llama-bench.cpp 44 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "ggml-cuda.h"
  22. #include "ggml-sycl.h"
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T, typename F>
  53. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  54. std::vector<std::string> str_values;
  55. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  56. return str_values;
  57. }
  58. template<typename T>
  59. static T avg(const std::vector<T> & v) {
  60. if (v.empty()) {
  61. return 0;
  62. }
  63. T sum = std::accumulate(v.begin(), v.end(), T(0));
  64. return sum / (T)v.size();
  65. }
  66. template<typename T>
  67. static T stdev(const std::vector<T> & v) {
  68. if (v.size() <= 1) {
  69. return 0;
  70. }
  71. T mean = avg(v);
  72. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  73. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  74. return stdev;
  75. }
  76. static std::string get_cpu_info() {
  77. std::string id;
  78. #ifdef __linux__
  79. FILE * f = fopen("/proc/cpuinfo", "r");
  80. if (f) {
  81. char buf[1024];
  82. while (fgets(buf, sizeof(buf), f)) {
  83. if (strncmp(buf, "model name", 10) == 0) {
  84. char * p = strchr(buf, ':');
  85. if (p) {
  86. p++;
  87. while (std::isspace(*p)) {
  88. p++;
  89. }
  90. while (std::isspace(p[strlen(p) - 1])) {
  91. p[strlen(p) - 1] = '\0';
  92. }
  93. id = p;
  94. break;
  95. }
  96. }
  97. }
  98. fclose(f);
  99. }
  100. #endif
  101. // TODO: other platforms
  102. return id;
  103. }
  104. static std::string get_gpu_info() {
  105. std::string id;
  106. #ifdef GGML_USE_CUBLAS
  107. int count = ggml_cuda_get_device_count();
  108. for (int i = 0; i < count; i++) {
  109. char buf[128];
  110. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  111. id += buf;
  112. if (i < count - 1) {
  113. id += "/";
  114. }
  115. }
  116. #endif
  117. #ifdef GGML_USE_SYCL
  118. int count = ggml_backend_sycl_get_device_count();
  119. for (int i = 0; i < count; i++) {
  120. char buf[128];
  121. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  122. id += buf;
  123. if (i < count - 1) {
  124. id += "/";
  125. }
  126. }
  127. #endif
  128. // TODO: other backends
  129. return id;
  130. }
  131. // command line params
  132. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  133. static const char * output_format_str(output_formats format) {
  134. switch (format) {
  135. case CSV: return "csv";
  136. case JSON: return "json";
  137. case MARKDOWN: return "md";
  138. case SQL: return "sql";
  139. default: GGML_ASSERT(!"invalid output format");
  140. }
  141. }
  142. static const char * split_mode_str(llama_split_mode mode) {
  143. switch (mode) {
  144. case LLAMA_SPLIT_MODE_NONE: return "none";
  145. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  146. case LLAMA_SPLIT_MODE_ROW: return "row";
  147. default: GGML_ASSERT(!"invalid split mode");
  148. }
  149. }
  150. struct cmd_params {
  151. std::vector<std::string> model;
  152. std::vector<int> n_prompt;
  153. std::vector<int> n_gen;
  154. std::vector<int> n_batch;
  155. std::vector<int> n_ubatch;
  156. std::vector<ggml_type> type_k;
  157. std::vector<ggml_type> type_v;
  158. std::vector<int> n_threads;
  159. std::vector<int> n_gpu_layers;
  160. std::vector<llama_split_mode> split_mode;
  161. std::vector<int> main_gpu;
  162. std::vector<bool> no_kv_offload;
  163. std::vector<std::vector<float>> tensor_split;
  164. std::vector<bool> use_mmap;
  165. std::vector<bool> embeddings;
  166. int reps;
  167. bool verbose;
  168. output_formats output_format;
  169. };
  170. static const cmd_params cmd_params_defaults = {
  171. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  172. /* n_prompt */ {512},
  173. /* n_gen */ {128},
  174. /* n_batch */ {2048},
  175. /* n_ubatch */ {512},
  176. /* type_k */ {GGML_TYPE_F16},
  177. /* type_v */ {GGML_TYPE_F16},
  178. /* n_threads */ {get_num_physical_cores()},
  179. /* n_gpu_layers */ {99},
  180. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  181. /* main_gpu */ {0},
  182. /* no_kv_offload */ {false},
  183. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  184. /* use_mmap */ {true},
  185. /* embeddings */ {false},
  186. /* reps */ 5,
  187. /* verbose */ false,
  188. /* output_format */ MARKDOWN
  189. };
  190. static void print_usage(int /* argc */, char ** argv) {
  191. printf("usage: %s [options]\n", argv[0]);
  192. printf("\n");
  193. printf("options:\n");
  194. printf(" -h, --help\n");
