ggml.c 668 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. GGML_ASSERT(false);
  185. return NULL;
  186. }
  187. return aligned_memory;
  188. }
  189. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  190. #ifdef GGML_USE_CPU_HBM
  191. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  192. #else
  193. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  194. #endif
  195. #endif
  196. inline static void * ggml_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  199. return NULL;
  200. }
  201. void * result = malloc(size);
  202. if (result == NULL) {
  203. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. }
  206. return result;
  207. }
  208. // calloc
  209. inline static void * ggml_calloc(size_t num, size_t size) {
  210. if (num == 0 || size == 0) {
  211. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  212. return NULL;
  213. }
  214. void * result = calloc(num, size);
  215. if (result == NULL) {
  216. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  217. GGML_ASSERT(false);
  218. }
  219. return result;
  220. }
  221. #define GGML_MALLOC(size) ggml_malloc(size)
  222. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  223. #define GGML_FREE(ptr) free(ptr)
  224. #define UNUSED GGML_UNUSED
  225. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  226. #if defined(GGML_USE_ACCELERATE)
  227. #include <Accelerate/Accelerate.h>
  228. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  229. #include "ggml-opencl.h"
  230. #endif
  231. #elif defined(GGML_USE_OPENBLAS)
  232. #if defined(GGML_BLAS_USE_MKL)
  233. #include <mkl.h>
  234. #else
  235. #include <cblas.h>
  236. #endif
  237. #elif defined(GGML_USE_CUBLAS)
  238. #include "ggml-cuda.h"
  239. #elif defined(GGML_USE_CLBLAST)
  240. #include "ggml-opencl.h"
  241. #elif defined(GGML_USE_VULKAN)
  242. #include "ggml-vulkan.h"
  243. #elif defined(GGML_USE_SYCL)
  244. #include "ggml-sycl.h"
  245. #endif
  246. // floating point type used to accumulate sums
  247. typedef double ggml_float;
  248. #undef MIN
  249. #undef MAX
  250. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  251. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  252. //
  253. // global data
  254. //
  255. // precomputed gelu table for f16 (128 KB)
  256. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  257. // precomputed quick gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  264. float ggml_table_f32_f16[1 << 16];
  265. // note: do not use these inside ggml.c
  266. // these are meant to be used via the ggml.h API
  267. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  268. return (float) GGML_FP16_TO_FP32(x);
  269. }
  270. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  271. return GGML_FP32_TO_FP16(x);
  272. }
  273. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  274. for (int i = 0; i < n; i++) {
  275. y[i] = GGML_FP16_TO_FP32(x[i]);
  276. }
  277. }
  278. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  279. int i = 0;
  280. #if defined(__F16C__)
  281. for (; i + 7 < n; i += 8) {
  282. __m256 x_vec = _mm256_loadu_ps(x + i);
  283. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  284. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  285. }
  286. for(; i + 3 < n; i += 4) {
  287. __m128 x_vec = _mm_loadu_ps(x + i);
  288. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  290. }
  291. #endif
  292. for (; i < n; i++) {
  293. y[i] = GGML_FP32_TO_FP16(x[i]);
  294. }
  295. }
  296. //
  297. // timing
  298. //
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. static int64_t timer_freq, timer_start;
  301. void ggml_time_init(void) {
  302. LARGE_INTEGER t;
  303. QueryPerformanceFrequency(&t);
  304. timer_freq = t.QuadPart;
  305. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  306. // and the uptime is high enough.
  307. // We subtract the program start time to reduce the likelihood of that happening.
  308. QueryPerformanceCounter(&t);
  309. timer_start = t.QuadPart;
  310. }
  311. int64_t ggml_time_ms(void) {
  312. LARGE_INTEGER t;
  313. QueryPerformanceCounter(&t);
  314. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  315. }
  316. int64_t ggml_time_us(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  320. }
  321. #else
  322. void ggml_time_init(void) {}
  323. int64_t ggml_time_ms(void) {
  324. struct timespec ts;
  325. clock_gettime(CLOCK_MONOTONIC, &ts);
  326. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  327. }
  328. int64_t ggml_time_us(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  332. }
  333. #endif
  334. int64_t ggml_cycles(void) {
  335. return clock();
  336. }
  337. int64_t ggml_cycles_per_ms(void) {
  338. return CLOCKS_PER_SEC/1000;
  339. }
  340. #ifdef GGML_PERF
  341. #define ggml_perf_time_ms() ggml_time_ms()
  342. #define ggml_perf_time_us() ggml_time_us()
  343. #define ggml_perf_cycles() ggml_cycles()
  344. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  345. #else
  346. #define ggml_perf_time_ms() 0
  347. #define ggml_perf_time_us() 0
  348. #define ggml_perf_cycles() 0
  349. #define ggml_perf_cycles_per_ms() 0
  350. #endif
  351. //
  352. // cache line
  353. //
  354. #if defined(__cpp_lib_hardware_interference_size)
  355. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  356. #else
  357. #if defined(__POWER9_VECTOR__)
  358. #define CACHE_LINE_SIZE 128
  359. #else
  360. #define CACHE_LINE_SIZE 64
  361. #endif
  362. #endif
  363. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  364. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  365. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  366. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  367. [GGML_TYPE_I8] = {
  368. .type_name = "i8",
  369. .blck_size = 1,
  370. .type_size = sizeof(int8_t),
  371. .is_quantized = false,
  372. },
  373. [GGML_TYPE_I16] = {
  374. .type_name = "i16",
  375. .blck_size = 1,
  376. .type_size = sizeof(int16_t),
  377. .is_quantized = false,
  378. },
  379. [GGML_TYPE_I32] = {
  380. .type_name = "i32",
  381. .blck_size = 1,
  382. .type_size = sizeof(int32_t),
  383. .is_quantized = false,
  384. },
  385. [GGML_TYPE_F32] = {
  386. .type_name = "f32",
  387. .blck_size = 1,
  388. .type_size = sizeof(float),
  389. .is_quantized = false,
  390. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  391. .vec_dot_type = GGML_TYPE_F32,
  392. .nrows = 1,
  393. },
  394. [GGML_TYPE_F16] = {
  395. .type_name = "f16",
  396. .blck_size = 1,
  397. .type_size = sizeof(ggml_fp16_t),
  398. .is_quantized = false,
  399. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  400. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  401. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  402. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  403. .vec_dot_type = GGML_TYPE_F16,
  404. .nrows = 1,
  405. },
  406. [GGML_TYPE_Q4_0] = {
  407. .type_name = "q4_0",
  408. .blck_size = QK4_0,
  409. .type_size = sizeof(block_q4_0),
  410. .is_quantized = true,
  411. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  412. .from_float = quantize_row_q4_0,
  413. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  414. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  415. .vec_dot_type = GGML_TYPE_Q8_0,
  416. #if defined (__ARM_FEATURE_MATMUL_INT8)
  417. .nrows = 2,
  418. #else
  419. .nrows = 1,
  420. #endif
  421. },
  422. [GGML_TYPE_Q4_1] = {
  423. .type_name = "q4_1",
  424. .blck_size = QK4_1,
  425. .type_size = sizeof(block_q4_1),
  426. .is_quantized = true,
  427. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  428. .from_float = quantize_row_q4_1,
  429. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  430. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  431. .vec_dot_type = GGML_TYPE_Q8_1,
  432. #if defined (__ARM_FEATURE_MATMUL_INT8)
  433. .nrows = 2,
  434. #else
  435. .nrows = 1,
  436. #endif
  437. },
  438. [4] = { // GGML_TYPE_Q4_2
  439. .type_name = "DEPRECATED",
  440. .blck_size = 0,
  441. .type_size = 0,
  442. .is_quantized = false,
  443. .to_float = NULL,
  444. .from_float = NULL,
  445. .from_float_reference = NULL,
  446. .vec_dot = NULL,
  447. .vec_dot_type = GGML_TYPE_COUNT,
  448. .nrows = 1,
  449. },
  450. [5] = { // GGML_TYPE_Q4_3
  451. .type_name = "DEPRECATED",
  452. .blck_size = 0,
  453. .type_size = 0,
  454. .is_quantized = false,
  455. .to_float = NULL,
  456. .from_float = NULL,
  457. .from_float_reference = NULL,
  458. .vec_dot = NULL,
  459. .vec_dot_type = GGML_TYPE_COUNT,
  460. .nrows = 1,
  461. },
  462. [GGML_TYPE_Q5_0] = {
  463. .type_name = "q5_0",
  464. .blck_size = QK5_0,
  465. .type_size = sizeof(block_q5_0),
  466. .is_quantized = true,
  467. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  468. .from_float = quantize_row_q5_0,
  469. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  470. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  471. .vec_dot_type = GGML_TYPE_Q8_0,
  472. .nrows = 1,
  473. },
  474. [GGML_TYPE_Q5_1] = {
  475. .type_name = "q5_1",
  476. .blck_size = QK5_1,
  477. .type_size = sizeof(block_q5_1),
  478. .is_quantized = true,
  479. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  480. .from_float = quantize_row_q5_1,
  481. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  482. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  483. .vec_dot_type = GGML_TYPE_Q8_1,
  484. .nrows = 1,
  485. },
  486. [GGML_TYPE_Q8_0] = {
  487. .type_name = "q8_0",
  488. .blck_size = QK8_0,
  489. .type_size = sizeof(block_q8_0),
  490. .is_quantized = true,
  491. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  492. .from_float = quantize_row_q8_0,
  493. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  494. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  495. .vec_dot_type = GGML_TYPE_Q8_0,
  496. #if defined (__ARM_FEATURE_MATMUL_INT8)
  497. .nrows = 2,
  498. #else
  499. .nrows = 1,
  500. #endif
  501. },
  502. [GGML_TYPE_Q8_1] = {
  503. .type_name = "q8_1",
  504. .blck_size = QK8_1,
  505. .type_size = sizeof(block_q8_1),
  506. .is_quantized = true,
  507. .from_float = quantize_row_q8_1,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  509. .vec_dot_type = GGML_TYPE_Q8_1,
  510. .nrows = 1,
  511. },
  512. [GGML_TYPE_Q2_K] = {
  513. .type_name = "q2_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q2_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  518. .from_float = quantize_row_q2_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  520. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. .nrows = 1,
  523. },
  524. [GGML_TYPE_Q3_K] = {
  525. .type_name = "q3_K",
  526. .blck_size = QK_K,
  527. .type_size = sizeof(block_q3_K),
  528. .is_quantized = true,
  529. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  530. .from_float = quantize_row_q3_K,
  531. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  532. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  533. .vec_dot_type = GGML_TYPE_Q8_K,
  534. .nrows = 1,
  535. },
  536. [GGML_TYPE_Q4_K] = {
  537. .type_name = "q4_K",
  538. .blck_size = QK_K,
  539. .type_size = sizeof(block_q4_K),
  540. .is_quantized = true,
  541. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  542. .from_float = quantize_row_q4_K,
  543. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  544. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  545. .vec_dot_type = GGML_TYPE_Q8_K,
  546. .nrows = 1,
  547. },
  548. [GGML_TYPE_Q5_K] = {
  549. .type_name = "q5_K",
  550. .blck_size = QK_K,
  551. .type_size = sizeof(block_q5_K),
  552. .is_quantized = true,
  553. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  554. .from_float = quantize_row_q5_K,
  555. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  556. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  557. .vec_dot_type = GGML_TYPE_Q8_K,
  558. .nrows = 1,
  559. },
  560. [GGML_TYPE_Q6_K] = {
  561. .type_name = "q6_K",
  562. .blck_size = QK_K,
  563. .type_size = sizeof(block_q6_K),
  564. .is_quantized = true,
  565. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  566. .from_float = quantize_row_q6_K,
  567. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  568. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  569. .vec_dot_type = GGML_TYPE_Q8_K,
  570. .nrows = 1,
  571. },
  572. [GGML_TYPE_IQ2_XXS] = {
  573. .type_name = "iq2_xxs",
  574. .blck_size = QK_K,
  575. .type_size = sizeof(block_iq2_xxs),
  576. .is_quantized = true,
  577. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  578. .from_float = NULL,
  579. .from_float_reference = NULL,
  580. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  581. .vec_dot_type = GGML_TYPE_Q8_K,
  582. .nrows = 1,
  583. },
  584. [GGML_TYPE_IQ2_XS] = {
  585. .type_name = "iq2_xs",
  586. .blck_size = QK_K,
  587. .type_size = sizeof(block_iq2_xs),
  588. .is_quantized = true,
  589. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  590. .from_float = NULL,
  591. .from_float_reference = NULL,
  592. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  593. .vec_dot_type = GGML_TYPE_Q8_K,
  594. .nrows = 1,
  595. },
  596. [GGML_TYPE_IQ3_XXS] = {
  597. .type_name = "iq3_xxs",
  598. .blck_size = QK_K,
  599. .type_size = sizeof(block_iq3_xxs),
  600. .is_quantized = true,
  601. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  602. .from_float = quantize_row_iq3_xxs,
  603. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  604. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  605. .vec_dot_type = GGML_TYPE_Q8_K,
  606. .nrows = 1,
  607. },
  608. [GGML_TYPE_Q8_K] = {
  609. .type_name = "q8_K",
  610. .blck_size = QK_K,
  611. .type_size = sizeof(block_q8_K),
  612. .is_quantized = true,
  613. .from_float = quantize_row_q8_K,
  614. }
  615. };
  616. // For internal test use
  617. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  618. GGML_ASSERT(type < GGML_TYPE_COUNT);
  619. return type_traits[type];
  620. }
  621. //
  622. // simd mappings
  623. //
  624. #if defined(__ARM_NEON)
  625. #if !defined(__aarch64__)
  626. // 64-bit compatibility
  627. inline static float vaddvq_f32(float32x4_t v) {
  628. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  629. }
  630. #endif
  631. #endif
  632. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  633. // we then implement the fundamental computation operations below using only these macros
  634. // adding support for new architectures requires to define the corresponding SIMD macros
  635. //
  636. // GGML_F32_STEP / GGML_F16_STEP
  637. // number of elements to process in a single step
  638. //
  639. // GGML_F32_EPR / GGML_F16_EPR
  640. // number of elements to fit in a single register
  641. //
  642. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  643. #define GGML_SIMD
  644. // F32 NEON
  645. #define GGML_F32_STEP 16
  646. #define GGML_F32_EPR 4
  647. #define GGML_F32x4 float32x4_t
  648. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  649. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  650. #define GGML_F32x4_LOAD vld1q_f32
  651. #define GGML_F32x4_STORE vst1q_f32
  652. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  653. #define GGML_F32x4_ADD vaddq_f32
  654. #define GGML_F32x4_MUL vmulq_f32
  655. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  656. #define GGML_F32x4_REDUCE(res, x) \
  657. { \
  658. int offset = GGML_F32_ARR >> 1; \
  659. for (int i = 0; i < offset; ++i) { \
  660. x[i] = vaddq_f32(x[i], x[offset+i]); \
  661. } \
  662. offset >>= 1; \
  663. for (int i = 0; i < offset; ++i) { \
  664. x[i] = vaddq_f32(x[i], x[offset+i]); \
  665. } \
  666. offset >>= 1; \
  667. for (int i = 0; i < offset; ++i) { \
  668. x[i] = vaddq_f32(x[i], x[offset+i]); \
  669. } \
  670. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  671. }
  672. #define GGML_F32_VEC GGML_F32x4
  673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  681. // F16 NEON
  682. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  683. #define GGML_F16_STEP 32
  684. #define GGML_F16_EPR 8
  685. #define GGML_F16x8 float16x8_t
  686. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  687. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  688. #define GGML_F16x8_LOAD vld1q_f16
  689. #define GGML_F16x8_STORE vst1q_f16
  690. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  691. #define GGML_F16x8_ADD vaddq_f16
  692. #define GGML_F16x8_MUL vmulq_f16
  693. #define GGML_F16x8_REDUCE(res, x) \
  694. do { \
  695. int offset = GGML_F16_ARR >> 1; \
  696. for (int i = 0; i < offset; ++i) { \
  697. x[i] = vaddq_f16(x[i], x[offset+i]); \
  698. } \
  699. offset >>= 1; \
  700. for (int i = 0; i < offset; ++i) { \
  701. x[i] = vaddq_f16(x[i], x[offset+i]); \
  702. } \
  703. offset >>= 1; \
  704. for (int i = 0; i < offset; ++i) { \
  705. x[i] = vaddq_f16(x[i], x[offset+i]); \
  706. } \
  707. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  708. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  709. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  710. } while (0)
  711. #define GGML_F16_VEC GGML_F16x8
  712. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  713. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  714. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  715. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  716. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  717. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  718. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  719. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  720. #else
  721. // if FP16 vector arithmetic is not supported, we use FP32 instead
  722. // and take advantage of the vcvt_ functions to convert to/from FP16
  723. #define GGML_F16_STEP 16
  724. #define GGML_F16_EPR 4
  725. #define GGML_F32Cx4 float32x4_t
  726. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  727. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  728. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  729. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  730. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  731. #define GGML_F32Cx4_ADD vaddq_f32
  732. #define GGML_F32Cx4_MUL vmulq_f32
  733. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  734. #define GGML_F16_VEC GGML_F32Cx4
  735. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  736. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  737. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  738. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  739. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  740. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  741. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  742. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  743. #endif
  744. #elif defined(__AVX__)
  745. #define GGML_SIMD
  746. // F32 AVX
  747. #define GGML_F32_STEP 32
  748. #define GGML_F32_EPR 8
  749. #define GGML_F32x8 __m256
  750. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  751. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  752. #define GGML_F32x8_LOAD _mm256_loadu_ps
  753. #define GGML_F32x8_STORE _mm256_storeu_ps
  754. #if defined(__FMA__)
  755. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  756. #else
  757. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  758. #endif
  759. #define GGML_F32x8_ADD _mm256_add_ps
  760. #define GGML_F32x8_MUL _mm256_mul_ps
  761. #define GGML_F32x8_REDUCE(res, x) \
  762. do { \
  763. int offset = GGML_F32_ARR >> 1; \
  764. for (int i = 0; i < offset; ++i) { \
  765. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  766. } \
  767. offset >>= 1; \
  768. for (int i = 0; i < offset; ++i) { \
  769. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  770. } \
  771. offset >>= 1; \
  772. for (int i = 0; i < offset; ++i) { \
  773. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  774. } \
  775. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  776. _mm256_extractf128_ps(x[0], 1)); \
  777. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  778. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  779. } while (0)
  780. // TODO: is this optimal ?
  781. #define GGML_F32_VEC GGML_F32x8
  782. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  783. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  784. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  785. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  786. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  787. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  788. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  789. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  790. // F16 AVX
  791. #define GGML_F16_STEP 32
  792. #define GGML_F16_EPR 8
  793. // F16 arithmetic is not supported by AVX, so we use F32 instead
  794. #define GGML_F32Cx8 __m256
  795. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  796. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  797. #if defined(__F16C__)
  798. // the _mm256_cvt intrinsics require F16C
  799. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  800. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  801. #else
  802. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  803. float tmp[8];
  804. for (int i = 0; i < 8; i++) {
  805. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  806. }
  807. return _mm256_loadu_ps(tmp);
  808. }
  809. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  810. float arr[8];
  811. _mm256_storeu_ps(arr, y);
  812. for (int i = 0; i < 8; i++)
  813. x[i] = GGML_FP32_TO_FP16(arr[i]);
  814. }
  815. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  816. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  817. #endif
  818. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  819. #define GGML_F32Cx8_ADD _mm256_add_ps
  820. #define GGML_F32Cx8_MUL _mm256_mul_ps
  821. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  822. #define GGML_F16_VEC GGML_F32Cx8
  823. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  824. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  825. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  826. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  827. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  828. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  829. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  830. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  831. #elif defined(__POWER9_VECTOR__)
  832. #define GGML_SIMD
  833. // F32 POWER9
  834. #define GGML_F32_STEP 32
  835. #define GGML_F32_EPR 4
  836. #define GGML_F32x4 vector float
  837. #define GGML_F32x4_ZERO 0.0f
  838. #define GGML_F32x4_SET1 vec_splats
  839. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  840. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  841. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  842. #define GGML_F32x4_ADD vec_add
  843. #define GGML_F32x4_MUL vec_mul
  844. #define GGML_F32x4_REDUCE(res, x) \
  845. { \
  846. int offset = GGML_F32_ARR >> 1; \
  847. for (int i = 0; i < offset; ++i) { \
  848. x[i] = vec_add(x[i], x[offset+i]); \
  849. } \
  850. offset >>= 1; \
  851. for (int i = 0; i < offset; ++i) { \
  852. x[i] = vec_add(x[i], x[offset+i]); \
  853. } \
  854. offset >>= 1; \
  855. for (int i = 0; i < offset; ++i) { \
  856. x[i] = vec_add(x[i], x[offset+i]); \
  857. } \
  858. res = vec_extract(x[0], 0) + \
  859. vec_extract(x[0], 1) + \
  860. vec_extract(x[0], 2) + \
  861. vec_extract(x[0], 3); \
  862. }
  863. #define GGML_F32_VEC GGML_F32x4
  864. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  865. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  866. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  867. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  868. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  869. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  870. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  871. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  872. // F16 POWER9
  873. #define GGML_F16_STEP GGML_F32_STEP
  874. #define GGML_F16_EPR GGML_F32_EPR
  875. #define GGML_F16_VEC GGML_F32x4
  876. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  877. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  878. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  879. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  880. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  881. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  882. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  883. vec_extract_fp32_from_shortl(vec_xl(0, p))
  884. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  885. #define GGML_F16_VEC_STORE(p, r, i) \
  886. if (i & 0x1) \
  887. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  888. r[i - GGML_ENDIAN_BYTE(0)]), \
  889. 0, p - GGML_F16_EPR)
  890. #elif defined(__wasm_simd128__)
  891. #define GGML_SIMD
  892. // F32 WASM
  893. #define GGML_F32_STEP 16
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 v128_t
  896. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  897. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  898. #define GGML_F32x4_LOAD wasm_v128_load
  899. #define GGML_F32x4_STORE wasm_v128_store
  900. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  901. #define GGML_F32x4_ADD wasm_f32x4_add
  902. #define GGML_F32x4_MUL wasm_f32x4_mul
  903. #define GGML_F32x4_REDUCE(res, x) \
  904. { \
  905. int offset = GGML_F32_ARR >> 1; \
  906. for (int i = 0; i < offset; ++i) { \
  907. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  908. } \
  909. offset >>= 1; \
  910. for (int i = 0; i < offset; ++i) { \
  911. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  912. } \
  913. offset >>= 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  916. } \
  917. res = wasm_f32x4_extract_lane(x[0], 0) + \
  918. wasm_f32x4_extract_lane(x[0], 1) + \
  919. wasm_f32x4_extract_lane(x[0], 2) + \
  920. wasm_f32x4_extract_lane(x[0], 3); \
  921. }
  922. #define GGML_F32_VEC GGML_F32x4
  923. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  924. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  925. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  926. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  927. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  928. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  929. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  930. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  931. // F16 WASM
  932. #define GGML_F16_STEP 16
  933. #define GGML_F16_EPR 4
  934. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  935. float tmp[4];
  936. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  937. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  938. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  939. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  940. return wasm_v128_load(tmp);
  941. }
  942. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  943. float tmp[4];
  944. wasm_v128_store(tmp, x);
  945. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  946. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  947. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  948. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  949. }
  950. #define GGML_F16x4 v128_t
  951. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  952. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  953. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  954. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  955. #define GGML_F16x4_FMA GGML_F32x4_FMA
  956. #define GGML_F16x4_ADD wasm_f32x4_add
  957. #define GGML_F16x4_MUL wasm_f32x4_mul
  958. #define GGML_F16x4_REDUCE(res, x) \
  959. { \
  960. int offset = GGML_F16_ARR >> 1; \
  961. for (int i = 0; i < offset; ++i) { \
  962. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  963. } \
  964. offset >>= 1; \
  965. for (int i = 0; i < offset; ++i) { \
  966. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  967. } \
  968. offset >>= 1; \
  969. for (int i = 0; i < offset; ++i) { \
  970. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  971. } \
  972. res = wasm_f32x4_extract_lane(x[0], 0) + \
  973. wasm_f32x4_extract_lane(x[0], 1) + \
  974. wasm_f32x4_extract_lane(x[0], 2) + \
  975. wasm_f32x4_extract_lane(x[0], 3); \
  976. }
  977. #define GGML_F16_VEC GGML_F16x4
  978. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  979. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  980. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  981. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  982. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  983. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  984. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  985. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  986. #elif defined(__SSE3__)
  987. #define GGML_SIMD
  988. // F32 SSE
  989. #define GGML_F32_STEP 32
  990. #define GGML_F32_EPR 4
  991. #define GGML_F32x4 __m128
  992. #define GGML_F32x4_ZERO _mm_setzero_ps()
  993. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  994. #define GGML_F32x4_LOAD _mm_loadu_ps
  995. #define GGML_F32x4_STORE _mm_storeu_ps
  996. #if defined(__FMA__)
  997. // TODO: Does this work?
  998. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  999. #else
  1000. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1001. #endif
  1002. #define GGML_F32x4_ADD _mm_add_ps
  1003. #define GGML_F32x4_MUL _mm_mul_ps
  1004. #define GGML_F32x4_REDUCE(res, x) \
  1005. { \
  1006. int offset = GGML_F32_ARR >> 1; \
  1007. for (int i = 0; i < offset; ++i) { \
  1008. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1009. } \
  1010. offset >>= 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. offset >>= 1; \
  1015. for (int i = 0; i < offset; ++i) { \
  1016. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1017. } \
  1018. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1019. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1020. }
  1021. // TODO: is this optimal ?
  1022. #define GGML_F32_VEC GGML_F32x4
  1023. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1024. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1025. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1026. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1027. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1028. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1029. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1030. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1031. // F16 SSE
  1032. #define GGML_F16_STEP 32
  1033. #define GGML_F16_EPR 4
  1034. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1035. float tmp[4];
  1036. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1037. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1038. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1039. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1040. return _mm_loadu_ps(tmp);
  1041. }
  1042. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1043. float arr[4];
  1044. _mm_storeu_ps(arr, y);
  1045. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1046. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1047. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1048. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1049. }
  1050. #define GGML_F32Cx4 __m128
  1051. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1052. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1053. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1054. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1055. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1056. #define GGML_F32Cx4_ADD _mm_add_ps
  1057. #define GGML_F32Cx4_MUL _mm_mul_ps
  1058. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1059. #define GGML_F16_VEC GGML_F32Cx4
  1060. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1061. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1062. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1063. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1064. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1065. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1066. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1067. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1068. #endif
  1069. // GGML_F32_ARR / GGML_F16_ARR
  1070. // number of registers to use per step
  1071. #ifdef GGML_SIMD
  1072. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1073. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1074. #endif
  1075. //
  1076. // fundamental operations
  1077. //
  1078. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1079. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1080. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1081. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1082. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1083. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1084. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1085. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1086. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1087. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1088. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1089. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1090. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1091. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1092. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1093. assert(nrc == 1);
  1094. UNUSED(nrc);
  1095. UNUSED(bx);
  1096. UNUSED(by);
  1097. UNUSED(bs);
  1098. #ifdef GGML_SIMD
  1099. float sumf = 0.0f;
  1100. const int np = (n & ~(GGML_F32_STEP - 1));
  1101. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1102. GGML_F32_VEC ax[GGML_F32_ARR];
  1103. GGML_F32_VEC ay[GGML_F32_ARR];
  1104. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1105. for (int j = 0; j < GGML_F32_ARR; j++) {
  1106. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1107. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1108. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1109. }
  1110. }
  1111. // reduce sum0..sum3 to sum0
  1112. GGML_F32_VEC_REDUCE(sumf, sum);
  1113. // leftovers
  1114. for (int i = np; i < n; ++i) {
  1115. sumf += x[i]*y[i];
  1116. }
  1117. #else
  1118. // scalar
  1119. ggml_float sumf = 0.0;
  1120. for (int i = 0; i < n; ++i) {
  1121. sumf += (ggml_float)(x[i]*y[i]);
  1122. }
  1123. #endif
  1124. *s = sumf;
  1125. }
  1126. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1127. assert(nrc == 1);
  1128. UNUSED(nrc);
  1129. UNUSED(bx);
  1130. UNUSED(by);
  1131. UNUSED(bs);
  1132. ggml_float sumf = 0.0;
  1133. #if defined(GGML_SIMD)
  1134. const int np = (n & ~(GGML_F16_STEP - 1));
  1135. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1136. GGML_F16_VEC ax[GGML_F16_ARR];
  1137. GGML_F16_VEC ay[GGML_F16_ARR];
  1138. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1139. for (int j = 0; j < GGML_F16_ARR; j++) {
  1140. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1141. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1142. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1143. }
  1144. }
  1145. // reduce sum0..sum3 to sum0
  1146. GGML_F16_VEC_REDUCE(sumf, sum);
  1147. // leftovers
  1148. for (int i = np; i < n; ++i) {
  1149. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1150. }
  1151. #else
  1152. for (int i = 0; i < n; ++i) {
  1153. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1154. }
  1155. #endif
  1156. *s = sumf;
  1157. }
  1158. // compute GGML_VEC_DOT_UNROLL dot products at once
  1159. // xs - x row stride in bytes
  1160. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1161. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1162. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1163. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1164. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1165. }
  1166. #if defined(GGML_SIMD)
  1167. const int np = (n & ~(GGML_F16_STEP - 1));
  1168. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1169. GGML_F16_VEC ax[GGML_F16_ARR];
  1170. GGML_F16_VEC ay[GGML_F16_ARR];
  1171. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1172. for (int j = 0; j < GGML_F16_ARR; j++) {
  1173. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1174. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1175. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1176. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1177. }
  1178. }
  1179. }
  1180. // reduce sum0..sum3 to sum0
  1181. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1182. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1183. }
  1184. // leftovers
  1185. for (int i = np; i < n; ++i) {
  1186. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1187. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1188. }
  1189. }
  1190. #else
  1191. for (int i = 0; i < n; ++i) {
  1192. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1193. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1194. }
  1195. }
  1196. #endif
  1197. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1198. s[i] = sumf[i];
  1199. }
  1200. }
  1201. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1202. #if defined(GGML_SIMD)
  1203. const int np = (n & ~(GGML_F32_STEP - 1));
  1204. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1205. GGML_F32_VEC ax[GGML_F32_ARR];
  1206. GGML_F32_VEC ay[GGML_F32_ARR];
  1207. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1208. for (int j = 0; j < GGML_F32_ARR; j++) {
  1209. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1210. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1211. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1212. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1213. }
  1214. }
  1215. // leftovers
  1216. for (int i = np; i < n; ++i) {
  1217. y[i] += x[i]*v;
  1218. }
  1219. #else
  1220. // scalar
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] += x[i]*v;
  1223. }
  1224. #endif
  1225. }
  1226. // xs and vs are byte strides of x and v
  1227. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1228. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1229. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1230. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1231. x[i] = (const float *) ((const char *) xv + i*xs);
  1232. v[i] = (const float *) ((const char *) vv + i*vs);
  1233. }
  1234. #if defined(GGML_SIMD)
  1235. const int np = (n & ~(GGML_F32_STEP - 1));
  1236. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1237. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1238. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1239. }
  1240. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1241. GGML_F32_VEC ay[GGML_F32_ARR];
  1242. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1243. for (int j = 0; j < GGML_F32_ARR; j++) {
  1244. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1245. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1246. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1247. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1248. }
  1249. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1250. }
  1251. }
  1252. // leftovers
  1253. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1254. for (int i = np; i < n; ++i) {
  1255. y[i] += x[k][i]*v[k][0];
  1256. }
  1257. }
  1258. #else
  1259. // scalar
  1260. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1261. for (int i = 0; i < n; ++i) {
  1262. y[i] += x[k][i]*v[k][0];
  1263. }
  1264. }
  1265. #endif
  1266. }
  1267. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1268. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1269. #if defined(GGML_USE_ACCELERATE)
  1270. vDSP_vsmul(y, 1, &v, y, 1, n);
  1271. #elif defined(GGML_SIMD)
  1272. const int np = (n & ~(GGML_F32_STEP - 1));
  1273. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1274. GGML_F32_VEC ay[GGML_F32_ARR];
  1275. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1276. for (int j = 0; j < GGML_F32_ARR; j++) {
  1277. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1278. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1279. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1280. }
  1281. }
  1282. // leftovers
  1283. for (int i = np; i < n; ++i) {
  1284. y[i] *= v;
  1285. }
  1286. #else
  1287. // scalar
  1288. for (int i = 0; i < n; ++i) {
  1289. y[i] *= v;
  1290. }
  1291. #endif
  1292. }
  1293. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1294. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1295. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1296. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1297. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1298. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1299. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1300. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1301. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1302. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1303. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1304. // TODO: optimize performance
  1305. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1306. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1307. static const float GELU_COEF_A = 0.044715f;
  1308. static const float GELU_QUICK_COEF = -1.702f;
  1309. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1310. inline static float ggml_gelu_f32(float x) {
  1311. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1312. }
  1313. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1314. const uint16_t * i16 = (const uint16_t *) x;
  1315. for (int i = 0; i < n; ++i) {
  1316. y[i] = ggml_table_gelu_f16[i16[i]];
  1317. }
  1318. }
  1319. #ifdef GGML_GELU_FP16
  1320. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1321. uint16_t t;
  1322. for (int i = 0; i < n; ++i) {
  1323. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1324. memcpy(&t, &fp16, sizeof(uint16_t));
  1325. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1326. }
  1327. }
  1328. #else
  1329. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1330. for (int i = 0; i < n; ++i) {
  1331. y[i] = ggml_gelu_f32(x[i]);
  1332. }
  1333. }
  1334. #endif
  1335. inline static float ggml_gelu_quick_f32(float x) {
  1336. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1337. }
  1338. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1339. // const uint16_t * i16 = (const uint16_t *) x;
  1340. // for (int i = 0; i < n; ++i) {
  1341. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1342. // }
  1343. //}
  1344. #ifdef GGML_GELU_QUICK_FP16
  1345. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1346. uint16_t t;
  1347. for (int i = 0; i < n; ++i) {
  1348. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1349. memcpy(&t, &fp16, sizeof(uint16_t));
  1350. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1351. }
  1352. }
  1353. #else
  1354. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1355. for (int i = 0; i < n; ++i) {
  1356. y[i] = ggml_gelu_quick_f32(x[i]);
  1357. }
  1358. }
  1359. #endif
  1360. // Sigmoid Linear Unit (SiLU) function
  1361. inline static float ggml_silu_f32(float x) {
  1362. return x/(1.0f + expf(-x));
  1363. }
  1364. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1365. // const uint16_t * i16 = (const uint16_t *) x;
  1366. // for (int i = 0; i < n; ++i) {
  1367. // y[i] = ggml_table_silu_f16[i16[i]];
  1368. // }
  1369. //}
  1370. #ifdef GGML_SILU_FP16
  1371. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1372. uint16_t t;
  1373. for (int i = 0; i < n; ++i) {
  1374. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1375. memcpy(&t, &fp16, sizeof(uint16_t));
  1376. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1377. }
  1378. }
  1379. #else
  1380. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1381. for (int i = 0; i < n; ++i) {
  1382. y[i] = ggml_silu_f32(x[i]);
  1383. }
  1384. }
  1385. #endif
  1386. inline static float ggml_silu_backward_f32(float x, float dy) {
  1387. const float s = 1.0f/(1.0f + expf(-x));
  1388. return dy*s*(1.0f + x*(1.0f - s));
  1389. }
  1390. #ifdef GGML_SILU_FP16
  1391. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1392. for (int i = 0; i < n; ++i) {
  1393. // we did not use x[i] to compute forward silu but its f16 equivalent
  1394. // take derivative at f16 of x[i]:
  1395. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1396. float usedx = GGML_FP16_TO_FP32(fp16);
  1397. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1398. }
  1399. }
  1400. #else
  1401. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1402. for (int i = 0; i < n; ++i) {
  1403. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1404. }
  1405. }
  1406. #endif
  1407. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1408. #ifndef GGML_USE_ACCELERATE
  1409. ggml_float sum = 0.0;
  1410. for (int i = 0; i < n; ++i) {
  1411. sum += (ggml_float)x[i];
  1412. }
  1413. *s = sum;
  1414. #else
  1415. vDSP_sve(x, 1, s, n);
  1416. #endif
  1417. }
  1418. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1419. ggml_float sum = 0.0;
  1420. for (int i = 0; i < n; ++i) {
  1421. sum += (ggml_float)x[i];
  1422. }
  1423. *s = sum;
  1424. }
  1425. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1426. float sum = 0.0f;
  1427. for (int i = 0; i < n; ++i) {
  1428. sum += GGML_FP16_TO_FP32(x[i]);
  1429. }
  1430. *s = sum;
  1431. }
  1432. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1433. #ifndef GGML_USE_ACCELERATE
  1434. float max = -INFINITY;
  1435. for (int i = 0; i < n; ++i) {
  1436. max = MAX(max, x[i]);
  1437. }
  1438. *s = max;
  1439. #else
  1440. vDSP_maxv(x, 1, s, n);
  1441. #endif
  1442. }
  1443. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1444. ggml_vec_norm_f32(n, s, x);
  1445. *s = 1.f/(*s);
  1446. }
  1447. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1448. float max = -INFINITY;
  1449. int idx = 0;
  1450. for (int i = 0; i < n; ++i) {
  1451. max = MAX(max, x[i]);
  1452. if (max == x[i]) { idx = i; }
  1453. }
  1454. *s = idx;
  1455. }
  1456. //
  1457. // data types
  1458. //
  1459. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1460. "NONE",
  1461. "DUP",
  1462. "ADD",
  1463. "ADD1",
  1464. "ACC",
  1465. "SUB",
  1466. "MUL",
  1467. "DIV",
  1468. "SQR",
  1469. "SQRT",
  1470. "LOG",
  1471. "SUM",
  1472. "SUM_ROWS",
  1473. "MEAN",
  1474. "ARGMAX",
  1475. "REPEAT",
  1476. "REPEAT_BACK",
  1477. "CONCAT",
  1478. "SILU_BACK",
  1479. "NORM",
  1480. "RMS_NORM",
  1481. "RMS_NORM_BACK",
  1482. "GROUP_NORM",
  1483. "MUL_MAT",
  1484. "MUL_MAT_ID",
  1485. "OUT_PROD",
  1486. "SCALE",
  1487. "SET",
  1488. "CPY",
  1489. "CONT",
  1490. "RESHAPE",
  1491. "VIEW",
  1492. "PERMUTE",
  1493. "TRANSPOSE",
  1494. "GET_ROWS",
  1495. "GET_ROWS_BACK",
  1496. "DIAG",
  1497. "DIAG_MASK_INF",
  1498. "DIAG_MASK_ZERO",
  1499. "SOFT_MAX",
  1500. "SOFT_MAX_BACK",
  1501. "ROPE",
  1502. "ROPE_BACK",
  1503. "ALIBI",
  1504. "CLAMP",
  1505. "CONV_TRANSPOSE_1D",
  1506. "IM2COL",
  1507. "CONV_TRANSPOSE_2D",
  1508. "POOL_1D",
  1509. "POOL_2D",
  1510. "UPSCALE",
  1511. "PAD",
  1512. "ARGSORT",
  1513. "LEAKY_RELU",
  1514. "FLASH_ATTN",
  1515. "FLASH_FF",
  1516. "FLASH_ATTN_BACK",
  1517. "WIN_PART",
  1518. "WIN_UNPART",
  1519. "GET_REL_POS",
  1520. "ADD_REL_POS",
  1521. "UNARY",
  1522. "MAP_UNARY",
  1523. "MAP_BINARY",
  1524. "MAP_CUSTOM1_F32",
  1525. "MAP_CUSTOM2_F32",
  1526. "MAP_CUSTOM3_F32",
  1527. "MAP_CUSTOM1",
  1528. "MAP_CUSTOM2",
  1529. "MAP_CUSTOM3",
  1530. "CROSS_ENTROPY_LOSS",
  1531. "CROSS_ENTROPY_LOSS_BACK",
  1532. };
  1533. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1534. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1535. "none",
  1536. "x",
  1537. "x+y",
  1538. "x+y",
  1539. "view(x,nb,offset)+=y->x",
  1540. "x-y",
  1541. "x*y",
  1542. "x/y",
  1543. "x^2",
  1544. "√x",
  1545. "log(x)",
  1546. "Σx",
  1547. "Σx_k",
  1548. "Σx/n",
  1549. "argmax(x)",
  1550. "repeat(x)",
  1551. "repeat_back(x)",
  1552. "concat(x, y)",
  1553. "silu_back(x)",
  1554. "norm(x)",
  1555. "rms_norm(x)",
  1556. "rms_norm_back(x)",
  1557. "group_norm(x)",
  1558. "X*Y",
  1559. "X[i]*Y",
  1560. "X*Y",
  1561. "x*v",
  1562. "y-\\>view(x)",
  1563. "x-\\>y",
  1564. "cont(x)",
  1565. "reshape(x)",
  1566. "view(x)",
  1567. "permute(x)",
  1568. "transpose(x)",
  1569. "get_rows(x)",
  1570. "get_rows_back(x)",
  1571. "diag(x)",
  1572. "diag_mask_inf(x)",
  1573. "diag_mask_zero(x)",
  1574. "soft_max(x)",
  1575. "soft_max_back(x)",
  1576. "rope(x)",
  1577. "rope_back(x)",
  1578. "alibi(x)",
  1579. "clamp(x)",
  1580. "conv_transpose_1d(x)",
  1581. "im2col(x)",
  1582. "conv_transpose_2d(x)",
  1583. "pool_1d(x)",
  1584. "pool_2d(x)",
  1585. "upscale(x)",
  1586. "pad(x)",
  1587. "argsort(x)",
  1588. "leaky_relu(x)",
  1589. "flash_attn(x)",
  1590. "flash_ff(x)",
  1591. "flash_attn_back(x)",
  1592. "win_part(x)",
  1593. "win_unpart(x)",
  1594. "get_rel_pos(x)",
  1595. "add_rel_pos(x)",
  1596. "unary(x)",
  1597. "f(x)",
  1598. "f(x,y)",
  1599. "custom_f32(x)",
  1600. "custom_f32(x,y)",
  1601. "custom_f32(x,y,z)",
  1602. "custom(x)",
  1603. "custom(x,y)",
  1604. "custom(x,y,z)",
  1605. "cross_entropy_loss(x,y)",
  1606. "cross_entropy_loss_back(x,y)",
  1607. };
  1608. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1609. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1610. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1611. "ABS",
  1612. "SGN",
  1613. "NEG",
  1614. "STEP",
  1615. "TANH",
  1616. "ELU",
  1617. "RELU",
  1618. "GELU",
  1619. "GELU_QUICK",
  1620. "SILU",
  1621. "HARDSWISH",
  1622. "HARDSIGMOID",
  1623. };
  1624. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1625. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1626. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1627. // WARN:
  1628. // Mis-configuration can lead to problem that's hard to reason about:
  1629. // * At best it crash or talks nosense.
