_t ne0);
  515. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  516. struct ggml_context * ctx,
  517. enum ggml_type type,
  518. int64_t ne0,
  519. int64_t ne1);
  520. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  521. struct ggml_context * ctx,
  522. enum ggml_type type,
  523. int64_t ne0,
  524. int64_t ne1,
  525. int64_t ne2);
  526. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  527. struct ggml_context * ctx,
  528. enum ggml_type type,
  529. int64_t ne0,
  530. int64_t ne1,
  531. int64_t ne2,
  532. int64_t ne3);
  533. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  534. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  535. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  536. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  537. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  538. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  539. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  540. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  541. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  542. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  543. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  544. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  545. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  546. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  547. GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  548. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  549. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  550. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  551. //
  552. // operations on tensors with backpropagation
  553. //
  554. GGML_API struct ggml_tensor * ggml_dup(
  555. struct ggml_context * ctx,
  556. struct ggml_tensor * a);
  557. // in-place, returns view(a)
  558. GGML_API struct ggml_tensor * ggml_dup_inplace(
  559. struct ggml_context * ctx,
  560. struct ggml_tensor * a);
  561. GGML_API struct ggml_tensor * ggml_add(
  562. struct ggml_context * ctx,
  563. struct ggml_tensor * a,
  564. struct ggml_tensor * b);
  565. GGML_API struct ggml_tensor * ggml_add_inplace(
  566. struct ggml_context * ctx,
  567. struct ggml_tensor * a,
  568. struct ggml_tensor * b);
  569. GGML_API struct ggml_tensor * ggml_add1(
  570. struct ggml_context * ctx,
  571. struct ggml_tensor * a,
  572. struct ggml_tensor * b);
  573. GGML_API struct ggml_tensor * ggml_add1_inplace(
  574. struct ggml_context * ctx,
  575. struct ggml_tensor * a,
  576. struct ggml_tensor * b);
  577. GGML_API struct ggml_tensor * ggml_acc(
  578. struct ggml_context * ctx,
  579. struct ggml_tensor * a,
  580. struct ggml_tensor * b,
  581. size_t nb1,
  582. size_t nb2,
  583. size_t nb3,
  584. size_t offset);
  585. GGML_API struct ggml_tensor * ggml_acc_inplace(
  586. struct ggml_context * ctx,
  587. struct ggml_tensor * a,
  588. struct ggml_tensor * b,
  589. size_t nb1,
  590. size_t nb2,
  591. size_t nb3,
  592. size_t offset);
  593. GGML_API struct ggml_tensor * ggml_sub(
  594. struct ggml_context * ctx,
  595. struct ggml_tensor * a,
  596. struct ggml_tensor * b);
  597. GGML_API struct ggml_tensor * ggml_sub_inplace(
  598. struct ggml_context * ctx,
  599. struct ggml_tensor * a,
  600. struct ggml_tensor * b);
  601. GGML_API struct ggml_tensor * ggml_mul(
  602. struct ggml_context * ctx,
  603. struct ggml_tensor * a,
  604. struct ggml_tensor * b);
  605. GGML_API struct ggml_tensor * ggml_mul_inplace(
  606. struct ggml_context * ctx,
  607. struct ggml_tensor * a,
  608. struct ggml_tensor * b);
  609. GGML_API struct ggml_tensor * ggml_div(
  610. struct ggml_context * ctx,
  611. struct ggml_tensor * a,
  612. struct ggml_tensor * b);
  613. GGML_API struct ggml_tensor * ggml_div_inplace(
  614. struct ggml_context * ctx,
  615. struct ggml_tensor * a,
  616. struct ggml_tensor * b);