  195. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  196. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  197. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  198. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  199. printf(" -ub N, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  200. printf(" -ctk <t>, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  201. printf(" -ctv <t>, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  202. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  203. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  204. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  205. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  206. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  207. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  208. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  209. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  210. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  211. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  212. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  213. printf("\n");
  214. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  215. }
  216. static ggml_type ggml_type_from_name(const std::string & s) {
  217. if (s == "f16") {
  218. return GGML_TYPE_F16;
  219. }
  220. if (s == "q8_0") {
  221. return GGML_TYPE_Q8_0;
  222. }
  223. if (s == "q4_0") {
  224. return GGML_TYPE_Q4_0;
  225. }
  226. if (s == "q4_1") {
  227. return GGML_TYPE_Q4_1;
  228. }
  229. if (s == "q5_0") {
  230. return GGML_TYPE_Q5_0;
  231. }
  232. if (s == "q5_1") {
  233. return GGML_TYPE_Q5_1;
  234. }
  235. return GGML_TYPE_COUNT;
  236. }
  237. static cmd_params parse_cmd_params(int argc, char ** argv) {
  238. cmd_params params;
  239. std::string arg;
  240. bool invalid_param = false;
  241. const std::string arg_prefix = "--";
  242. const char split_delim = ',';
  243. params.verbose = cmd_params_defaults.verbose;
  244. params.output_format = cmd_params_defaults.output_format;
  245. params.reps = cmd_params_defaults.reps;
  246. for (int i = 1; i < argc; i++) {
  247. arg = argv[i];
  248. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  249. std::replace(arg.begin(), arg.end(), '_', '-');
  250. }
  251. if (arg == "-h" || arg == "--help") {
  252. print_usage(argc, argv);
  253. exit(0);
  254. } else if (arg == "-m" || arg == "--model") {
  255. if (++i >= argc) {
  256. invalid_param = true;
  257. break;
  258. }
  259. auto p = split<std::string>(argv[i], split_delim);
  260. params.model.insert(params.model.end(), p.begin(), p.end());
  261. } else if (arg == "-p" || arg == "--n-prompt") {
  262. if (++i >= argc) {
  263. invalid_param = true;
  264. break;
  265. }
  266. auto p = split<int>(argv[i], split_delim);
  267. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  268. } else if (arg == "-n" || arg == "--n-gen") {
  269. if (++i >= argc) {
  270. invalid_param = true;
  271. break;
  272. }
  273. auto p = split<int>(argv[i], split_delim);
  274. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  275. } else if (arg == "-b" || arg == "--batch-size") {
  276. if (++i >= argc) {
  277. invalid_param = true;
  278. break;
  279. }
  280. auto p = split<int>(argv[i], split_delim);
  281. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  282. } else if (arg == "-ub" || arg == "--ubatch-size") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. break;
  286. }
  287. auto p = split<int>(argv[i], split_delim);
  288. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  289. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  290. if (++i >= argc) {
  291. invalid_param = true;
  292. break;
  293. }
  294. auto p = split<std::string>(argv[i], split_delim);
  295. std::vector<ggml_type> types;
  296. for (const auto & t : p) {
  297. ggml_type gt = ggml_type_from_name(t);
  298. if (gt == GGML_TYPE_COUNT) {
  299. invalid_param = true;
  300. break;
  301. }
  302. types.push_back(gt);
  303. }
  304. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  305. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  306. if (++i >= argc) {
  307. invalid_param = true;
  308. break;
  309. }
  310. auto p = split<std::string>(argv[i], split_delim);
  311. std::vector<ggml_type> types;
  312. for (const auto & t : p) {
  313. ggml_type gt = ggml_type_from_name(t);
  314. if (gt == GGML_TYPE_COUNT) {
  315. invalid_param = true;
  316. break;
  317. }
  318. types.push_back(gt);
  319. }
  320. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  321. } else if (arg == "-t" || arg == "--threads") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. auto p = split<int>(argv[i], split_delim);
  327. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  328. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  329. if (++i >= argc) {