  1630. // * At worst it talks slightly difference but hard to perceive.
  1631. //
  1632. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1633. // Take care about compile options (e.g., GGML_USE_xxx).
  1634. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1635. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1636. static void ggml_setup_op_has_task_pass(void) {
  1637. { // INIT
  1638. bool * p = GGML_OP_HAS_INIT;
  1639. p[GGML_OP_ACC ] = true;
  1640. p[GGML_OP_MUL_MAT ] = true;
  1641. p[GGML_OP_MUL_MAT_ID ] = true;
  1642. p[GGML_OP_OUT_PROD ] = true;
  1643. p[GGML_OP_SET ] = true;
  1644. p[GGML_OP_GET_ROWS_BACK ] = true;
  1645. p[GGML_OP_DIAG_MASK_INF ] = true;
  1646. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1647. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1648. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1649. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1650. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1651. p[GGML_OP_ADD_REL_POS ] = true;
  1652. }
  1653. { // FINALIZE
  1654. bool * p = GGML_OP_HAS_FINALIZE;
  1655. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1656. }
  1657. }
  1658. //
  1659. // ggml context
  1660. //
  1661. struct ggml_context {
  1662. size_t mem_size;
  1663. void * mem_buffer;
  1664. bool mem_buffer_owned;
  1665. bool no_alloc;
  1666. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1667. int n_objects;
  1668. struct ggml_object * objects_begin;
  1669. struct ggml_object * objects_end;
  1670. struct ggml_scratch scratch;
  1671. struct ggml_scratch scratch_save;
  1672. };
  1673. struct ggml_context_container {
  1674. bool used;
  1675. struct ggml_context context;
  1676. };
  1677. //
  1678. // NUMA support
  1679. //
  1680. #define GGML_NUMA_MAX_NODES 8
  1681. #define GGML_NUMA_MAX_CPUS 512
  1682. struct ggml_numa_node {
  1683. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1684. uint32_t n_cpus;
  1685. };
  1686. struct ggml_numa_nodes {
  1687. enum ggml_numa_strategy numa_strategy;
  1688. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1689. uint32_t n_nodes;
  1690. uint32_t total_cpus; // hardware threads on system
  1691. uint32_t current_node; // node on which main process is execting
  1692. #ifdef __linux__
  1693. cpu_set_t cpuset; // cpuset from numactl
  1694. #else
  1695. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1696. #endif
  1697. };
  1698. //
  1699. // ggml state
  1700. //
  1701. struct ggml_state {
  1702. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1703. struct ggml_numa_nodes numa;
  1704. };
  1705. // global state
  1706. static struct ggml_state g_state;
  1707. static atomic_int g_state_barrier = 0;
  1708. // barrier via spin lock
  1709. inline static void ggml_critical_section_start(void) {
  1710. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1711. while (processing > 0) {
  1712. // wait for other threads to finish
  1713. atomic_fetch_sub(&g_state_barrier, 1);
  1714. sched_yield(); // TODO: reconsider this
  1715. processing = atomic_fetch_add(&g_state_barrier, 1);
  1716. }
  1717. }
  1718. // TODO: make this somehow automatically executed
  1719. // some sort of "sentry" mechanism
  1720. inline static void ggml_critical_section_end(void) {
  1721. atomic_fetch_sub(&g_state_barrier, 1);
  1722. }
  1723. #ifdef __linux__
  1724. static cpu_set_t ggml_get_numa_affinity(void) {
  1725. cpu_set_t cpuset;
  1726. pthread_t thread;
  1727. thread = pthread_self();
  1728. CPU_ZERO(&cpuset);
  1729. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1730. return cpuset;
  1731. }
  1732. #else
  1733. static uint32_t ggml_get_numa_affinity(void) {
  1734. return 0; // no NUMA support
  1735. }
  1736. #endif
  1737. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1738. if (g_state.numa.n_nodes > 0) {
  1739. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1740. return;
  1741. }
  1742. #ifdef __linux__
  1743. struct stat st;
  1744. char path[256];
  1745. int rv;
  1746. // set numa scheme
  1747. g_state.numa.numa_strategy = numa_flag;
  1748. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1749. g_state.numa.cpuset = ggml_get_numa_affinity();
  1750. // enumerate nodes
  1751. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1752. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1753. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1754. if (stat(path, &st) != 0) { break; }
  1755. ++g_state.numa.n_nodes;
  1756. }
  1757. // enumerate CPUs
  1758. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1759. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1760. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1761. if (stat(path, &st) != 0) { break; }
  1762. ++g_state.numa.total_cpus;
  1763. }
  1764. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1765. // figure out which node we're on
  1766. uint current_cpu;
  1767. int getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1768. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1769. g_state.numa.n_nodes = 0;
  1770. return;
  1771. }
  1772. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1773. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1774. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1775. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1776. node->n_cpus = 0;
  1777. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1778. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1779. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1780. if (stat(path, &st) == 0) {
  1781. node->cpus[node->n_cpus++] = c;
  1782. GGML_PRINT_DEBUG(" %u", c);
  1783. }
  1784. }
  1785. GGML_PRINT_DEBUG("\n");
  1786. }
  1787. if (ggml_is_numa()) {
  1788. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1789. if (fptr != NULL) {
  1790. char buf[42];
  1791. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1792. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1793. }
  1794. fclose(fptr);
  1795. }
  1796. }
  1797. #else
  1798. GGML_UNUSED(numa_flag);
  1799. // TODO
  1800. #endif
  1801. }
  1802. bool ggml_is_numa(void) {
  1803. return g_state.numa.n_nodes > 1;
  1804. }
  1805. ////////////////////////////////////////////////////////////////////////////////
  1806. void ggml_print_object(const struct ggml_object * obj) {
  1807. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1808. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1809. }
  1810. void ggml_print_objects(const struct ggml_context * ctx) {
  1811. struct ggml_object * obj = ctx->objects_begin;
  1812. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1813. while (obj != NULL) {
  1814. ggml_print_object(obj);
  1815. obj = obj->next;
  1816. }
  1817. GGML_PRINT("%s: --- end ---\n", __func__);
  1818. }
  1819. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1820. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1821. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1822. }
  1823. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1824. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1825. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1826. }
  1827. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1828. size_t nbytes;
  1829. size_t blck_size = ggml_blck_size(tensor->type);
  1830. if (blck_size == 1) {
  1831. nbytes = ggml_type_size(tensor->type);
  1832. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1833. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1834. }
  1835. }
  1836. else {
  1837. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1838. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1839. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1840. }
  1841. }
  1842. return nbytes;
  1843. }
  1844. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1845. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1846. }
  1847. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1848. return type_traits[type].blck_size;
  1849. }
  1850. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1851. return type_traits[type].type_size;
  1852. }
  1853. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1854. assert(ne % ggml_blck_size(type) == 0);
  1855. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1856. }
  1857. double ggml_type_sizef(enum ggml_type type) {
  1858. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1859. }
  1860. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1861. return type_traits[type].type_name;
  1862. }
  1863. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1864. return type_traits[type].is_quantized;
  1865. }
  1866. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1867. return GGML_OP_NAME[op];
  1868. }
  1869. const char * ggml_op_symbol(enum ggml_op op) {
  1870. return GGML_OP_SYMBOL[op];
  1871. }
  1872. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1873. return GGML_UNARY_OP_NAME[op];
  1874. }
  1875. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1876. if (t->op == GGML_OP_UNARY) {
  1877. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1878. return ggml_unary_op_name(uop);
  1879. }
  1880. else {
  1881. return ggml_op_name(t->op);
  1882. }
  1883. }
  1884. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1885. return ggml_type_size(tensor->type);
  1886. }
  1887. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1889. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1890. }
  1891. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1893. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1894. }
  1895. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1896. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1897. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1898. }
  1899. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1900. return tensor->ne[3] == 1;
  1901. }
  1902. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1903. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1904. if (tensor->ne[i] > 1) {
  1905. return i + 1;
  1906. }
  1907. }
  1908. return 1;
  1909. }
  1910. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1911. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1912. return (t0->ne[0] == t1->ne[0]) &&
  1913. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1914. (t1->ne[3]%t0->ne[3] == 0);
  1915. }
  1916. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1917. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1918. return (t0->ne[1] == t1->ne[1]) &&
  1919. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1920. (t1->ne[3]%t0->ne[3] == 0);
  1921. }
  1922. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1923. enum ggml_type wtype = GGML_TYPE_COUNT;
  1924. switch (ftype) {
  1925. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1926. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1927. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1928. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1929. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1930. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1931. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1932. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1933. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1934. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1935. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1936. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1937. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1938. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1939. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1940. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1941. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1942. }
  1943. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1944. return wtype;
  1945. }
  1946. size_t ggml_tensor_overhead(void) {
  1947. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1948. }
  1949. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1950. return tensor->nb[0] > tensor->nb[1];
  1951. }
  1952. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1953. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1954. return
  1955. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1956. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1957. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1958. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1959. }
  1960. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1961. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1962. return
  1963. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1964. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1965. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1966. }
  1967. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1969. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1970. }
  1971. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1973. return
  1974. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1975. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1976. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1977. }
  1978. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1979. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1980. return
  1981. (t0->ne[0] == t1->ne[0] ) &&
  1982. (t0->ne[1] == t1->ne[1] ) &&
  1983. (t0->ne[2] == t1->ne[2] ) &&
  1984. (t0->ne[3] == t1->ne[3] );
  1985. }
  1986. // check if t1 can be represented as a repeatition of t0
  1987. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return
  1990. (t1->ne[0]%t0->ne[0] == 0) &&
  1991. (t1->ne[1]%t0->ne[1] == 0) &&
  1992. (t1->ne[2]%t0->ne[2] == 0) &&
  1993. (t1->ne[3]%t0->ne[3] == 0);
  1994. }
  1995. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1996. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1997. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1998. }
  1999. static inline int ggml_up32(int n) {
  2000. return (n + 31) & ~31;
  2001. }
  2002. //static inline int ggml_up64(int n) {
  2003. // return (n + 63) & ~63;
  2004. //}
  2005. static inline int ggml_up(int n, int m) {
  2006. // assert m is a power of 2
  2007. GGML_ASSERT((m & (m - 1)) == 0);
  2008. return (n + m - 1) & ~(m - 1);
  2009. }
  2010. // assert that pointer is aligned to GGML_MEM_ALIGN
  2011. #define ggml_assert_aligned(ptr) \
  2012. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2013. ////////////////////////////////////////////////////////////////////////////////
  2014. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2015. // make this function thread safe
  2016. ggml_critical_section_start();
  2017. static bool is_first_call = true;
  2018. if (is_first_call) {
  2019. // initialize time system (required on Windows)
  2020. ggml_time_init();
  2021. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2022. {
  2023. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2024. ggml_fp16_t ii;
  2025. for (int i = 0; i < (1 << 16); ++i) {
  2026. uint16_t ui = i;
  2027. memcpy(&ii, &ui, sizeof(ii));
  2028. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2029. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2030. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2031. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2032. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2033. }
  2034. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2035. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2036. }
  2037. // initialize g_state
  2038. {
  2039. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2040. g_state = (struct ggml_state) {
  2041. /*.contexts =*/ { { 0 } },
  2042. /*.numa =*/ {
  2043. .n_nodes = 0,
  2044. .total_cpus = 0,
  2045. },
  2046. };
  2047. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2048. g_state.contexts[i].used = false;
  2049. }
  2050. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2051. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2052. }
  2053. #if defined(GGML_USE_CUBLAS)
  2054. ggml_init_cublas();
  2055. #elif defined(GGML_USE_CLBLAST)
  2056. ggml_cl_init();
  2057. #elif defined(GGML_USE_VULKAN)
  2058. ggml_vk_init_cpu_assist();
  2059. #elif defined(GGML_USE_SYCL)
  2060. ggml_init_sycl();
  2061. #endif
  2062. ggml_setup_op_has_task_pass();
  2063. is_first_call = false;
  2064. }
  2065. // find non-used context in g_state
  2066. struct ggml_context * ctx = NULL;
  2067. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2068. if (!g_state.contexts[i].used) {
  2069. g_state.contexts[i].used = true;
  2070. ctx = &g_state.contexts[i].context;
  2071. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2072. break;
  2073. }
  2074. }
  2075. if (ctx == NULL) {
  2076. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2077. ggml_critical_section_end();
  2078. return NULL;
  2079. }
  2080. // allow to call ggml_init with 0 size
  2081. if (params.mem_size == 0) {
  2082. params.mem_size = GGML_MEM_ALIGN;
  2083. }
  2084. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2085. *ctx = (struct ggml_context) {
  2086. /*.mem_size =*/ mem_size,
  2087. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2088. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2089. /*.no_alloc =*/ params.no_alloc,
  2090. /*.no_alloc_save =*/ params.no_alloc,
  2091. /*.n_objects =*/ 0,
  2092. /*.objects_begin =*/ NULL,
  2093. /*.objects_end =*/ NULL,
  2094. /*.scratch =*/ { 0, 0, NULL, },
  2095. /*.scratch_save =*/ { 0, 0, NULL, },
  2096. };
  2097. GGML_ASSERT(ctx->mem_buffer != NULL);
  2098. ggml_assert_aligned(ctx->mem_buffer);
  2099. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2100. ggml_critical_section_end();
  2101. return ctx;
  2102. }
  2103. void ggml_free(struct ggml_context * ctx) {
  2104. if (ctx == NULL) {
  2105. return;
  2106. }
  2107. // make this function thread safe
  2108. ggml_critical_section_start();
  2109. bool found = false;
  2110. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2111. if (&g_state.contexts[i].context == ctx) {
  2112. g_state.contexts[i].used = false;
  2113. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2114. __func__, i, ggml_used_mem(ctx));
  2115. if (ctx->mem_buffer_owned) {
  2116. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2117. }
  2118. found = true;
  2119. break;
  2120. }
  2121. }
  2122. if (!found) {
  2123. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2124. }
  2125. ggml_critical_section_end();
  2126. }
  2127. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2128. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2129. }
  2130. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2131. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2132. ctx->scratch = scratch;
  2133. return result;
  2134. }
  2135. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2136. return ctx->no_alloc;
  2137. }
  2138. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2139. ctx->no_alloc = no_alloc;
  2140. }
  2141. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2142. return ctx->mem_buffer;
  2143. }
  2144. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2145. return ctx->mem_size;
  2146. }
  2147. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2148. size_t max_size = 0;
  2149. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2150. size_t bytes = ggml_nbytes(tensor);
  2151. max_size = MAX(max_size, bytes);
  2152. }
  2153. return max_size;
  2154. }
  2155. // IMPORTANT:
  2156. // when creating "opt" tensors, always save and load the scratch buffer
  2157. // this is an error prone process, but it is necessary to support inplace
  2158. // operators when using scratch buffers
  2159. // TODO: implement a better way
  2160. static void ggml_scratch_save(struct ggml_context * ctx) {
  2161. // this is needed to allow opt tensors to store their data
  2162. // TODO: again, need to find a better way
  2163. ctx->no_alloc_save = ctx->no_alloc;
  2164. ctx->no_alloc = false;
  2165. ctx->scratch_save = ctx->scratch;
  2166. ctx->scratch.data = NULL;
  2167. }
  2168. static void ggml_scratch_load(struct ggml_context * ctx) {
  2169. ctx->no_alloc = ctx->no_alloc_save;
  2170. ctx->scratch = ctx->scratch_save;
  2171. }
  2172. ////////////////////////////////////////////////////////////////////////////////
  2173. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2174. // always insert objects at the end of the context's memory pool
  2175. struct ggml_object * obj_cur = ctx->objects_end;
  2176. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2177. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2178. const size_t cur_end = cur_offs + cur_size;
  2179. // align to GGML_MEM_ALIGN
  2180. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2181. char * const mem_buffer = ctx->mem_buffer;
  2182. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2183. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2184. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2185. __func__, cur_end + size_needed, ctx->mem_size);
  2186. assert(false);
  2187. return NULL;
  2188. }
  2189. *obj_new = (struct ggml_object) {
  2190. .offs = cur_end + GGML_OBJECT_SIZE,
  2191. .size = size_needed,
  2192. .next = NULL,
  2193. .type = type,
  2194. };
  2195. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2196. if (obj_cur != NULL) {
  2197. obj_cur->next = obj_new;
  2198. } else {
  2199. // this is the first object in this context
  2200. ctx->objects_begin = obj_new;
  2201. }
  2202. ctx->objects_end = obj_new;
  2203. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2204. return obj_new;
  2205. }
  2206. static struct ggml_tensor * ggml_new_tensor_impl(
  2207. struct ggml_context * ctx,
  2208. enum ggml_type type,
  2209. int n_dims,
  2210. const int64_t * ne,
  2211. struct ggml_tensor * view_src,
  2212. size_t view_offs) {
  2213. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2214. // find the base tensor and absolute offset
  2215. if (view_src != NULL && view_src->view_src != NULL) {
  2216. view_offs += view_src->view_offs;
  2217. view_src = view_src->view_src;
  2218. }
  2219. size_t data_size = ggml_row_size(type, ne[0]);
  2220. for (int i = 1; i < n_dims; i++) {
  2221. data_size *= ne[i];
  2222. }
  2223. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2224. void * data = view_src != NULL ? view_src->data : NULL;
  2225. if (data != NULL) {
  2226. data = (char *) data + view_offs;
  2227. }
  2228. size_t obj_alloc_size = 0;
  2229. if (view_src == NULL && !ctx->no_alloc) {
  2230. if (ctx->scratch.data != NULL) {
  2231. // allocate tensor data in the scratch buffer
  2232. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2233. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2234. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2235. assert(false);
  2236. return NULL;
  2237. }
  2238. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2239. ctx->scratch.offs += data_size;
  2240. } else {
  2241. // allocate tensor data in the context's memory pool
  2242. obj_alloc_size = data_size;
  2243. }
  2244. }
  2245. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2246. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2247. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2248. *result = (struct ggml_tensor) {
  2249. /*.type =*/ type,
  2250. /*.backend =*/ GGML_BACKEND_CPU,
  2251. /*.buffer =*/ NULL,
  2252. /*.ne =*/ { 1, 1, 1, 1 },
  2253. /*.nb =*/ { 0, 0, 0, 0 },
  2254. /*.op =*/ GGML_OP_NONE,
  2255. /*.op_params =*/ { 0 },
  2256. /*.flags =*/ 0,
  2257. /*.grad =*/ NULL,
  2258. /*.src =*/ { NULL },
  2259. /*.perf_runs =*/ 0,
  2260. /*.perf_cycles =*/ 0,
  2261. /*.perf_time_us =*/ 0,
  2262. /*.view_src =*/ view_src,
  2263. /*.view_offs =*/ view_offs,
  2264. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2265. /*.name =*/ { 0 },
  2266. /*.extra =*/ NULL,
  2267. /*.padding =*/ { 0 },
  2268. };
  2269. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2270. //ggml_assert_aligned(result->data);
  2271. for (int i = 0; i < n_dims; i++) {
  2272. result->ne[i] = ne[i];
  2273. }
  2274. result->nb[0] = ggml_type_size(type);
  2275. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2276. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2277. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2278. }
  2279. ctx->n_objects++;
  2280. return result;
  2281. }
  2282. struct ggml_tensor * ggml_new_tensor(
  2283. struct ggml_context * ctx,
  2284. enum ggml_type type,
  2285. int n_dims,
  2286. const int64_t * ne) {
  2287. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2288. }
  2289. struct ggml_tensor * ggml_new_tensor_1d(
  2290. struct ggml_context * ctx,
  2291. enum ggml_type type,
  2292. int64_t ne0) {
  2293. return ggml_new_tensor(ctx, type, 1, &ne0);
  2294. }
  2295. struct ggml_tensor * ggml_new_tensor_2d(
  2296. struct ggml_context * ctx,
  2297. enum ggml_type type,
  2298. int64_t ne0,
  2299. int64_t ne1) {
  2300. const int64_t ne[2] = { ne0, ne1 };
  2301. return ggml_new_tensor(ctx, type, 2, ne);
  2302. }
  2303. struct ggml_tensor * ggml_new_tensor_3d(
  2304. struct ggml_context * ctx,
  2305. enum ggml_type type,
  2306. int64_t ne0,
  2307. int64_t ne1,
  2308. int64_t ne2) {
  2309. const int64_t ne[3] = { ne0, ne1, ne2 };
  2310. return ggml_new_tensor(ctx, type, 3, ne);
  2311. }
  2312. struct ggml_tensor * ggml_new_tensor_4d(
  2313. struct ggml_context * ctx,
  2314. enum ggml_type type,
  2315. int64_t ne0,
  2316. int64_t ne1,
  2317. int64_t ne2,
  2318. int64_t ne3) {
  2319. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2320. return ggml_new_tensor(ctx, type, 4, ne);
  2321. }
  2322. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2323. ggml_scratch_save(ctx);
  2324. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2325. ggml_scratch_load(ctx);
  2326. ggml_set_i32(result, value);
  2327. return result;
  2328. }
  2329. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2330. ggml_scratch_save(ctx);
  2331. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2332. ggml_scratch_load(ctx);
  2333. ggml_set_f32(result, value);
  2334. return result;
  2335. }
  2336. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2337. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2338. }
  2339. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2340. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2341. assert(params_size <= GGML_MAX_OP_PARAMS);
  2342. memcpy(tensor->op_params, params, params_size);
  2343. }
  2344. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2345. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2346. return ((const int32_t *)(tensor->op_params))[i];
  2347. }
  2348. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2349. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2350. ((int32_t *)(tensor->op_params))[i] = value;
  2351. }
  2352. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2353. memset(tensor->data, 0, ggml_nbytes(tensor));
  2354. return tensor;
  2355. }
  2356. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2357. const int n = ggml_nrows(tensor);
  2358. const int nc = tensor->ne[0];
  2359. const size_t n1 = tensor->nb[1];
  2360. char * const data = tensor->data;
  2361. switch (tensor->type) {
  2362. case GGML_TYPE_I8:
  2363. {
  2364. assert(tensor->nb[0] == sizeof(int8_t));
  2365. for (int i = 0; i < n; i++) {
  2366. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2367. }
  2368. } break;
  2369. case GGML_TYPE_I16:
  2370. {
  2371. assert(tensor->nb[0] == sizeof(int16_t));
  2372. for (int i = 0; i < n; i++) {
  2373. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2374. }
  2375. } break;
  2376. case GGML_TYPE_I32:
  2377. {
  2378. assert(tensor->nb[0] == sizeof(int32_t));
  2379. for (int i = 0; i < n; i++) {
  2380. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2381. }
  2382. } break;
  2383. case GGML_TYPE_F16:
  2384. {
  2385. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2386. for (int i = 0; i < n; i++) {
  2387. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2388. }
  2389. } break;
  2390. case GGML_TYPE_F32:
  2391. {
  2392. assert(tensor->nb[0] == sizeof(float));
  2393. for (int i = 0; i < n; i++) {
  2394. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2395. }
  2396. } break;
  2397. default:
  2398. {
  2399. GGML_ASSERT(false);
  2400. } break;
  2401. }
  2402. return tensor;
  2403. }
  2404. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2405. const int n = ggml_nrows(tensor);
  2406. const int nc = tensor->ne[0];
  2407. const size_t n1 = tensor->nb[1];
  2408. char * const data = tensor->data;
  2409. switch (tensor->type) {
  2410. case GGML_TYPE_I8:
  2411. {
  2412. assert(tensor->nb[0] == sizeof(int8_t));
  2413. for (int i = 0; i < n; i++) {
  2414. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2415. }
  2416. } break;
  2417. case GGML_TYPE_I16:
  2418. {
  2419. assert(tensor->nb[0] == sizeof(int16_t));
  2420. for (int i = 0; i < n; i++) {
  2421. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2422. }
  2423. } break;
  2424. case GGML_TYPE_I32:
  2425. {
  2426. assert(tensor->nb[0] == sizeof(int32_t));
  2427. for (int i = 0; i < n; i++) {
  2428. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2429. }
  2430. } break;
  2431. case GGML_TYPE_F16:
  2432. {
  2433. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2434. for (int i = 0; i < n; i++) {
  2435. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2436. }
  2437. } break;
  2438. case GGML_TYPE_F32:
  2439. {
  2440. assert(tensor->nb[0] == sizeof(float));
  2441. for (int i = 0; i < n; i++) {
  2442. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2443. }
  2444. } break;
  2445. default:
  2446. {
  2447. GGML_ASSERT(false);
  2448. } break;
  2449. }
  2450. return tensor;
  2451. }
  2452. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2453. const int64_t ne2 = tensor->ne[2];
  2454. const int64_t ne1 = tensor->ne[1];
  2455. const int64_t ne0 = tensor->ne[0];
  2456. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2457. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2458. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2459. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2460. if (i0) {
  2461. * i0 = i0_;
  2462. }
  2463. if (i1) {
  2464. * i1 = i1_;
  2465. }
  2466. if (i2) {
  2467. * i2 = i2_;
  2468. }
  2469. if (i3) {
  2470. * i3 = i3_;
  2471. }
  2472. }
  2473. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2474. if (!ggml_is_contiguous(tensor)) {
  2475. int64_t id[4] = { 0, 0, 0, 0 };
  2476. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2477. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2478. }
  2479. switch (tensor->type) {
  2480. case GGML_TYPE_I8:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2483. return ((int8_t *)(tensor->data))[i];
  2484. }
  2485. case GGML_TYPE_I16:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2488. return ((int16_t *)(tensor->data))[i];
  2489. }
  2490. case GGML_TYPE_I32:
  2491. {
  2492. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2493. return ((int32_t *)(tensor->data))[i];
  2494. }
  2495. case GGML_TYPE_F16:
  2496. {
  2497. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2498. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2499. }
  2500. case GGML_TYPE_F32:
  2501. {
  2502. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2503. return ((float *)(tensor->data))[i];
  2504. }
  2505. default:
  2506. {
  2507. GGML_ASSERT(false);
  2508. }
  2509. }
  2510. return 0.0f;
  2511. }
  2512. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2513. if (!ggml_is_contiguous(tensor)) {
  2514. int64_t id[4] = { 0, 0, 0, 0 };
  2515. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2516. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2517. return;
  2518. }
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_I8:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2523. ((int8_t *)(tensor->data))[i] = value;
  2524. } break;
  2525. case GGML_TYPE_I16:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2528. ((int16_t *)(tensor->data))[i] = value;
  2529. } break;
  2530. case GGML_TYPE_I32:
  2531. {
  2532. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2533. ((int32_t *)(tensor->data))[i] = value;
  2534. } break;
  2535. case GGML_TYPE_F16:
  2536. {
  2537. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2538. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2539. } break;
  2540. case GGML_TYPE_F32:
  2541. {
  2542. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2543. ((float *)(tensor->data))[i] = value;
  2544. } break;
  2545. default:
  2546. {
  2547. GGML_ASSERT(false);
  2548. } break;
  2549. }
  2550. }
  2551. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2552. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2553. switch (tensor->type) {
  2554. case GGML_TYPE_I8:
  2555. return ((int8_t *) data)[0];
  2556. case GGML_TYPE_I16:
  2557. return ((int16_t *) data)[0];
  2558. case GGML_TYPE_I32:
  2559. return ((int32_t *) data)[0];
  2560. case GGML_TYPE_F16:
  2561. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2562. case GGML_TYPE_F32:
  2563. return ((float *) data)[0];
  2564. default:
  2565. GGML_ASSERT(false);
  2566. }
  2567. return 0.0f;
  2568. }
  2569. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2570. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2571. switch (tensor->type) {
  2572. case GGML_TYPE_I8:
  2573. {
  2574. ((int8_t *)(data))[0] = value;
  2575. } break;
  2576. case GGML_TYPE_I16:
  2577. {
  2578. ((int16_t *)(data))[0] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. ((int32_t *)(data))[0] = value;
  2583. } break;
  2584. case GGML_TYPE_F16:
  2585. {
  2586. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2587. } break;
  2588. case GGML_TYPE_F32:
  2589. {
  2590. ((float *)(data))[0] = value;
  2591. } break;
  2592. default:
  2593. {
  2594. GGML_ASSERT(false);
  2595. } break;
  2596. }
  2597. }
  2598. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2599. if (!ggml_is_contiguous(tensor)) {
  2600. int64_t id[4] = { 0, 0, 0, 0 };
  2601. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2602. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2603. }
  2604. switch (tensor->type) {
  2605. case GGML_TYPE_I8:
  2606. {
  2607. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2608. return ((int8_t *)(tensor->data))[i];
  2609. }
  2610. case GGML_TYPE_I16:
  2611. {
  2612. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2613. return ((int16_t *)(tensor->data))[i];
  2614. }
  2615. case GGML_TYPE_I32:
  2616. {
  2617. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2618. return ((int32_t *)(tensor->data))[i];
  2619. }
  2620. case GGML_TYPE_F16:
  2621. {
  2622. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2623. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2624. }
  2625. case GGML_TYPE_F32:
  2626. {
  2627. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2628. return ((float *)(tensor->data))[i];
  2629. }
  2630. default:
  2631. {
  2632. GGML_ASSERT(false);
  2633. }
  2634. }
  2635. return 0.0f;
  2636. }
  2637. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2638. if (!ggml_is_contiguous(tensor)) {
  2639. int64_t id[4] = { 0, 0, 0, 0 };
  2640. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2641. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2642. return;