  617. GGML_API struct ggml_tensor * ggml_sqr(
  618. struct ggml_context * ctx,
  619. struct ggml_tensor * a);
  620. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  621. struct ggml_context * ctx,
  622. struct ggml_tensor * a);
  623. GGML_API struct ggml_tensor * ggml_sqrt(
  624. struct ggml_context * ctx,
  625. struct ggml_tensor * a);
  626. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  627. struct ggml_context * ctx,
  628. struct ggml_tensor * a);
  629. GGML_API struct ggml_tensor * ggml_log(
  630. struct ggml_context * ctx,
  631. struct ggml_tensor * a);
  632. GGML_API struct ggml_tensor * ggml_log_inplace(
  633. struct ggml_context * ctx,
  634. struct ggml_tensor * a);
  635. // return scalar
  636. GGML_API struct ggml_tensor * ggml_sum(
  637. struct ggml_context * ctx,
  638. struct ggml_tensor * a);
  639. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  640. GGML_API struct ggml_tensor * ggml_sum_rows(
  641. struct ggml_context * ctx,
  642. struct ggml_tensor * a);
  643. // mean along rows
  644. GGML_API struct ggml_tensor * ggml_mean(
  645. struct ggml_context * ctx,
  646. struct ggml_tensor * a);
  647. // argmax along rows
  648. GGML_API struct ggml_tensor * ggml_argmax(
  649. struct ggml_context * ctx,
  650. struct ggml_tensor * a);
  651. // if a is the same shape as b, and a is not parameter, return a
  652. // otherwise, return a new tensor: repeat(a) to fit in b
  653. GGML_API struct ggml_tensor * ggml_repeat(
  654. struct ggml_context * ctx,
  655. struct ggml_tensor * a,
  656. struct ggml_tensor * b);
  657. GGML_API struct ggml_tensor * ggml_repeat_back(
  658. struct ggml_context * ctx,
  659. struct ggml_tensor * a,
  660. struct ggml_tensor * b);
  661. GGML_API struct ggml_tensor * ggml_abs(
  662. struct ggml_context * ctx,
  663. struct ggml_tensor * a);
  664. GGML_API struct ggml_tensor * ggml_abs_inplace(
  665. struct ggml_context * ctx,
  666. struct ggml_tensor * a);
  667. GGML_API struct ggml_tensor * ggml_sgn(
  668. struct ggml_context * ctx,
  669. struct ggml_tensor * a);
  670. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  671. struct ggml_context * ctx,
  672. struct ggml_tensor * a);
  673. GGML_API struct ggml_tensor * ggml_neg(
  674. struct ggml_context * ctx,
  675. struct ggml_tensor * a);
  676. GGML_API struct ggml_tensor * ggml_neg_inplace(
  677. struct ggml_context * ctx,
  678. struct ggml_tensor * a);
  679. GGML_API struct ggml_tensor * ggml_step(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a);
  682. GGML_API struct ggml_tensor * ggml_step_inplace(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a);
  685. GGML_API struct ggml_tensor * ggml_tanh(
  686. struct ggml_context * ctx,
  687. struct ggml_tensor * a);
  688. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  689. struct ggml_context * ctx,
  690. struct ggml_tensor * a);
  691. GGML_API struct ggml_tensor * ggml_elu(
  692. struct ggml_context * ctx,
  693. struct ggml_tensor * a);
  694. GGML_API struct ggml_tensor * ggml_elu_inplace(
  695. struct ggml_context * ctx,
  696. struct ggml_tensor * a);
  697. GGML_API struct ggml_tensor * ggml_relu(
  698. struct ggml_context * ctx,
  699. struct ggml_tensor * a);
  700. GGML_API struct ggml_tensor * ggml_relu_inplace(
  701. struct ggml_context * ctx,
  702. struct ggml_tensor * a);
  703. // TODO: double-check this computation is correct
  704. GGML_API struct ggml_tensor * ggml_gelu(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a);
  707. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a);
  710. GGML_API struct ggml_tensor * ggml_gelu_quick(
  711. struct ggml_context * ctx,
  712. struct ggml_tensor * a);
  713. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  714. struct ggml_context * ctx,
  715. struct ggml_tensor * a);