  330. invalid_param = true;
  331. break;
  332. }
  333. auto p = split<int>(argv[i], split_delim);
  334. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  335. } else if (arg == "-sm" || arg == "--split-mode") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. break;
  339. }
  340. auto p = split<std::string>(argv[i], split_delim);
  341. std::vector<llama_split_mode> modes;
  342. for (const auto & m : p) {
  343. llama_split_mode mode;
  344. if (m == "none") {
  345. mode = LLAMA_SPLIT_MODE_NONE;
  346. } else if (m == "layer") {
  347. mode = LLAMA_SPLIT_MODE_LAYER;
  348. } else if (m == "row") {
  349. mode = LLAMA_SPLIT_MODE_ROW;
  350. } else {
  351. invalid_param = true;
  352. break;
  353. }
  354. modes.push_back(mode);
  355. }
  356. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  357. } else if (arg == "-mg" || arg == "--main-gpu") {
  358. if (++i >= argc) {
  359. invalid_param = true;
  360. break;
  361. }
  362. params.main_gpu = split<int>(argv[i], split_delim);
  363. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  364. if (++i >= argc) {
  365. invalid_param = true;
  366. break;
  367. }
  368. auto p = split<bool>(argv[i], split_delim);
  369. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  370. } else if (arg == "-mmp" || arg == "--mmap") {
  371. if (++i >= argc) {
  372. invalid_param = true;
  373. break;
  374. }
  375. auto p = split<bool>(argv[i], split_delim);
  376. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  377. } else if (arg == "-embd" || arg == "--embeddings") {
  378. if (++i >= argc) {
  379. invalid_param = true;
  380. break;
  381. }
  382. auto p = split<bool>(argv[i], split_delim);
  383. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  384. } else if (arg == "-ts" || arg == "--tensor-split") {
  385. if (++i >= argc) {
  386. invalid_param = true;
  387. break;
  388. }
  389. for (auto ts : split<std::string>(argv[i], split_delim)) {
  390. // split string by ; and /
  391. const std::regex regex{R"([;/]+)"};
  392. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  393. std::vector<std::string> split_arg{it, {}};
  394. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  395. std::vector<float> tensor_split(llama_max_devices());
  396. for (size_t i = 0; i < llama_max_devices(); ++i) {
  397. if (i < split_arg.size()) {
  398. tensor_split[i] = std::stof(split_arg[i]);
  399. } else {
  400. tensor_split[i] = 0.0f;
  401. }
  402. }
  403. params.tensor_split.push_back(tensor_split);
  404. }
  405. } else if (arg == "-r" || arg == "--repetitions") {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. break;
  409. }
  410. params.reps = std::stoi(argv[i]);
  411. } else if (arg == "-o" || arg == "--output") {
  412. if (++i >= argc) {
  413. invalid_param = true;
  414. break;
  415. }
  416. if (argv[i] == std::string("csv")) {
  417. params.output_format = CSV;
  418. } else if (argv[i] == std::string("json")) {
  419. params.output_format = JSON;
  420. } else if (argv[i] == std::string("md")) {
  421. params.output_format = MARKDOWN;
  422. } else if (argv[i] == std::string("sql")) {
  423. params.output_format = SQL;
  424. } else {
  425. invalid_param = true;
  426. break;
  427. }
  428. } else if (arg == "-v" || arg == "--verbose") {
  429. params.verbose = true;
  430. } else {
  431. invalid_param = true;
  432. break;
  433. }
  434. }
  435. if (invalid_param) {
  436. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  437. print_usage(argc, argv);
  438. exit(1);
  439. }
  440. // set defaults
  441. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  442. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  443. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  444. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  445. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  446. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  447. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  448. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  449. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  450. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  451. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  452. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  453. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  454. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  455. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  456. return params;
  457. }
  458. struct cmd_params_instance {
  459. std::string model;
  460. int n_prompt;
  461. int n_gen;
  462. int n_batch;
  463. int n_ubatch;
  464. ggml_type type_k;
  465. ggml_type type_v;