  2643. }
  2644. switch (tensor->type) {
  2645. case GGML_TYPE_I8:
  2646. {
  2647. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2648. ((int8_t *)(tensor->data))[i] = value;
  2649. } break;
  2650. case GGML_TYPE_I16:
  2651. {
  2652. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2653. ((int16_t *)(tensor->data))[i] = value;
  2654. } break;
  2655. case GGML_TYPE_I32:
  2656. {
  2657. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2658. ((int32_t *)(tensor->data))[i] = value;
  2659. } break;
  2660. case GGML_TYPE_F16:
  2661. {
  2662. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2663. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2664. } break;
  2665. case GGML_TYPE_F32:
  2666. {
  2667. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2668. ((float *)(tensor->data))[i] = value;
  2669. } break;
  2670. default:
  2671. {
  2672. GGML_ASSERT(false);
  2673. } break;
  2674. }
  2675. }
  2676. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2677. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2678. switch (tensor->type) {
  2679. case GGML_TYPE_I8:
  2680. return ((int8_t *) data)[0];
  2681. case GGML_TYPE_I16:
  2682. return ((int16_t *) data)[0];
  2683. case GGML_TYPE_I32:
  2684. return ((int32_t *) data)[0];
  2685. case GGML_TYPE_F16:
  2686. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2687. case GGML_TYPE_F32:
  2688. return ((float *) data)[0];
  2689. default:
  2690. GGML_ASSERT(false);
  2691. }
  2692. return 0.0f;
  2693. }
  2694. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2695. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2696. switch (tensor->type) {
  2697. case GGML_TYPE_I8:
  2698. {
  2699. ((int8_t *)(data))[0] = value;
  2700. } break;
  2701. case GGML_TYPE_I16:
  2702. {
  2703. ((int16_t *)(data))[0] = value;
  2704. } break;
  2705. case GGML_TYPE_I32:
  2706. {
  2707. ((int32_t *)(data))[0] = value;
  2708. } break;
  2709. case GGML_TYPE_F16:
  2710. {
  2711. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2712. } break;
  2713. case GGML_TYPE_F32:
  2714. {
  2715. ((float *)(data))[0] = value;
  2716. } break;
  2717. default:
  2718. {
  2719. GGML_ASSERT(false);
  2720. } break;
  2721. }
  2722. }
  2723. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2724. return tensor->data;
  2725. }
  2726. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2727. assert(tensor->type == GGML_TYPE_F32);
  2728. return (float *)(tensor->data);
  2729. }
  2730. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2731. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2732. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2733. }
  2734. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2735. return tensor->name;
  2736. }
  2737. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2738. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2739. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2740. return tensor;
  2741. }
  2742. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2743. va_list args;
  2744. va_start(args, fmt);
  2745. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2746. va_end(args);
  2747. return tensor;
  2748. }
  2749. struct ggml_tensor * ggml_view_tensor(
  2750. struct ggml_context * ctx,
  2751. struct ggml_tensor * src) {
  2752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2753. ggml_format_name(result, "%s (view)", src->name);
  2754. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2755. result->nb[i] = src->nb[i];
  2756. }
  2757. return result;
  2758. }
  2759. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2760. struct ggml_object * obj = ctx->objects_begin;
  2761. char * const mem_buffer = ctx->mem_buffer;
  2762. while (obj != NULL) {
  2763. if (obj->type == GGML_OBJECT_TENSOR) {
  2764. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2765. }
  2766. obj = obj->next;
  2767. }
  2768. return NULL;
  2769. }
  2770. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2771. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2772. obj = obj->next;
  2773. char * const mem_buffer = ctx->mem_buffer;
  2774. while (obj != NULL) {
  2775. if (obj->type == GGML_OBJECT_TENSOR) {
  2776. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2777. }
  2778. obj = obj->next;
  2779. }
  2780. return NULL;
  2781. }
  2782. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2783. struct ggml_object * obj = ctx->objects_begin;
  2784. char * const mem_buffer = ctx->mem_buffer;
  2785. while (obj != NULL) {
  2786. if (obj->type == GGML_OBJECT_TENSOR) {
  2787. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2788. if (strcmp(cur->name, name) == 0) {
  2789. return cur;
  2790. }
  2791. }
  2792. obj = obj->next;
  2793. }
  2794. return NULL;
  2795. }
  2796. ////////////////////////////////////////////////////////////////////////////////
  2797. // ggml_dup
  2798. static struct ggml_tensor * ggml_dup_impl(
  2799. struct ggml_context * ctx,
  2800. struct ggml_tensor * a,
  2801. bool inplace) {
  2802. bool is_node = false;
  2803. if (!inplace && (a->grad)) {
  2804. is_node = true;
  2805. }
  2806. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2807. result->op = GGML_OP_DUP;
  2808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2809. result->src[0] = a;
  2810. return result;
  2811. }
  2812. struct ggml_tensor * ggml_dup(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a) {
  2815. return ggml_dup_impl(ctx, a, false);
  2816. }
  2817. struct ggml_tensor * ggml_dup_inplace(
  2818. struct ggml_context * ctx,
  2819. struct ggml_tensor * a) {
  2820. return ggml_dup_impl(ctx, a, true);
  2821. }
  2822. // ggml_add
  2823. static struct ggml_tensor * ggml_add_impl(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b,
  2827. bool inplace) {
  2828. GGML_ASSERT(ggml_can_repeat(b, a));
  2829. bool is_node = false;
  2830. if (!inplace && (a->grad || b->grad)) {
  2831. // TODO: support backward pass for broadcasting
  2832. GGML_ASSERT(ggml_are_same_shape(a, b));
  2833. is_node = true;
  2834. }
  2835. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2836. result->op = GGML_OP_ADD;
  2837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2838. result->src[0] = a;
  2839. result->src[1] = b;
  2840. return result;
  2841. }
  2842. struct ggml_tensor * ggml_add(
  2843. struct ggml_context * ctx,
  2844. struct ggml_tensor * a,
  2845. struct ggml_tensor * b) {
  2846. return ggml_add_impl(ctx, a, b, false);
  2847. }
  2848. struct ggml_tensor * ggml_add_inplace(
  2849. struct ggml_context * ctx,
  2850. struct ggml_tensor * a,
  2851. struct ggml_tensor * b) {
  2852. return ggml_add_impl(ctx, a, b, true);
  2853. }
  2854. // ggml_add_cast
  2855. static struct ggml_tensor * ggml_add_cast_impl(
  2856. struct ggml_context * ctx,
  2857. struct ggml_tensor * a,
  2858. struct ggml_tensor * b,
  2859. enum ggml_type type) {
  2860. // TODO: support less-strict constraint
  2861. // GGML_ASSERT(ggml_can_repeat(b, a));
  2862. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2863. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2864. bool is_node = false;
  2865. if (a->grad || b->grad) {
  2866. // TODO: support backward pass for broadcasting
  2867. GGML_ASSERT(ggml_are_same_shape(a, b));
  2868. is_node = true;
  2869. }
  2870. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2871. result->op = GGML_OP_ADD;
  2872. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2873. result->src[0] = a;
  2874. result->src[1] = b;
  2875. return result;
  2876. }
  2877. struct ggml_tensor * ggml_add_cast(
  2878. struct ggml_context * ctx,
  2879. struct ggml_tensor * a,
  2880. struct ggml_tensor * b,
  2881. enum ggml_type type) {
  2882. return ggml_add_cast_impl(ctx, a, b, type);
  2883. }
  2884. // ggml_add1
  2885. static struct ggml_tensor * ggml_add1_impl(
  2886. struct ggml_context * ctx,
  2887. struct ggml_tensor * a,
  2888. struct ggml_tensor * b,
  2889. bool inplace) {
  2890. GGML_ASSERT(ggml_is_scalar(b));
  2891. GGML_ASSERT(ggml_is_padded_1d(a));
  2892. bool is_node = false;
  2893. if (a->grad || b->grad) {
  2894. is_node = true;
  2895. }
  2896. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2897. result->op = GGML_OP_ADD1;
  2898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2899. result->src[0] = a;
  2900. result->src[1] = b;
  2901. return result;
  2902. }
  2903. struct ggml_tensor * ggml_add1(
  2904. struct ggml_context * ctx,
  2905. struct ggml_tensor * a,
  2906. struct ggml_tensor * b) {
  2907. return ggml_add1_impl(ctx, a, b, false);
  2908. }
  2909. struct ggml_tensor * ggml_add1_inplace(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. struct ggml_tensor * b) {
  2913. return ggml_add1_impl(ctx, a, b, true);
  2914. }
  2915. // ggml_acc
  2916. static struct ggml_tensor * ggml_acc_impl(
  2917. struct ggml_context * ctx,
  2918. struct ggml_tensor * a,
  2919. struct ggml_tensor * b,
  2920. size_t nb1,
  2921. size_t nb2,
  2922. size_t nb3,
  2923. size_t offset,
  2924. bool inplace) {
  2925. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2926. GGML_ASSERT(ggml_is_contiguous(a));
  2927. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2928. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2929. bool is_node = false;
  2930. if (!inplace && (a->grad || b->grad)) {
  2931. is_node = true;
  2932. }
  2933. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2934. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2935. ggml_set_op_params(result, params, sizeof(params));
  2936. result->op = GGML_OP_ACC;
  2937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2938. result->src[0] = a;
  2939. result->src[1] = b;
  2940. return result;
  2941. }
  2942. struct ggml_tensor * ggml_acc(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. struct ggml_tensor * b,
  2946. size_t nb1,
  2947. size_t nb2,
  2948. size_t nb3,
  2949. size_t offset) {
  2950. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2951. }
  2952. struct ggml_tensor * ggml_acc_inplace(
  2953. struct ggml_context * ctx,
  2954. struct ggml_tensor * a,
  2955. struct ggml_tensor * b,
  2956. size_t nb1,
  2957. size_t nb2,
  2958. size_t nb3,
  2959. size_t offset) {
  2960. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2961. }
  2962. // ggml_sub
  2963. static struct ggml_tensor * ggml_sub_impl(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * a,
  2966. struct ggml_tensor * b,
  2967. bool inplace) {
  2968. GGML_ASSERT(ggml_are_same_shape(a, b));
  2969. bool is_node = false;
  2970. if (!inplace && (a->grad || b->grad)) {
  2971. is_node = true;
  2972. }
  2973. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2974. result->op = GGML_OP_SUB;
  2975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2976. result->src[0] = a;
  2977. result->src[1] = b;
  2978. return result;
  2979. }
  2980. struct ggml_tensor * ggml_sub(
  2981. struct ggml_context * ctx,
  2982. struct ggml_tensor * a,
  2983. struct ggml_tensor * b) {
  2984. return ggml_sub_impl(ctx, a, b, false);
  2985. }
  2986. struct ggml_tensor * ggml_sub_inplace(
  2987. struct ggml_context * ctx,
  2988. struct ggml_tensor * a,
  2989. struct ggml_tensor * b) {
  2990. return ggml_sub_impl(ctx, a, b, true);
  2991. }
  2992. // ggml_mul
  2993. static struct ggml_tensor * ggml_mul_impl(
  2994. struct ggml_context * ctx,
  2995. struct ggml_tensor * a,
  2996. struct ggml_tensor * b,
  2997. bool inplace) {
  2998. GGML_ASSERT(ggml_can_repeat(b, a));
  2999. bool is_node = false;
  3000. if (!inplace && (a->grad || b->grad)) {
  3001. // TODO: support backward pass for broadcasting
  3002. GGML_ASSERT(ggml_are_same_shape(a, b));
  3003. is_node = true;
  3004. }
  3005. if (inplace) {
  3006. GGML_ASSERT(!is_node);
  3007. }
  3008. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3009. result->op = GGML_OP_MUL;
  3010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3011. result->src[0] = a;
  3012. result->src[1] = b;
  3013. return result;
  3014. }
  3015. struct ggml_tensor * ggml_mul(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b) {
  3019. return ggml_mul_impl(ctx, a, b, false);
  3020. }
  3021. struct ggml_tensor * ggml_mul_inplace(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a,
  3024. struct ggml_tensor * b) {
  3025. return ggml_mul_impl(ctx, a, b, true);
  3026. }
  3027. // ggml_div
  3028. static struct ggml_tensor * ggml_div_impl(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a,
  3031. struct ggml_tensor * b,
  3032. bool inplace) {
  3033. GGML_ASSERT(ggml_can_repeat(b, a));
  3034. bool is_node = false;
  3035. if (!inplace && (a->grad || b->grad)) {
  3036. is_node = true;
  3037. }
  3038. if (inplace) {
  3039. GGML_ASSERT(!is_node);
  3040. }
  3041. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3042. result->op = GGML_OP_DIV;
  3043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3044. result->src[0] = a;
  3045. result->src[1] = b;
  3046. return result;
  3047. }
  3048. struct ggml_tensor * ggml_div(
  3049. struct ggml_context * ctx,
  3050. struct ggml_tensor * a,
  3051. struct ggml_tensor * b) {
  3052. return ggml_div_impl(ctx, a, b, false);
  3053. }
  3054. struct ggml_tensor * ggml_div_inplace(
  3055. struct ggml_context * ctx,
  3056. struct ggml_tensor * a,
  3057. struct ggml_tensor * b) {
  3058. return ggml_div_impl(ctx, a, b, true);
  3059. }
  3060. // ggml_sqr
  3061. static struct ggml_tensor * ggml_sqr_impl(
  3062. struct ggml_context * ctx,
  3063. struct ggml_tensor * a,
  3064. bool inplace) {
  3065. bool is_node = false;
  3066. if (!inplace && (a->grad)) {
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3070. result->op = GGML_OP_SQR;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. return result;
  3074. }
  3075. struct ggml_tensor * ggml_sqr(
  3076. struct ggml_context * ctx,
  3077. struct ggml_tensor * a) {
  3078. return ggml_sqr_impl(ctx, a, false);
  3079. }
  3080. struct ggml_tensor * ggml_sqr_inplace(
  3081. struct ggml_context * ctx,
  3082. struct ggml_tensor * a) {
  3083. return ggml_sqr_impl(ctx, a, true);
  3084. }
  3085. // ggml_sqrt
  3086. static struct ggml_tensor * ggml_sqrt_impl(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a,
  3089. bool inplace) {
  3090. bool is_node = false;
  3091. if (!inplace && (a->grad)) {
  3092. is_node = true;
  3093. }
  3094. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3095. result->op = GGML_OP_SQRT;
  3096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3097. result->src[0] = a;
  3098. return result;
  3099. }
  3100. struct ggml_tensor * ggml_sqrt(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_sqrt_impl(ctx, a, false);
  3104. }
  3105. struct ggml_tensor * ggml_sqrt_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a) {
  3108. return ggml_sqrt_impl(ctx, a, true);
  3109. }
  3110. // ggml_log
  3111. static struct ggml_tensor * ggml_log_impl(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. bool inplace) {
  3115. bool is_node = false;
  3116. if (!inplace && (a->grad)) {
  3117. is_node = true;
  3118. }
  3119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3120. result->op = GGML_OP_LOG;
  3121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3122. result->src[0] = a;
  3123. return result;
  3124. }
  3125. struct ggml_tensor * ggml_log(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a) {
  3128. return ggml_log_impl(ctx, a, false);
  3129. }
  3130. struct ggml_tensor * ggml_log_inplace(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a) {
  3133. return ggml_log_impl(ctx, a, true);
  3134. }
  3135. // ggml_sum
  3136. struct ggml_tensor * ggml_sum(
  3137. struct ggml_context * ctx,
  3138. struct ggml_tensor * a) {
  3139. bool is_node = false;
  3140. if (a->grad) {
  3141. is_node = true;
  3142. }
  3143. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3144. result->op = GGML_OP_SUM;
  3145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3146. result->src[0] = a;
  3147. return result;
  3148. }
  3149. // ggml_sum_rows
  3150. struct ggml_tensor * ggml_sum_rows(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. bool is_node = false;
  3154. if (a->grad) {
  3155. is_node = true;
  3156. }
  3157. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3158. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3159. ne[i] = a->ne[i];
  3160. }
  3161. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3162. result->op = GGML_OP_SUM_ROWS;
  3163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3164. result->src[0] = a;
  3165. return result;
  3166. }
  3167. // ggml_mean
  3168. struct ggml_tensor * ggml_mean(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. bool is_node = false;
  3172. if (a->grad) {
  3173. GGML_ASSERT(false); // TODO: implement
  3174. is_node = true;
  3175. }
  3176. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3177. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3178. result->op = GGML_OP_MEAN;
  3179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3180. result->src[0] = a;
  3181. return result;
  3182. }
  3183. // ggml_argmax
  3184. struct ggml_tensor * ggml_argmax(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a) {
  3187. GGML_ASSERT(ggml_is_matrix(a));
  3188. bool is_node = false;
  3189. if (a->grad) {
  3190. GGML_ASSERT(false);
  3191. is_node = true;
  3192. }
  3193. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3194. result->op = GGML_OP_ARGMAX;
  3195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3196. result->src[0] = a;
  3197. return result;
  3198. }
  3199. // ggml_repeat
  3200. struct ggml_tensor * ggml_repeat(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. GGML_ASSERT(ggml_can_repeat(a, b));
  3205. bool is_node = false;
  3206. if (a->grad) {
  3207. is_node = true;
  3208. }
  3209. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3210. result->op = GGML_OP_REPEAT;
  3211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3212. result->src[0] = a;
  3213. return result;
  3214. }
  3215. // ggml_repeat_back
  3216. struct ggml_tensor * ggml_repeat_back(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a,
  3219. struct ggml_tensor * b) {
  3220. GGML_ASSERT(ggml_can_repeat(b, a));
  3221. bool is_node = false;
  3222. if (a->grad) {
  3223. is_node = true;
  3224. }
  3225. if (ggml_are_same_shape(a, b) && !is_node) {
  3226. return a;
  3227. }
  3228. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3229. result->op = GGML_OP_REPEAT_BACK;
  3230. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3231. result->src[0] = a;
  3232. return result;
  3233. }
  3234. // ggml_concat
  3235. struct ggml_tensor * ggml_concat(
  3236. struct ggml_context* ctx,
  3237. struct ggml_tensor* a,
  3238. struct ggml_tensor* b) {
  3239. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3240. bool is_node = false;
  3241. if (a->grad || b->grad) {
  3242. is_node = true;
  3243. }
  3244. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3245. result->op = GGML_OP_CONCAT;
  3246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3247. result->src[0] = a;
  3248. result->src[1] = b;
  3249. return result;
  3250. }
  3251. // ggml_abs
  3252. struct ggml_tensor * ggml_abs(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a) {
  3255. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3256. }
  3257. struct ggml_tensor * ggml_abs_inplace(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a) {
  3260. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3261. }
  3262. // ggml_sgn
  3263. struct ggml_tensor * ggml_sgn(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a) {
  3266. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3267. }
  3268. struct ggml_tensor * ggml_sgn_inplace(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a) {
  3271. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3272. }
  3273. // ggml_neg
  3274. struct ggml_tensor * ggml_neg(
  3275. struct ggml_context * ctx,
  3276. struct ggml_tensor * a) {
  3277. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3278. }
  3279. struct ggml_tensor * ggml_neg_inplace(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a) {
  3282. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3283. }
  3284. // ggml_step
  3285. struct ggml_tensor * ggml_step(
  3286. struct ggml_context * ctx,
  3287. struct ggml_tensor * a) {
  3288. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3289. }
  3290. struct ggml_tensor * ggml_step_inplace(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a) {
  3293. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3294. }
  3295. // ggml_tanh
  3296. struct ggml_tensor * ggml_tanh(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a) {
  3299. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3300. }
  3301. struct ggml_tensor * ggml_tanh_inplace(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a) {
  3304. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3305. }
  3306. // ggml_elu
  3307. struct ggml_tensor * ggml_elu(
  3308. struct ggml_context * ctx,
  3309. struct ggml_tensor * a) {
  3310. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3311. }
  3312. struct ggml_tensor * ggml_elu_inplace(
  3313. struct ggml_context * ctx,
  3314. struct ggml_tensor * a) {
  3315. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3316. }
  3317. // ggml_relu
  3318. struct ggml_tensor * ggml_relu(
  3319. struct ggml_context * ctx,
  3320. struct ggml_tensor * a) {
  3321. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3322. }
  3323. struct ggml_tensor * ggml_relu_inplace(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a) {
  3326. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3327. }
  3328. // ggml_leaky_relu
  3329. struct ggml_tensor * ggml_leaky_relu(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3332. bool is_node = false;
  3333. if (!inplace && (a->grad)) {
  3334. is_node = true;
  3335. }
  3336. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3337. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3338. result->op = GGML_OP_LEAKY_RELU;
  3339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3340. result->src[0] = a;
  3341. return result;
  3342. }
  3343. // ggml_gelu
  3344. struct ggml_tensor * ggml_gelu(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3348. }
  3349. struct ggml_tensor * ggml_gelu_inplace(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a) {
  3352. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3353. }
  3354. // ggml_gelu_quick
  3355. struct ggml_tensor * ggml_gelu_quick(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a) {
  3358. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3359. }
  3360. struct ggml_tensor * ggml_gelu_quick_inplace(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a) {
  3363. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3364. }
  3365. // ggml_silu
  3366. struct ggml_tensor * ggml_silu(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3370. }
  3371. struct ggml_tensor * ggml_silu_inplace(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a) {
  3374. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3375. }
  3376. // ggml_silu_back
  3377. struct ggml_tensor * ggml_silu_back(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a,
  3380. struct ggml_tensor * b) {
  3381. bool is_node = false;
  3382. if (a->grad || b->grad) {
  3383. // TODO: implement backward
  3384. is_node = true;
  3385. }
  3386. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3387. result->op = GGML_OP_SILU_BACK;
  3388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3389. result->src[0] = a;
  3390. result->src[1] = b;
  3391. return result;
  3392. }
  3393. // ggml hardswish
  3394. struct ggml_tensor * ggml_hardswish(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3398. }
  3399. // ggml hardsigmoid
  3400. struct ggml_tensor * ggml_hardsigmoid(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a) {
  3403. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3404. }
  3405. // ggml_norm
  3406. static struct ggml_tensor * ggml_norm_impl(
  3407. struct ggml_context * ctx,
  3408. struct ggml_tensor * a,
  3409. float eps,
  3410. bool inplace) {
  3411. bool is_node = false;
  3412. if (!inplace && (a->grad)) {
  3413. GGML_ASSERT(false); // TODO: implement backward
  3414. is_node = true;
  3415. }
  3416. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3417. ggml_set_op_params(result, &eps, sizeof(eps));
  3418. result->op = GGML_OP_NORM;
  3419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3420. result->src[0] = a;
  3421. return result;
  3422. }
  3423. struct ggml_tensor * ggml_norm(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. float eps) {
  3427. return ggml_norm_impl(ctx, a, eps, false);
  3428. }
  3429. struct ggml_tensor * ggml_norm_inplace(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. float eps) {
  3433. return ggml_norm_impl(ctx, a, eps, true);
  3434. }
  3435. // ggml_rms_norm
  3436. static struct ggml_tensor * ggml_rms_norm_impl(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. float eps,
  3440. bool inplace) {
  3441. bool is_node = false;
  3442. if (!inplace && (a->grad)) {
  3443. is_node = true;
  3444. }
  3445. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3446. ggml_set_op_params(result, &eps, sizeof(eps));
  3447. result->op = GGML_OP_RMS_NORM;
  3448. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3449. result->src[0] = a;
  3450. return result;
  3451. }
  3452. struct ggml_tensor * ggml_rms_norm(
  3453. struct ggml_context * ctx,
  3454. struct ggml_tensor * a,
  3455. float eps) {
  3456. return ggml_rms_norm_impl(ctx, a, eps, false);
  3457. }
  3458. struct ggml_tensor * ggml_rms_norm_inplace(
  3459. struct ggml_context * ctx,
  3460. struct ggml_tensor * a,
  3461. float eps) {
  3462. return ggml_rms_norm_impl(ctx, a, eps, true);
  3463. }
  3464. // ggml_rms_norm_back
  3465. struct ggml_tensor * ggml_rms_norm_back(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. struct ggml_tensor * b,
  3469. float eps) {
  3470. bool is_node = false;
  3471. if (a->grad) {
  3472. // TODO: implement backward
  3473. is_node = true;
  3474. }
  3475. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3476. ggml_set_op_params(result, &eps, sizeof(eps));
  3477. result->op = GGML_OP_RMS_NORM_BACK;
  3478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3479. result->src[0] = a;
  3480. result->src[1] = b;
  3481. return result;
  3482. }
  3483. // ggml_group_norm
  3484. static struct ggml_tensor * ggml_group_norm_impl(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * a,
  3487. int n_groups,
  3488. bool inplace) {
  3489. bool is_node = false;
  3490. if (!inplace && (a->grad)) {
  3491. GGML_ASSERT(false); // TODO: implement backward
  3492. is_node = true;
  3493. }
  3494. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3495. result->op_params[0] = n_groups;
  3496. result->op = GGML_OP_GROUP_NORM;
  3497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3498. result->src[0] = a;
  3499. return result;
  3500. }
  3501. struct ggml_tensor * ggml_group_norm(
  3502. struct ggml_context * ctx,
  3503. struct ggml_tensor * a,
  3504. int n_groups) {
  3505. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3506. }
  3507. struct ggml_tensor * ggml_group_norm_inplace(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. int n_groups) {
  3511. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3512. }
  3513. // ggml_mul_mat
  3514. struct ggml_tensor * ggml_mul_mat(
  3515. struct ggml_context * ctx,
  3516. struct ggml_tensor * a,
  3517. struct ggml_tensor * b) {
  3518. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3519. GGML_ASSERT(!ggml_is_transposed(a));
  3520. bool is_node = false;
  3521. if (a->grad || b->grad) {
  3522. is_node = true;
  3523. }
  3524. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3525. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3526. result->op = GGML_OP_MUL_MAT;
  3527. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3528. result->src[0] = a;
  3529. result->src[1] = b;
  3530. return result;
  3531. }
  3532. void ggml_mul_mat_set_prec(
  3533. struct ggml_tensor * a,
  3534. enum ggml_prec prec) {
  3535. const int32_t prec_i32 = (int32_t) prec;
  3536. ggml_set_op_params_i32(a, 0, prec_i32);
  3537. }
  3538. // ggml_mul_mat_id
  3539. struct ggml_tensor * ggml_mul_mat_id(
  3540. struct ggml_context * ctx,
  3541. struct ggml_tensor * const as[],
  3542. int n_as,
  3543. struct ggml_tensor * ids,
  3544. int id,
  3545. struct ggml_tensor * b) {
  3546. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3547. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3548. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3549. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3550. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3551. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3552. bool is_node = false;
  3553. if (as[0]->grad || b->grad) {
  3554. is_node = true;
  3555. }
  3556. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3557. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3558. ggml_set_op_params_i32(result, 0, id);
  3559. ggml_set_op_params_i32(result, 1, n_as);
  3560. result->op = GGML_OP_MUL_MAT_ID;
  3561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3562. result->src[0] = ids;
  3563. result->src[1] = b;
  3564. for (int i = 0; i < n_as; i++) {
  3565. struct ggml_tensor * a = as[i];
  3566. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3567. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3568. GGML_ASSERT(!ggml_is_transposed(a));
  3569. result->src[i + 2] = a;
  3570. }
  3571. return result;
  3572. }
  3573. // ggml_out_prod
  3574. struct ggml_tensor * ggml_out_prod(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a,
  3577. struct ggml_tensor * b) {
  3578. GGML_ASSERT(ggml_can_out_prod(a, b));
  3579. GGML_ASSERT(!ggml_is_transposed(a));
  3580. bool is_node = false;
  3581. if (a->grad || b->grad) {
  3582. is_node = true;
  3583. }
  3584. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3585. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3586. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3587. result->op = GGML_OP_OUT_PROD;
  3588. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3589. result->src[0] = a;
  3590. result->src[1] = b;
  3591. return result;
  3592. }
  3593. // ggml_scale
  3594. static struct ggml_tensor * ggml_scale_impl(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a,
  3597. float s,
  3598. bool inplace) {
  3599. GGML_ASSERT(ggml_is_padded_1d(a));
  3600. bool is_node = false;
  3601. if (a->grad) {
  3602. is_node = true;
  3603. }
  3604. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3605. ggml_set_op_params(result, &s, sizeof(s));
  3606. result->op = GGML_OP_SCALE;
  3607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3608. result->src[0] = a;
  3609. return result;
  3610. }
  3611. struct ggml_tensor * ggml_scale(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. float s) {
  3615. return ggml_scale_impl(ctx, a, s, false);
  3616. }
  3617. struct ggml_tensor * ggml_scale_inplace(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a,
  3620. float s) {
  3621. return ggml_scale_impl(ctx, a, s, true);
  3622. }
  3623. // ggml_set
  3624. static struct ggml_tensor * ggml_set_impl(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a,
  3627. struct ggml_tensor * b,
  3628. size_t nb1,
  3629. size_t nb2,
  3630. size_t nb3,
  3631. size_t offset,
  3632. bool inplace) {
  3633. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3634. bool is_node = false;
  3635. if (a->grad || b->grad) {
  3636. is_node = true;
  3637. }
  3638. // make a view of the destination
  3639. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3640. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3641. ggml_set_op_params(result, params, sizeof(params));
  3642. result->op = GGML_OP_SET;
  3643. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3644. result->src[0] = a;
  3645. result->src[1] = b;
  3646. return result;
  3647. }
  3648. struct ggml_tensor * ggml_set(
  3649. struct ggml_context * ctx,
  3650. struct ggml_tensor * a,
  3651. struct ggml_tensor * b,
  3652. size_t nb1,
  3653. size_t nb2,
  3654. size_t nb3,
  3655. size_t offset) {
  3656. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3657. }
  3658. struct ggml_tensor * ggml_set_inplace(
  3659. struct ggml_context * ctx,
  3660. struct ggml_tensor * a,
  3661. struct ggml_tensor * b,
  3662. size_t nb1,
  3663. size_t nb2,
  3664. size_t nb3,
  3665. size_t offset) {
  3666. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3667. }
  3668. struct ggml_tensor * ggml_set_1d(
  3669. struct ggml_context * ctx,
  3670. struct ggml_tensor * a,
  3671. struct ggml_tensor * b,
  3672. size_t offset) {
  3673. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3674. }
  3675. struct ggml_tensor * ggml_set_1d_inplace(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a,
  3678. struct ggml_tensor * b,
  3679. size_t offset) {
  3680. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3681. }
  3682. struct ggml_tensor * ggml_set_2d(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a,
  3685. struct ggml_tensor * b,
  3686. size_t nb1,
  3687. size_t offset) {
  3688. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3689. }
  3690. struct ggml_tensor * ggml_set_2d_inplace(
  3691. struct ggml_context * ctx,
  3692. struct ggml_tensor * a,
  3693. struct ggml_tensor * b,
  3694. size_t nb1,
  3695. size_t offset) {
  3696. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3697. }
  3698. // ggml_cpy
  3699. static struct ggml_tensor * ggml_cpy_impl(
  3700. struct ggml_context * ctx,
  3701. struct ggml_tensor * a,
  3702. struct ggml_tensor * b) {
  3703. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3704. bool is_node = false;
  3705. if (a->grad || b->grad) {
  3706. // inplace is false and either one have a grad
  3707. is_node = true;
  3708. }
  3709. // make a view of the destination
  3710. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3711. if (strlen(b->name) > 0) {
  3712. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3713. } else {
  3714. ggml_format_name(result, "%s (copy)", a->name);
  3715. }
  3716. result->op = GGML_OP_CPY;
  3717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3718. result->src[0] = a;
  3719. result->src[1] = b;
  3720. return result;
  3721. }
  3722. struct ggml_tensor * ggml_cpy(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. struct ggml_tensor * b) {
  3726. return ggml_cpy_impl(ctx, a, b);
  3727. }
  3728. struct ggml_tensor * ggml_cast(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. enum ggml_type type) {
  3732. bool is_node = false;
  3733. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3734. ggml_format_name(result, "%s (copy)", a->name);
  3735. result->op = GGML_OP_CPY;
  3736. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3737. result->src[0] = a;
  3738. result->src[1] = result;
  3739. return result;
  3740. }
  3741. // ggml_cont
  3742. static struct ggml_tensor * ggml_cont_impl(
  3743. struct ggml_context * ctx,