  716. GGML_API struct ggml_tensor * ggml_silu(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a);
  719. GGML_API struct ggml_tensor * ggml_silu_inplace(
  720. struct ggml_context * ctx,
  721. struct ggml_tensor * a);
  722. // a - x
  723. // b - dy
  724. GGML_API struct ggml_tensor * ggml_silu_back(
  725. struct ggml_context * ctx,
  726. struct ggml_tensor * a,
  727. struct ggml_tensor * b);
  728. // normalize along rows
  729. // TODO: eps is hardcoded to 1e-5 for now
  730. GGML_API struct ggml_tensor * ggml_norm(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a);
  733. GGML_API struct ggml_tensor * ggml_norm_inplace(
  734. struct ggml_context * ctx,
  735. struct ggml_tensor * a);
  736. GGML_API struct ggml_tensor * ggml_rms_norm(
  737. struct ggml_context * ctx,
  738. struct ggml_tensor * a,
  739. float eps);
  740. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a,
  743. float eps);
  744. // a - x
  745. // b - dy
  746. // TODO: update with configurable eps
  747. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  748. struct ggml_context * ctx,
  749. struct ggml_tensor * a,
  750. struct ggml_tensor * b);
  751. // A: n columns, m rows
  752. // B: n columns, p rows (i.e. we transpose it internally)
  753. // result is m columns, p rows
  754. GGML_API struct ggml_tensor * ggml_mul_mat(
  755. struct ggml_context * ctx,
  756. struct ggml_tensor * a,
  757. struct ggml_tensor * b);
  758. // A: m columns, n rows,
  759. // B: p columns, n rows,
  760. // result is m columns, p rows
  761. GGML_API struct ggml_tensor * ggml_out_prod(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b);
  765. //
  766. // operations on tensors without backpropagation
  767. //
  768. GGML_API struct ggml_tensor * ggml_scale(
  769. struct ggml_context * ctx,
  770. struct ggml_tensor * a,
  771. struct ggml_tensor * b);
  772. // in-place, returns view(a)
  773. GGML_API struct ggml_tensor * ggml_scale_inplace(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a,
  776. struct ggml_tensor * b);
  777. // b -> view(a,offset,nb1,nb2,3), return modified a
  778. GGML_API struct ggml_tensor * ggml_set(
  779. struct ggml_context * ctx,
  780. struct ggml_tensor * a,
  781. struct ggml_tensor * b,
  782. size_t nb1,
  783. size_t nb2,
  784. size_t nb3,
  785. size_t offset);
  786. // b -> view(a,offset,nb1,nb2,3), return view(a)
  787. GGML_API struct ggml_tensor * ggml_set_inplace(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a,
  790. struct ggml_tensor * b,
  791. size_t nb1,
  792. size_t nb2,
  793. size_t nb3,
  794. size_t offset);
  795. GGML_API struct ggml_tensor * ggml_set_1d(
  796. struct ggml_context * ctx,
  797. struct ggml_tensor * a,
  798. struct ggml_tensor * b,
  799. size_t offset);
  800. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a,
  803. struct ggml_tensor * b,
  804. size_t offset);
  805. // b -> view(a,offset,nb1,nb2,3), return modified a
  806. GGML_API struct ggml_tensor * ggml_set_2d(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a,
  809. struct ggml_tensor * b,
  810. size_t nb1,
  811. size_t offset);
  812. // b -> view(a,offset,nb1,nb2,3), return view(a)
  813. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a,
  816. struct ggml_tensor * b,
  817. size_t nb1,
  818. size_t offset);
  819. // a -> b, return view(b)
  820. GGML_API struct ggml_tensor * ggml_cpy(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a,
  823. struct ggml_tensor * b);
  824. // a -> b, in-place, return view(b)
  825. GGML_API struct ggml_tensor * ggml_cpy_inplace(
  826. struct ggml_context * ctx,
  827. struct ggml_tensor * a,
  828. struct ggml_tensor * b);
  829. // make contiguous
  830. GGML_API struct ggml_tensor * ggml_cont(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a);
  833. // make contiguous, in-place
  834. GGML_API struct ggml_tensor * ggml_cont_inplace(