  466. int n_threads;
  467. int n_gpu_layers;
  468. llama_split_mode split_mode;
  469. int main_gpu;
  470. bool no_kv_offload;
  471. std::vector<float> tensor_split;
  472. bool use_mmap;
  473. bool embeddings;
  474. llama_model_params to_llama_mparams() const {
  475. llama_model_params mparams = llama_model_default_params();
  476. mparams.n_gpu_layers = n_gpu_layers;
  477. mparams.split_mode = split_mode;
  478. mparams.main_gpu = main_gpu;
  479. mparams.tensor_split = tensor_split.data();
  480. mparams.use_mmap = use_mmap;
  481. return mparams;
  482. }
  483. bool equal_mparams(const cmd_params_instance & other) const {
  484. return model == other.model &&
  485. n_gpu_layers == other.n_gpu_layers &&
  486. split_mode == other.split_mode &&
  487. main_gpu == other.main_gpu &&
  488. use_mmap == other.use_mmap &&
  489. tensor_split == other.tensor_split;
  490. }
  491. llama_context_params to_llama_cparams() const {
  492. llama_context_params cparams = llama_context_default_params();
  493. cparams.n_ctx = n_prompt + n_gen;
  494. cparams.n_batch = n_batch;
  495. cparams.n_ubatch = n_ubatch;
  496. cparams.type_k = type_k;
  497. cparams.type_v = type_v;
  498. cparams.offload_kqv = !no_kv_offload;
  499. cparams.embeddings = embeddings;
  500. return cparams;
  501. }
  502. };
  503. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  504. std::vector<cmd_params_instance> instances;
  505. // this ordering minimizes the number of times that each model needs to be reloaded
  506. for (const auto & m : params.model)
  507. for (const auto & nl : params.n_gpu_layers)
  508. for (const auto & sm : params.split_mode)
  509. for (const auto & mg : params.main_gpu)
  510. for (const auto & ts : params.tensor_split)
  511. for (const auto & mmp : params.use_mmap)
  512. for (const auto & embd : params.embeddings)
  513. for (const auto & nb : params.n_batch)
  514. for (const auto & nub : params.n_ubatch)
  515. for (const auto & tk : params.type_k)
  516. for (const auto & tv : params.type_v)
  517. for (const auto & nkvo : params.no_kv_offload)
  518. for (const auto & nt : params.n_threads) {
  519. for (const auto & n_prompt : params.n_prompt) {
  520. if (n_prompt == 0) {
  521. continue;
  522. }
  523. cmd_params_instance instance = {
  524. /* .model = */ m,
  525. /* .n_prompt = */ n_prompt,
  526. /* .n_gen = */ 0,
  527. /* .n_batch = */ nb,
  528. /* .n_ubatch = */ nub,
  529. /* .type_k = */ tk,
  530. /* .type_v = */ tv,
  531. /* .n_threads = */ nt,
  532. /* .n_gpu_layers = */ nl,
  533. /* .split_mode = */ sm,
  534. /* .main_gpu = */ mg,
  535. /* .no_kv_offload= */ nkvo,
  536. /* .tensor_split = */ ts,
  537. /* .use_mmap = */ mmp,
  538. /* .embeddings = */ embd,
  539. };
  540. instances.push_back(instance);
  541. }
  542. for (const auto & n_gen : params.n_gen) {
  543. if (n_gen == 0) {
  544. continue;
  545. }
  546. cmd_params_instance instance = {
  547. /* .model = */ m,
  548. /* .n_prompt = */ 0,
  549. /* .n_gen = */ n_gen,
  550. /* .n_batch = */ nb,
  551. /* .n_ubatch = */ nub,
  552. /* .type_k = */ tk,
  553. /* .type_v = */ tv,
  554. /* .n_threads = */ nt,
  555. /* .n_gpu_layers = */ nl,
  556. /* .split_mode = */ sm,
  557. /* .main_gpu = */ mg,
  558. /* .no_kv_offload= */ nkvo,
  559. /* .tensor_split = */ ts,
  560. /* .use_mmap = */ mmp,
  561. /* .embeddings = */ embd,
  562. };
  563. instances.push_back(instance);
  564. }
  565. }
  566. return instances;
  567. }
  568. struct test {
  569. static const std::string build_commit;
  570. static const int build_number;
  571. static const bool cuda;
  572. static const bool opencl;
  573. static const bool vulkan;
  574. static const bool kompute;
  575. static const bool metal;
  576. static const bool sycl;
  577. static const bool gpu_blas;
  578. static const bool blas;
  579. static const std::string cpu_info;
  580. static const std::string gpu_info;
  581. std::string model_filename;
  582. std::string model_type;
  583. uint64_t model_size;
  584. uint64_t model_n_params;
  585. int n_batch;
  586. int n_ubatch;
  587. int n_threads;
  588. ggml_type type_k;
  589. ggml_type type_v;
  590. int n_gpu_layers;
  591. llama_split_mode split_mode;
  592. int main_gpu;
  593. bool no_kv_offload;
  594. std::vector<float> tensor_split;
  595. bool use_mmap;
  596. bool embeddings;
  597. int n_prompt;
  598. int n_gen;
  599. std::string test_time;
  600. std::vector<uint64_t> samples_ns;
  601. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  602. model_filename = inst.model;
  603. char buf[128];
  604. llama_model_desc(lmodel, buf, sizeof(buf));
  605. model_type = buf;