  3744. struct ggml_tensor * a) {
  3745. bool is_node = false;
  3746. if (a->grad) {
  3747. is_node = true;
  3748. }
  3749. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3750. ggml_format_name(result, "%s (cont)", a->name);
  3751. result->op = GGML_OP_CONT;
  3752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3753. result->src[0] = a;
  3754. return result;
  3755. }
  3756. struct ggml_tensor * ggml_cont(
  3757. struct ggml_context * ctx,
  3758. struct ggml_tensor * a) {
  3759. return ggml_cont_impl(ctx, a);
  3760. }
  3761. // make contiguous, with new shape
  3762. GGML_API struct ggml_tensor * ggml_cont_1d(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. int64_t ne0) {
  3766. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3767. }
  3768. GGML_API struct ggml_tensor * ggml_cont_2d(
  3769. struct ggml_context * ctx,
  3770. struct ggml_tensor * a,
  3771. int64_t ne0,
  3772. int64_t ne1) {
  3773. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3774. }
  3775. GGML_API struct ggml_tensor * ggml_cont_3d(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. int64_t ne2) {
  3781. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3782. }
  3783. struct ggml_tensor * ggml_cont_4d(
  3784. struct ggml_context * ctx,
  3785. struct ggml_tensor * a,
  3786. int64_t ne0,
  3787. int64_t ne1,
  3788. int64_t ne2,
  3789. int64_t ne3) {
  3790. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3791. bool is_node = false;
  3792. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3793. ggml_format_name(result, "%s (cont)", a->name);
  3794. result->op = GGML_OP_CONT;
  3795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3796. result->src[0] = a;
  3797. return result;
  3798. }
  3799. // ggml_reshape
  3800. struct ggml_tensor * ggml_reshape(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a,
  3803. struct ggml_tensor * b) {
  3804. GGML_ASSERT(ggml_is_contiguous(a));
  3805. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3806. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3807. bool is_node = false;
  3808. if (a->grad) {
  3809. is_node = true;
  3810. }
  3811. if (b->grad) {
  3812. // gradient propagation is not supported
  3813. //GGML_ASSERT(false);
  3814. }
  3815. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3816. ggml_format_name(result, "%s (reshaped)", a->name);
  3817. result->op = GGML_OP_RESHAPE;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src[0] = a;
  3820. return result;
  3821. }
  3822. struct ggml_tensor * ggml_reshape_1d(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. int64_t ne0) {
  3826. GGML_ASSERT(ggml_is_contiguous(a));
  3827. GGML_ASSERT(ggml_nelements(a) == ne0);
  3828. bool is_node = false;
  3829. if (a->grad) {
  3830. is_node = true;
  3831. }
  3832. const int64_t ne[1] = { ne0 };
  3833. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3834. ggml_format_name(result, "%s (reshaped)", a->name);
  3835. result->op = GGML_OP_RESHAPE;
  3836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3837. result->src[0] = a;
  3838. return result;
  3839. }
  3840. struct ggml_tensor * ggml_reshape_2d(
  3841. struct ggml_context * ctx,
  3842. struct ggml_tensor * a,
  3843. int64_t ne0,
  3844. int64_t ne1) {
  3845. GGML_ASSERT(ggml_is_contiguous(a));
  3846. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3847. bool is_node = false;
  3848. if (a->grad) {
  3849. is_node = true;
  3850. }
  3851. const int64_t ne[2] = { ne0, ne1 };
  3852. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3853. ggml_format_name(result, "%s (reshaped)", a->name);
  3854. result->op = GGML_OP_RESHAPE;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src[0] = a;
  3857. return result;
  3858. }
  3859. struct ggml_tensor * ggml_reshape_3d(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int64_t ne0,
  3863. int64_t ne1,
  3864. int64_t ne2) {
  3865. GGML_ASSERT(ggml_is_contiguous(a));
  3866. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3867. bool is_node = false;
  3868. if (a->grad) {
  3869. is_node = true;
  3870. }
  3871. const int64_t ne[3] = { ne0, ne1, ne2 };
  3872. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3873. ggml_format_name(result, "%s (reshaped)", a->name);
  3874. result->op = GGML_OP_RESHAPE;
  3875. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3876. result->src[0] = a;
  3877. return result;
  3878. }
  3879. struct ggml_tensor * ggml_reshape_4d(
  3880. struct ggml_context * ctx,
  3881. struct ggml_tensor * a,
  3882. int64_t ne0,
  3883. int64_t ne1,
  3884. int64_t ne2,
  3885. int64_t ne3) {
  3886. GGML_ASSERT(ggml_is_contiguous(a));
  3887. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3888. bool is_node = false;
  3889. if (a->grad) {
  3890. is_node = true;
  3891. }
  3892. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3893. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3894. ggml_format_name(result, "%s (reshaped)", a->name);
  3895. result->op = GGML_OP_RESHAPE;
  3896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3897. result->src[0] = a;
  3898. return result;
  3899. }
  3900. static struct ggml_tensor * ggml_view_impl(
  3901. struct ggml_context * ctx,
  3902. struct ggml_tensor * a,
  3903. int n_dims,
  3904. const int64_t * ne,
  3905. size_t offset) {
  3906. bool is_node = false;
  3907. if (a->grad) {
  3908. is_node = true;
  3909. }
  3910. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3911. ggml_format_name(result, "%s (view)", a->name);
  3912. ggml_set_op_params(result, &offset, sizeof(offset));
  3913. result->op = GGML_OP_VIEW;
  3914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3915. result->src[0] = a;
  3916. return result;
  3917. }
  3918. // ggml_view_1d
  3919. struct ggml_tensor * ggml_view_1d(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a,
  3922. int64_t ne0,
  3923. size_t offset) {
  3924. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3925. return result;
  3926. }
  3927. // ggml_view_2d
  3928. struct ggml_tensor * ggml_view_2d(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. int64_t ne0,
  3932. int64_t ne1,
  3933. size_t nb1,
  3934. size_t offset) {
  3935. const int64_t ne[2] = { ne0, ne1 };
  3936. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3937. result->nb[1] = nb1;
  3938. result->nb[2] = result->nb[1]*ne1;
  3939. result->nb[3] = result->nb[2];
  3940. return result;
  3941. }
  3942. // ggml_view_3d
  3943. struct ggml_tensor * ggml_view_3d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. int64_t ne0,
  3947. int64_t ne1,
  3948. int64_t ne2,
  3949. size_t nb1,
  3950. size_t nb2,
  3951. size_t offset) {
  3952. const int64_t ne[3] = { ne0, ne1, ne2 };
  3953. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3954. result->nb[1] = nb1;
  3955. result->nb[2] = nb2;
  3956. result->nb[3] = result->nb[2]*ne2;
  3957. return result;
  3958. }
  3959. // ggml_view_4d
  3960. struct ggml_tensor * ggml_view_4d(
  3961. struct ggml_context * ctx,
  3962. struct ggml_tensor * a,
  3963. int64_t ne0,
  3964. int64_t ne1,
  3965. int64_t ne2,
  3966. int64_t ne3,
  3967. size_t nb1,
  3968. size_t nb2,
  3969. size_t nb3,
  3970. size_t offset) {
  3971. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3972. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3973. result->nb[1] = nb1;
  3974. result->nb[2] = nb2;
  3975. result->nb[3] = nb3;
  3976. return result;
  3977. }
  3978. // ggml_permute
  3979. struct ggml_tensor * ggml_permute(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. int axis0,
  3983. int axis1,
  3984. int axis2,
  3985. int axis3) {
  3986. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3987. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3988. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3989. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3990. GGML_ASSERT(axis0 != axis1);
  3991. GGML_ASSERT(axis0 != axis2);
  3992. GGML_ASSERT(axis0 != axis3);
  3993. GGML_ASSERT(axis1 != axis2);
  3994. GGML_ASSERT(axis1 != axis3);
  3995. GGML_ASSERT(axis2 != axis3);
  3996. bool is_node = false;
  3997. if (a->grad) {
  3998. is_node = true;
  3999. }
  4000. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4001. ggml_format_name(result, "%s (permuted)", a->name);
  4002. int ne[GGML_MAX_DIMS];
  4003. int nb[GGML_MAX_DIMS];
  4004. ne[axis0] = a->ne[0];
  4005. ne[axis1] = a->ne[1];
  4006. ne[axis2] = a->ne[2];
  4007. ne[axis3] = a->ne[3];
  4008. nb[axis0] = a->nb[0];
  4009. nb[axis1] = a->nb[1];
  4010. nb[axis2] = a->nb[2];
  4011. nb[axis3] = a->nb[3];
  4012. result->ne[0] = ne[0];
  4013. result->ne[1] = ne[1];
  4014. result->ne[2] = ne[2];
  4015. result->ne[3] = ne[3];
  4016. result->nb[0] = nb[0];
  4017. result->nb[1] = nb[1];
  4018. result->nb[2] = nb[2];
  4019. result->nb[3] = nb[3];
  4020. result->op = GGML_OP_PERMUTE;
  4021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4022. result->src[0] = a;
  4023. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4024. ggml_set_op_params(result, params, sizeof(params));
  4025. return result;
  4026. }
  4027. // ggml_transpose
  4028. struct ggml_tensor * ggml_transpose(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a) {
  4031. bool is_node = false;
  4032. if (a->grad) {
  4033. is_node = true;
  4034. }
  4035. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4036. ggml_format_name(result, "%s (transposed)", a->name);
  4037. result->ne[0] = a->ne[1];
  4038. result->ne[1] = a->ne[0];
  4039. result->nb[0] = a->nb[1];
  4040. result->nb[1] = a->nb[0];
  4041. result->op = GGML_OP_TRANSPOSE;
  4042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4043. result->src[0] = a;
  4044. return result;
  4045. }
  4046. // ggml_get_rows
  4047. struct ggml_tensor * ggml_get_rows(
  4048. struct ggml_context * ctx,
  4049. struct ggml_tensor * a,
  4050. struct ggml_tensor * b) {
  4051. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4052. GGML_ASSERT(b->ne[3] == 1);
  4053. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4054. bool is_node = false;
  4055. if (a->grad || b->grad) {
  4056. is_node = true;
  4057. }
  4058. // TODO: implement non F32 return
  4059. enum ggml_type type = GGML_TYPE_F32;
  4060. if (a->type == GGML_TYPE_I32) {
  4061. type = a->type;
  4062. }
  4063. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4064. result->op = GGML_OP_GET_ROWS;
  4065. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4066. result->src[0] = a;
  4067. result->src[1] = b;
  4068. return result;
  4069. }
  4070. // ggml_get_rows_back
  4071. struct ggml_tensor * ggml_get_rows_back(
  4072. struct ggml_context * ctx,
  4073. struct ggml_tensor * a,
  4074. struct ggml_tensor * b,
  4075. struct ggml_tensor * c) {
  4076. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4077. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4078. bool is_node = false;
  4079. if (a->grad || b->grad) {
  4080. is_node = true;
  4081. }
  4082. // TODO: implement non F32 return
  4083. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4084. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4085. result->op = GGML_OP_GET_ROWS_BACK;
  4086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4087. result->src[0] = a;
  4088. result->src[1] = b;
  4089. return result;
  4090. }
  4091. // ggml_diag
  4092. struct ggml_tensor * ggml_diag(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. GGML_ASSERT(a->ne[1] == 1);
  4096. bool is_node = false;
  4097. if (a->grad) {
  4098. is_node = true;
  4099. }
  4100. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4101. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4102. result->op = GGML_OP_DIAG;
  4103. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4104. result->src[0] = a;
  4105. return result;
  4106. }
  4107. // ggml_diag_mask_inf
  4108. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. int n_past,
  4112. bool inplace) {
  4113. bool is_node = false;
  4114. if (a->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. int32_t params[] = { n_past };
  4119. ggml_set_op_params(result, params, sizeof(params));
  4120. result->op = GGML_OP_DIAG_MASK_INF;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src[0] = a;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_diag_mask_inf(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. int n_past) {
  4129. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4130. }
  4131. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. int n_past) {
  4135. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4136. }
  4137. // ggml_diag_mask_zero
  4138. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. int n_past,
  4142. bool inplace) {
  4143. bool is_node = false;
  4144. if (a->grad) {
  4145. is_node = true;
  4146. }
  4147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4148. int32_t params[] = { n_past };
  4149. ggml_set_op_params(result, params, sizeof(params));
  4150. result->op = GGML_OP_DIAG_MASK_ZERO;
  4151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4152. result->src[0] = a;
  4153. return result;
  4154. }
  4155. struct ggml_tensor * ggml_diag_mask_zero(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a,
  4158. int n_past) {
  4159. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4160. }
  4161. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a,
  4164. int n_past) {
  4165. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4166. }
  4167. // ggml_soft_max
  4168. static struct ggml_tensor * ggml_soft_max_impl(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * mask,
  4172. float scale,
  4173. bool inplace) {
  4174. GGML_ASSERT(ggml_is_contiguous(a));
  4175. if (mask) {
  4176. GGML_ASSERT(ggml_is_contiguous(mask));
  4177. GGML_ASSERT(mask->ne[2] == 1);
  4178. GGML_ASSERT(mask->ne[3] == 1);
  4179. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4180. }
  4181. bool is_node = false;
  4182. if (a->grad) {
  4183. is_node = true;
  4184. }
  4185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4186. float params[] = { scale };
  4187. ggml_set_op_params(result, params, sizeof(params));
  4188. result->op = GGML_OP_SOFT_MAX;
  4189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4190. result->src[0] = a;
  4191. result->src[1] = mask;
  4192. return result;
  4193. }
  4194. struct ggml_tensor * ggml_soft_max(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a) {
  4197. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4198. }
  4199. struct ggml_tensor * ggml_soft_max_inplace(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a) {
  4202. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4203. }
  4204. struct ggml_tensor * ggml_soft_max_ext(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a,
  4207. struct ggml_tensor * mask,
  4208. float scale) {
  4209. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4210. }
  4211. // ggml_soft_max_back
  4212. static struct ggml_tensor * ggml_soft_max_back_impl(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b,
  4216. bool inplace) {
  4217. bool is_node = false;
  4218. if (a->grad || b->grad) {
  4219. is_node = true; // TODO : implement backward pass
  4220. }
  4221. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4222. result->op = GGML_OP_SOFT_MAX_BACK;
  4223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4224. result->src[0] = a;
  4225. result->src[1] = b;
  4226. return result;
  4227. }
  4228. struct ggml_tensor * ggml_soft_max_back(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a,
  4231. struct ggml_tensor * b) {
  4232. return ggml_soft_max_back_impl(ctx, a, b, false);
  4233. }
  4234. struct ggml_tensor * ggml_soft_max_back_inplace(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a,
  4237. struct ggml_tensor * b) {
  4238. return ggml_soft_max_back_impl(ctx, a, b, true);
  4239. }
  4240. // ggml_rope
  4241. static struct ggml_tensor * ggml_rope_impl(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. struct ggml_tensor * b,
  4245. int n_dims,
  4246. int mode,
  4247. int n_ctx,
  4248. int n_orig_ctx,
  4249. float freq_base,
  4250. float freq_scale,
  4251. float ext_factor,
  4252. float attn_factor,
  4253. float beta_fast,
  4254. float beta_slow,
  4255. float xpos_base,
  4256. bool xpos_down,
  4257. bool inplace) {
  4258. GGML_ASSERT(ggml_is_vector(b));
  4259. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4260. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4261. bool is_node = false;
  4262. if (a->grad) {
  4263. is_node = true;
  4264. }
  4265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4266. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4267. memcpy(params + 5, &freq_base, sizeof(float));
  4268. memcpy(params + 6, &freq_scale, sizeof(float));
  4269. memcpy(params + 7, &ext_factor, sizeof(float));
  4270. memcpy(params + 8, &attn_factor, sizeof(float));
  4271. memcpy(params + 9, &beta_fast, sizeof(float));
  4272. memcpy(params + 10, &beta_slow, sizeof(float));
  4273. memcpy(params + 11, &xpos_base, sizeof(float));
  4274. memcpy(params + 12, &xpos_down, sizeof(bool));
  4275. ggml_set_op_params(result, params, sizeof(params));
  4276. result->op = GGML_OP_ROPE;
  4277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4278. result->src[0] = a;
  4279. result->src[1] = b;
  4280. return result;
  4281. }
  4282. struct ggml_tensor * ggml_rope(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a,
  4285. struct ggml_tensor * b,
  4286. int n_dims,
  4287. int mode,
  4288. int n_ctx) {
  4289. return ggml_rope_impl(
  4290. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4291. );
  4292. }
  4293. struct ggml_tensor * ggml_rope_inplace(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b,
  4297. int n_dims,
  4298. int mode,
  4299. int n_ctx) {
  4300. return ggml_rope_impl(
  4301. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4302. );
  4303. }
  4304. struct ggml_tensor * ggml_rope_custom(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int n_dims,
  4309. int mode,
  4310. int n_ctx,
  4311. int n_orig_ctx,
  4312. float freq_base,
  4313. float freq_scale,
  4314. float ext_factor,
  4315. float attn_factor,
  4316. float beta_fast,
  4317. float beta_slow) {
  4318. return ggml_rope_impl(
  4319. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4320. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4321. );
  4322. }
  4323. struct ggml_tensor * ggml_rope_custom_inplace(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b,
  4327. int n_dims,
  4328. int mode,
  4329. int n_ctx,
  4330. int n_orig_ctx,
  4331. float freq_base,
  4332. float freq_scale,
  4333. float ext_factor,
  4334. float attn_factor,
  4335. float beta_fast,
  4336. float beta_slow) {
  4337. return ggml_rope_impl(
  4338. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4339. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4340. );
  4341. }
  4342. struct ggml_tensor * ggml_rope_xpos_inplace(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a,
  4345. struct ggml_tensor * b,
  4346. int n_dims,
  4347. float base,
  4348. bool down) {
  4349. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4350. }
  4351. // ggml_rope_back
  4352. struct ggml_tensor * ggml_rope_back(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. struct ggml_tensor * b,
  4356. int n_dims,
  4357. int mode,
  4358. int n_ctx,
  4359. int n_orig_ctx,
  4360. float freq_base,
  4361. float freq_scale,
  4362. float ext_factor,
  4363. float attn_factor,
  4364. float beta_fast,
  4365. float beta_slow,
  4366. float xpos_base,
  4367. bool xpos_down) {
  4368. GGML_ASSERT(ggml_is_vector(b));
  4369. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4370. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4371. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4372. bool is_node = false;
  4373. if (a->grad) {
  4374. is_node = false; // TODO: implement backward
  4375. }
  4376. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4377. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4378. memcpy(params + 5, &freq_base, sizeof(float));
  4379. memcpy(params + 6, &freq_scale, sizeof(float));
  4380. memcpy(params + 7, &ext_factor, sizeof(float));
  4381. memcpy(params + 8, &attn_factor, sizeof(float));
  4382. memcpy(params + 9, &beta_fast, sizeof(float));
  4383. memcpy(params + 10, &beta_slow, sizeof(float));
  4384. memcpy(params + 11, &xpos_base, sizeof(float));
  4385. memcpy(params + 12, &xpos_down, sizeof(bool));
  4386. ggml_set_op_params(result, params, sizeof(params));
  4387. result->op = GGML_OP_ROPE_BACK;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src[0] = a;
  4390. result->src[1] = b;
  4391. return result;
  4392. }
  4393. // ggml_alibi
  4394. struct ggml_tensor * ggml_alibi(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. int n_past,
  4398. int n_head,
  4399. float bias_max) {
  4400. GGML_ASSERT(n_past >= 0);
  4401. bool is_node = false;
  4402. if (a->grad) {
  4403. GGML_ASSERT(false); // TODO: implement backward
  4404. is_node = true;
  4405. }
  4406. // TODO: when implement backward, fix this:
  4407. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4408. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4409. int32_t op_params[3] = { n_past, n_head };
  4410. memcpy(op_params + 2, &bias_max, sizeof(float));
  4411. ggml_set_op_params(result, op_params, sizeof(op_params));
  4412. result->op = GGML_OP_ALIBI;
  4413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4414. result->src[0] = a;
  4415. return result;
  4416. }
  4417. // ggml_clamp
  4418. struct ggml_tensor * ggml_clamp(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. float min,
  4422. float max) {
  4423. bool is_node = false;
  4424. if (a->grad) {
  4425. GGML_ASSERT(false); // TODO: implement backward
  4426. is_node = true;
  4427. }
  4428. // TODO: when implement backward, fix this:
  4429. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4430. float params[] = { min, max };
  4431. ggml_set_op_params(result, params, sizeof(params));
  4432. result->op = GGML_OP_CLAMP;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src[0] = a;
  4435. return result;
  4436. }
  4437. // ggml_conv_1d
  4438. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4439. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4440. }
  4441. GGML_API struct ggml_tensor * ggml_conv_1d(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. struct ggml_tensor * b,
  4445. int s0,
  4446. int p0,
  4447. int d0) {
  4448. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4449. struct ggml_tensor * result =
  4450. ggml_mul_mat(ctx,
  4451. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4452. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4453. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4454. return result;
  4455. }
  4456. // ggml_conv_1d_ph
  4457. struct ggml_tensor* ggml_conv_1d_ph(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. struct ggml_tensor * b,
  4461. int s,
  4462. int d) {
  4463. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4464. }
  4465. // ggml_conv_transpose_1d
  4466. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4467. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4468. }
  4469. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b,
  4473. int s0,
  4474. int p0,
  4475. int d0) {
  4476. GGML_ASSERT(ggml_is_matrix(b));
  4477. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4478. GGML_ASSERT(a->ne[3] == 1);
  4479. GGML_ASSERT(p0 == 0);
  4480. GGML_ASSERT(d0 == 1);
  4481. bool is_node = false;
  4482. if (a->grad || b->grad) {
  4483. GGML_ASSERT(false); // TODO: implement backward
  4484. is_node = true;
  4485. }
  4486. const int64_t ne[4] = {
  4487. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4488. a->ne[1], b->ne[2], 1,
  4489. };
  4490. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4491. int32_t params[] = { s0, p0, d0 };
  4492. ggml_set_op_params(result, params, sizeof(params));
  4493. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. result->src[1] = b;
  4497. return result;
  4498. }
  4499. // ggml_conv_depthwise
  4500. struct ggml_tensor * ggml_conv_depthwise_2d(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. struct ggml_tensor * b,
  4504. int s0,
  4505. int s1,
  4506. int p0,
  4507. int p1,
  4508. int d0,
  4509. int d1) {
  4510. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4511. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4512. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4513. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4514. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4515. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4516. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4517. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4518. return result;
  4519. }
  4520. // ggml_conv_2d
  4521. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4522. // a: [OC,IC, KH, KW]
  4523. // b: [N, IC, IH, IW]
  4524. // result: [N, OH, OW, IC*KH*KW]
  4525. struct ggml_tensor * ggml_im2col(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. struct ggml_tensor * b,
  4529. int s0,
  4530. int s1,
  4531. int p0,
  4532. int p1,
  4533. int d0,
  4534. int d1,
  4535. bool is_2D,
  4536. enum ggml_type dst_type) {
  4537. if(is_2D) {
  4538. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4539. } else {
  4540. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4541. }
  4542. bool is_node = false;
  4543. if (a->grad || b->grad) {
  4544. GGML_ASSERT(false); // TODO: implement backward
  4545. is_node = true;
  4546. }
  4547. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4548. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4549. const int64_t ne[4] = {
  4550. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4551. OW,
  4552. is_2D ? OH : b->ne[2],
  4553. is_2D ? b->ne[3] : 1,
  4554. };
  4555. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4556. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4557. ggml_set_op_params(result, params, sizeof(params));
  4558. result->op = GGML_OP_IM2COL;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. result->src[1] = b;
  4562. return result;
  4563. }
  4564. // a: [OC,IC, KH, KW]
  4565. // b: [N, IC, IH, IW]
  4566. // result: [N, OC, OH, OW]
  4567. struct ggml_tensor * ggml_conv_2d(
  4568. struct ggml_context * ctx,
  4569. struct ggml_tensor * a,
  4570. struct ggml_tensor * b,
  4571. int s0,
  4572. int s1,
  4573. int p0,
  4574. int p1,
  4575. int d0,
  4576. int d1) {
  4577. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4578. struct ggml_tensor * result =
  4579. ggml_mul_mat(ctx,
  4580. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4581. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4582. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4583. return result;
  4584. }
  4585. // ggml_conv_2d_sk_p0
  4586. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. struct ggml_tensor * b) {
  4590. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4591. }
  4592. // ggml_conv_2d_s1_ph
  4593. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a,
  4596. struct ggml_tensor * b) {
  4597. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4598. }
  4599. // ggml_conv_transpose_2d_p0
  4600. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4601. return (ins - 1) * s - 2 * p + ks;
  4602. }
  4603. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. int stride) {
  4608. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4609. bool is_node = false;
  4610. if (a->grad || b->grad) {
  4611. GGML_ASSERT(false); // TODO: implement backward
  4612. is_node = true;
  4613. }
  4614. const int64_t ne[4] = {
  4615. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4616. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4617. a->ne[2], b->ne[3],
  4618. };
  4619. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4620. ggml_set_op_params_i32(result, 0, stride);
  4621. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4623. result->src[0] = a;
  4624. result->src[1] = b;
  4625. return result;
  4626. }
  4627. // ggml_pool_*
  4628. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4629. return (ins + 2 * p - ks) / s + 1;
  4630. }
  4631. // ggml_pool_1d
  4632. struct ggml_tensor * ggml_pool_1d(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a,
  4635. enum ggml_op_pool op,
  4636. int k0,
  4637. int s0,
  4638. int p0) {
  4639. bool is_node = false;
  4640. if (a->grad) {
  4641. GGML_ASSERT(false); // TODO: implement backward
  4642. is_node = true;
  4643. }
  4644. const int64_t ne[2] = {
  4645. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4646. a->ne[1],
  4647. };
  4648. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4649. int32_t params[] = { op, k0, s0, p0 };
  4650. ggml_set_op_params(result, params, sizeof(params));
  4651. result->op = GGML_OP_POOL_1D;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src[0] = a;
  4654. return result;
  4655. }
  4656. // ggml_pool_2d
  4657. struct ggml_tensor * ggml_pool_2d(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. enum ggml_op_pool op,
  4661. int k0,
  4662. int k1,
  4663. int s0,
  4664. int s1,
  4665. float p0,
  4666. float p1) {
  4667. bool is_node = false;
  4668. if (a->grad) {
  4669. GGML_ASSERT(false); // TODO: implement backward
  4670. is_node = true;
  4671. }
  4672. struct ggml_tensor * result;
  4673. const int64_t ne[3] = {
  4674. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4675. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4676. a->ne[2],
  4677. };
  4678. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4679. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4680. ggml_set_op_params(result, params, sizeof(params));
  4681. result->op = GGML_OP_POOL_2D;
  4682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4683. result->src[0] = a;
  4684. return result;
  4685. }
  4686. // ggml_upscale
  4687. static struct ggml_tensor * ggml_upscale_impl(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. int scale_factor) {
  4691. bool is_node = false;
  4692. if (a->grad) {
  4693. GGML_ASSERT(false); // TODO: implement backward
  4694. is_node = true;
  4695. }
  4696. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4697. a->ne[0] * scale_factor,
  4698. a->ne[1] * scale_factor,
  4699. a->ne[2], a->ne[3]);
  4700. result->op = GGML_OP_UPSCALE;
  4701. result->op_params[0] = scale_factor;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src[0] = a;
  4704. return result;
  4705. }
  4706. struct ggml_tensor * ggml_pad(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a,
  4709. int p0, int p1, int p2, int p3) {
  4710. bool is_node = false;
  4711. if (a->grad) {
  4712. GGML_ASSERT(false); // TODO: implement backward
  4713. is_node = true;
  4714. }
  4715. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4716. a->ne[0] + p0,
  4717. a->ne[1] + p1,
  4718. a->ne[2] + p2,
  4719. a->ne[3] + p3);
  4720. result->op = GGML_OP_PAD;
  4721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4722. result->src[0] = a;
  4723. return result;
  4724. }
  4725. struct ggml_tensor * ggml_upscale(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. int scale_factor) {
  4729. return ggml_upscale_impl(ctx, a, scale_factor);
  4730. }
  4731. // ggml_argsort
  4732. struct ggml_tensor * ggml_argsort(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. enum ggml_sort_order order) {
  4736. bool is_node = false;
  4737. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4738. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4739. result->op = GGML_OP_ARGSORT;
  4740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4741. result->src[0] = a;
  4742. return result;
  4743. }
  4744. // ggml_top_k
  4745. struct ggml_tensor * ggml_top_k(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. int k) {
  4749. GGML_ASSERT(a->ne[0] >= k);
  4750. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4751. result = ggml_view_4d(ctx, result,
  4752. k, result->ne[1], result->ne[2], result->ne[3],
  4753. result->nb[1], result->nb[2], result->nb[3],
  4754. 0);
  4755. return result;
  4756. }
  4757. // ggml_flash_attn
  4758. struct ggml_tensor * ggml_flash_attn(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * q,
  4761. struct ggml_tensor * k,
  4762. struct ggml_tensor * v,
  4763. bool masked) {
  4764. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4765. // TODO: check if vT can be multiplied by (k*qT)
  4766. bool is_node = false;
  4767. if (q->grad || k->grad || v->grad) {
  4768. is_node = true;
  4769. }
  4770. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4772. int32_t t = masked ? 1 : 0;
  4773. ggml_set_op_params(result, &t, sizeof(t));
  4774. result->op = GGML_OP_FLASH_ATTN;
  4775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4776. result->src[0] = q;
  4777. result->src[1] = k;
  4778. result->src[2] = v;
  4779. return result;
  4780. }
  4781. // ggml_flash_ff
  4782. struct ggml_tensor * ggml_flash_ff(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. struct ggml_tensor * b0,
  4786. struct ggml_tensor * b1,
  4787. struct ggml_tensor * c0,
  4788. struct ggml_tensor * c1) {
  4789. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4790. // TODO: more checks
  4791. bool is_node = false;
  4792. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4793. is_node = true;
  4794. }
  4795. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4796. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4797. result->op = GGML_OP_FLASH_FF;
  4798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4799. result->src[0] = a;
  4800. result->src[1] = b0;
  4801. result->src[2] = b1;
  4802. result->src[3] = c0;
  4803. result->src[4] = c1;
  4804. return result;
  4805. }
  4806. // ggml_flash_attn_back
  4807. struct ggml_tensor * ggml_flash_attn_back(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * q,
  4810. struct ggml_tensor * k,
  4811. struct ggml_tensor * v,
  4812. struct ggml_tensor * d,
  4813. bool masked) {
  4814. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4815. // TODO: check if vT can be multiplied by (k*qT)
  4816. // d shape [D,N,ne2,ne3]
  4817. // q shape [D,N,ne2,ne3]
  4818. // k shape [D,M,kvne2,ne3]
  4819. // v shape [M,D,kvne2,ne3]
  4820. const int64_t D = q->ne[0];
  4821. const int64_t N = q->ne[1];
  4822. const int64_t M = k->ne[1];
  4823. const int64_t ne2 = q->ne[2];
  4824. const int64_t ne3 = q->ne[3];
  4825. const int64_t kvne2 = k->ne[2];
  4826. GGML_ASSERT(k->ne[0] == D);
  4827. GGML_ASSERT(v->ne[0] == M);
  4828. GGML_ASSERT(v->ne[1] == D);
  4829. GGML_ASSERT(d->ne[0] == D);
  4830. GGML_ASSERT(d->ne[1] == N);
  4831. GGML_ASSERT(k->ne[2] == kvne2);
  4832. GGML_ASSERT(k->ne[3] == ne3);
  4833. GGML_ASSERT(v->ne[2] == kvne2);
  4834. GGML_ASSERT(v->ne[3] == ne3);
  4835. GGML_ASSERT(d->ne[2] == ne2);
  4836. GGML_ASSERT(d->ne[3] == ne3);
  4837. GGML_ASSERT(ne2 % kvne2 == 0);
  4838. bool is_node = false;
  4839. if (q->grad || k->grad || v->grad) {
  4840. // when using this operation (in backwards pass) these grads are set.
  4841. // we don't want to create (big) grad of our result, so is_node is false.
  4842. is_node = false;
  4843. }
  4844. // store gradients of q, k and v as continuous tensors concatenated in result.