  835. struct ggml_context * ctx,
  836. struct ggml_tensor * a);
  837. // return view(a), b specifies the new shape
  838. // TODO: when we start computing gradient, make a copy instead of view
  839. GGML_API struct ggml_tensor * ggml_reshape(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a,
  842. struct ggml_tensor * b);
  843. // return view(a)
  844. // TODO: when we start computing gradient, make a copy instead of view
  845. GGML_API struct ggml_tensor * ggml_reshape_1d(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. int64_t ne0);
  849. GGML_API struct ggml_tensor * ggml_reshape_2d(
  850. struct ggml_context * ctx,
  851. struct ggml_tensor * a,
  852. int64_t ne0,
  853. int64_t ne1);
  854. // return view(a)
  855. // TODO: when we start computing gradient, make a copy instead of view
  856. GGML_API struct ggml_tensor * ggml_reshape_3d(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a,
  859. int64_t ne0,
  860. int64_t ne1,
  861. int64_t ne2);
  862. GGML_API struct ggml_tensor * ggml_reshape_4d(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a,
  865. int64_t ne0,
  866. int64_t ne1,
  867. int64_t ne2,
  868. int64_t ne3);
  869. // offset in bytes
  870. GGML_API struct ggml_tensor * ggml_view_1d(
  871. struct ggml_context * ctx,
  872. struct ggml_tensor * a,
  873. int64_t ne0,
  874. size_t offset);
  875. GGML_API struct ggml_tensor * ggml_view_2d(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a,
  878. int64_t ne0,
  879. int64_t ne1,
  880. size_t nb1, // row stride in bytes
  881. size_t offset);
  882. GGML_API struct ggml_tensor * ggml_view_3d(
  883. struct ggml_context * ctx,
  884. struct ggml_tensor * a,
  885. int64_t ne0,
  886. int64_t ne1,
  887. int64_t ne2,
  888. size_t nb1, // row stride in bytes
  889. size_t nb2, // slice stride in bytes
  890. size_t offset);
  891. GGML_API struct ggml_tensor * ggml_view_4d(
  892. struct ggml_context * ctx,
  893. struct ggml_tensor * a,
  894. int64_t ne0,
  895. int64_t ne1,
  896. int64_t ne2,
  897. int64_t ne3,
  898. size_t nb1, // row stride in bytes
  899. size_t nb2, // slice stride in bytes
  900. size_t nb3,
  901. size_t offset);
  902. GGML_API struct ggml_tensor * ggml_permute(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a,
  905. int axis0,
  906. int axis1,
  907. int axis2,
  908. int axis3);
  909. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  910. GGML_API struct ggml_tensor * ggml_transpose(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a);
  913. GGML_API struct ggml_tensor * ggml_get_rows(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a,
  916. struct ggml_tensor * b);
  917. GGML_API struct ggml_tensor * ggml_get_rows_back(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a,
  920. struct ggml_tensor * b,
  921. struct ggml_tensor * c);
  922. GGML_API struct ggml_tensor * ggml_diag(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a);
  925. // set elements above the diagonal to -INF
  926. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  927. struct ggml_context * ctx,
  928. struct ggml_tensor * a,
  929. int n_past);
  930. // in-place, returns view(a)
  931. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  932. struct ggml_context * ctx,
  933. struct ggml_tensor * a,
  934. int n_past);
  935. // set elements above the diagonal to 0
  936. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a,
  939. int n_past);
  940. // in-place, returns view(a)
  941. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  942. struct ggml_context * ctx,
  943. struct ggml_tensor * a,
  944. int n_past);
  945. GGML_API struct ggml_tensor * ggml_soft_max(
  946. struct ggml_context * ctx,
  947. struct ggml_tensor * a);
  948. // in-place, returns view(a)
  949. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  950. struct ggml_context * ctx,