  606. model_size = llama_model_size(lmodel);
  607. model_n_params = llama_model_n_params(lmodel);
  608. n_batch = inst.n_batch;
  609. n_ubatch = inst.n_ubatch;
  610. n_threads = inst.n_threads;
  611. type_k = inst.type_k;
  612. type_v = inst.type_v;
  613. n_gpu_layers = inst.n_gpu_layers;
  614. split_mode = inst.split_mode;
  615. main_gpu = inst.main_gpu;
  616. no_kv_offload = inst.no_kv_offload;
  617. tensor_split = inst.tensor_split;
  618. use_mmap = inst.use_mmap;
  619. embeddings = inst.embeddings;
  620. n_prompt = inst.n_prompt;
  621. n_gen = inst.n_gen;
  622. // RFC 3339 date-time format
  623. time_t t = time(NULL);
  624. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  625. test_time = buf;
  626. (void) ctx;
  627. }
  628. uint64_t avg_ns() const {
  629. return ::avg(samples_ns);
  630. }
  631. uint64_t stdev_ns() const {
  632. return ::stdev(samples_ns);
  633. }
  634. std::vector<double> get_ts() const {
  635. int n_tokens = n_prompt + n_gen;
  636. std::vector<double> ts;
  637. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  638. return ts;
  639. }
  640. double avg_ts() const {
  641. return ::avg(get_ts());
  642. }
  643. double stdev_ts() const {
  644. return ::stdev(get_ts());
  645. }
  646. static std::string get_backend() {
  647. if (cuda) {
  648. return GGML_CUDA_NAME;
  649. }
  650. if (opencl) {
  651. return "OpenCL";
  652. }
  653. if (vulkan) {
  654. return "Vulkan";
  655. }
  656. if (kompute) {
  657. return "Kompute";
  658. }
  659. if (metal) {
  660. return "Metal";
  661. }
  662. if (sycl) {
  663. return GGML_SYCL_NAME;
  664. }
  665. if (gpu_blas) {
  666. return "GPU BLAS";
  667. }
  668. if (blas) {
  669. return "BLAS";
  670. }
  671. return "CPU";
  672. }
  673. static const std::vector<std::string> & get_fields() {
  674. static const std::vector<std::string> fields = {
  675. "build_commit", "build_number",
  676. "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas",
  677. "cpu_info", "gpu_info",
  678. "model_filename", "model_type", "model_size", "model_n_params",
  679. "n_batch", "n_ubatch",
  680. "n_threads", "type_k", "type_v",
  681. "n_gpu_layers", "split_mode",
  682. "main_gpu", "no_kv_offload",
  683. "tensor_split", "use_mmap", "embeddings",
  684. "n_prompt", "n_gen", "test_time",
  685. "avg_ns", "stddev_ns",
  686. "avg_ts", "stddev_ts"
  687. };
  688. return fields;
  689. }
  690. enum field_type {STRING, BOOL, INT, FLOAT};
  691. static field_type get_field_type(const std::string & field) {
  692. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  693. field == "n_threads" ||
  694. field == "model_size" || field == "model_n_params" ||
  695. field == "n_gpu_layers" || field == "main_gpu" ||
  696. field == "n_prompt" || field == "n_gen" ||
  697. field == "avg_ns" || field == "stddev_ns") {
  698. return INT;
  699. }
  700. if (field == "cuda" || field == "opencl" || field == "vulkan" || field == "kompute" || field == "metal" ||
  701. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  702. field == "use_mmap" || field == "embeddings") {
  703. return BOOL;
  704. }
  705. if (field == "avg_ts" || field == "stddev_ts") {
  706. return FLOAT;
  707. }
  708. return STRING;
  709. }
  710. std::vector<std::string> get_values() const {
  711. std::string tensor_split_str;
  712. int max_nonzero = 0;
  713. for (size_t i = 0; i < llama_max_devices(); i++) {
  714. if (tensor_split[i] > 0) {
  715. max_nonzero = i;
  716. }
  717. }
  718. for (int i = 0; i <= max_nonzero; i++) {
  719. char buf[32];
  720. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  721. tensor_split_str += buf;
  722. if (i < max_nonzero) {
  723. tensor_split_str += "/";
  724. }
  725. }
  726. std::vector<std::string> values = {
  727. build_commit, std::to_string(build_number),
  728. std::to_string(cuda), std::to_string(opencl), std::to_string(vulkan), std::to_string(vulkan),
  729. std::to_string(metal), std::to_string(sycl), std::to_string(gpu_blas), std::to_string(blas),
  730. cpu_info, gpu_info,
  731. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  732. std::to_string(n_batch), std::to_string(n_ubatch),
  733. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  734. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  735. std::to_string(main_gpu), std::to_string(no_kv_offload),
  736. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  737. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  738. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  739. std::to_string(avg_ts()), std::to_string(stdev_ts())
  740. };
  741. return values;
  742. }
  743. std::map<std::string, std::string> get_map() const {