  4845. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4846. const int64_t elem_q = ggml_nelements(q);
  4847. const int64_t elem_k = ggml_nelements(k);
  4848. const int64_t elem_v = ggml_nelements(v);
  4849. enum ggml_type result_type = GGML_TYPE_F32;
  4850. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4851. const size_t tsize = ggml_type_size(result_type);
  4852. const size_t offs_q = 0;
  4853. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4854. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4855. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4856. const size_t nelements = (end + tsize - 1)/tsize;
  4857. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4858. int32_t masked_i = masked ? 1 : 0;
  4859. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4860. result->op = GGML_OP_FLASH_ATTN_BACK;
  4861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4862. result->src[0] = q;
  4863. result->src[1] = k;
  4864. result->src[2] = v;
  4865. result->src[3] = d;
  4866. return result;
  4867. }
  4868. // ggml_win_part
  4869. struct ggml_tensor * ggml_win_part(
  4870. struct ggml_context * ctx,
  4871. struct ggml_tensor * a,
  4872. int w) {
  4873. GGML_ASSERT(a->ne[3] == 1);
  4874. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4875. bool is_node = false;
  4876. if (a->grad) {
  4877. GGML_ASSERT(false); // TODO: implement backward
  4878. is_node = true;
  4879. }
  4880. // padding
  4881. const int px = (w - a->ne[1]%w)%w;
  4882. const int py = (w - a->ne[2]%w)%w;
  4883. const int npx = (px + a->ne[1])/w;
  4884. const int npy = (py + a->ne[2])/w;
  4885. const int np = npx*npy;
  4886. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4887. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4888. int32_t params[] = { npx, npy, w };
  4889. ggml_set_op_params(result, params, sizeof(params));
  4890. result->op = GGML_OP_WIN_PART;
  4891. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4892. result->src[0] = a;
  4893. return result;
  4894. }
  4895. // ggml_win_unpart
  4896. struct ggml_tensor * ggml_win_unpart(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. int w0,
  4900. int h0,
  4901. int w) {
  4902. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4903. bool is_node = false;
  4904. if (a->grad) {
  4905. GGML_ASSERT(false); // TODO: implement backward
  4906. is_node = true;
  4907. }
  4908. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4909. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4910. int32_t params[] = { w };
  4911. ggml_set_op_params(result, params, sizeof(params));
  4912. result->op = GGML_OP_WIN_UNPART;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. return result;
  4916. }
  4917. // ggml_get_rel_pos
  4918. struct ggml_tensor * ggml_get_rel_pos(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. int qh,
  4922. int kh) {
  4923. GGML_ASSERT(qh == kh);
  4924. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4925. bool is_node = false;
  4926. if (a->grad) {
  4927. GGML_ASSERT(false); // TODO: implement backward
  4928. is_node = true;
  4929. }
  4930. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4931. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4932. result->op = GGML_OP_GET_REL_POS;
  4933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4934. result->src[0] = a;
  4935. return result;
  4936. }
  4937. // ggml_add_rel_pos
  4938. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. struct ggml_tensor * pw,
  4942. struct ggml_tensor * ph,
  4943. bool inplace) {
  4944. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4945. GGML_ASSERT(ggml_is_contiguous(a));
  4946. GGML_ASSERT(ggml_is_contiguous(pw));
  4947. GGML_ASSERT(ggml_is_contiguous(ph));
  4948. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4949. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4950. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4951. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4952. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4953. bool is_node = false;
  4954. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4955. is_node = true;
  4956. }
  4957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4958. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4959. result->op = GGML_OP_ADD_REL_POS;
  4960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4961. result->src[0] = a;
  4962. result->src[1] = pw;
  4963. result->src[2] = ph;
  4964. return result;
  4965. }
  4966. struct ggml_tensor * ggml_add_rel_pos(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. struct ggml_tensor * pw,
  4970. struct ggml_tensor * ph) {
  4971. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4972. }
  4973. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. struct ggml_tensor * pw,
  4977. struct ggml_tensor * ph) {
  4978. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4979. }
  4980. // gmml_unary
  4981. static struct ggml_tensor * ggml_unary_impl(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. enum ggml_unary_op op,
  4985. bool inplace) {
  4986. bool is_node = false;
  4987. if (!inplace && (a->grad)) {
  4988. is_node = true;
  4989. }
  4990. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4991. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4992. result->op = GGML_OP_UNARY;
  4993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4994. result->src[0] = a;
  4995. return result;
  4996. }
  4997. struct ggml_tensor * ggml_unary(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. enum ggml_unary_op op) {
  5001. return ggml_unary_impl(ctx, a, op, false);
  5002. }
  5003. struct ggml_tensor * ggml_unary_inplace(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. enum ggml_unary_op op) {
  5007. return ggml_unary_impl(ctx, a, op, true);
  5008. }
  5009. // ggml_map_unary
  5010. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. const ggml_unary_op_f32_t fun,
  5014. bool inplace) {
  5015. bool is_node = false;
  5016. if (!inplace && a->grad) {
  5017. is_node = true;
  5018. }
  5019. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5020. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5021. result->op = GGML_OP_MAP_UNARY;
  5022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5023. result->src[0] = a;
  5024. return result;
  5025. }
  5026. struct ggml_tensor * ggml_map_unary_f32(
  5027. struct ggml_context * ctx,
  5028. struct ggml_tensor * a,
  5029. const ggml_unary_op_f32_t fun) {
  5030. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5031. }
  5032. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a,
  5035. const ggml_unary_op_f32_t fun) {
  5036. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5037. }
  5038. // ggml_map_binary
  5039. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. struct ggml_tensor * b,
  5043. const ggml_binary_op_f32_t fun,
  5044. bool inplace) {
  5045. GGML_ASSERT(ggml_are_same_shape(a, b));
  5046. bool is_node = false;
  5047. if (!inplace && (a->grad || b->grad)) {
  5048. is_node = true;
  5049. }
  5050. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5051. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5052. result->op = GGML_OP_MAP_BINARY;
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src[0] = a;
  5055. result->src[1] = b;
  5056. return result;
  5057. }
  5058. struct ggml_tensor * ggml_map_binary_f32(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. const ggml_binary_op_f32_t fun) {
  5063. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5064. }
  5065. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. struct ggml_tensor * b,
  5069. const ggml_binary_op_f32_t fun) {
  5070. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5071. }
  5072. // ggml_map_custom1_f32
  5073. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. const ggml_custom1_op_f32_t fun,
  5077. bool inplace) {
  5078. bool is_node = false;
  5079. if (!inplace && a->grad) {
  5080. is_node = true;
  5081. }
  5082. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5083. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5084. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5086. result->src[0] = a;
  5087. return result;
  5088. }
  5089. struct ggml_tensor * ggml_map_custom1_f32(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. const ggml_custom1_op_f32_t fun) {
  5093. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5094. }
  5095. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. const ggml_custom1_op_f32_t fun) {
  5099. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5100. }
  5101. // ggml_map_custom2_f32
  5102. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. struct ggml_tensor * b,
  5106. const ggml_custom2_op_f32_t fun,
  5107. bool inplace) {
  5108. bool is_node = false;
  5109. if (!inplace && (a->grad || b->grad)) {
  5110. is_node = true;
  5111. }
  5112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5113. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5114. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5116. result->src[0] = a;
  5117. result->src[1] = b;
  5118. return result;
  5119. }
  5120. struct ggml_tensor * ggml_map_custom2_f32(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. struct ggml_tensor * b,
  5124. const ggml_custom2_op_f32_t fun) {
  5125. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5126. }
  5127. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * a,
  5130. struct ggml_tensor * b,
  5131. const ggml_custom2_op_f32_t fun) {
  5132. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5133. }
  5134. // ggml_map_custom3_f32
  5135. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. struct ggml_tensor * b,
  5139. struct ggml_tensor * c,
  5140. const ggml_custom3_op_f32_t fun,
  5141. bool inplace) {
  5142. bool is_node = false;
  5143. if (!inplace && (a->grad || b->grad || c->grad)) {
  5144. is_node = true;
  5145. }
  5146. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5147. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5148. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5150. result->src[0] = a;
  5151. result->src[1] = b;
  5152. result->src[2] = c;
  5153. return result;
  5154. }
  5155. struct ggml_tensor * ggml_map_custom3_f32(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. struct ggml_tensor * b,
  5159. struct ggml_tensor * c,
  5160. const ggml_custom3_op_f32_t fun) {
  5161. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5162. }
  5163. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. struct ggml_tensor * b,
  5167. struct ggml_tensor * c,
  5168. const ggml_custom3_op_f32_t fun) {
  5169. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5170. }
  5171. // ggml_map_custom1
  5172. struct ggml_map_custom1_op_params {
  5173. ggml_custom1_op_t fun;
  5174. int n_tasks;
  5175. void * userdata;
  5176. };
  5177. static struct ggml_tensor * ggml_map_custom1_impl(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. const ggml_custom1_op_t fun,
  5181. int n_tasks,
  5182. void * userdata,
  5183. bool inplace) {
  5184. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5185. bool is_node = false;
  5186. if (!inplace && a->grad) {
  5187. is_node = true;
  5188. }
  5189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5190. struct ggml_map_custom1_op_params params = {
  5191. /*.fun =*/ fun,
  5192. /*.n_tasks =*/ n_tasks,
  5193. /*.userdata =*/ userdata
  5194. };
  5195. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5196. result->op = GGML_OP_MAP_CUSTOM1;
  5197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5198. result->src[0] = a;
  5199. return result;
  5200. }
  5201. struct ggml_tensor * ggml_map_custom1(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. const ggml_custom1_op_t fun,
  5205. int n_tasks,
  5206. void * userdata) {
  5207. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5208. }
  5209. struct ggml_tensor * ggml_map_custom1_inplace(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. const ggml_custom1_op_t fun,
  5213. int n_tasks,
  5214. void * userdata) {
  5215. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5216. }
  5217. // ggml_map_custom2
  5218. struct ggml_map_custom2_op_params {
  5219. ggml_custom2_op_t fun;
  5220. int n_tasks;
  5221. void * userdata;
  5222. };
  5223. static struct ggml_tensor * ggml_map_custom2_impl(
  5224. struct ggml_context * ctx,
  5225. struct ggml_tensor * a,
  5226. struct ggml_tensor * b,
  5227. const ggml_custom2_op_t fun,
  5228. int n_tasks,
  5229. void * userdata,
  5230. bool inplace) {
  5231. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5232. bool is_node = false;
  5233. if (!inplace && (a->grad || b->grad)) {
  5234. is_node = true;
  5235. }
  5236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5237. struct ggml_map_custom2_op_params params = {
  5238. /*.fun =*/ fun,
  5239. /*.n_tasks =*/ n_tasks,
  5240. /*.userdata =*/ userdata
  5241. };
  5242. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5243. result->op = GGML_OP_MAP_CUSTOM2;
  5244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5245. result->src[0] = a;
  5246. result->src[1] = b;
  5247. return result;
  5248. }
  5249. struct ggml_tensor * ggml_map_custom2(
  5250. struct ggml_context * ctx,
  5251. struct ggml_tensor * a,
  5252. struct ggml_tensor * b,
  5253. const ggml_custom2_op_t fun,
  5254. int n_tasks,
  5255. void * userdata) {
  5256. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5257. }
  5258. struct ggml_tensor * ggml_map_custom2_inplace(
  5259. struct ggml_context * ctx,
  5260. struct ggml_tensor * a,
  5261. struct ggml_tensor * b,
  5262. const ggml_custom2_op_t fun,
  5263. int n_tasks,
  5264. void * userdata) {
  5265. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5266. }
  5267. // ggml_map_custom3
  5268. struct ggml_map_custom3_op_params {
  5269. ggml_custom3_op_t fun;
  5270. int n_tasks;
  5271. void * userdata;
  5272. };
  5273. static struct ggml_tensor * ggml_map_custom3_impl(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. struct ggml_tensor * b,
  5277. struct ggml_tensor * c,
  5278. const ggml_custom3_op_t fun,
  5279. int n_tasks,
  5280. void * userdata,
  5281. bool inplace) {
  5282. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5283. bool is_node = false;
  5284. if (!inplace && (a->grad || b->grad || c->grad)) {
  5285. is_node = true;
  5286. }
  5287. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5288. struct ggml_map_custom3_op_params params = {
  5289. /*.fun =*/ fun,
  5290. /*.n_tasks =*/ n_tasks,
  5291. /*.userdata =*/ userdata
  5292. };
  5293. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5294. result->op = GGML_OP_MAP_CUSTOM3;
  5295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5296. result->src[0] = a;
  5297. result->src[1] = b;
  5298. result->src[2] = c;
  5299. return result;
  5300. }
  5301. struct ggml_tensor * ggml_map_custom3(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. struct ggml_tensor * b,
  5305. struct ggml_tensor * c,
  5306. const ggml_custom3_op_t fun,
  5307. int n_tasks,
  5308. void * userdata) {
  5309. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5310. }
  5311. struct ggml_tensor * ggml_map_custom3_inplace(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. struct ggml_tensor * b,
  5315. struct ggml_tensor * c,
  5316. const ggml_custom3_op_t fun,
  5317. int n_tasks,
  5318. void * userdata) {
  5319. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5320. }
  5321. // ggml_cross_entropy_loss
  5322. struct ggml_tensor * ggml_cross_entropy_loss(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. struct ggml_tensor * b) {
  5326. GGML_ASSERT(ggml_are_same_shape(a, b));
  5327. bool is_node = false;
  5328. if (a->grad || b->grad) {
  5329. is_node = true;
  5330. }
  5331. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5332. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5334. result->src[0] = a;
  5335. result->src[1] = b;
  5336. return result;
  5337. }
  5338. // ggml_cross_entropy_loss_back
  5339. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a,
  5342. struct ggml_tensor * b,
  5343. struct ggml_tensor * c) {
  5344. GGML_ASSERT(ggml_are_same_shape(a, b));
  5345. GGML_ASSERT(ggml_is_scalar(c));
  5346. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5347. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5348. result->grad = NULL;
  5349. result->src[0] = a;
  5350. result->src[1] = b;
  5351. result->src[2] = c;
  5352. return result;
  5353. }
  5354. ////////////////////////////////////////////////////////////////////////////////
  5355. void ggml_set_param(
  5356. struct ggml_context * ctx,
  5357. struct ggml_tensor * tensor) {
  5358. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5359. GGML_ASSERT(tensor->grad == NULL);
  5360. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5361. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5362. }
  5363. // ggml_compute_forward_dup
  5364. static void ggml_compute_forward_dup_same_cont(
  5365. const struct ggml_compute_params * params,
  5366. const struct ggml_tensor * src0,
  5367. struct ggml_tensor * dst) {
  5368. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5369. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5370. GGML_ASSERT(src0->type == dst->type);
  5371. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5372. return;
  5373. }
  5374. const size_t nb00 = src0->nb[0];
  5375. const size_t nb0 = dst->nb[0];
  5376. const int ith = params->ith; // thread index
  5377. const int nth = params->nth; // number of threads
  5378. // parallelize by elements
  5379. const int ne = ggml_nelements(dst);
  5380. const int dr = (ne + nth - 1) / nth;
  5381. const int ie0 = dr * ith;
  5382. const int ie1 = MIN(ie0 + dr, ne);
  5383. if (ie0 < ie1) {
  5384. memcpy(
  5385. ((char *) dst->data + ie0*nb0),
  5386. ((char *) src0->data + ie0*nb00),
  5387. (ie1 - ie0) * ggml_type_size(src0->type));
  5388. }
  5389. }
  5390. static void ggml_compute_forward_dup_f16(
  5391. const struct ggml_compute_params * params,
  5392. const struct ggml_tensor * src0,
  5393. struct ggml_tensor * dst) {
  5394. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5396. return;
  5397. }
  5398. GGML_TENSOR_UNARY_OP_LOCALS
  5399. const int ith = params->ith; // thread index
  5400. const int nth = params->nth; // number of threads
  5401. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5402. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5403. return;
  5404. }
  5405. // parallelize by rows
  5406. const int nr = ne01;
  5407. // number of rows per thread
  5408. const int dr = (nr + nth - 1) / nth;
  5409. // row range for this thread
  5410. const int ir0 = dr * ith;
  5411. const int ir1 = MIN(ir0 + dr, nr);
  5412. if (src0->type == dst->type &&
  5413. ne00 == ne0 &&
  5414. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5415. // copy by rows
  5416. const size_t rs = ne00*nb00;
  5417. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5418. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5419. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5420. memcpy(
  5421. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5422. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5423. rs);
  5424. }
  5425. }
  5426. }
  5427. return;
  5428. }
  5429. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5430. if (ggml_is_contiguous(dst)) {
  5431. if (nb00 == sizeof(ggml_fp16_t)) {
  5432. if (dst->type == GGML_TYPE_F16) {
  5433. size_t id = 0;
  5434. const size_t rs = ne00 * nb00;
  5435. char * dst_ptr = (char *) dst->data;
  5436. for (int i03 = 0; i03 < ne03; i03++) {
  5437. for (int i02 = 0; i02 < ne02; i02++) {
  5438. id += rs * ir0;
  5439. for (int i01 = ir0; i01 < ir1; i01++) {
  5440. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5441. memcpy(dst_ptr + id, src0_ptr, rs);
  5442. id += rs;
  5443. }
  5444. id += rs * (ne01 - ir1);
  5445. }
  5446. }
  5447. } else if (dst->type == GGML_TYPE_F32) {
  5448. size_t id = 0;
  5449. float * dst_ptr = (float *) dst->data;
  5450. for (int i03 = 0; i03 < ne03; i03++) {
  5451. for (int i02 = 0; i02 < ne02; i02++) {
  5452. id += ne00 * ir0;
  5453. for (int i01 = ir0; i01 < ir1; i01++) {
  5454. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5455. for (int i00 = 0; i00 < ne00; i00++) {
  5456. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5457. id++;
  5458. }
  5459. }
  5460. id += ne00 * (ne01 - ir1);
  5461. }
  5462. }
  5463. } else if (type_traits[dst->type].from_float) {
  5464. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5465. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5466. size_t id = 0;
  5467. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5468. char * dst_ptr = (char *) dst->data;
  5469. for (int i03 = 0; i03 < ne03; i03++) {
  5470. for (int i02 = 0; i02 < ne02; i02++) {
  5471. id += rs * ir0;
  5472. for (int i01 = ir0; i01 < ir1; i01++) {
  5473. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5474. for (int i00 = 0; i00 < ne00; i00++) {
  5475. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5476. }
  5477. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5478. id += rs;
  5479. }
  5480. id += rs * (ne01 - ir1);
  5481. }
  5482. }
  5483. } else {
  5484. GGML_ASSERT(false); // TODO: implement
  5485. }
  5486. } else {
  5487. //printf("%s: this is not optimal - fix me\n", __func__);
  5488. if (dst->type == GGML_TYPE_F32) {
  5489. size_t id = 0;
  5490. float * dst_ptr = (float *) dst->data;
  5491. for (int i03 = 0; i03 < ne03; i03++) {
  5492. for (int i02 = 0; i02 < ne02; i02++) {
  5493. id += ne00 * ir0;
  5494. for (int i01 = ir0; i01 < ir1; i01++) {
  5495. for (int i00 = 0; i00 < ne00; i00++) {
  5496. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5497. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5498. id++;
  5499. }
  5500. }
  5501. id += ne00 * (ne01 - ir1);
  5502. }
  5503. }
  5504. } else if (dst->type == GGML_TYPE_F16) {
  5505. size_t id = 0;
  5506. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5507. for (int i03 = 0; i03 < ne03; i03++) {
  5508. for (int i02 = 0; i02 < ne02; i02++) {
  5509. id += ne00 * ir0;
  5510. for (int i01 = ir0; i01 < ir1; i01++) {
  5511. for (int i00 = 0; i00 < ne00; i00++) {
  5512. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5513. dst_ptr[id] = *src0_ptr;
  5514. id++;
  5515. }
  5516. }
  5517. id += ne00 * (ne01 - ir1);
  5518. }
  5519. }
  5520. } else {
  5521. GGML_ASSERT(false); // TODO: implement
  5522. }
  5523. }
  5524. return;
  5525. }
  5526. // dst counters
  5527. int64_t i10 = 0;
  5528. int64_t i11 = 0;
  5529. int64_t i12 = 0;
  5530. int64_t i13 = 0;
  5531. if (dst->type == GGML_TYPE_F16) {
  5532. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5533. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5534. i10 += ne00 * ir0;
  5535. while (i10 >= ne0) {
  5536. i10 -= ne0;
  5537. if (++i11 == ne1) {
  5538. i11 = 0;
  5539. if (++i12 == ne2) {
  5540. i12 = 0;
  5541. if (++i13 == ne3) {
  5542. i13 = 0;
  5543. }
  5544. }
  5545. }
  5546. }
  5547. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5548. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5549. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5550. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5551. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5552. if (++i10 == ne00) {
  5553. i10 = 0;
  5554. if (++i11 == ne01) {
  5555. i11 = 0;
  5556. if (++i12 == ne02) {
  5557. i12 = 0;
  5558. if (++i13 == ne03) {
  5559. i13 = 0;
  5560. }
  5561. }
  5562. }
  5563. }
  5564. }
  5565. }
  5566. i10 += ne00 * (ne01 - ir1);
  5567. while (i10 >= ne0) {
  5568. i10 -= ne0;
  5569. if (++i11 == ne1) {
  5570. i11 = 0;
  5571. if (++i12 == ne2) {
  5572. i12 = 0;
  5573. if (++i13 == ne3) {
  5574. i13 = 0;
  5575. }
  5576. }
  5577. }
  5578. }
  5579. }
  5580. }
  5581. } else if (dst->type == GGML_TYPE_F32) {
  5582. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5583. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5584. i10 += ne00 * ir0;
  5585. while (i10 >= ne0) {
  5586. i10 -= ne0;
  5587. if (++i11 == ne1) {
  5588. i11 = 0;
  5589. if (++i12 == ne2) {
  5590. i12 = 0;
  5591. if (++i13 == ne3) {
  5592. i13 = 0;
  5593. }
  5594. }
  5595. }
  5596. }
  5597. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5598. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5599. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5600. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5601. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5602. if (++i10 == ne0) {
  5603. i10 = 0;
  5604. if (++i11 == ne1) {
  5605. i11 = 0;
  5606. if (++i12 == ne2) {
  5607. i12 = 0;
  5608. if (++i13 == ne3) {
  5609. i13 = 0;
  5610. }
  5611. }
  5612. }
  5613. }
  5614. }
  5615. }
  5616. i10 += ne00 * (ne01 - ir1);
  5617. while (i10 >= ne0) {
  5618. i10 -= ne0;
  5619. if (++i11 == ne1) {
  5620. i11 = 0;
  5621. if (++i12 == ne2) {
  5622. i12 = 0;
  5623. if (++i13 == ne3) {
  5624. i13 = 0;
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. }
  5631. } else {
  5632. GGML_ASSERT(false); // TODO: implement
  5633. }
  5634. }
  5635. static void ggml_compute_forward_dup_f32(
  5636. const struct ggml_compute_params * params,
  5637. const struct ggml_tensor * src0,
  5638. struct ggml_tensor * dst) {
  5639. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5641. return;
  5642. }
  5643. GGML_TENSOR_UNARY_OP_LOCALS
  5644. const int ith = params->ith; // thread index
  5645. const int nth = params->nth; // number of threads
  5646. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5647. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5648. return;
  5649. }
  5650. // parallelize by rows
  5651. const int nr = ne01;
  5652. // number of rows per thread
  5653. const int dr = (nr + nth - 1) / nth;
  5654. // row range for this thread
  5655. const int ir0 = dr * ith;
  5656. const int ir1 = MIN(ir0 + dr, nr);
  5657. if (src0->type == dst->type &&
  5658. ne00 == ne0 &&
  5659. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5660. // copy by rows
  5661. const size_t rs = ne00*nb00;
  5662. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5663. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5664. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5665. memcpy(
  5666. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5667. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5668. rs);
  5669. }
  5670. }
  5671. }
  5672. return;
  5673. }
  5674. if (ggml_is_contiguous(dst)) {
  5675. // TODO: simplify
  5676. if (nb00 == sizeof(float)) {
  5677. if (dst->type == GGML_TYPE_F32) {
  5678. size_t id = 0;
  5679. const size_t rs = ne00 * nb00;
  5680. char * dst_ptr = (char *) dst->data;
  5681. for (int i03 = 0; i03 < ne03; i03++) {
  5682. for (int i02 = 0; i02 < ne02; i02++) {
  5683. id += rs * ir0;
  5684. for (int i01 = ir0; i01 < ir1; i01++) {
  5685. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5686. memcpy(dst_ptr + id, src0_ptr, rs);
  5687. id += rs;
  5688. }
  5689. id += rs * (ne01 - ir1);
  5690. }
  5691. }
  5692. } else if (type_traits[dst->type].from_float) {
  5693. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5694. size_t id = 0;
  5695. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5696. char * dst_ptr = (char *) dst->data;
  5697. for (int i03 = 0; i03 < ne03; i03++) {
  5698. for (int i02 = 0; i02 < ne02; i02++) {
  5699. id += rs * ir0;
  5700. for (int i01 = ir0; i01 < ir1; i01++) {
  5701. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5702. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5703. id += rs;
  5704. }
  5705. id += rs * (ne01 - ir1);
  5706. }
  5707. }
  5708. } else {
  5709. GGML_ASSERT(false); // TODO: implement
  5710. }
  5711. } else {
  5712. //printf("%s: this is not optimal - fix me\n", __func__);
  5713. if (dst->type == GGML_TYPE_F32) {
  5714. size_t id = 0;
  5715. float * dst_ptr = (float *) dst->data;
  5716. for (int i03 = 0; i03 < ne03; i03++) {
  5717. for (int i02 = 0; i02 < ne02; i02++) {
  5718. id += ne00 * ir0;
  5719. for (int i01 = ir0; i01 < ir1; i01++) {
  5720. for (int i00 = 0; i00 < ne00; i00++) {
  5721. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5722. dst_ptr[id] = *src0_ptr;
  5723. id++;
  5724. }
  5725. }
  5726. id += ne00 * (ne01 - ir1);
  5727. }
  5728. }
  5729. } else if (dst->type == GGML_TYPE_F16) {
  5730. size_t id = 0;
  5731. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5732. for (int i03 = 0; i03 < ne03; i03++) {
  5733. for (int i02 = 0; i02 < ne02; i02++) {
  5734. id += ne00 * ir0;
  5735. for (int i01 = ir0; i01 < ir1; i01++) {
  5736. for (int i00 = 0; i00 < ne00; i00++) {
  5737. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5738. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5739. id++;
  5740. }
  5741. }
  5742. id += ne00 * (ne01 - ir1);
  5743. }
  5744. }
  5745. } else {
  5746. GGML_ASSERT(false); // TODO: implement
  5747. }
  5748. }
  5749. return;
  5750. }
  5751. // dst counters
  5752. int64_t i10 = 0;
  5753. int64_t i11 = 0;
  5754. int64_t i12 = 0;
  5755. int64_t i13 = 0;
  5756. if (dst->type == GGML_TYPE_F32) {
  5757. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5758. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5759. i10 += ne00 * ir0;
  5760. while (i10 >= ne0) {
  5761. i10 -= ne0;
  5762. if (++i11 == ne1) {
  5763. i11 = 0;
  5764. if (++i12 == ne2) {
  5765. i12 = 0;
  5766. if (++i13 == ne3) {
  5767. i13 = 0;
  5768. }
  5769. }
  5770. }
  5771. }
  5772. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5773. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5774. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5775. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5776. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5777. if (++i10 == ne0) {
  5778. i10 = 0;
  5779. if (++i11 == ne1) {
  5780. i11 = 0;
  5781. if (++i12 == ne2) {
  5782. i12 = 0;
  5783. if (++i13 == ne3) {
  5784. i13 = 0;
  5785. }
  5786. }
  5787. }
  5788. }
  5789. }
  5790. }
  5791. i10 += ne00 * (ne01 - ir1);
  5792. while (i10 >= ne0) {
  5793. i10 -= ne0;
  5794. if (++i11 == ne1) {
  5795. i11 = 0;
  5796. if (++i12 == ne2) {
  5797. i12 = 0;
  5798. if (++i13 == ne3) {
  5799. i13 = 0;
  5800. }
  5801. }
  5802. }
  5803. }
  5804. }
  5805. }
  5806. } else if (dst->type == GGML_TYPE_F16) {
  5807. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5808. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5809. i10 += ne00 * ir0;
  5810. while (i10 >= ne0) {
  5811. i10 -= ne0;
  5812. if (++i11 == ne1) {
  5813. i11 = 0;
  5814. if (++i12 == ne2) {
  5815. i12 = 0;
  5816. if (++i13 == ne3) {
  5817. i13 = 0;
  5818. }
  5819. }
  5820. }
  5821. }
  5822. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5823. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5824. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5825. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5826. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5827. if (++i10 == ne0) {
  5828. i10 = 0;
  5829. if (++i11 == ne1) {
  5830. i11 = 0;
  5831. if (++i12 == ne2) {
  5832. i12 = 0;
  5833. if (++i13 == ne3) {
  5834. i13 = 0;
  5835. }
  5836. }
  5837. }
  5838. }
  5839. }
  5840. }
  5841. i10 += ne00 * (ne01 - ir1);
  5842. while (i10 >= ne0) {
  5843. i10 -= ne0;
  5844. if (++i11 == ne1) {
  5845. i11 = 0;
  5846. if (++i12 == ne2) {
  5847. i12 = 0;
  5848. if (++i13 == ne3) {
  5849. i13 = 0;
  5850. }
  5851. }
  5852. }
  5853. }
  5854. }
  5855. }
  5856. } else {
  5857. GGML_ASSERT(false); // TODO: implement
  5858. }
  5859. }
  5860. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5861. static void ggml_compute_forward_dup_bytes(
  5862. const struct ggml_compute_params * params,
  5863. const struct ggml_tensor * src0,
  5864. struct ggml_tensor * dst) {
  5865. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5866. GGML_ASSERT(src0->type == dst->type);
  5867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5868. return;
  5869. }
  5870. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5871. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5872. return;
  5873. }
  5874. GGML_TENSOR_UNARY_OP_LOCALS;
  5875. const size_t type_size = ggml_type_size(src0->type);
  5876. const int ith = params->ith; // thread index
  5877. const int nth = params->nth; // number of threads
  5878. // parallelize by rows
  5879. const int nr = ne01;
  5880. // number of rows per thread
  5881. const int dr = (nr + nth - 1) / nth;
  5882. // row range for this thread
  5883. const int ir0 = dr * ith;
  5884. const int ir1 = MIN(ir0 + dr, nr);
  5885. if (src0->type == dst->type &&
  5886. ne00 == ne0 &&
  5887. nb00 == type_size && nb0 == type_size) {
  5888. // copy by rows
  5889. const size_t rs = ne00 * type_size;
  5890. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5891. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5892. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5893. memcpy(
  5894. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5895. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5896. rs);
  5897. }
  5898. }
  5899. }
  5900. return;
  5901. }
  5902. if (ggml_is_contiguous(dst)) {
  5903. size_t id = 0;
  5904. char * dst_ptr = (char *) dst->data;
  5905. const size_t rs = ne00 * type_size;
  5906. if (nb00 == type_size) {
  5907. // src0 is contigous on first dimension, copy by rows
  5908. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5909. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5910. id += rs * ir0;
  5911. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5912. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5913. memcpy(dst_ptr + id, src0_ptr, rs);
  5914. id += rs;
  5915. }
  5916. id += rs * (ne01 - ir1);
  5917. }
  5918. }
  5919. } else {
  5920. //printf("%s: this is not optimal - fix me\n", __func__);
  5921. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5922. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5923. id += rs * ir0;
  5924. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5925. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5926. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5927. memcpy(dst_ptr + id, src0_ptr, type_size);
  5928. id += type_size;
  5929. }
  5930. }
  5931. id += rs * (ne01 - ir1);
  5932. }
  5933. }
  5934. }
  5935. return;
  5936. }
  5937. // dst counters
  5938. int64_t i10 = 0;
  5939. int64_t i11 = 0;
  5940. int64_t i12 = 0;
  5941. int64_t i13 = 0;
  5942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5944. i10 += ne00 * ir0;
  5945. while (i10 >= ne0) {
  5946. i10 -= ne0;
  5947. if (++i11 == ne1) {
  5948. i11 = 0;
  5949. if (++i12 == ne2) {
  5950. i12 = 0;
  5951. if (++i13 == ne3) {
  5952. i13 = 0;
  5953. }
  5954. }
  5955. }
  5956. }
  5957. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5958. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5959. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5960. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5961. memcpy(dst_ptr, src0_ptr, type_size);
  5962. if (++i10 == ne0) {
  5963. i10 = 0;
  5964. if (++i11 == ne1) {
  5965. i11 = 0;
  5966. if (++i12 == ne2) {
  5967. i12 = 0;
  5968. if (++i13 == ne3) {
  5969. i13 = 0;
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. }
  5976. i10 += ne00 * (ne01 - ir1);
  5977. while (i10 >= ne0) {
  5978. i10 -= ne0;
  5979. if (++i11 == ne1) {
  5980. i11 = 0;
  5981. if (++i12 == ne2) {
  5982. i12 = 0;
  5983. if (++i13 == ne3) {
  5984. i13 = 0;
  5985. }
  5986. }
  5987. }
  5988. }
  5989. }
  5990. }
  5991. }
  5992. static void ggml_compute_forward_dup(
  5993. const struct ggml_compute_params * params,
  5994. const struct ggml_tensor * src0,
  5995. struct ggml_tensor * dst) {
  5996. if (src0->type == dst->type) {
  5997. ggml_compute_forward_dup_bytes(params, src0, dst);
  5998. return;
  5999. }
  6000. switch (src0->type) {
  6001. case GGML_TYPE_F16:
  6002. {
  6003. ggml_compute_forward_dup_f16(params, src0, dst);
  6004. } break;
  6005. case GGML_TYPE_F32:
  6006. {
  6007. ggml_compute_forward_dup_f32(params, src0, dst);
  6008. } break;
  6009. default:
  6010. {
  6011. GGML_ASSERT(false);
  6012. } break;
  6013. }
  6014. }
  6015. // ggml_compute_forward_add
  6016. static void ggml_compute_forward_add_f32(
  6017. const struct ggml_compute_params * params,
  6018. const struct ggml_tensor * src0,
  6019. const struct ggml_tensor * src1,
  6020. struct ggml_tensor * dst) {
  6021. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6023. return;
  6024. }
  6025. const int ith = params->ith;
  6026. const int nth = params->nth;
  6027. #ifdef GGML_USE_CLBLAST
  6028. if (src1->backend == GGML_BACKEND_GPU) {
  6029. // TODO: OpenCL kernel support full broadcast
  6030. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6031. if (ith == 0) {
  6032. ggml_cl_add(src0, src1, dst);
  6033. }
  6034. return;
  6035. }
  6036. #endif
  6037. const int nr = ggml_nrows(src0);
  6038. GGML_TENSOR_BINARY_OP_LOCALS
  6039. GGML_ASSERT( nb0 == sizeof(float));
  6040. GGML_ASSERT(nb00 == sizeof(float));
  6041. // rows per thread
  6042. const int dr = (nr + nth - 1)/nth;
  6043. // row range for this thread
  6044. const int ir0 = dr*ith;
  6045. const int ir1 = MIN(ir0 + dr, nr);
  6046. if (nb10 == sizeof(float)) {
  6047. for (int ir = ir0; ir < ir1; ++ir) {
  6048. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6049. const int64_t i03 = ir/(ne02*ne01);
  6050. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6051. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6052. const int64_t i13 = i03 % ne13;
  6053. const int64_t i12 = i02 % ne12;
  6054. const int64_t i11 = i01 % ne11;
  6055. const int64_t nr0 = ne00 / ne10;
  6056. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6057. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6058. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6059. for (int64_t r = 0; r < nr0; ++r) {
  6060. #ifdef GGML_USE_ACCELERATE
  6061. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6062. #else
  6063. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6064. #endif
  6065. }
  6066. }
  6067. } else {
  6068. // src1 is not contiguous
  6069. for (int ir = ir0; ir < ir1; ++ir) {
  6070. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6071. const int64_t i03 = ir/(ne02*ne01);
  6072. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6073. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6074. const int64_t i13 = i03 % ne13;
  6075. const int64_t i12 = i02 % ne12;
  6076. const int64_t i11 = i01 % ne11;
  6077. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6078. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6079. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6080. const int64_t i10 = i0 % ne10;
  6081. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6082. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6083. }
  6084. }
  6085. }
  6086. }
  6087. static void ggml_compute_forward_add_f16_f32(
  6088. const struct ggml_compute_params * params,
  6089. const struct ggml_tensor * src0,
  6090. const struct ggml_tensor * src1,
  6091. struct ggml_tensor * dst) {
  6092. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6093. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6094. return;
  6095. }
  6096. const int ith = params->ith;
  6097. const int nth = params->nth;
  6098. const int nr = ggml_nrows(src0);
  6099. GGML_TENSOR_BINARY_OP_LOCALS
  6100. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6101. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6102. if (dst->type == GGML_TYPE_F32) {
  6103. GGML_ASSERT( nb0 == sizeof(float));
  6104. }
  6105. else {
  6106. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6107. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6108. }
  6109. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6110. // rows per thread
  6111. const int dr = (nr + nth - 1)/nth;
  6112. // row range for this thread
  6113. const int ir0 = dr*ith;
  6114. const int ir1 = MIN(ir0 + dr, nr);
  6115. if (nb10 == sizeof(float)) {
  6116. if (dst->type == GGML_TYPE_F16) {
  6117. for (int ir = ir0; ir < ir1; ++ir) {
  6118. // src0, src1 and dst are same shape => same indices
  6119. const int i3 = ir/(ne2*ne1);
  6120. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6121. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6122. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6123. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6124. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6125. for (int i = 0; i < ne0; i++) {
  6126. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6127. }
  6128. }
  6129. } else {
  6130. for (int ir = ir0; ir < ir1; ++ir) {
  6131. // src0, src1 and dst are same shape => same indices
  6132. const int i3 = ir/(ne2*ne1);
  6133. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6134. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6135. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6136. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6137. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6138. for (int i = 0; i < ne0; i++) {
  6139. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6140. }
  6141. }
  6142. }
  6143. }
  6144. else {
  6145. // src1 is not contiguous
  6146. GGML_ASSERT(false);
  6147. }
  6148. }
  6149. static void ggml_compute_forward_add_f16_f16(
  6150. const struct ggml_compute_params * params,
  6151. const struct ggml_tensor * src0,
  6152. const struct ggml_tensor * src1,
  6153. struct ggml_tensor * dst) {
  6154. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6156. return;
  6157. }
  6158. const int ith = params->ith;
  6159. const int nth = params->nth;
  6160. const int nr = ggml_nrows(src0);
  6161. GGML_TENSOR_BINARY_OP_LOCALS
  6162. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6163. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6164. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6165. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6166. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6167. // rows per thread
  6168. const int dr = (nr + nth - 1)/nth;
  6169. // row range for this thread
  6170. const int ir0 = dr*ith;
  6171. const int ir1 = MIN(ir0 + dr, nr);
  6172. if (nb10 == sizeof(ggml_fp16_t)) {
  6173. for (int ir = ir0; ir < ir1; ++ir) {
  6174. // src0, src1 and dst are same shape => same indices
  6175. const int i3 = ir/(ne2*ne1);
  6176. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6177. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6178. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6179. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6180. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6181. for (int i = 0; i < ne0; i++) {
  6182. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6183. }
  6184. }
  6185. }
  6186. else {
  6187. // src1 is not contiguous
  6188. GGML_ASSERT(false);
  6189. }
  6190. }
  6191. static void ggml_compute_forward_add_q_f32(
  6192. const struct ggml_compute_params * params,
  6193. const struct ggml_tensor * src0,
  6194. const struct ggml_tensor * src1,
  6195. struct ggml_tensor * dst) {
  6196. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6198. return;
  6199. }
  6200. const int nr = ggml_nrows(src0);
  6201. GGML_TENSOR_BINARY_OP_LOCALS
  6202. const int ith = params->ith;
  6203. const int nth = params->nth;
  6204. const enum ggml_type type = src0->type;
  6205. const enum ggml_type dtype = dst->type;
  6206. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6207. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6208. // we don't support permuted src0 or src1
  6209. GGML_ASSERT(nb00 == ggml_type_size(type));
  6210. GGML_ASSERT(nb10 == sizeof(float));
  6211. // dst cannot be transposed or permuted
  6212. GGML_ASSERT(nb0 <= nb1);
  6213. GGML_ASSERT(nb1 <= nb2);
  6214. GGML_ASSERT(nb2 <= nb3);
  6215. GGML_ASSERT(ggml_is_quantized(src0->type));
  6216. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6217. // rows per thread
  6218. const int dr = (nr + nth - 1)/nth;
  6219. // row range for this thread
  6220. const int ir0 = dr*ith;
  6221. const int ir1 = MIN(ir0 + dr, nr);
  6222. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6223. for (int ir = ir0; ir < ir1; ++ir) {
  6224. // src0 indices
  6225. const int i03 = ir/(ne02*ne01);
  6226. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6227. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6228. // src1 and dst are same shape as src0 => same indices
  6229. const int i13 = i03;
  6230. const int i12 = i02;
  6231. const int i11 = i01;
  6232. const int i3 = i03;
  6233. const int i2 = i02;
  6234. const int i1 = i01;
  6235. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6236. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6237. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6238. assert(ne00 % 32 == 0);
  6239. // unquantize row from src0 to temp buffer
  6240. dequantize_row_q(src0_row, wdata, ne00);
  6241. // add src1
  6242. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6243. // quantize row to dst
  6244. if (quantize_row_q != NULL) {
  6245. quantize_row_q(wdata, dst_row, ne00);
  6246. } else {
  6247. memcpy(dst_row, wdata, ne0*nb0);
  6248. }
  6249. }
  6250. }
  6251. static void ggml_compute_forward_add(
  6252. const struct ggml_compute_params * params,
  6253. const struct ggml_tensor * src0,
  6254. const struct ggml_tensor * src1,
  6255. struct ggml_tensor * dst) {
  6256. switch (src0->type) {
  6257. case GGML_TYPE_F32:
  6258. {
  6259. if (src1->type == GGML_TYPE_F32) {
  6260. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6261. }
  6262. else {
  6263. GGML_ASSERT(false);
  6264. }
  6265. } break;
  6266. case GGML_TYPE_F16:
  6267. {
  6268. if (src1->type == GGML_TYPE_F16) {
  6269. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6270. }
  6271. else if (src1->type == GGML_TYPE_F32) {
  6272. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6273. }
  6274. else {
  6275. GGML_ASSERT(false);
  6276. }
  6277. } break;
  6278. case GGML_TYPE_Q4_0:
  6279. case GGML_TYPE_Q4_1:
  6280. case GGML_TYPE_Q5_0:
  6281. case GGML_TYPE_Q5_1:
  6282. case GGML_TYPE_Q8_0:
  6283. case GGML_TYPE_Q2_K:
  6284. case GGML_TYPE_Q3_K:
  6285. case GGML_TYPE_Q4_K:
  6286. case GGML_TYPE_Q5_K:
  6287. case GGML_TYPE_Q6_K:
  6288. case GGML_TYPE_IQ2_XXS:
  6289. case GGML_TYPE_IQ2_XS:
  6290. case GGML_TYPE_IQ3_XXS:
  6291. {
  6292. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6293. } break;
  6294. default:
  6295. {
  6296. GGML_ASSERT(false);
  6297. } break;
  6298. }
  6299. }
  6300. // ggml_compute_forward_add1
  6301. static void ggml_compute_forward_add1_f32(
  6302. const struct ggml_compute_params * params,
  6303. const struct ggml_tensor * src0,
  6304. const struct ggml_tensor * src1,
  6305. struct ggml_tensor * dst) {
  6306. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6307. GGML_ASSERT(ggml_is_scalar(src1));
  6308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6309. return;
  6310. }
  6311. const int ith = params->ith;
  6312. const int nth = params->nth;
  6313. const int nr = ggml_nrows(src0);
  6314. GGML_TENSOR_UNARY_OP_LOCALS
  6315. GGML_ASSERT( nb0 == sizeof(float));
  6316. GGML_ASSERT(nb00 == sizeof(float));
  6317. // rows per thread
  6318. const int dr = (nr + nth - 1)/nth;
  6319. // row range for this thread
  6320. const int ir0 = dr*ith;
  6321. const int ir1 = MIN(ir0 + dr, nr);
  6322. for (int ir = ir0; ir < ir1; ++ir) {
  6323. // src0 and dst are same shape => same indices
  6324. const int i3 = ir/(ne2*ne1);
  6325. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6326. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6327. #ifdef GGML_USE_ACCELERATE
  6328. UNUSED(ggml_vec_add1_f32);
  6329. vDSP_vadd(
  6330. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6331. (float *) ((char *) src1->data), 0,
  6332. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6333. ne0);
  6334. #else
  6335. ggml_vec_add1_f32(ne0,
  6336. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6337. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6338. *(float *) src1->data);
  6339. #endif
  6340. }
  6341. }
  6342. static void ggml_compute_forward_add1_f16_f32(
  6343. const struct ggml_compute_params * params,
  6344. const struct ggml_tensor * src0,
  6345. const struct ggml_tensor * src1,
  6346. struct ggml_tensor * dst) {
  6347. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6348. GGML_ASSERT(ggml_is_scalar(src1));
  6349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6350. return;
  6351. }
  6352. // scalar to add
  6353. const float v = *(float *) src1->data;
  6354. const int ith = params->ith;
  6355. const int nth = params->nth;
  6356. const int nr = ggml_nrows(src0);
  6357. GGML_TENSOR_UNARY_OP_LOCALS
  6358. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6359. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6360. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6361. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6362. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6363. // rows per thread
  6364. const int dr = (nr + nth - 1)/nth;
  6365. // row range for this thread
  6366. const int ir0 = dr*ith;
  6367. const int ir1 = MIN(ir0 + dr, nr);
  6368. for (int ir = ir0; ir < ir1; ++ir) {
  6369. // src0 and dst are same shape => same indices
  6370. const int i3 = ir/(ne2*ne1);
  6371. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6372. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6373. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6374. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6375. for (int i = 0; i < ne0; i++) {
  6376. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6377. }
  6378. }
  6379. }
  6380. static void ggml_compute_forward_add1_f16_f16(
  6381. const struct ggml_compute_params * params,
  6382. const struct ggml_tensor * src0,
  6383. const struct ggml_tensor * src1,
  6384. struct ggml_tensor * dst) {
  6385. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6386. GGML_ASSERT(ggml_is_scalar(src1));
  6387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6388. return;
  6389. }
  6390. // scalar to add
  6391. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6392. const int ith = params->ith;
  6393. const int nth = params->nth;
  6394. const int nr = ggml_nrows(src0);
  6395. GGML_TENSOR_UNARY_OP_LOCALS
  6396. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6397. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6398. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6399. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6400. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6401. // rows per thread
  6402. const int dr = (nr + nth - 1)/nth;
  6403. // row range for this thread
  6404. const int ir0 = dr*ith;
  6405. const int ir1 = MIN(ir0 + dr, nr);
  6406. for (int ir = ir0; ir < ir1; ++ir) {
  6407. // src0 and dst are same shape => same indices
  6408. const int i3 = ir/(ne2*ne1);
  6409. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6410. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6411. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6412. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6413. for (int i = 0; i < ne0; i++) {
  6414. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6415. }
  6416. }
  6417. }
  6418. static void ggml_compute_forward_add1_q_f32(
  6419. const struct ggml_compute_params * params,
  6420. const struct ggml_tensor * src0,
  6421. const struct ggml_tensor * src1,
  6422. struct ggml_tensor * dst) {
  6423. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6424. GGML_ASSERT(ggml_is_scalar(src1));
  6425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6426. return;
  6427. }
  6428. // scalar to add
  6429. const float v = *(float *) src1->data;
  6430. const int ith = params->ith;
  6431. const int nth = params->nth;
  6432. const int nr = ggml_nrows(src0);
  6433. GGML_TENSOR_UNARY_OP_LOCALS
  6434. const enum ggml_type type = src0->type;
  6435. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6436. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6437. // we don't support permuted src0
  6438. GGML_ASSERT(nb00 == ggml_type_size(type));
  6439. // dst cannot be transposed or permuted
  6440. GGML_ASSERT(nb0 <= nb1);
  6441. GGML_ASSERT(nb1 <= nb2);
  6442. GGML_ASSERT(nb2 <= nb3);
  6443. GGML_ASSERT(ggml_is_quantized(src0->type));
  6444. GGML_ASSERT(dst->type == src0->type);
  6445. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6446. // rows per thread
  6447. const int dr = (nr + nth - 1)/nth;
  6448. // row range for this thread
  6449. const int ir0 = dr*ith;
  6450. const int ir1 = MIN(ir0 + dr, nr);
  6451. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6452. for (int ir = ir0; ir < ir1; ++ir) {
  6453. // src0 and dst are same shape => same indices
  6454. const int i3 = ir/(ne2*ne1);
  6455. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6456. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6457. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6458. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6459. assert(ne0 % 32 == 0);
  6460. // unquantize row from src0 to temp buffer
  6461. dequantize_row_q(src0_row, wdata, ne0);
  6462. // add src1
  6463. ggml_vec_acc1_f32(ne0, wdata, v);
  6464. // quantize row to dst
  6465. quantize_row_q(wdata, dst_row, ne0);
  6466. }
  6467. }
  6468. static void ggml_compute_forward_add1(
  6469. const struct ggml_compute_params * params,
  6470. const struct ggml_tensor * src0,
  6471. const struct ggml_tensor * src1,
  6472. struct ggml_tensor * dst) {
  6473. switch (src0->type) {
  6474. case GGML_TYPE_F32:
  6475. {
  6476. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6477. } break;
  6478. case GGML_TYPE_F16:
  6479. {
  6480. if (src1->type == GGML_TYPE_F16) {
  6481. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6482. }
  6483. else if (src1->type == GGML_TYPE_F32) {
  6484. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6485. }
  6486. else {
  6487. GGML_ASSERT(false);
  6488. }
  6489. } break;
  6490. case GGML_TYPE_Q4_0:
  6491. case GGML_TYPE_Q4_1:
  6492. case GGML_TYPE_Q5_0:
  6493. case GGML_TYPE_Q5_1:
  6494. case GGML_TYPE_Q8_0:
  6495. case GGML_TYPE_Q8_1:
  6496. case GGML_TYPE_Q2_K:
  6497. case GGML_TYPE_Q3_K:
  6498. case GGML_TYPE_Q4_K:
  6499. case GGML_TYPE_Q5_K:
  6500. case GGML_TYPE_Q6_K:
  6501. case GGML_TYPE_IQ2_XXS:
  6502. case GGML_TYPE_IQ2_XS:
  6503. case GGML_TYPE_IQ3_XXS:
  6504. {
  6505. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6506. } break;
  6507. default:
  6508. {
  6509. GGML_ASSERT(false);
  6510. } break;
  6511. }
  6512. }
  6513. // ggml_compute_forward_acc
  6514. static void ggml_compute_forward_acc_f32(
  6515. const struct ggml_compute_params * params,
  6516. const struct ggml_tensor * src0,
  6517. const struct ggml_tensor * src1,
  6518. struct ggml_tensor * dst) {
  6519. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6520. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6521. // view src0 and dst with these strides and data offset inbytes during acc
  6522. // nb0 is implicitly element_size because src0 and dst are contiguous
  6523. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6524. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6525. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6526. size_t offset = ((int32_t *) dst->op_params)[3];
  6527. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6528. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6529. if (params->ith != 0) {
  6530. return;
  6531. }
  6532. // memcpy needs to be synchronized across threads to avoid race conditions.