  951. struct ggml_tensor * a);
  952. GGML_API struct ggml_tensor * ggml_soft_max_back(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a,
  955. struct ggml_tensor * b);
  956. // in-place, returns view(a)
  957. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  958. struct ggml_context * ctx,
  959. struct ggml_tensor * a,
  960. struct ggml_tensor * b);
  961. // rotary position embedding
  962. // if mode & 1 == 1, skip n_past elements
  963. // if mode & 2 == 1, GPT-NeoX style
  964. // if mode & 4 == 1, ChatGLM style
  965. // TODO: avoid creating a new tensor every time
  966. GGML_API struct ggml_tensor * ggml_rope(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a,
  969. int n_past,
  970. int n_dims,
  971. int mode,
  972. int n_ctx);
  973. // in-place, returns view(a)
  974. GGML_API struct ggml_tensor * ggml_rope_inplace(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a,
  977. int n_past,
  978. int n_dims,
  979. int mode,
  980. int n_ctx);
  981. // custom RoPE, in-place, returns view(a)
  982. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  983. struct ggml_context * ctx,
  984. struct ggml_tensor * a,
  985. int n_past,
  986. int n_dims,
  987. int mode,
  988. int n_ctx,
  989. float freq_base,
  990. float freq_scale);
  991. // rotary position embedding backward, i.e compute dx from dy
  992. // a - dy
  993. GGML_API struct ggml_tensor * ggml_rope_back(
  994. struct ggml_context * ctx,
  995. struct ggml_tensor * a,
  996. int n_past,
  997. int n_dims,
  998. int mode,
  999. int n_ctx);
  1000. // alibi position embedding
  1001. // in-place, returns view(a)
  1002. struct ggml_tensor * ggml_alibi(
  1003. struct ggml_context * ctx,
  1004. struct ggml_tensor * a,
  1005. int n_past,
  1006. int n_head,
  1007. float bias_max);
  1008. // clamp
  1009. // in-place, returns view(a)
  1010. struct ggml_tensor * ggml_clamp(
  1011. struct ggml_context * ctx,
  1012. struct ggml_tensor * a,
  1013. float min,
  1014. float max);
  1015. GGML_API struct ggml_tensor * ggml_conv_1d(
  1016. struct ggml_context * ctx,
  1017. struct ggml_tensor * a,
  1018. struct ggml_tensor * b,
  1019. int s0, // stride
  1020. int p0, // padding
  1021. int d0); // dilation
  1022. GGML_API struct ggml_tensor * ggml_conv_2d(
  1023. struct ggml_context * ctx,
  1024. struct ggml_tensor * a,
  1025. struct ggml_tensor * b,
  1026. int s0,
  1027. int s1,
  1028. int p0,
  1029. int p1,
  1030. int d0,
  1031. int d1);
  1032. // conv_1d with padding = half
  1033. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1034. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1035. struct ggml_context * ctx,
  1036. struct ggml_tensor * a,
  1037. struct ggml_tensor * b,
  1038. int s,
  1039. int d);
  1040. enum ggml_op_pool {
  1041. GGML_OP_POOL_MAX,
  1042. GGML_OP_POOL_AVG,
  1043. GGML_OP_POOL_COUNT,
  1044. };
  1045. GGML_API struct ggml_tensor* ggml_pool_1d(
  1046. struct ggml_context * ctx,
  1047. struct ggml_tensor * a,
  1048. enum ggml_op_pool op,
  1049. int k0, // kernel size
  1050. int s0, // stride
  1051. int p0); // padding
  1052. GGML_API struct ggml_tensor* ggml_pool_2d(
  1053. struct ggml_context * ctx,
  1054. struct ggml_tensor * a,
  1055. enum ggml_op_pool op,
  1056. int k0,
  1057. int k1,
  1058. int s0,
  1059. int s1,
  1060. int p0,
  1061. int p1);
  1062. GGML_API struct ggml_tensor * ggml_flash_attn(
  1063. struct ggml_context * ctx,
  1064. struct ggml_tensor * q,
  1065. struct ggml_tensor * k,
  1066. struct ggml_tensor * v,
  1067. bool masked);
  1068. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * q,
  1071. struct ggml_tensor * k,
  1072. struct ggml_tensor * v,
  1073. struct ggml_tensor * d,
  1074. bool masked);
  1075. GGML_API struct ggml_tensor * ggml_flash_ff(
  1076. struct ggml_context * ctx,
  1077. struct ggml_tensor * a,