  744. std::map<std::string, std::string> map;
  745. auto fields = get_fields();
  746. auto values = get_values();
  747. std::transform(fields.begin(), fields.end(), values.begin(),
  748. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  749. return map;
  750. }
  751. };
  752. const std::string test::build_commit = LLAMA_COMMIT;
  753. const int test::build_number = LLAMA_BUILD_NUMBER;
  754. const bool test::cuda = !!ggml_cpu_has_cublas();
  755. const bool test::opencl = !!ggml_cpu_has_clblast();
  756. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  757. const bool test::kompute = !!ggml_cpu_has_kompute();
  758. const bool test::metal = !!ggml_cpu_has_metal();
  759. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  760. const bool test::blas = !!ggml_cpu_has_blas();
  761. const bool test::sycl = !!ggml_cpu_has_sycl();
  762. const std::string test::cpu_info = get_cpu_info();
  763. const std::string test::gpu_info = get_gpu_info();
  764. struct printer {
  765. virtual ~printer() {}
  766. FILE * fout;
  767. virtual void print_header(const cmd_params & params) { (void) params; }
  768. virtual void print_test(const test & t) = 0;
  769. virtual void print_footer() { }
  770. };
  771. struct csv_printer : public printer {
  772. static std::string escape_csv(const std::string & field) {
  773. std::string escaped = "\"";
  774. for (auto c : field) {
  775. if (c == '"') {
  776. escaped += "\"";
  777. }
  778. escaped += c;
  779. }
  780. escaped += "\"";
  781. return escaped;
  782. }
  783. void print_header(const cmd_params & params) override {
  784. std::vector<std::string> fields = test::get_fields();
  785. fprintf(fout, "%s\n", join(fields, ",").c_str());
  786. (void) params;
  787. }
  788. void print_test(const test & t) override {
  789. std::vector<std::string> values = t.get_values();
  790. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  791. fprintf(fout, "%s\n", join(values, ",").c_str());
  792. }
  793. };
  794. struct json_printer : public printer {
  795. bool first = true;
  796. static std::string escape_json(const std::string & value) {
  797. std::string escaped;
  798. for (auto c : value) {
  799. if (c == '"') {
  800. escaped += "\\\"";
  801. } else if (c == '\\') {
  802. escaped += "\\\\";
  803. } else if (c <= 0x1f) {
  804. char buf[8];
  805. snprintf(buf, sizeof(buf), "\\u%04x", c);
  806. escaped += buf;
  807. } else {
  808. escaped += c;
  809. }
  810. }
  811. return escaped;
  812. }
  813. static std::string format_value(const std::string & field, const std::string & value) {
  814. switch (test::get_field_type(field)) {
  815. case test::STRING:
  816. return "\"" + escape_json(value) + "\"";
  817. case test::BOOL:
  818. return value == "0" ? "false" : "true";
  819. default:
  820. return value;
  821. }
  822. }
  823. void print_header(const cmd_params & params) override {
  824. fprintf(fout, "[\n");
  825. (void) params;
  826. }
  827. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  828. assert(fields.size() == values.size());
  829. for (size_t i = 0; i < fields.size(); i++) {
  830. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  831. }
  832. }
  833. void print_test(const test & t) override {
  834. if (first) {
  835. first = false;
  836. } else {
  837. fprintf(fout, ",\n");
  838. }
  839. fprintf(fout, " {\n");
  840. print_fields(test::get_fields(), t.get_values());
  841. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  842. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  843. fprintf(fout, " }");
  844. fflush(fout);
  845. }
  846. void print_footer() override {
  847. fprintf(fout, "\n]\n");
  848. }
  849. };
  850. struct markdown_printer : public printer {
  851. std::vector<std::string> fields;
  852. static int get_field_width(const std::string & field) {
  853. if (field == "model") {
  854. return -30;
  855. }
  856. if (field == "t/s") {
  857. return 16;
  858. }
  859. if (field == "size" || field == "params") {
  860. return 10;
  861. }
  862. if (field == "n_gpu_layers") {
  863. return 3;
  864. }
  865. int width = std::max((int)field.length(), 10);
  866. if (test::get_field_type(field) == test::STRING) {
  867. return -width;
  868. }
  869. return width;
  870. }
  871. static std::string get_field_display_name(const std::string & field) {
  872. if (field == "n_gpu_layers") {
  873. return "ngl";
  874. }
  875. if (field == "split_mode") {
  876. return "sm";
  877. }
  878. if (field == "n_threads") {
  879. return "threads";
  880. }
  881. if (field == "no_kv_offload") {
  882. return "nkvo";
  883. }
  884. if (field == "use_mmap") {
  885. return "mmap";