  6533. // => do it in INIT phase
  6534. memcpy(
  6535. ((char *) dst->data),
  6536. ((char *) src0->data),
  6537. ggml_nbytes(dst));
  6538. }
  6539. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6540. return;
  6541. }
  6542. const int ith = params->ith;
  6543. const int nth = params->nth;
  6544. const int nr = ggml_nrows(src1);
  6545. const int nc = src1->ne[0];
  6546. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6547. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6548. // src0 and dst as viewed during acc
  6549. const size_t nb0 = ggml_element_size(src0);
  6550. const size_t nb00 = nb0;
  6551. const size_t nb01 = nb1;
  6552. const size_t nb02 = nb2;
  6553. const size_t nb03 = nb3;
  6554. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6555. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6556. GGML_ASSERT(nb10 == sizeof(float));
  6557. // rows per thread
  6558. const int dr = (nr + nth - 1)/nth;
  6559. // row range for this thread
  6560. const int ir0 = dr*ith;
  6561. const int ir1 = MIN(ir0 + dr, nr);
  6562. for (int ir = ir0; ir < ir1; ++ir) {
  6563. // src0 and dst are viewed with shape of src1 and offset
  6564. // => same indices
  6565. const int i3 = ir/(ne12*ne11);
  6566. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6567. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6568. #ifdef GGML_USE_ACCELERATE
  6569. vDSP_vadd(
  6570. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6571. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6572. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6573. #else
  6574. ggml_vec_add_f32(nc,
  6575. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6576. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6577. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6578. #endif
  6579. }
  6580. }
  6581. static void ggml_compute_forward_acc(
  6582. const struct ggml_compute_params * params,
  6583. const struct ggml_tensor * src0,
  6584. const struct ggml_tensor * src1,
  6585. struct ggml_tensor * dst) {
  6586. switch (src0->type) {
  6587. case GGML_TYPE_F32:
  6588. {
  6589. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6590. } break;
  6591. case GGML_TYPE_F16:
  6592. case GGML_TYPE_Q4_0:
  6593. case GGML_TYPE_Q4_1:
  6594. case GGML_TYPE_Q5_0:
  6595. case GGML_TYPE_Q5_1:
  6596. case GGML_TYPE_Q8_0:
  6597. case GGML_TYPE_Q8_1:
  6598. case GGML_TYPE_Q2_K:
  6599. case GGML_TYPE_Q3_K:
  6600. case GGML_TYPE_Q4_K:
  6601. case GGML_TYPE_Q5_K:
  6602. case GGML_TYPE_Q6_K:
  6603. case GGML_TYPE_IQ2_XXS:
  6604. case GGML_TYPE_IQ2_XS:
  6605. case GGML_TYPE_IQ3_XXS:
  6606. default:
  6607. {
  6608. GGML_ASSERT(false);
  6609. } break;
  6610. }
  6611. }
  6612. // ggml_compute_forward_sub
  6613. static void ggml_compute_forward_sub_f32(
  6614. const struct ggml_compute_params * params,
  6615. const struct ggml_tensor * src0,
  6616. const struct ggml_tensor * src1,
  6617. struct ggml_tensor * dst) {
  6618. assert(params->ith == 0);
  6619. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6621. return;
  6622. }
  6623. const int nr = ggml_nrows(src0);
  6624. GGML_TENSOR_BINARY_OP_LOCALS
  6625. GGML_ASSERT( nb0 == sizeof(float));
  6626. GGML_ASSERT(nb00 == sizeof(float));
  6627. if (nb10 == sizeof(float)) {
  6628. for (int ir = 0; ir < nr; ++ir) {
  6629. // src0, src1 and dst are same shape => same indices
  6630. const int i3 = ir/(ne2*ne1);
  6631. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6632. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6633. #ifdef GGML_USE_ACCELERATE
  6634. vDSP_vsub(
  6635. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6636. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6637. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6638. ne0);
  6639. #else
  6640. ggml_vec_sub_f32(ne0,
  6641. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6642. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6643. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6644. #endif
  6645. // }
  6646. // }
  6647. }
  6648. } else {
  6649. // src1 is not contiguous
  6650. for (int ir = 0; ir < nr; ++ir) {
  6651. // src0, src1 and dst are same shape => same indices
  6652. const int i3 = ir/(ne2*ne1);
  6653. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6654. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6655. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6656. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6657. for (int i0 = 0; i0 < ne0; i0++) {
  6658. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6659. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6660. }
  6661. }
  6662. }
  6663. }
  6664. static void ggml_compute_forward_sub(
  6665. const struct ggml_compute_params * params,
  6666. const struct ggml_tensor * src0,
  6667. const struct ggml_tensor * src1,
  6668. struct ggml_tensor * dst) {
  6669. switch (src0->type) {
  6670. case GGML_TYPE_F32:
  6671. {
  6672. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6673. } break;
  6674. default:
  6675. {
  6676. GGML_ASSERT(false);
  6677. } break;
  6678. }
  6679. }
  6680. // ggml_compute_forward_mul
  6681. static void ggml_compute_forward_mul_f32(
  6682. const struct ggml_compute_params * params,
  6683. const struct ggml_tensor * src0,
  6684. const struct ggml_tensor * src1,
  6685. struct ggml_tensor * dst) {
  6686. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6688. return;
  6689. }
  6690. const int ith = params->ith;
  6691. const int nth = params->nth;
  6692. #if defined(GGML_USE_CLBLAST)
  6693. if (src1->backend == GGML_BACKEND_GPU) {
  6694. // TODO: OpenCL kernel support full broadcast
  6695. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6696. if (ith == 0) {
  6697. ggml_cl_mul(src0, src1, dst);
  6698. }
  6699. return;
  6700. }
  6701. #endif
  6702. const int64_t nr = ggml_nrows(src0);
  6703. GGML_TENSOR_BINARY_OP_LOCALS
  6704. GGML_ASSERT( nb0 == sizeof(float));
  6705. GGML_ASSERT(nb00 == sizeof(float));
  6706. if (nb10 == sizeof(float)) {
  6707. for (int64_t ir = ith; ir < nr; ir += nth) {
  6708. // src0 and dst are same shape => same indices
  6709. const int64_t i03 = ir/(ne02*ne01);
  6710. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6711. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6712. const int64_t i13 = i03 % ne13;
  6713. const int64_t i12 = i02 % ne12;
  6714. const int64_t i11 = i01 % ne11;
  6715. const int64_t nr0 = ne00 / ne10;
  6716. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6717. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6718. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6719. for (int64_t r = 0 ; r < nr0; ++r) {
  6720. #ifdef GGML_USE_ACCELERATE
  6721. UNUSED(ggml_vec_mul_f32);
  6722. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6723. #else
  6724. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6725. #endif
  6726. }
  6727. }
  6728. } else {
  6729. // src1 is not contiguous
  6730. for (int64_t ir = ith; ir < nr; ir += nth) {
  6731. // src0 and dst are same shape => same indices
  6732. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6733. const int64_t i03 = ir/(ne02*ne01);
  6734. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6735. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6736. const int64_t i13 = i03 % ne13;
  6737. const int64_t i12 = i02 % ne12;
  6738. const int64_t i11 = i01 % ne11;
  6739. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6740. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6741. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6742. const int64_t i10 = i0 % ne10;
  6743. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6744. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6745. }
  6746. }
  6747. }
  6748. }
  6749. static void ggml_compute_forward_mul(
  6750. const struct ggml_compute_params * params,
  6751. const struct ggml_tensor * src0,
  6752. const struct ggml_tensor * src1,
  6753. struct ggml_tensor * dst) {
  6754. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F32:
  6757. {
  6758. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6759. } break;
  6760. default:
  6761. {
  6762. GGML_ASSERT(false);
  6763. } break;
  6764. }
  6765. }
  6766. // ggml_compute_forward_div
  6767. static void ggml_compute_forward_div_f32(
  6768. const struct ggml_compute_params * params,
  6769. const struct ggml_tensor * src0,
  6770. const struct ggml_tensor * src1,
  6771. struct ggml_tensor * dst) {
  6772. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. const int ith = params->ith;
  6777. const int nth = params->nth;
  6778. const int64_t nr = ggml_nrows(src0);
  6779. GGML_TENSOR_BINARY_OP_LOCALS
  6780. GGML_ASSERT( nb0 == sizeof(float));
  6781. GGML_ASSERT(nb00 == sizeof(float));
  6782. if (nb10 == sizeof(float)) {
  6783. for (int64_t ir = ith; ir < nr; ir += nth) {
  6784. // src0 and dst are same shape => same indices
  6785. const int64_t i03 = ir/(ne02*ne01);
  6786. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6787. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6788. const int64_t i13 = i03 % ne13;
  6789. const int64_t i12 = i02 % ne12;
  6790. const int64_t i11 = i01 % ne11;
  6791. const int64_t nr0 = ne00 / ne10;
  6792. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6793. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6794. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6795. for (int64_t r = 0; r < nr0; ++r) {
  6796. #ifdef GGML_USE_ACCELERATE
  6797. UNUSED(ggml_vec_div_f32);
  6798. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6799. #else
  6800. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6801. #endif
  6802. }
  6803. }
  6804. } else {
  6805. // src1 is not contiguous
  6806. for (int64_t ir = ith; ir < nr; ir += nth) {
  6807. // src0 and dst are same shape => same indices
  6808. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6809. const int64_t i03 = ir/(ne02*ne01);
  6810. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6811. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6812. const int64_t i13 = i03 % ne13;
  6813. const int64_t i12 = i02 % ne12;
  6814. const int64_t i11 = i01 % ne11;
  6815. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6816. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6817. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6818. const int64_t i10 = i0 % ne10;
  6819. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6820. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6821. }
  6822. }
  6823. }
  6824. }
  6825. static void ggml_compute_forward_div(
  6826. const struct ggml_compute_params * params,
  6827. const struct ggml_tensor * src0,
  6828. const struct ggml_tensor * src1,
  6829. struct ggml_tensor * dst) {
  6830. switch (src0->type) {
  6831. case GGML_TYPE_F32:
  6832. {
  6833. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6834. } break;
  6835. default:
  6836. {
  6837. GGML_ASSERT(false);
  6838. } break;
  6839. }
  6840. }
  6841. // ggml_compute_forward_sqr
  6842. static void ggml_compute_forward_sqr_f32(
  6843. const struct ggml_compute_params * params,
  6844. const struct ggml_tensor * src0,
  6845. struct ggml_tensor * dst) {
  6846. assert(params->ith == 0);
  6847. assert(ggml_are_same_shape(src0, dst));
  6848. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6849. return;
  6850. }
  6851. const int n = ggml_nrows(src0);
  6852. const int nc = src0->ne[0];
  6853. assert( dst->nb[0] == sizeof(float));
  6854. assert(src0->nb[0] == sizeof(float));
  6855. for (int i = 0; i < n; i++) {
  6856. ggml_vec_sqr_f32(nc,
  6857. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6858. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6859. }
  6860. }
  6861. static void ggml_compute_forward_sqr(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. struct ggml_tensor * dst) {
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_sqr_f32(params, src0, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. }
  6876. // ggml_compute_forward_sqrt
  6877. static void ggml_compute_forward_sqrt_f32(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. assert(params->ith == 0);
  6882. assert(ggml_are_same_shape(src0, dst));
  6883. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6884. return;
  6885. }
  6886. const int n = ggml_nrows(src0);
  6887. const int nc = src0->ne[0];
  6888. assert( dst->nb[0] == sizeof(float));
  6889. assert(src0->nb[0] == sizeof(float));
  6890. for (int i = 0; i < n; i++) {
  6891. ggml_vec_sqrt_f32(nc,
  6892. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6893. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6894. }
  6895. }
  6896. static void ggml_compute_forward_sqrt(
  6897. const struct ggml_compute_params * params,
  6898. const struct ggml_tensor * src0,
  6899. struct ggml_tensor * dst) {
  6900. switch (src0->type) {
  6901. case GGML_TYPE_F32:
  6902. {
  6903. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6904. } break;
  6905. default:
  6906. {
  6907. GGML_ASSERT(false);
  6908. } break;
  6909. }
  6910. }
  6911. // ggml_compute_forward_log
  6912. static void ggml_compute_forward_log_f32(
  6913. const struct ggml_compute_params * params,
  6914. const struct ggml_tensor * src0,
  6915. struct ggml_tensor * dst) {
  6916. GGML_ASSERT(params->ith == 0);
  6917. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6919. return;
  6920. }
  6921. const int n = ggml_nrows(src0);
  6922. const int nc = src0->ne[0];
  6923. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6924. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6925. for (int i = 0; i < n; i++) {
  6926. ggml_vec_log_f32(nc,
  6927. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6928. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6929. }
  6930. }
  6931. static void ggml_compute_forward_log(
  6932. const struct ggml_compute_params * params,
  6933. const struct ggml_tensor * src0,
  6934. struct ggml_tensor * dst) {
  6935. switch (src0->type) {
  6936. case GGML_TYPE_F32:
  6937. {
  6938. ggml_compute_forward_log_f32(params, src0, dst);
  6939. } break;
  6940. default:
  6941. {
  6942. GGML_ASSERT(false);
  6943. } break;
  6944. }
  6945. }
  6946. // ggml_compute_forward_sum
  6947. static void ggml_compute_forward_sum_f32(
  6948. const struct ggml_compute_params * params,
  6949. const struct ggml_tensor * src0,
  6950. struct ggml_tensor * dst) {
  6951. assert(params->ith == 0);
  6952. assert(ggml_is_scalar(dst));
  6953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6954. return;
  6955. }
  6956. assert(ggml_is_scalar(dst));
  6957. assert(src0->nb[0] == sizeof(float));
  6958. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6959. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6960. ggml_float sum = 0;
  6961. ggml_float row_sum = 0;
  6962. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6963. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6964. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6965. ggml_vec_sum_f32_ggf(ne00,
  6966. &row_sum,
  6967. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6968. sum += row_sum;
  6969. }
  6970. }
  6971. }
  6972. ((float *) dst->data)[0] = sum;
  6973. }
  6974. static void ggml_compute_forward_sum_f16(
  6975. const struct ggml_compute_params * params,
  6976. const struct ggml_tensor * src0,
  6977. struct ggml_tensor * dst) {
  6978. assert(params->ith == 0);
  6979. assert(ggml_is_scalar(dst));
  6980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6981. return;
  6982. }
  6983. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6984. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6985. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6986. float sum = 0;
  6987. float row_sum = 0;
  6988. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6989. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6990. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6991. ggml_vec_sum_f16_ggf(ne00,
  6992. &row_sum,
  6993. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6994. sum += row_sum;
  6995. }
  6996. }
  6997. }
  6998. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6999. }
  7000. static void ggml_compute_forward_sum(
  7001. const struct ggml_compute_params * params,
  7002. const struct ggml_tensor * src0,
  7003. struct ggml_tensor * dst) {
  7004. switch (src0->type) {
  7005. case GGML_TYPE_F32:
  7006. {
  7007. ggml_compute_forward_sum_f32(params, src0, dst);
  7008. } break;
  7009. case GGML_TYPE_F16:
  7010. {
  7011. ggml_compute_forward_sum_f16(params, src0, dst);
  7012. } break;
  7013. default:
  7014. {
  7015. GGML_ASSERT(false);
  7016. } break;
  7017. }
  7018. }
  7019. // ggml_compute_forward_sum_rows
  7020. static void ggml_compute_forward_sum_rows_f32(
  7021. const struct ggml_compute_params * params,
  7022. const struct ggml_tensor * src0,
  7023. struct ggml_tensor * dst) {
  7024. GGML_ASSERT(params->ith == 0);
  7025. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7026. return;
  7027. }
  7028. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7029. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7030. GGML_TENSOR_UNARY_OP_LOCALS
  7031. GGML_ASSERT(ne0 == 1);
  7032. GGML_ASSERT(ne1 == ne01);
  7033. GGML_ASSERT(ne2 == ne02);
  7034. GGML_ASSERT(ne3 == ne03);
  7035. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7036. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7037. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7038. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7039. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7040. float row_sum = 0;
  7041. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7042. dst_row[0] = row_sum;
  7043. }
  7044. }
  7045. }
  7046. }
  7047. static void ggml_compute_forward_sum_rows(
  7048. const struct ggml_compute_params * params,
  7049. const struct ggml_tensor * src0,
  7050. struct ggml_tensor * dst) {
  7051. switch (src0->type) {
  7052. case GGML_TYPE_F32:
  7053. {
  7054. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7055. } break;
  7056. default:
  7057. {
  7058. GGML_ASSERT(false);
  7059. } break;
  7060. }
  7061. }
  7062. // ggml_compute_forward_mean
  7063. static void ggml_compute_forward_mean_f32(
  7064. const struct ggml_compute_params * params,
  7065. const struct ggml_tensor * src0,
  7066. struct ggml_tensor * dst) {
  7067. assert(params->ith == 0);
  7068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7069. return;
  7070. }
  7071. assert(src0->nb[0] == sizeof(float));
  7072. GGML_TENSOR_UNARY_OP_LOCALS
  7073. assert(ne0 == 1);
  7074. assert(ne1 == ne01);
  7075. assert(ne2 == ne02);
  7076. assert(ne3 == ne03);
  7077. UNUSED(ne0);
  7078. UNUSED(ne1);
  7079. UNUSED(ne2);
  7080. UNUSED(ne3);
  7081. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7083. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7084. ggml_vec_sum_f32(ne00,
  7085. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7086. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7087. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7088. }
  7089. }
  7090. }
  7091. }
  7092. static void ggml_compute_forward_mean(
  7093. const struct ggml_compute_params * params,
  7094. const struct ggml_tensor * src0,
  7095. struct ggml_tensor * dst) {
  7096. switch (src0->type) {
  7097. case GGML_TYPE_F32:
  7098. {
  7099. ggml_compute_forward_mean_f32(params, src0, dst);
  7100. } break;
  7101. default:
  7102. {
  7103. GGML_ASSERT(false);
  7104. } break;
  7105. }
  7106. }
  7107. // ggml_compute_forward_argmax
  7108. static void ggml_compute_forward_argmax_f32(
  7109. const struct ggml_compute_params * params,
  7110. const struct ggml_tensor * src0,
  7111. struct ggml_tensor * dst) {
  7112. assert(params->ith == 0);
  7113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7114. return;
  7115. }
  7116. assert(src0->nb[0] == sizeof(float));
  7117. assert(dst->nb[0] == sizeof(float));
  7118. const int64_t ne00 = src0->ne[0];
  7119. const int64_t ne01 = src0->ne[1];
  7120. const size_t nb01 = src0->nb[1];
  7121. const size_t nb0 = dst->nb[0];
  7122. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7123. float * src = (float *) ((char *) src0->data + i1*nb01);
  7124. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7125. int v = 0;
  7126. ggml_vec_argmax_f32(ne00, &v, src);
  7127. dst_[0] = v;
  7128. }
  7129. }
  7130. static void ggml_compute_forward_argmax(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. struct ggml_tensor * dst) {
  7134. switch (src0->type) {
  7135. case GGML_TYPE_F32:
  7136. {
  7137. ggml_compute_forward_argmax_f32(params, src0, dst);
  7138. } break;
  7139. default:
  7140. {
  7141. GGML_ASSERT(false);
  7142. } break;
  7143. }
  7144. }
  7145. // ggml_compute_forward_repeat
  7146. static void ggml_compute_forward_repeat_f32(
  7147. const struct ggml_compute_params * params,
  7148. const struct ggml_tensor * src0,
  7149. struct ggml_tensor * dst) {
  7150. GGML_ASSERT(params->ith == 0);
  7151. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. GGML_TENSOR_UNARY_OP_LOCALS
  7156. // guaranteed to be an integer due to the check in ggml_can_repeat
  7157. const int nr0 = (int)(ne0/ne00);
  7158. const int nr1 = (int)(ne1/ne01);
  7159. const int nr2 = (int)(ne2/ne02);
  7160. const int nr3 = (int)(ne3/ne03);
  7161. // TODO: support for transposed / permuted tensors
  7162. GGML_ASSERT(nb0 == sizeof(float));
  7163. GGML_ASSERT(nb00 == sizeof(float));
  7164. // TODO: maybe this is not optimal?
  7165. for (int i3 = 0; i3 < nr3; i3++) {
  7166. for (int k3 = 0; k3 < ne03; k3++) {
  7167. for (int i2 = 0; i2 < nr2; i2++) {
  7168. for (int k2 = 0; k2 < ne02; k2++) {
  7169. for (int i1 = 0; i1 < nr1; i1++) {
  7170. for (int k1 = 0; k1 < ne01; k1++) {
  7171. for (int i0 = 0; i0 < nr0; i0++) {
  7172. ggml_vec_cpy_f32(ne00,
  7173. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7174. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7175. }
  7176. }
  7177. }
  7178. }
  7179. }
  7180. }
  7181. }
  7182. }
  7183. static void ggml_compute_forward_repeat_f16(
  7184. const struct ggml_compute_params * params,
  7185. const struct ggml_tensor * src0,
  7186. struct ggml_tensor * dst) {
  7187. GGML_ASSERT(params->ith == 0);
  7188. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7189. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7190. return;
  7191. }
  7192. GGML_TENSOR_UNARY_OP_LOCALS
  7193. // guaranteed to be an integer due to the check in ggml_can_repeat
  7194. const int nr0 = (int)(ne0/ne00);
  7195. const int nr1 = (int)(ne1/ne01);
  7196. const int nr2 = (int)(ne2/ne02);
  7197. const int nr3 = (int)(ne3/ne03);
  7198. // TODO: support for transposed / permuted tensors
  7199. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7200. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7201. // TODO: maybe this is not optimal?
  7202. for (int i3 = 0; i3 < nr3; i3++) {
  7203. for (int k3 = 0; k3 < ne03; k3++) {
  7204. for (int i2 = 0; i2 < nr2; i2++) {
  7205. for (int k2 = 0; k2 < ne02; k2++) {
  7206. for (int i1 = 0; i1 < nr1; i1++) {
  7207. for (int k1 = 0; k1 < ne01; k1++) {
  7208. for (int i0 = 0; i0 < nr0; i0++) {
  7209. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7210. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7211. // ggml_vec_cpy_f16(ne00, y, x)
  7212. for (int i = 0; i < ne00; ++i) {
  7213. y[i] = x[i];
  7214. }
  7215. }
  7216. }
  7217. }
  7218. }
  7219. }
  7220. }
  7221. }
  7222. }
  7223. static void ggml_compute_forward_repeat(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. switch (src0->type) {
  7228. case GGML_TYPE_F16:
  7229. case GGML_TYPE_I16:
  7230. {
  7231. ggml_compute_forward_repeat_f16(params, src0, dst);
  7232. } break;
  7233. case GGML_TYPE_F32:
  7234. case GGML_TYPE_I32:
  7235. {
  7236. ggml_compute_forward_repeat_f32(params, src0, dst);
  7237. } break;
  7238. default:
  7239. {
  7240. GGML_ASSERT(false);
  7241. } break;
  7242. }
  7243. }
  7244. // ggml_compute_forward_repeat_back
  7245. static void ggml_compute_forward_repeat_back_f32(
  7246. const struct ggml_compute_params * params,
  7247. const struct ggml_tensor * src0,
  7248. struct ggml_tensor * dst) {
  7249. GGML_ASSERT(params->ith == 0);
  7250. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7252. return;
  7253. }
  7254. GGML_TENSOR_UNARY_OP_LOCALS
  7255. // guaranteed to be an integer due to the check in ggml_can_repeat
  7256. const int nr0 = (int)(ne00/ne0);
  7257. const int nr1 = (int)(ne01/ne1);
  7258. const int nr2 = (int)(ne02/ne2);
  7259. const int nr3 = (int)(ne03/ne3);
  7260. // TODO: support for transposed / permuted tensors
  7261. GGML_ASSERT(nb0 == sizeof(float));
  7262. GGML_ASSERT(nb00 == sizeof(float));
  7263. if (ggml_is_contiguous(dst)) {
  7264. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7265. } else {
  7266. for (int k3 = 0; k3 < ne3; k3++) {
  7267. for (int k2 = 0; k2 < ne2; k2++) {
  7268. for (int k1 = 0; k1 < ne1; k1++) {
  7269. ggml_vec_set_f32(ne0,
  7270. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7271. 0);
  7272. }
  7273. }
  7274. }
  7275. }
  7276. // TODO: maybe this is not optimal?