  1078. struct ggml_tensor * b0,
  1079. struct ggml_tensor * b1,
  1080. struct ggml_tensor * c0,
  1081. struct ggml_tensor * c1);
  1082. // partition into non-overlapping windows with padding if needed
  1083. // example:
  1084. // a: 768 64 64 1
  1085. // w: 14
  1086. // res: 768 14 14 25
  1087. // used in sam
  1088. GGML_API struct ggml_tensor * ggml_win_part(
  1089. struct ggml_context * ctx,
  1090. struct ggml_tensor * a,
  1091. int w);
  1092. // reverse of ggml_win_part
  1093. // used in sam
  1094. GGML_API struct ggml_tensor * ggml_win_unpart(
  1095. struct ggml_context * ctx,
  1096. struct ggml_tensor * a,
  1097. int w0,
  1098. int h0,
  1099. int w);
  1100. // custom operators
  1101. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1102. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1103. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1104. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1105. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1106. GGML_API struct ggml_tensor * ggml_unary(
  1107. struct ggml_context * ctx,
  1108. struct ggml_tensor * a,
  1109. enum ggml_unary_op op);
  1110. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1111. struct ggml_context * ctx,
  1112. struct ggml_tensor * a,
  1113. enum ggml_unary_op op);
  1114. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1115. struct ggml_context * ctx,
  1116. struct ggml_tensor * a,
  1117. ggml_unary_op_f32_t fun);
  1118. GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1119. struct ggml_context * ctx,
  1120. struct ggml_tensor * a,
  1121. ggml_unary_op_f32_t fun);
  1122. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1123. struct ggml_context * ctx,
  1124. struct ggml_tensor * a,
  1125. struct ggml_tensor * b,
  1126. ggml_binary_op_f32_t fun);
  1127. GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. struct ggml_tensor * b,
  1131. ggml_binary_op_f32_t fun);
  1132. GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1133. struct ggml_context * ctx,
  1134. struct ggml_tensor * a,
  1135. ggml_custom1_op_f32_t fun);
  1136. GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1137. struct ggml_context * ctx,
  1138. struct ggml_tensor * a,
  1139. ggml_custom1_op_f32_t fun);
  1140. GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a,
  1143. struct ggml_tensor * b,
  1144. ggml_custom2_op_f32_t fun);
  1145. GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. struct ggml_tensor * b,
  1149. ggml_custom2_op_f32_t fun);
  1150. GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * a,
  1153. struct ggml_tensor * b,
  1154. struct ggml_tensor * c,
  1155. ggml_custom3_op_f32_t fun);
  1156. GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1157. struct ggml_context * ctx,
  1158. struct ggml_tensor * a,
  1159. struct ggml_tensor * b,
  1160. struct ggml_tensor * c,
  1161. ggml_custom3_op_f32_t fun);
  1162. // loss function
  1163. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1164. struct ggml_context * ctx,
  1165. struct ggml_tensor * a,
  1166. struct ggml_tensor * b);
  1167. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. struct ggml_tensor * b,
  1171. struct ggml_tensor * c);
  1172. //
  1173. // automatic differentiation
  1174. //
  1175. GGML_API void ggml_set_param(
  1176. struct ggml_context * ctx,
  1177. struct ggml_tensor * tensor);
  1178. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1179. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  1180. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  1181. // graph allocation in a context
  1182. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
  1183. GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1184. GGML_API size_t ggml_graph_overhead(void);