  886. }
  887. if (field == "embeddings") {
  888. return "embd";
  889. }
  890. if (field == "tensor_split") {
  891. return "ts";
  892. }
  893. return field;
  894. }
  895. void print_header(const cmd_params & params) override {
  896. // select fields to print
  897. fields.emplace_back("model");
  898. fields.emplace_back("size");
  899. fields.emplace_back("params");
  900. fields.emplace_back("backend");
  901. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  902. if (!is_cpu_backend) {
  903. fields.emplace_back("n_gpu_layers");
  904. }
  905. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  906. fields.emplace_back("n_threads");
  907. }
  908. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  909. fields.emplace_back("n_batch");
  910. }
  911. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  912. fields.emplace_back("n_ubatch");
  913. }
  914. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  915. fields.emplace_back("type_k");
  916. }
  917. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  918. fields.emplace_back("type_v");
  919. }
  920. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  921. fields.emplace_back("main_gpu");
  922. }
  923. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  924. fields.emplace_back("split_mode");
  925. }
  926. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  927. fields.emplace_back("no_kv_offload");
  928. }
  929. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  930. fields.emplace_back("tensor_split");
  931. }
  932. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  933. fields.emplace_back("use_mmap");
  934. }
  935. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  936. fields.emplace_back("embeddings");
  937. }
  938. fields.emplace_back("test");
  939. fields.emplace_back("t/s");
  940. fprintf(fout, "|");
  941. for (const auto & field : fields) {
  942. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  943. }
  944. fprintf(fout, "\n");
  945. fprintf(fout, "|");
  946. for (const auto & field : fields) {
  947. int width = get_field_width(field);
  948. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  949. }
  950. fprintf(fout, "\n");
  951. }
  952. void print_test(const test & t) override {
  953. std::map<std::string, std::string> vmap = t.get_map();
  954. fprintf(fout, "|");
  955. for (const auto & field : fields) {
  956. std::string value;
  957. char buf[128];
  958. if (field == "model") {
  959. value = t.model_type;
  960. } else if (field == "size") {
  961. if (t.model_size < 1024*1024*1024) {
  962. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  963. } else {
  964. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  965. }
  966. value = buf;
  967. } else if (field == "params") {
  968. if (t.model_n_params < 1000*1000*1000) {
  969. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  970. } else {
  971. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  972. }
  973. value = buf;
  974. } else if (field == "backend") {
  975. value = test::get_backend();
  976. } else if (field == "test") {
  977. if (t.n_prompt > 0 && t.n_gen == 0) {
  978. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  979. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  980. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  981. } else {
  982. assert(false);
  983. exit(1);
  984. }
  985. value = buf;
  986. } else if (field == "t/s") {
  987. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  988. value = buf;
  989. } else if (vmap.find(field) != vmap.end()) {
  990. value = vmap.at(field);
  991. } else {
  992. assert(false);
  993. exit(1);
  994. }
  995. int width = get_field_width(field);
  996. if (field == "t/s") {
  997. // HACK: the utf-8 character is 2 bytes
  998. width += 1;
  999. }
  1000. fprintf(fout, " %*s |", width, value.c_str());
  1001. }
  1002. fprintf(fout, "\n");
  1003. }
  1004. void print_footer() override {
  1005. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1006. }
  1007. };
  1008. struct sql_printer : public printer {
  1009. static std::string get_sql_field_type(const std::string & field) {
  1010. switch (test::get_field_type(field)) {
  1011. case test::STRING:
  1012. return "TEXT";
  1013. case test::BOOL:
  1014. case test::INT:
  1015. return "INTEGER";
  1016. case test::FLOAT:
  1017. return "REAL";
  1018. default:
  1019. assert(false);
  1020. exit(1);
  1021. }
  1022. }
  1023. void print_header(const cmd_params & params) override {
  1024. std::vector<std::string> fields = test::get_fields();
  1025. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1026. for (size_t i = 0; i < fields.size(); i++) {