  7277. for (int i3 = 0; i3 < nr3; i3++) {
  7278. for (int k3 = 0; k3 < ne3; k3++) {
  7279. for (int i2 = 0; i2 < nr2; i2++) {
  7280. for (int k2 = 0; k2 < ne2; k2++) {
  7281. for (int i1 = 0; i1 < nr1; i1++) {
  7282. for (int k1 = 0; k1 < ne1; k1++) {
  7283. for (int i0 = 0; i0 < nr0; i0++) {
  7284. ggml_vec_acc_f32(ne0,
  7285. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7286. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7287. }
  7288. }
  7289. }
  7290. }
  7291. }
  7292. }
  7293. }
  7294. }
  7295. static void ggml_compute_forward_repeat_back(
  7296. const struct ggml_compute_params * params,
  7297. const struct ggml_tensor * src0,
  7298. struct ggml_tensor * dst) {
  7299. switch (src0->type) {
  7300. case GGML_TYPE_F32:
  7301. {
  7302. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7303. } break;
  7304. default:
  7305. {
  7306. GGML_ASSERT(false);
  7307. } break;
  7308. }
  7309. }
  7310. // ggml_compute_forward_concat
  7311. static void ggml_compute_forward_concat_f32(
  7312. const struct ggml_compute_params * params,
  7313. const struct ggml_tensor * src0,
  7314. const struct ggml_tensor * src1,
  7315. struct ggml_tensor * dst) {
  7316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7317. return;
  7318. }
  7319. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7320. const int ith = params->ith;
  7321. const int nth = params->nth;
  7322. GGML_TENSOR_BINARY_OP_LOCALS
  7323. // TODO: support for transposed / permuted tensors
  7324. GGML_ASSERT(nb0 == sizeof(float));
  7325. GGML_ASSERT(nb00 == sizeof(float));
  7326. GGML_ASSERT(nb10 == sizeof(float));
  7327. for (int i3 = 0; i3 < ne3; i3++) {
  7328. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7329. if (i2 < ne02) { // src0
  7330. for (int i1 = 0; i1 < ne1; i1++) {
  7331. for (int i0 = 0; i0 < ne0; i0++) {
  7332. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7333. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7334. *y = *x;
  7335. }
  7336. }
  7337. } // src1
  7338. else {
  7339. for (int i1 = 0; i1 < ne1; i1++) {
  7340. for (int i0 = 0; i0 < ne0; i0++) {
  7341. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7342. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7343. *y = *x;
  7344. }
  7345. }
  7346. }
  7347. }
  7348. }
  7349. }
  7350. static void ggml_compute_forward_concat(
  7351. const struct ggml_compute_params* params,
  7352. const struct ggml_tensor* src0,
  7353. const struct ggml_tensor* src1,
  7354. struct ggml_tensor* dst) {
  7355. switch (src0->type) {
  7356. case GGML_TYPE_F32:
  7357. case GGML_TYPE_I32:
  7358. {
  7359. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. // ggml_compute_forward_abs
  7368. static void ggml_compute_forward_abs_f32(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. struct ggml_tensor * dst) {
  7372. assert(params->ith == 0);
  7373. assert(ggml_are_same_shape(src0, dst));
  7374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7375. return;
  7376. }
  7377. const int n = ggml_nrows(src0);
  7378. const int nc = src0->ne[0];
  7379. assert(dst->nb[0] == sizeof(float));
  7380. assert(src0->nb[0] == sizeof(float));
  7381. for (int i = 0; i < n; i++) {
  7382. ggml_vec_abs_f32(nc,
  7383. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7384. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7385. }
  7386. }
  7387. static void ggml_compute_forward_abs(
  7388. const struct ggml_compute_params * params,
  7389. const struct ggml_tensor * src0,
  7390. struct ggml_tensor * dst) {
  7391. switch (src0->type) {
  7392. case GGML_TYPE_F32:
  7393. {
  7394. ggml_compute_forward_abs_f32(params, src0, dst);
  7395. } break;
  7396. default:
  7397. {
  7398. GGML_ASSERT(false);
  7399. } break;
  7400. }
  7401. }
  7402. // ggml_compute_forward_sgn
  7403. static void ggml_compute_forward_sgn_f32(
  7404. const struct ggml_compute_params * params,
  7405. const struct ggml_tensor * src0,
  7406. struct ggml_tensor * dst) {
  7407. assert(params->ith == 0);
  7408. assert(ggml_are_same_shape(src0, dst));
  7409. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7410. return;
  7411. }
  7412. const int n = ggml_nrows(src0);
  7413. const int nc = src0->ne[0];
  7414. assert(dst->nb[0] == sizeof(float));
  7415. assert(src0->nb[0] == sizeof(float));
  7416. for (int i = 0; i < n; i++) {
  7417. ggml_vec_sgn_f32(nc,
  7418. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7419. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7420. }
  7421. }
  7422. static void ggml_compute_forward_sgn(
  7423. const struct ggml_compute_params * params,
  7424. const struct ggml_tensor * src0,
  7425. struct ggml_tensor * dst) {
  7426. switch (src0->type) {
  7427. case GGML_TYPE_F32:
  7428. {
  7429. ggml_compute_forward_sgn_f32(params, src0, dst);
  7430. } break;
  7431. default:
  7432. {
  7433. GGML_ASSERT(false);
  7434. } break;
  7435. }
  7436. }
  7437. // ggml_compute_forward_neg
  7438. static void ggml_compute_forward_neg_f32(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. struct ggml_tensor * dst) {
  7442. assert(params->ith == 0);
  7443. assert(ggml_are_same_shape(src0, dst));
  7444. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7445. return;
  7446. }
  7447. const int n = ggml_nrows(src0);
  7448. const int nc = src0->ne[0];
  7449. assert(dst->nb[0] == sizeof(float));
  7450. assert(src0->nb[0] == sizeof(float));
  7451. for (int i = 0; i < n; i++) {
  7452. ggml_vec_neg_f32(nc,
  7453. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7454. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7455. }
  7456. }
  7457. static void ggml_compute_forward_neg(
  7458. const struct ggml_compute_params * params,
  7459. const struct ggml_tensor * src0,
  7460. struct ggml_tensor * dst) {
  7461. switch (src0->type) {
  7462. case GGML_TYPE_F32:
  7463. {
  7464. ggml_compute_forward_neg_f32(params, src0, dst);
  7465. } break;
  7466. default:
  7467. {
  7468. GGML_ASSERT(false);
  7469. } break;
  7470. }
  7471. }
  7472. // ggml_compute_forward_step
  7473. static void ggml_compute_forward_step_f32(
  7474. const struct ggml_compute_params * params,
  7475. const struct ggml_tensor * src0,
  7476. struct ggml_tensor * dst) {
  7477. assert(params->ith == 0);
  7478. assert(ggml_are_same_shape(src0, dst));
  7479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7480. return;
  7481. }
  7482. const int n = ggml_nrows(src0);
  7483. const int nc = src0->ne[0];
  7484. assert(dst->nb[0] == sizeof(float));
  7485. assert(src0->nb[0] == sizeof(float));
  7486. for (int i = 0; i < n; i++) {
  7487. ggml_vec_step_f32(nc,
  7488. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7489. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7490. }
  7491. }
  7492. static void ggml_compute_forward_step(
  7493. const struct ggml_compute_params * params,
  7494. const struct ggml_tensor * src0,
  7495. struct ggml_tensor * dst) {
  7496. switch (src0->type) {
  7497. case GGML_TYPE_F32:
  7498. {
  7499. ggml_compute_forward_step_f32(params, src0, dst);
  7500. } break;
  7501. default:
  7502. {
  7503. GGML_ASSERT(false);
  7504. } break;
  7505. }
  7506. }
  7507. // ggml_compute_forward_tanh
  7508. static void ggml_compute_forward_tanh_f32(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. struct ggml_tensor * dst) {
  7512. assert(params->ith == 0);
  7513. assert(ggml_are_same_shape(src0, dst));
  7514. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7515. return;
  7516. }
  7517. const int n = ggml_nrows(src0);
  7518. const int nc = src0->ne[0];
  7519. assert(dst->nb[0] == sizeof(float));
  7520. assert(src0->nb[0] == sizeof(float));
  7521. for (int i = 0; i < n; i++) {
  7522. ggml_vec_tanh_f32(nc,
  7523. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7524. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7525. }
  7526. }
  7527. static void ggml_compute_forward_tanh(
  7528. const struct ggml_compute_params * params,
  7529. const struct ggml_tensor * src0,
  7530. struct ggml_tensor * dst) {
  7531. switch (src0->type) {
  7532. case GGML_TYPE_F32:
  7533. {
  7534. ggml_compute_forward_tanh_f32(params, src0, dst);
  7535. } break;
  7536. default:
  7537. {
  7538. GGML_ASSERT(false);
  7539. } break;
  7540. }
  7541. }
  7542. // ggml_compute_forward_elu
  7543. static void ggml_compute_forward_elu_f32(
  7544. const struct ggml_compute_params * params,
  7545. const struct ggml_tensor * src0,
  7546. struct ggml_tensor * dst) {
  7547. assert(params->ith == 0);
  7548. assert(ggml_are_same_shape(src0, dst));
  7549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7550. return;
  7551. }
  7552. const int n = ggml_nrows(src0);
  7553. const int nc = src0->ne[0];
  7554. assert(dst->nb[0] == sizeof(float));
  7555. assert(src0->nb[0] == sizeof(float));
  7556. for (int i = 0; i < n; i++) {
  7557. ggml_vec_elu_f32(nc,
  7558. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7559. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7560. }
  7561. }
  7562. static void ggml_compute_forward_elu(
  7563. const struct ggml_compute_params * params,
  7564. const struct ggml_tensor * src0,
  7565. struct ggml_tensor * dst) {
  7566. switch (src0->type) {
  7567. case GGML_TYPE_F32:
  7568. {
  7569. ggml_compute_forward_elu_f32(params, src0, dst);
  7570. } break;
  7571. default:
  7572. {
  7573. GGML_ASSERT(false);
  7574. } break;
  7575. }
  7576. }
  7577. // ggml_compute_forward_relu
  7578. static void ggml_compute_forward_relu_f32(
  7579. const struct ggml_compute_params * params,
  7580. const struct ggml_tensor * src0,
  7581. struct ggml_tensor * dst) {
  7582. assert(params->ith == 0);
  7583. assert(ggml_are_same_shape(src0, dst));
  7584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7585. return;
  7586. }
  7587. const int n = ggml_nrows(src0);
  7588. const int nc = src0->ne[0];
  7589. assert(dst->nb[0] == sizeof(float));
  7590. assert(src0->nb[0] == sizeof(float));
  7591. for (int i = 0; i < n; i++) {
  7592. ggml_vec_relu_f32(nc,
  7593. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7594. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7595. }
  7596. }
  7597. static void ggml_compute_forward_relu(
  7598. const struct ggml_compute_params * params,
  7599. const struct ggml_tensor * src0,
  7600. struct ggml_tensor * dst) {
  7601. switch (src0->type) {
  7602. case GGML_TYPE_F32:
  7603. {
  7604. ggml_compute_forward_relu_f32(params, src0, dst);
  7605. } break;
  7606. default:
  7607. {
  7608. GGML_ASSERT(false);
  7609. } break;
  7610. }
  7611. }
  7612. // ggml_compute_forward_gelu
  7613. static void ggml_compute_forward_gelu_f32(
  7614. const struct ggml_compute_params * params,
  7615. const struct ggml_tensor * src0,
  7616. struct ggml_tensor * dst) {
  7617. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7618. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7619. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7621. return;
  7622. }
  7623. const int ith = params->ith;
  7624. const int nth = params->nth;
  7625. const int nc = src0->ne[0];
  7626. const int nr = ggml_nrows(src0);
  7627. // rows per thread
  7628. const int dr = (nr + nth - 1)/nth;
  7629. // row range for this thread
  7630. const int ir0 = dr*ith;
  7631. const int ir1 = MIN(ir0 + dr, nr);
  7632. for (int i1 = ir0; i1 < ir1; i1++) {
  7633. ggml_vec_gelu_f32(nc,
  7634. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7635. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7636. #ifndef NDEBUG
  7637. for (int k = 0; k < nc; k++) {
  7638. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7639. UNUSED(x);
  7640. assert(!isnan(x));
  7641. assert(!isinf(x));
  7642. }
  7643. #endif
  7644. }
  7645. }
  7646. static void ggml_compute_forward_gelu(
  7647. const struct ggml_compute_params * params,
  7648. const struct ggml_tensor * src0,
  7649. struct ggml_tensor * dst) {
  7650. switch (src0->type) {
  7651. case GGML_TYPE_F32:
  7652. {
  7653. ggml_compute_forward_gelu_f32(params, src0, dst);
  7654. } break;
  7655. default:
  7656. {
  7657. GGML_ASSERT(false);
  7658. } break;
  7659. }
  7660. }
  7661. // ggml_compute_forward_gelu_quick
  7662. static void ggml_compute_forward_gelu_quick_f32(
  7663. const struct ggml_compute_params * params,
  7664. const struct ggml_tensor * src0,
  7665. struct ggml_tensor * dst) {
  7666. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7667. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7668. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7669. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7670. return;
  7671. }
  7672. const int ith = params->ith;
  7673. const int nth = params->nth;
  7674. const int nc = src0->ne[0];
  7675. const int nr = ggml_nrows(src0);
  7676. // rows per thread
  7677. const int dr = (nr + nth - 1)/nth;
  7678. // row range for this thread
  7679. const int ir0 = dr*ith;
  7680. const int ir1 = MIN(ir0 + dr, nr);
  7681. for (int i1 = ir0; i1 < ir1; i1++) {
  7682. ggml_vec_gelu_quick_f32(nc,
  7683. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7684. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7685. #ifndef NDEBUG
  7686. for (int k = 0; k < nc; k++) {
  7687. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7688. UNUSED(x);
  7689. assert(!isnan(x));
  7690. assert(!isinf(x));
  7691. }
  7692. #endif
  7693. }
  7694. }
  7695. static void ggml_compute_forward_gelu_quick(
  7696. const struct ggml_compute_params * params,
  7697. const struct ggml_tensor * src0,
  7698. struct ggml_tensor * dst) {
  7699. switch (src0->type) {
  7700. case GGML_TYPE_F32:
  7701. {
  7702. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7703. } break;
  7704. default:
  7705. {
  7706. GGML_ASSERT(false);
  7707. } break;
  7708. }
  7709. }
  7710. // ggml_compute_forward_silu
  7711. static void ggml_compute_forward_silu_f32(
  7712. const struct ggml_compute_params * params,
  7713. const struct ggml_tensor * src0,
  7714. struct ggml_tensor * dst) {
  7715. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7716. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7717. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7719. return;
  7720. }
  7721. const int ith = params->ith;
  7722. const int nth = params->nth;
  7723. const int nc = src0->ne[0];
  7724. const int nr = ggml_nrows(src0);
  7725. // rows per thread
  7726. const int dr = (nr + nth - 1)/nth;
  7727. // row range for this thread
  7728. const int ir0 = dr*ith;
  7729. const int ir1 = MIN(ir0 + dr, nr);
  7730. for (int i1 = ir0; i1 < ir1; i1++) {
  7731. ggml_vec_silu_f32(nc,
  7732. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7733. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7734. #ifndef NDEBUG
  7735. for (int k = 0; k < nc; k++) {
  7736. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7737. UNUSED(x);
  7738. assert(!isnan(x));
  7739. assert(!isinf(x));
  7740. }
  7741. #endif
  7742. }
  7743. }
  7744. static void ggml_compute_forward_silu(
  7745. const struct ggml_compute_params * params,
  7746. const struct ggml_tensor * src0,
  7747. struct ggml_tensor * dst) {
  7748. switch (src0->type) {
  7749. case GGML_TYPE_F32:
  7750. {
  7751. ggml_compute_forward_silu_f32(params, src0, dst);
  7752. } break;
  7753. default:
  7754. {
  7755. GGML_ASSERT(false);
  7756. } break;
  7757. }
  7758. }
  7759. // ggml_compute_forward_leaky_relu
  7760. static void ggml_compute_forward_leaky_relu_f32(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. struct ggml_tensor * dst) {
  7764. assert(params->ith == 0);
  7765. assert(ggml_are_same_shape(src0, dst));
  7766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. const int n = ggml_nrows(src0);
  7770. const int nc = src0->ne[0];
  7771. float negative_slope;
  7772. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7773. assert(dst->nb[0] == sizeof(float));
  7774. assert(src0->nb[0] == sizeof(float));
  7775. for (int i = 0; i < n; i++) {
  7776. ggml_vec_leaky_relu_f32(nc,
  7777. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7778. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7779. }
  7780. }
  7781. static void ggml_compute_forward_leaky_relu(
  7782. const struct ggml_compute_params * params,
  7783. const struct ggml_tensor * src0,
  7784. struct ggml_tensor * dst) {
  7785. switch (src0->type) {
  7786. case GGML_TYPE_F32:
  7787. {
  7788. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7789. } break;
  7790. default:
  7791. {
  7792. GGML_ASSERT(false);
  7793. } break;
  7794. }
  7795. }
  7796. // ggml_compute_forward_silu_back
  7797. static void ggml_compute_forward_silu_back_f32(
  7798. const struct ggml_compute_params * params,
  7799. const struct ggml_tensor * src0,
  7800. const struct ggml_tensor * grad,
  7801. struct ggml_tensor * dst) {
  7802. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7803. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7804. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7805. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7806. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7807. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7808. return;
  7809. }
  7810. const int ith = params->ith;
  7811. const int nth = params->nth;
  7812. const int nc = src0->ne[0];
  7813. const int nr = ggml_nrows(src0);
  7814. // rows per thread
  7815. const int dr = (nr + nth - 1)/nth;
  7816. // row range for this thread
  7817. const int ir0 = dr*ith;
  7818. const int ir1 = MIN(ir0 + dr, nr);
  7819. for (int i1 = ir0; i1 < ir1; i1++) {
  7820. ggml_vec_silu_backward_f32(nc,
  7821. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7822. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7823. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7824. #ifndef NDEBUG
  7825. for (int k = 0; k < nc; k++) {
  7826. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7827. UNUSED(x);
  7828. assert(!isnan(x));
  7829. assert(!isinf(x));
  7830. }
  7831. #endif
  7832. }
  7833. }
  7834. static void ggml_compute_forward_silu_back(
  7835. const struct ggml_compute_params * params,
  7836. const struct ggml_tensor * src0,
  7837. const struct ggml_tensor * grad,
  7838. struct ggml_tensor * dst) {
  7839. switch (src0->type) {
  7840. case GGML_TYPE_F32:
  7841. {
  7842. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7843. } break;
  7844. default:
  7845. {
  7846. GGML_ASSERT(false);
  7847. } break;
  7848. }
  7849. }
  7850. static void ggml_compute_forward_hardswish_f32(
  7851. const struct ggml_compute_params * params,
  7852. const struct ggml_tensor * src0,
  7853. struct ggml_tensor * dst) {
  7854. assert(params->ith == 0);
  7855. assert(ggml_are_same_shape(src0, dst));
  7856. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7857. return;
  7858. }
  7859. const int n = ggml_nrows(src0);
  7860. const int nc = src0->ne[0];
  7861. assert(dst->nb[0] == sizeof(float));
  7862. assert(src0->nb[0] == sizeof(float));
  7863. for (int i = 0; i < n; i++) {
  7864. ggml_vec_hardswish_f32(nc,
  7865. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7866. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7867. }
  7868. }
  7869. static void ggml_compute_forward_hardswish(
  7870. const struct ggml_compute_params * params,
  7871. const struct ggml_tensor * src0,
  7872. struct ggml_tensor * dst) {
  7873. switch (src0->type) {
  7874. case GGML_TYPE_F32:
  7875. {
  7876. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7877. } break;
  7878. default:
  7879. {
  7880. GGML_ASSERT(false);
  7881. } break;
  7882. }
  7883. }
  7884. static void ggml_compute_forward_hardsigmoid_f32(
  7885. const struct ggml_compute_params * params,
  7886. const struct ggml_tensor * src0,
  7887. struct ggml_tensor * dst) {
  7888. assert(params->ith == 0);
  7889. assert(ggml_are_same_shape(src0, dst));
  7890. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7891. return;
  7892. }
  7893. const int n = ggml_nrows(src0);
  7894. const int nc = src0->ne[0];
  7895. assert(dst->nb[0] == sizeof(float));
  7896. assert(src0->nb[0] == sizeof(float));
  7897. for (int i = 0; i < n; i++) {
  7898. ggml_vec_hardsigmoid_f32(nc,
  7899. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7900. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7901. }
  7902. }
  7903. static void ggml_compute_forward_hardsigmoid(
  7904. const struct ggml_compute_params * params,
  7905. const struct ggml_tensor * src0,
  7906. struct ggml_tensor * dst) {
  7907. switch (src0->type) {
  7908. case GGML_TYPE_F32:
  7909. {
  7910. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7911. } break;
  7912. default:
  7913. {
  7914. GGML_ASSERT(false);
  7915. } break;
  7916. }
  7917. }
  7918. // ggml_compute_forward_norm
  7919. static void ggml_compute_forward_norm_f32(
  7920. const struct ggml_compute_params * params,
  7921. const struct ggml_tensor * src0,
  7922. struct ggml_tensor * dst) {
  7923. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7924. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7925. return;
  7926. }
  7927. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7928. const int ith = params->ith;
  7929. const int nth = params->nth;
  7930. GGML_TENSOR_UNARY_OP_LOCALS
  7931. float eps;
  7932. memcpy(&eps, dst->op_params, sizeof(float));
  7933. GGML_ASSERT(eps > 0.0f);
  7934. // TODO: optimize
  7935. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7936. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7937. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7938. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7939. ggml_float sum = 0.0;
  7940. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7941. sum += (ggml_float)x[i00];
  7942. }
  7943. float mean = sum/ne00;
  7944. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7945. ggml_float sum2 = 0.0;
  7946. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7947. float v = x[i00] - mean;
  7948. y[i00] = v;
  7949. sum2 += (ggml_float)(v*v);
  7950. }
  7951. float variance = sum2/ne00;
  7952. const float scale = 1.0f/sqrtf(variance + eps);
  7953. ggml_vec_scale_f32(ne00, y, scale);
  7954. }
  7955. }
  7956. }
  7957. }
  7958. static void ggml_compute_forward_norm(
  7959. const struct ggml_compute_params * params,
  7960. const struct ggml_tensor * src0,
  7961. struct ggml_tensor * dst) {
  7962. switch (src0->type) {
  7963. case GGML_TYPE_F32:
  7964. {
  7965. ggml_compute_forward_norm_f32(params, src0, dst);
  7966. } break;
  7967. default:
  7968. {
  7969. GGML_ASSERT(false);
  7970. } break;
  7971. }
  7972. }
  7973. // ggml_compute_forward_group_rms_norm
  7974. static void ggml_compute_forward_rms_norm_f32(
  7975. const struct ggml_compute_params * params,
  7976. const struct ggml_tensor * src0,
  7977. struct ggml_tensor * dst) {
  7978. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7979. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7980. return;
  7981. }
  7982. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7983. const int ith = params->ith;
  7984. const int nth = params->nth;
  7985. GGML_TENSOR_UNARY_OP_LOCALS
  7986. float eps;
  7987. memcpy(&eps, dst->op_params, sizeof(float));
  7988. GGML_ASSERT(eps > 0.0f);
  7989. // TODO: optimize
  7990. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7991. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7992. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7993. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7994. ggml_float sum = 0.0;
  7995. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7996. sum += (ggml_float)(x[i00] * x[i00]);
  7997. }
  7998. const float mean = sum/ne00;
  7999. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8000. memcpy(y, x, ne00 * sizeof(float));
  8001. // for (int i00 = 0; i00 < ne00; i00++) {
  8002. // y[i00] = x[i00];
  8003. // }
  8004. const float scale = 1.0f/sqrtf(mean + eps);
  8005. ggml_vec_scale_f32(ne00, y, scale);
  8006. }
  8007. }
  8008. }
  8009. }
  8010. static void ggml_compute_forward_rms_norm(
  8011. const struct ggml_compute_params * params,
  8012. const struct ggml_tensor * src0,
  8013. struct ggml_tensor * dst) {
  8014. switch (src0->type) {
  8015. case GGML_TYPE_F32:
  8016. {
  8017. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8018. } break;
  8019. default:
  8020. {
  8021. GGML_ASSERT(false);
  8022. } break;
  8023. }
  8024. }
  8025. static void ggml_compute_forward_rms_norm_back_f32(
  8026. const struct ggml_compute_params * params,
  8027. const struct ggml_tensor * src0,
  8028. const struct ggml_tensor * src1,
  8029. struct ggml_tensor * dst) {
  8030. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8032. return;
  8033. }
  8034. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8035. const int ith = params->ith;
  8036. const int nth = params->nth;
  8037. GGML_TENSOR_BINARY_OP_LOCALS
  8038. float eps;
  8039. memcpy(&eps, dst->op_params, sizeof(float));
  8040. // TODO: optimize
  8041. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8042. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8043. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8044. // src1 is same shape as src0 => same indices
  8045. const int64_t i11 = i01;
  8046. const int64_t i12 = i02;
  8047. const int64_t i13 = i03;
  8048. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8049. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8050. ggml_float sum_xx = 0.0;
  8051. ggml_float sum_xdz = 0.0;
  8052. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8053. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8054. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8055. }
  8056. //const float mean = (float)(sum_xx)/ne00;
  8057. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8058. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8059. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8060. // we could cache rms from forward pass to improve performance.
  8061. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8062. //const float rms = sqrtf(mean_eps);
  8063. const float rrms = 1.0f / sqrtf(mean_eps);
  8064. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8065. {
  8066. // z = rms_norm(x)
  8067. //
  8068. // rms_norm(src0) =
  8069. // scale(
  8070. // src0,
  8071. // div(
  8072. // 1,
  8073. // sqrt(
  8074. // add(
  8075. // scale(
  8076. // sum(
  8077. // sqr(
  8078. // src0)),
  8079. // (1.0/N)),
  8080. // eps))));
  8081. // postorder:
  8082. // ## op args grad
  8083. // 00 param src0 grad[#00]
  8084. // 01 const 1
  8085. // 02 sqr (#00) grad[#02]
  8086. // 03 sum (#02) grad[#03]
  8087. // 04 const 1/N
  8088. // 05 scale (#03, #04) grad[#05]
  8089. // 06 const eps
  8090. // 07 add (#05, #06) grad[#07]
  8091. // 08 sqrt (#07) grad[#08]
  8092. // 09 div (#01,#08) grad[#09]
  8093. // 10 scale (#00,#09) grad[#10]
  8094. //
  8095. // backward pass, given grad[#10]
  8096. // #10: scale
  8097. // grad[#00] += scale(grad[#10],#09)
  8098. // grad[#09] += sum(mul(grad[#10],#00))
  8099. // #09: div
  8100. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8101. // #08: sqrt
  8102. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8103. // #07: add
  8104. // grad[#05] += grad[#07]
  8105. // #05: scale
  8106. // grad[#03] += scale(grad[#05],#04)
  8107. // #03: sum
  8108. // grad[#02] += repeat(grad[#03], #02)
  8109. // #02:
  8110. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8111. //
  8112. // substitute and simplify:
  8113. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8114. // grad[#02] = repeat(grad[#03], #02)
  8115. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8116. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8117. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8118. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8119. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8120. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8121. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8122. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8123. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8124. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8125. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8126. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8127. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8128. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8129. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8130. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8131. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8132. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8133. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8134. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8135. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8136. // a = b*c + d*e
  8137. // a = b*c*f/f + d*e*f/f
  8138. // a = (b*c*f + d*e*f)*(1/f)
  8139. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8140. // a = (b + d*e/c)*c
  8141. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8142. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8143. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8144. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8145. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8146. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8147. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8148. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8149. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8150. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8151. }
  8152. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8153. // post-order:
  8154. // dx := x
  8155. // dx := scale(dx,-mean_xdz/mean_eps)
  8156. // dx := add(dx, dz)
  8157. // dx := scale(dx, rrms)
  8158. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8159. ggml_vec_cpy_f32 (ne00, dx, x);
  8160. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8161. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8162. ggml_vec_acc_f32 (ne00, dx, dz);
  8163. ggml_vec_scale_f32(ne00, dx, rrms);
  8164. }
  8165. }
  8166. }
  8167. }
  8168. static void ggml_compute_forward_rms_norm_back(
  8169. const struct ggml_compute_params * params,
  8170. const struct ggml_tensor * src0,
  8171. const struct ggml_tensor * src1,
  8172. struct ggml_tensor * dst) {
  8173. switch (src0->type) {
  8174. case GGML_TYPE_F32:
  8175. {
  8176. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8177. } break;
  8178. default:
  8179. {
  8180. GGML_ASSERT(false);
  8181. } break;
  8182. }
  8183. }
  8184. // ggml_compute_forward_group_norm
  8185. static void ggml_compute_forward_group_norm_f32(
  8186. const struct ggml_compute_params * params,
  8187. const struct ggml_tensor * src0,
  8188. struct ggml_tensor * dst) {
  8189. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8191. return;
  8192. }
  8193. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8194. const int ith = params->ith;
  8195. const int nth = params->nth;
  8196. GGML_TENSOR_UNARY_OP_LOCALS
  8197. const float eps = 1e-6f; // TODO: make this a parameter
  8198. // TODO: optimize
  8199. int n_channels = src0->ne[2];
  8200. int n_groups = dst->op_params[0];
  8201. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8202. for (int i = ith; i < n_groups; i+=nth) {
  8203. int start = i * n_channels_per_group;
  8204. int end = start + n_channels_per_group;
  8205. if (end > n_channels) {
  8206. end = n_channels;
  8207. }
  8208. int step = end - start;
  8209. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8210. ggml_float sum = 0.0;
  8211. for (int64_t i02 = start; i02 < end; i02++) {
  8212. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8213. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8214. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8215. sum += (ggml_float)x[i00];
  8216. }
  8217. }
  8218. }
  8219. float mean = sum / (ne00 * ne01 * step);
  8220. ggml_float sum2 = 0.0;
  8221. for (int64_t i02 = start; i02 < end; i02++) {
  8222. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8223. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8224. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8225. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8226. float v = x[i00] - mean;
  8227. y[i00] = v;
  8228. sum2 += (ggml_float)(v * v);
  8229. }
  8230. }
  8231. }
  8232. float variance = sum2 / (ne00 * ne01 * step);
  8233. const float scale = 1.0f / sqrtf(variance + eps);
  8234. for (int64_t i02 = start; i02 < end; i02++) {
  8235. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8236. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8237. ggml_vec_scale_f32(ne00, y, scale);
  8238. }
  8239. }
  8240. }
  8241. }
  8242. }
  8243. static void ggml_compute_forward_group_norm(
  8244. const struct ggml_compute_params * params,
  8245. const struct ggml_tensor * src0,
  8246. struct ggml_tensor * dst) {
  8247. switch (src0->type) {
  8248. case GGML_TYPE_F32:
  8249. {
  8250. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8251. } break;
  8252. default:
  8253. {
  8254. GGML_ASSERT(false);
  8255. } break;
  8256. }
  8257. }
  8258. // ggml_compute_forward_mul_mat
  8259. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8260. // helper function to determine if it is better to use BLAS or not
  8261. // for large matrices, BLAS is faster
  8262. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8263. const struct ggml_tensor * src0 = dst->src[0];
  8264. const struct ggml_tensor * src1 = dst->src[1];
  8265. //const int64_t ne00 = src0->ne[0];
  8266. //const int64_t ne01 = src0->ne[1];
  8267. const int64_t ne10 = src1->ne[0];
  8268. const int64_t ne0 = dst->ne[0];
  8269. const int64_t ne1 = dst->ne[1];
  8270. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8271. // all the experts for each batch element and the processing would become incredibly slow
  8272. // TODO: find the optimal values for these
  8273. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8274. ggml_is_contiguous(src0) &&
  8275. ggml_is_contiguous(src1) &&
  8276. //src0->type == GGML_TYPE_F32 &&
  8277. src1->type == GGML_TYPE_F32 &&
  8278. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8279. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8280. return true;
  8281. }
  8282. return false;
  8283. }
  8284. #endif
  8285. static void ggml_compute_forward_mul_mat(
  8286. const struct ggml_compute_params * params,
  8287. const struct ggml_tensor * src0,
  8288. const struct ggml_tensor * src1,
  8289. struct ggml_tensor * dst) {
  8290. int64_t t0 = ggml_perf_time_us();
  8291. UNUSED(t0);
  8292. GGML_TENSOR_BINARY_OP_LOCALS
  8293. const int ith = params->ith;
  8294. const int nth = params->nth;
  8295. const enum ggml_type type = src0->type;
  8296. const bool src1_cont = ggml_is_contiguous(src1);
  8297. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8298. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8299. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8300. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8301. GGML_ASSERT(ne0 == ne01);
  8302. GGML_ASSERT(ne1 == ne11);
  8303. GGML_ASSERT(ne2 == ne12);
  8304. GGML_ASSERT(ne3 == ne13);
  8305. // we don't support permuted src0 or src1
  8306. GGML_ASSERT(nb00 == ggml_type_size(type));
  8307. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8308. // dst cannot be transposed or permuted
  8309. GGML_ASSERT(nb0 == sizeof(float));
  8310. GGML_ASSERT(nb0 <= nb1);
  8311. GGML_ASSERT(nb1 <= nb2);
  8312. GGML_ASSERT(nb2 <= nb3);
  8313. // broadcast factors
  8314. const int64_t r2 = ne12/ne02;
  8315. const int64_t r3 = ne13/ne03;
  8316. // nb01 >= nb00 - src0 is not transposed
  8317. // compute by src0 rows
  8318. #if defined(GGML_USE_CLBLAST)
  8319. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8320. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8321. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8322. }
  8323. return;
  8324. }
  8325. #endif
  8326. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8327. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8328. const int64_t ne_plane = ne01*ne00;
  8329. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8330. UNUSED(desired_wsize);
  8331. if (params->type == GGML_TASK_INIT) {
  8332. if (type != GGML_TYPE_F32) {
  8333. assert(params->wsize >= desired_wsize);
  8334. // parallelize by src0 rows
  8335. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8336. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8337. // broadcast src0 into src1 across 2nd,3rd dimension
  8338. const int64_t i03 = i13/r3;
  8339. const int64_t i02 = i12/r2;
  8340. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8341. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8342. ggml_to_float_t const to_float = type_traits[type].to_float;
  8343. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8344. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8345. }
  8346. }
  8347. }
  8348. }
  8349. return;
  8350. }
  8351. if (params->type == GGML_TASK_FINALIZE) {
  8352. return;
  8353. }
  8354. // perform sgemm, parallelization controlled by blas lib
  8355. if (ith != 0) {
  8356. return;
  8357. }
  8358. //const int64_t tgemm0 = ggml_perf_time_us();
  8359. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8360. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8361. const int64_t i03 = i13/r3;
  8362. const int64_t i02 = i12/r2;
  8363. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8364. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8365. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8366. if (type != GGML_TYPE_F32) {
  8367. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8368. }
  8369. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8370. ne1, ne01, ne10,
  8371. 1.0f, y, ne10,
  8372. x, ne00,
  8373. 0.0f, d, ne01);
  8374. }
  8375. }
  8376. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8377. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8378. return;
  8379. }
  8380. #endif
  8381. if (params->type == GGML_TASK_INIT) {
  8382. if (ith != 0) {
  8383. return;
  8384. }
  8385. if (src1->type != vec_dot_type) {
  8386. char * wdata = params->wdata;
  8387. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8388. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8389. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8390. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8391. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8392. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8393. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8394. wdata += row_size;
  8395. }
  8396. }
  8397. }
  8398. }
  8399. return;
  8400. }
  8401. if (params->type == GGML_TASK_FINALIZE) {
  8402. return;
  8403. }
  8404. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8405. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8406. const int64_t nr0 = ne01; // src0 rows
  8407. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8408. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8409. // distribute the thread work across the inner or outer loop based on which one is larger
  8410. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8411. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8412. const int64_t ith0 = ith % nth0;
  8413. const int64_t ith1 = ith / nth0;
  8414. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8415. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8416. const int64_t ir010 = dr0*ith0;
  8417. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8418. const int64_t ir110 = dr1*ith1;
  8419. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8420. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8421. // threads with no work simply yield (not sure if it helps)
  8422. if (ir010 >= ir011 || ir110 >= ir111) {
  8423. sched_yield();
  8424. return;
  8425. }
  8426. assert(ne12 % ne02 == 0);
  8427. assert(ne13 % ne03 == 0);
  8428. // block-tiling attempt
  8429. const int64_t blck_0 = 16;
  8430. const int64_t blck_1 = 16;
  8431. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8432. int64_t nrc = vec_dot_num_rows;
  8433. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8434. // this check can be removed once they are extended to support odd numbered rows/cols too
  8435. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8436. nrc = 1;
  8437. }
  8438. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8439. // attempt to reduce false-sharing (does not seem to make a difference)
  8440. // 16 * 2, accounting for mmla kernels
  8441. float tmp[32];
  8442. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8443. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8444. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8445. const int64_t i13 = (ir1/(ne12*ne1));
  8446. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8447. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8448. // broadcast src0 into src1
  8449. const int64_t i03 = i13/r3;
  8450. const int64_t i02 = i12/r2;
  8451. const int64_t i1 = i11;
  8452. const int64_t i2 = i12;
  8453. const int64_t i3 = i13;
  8454. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8455. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8456. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8457. // the original src1 data pointer, so we should index using the indices directly
  8458. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8459. const char * src1_col = (const char *) wdata +
  8460. (src1_cont || src1->type != vec_dot_type
  8461. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8462. : (i11*nb11 + i12*nb12 + i13*nb13));
  8463. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8464. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8465. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8466. //}
  8467. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8468. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8469. }
  8470. for (int cn = 0; cn < nrc; ++cn) {
  8471. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8472. }
  8473. }
  8474. }
  8475. }
  8476. }
  8477. // ggml_compute_forward_mul_mat_id
  8478. static void ggml_compute_forward_mul_mat_id(
  8479. const struct ggml_compute_params * params,
  8480. const struct ggml_tensor * ids,
  8481. const struct ggml_tensor * src1,
  8482. struct ggml_tensor * dst) {
  8483. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8484. GGML_TENSOR_BINARY_OP_LOCALS
  8485. const int ith = params->ith;
  8486. const int nth = params->nth;
  8487. const enum ggml_type type = src0->type;
  8488. const bool src1_cont = ggml_is_contiguous(src1);
  8489. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8490. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8491. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8492. GGML_ASSERT(ne0 == ne01);
  8493. GGML_ASSERT(ne1 == ne11);
  8494. GGML_ASSERT(ne2 == ne12);
  8495. GGML_ASSERT(ne3 == ne13);
  8496. // we don't support permuted src0 or src1
  8497. GGML_ASSERT(nb00 == ggml_type_size(type));
  8498. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8499. // dst cannot be transposed or permuted
  8500. GGML_ASSERT(nb0 == sizeof(float));
  8501. GGML_ASSERT(nb0 <= nb1);
  8502. GGML_ASSERT(nb1 <= nb2);
  8503. GGML_ASSERT(nb2 <= nb3);
  8504. // broadcast factors
  8505. const int64_t r2 = ne12/ne02;
  8506. const int64_t r3 = ne13/ne03;
  8507. // row groups
  8508. const int id = ggml_get_op_params_i32(dst, 0);
  8509. const int n_as = ggml_get_op_params_i32(dst, 1);
  8510. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8511. (char *) params->wdata :
  8512. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8513. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8514. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8515. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8516. if (params->type == GGML_TASK_INIT) {
  8517. if (ith != 0) {
  8518. return;
  8519. }
  8520. char * wdata = params->wdata;
  8521. if (src1->type != vec_dot_type) {
  8522. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8523. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8524. assert(src1->type == GGML_TYPE_F32);
  8525. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8526. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8527. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8528. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8529. wdata += row_size;
  8530. }
  8531. }
  8532. }
  8533. }
  8534. // initialize matrix_row_counts
  8535. GGML_ASSERT(wdata == wdata_src1_end);
  8536. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8537. // group rows by src0 matrix
  8538. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8539. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8540. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8541. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8542. matrix_row_counts[row_id] += 1;
  8543. }
  8544. return;
  8545. }
  8546. if (params->type == GGML_TASK_FINALIZE) {
  8547. return;
  8548. }
  8549. // compute each matrix multiplication in sequence
  8550. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8551. const int64_t cne1 = matrix_row_counts[cur_a];
  8552. if (cne1 == 0) {
  8553. continue;
  8554. }
  8555. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8556. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8557. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8558. const int64_t nr0 = ne01; // src0 rows
  8559. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8560. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8561. // distribute the thread work across the inner or outer loop based on which one is larger
  8562. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8563. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8564. const int64_t ith0 = ith % nth0;
  8565. const int64_t ith1 = ith / nth0;
  8566. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8567. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8568. const int64_t ir010 = dr0*ith0;
  8569. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8570. const int64_t ir110 = dr1*ith1;
  8571. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8572. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8573. // threads with no work simply yield (not sure if it helps)
  8574. if (ir010 >= ir011 || ir110 >= ir111) {
  8575. sched_yield();
  8576. continue;
  8577. }
  8578. assert(ne12 % ne02 == 0);
  8579. assert(ne13 % ne03 == 0);
  8580. // block-tiling attempt
  8581. const int64_t blck_0 = 16;
  8582. const int64_t blck_1 = 16;
  8583. // attempt to reduce false-sharing (does not seem to make a difference)
  8584. float tmp[16];
  8585. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8586. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8587. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8588. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8589. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8590. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8591. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8592. // broadcast src0 into src1
  8593. const int64_t i03 = i13/r3;
  8594. const int64_t i02 = i12/r2;
  8595. const int64_t i1 = i11;
  8596. const int64_t i2 = i12;
  8597. const int64_t i3 = i13;
  8598. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8599. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8600. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8601. // the original src1 data pointer, so we should index using the indices directly
  8602. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8603. const char * src1_col = (const char *) wdata +
  8604. (src1_cont || src1->type != vec_dot_type
  8605. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8606. : (i11*nb11 + i12*nb12 + i13*nb13));
  8607. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8608. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8609. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8610. //}
  8611. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8612. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8613. }
  8614. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8615. }
  8616. }
  8617. }
  8618. }
  8619. #undef MMID_MATRIX_ROW
  8620. }
  8621. // ggml_compute_forward_out_prod
  8622. static void ggml_compute_forward_out_prod_f32(
  8623. const struct ggml_compute_params * params,
  8624. const struct ggml_tensor * src0,
  8625. const struct ggml_tensor * src1,
  8626. struct ggml_tensor * dst) {
  8627. // int64_t t0 = ggml_perf_time_us();
  8628. // UNUSED(t0);
  8629. GGML_TENSOR_BINARY_OP_LOCALS
  8630. const int ith = params->ith;
  8631. const int nth = params->nth;
  8632. GGML_ASSERT(ne0 == ne00);
  8633. GGML_ASSERT(ne1 == ne10);
  8634. GGML_ASSERT(ne2 == ne02);
  8635. GGML_ASSERT(ne02 == ne12);
  8636. GGML_ASSERT(ne3 == ne13);
  8637. GGML_ASSERT(ne03 == ne13);
  8638. // we don't support permuted src0 or src1
  8639. GGML_ASSERT(nb00 == sizeof(float));
  8640. // dst cannot be transposed or permuted
  8641. GGML_ASSERT(nb0 == sizeof(float));
  8642. // GGML_ASSERT(nb0 <= nb1);
  8643. // GGML_ASSERT(nb1 <= nb2);
  8644. // GGML_ASSERT(nb2 <= nb3);
  8645. // nb01 >= nb00 - src0 is not transposed
  8646. // compute by src0 rows
  8647. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8648. // TODO: #if defined(GGML_USE_CLBLAST)
  8649. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8650. bool use_blas = ggml_is_matrix(src0) &&
  8651. ggml_is_matrix(src1) &&
  8652. ggml_is_contiguous(src0) &&
  8653. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8654. #endif
  8655. if (params->type == GGML_TASK_INIT) {
  8656. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8657. if (use_blas) {
  8658. return;
  8659. }
  8660. #endif
  8661. if (ith != 0) {
  8662. return;
  8663. }
  8664. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8665. return;
  8666. }
  8667. if (params->type == GGML_TASK_FINALIZE) {
  8668. return;
  8669. }
  8670. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8671. if (use_blas) {
  8672. if (params->ith != 0) { // All threads other than the first do no work.