  1185. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1186. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1187. GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1188. GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1189. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  1190. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1191. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1192. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1193. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1194. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1195. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1196. // print info and performance information for the graph
  1197. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1198. // dump the graph into a file using the dot format
  1199. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1200. //
  1201. // optimization
  1202. //
  1203. // optimization methods
  1204. enum ggml_opt_type {
  1205. GGML_OPT_ADAM,
  1206. GGML_OPT_LBFGS,
  1207. };
  1208. // linesearch methods
  1209. enum ggml_linesearch {
  1210. GGML_LINESEARCH_DEFAULT = 1,
  1211. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1212. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1213. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1214. };
  1215. // optimization return values
  1216. enum ggml_opt_result {
  1217. GGML_OPT_OK = 0,
  1218. GGML_OPT_DID_NOT_CONVERGE,
  1219. GGML_OPT_NO_CONTEXT,
  1220. GGML_OPT_INVALID_WOLFE,
  1221. GGML_OPT_FAIL,
  1222. GGML_LINESEARCH_FAIL = -128,
  1223. GGML_LINESEARCH_MINIMUM_STEP,
  1224. GGML_LINESEARCH_MAXIMUM_STEP,
  1225. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1226. GGML_LINESEARCH_INVALID_PARAMETERS,
  1227. };
  1228. // optimization parameters
  1229. //
  1230. // see ggml.c (ggml_opt_default_params) for default values
  1231. //
  1232. struct ggml_opt_params {
  1233. enum ggml_opt_type type;
  1234. int n_threads;
  1235. // delta-based convergence test
  1236. //
  1237. // if past == 0 - disabled
  1238. // if past > 0:
  1239. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1240. //
  1241. int past;
  1242. float delta;
  1243. // maximum number of iterations without improvement
  1244. //
  1245. // if 0 - disabled
  1246. // if > 0:
  1247. // assume convergence if no cost improvement in this number of iterations
  1248. //
  1249. int max_no_improvement;
  1250. bool print_forward_graph;
  1251. bool print_backward_graph;
  1252. // ADAM parameters
  1253. struct {
  1254. int n_iter;
  1255. float sched; // schedule multiplier (fixed, decay or warmup)
  1256. float decay; // weight decay for AdamW, use 0.0f to disable
  1257. float alpha; // learning rate
  1258. float beta1;
  1259. float beta2;
  1260. float eps; // epsilon for numerical stability
  1261. float eps_f; // epsilon for convergence test
  1262. float eps_g; // epsilon for convergence test
  1263. } adam;
  1264. // LBFGS parameters
  1265. struct {
  1266. int m; // number of corrections to approximate the inv. Hessian
  1267. int n_iter;
  1268. int max_linesearch;
  1269. float eps; // convergence tolerance
  1270. float ftol; // line search tolerance
  1271. float wolfe;
  1272. float min_step;
  1273. float max_step;
  1274. enum ggml_linesearch linesearch;
  1275. } lbfgs;
  1276. };
  1277. struct ggml_opt_context {
  1278. struct ggml_context * ctx;
  1279. struct ggml_opt_params params;
  1280. int iter;
  1281. int64_t nx; // number of parameter elements
  1282. bool just_initialized;
  1283. struct {
  1284. struct ggml_tensor * x; // view of the parameters
  1285. struct ggml_tensor * g1; // gradient
  1286. struct ggml_tensor * g2; // gradient squared
  1287. struct ggml_tensor * m; // first moment
  1288. struct ggml_tensor * v; // second moment
  1289. struct ggml_tensor * mh; // first moment hat
  1290. struct ggml_tensor * vh; // second moment hat
  1291. struct ggml_tensor * pf; // past function values