  1027. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1028. }
  1029. fprintf(fout, ");\n");
  1030. fprintf(fout, "\n");
  1031. (void) params;
  1032. }
  1033. void print_test(const test & t) override {
  1034. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1035. fprintf(fout, "VALUES (");
  1036. std::vector<std::string> values = t.get_values();
  1037. for (size_t i = 0; i < values.size(); i++) {
  1038. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1039. }
  1040. fprintf(fout, ");\n");
  1041. }
  1042. };
  1043. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1044. llama_set_n_threads(ctx, n_threads, n_threads);
  1045. //std::vector<llama_token> tokens(n_prompt, llama_token_bos(llama_get_model(ctx)));
  1046. //llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt, n_past, 0));
  1047. //GGML_UNUSED(n_batch);
  1048. std::vector<llama_token> tokens(n_batch, llama_token_bos(llama_get_model(ctx)));
  1049. int n_processed = 0;
  1050. while (n_processed < n_prompt) {
  1051. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1052. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1053. n_processed += n_tokens;
  1054. }
  1055. llama_synchronize(ctx);
  1056. }
  1057. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1058. llama_set_n_threads(ctx, n_threads, n_threads);
  1059. llama_token token = llama_token_bos(llama_get_model(ctx));
  1060. for (int i = 0; i < n_gen; i++) {
  1061. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1062. llama_synchronize(ctx);
  1063. }
  1064. }
  1065. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1066. (void) level;
  1067. (void) text;
  1068. (void) user_data;
  1069. }
  1070. int main(int argc, char ** argv) {
  1071. // try to set locale for unicode characters in markdown
  1072. setlocale(LC_CTYPE, ".UTF-8");
  1073. #if !defined(NDEBUG)
  1074. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1075. #endif
  1076. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1077. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1078. #endif
  1079. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1080. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1081. #endif
  1082. cmd_params params = parse_cmd_params(argc, argv);
  1083. // initialize llama.cpp
  1084. if (!params.verbose) {
  1085. llama_log_set(llama_null_log_callback, NULL);
  1086. }
  1087. llama_backend_init();
  1088. // initialize printer
  1089. std::unique_ptr<printer> p;
  1090. switch (params.output_format) {
  1091. case CSV:
  1092. p.reset(new csv_printer());
  1093. break;
  1094. case JSON:
  1095. p.reset(new json_printer());
  1096. break;
  1097. case MARKDOWN:
  1098. p.reset(new markdown_printer());
  1099. break;
  1100. case SQL:
  1101. p.reset(new sql_printer());
  1102. break;
  1103. default:
  1104. assert(false);
  1105. exit(1);
  1106. }
  1107. p->fout = stdout;
  1108. p->print_header(params);
  1109. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1110. llama_model * lmodel = nullptr;
  1111. const cmd_params_instance * prev_inst = nullptr;
  1112. for (const auto & inst : params_instances) {
  1113. // keep the same model between tests when possible
  1114. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1115. if (lmodel) {
  1116. llama_free_model(lmodel);
  1117. }
  1118. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1119. if (lmodel == NULL) {
  1120. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1121. return 1;
  1122. }
  1123. prev_inst = &inst;
  1124. }
  1125. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1126. if (ctx == NULL) {
  1127. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1128. llama_free_model(lmodel);
  1129. return 1;
  1130. }
  1131. test t(inst, lmodel, ctx);
  1132. llama_kv_cache_clear(ctx);
  1133. // warmup run
  1134. if (t.n_prompt > 0) {
  1135. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1136. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1137. }
  1138. if (t.n_gen > 0) {
  1139. test_gen(ctx, 1, 0, t.n_threads);
  1140. }
  1141. for (int i = 0; i < params.reps; i++) {
  1142. llama_kv_cache_clear(ctx);
  1143. uint64_t t_start = get_time_ns();
  1144. if (t.n_prompt > 0) {
  1145. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1146. }
  1147. if (t.n_gen > 0) {
  1148. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1149. }
  1150. uint64_t t_ns = get_time_ns() - t_start;
  1151. t.samples_ns.push_back(t_ns);
  1152. }
  1153. p->print_test(t);
  1154. llama_print_timings(ctx);
  1155. llama_free(ctx);
  1156. }
  1157. llama_free_model(lmodel);
  1158. p->print_footer();
  1159. llama_backend_free();
  1160. return 0;
  1161. }