  1292. float fx_best;
  1293. float fx_prev;
  1294. int n_no_improvement;
  1295. } adam;
  1296. struct {
  1297. struct ggml_tensor * x; // current parameters
  1298. struct ggml_tensor * xp; // previous parameters
  1299. struct ggml_tensor * g; // current gradient
  1300. struct ggml_tensor * gp; // previous gradient
  1301. struct ggml_tensor * d; // search direction
  1302. struct ggml_tensor * pf; // past function values
  1303. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1304. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1305. struct ggml_tensor * lms; // the L-BFGS memory s
  1306. struct ggml_tensor * lmy; // the L-BFGS memory y
  1307. float fx_best;
  1308. float step;
  1309. int j;
  1310. int k;
  1311. int end;
  1312. int n_no_improvement;
  1313. } lbfgs;
  1314. };
  1315. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1316. // optimize the function defined by the tensor f
  1317. GGML_API enum ggml_opt_result ggml_opt(
  1318. struct ggml_context * ctx,
  1319. struct ggml_opt_params params,
  1320. struct ggml_tensor * f);
  1321. // initialize optimizer context
  1322. GGML_API void ggml_opt_init(
  1323. struct ggml_context * ctx,
  1324. struct ggml_opt_context * opt,
  1325. struct ggml_opt_params params,
  1326. int64_t nx);
  1327. // continue optimizing the function defined by the tensor f
  1328. GGML_API enum ggml_opt_result ggml_opt_resume(
  1329. struct ggml_context * ctx,
  1330. struct ggml_opt_context * opt,
  1331. struct ggml_tensor * f);
  1332. // continue optimizing the function defined by the tensor f
  1333. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1334. struct ggml_context * ctx,
  1335. struct ggml_opt_context * opt,
  1336. struct ggml_tensor * f,
  1337. struct ggml_cgraph * gf,
  1338. struct ggml_cgraph * gb);
  1339. //
  1340. // quantization
  1341. //
  1342. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1343. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1344. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1345. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1346. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1347. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  1348. //
  1349. // system info
  1350. //
  1351. GGML_API int ggml_cpu_has_avx (void);
  1352. GGML_API int ggml_cpu_has_avx2 (void);
  1353. GGML_API int ggml_cpu_has_avx512 (void);
  1354. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1355. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1356. GGML_API int ggml_cpu_has_fma (void);
  1357. GGML_API int ggml_cpu_has_neon (void);
  1358. GGML_API int ggml_cpu_has_arm_fma (void);
  1359. GGML_API int ggml_cpu_has_f16c (void);
  1360. GGML_API int ggml_cpu_has_fp16_va (void);
  1361. GGML_API int ggml_cpu_has_wasm_simd (void);
  1362. GGML_API int ggml_cpu_has_blas (void);
  1363. GGML_API int ggml_cpu_has_cublas (void);
  1364. GGML_API int ggml_cpu_has_clblast (void);
  1365. GGML_API int ggml_cpu_has_gpublas (void);
  1366. GGML_API int ggml_cpu_has_sse3 (void);
  1367. GGML_API int ggml_cpu_has_vsx (void);
  1368. //
  1369. // Internal types and functions exposed for tests and benchmarks
  1370. //
  1371. #ifdef __cplusplus
  1372. // restrict not standard in C++
  1373. #define GGML_RESTRICT
  1374. #else
  1375. #define GGML_RESTRICT restrict
  1376. #endif
  1377. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1378. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1379. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1380. typedef struct {
  1381. ggml_to_float_t to_float;
  1382. ggml_from_float_t from_float;
  1383. ggml_from_float_t from_float_reference;
  1384. ggml_vec_dot_t vec_dot;
  1385. enum ggml_type vec_dot_type;
  1386. } ggml_type_traits_t;
  1387. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
  1388. #ifdef __cplusplus
  1389. }
  1390. #endif