  8673. return;
  8674. }
  8675. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8676. // src0: (k,n)
  8677. // src1: (k,m)
  8678. // dst: (m,n)
  8679. //
  8680. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8681. // Also expressed as (major,minor)
  8682. // a: (m,k): so src1 transposed
  8683. // b: (k,n): so src0
  8684. // c: (m,n)
  8685. //
  8686. // However, if ggml_is_transposed(src1) is true, then
  8687. // src1->data already contains a transposed version, so sgemm mustn't
  8688. // transpose it further.
  8689. int n = src0->ne[0];
  8690. int k = src0->ne[1];
  8691. int m = src1->ne[0];
  8692. int transposeA, lda;
  8693. if (!ggml_is_transposed(src1)) {
  8694. transposeA = CblasTrans;
  8695. lda = m;
  8696. } else {
  8697. transposeA = CblasNoTrans;
  8698. lda = k;
  8699. }
  8700. float * a = (float *) ((char *) src1->data);
  8701. float * b = (float *) ((char *) src0->data);
  8702. float * c = (float *) ((char *) dst->data);
  8703. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8704. return;
  8705. }
  8706. #endif
  8707. // dst[:,:,:,:] = 0
  8708. // for i2,i3:
  8709. // for i1:
  8710. // for i01:
  8711. // for i0:
  8712. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8713. // parallelize by last three dimensions
  8714. // total rows in dst
  8715. const int64_t nr = ne1*ne2*ne3;
  8716. // rows per thread
  8717. const int64_t dr = (nr + nth - 1)/nth;
  8718. // row range for this thread
  8719. const int64_t ir0 = dr*ith;
  8720. const int64_t ir1 = MIN(ir0 + dr, nr);
  8721. // block-tiling attempt
  8722. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8723. const int64_t blck_1 = 16;
  8724. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8725. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8726. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8727. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8728. for (int64_t ir = bir; ir < bir1; ++ir) {
  8729. // dst indices
  8730. const int64_t i3 = ir/(ne2*ne1);
  8731. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8732. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8733. const int64_t i02 = i2;
  8734. const int64_t i03 = i3;
  8735. //const int64_t i10 = i1;
  8736. const int64_t i12 = i2;
  8737. const int64_t i13 = i3;
  8738. #if GGML_VEC_MAD_UNROLL > 2
  8739. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8740. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8741. const int64_t i11 = i01;
  8742. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8743. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8744. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8745. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8746. }
  8747. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8748. const int64_t i11 = i01;
  8749. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8750. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8751. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8752. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8753. }
  8754. #else
  8755. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8756. const int64_t i11 = i01;
  8757. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8758. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8759. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8760. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8761. }
  8762. #endif
  8763. }
  8764. }
  8765. }
  8766. //int64_t t1 = ggml_perf_time_us();
  8767. //static int64_t acc = 0;
  8768. //acc += t1 - t0;
  8769. //if (t1 - t0 > 10) {
  8770. // printf("\n");
  8771. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8772. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8773. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8774. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8775. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8776. //}
  8777. }
  8778. static void ggml_compute_forward_out_prod_q_f32(
  8779. const struct ggml_compute_params * params,
  8780. const struct ggml_tensor * src0,
  8781. const struct ggml_tensor * src1,
  8782. struct ggml_tensor * dst) {
  8783. // int64_t t0 = ggml_perf_time_us();
  8784. // UNUSED(t0);
  8785. GGML_TENSOR_BINARY_OP_LOCALS;
  8786. const int ith = params->ith;
  8787. const int nth = params->nth;
  8788. const enum ggml_type type = src0->type;
  8789. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8790. GGML_ASSERT(ne02 == ne12);
  8791. GGML_ASSERT(ne03 == ne13);
  8792. GGML_ASSERT(ne2 == ne12);
  8793. GGML_ASSERT(ne3 == ne13);
  8794. // we don't support permuted src0 dim0
  8795. GGML_ASSERT(nb00 == ggml_type_size(type));
  8796. // dst dim0 cannot be transposed or permuted
  8797. GGML_ASSERT(nb0 == sizeof(float));
  8798. // GGML_ASSERT(nb0 <= nb1);
  8799. // GGML_ASSERT(nb1 <= nb2);
  8800. // GGML_ASSERT(nb2 <= nb3);
  8801. GGML_ASSERT(ne0 == ne00);
  8802. GGML_ASSERT(ne1 == ne10);
  8803. GGML_ASSERT(ne2 == ne02);
  8804. GGML_ASSERT(ne3 == ne03);
  8805. // nb01 >= nb00 - src0 is not transposed
  8806. // compute by src0 rows
  8807. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8808. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8809. if (params->type == GGML_TASK_INIT) {
  8810. if (ith != 0) {
  8811. return;
  8812. }
  8813. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8814. return;
  8815. }
  8816. if (params->type == GGML_TASK_FINALIZE) {
  8817. return;
  8818. }
  8819. // parallelize by last three dimensions
  8820. // total rows in dst
  8821. const int64_t nr = ne1*ne2*ne3;
  8822. // rows per thread
  8823. const int64_t dr = (nr + nth - 1)/nth;
  8824. // row range for this thread
  8825. const int64_t ir0 = dr*ith;
  8826. const int64_t ir1 = MIN(ir0 + dr, nr);
  8827. // dst[:,:,:,:] = 0
  8828. // for i2,i3:
  8829. // for i1:
  8830. // for i01:
  8831. // for i0:
  8832. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8833. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8834. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8835. // dst indices
  8836. const int64_t i3 = ir/(ne2*ne1);
  8837. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8838. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8839. const int64_t i02 = i2;
  8840. const int64_t i03 = i3;
  8841. //const int64_t i10 = i1;
  8842. const int64_t i12 = i2;
  8843. const int64_t i13 = i3;
  8844. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8845. const int64_t i11 = i01;
  8846. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8847. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8848. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8849. dequantize_row_q(s0, wdata, ne0);
  8850. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8851. }
  8852. }
  8853. //int64_t t1 = ggml_perf_time_us();
  8854. //static int64_t acc = 0;
  8855. //acc += t1 - t0;
  8856. //if (t1 - t0 > 10) {
  8857. // printf("\n");
  8858. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8859. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8860. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8861. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8862. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8863. //}
  8864. }
  8865. static void ggml_compute_forward_out_prod(
  8866. const struct ggml_compute_params * params,
  8867. const struct ggml_tensor * src0,
  8868. const struct ggml_tensor * src1,
  8869. struct ggml_tensor * dst) {
  8870. switch (src0->type) {
  8871. case GGML_TYPE_Q4_0:
  8872. case GGML_TYPE_Q4_1:
  8873. case GGML_TYPE_Q5_0:
  8874. case GGML_TYPE_Q5_1:
  8875. case GGML_TYPE_Q8_0:
  8876. case GGML_TYPE_Q2_K:
  8877. case GGML_TYPE_Q3_K:
  8878. case GGML_TYPE_Q4_K:
  8879. case GGML_TYPE_Q5_K:
  8880. case GGML_TYPE_Q6_K:
  8881. case GGML_TYPE_IQ2_XXS:
  8882. case GGML_TYPE_IQ2_XS:
  8883. case GGML_TYPE_IQ3_XXS:
  8884. {
  8885. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8886. } break;
  8887. case GGML_TYPE_F16:
  8888. {
  8889. GGML_ASSERT(false); // todo
  8890. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8891. } break;
  8892. case GGML_TYPE_F32:
  8893. {
  8894. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8895. } break;
  8896. default:
  8897. {
  8898. GGML_ASSERT(false);
  8899. } break;
  8900. }
  8901. }
  8902. // ggml_compute_forward_scale
  8903. static void ggml_compute_forward_scale_f32(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. struct ggml_tensor * dst) {
  8907. GGML_ASSERT(ggml_is_contiguous(src0));
  8908. GGML_ASSERT(ggml_is_contiguous(dst));
  8909. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8911. return;
  8912. }
  8913. // scale factor
  8914. float v;
  8915. memcpy(&v, dst->op_params, sizeof(float));
  8916. const int ith = params->ith;
  8917. const int nth = params->nth;
  8918. const int nc = src0->ne[0];
  8919. const int nr = ggml_nrows(src0);
  8920. // rows per thread
  8921. const int dr = (nr + nth - 1)/nth;
  8922. // row range for this thread
  8923. const int ir0 = dr*ith;
  8924. const int ir1 = MIN(ir0 + dr, nr);
  8925. const size_t nb01 = src0->nb[1];
  8926. const size_t nb1 = dst->nb[1];
  8927. for (int i1 = ir0; i1 < ir1; i1++) {
  8928. if (dst->data != src0->data) {
  8929. // src0 is same shape as dst => same indices
  8930. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8931. }
  8932. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8933. }
  8934. }
  8935. static void ggml_compute_forward_scale(
  8936. const struct ggml_compute_params * params,
  8937. const struct ggml_tensor * src0,
  8938. struct ggml_tensor * dst) {
  8939. switch (src0->type) {
  8940. case GGML_TYPE_F32:
  8941. {
  8942. ggml_compute_forward_scale_f32(params, src0, dst);
  8943. } break;
  8944. default:
  8945. {
  8946. GGML_ASSERT(false);
  8947. } break;
  8948. }
  8949. }
  8950. // ggml_compute_forward_set
  8951. static void ggml_compute_forward_set_f32(
  8952. const struct ggml_compute_params * params,
  8953. const struct ggml_tensor * src0,
  8954. const struct ggml_tensor * src1,
  8955. struct ggml_tensor * dst) {
  8956. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8957. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8958. // view src0 and dst with these strides and data offset inbytes during set
  8959. // nb0 is implicitly element_size because src0 and dst are contiguous
  8960. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8961. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8962. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8963. size_t offset = ((int32_t *) dst->op_params)[3];
  8964. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8965. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8966. if (params->ith != 0) {
  8967. return;
  8968. }
  8969. // memcpy needs to be synchronized across threads to avoid race conditions.
  8970. // => do it in INIT phase
  8971. memcpy(
  8972. ((char *) dst->data),
  8973. ((char *) src0->data),
  8974. ggml_nbytes(dst));
  8975. }
  8976. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8977. return;
  8978. }
  8979. const int ith = params->ith;
  8980. const int nth = params->nth;
  8981. const int nr = ggml_nrows(src1);
  8982. const int nc = src1->ne[0];
  8983. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8984. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8985. // src0 and dst as viewed during set
  8986. const size_t nb0 = ggml_element_size(src0);
  8987. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8988. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8989. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8990. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8991. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8992. GGML_ASSERT(nb10 == sizeof(float));
  8993. // rows per thread
  8994. const int dr = (nr + nth - 1)/nth;
  8995. // row range for this thread
  8996. const int ir0 = dr*ith;
  8997. const int ir1 = MIN(ir0 + dr, nr);
  8998. for (int ir = ir0; ir < ir1; ++ir) {
  8999. // src0 and dst are viewed with shape of src1 and offset
  9000. // => same indices
  9001. const int i3 = ir/(ne12*ne11);
  9002. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9003. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9004. ggml_vec_cpy_f32(nc,
  9005. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9006. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9007. }
  9008. }
  9009. static void ggml_compute_forward_set(
  9010. const struct ggml_compute_params * params,
  9011. const struct ggml_tensor * src0,
  9012. const struct ggml_tensor * src1,
  9013. struct ggml_tensor * dst) {
  9014. switch (src0->type) {
  9015. case GGML_TYPE_F32:
  9016. {
  9017. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9018. } break;
  9019. case GGML_TYPE_F16:
  9020. case GGML_TYPE_Q4_0:
  9021. case GGML_TYPE_Q4_1:
  9022. case GGML_TYPE_Q5_0:
  9023. case GGML_TYPE_Q5_1:
  9024. case GGML_TYPE_Q8_0:
  9025. case GGML_TYPE_Q8_1:
  9026. case GGML_TYPE_Q2_K:
  9027. case GGML_TYPE_Q3_K:
  9028. case GGML_TYPE_Q4_K:
  9029. case GGML_TYPE_Q5_K:
  9030. case GGML_TYPE_Q6_K:
  9031. case GGML_TYPE_IQ2_XXS:
  9032. case GGML_TYPE_IQ2_XS:
  9033. case GGML_TYPE_IQ3_XXS:
  9034. default:
  9035. {
  9036. GGML_ASSERT(false);
  9037. } break;
  9038. }
  9039. }
  9040. // ggml_compute_forward_cpy
  9041. static void ggml_compute_forward_cpy(
  9042. const struct ggml_compute_params * params,
  9043. const struct ggml_tensor * src0,
  9044. struct ggml_tensor * dst) {
  9045. ggml_compute_forward_dup(params, src0, dst);
  9046. }
  9047. // ggml_compute_forward_cont
  9048. static void ggml_compute_forward_cont(
  9049. const struct ggml_compute_params * params,
  9050. const struct ggml_tensor * src0,
  9051. struct ggml_tensor * dst) {
  9052. ggml_compute_forward_dup(params, src0, dst);
  9053. }
  9054. // ggml_compute_forward_reshape
  9055. static void ggml_compute_forward_reshape(
  9056. const struct ggml_compute_params * params,
  9057. const struct ggml_tensor * src0,
  9058. struct ggml_tensor * dst) {
  9059. // NOP
  9060. UNUSED(params);
  9061. UNUSED(src0);
  9062. UNUSED(dst);
  9063. }
  9064. // ggml_compute_forward_view
  9065. static void ggml_compute_forward_view(
  9066. const struct ggml_compute_params * params,
  9067. const struct ggml_tensor * src0) {
  9068. // NOP
  9069. UNUSED(params);
  9070. UNUSED(src0);
  9071. }
  9072. // ggml_compute_forward_permute
  9073. static void ggml_compute_forward_permute(
  9074. const struct ggml_compute_params * params,
  9075. const struct ggml_tensor * src0) {
  9076. // NOP
  9077. UNUSED(params);
  9078. UNUSED(src0);
  9079. }
  9080. // ggml_compute_forward_transpose
  9081. static void ggml_compute_forward_transpose(
  9082. const struct ggml_compute_params * params,
  9083. const struct ggml_tensor * src0) {
  9084. // NOP
  9085. UNUSED(params);
  9086. UNUSED(src0);
  9087. }
  9088. // ggml_compute_forward_get_rows
  9089. static void ggml_compute_forward_get_rows_q(
  9090. const struct ggml_compute_params * params,
  9091. const struct ggml_tensor * src0,
  9092. const struct ggml_tensor * src1,
  9093. struct ggml_tensor * dst) {
  9094. assert(params->ith == 0);
  9095. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9096. return;
  9097. }
  9098. GGML_TENSOR_BINARY_OP_LOCALS
  9099. const int64_t nc = ne00;
  9100. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9101. const enum ggml_type type = src0->type;
  9102. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9103. assert(ne0 == nc);
  9104. assert(ne02 == ne11);
  9105. assert(nb00 == ggml_type_size(type));
  9106. assert(ggml_nrows(dst) == nr);
  9107. // TODO: multi-thread
  9108. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9109. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9110. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9111. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9112. dequantize_row_q(
  9113. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9114. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9115. }
  9116. }
  9117. }
  9118. }
  9119. static void ggml_compute_forward_get_rows_f16(
  9120. const struct ggml_compute_params * params,
  9121. const struct ggml_tensor * src0,
  9122. const struct ggml_tensor * src1,
  9123. struct ggml_tensor * dst) {
  9124. assert(params->ith == 0);
  9125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9126. return;
  9127. }
  9128. GGML_TENSOR_BINARY_OP_LOCALS
  9129. const int64_t nc = ne00;
  9130. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9131. assert(ne0 == nc);
  9132. assert(ne02 == ne11);
  9133. assert(nb00 == sizeof(ggml_fp16_t));
  9134. assert(ggml_nrows(dst) == nr);
  9135. // TODO: multi-thread
  9136. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9137. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9138. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9139. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9140. ggml_fp16_to_fp32_row(
  9141. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9142. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9143. }
  9144. }
  9145. }
  9146. }
  9147. static void ggml_compute_forward_get_rows_f32(
  9148. const struct ggml_compute_params * params,
  9149. const struct ggml_tensor * src0,
  9150. const struct ggml_tensor * src1,
  9151. struct ggml_tensor * dst) {
  9152. assert(params->ith == 0);
  9153. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9154. return;
  9155. }
  9156. GGML_TENSOR_BINARY_OP_LOCALS
  9157. const int64_t nc = ne00;
  9158. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9159. assert(ne0 == nc);
  9160. assert(ne02 == ne11);
  9161. assert(nb00 == sizeof(float));
  9162. assert(ggml_nrows(dst) == nr);
  9163. // TODO: multi-thread
  9164. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9165. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9166. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9167. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9168. ggml_vec_cpy_f32(nc,
  9169. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9170. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9171. }
  9172. }
  9173. }
  9174. }
  9175. static void ggml_compute_forward_get_rows(
  9176. const struct ggml_compute_params * params,
  9177. const struct ggml_tensor * src0,
  9178. const struct ggml_tensor * src1,
  9179. struct ggml_tensor * dst) {
  9180. switch (src0->type) {
  9181. case GGML_TYPE_Q4_0:
  9182. case GGML_TYPE_Q4_1:
  9183. case GGML_TYPE_Q5_0:
  9184. case GGML_TYPE_Q5_1:
  9185. case GGML_TYPE_Q8_0:
  9186. case GGML_TYPE_Q8_1:
  9187. case GGML_TYPE_Q2_K:
  9188. case GGML_TYPE_Q3_K:
  9189. case GGML_TYPE_Q4_K:
  9190. case GGML_TYPE_Q5_K:
  9191. case GGML_TYPE_Q6_K:
  9192. case GGML_TYPE_IQ2_XXS:
  9193. case GGML_TYPE_IQ2_XS:
  9194. case GGML_TYPE_IQ3_XXS:
  9195. {
  9196. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9197. } break;
  9198. case GGML_TYPE_F16:
  9199. {
  9200. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9201. } break;
  9202. case GGML_TYPE_F32:
  9203. case GGML_TYPE_I32:
  9204. {
  9205. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9206. } break;
  9207. default:
  9208. {
  9209. GGML_ASSERT(false);
  9210. } break;
  9211. }
  9212. //static bool first = true;
  9213. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9214. //if (first) {
  9215. // first = false;
  9216. //} else {
  9217. // for (int k = 0; k < dst->ne[1]; ++k) {
  9218. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9219. // for (int i = 0; i < 16; ++i) {
  9220. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9221. // }
  9222. // printf("\n");
  9223. // }
  9224. // printf("\n");
  9225. // }
  9226. // printf("\n");
  9227. // exit(0);
  9228. //}
  9229. }
  9230. // ggml_compute_forward_get_rows_back
  9231. static void ggml_compute_forward_get_rows_back_f32_f16(
  9232. const struct ggml_compute_params * params,
  9233. const struct ggml_tensor * src0,
  9234. const struct ggml_tensor * src1,
  9235. struct ggml_tensor * dst) {
  9236. GGML_ASSERT(params->ith == 0);
  9237. GGML_ASSERT(ggml_is_contiguous(dst));
  9238. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9239. if (params->type == GGML_TASK_INIT) {
  9240. if (params->ith != 0) {
  9241. return;
  9242. }
  9243. memset(dst->data, 0, ggml_nbytes(dst));
  9244. }
  9245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9246. return;
  9247. }
  9248. const int nc = src0->ne[0];
  9249. const int nr = ggml_nelements(src1);
  9250. GGML_ASSERT( dst->ne[0] == nc);
  9251. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9252. for (int i = 0; i < nr; ++i) {
  9253. const int r = ((int32_t *) src1->data)[i];
  9254. for (int j = 0; j < nc; ++j) {
  9255. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9256. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9257. }
  9258. }
  9259. }
  9260. static void ggml_compute_forward_get_rows_back_f32(
  9261. const struct ggml_compute_params * params,
  9262. const struct ggml_tensor * src0,
  9263. const struct ggml_tensor * src1,
  9264. struct ggml_tensor * dst) {
  9265. GGML_ASSERT(params->ith == 0);
  9266. GGML_ASSERT(ggml_is_contiguous(dst));
  9267. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9268. if (params->type == GGML_TASK_INIT) {
  9269. if (params->ith != 0) {
  9270. return;
  9271. }
  9272. memset(dst->data, 0, ggml_nbytes(dst));
  9273. }
  9274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9275. return;
  9276. }
  9277. const int nc = src0->ne[0];
  9278. const int nr = ggml_nelements(src1);
  9279. GGML_ASSERT( dst->ne[0] == nc);
  9280. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9281. for (int i = 0; i < nr; ++i) {
  9282. const int r = ((int32_t *) src1->data)[i];
  9283. ggml_vec_add_f32(nc,
  9284. (float *) ((char *) dst->data + r*dst->nb[1]),
  9285. (float *) ((char *) dst->data + r*dst->nb[1]),
  9286. (float *) ((char *) src0->data + i*src0->nb[1]));
  9287. }
  9288. }
  9289. static void ggml_compute_forward_get_rows_back(
  9290. const struct ggml_compute_params * params,
  9291. const struct ggml_tensor * src0,
  9292. const struct ggml_tensor * src1,
  9293. struct ggml_tensor * dst) {
  9294. switch (src0->type) {
  9295. case GGML_TYPE_F16:
  9296. {
  9297. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9298. } break;
  9299. case GGML_TYPE_F32:
  9300. {
  9301. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9302. } break;
  9303. default:
  9304. {
  9305. GGML_ASSERT(false);
  9306. } break;
  9307. }
  9308. //static bool first = true;
  9309. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9310. //if (first) {
  9311. // first = false;
  9312. //} else {
  9313. // for (int k = 0; k < dst->ne[1]; ++k) {
  9314. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9315. // for (int i = 0; i < 16; ++i) {
  9316. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9317. // }
  9318. // printf("\n");
  9319. // }
  9320. // printf("\n");
  9321. // }
  9322. // printf("\n");
  9323. // exit(0);
  9324. //}
  9325. }
  9326. // ggml_compute_forward_diag
  9327. static void ggml_compute_forward_diag_f32(
  9328. const struct ggml_compute_params * params,
  9329. const struct ggml_tensor * src0,
  9330. struct ggml_tensor * dst) {
  9331. GGML_ASSERT(params->ith == 0);
  9332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9333. return;
  9334. }
  9335. // TODO: handle transposed/permuted matrices
  9336. GGML_TENSOR_UNARY_OP_LOCALS
  9337. GGML_ASSERT(ne00 == ne0);
  9338. GGML_ASSERT(ne00 == ne1);
  9339. GGML_ASSERT(ne01 == 1);
  9340. GGML_ASSERT(ne02 == ne2);
  9341. GGML_ASSERT(ne03 == ne3);
  9342. GGML_ASSERT(nb00 == sizeof(float));
  9343. GGML_ASSERT(nb0 == sizeof(float));
  9344. for (int i3 = 0; i3 < ne3; i3++) {
  9345. for (int i2 = 0; i2 < ne2; i2++) {
  9346. for (int i1 = 0; i1 < ne1; i1++) {
  9347. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9348. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9349. for (int i0 = 0; i0 < i1; i0++) {
  9350. d[i0] = 0;
  9351. }
  9352. d[i1] = s[i1];
  9353. for (int i0 = i1+1; i0 < ne0; i0++) {
  9354. d[i0] = 0;
  9355. }
  9356. }
  9357. }
  9358. }
  9359. }
  9360. static void ggml_compute_forward_diag(
  9361. const struct ggml_compute_params * params,
  9362. const struct ggml_tensor * src0,
  9363. struct ggml_tensor * dst) {
  9364. switch (src0->type) {
  9365. case GGML_TYPE_F32:
  9366. {
  9367. ggml_compute_forward_diag_f32(params, src0, dst);
  9368. } break;
  9369. default:
  9370. {
  9371. GGML_ASSERT(false);
  9372. } break;
  9373. }
  9374. }
  9375. // ggml_compute_forward_diag_mask_inf
  9376. static void ggml_compute_forward_diag_mask_f32(
  9377. const struct ggml_compute_params * params,
  9378. const struct ggml_tensor * src0,
  9379. struct ggml_tensor * dst,
  9380. const float value) {
  9381. const int ith = params->ith;
  9382. const int nth = params->nth;
  9383. const int n_past = ((int32_t *) dst->op_params)[0];
  9384. const bool inplace = src0->data == dst->data;
  9385. GGML_ASSERT(n_past >= 0);
  9386. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9387. if (ith != 0) {
  9388. return;
  9389. }
  9390. // memcpy needs to be synchronized across threads to avoid race conditions.
  9391. // => do it in INIT phase
  9392. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9393. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9394. memcpy(
  9395. ((char *) dst->data),
  9396. ((char *) src0->data),
  9397. ggml_nbytes(dst));
  9398. }
  9399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9400. return;
  9401. }
  9402. // TODO: handle transposed/permuted matrices
  9403. const int n = ggml_nrows(src0);
  9404. const int nc = src0->ne[0];
  9405. const int nr = src0->ne[1];
  9406. const int nz = n/nr;
  9407. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9408. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9409. for (int k = 0; k < nz; k++) {
  9410. for (int j = ith; j < nr; j += nth) {
  9411. for (int i = n_past; i < nc; i++) {
  9412. if (i > n_past + j) {
  9413. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9414. }
  9415. }
  9416. }
  9417. }
  9418. }
  9419. static void ggml_compute_forward_diag_mask_inf(
  9420. const struct ggml_compute_params * params,
  9421. const struct ggml_tensor * src0,
  9422. struct ggml_tensor * dst) {
  9423. switch (src0->type) {
  9424. case GGML_TYPE_F32:
  9425. {
  9426. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9427. } break;
  9428. default:
  9429. {
  9430. GGML_ASSERT(false);
  9431. } break;
  9432. }
  9433. }
  9434. static void ggml_compute_forward_diag_mask_zero(
  9435. const struct ggml_compute_params * params,
  9436. const struct ggml_tensor * src0,
  9437. struct ggml_tensor * dst) {
  9438. switch (src0->type) {
  9439. case GGML_TYPE_F32:
  9440. {
  9441. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9442. } break;
  9443. default:
  9444. {
  9445. GGML_ASSERT(false);
  9446. } break;
  9447. }
  9448. }
  9449. // ggml_compute_forward_soft_max
  9450. static void ggml_compute_forward_soft_max_f32(
  9451. const struct ggml_compute_params * params,
  9452. const struct ggml_tensor * src0,
  9453. const struct ggml_tensor * src1,
  9454. struct ggml_tensor * dst) {
  9455. assert(ggml_is_contiguous(dst));
  9456. assert(ggml_are_same_shape(src0, dst));
  9457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9458. return;
  9459. }
  9460. float scale = 1.0f;
  9461. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9462. // TODO: handle transposed/permuted matrices
  9463. const int ith = params->ith;
  9464. const int nth = params->nth;
  9465. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9466. const int nc = src0->ne[0];
  9467. const int nr = ggml_nrows(src0);
  9468. // rows per thread
  9469. const int dr = (nr + nth - 1)/nth;
  9470. // row range for this thread
  9471. const int ir0 = dr*ith;
  9472. const int ir1 = MIN(ir0 + dr, nr);
  9473. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9474. for (int i1 = ir0; i1 < ir1; i1++) {
  9475. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9476. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9477. // broadcast the mask across rows
  9478. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9479. ggml_vec_cpy_f32 (nc, wp, sp);
  9480. ggml_vec_scale_f32(nc, wp, scale);
  9481. if (mp) {
  9482. ggml_vec_acc_f32(nc, wp, mp);
  9483. }
  9484. #ifndef NDEBUG
  9485. for (int i = 0; i < nc; ++i) {
  9486. //printf("p[%d] = %f\n", i, p[i]);
  9487. assert(!isnan(wp[i]));
  9488. }
  9489. #endif
  9490. float max = -INFINITY;
  9491. ggml_vec_max_f32(nc, &max, wp);
  9492. ggml_float sum = 0.0;
  9493. uint16_t scvt;
  9494. for (int i = 0; i < nc; i++) {
  9495. if (wp[i] == -INFINITY) {
  9496. dp[i] = 0.0f;
  9497. } else {
  9498. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9499. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9500. memcpy(&scvt, &s, sizeof(scvt));
  9501. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9502. sum += (ggml_float)val;
  9503. dp[i] = val;
  9504. }
  9505. }
  9506. assert(sum > 0.0);
  9507. sum = 1.0/sum;
  9508. ggml_vec_scale_f32(nc, dp, sum);
  9509. #ifndef NDEBUG
  9510. for (int i = 0; i < nc; ++i) {
  9511. assert(!isnan(dp[i]));
  9512. assert(!isinf(dp[i]));
  9513. }
  9514. #endif
  9515. }
  9516. }
  9517. static void ggml_compute_forward_soft_max(
  9518. const struct ggml_compute_params * params,
  9519. const struct ggml_tensor * src0,
  9520. const struct ggml_tensor * src1,
  9521. struct ggml_tensor * dst) {
  9522. switch (src0->type) {
  9523. case GGML_TYPE_F32:
  9524. {
  9525. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9526. } break;
  9527. default:
  9528. {
  9529. GGML_ASSERT(false);
  9530. } break;
  9531. }
  9532. }
  9533. // ggml_compute_forward_soft_max_back
  9534. static void ggml_compute_forward_soft_max_back_f32(
  9535. const struct ggml_compute_params * params,
  9536. const struct ggml_tensor * src0,
  9537. const struct ggml_tensor * src1,
  9538. struct ggml_tensor * dst) {
  9539. GGML_ASSERT(ggml_is_contiguous(src0));
  9540. GGML_ASSERT(ggml_is_contiguous(src1));
  9541. GGML_ASSERT(ggml_is_contiguous(dst));
  9542. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9543. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9545. return;
  9546. }
  9547. // TODO: handle transposed/permuted matrices
  9548. const int ith = params->ith;
  9549. const int nth = params->nth;
  9550. const int nc = src0->ne[0];
  9551. const int nr = ggml_nrows(src0);
  9552. // rows per thread
  9553. const int dr = (nr + nth - 1)/nth;
  9554. // row range for this thread
  9555. const int ir0 = dr*ith;
  9556. const int ir1 = MIN(ir0 + dr, nr);
  9557. for (int i1 = ir0; i1 < ir1; i1++) {
  9558. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9559. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9560. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9561. #ifndef NDEBUG
  9562. for (int i = 0; i < nc; ++i) {
  9563. //printf("p[%d] = %f\n", i, p[i]);
  9564. assert(!isnan(dy[i]));
  9565. assert(!isnan(y[i]));
  9566. }
  9567. #endif
  9568. // Jii = yi - yi*yi
  9569. // Jij = -yi*yj
  9570. // J = diag(y)-y.T*y
  9571. // dx = J * dy
  9572. // dxk = sum_i(Jki * dyi)
  9573. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9574. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9575. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9576. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9577. // dxk = -yk * dot(y, dy) + yk*dyk
  9578. // dxk = yk * (- dot(y, dy) + dyk)
  9579. // dxk = yk * (dyk - dot(y, dy))
  9580. //
  9581. // post-order:
  9582. // dot_y_dy := dot(y, dy)
  9583. // dx := dy
  9584. // dx := dx - dot_y_dy
  9585. // dx := dx * y
  9586. // linear runtime, no additional memory
  9587. float dot_y_dy = 0;
  9588. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9589. ggml_vec_cpy_f32 (nc, dx, dy);
  9590. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9591. ggml_vec_mul_f32 (nc, dx, dx, y);
  9592. #ifndef NDEBUG
  9593. for (int i = 0; i < nc; ++i) {
  9594. assert(!isnan(dx[i]));
  9595. assert(!isinf(dx[i]));
  9596. }
  9597. #endif
  9598. }
  9599. }
  9600. static void ggml_compute_forward_soft_max_back(
  9601. const struct ggml_compute_params * params,
  9602. const struct ggml_tensor * src0,
  9603. const struct ggml_tensor * src1,
  9604. struct ggml_tensor * dst) {
  9605. switch (src0->type) {
  9606. case GGML_TYPE_F32:
  9607. {
  9608. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9609. } break;
  9610. default:
  9611. {
  9612. GGML_ASSERT(false);
  9613. } break;
  9614. }
  9615. }
  9616. // ggml_compute_forward_alibi
  9617. static void ggml_compute_forward_alibi_f32(
  9618. const struct ggml_compute_params * params,
  9619. const struct ggml_tensor * src0,
  9620. struct ggml_tensor * dst) {
  9621. assert(params->ith == 0);
  9622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9623. return;
  9624. }
  9625. //const int n_past = ((int32_t *) dst->op_params)[0];
  9626. const int n_head = ((int32_t *) dst->op_params)[1];
  9627. float max_bias;
  9628. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9629. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9630. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9631. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9632. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9633. const int64_t n = ggml_nrows(src0);
  9634. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9635. const size_t nb0 = src0->nb[0];
  9636. const size_t nb1 = src0->nb[1];
  9637. const size_t nb2 = src0->nb[2];
  9638. //const int nb3 = src0->nb[3];
  9639. GGML_ASSERT(nb0 == sizeof(float));
  9640. GGML_ASSERT(n_head == ne2);
  9641. // add alibi to src0 (KQ_scaled)
  9642. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9643. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9644. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9645. for (int64_t i = 0; i < ne0; i++) {
  9646. for (int64_t j = 0; j < ne1; j++) {
  9647. for (int64_t k = 0; k < ne2_ne3; k++) {
  9648. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9649. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9650. // TODO: k*nb2 or k*nb3
  9651. float m_k;
  9652. if (k < n_heads_log2_floor) {
  9653. m_k = powf(m0, k + 1);
  9654. } else {
  9655. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9656. }
  9657. pdst[0] = i * m_k + src[0];
  9658. }
  9659. }
  9660. }
  9661. }
  9662. static void ggml_compute_forward_alibi_f16(
  9663. const struct ggml_compute_params * params,
  9664. const struct ggml_tensor * src0,
  9665. struct ggml_tensor * dst) {
  9666. assert(params->ith == 0);
  9667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9668. return;
  9669. }
  9670. //const int n_past = ((int32_t *) dst->op_params)[0];
  9671. const int n_head = ((int32_t *) dst->op_params)[1];
  9672. float max_bias;
  9673. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9674. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9675. const int ne1 = src0->ne[1]; // seq_len_without_past
  9676. const int ne2 = src0->ne[2]; // n_head -> this is k
  9677. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9678. const int n = ggml_nrows(src0);
  9679. const int ne2_ne3 = n/ne1; // ne2*ne3
  9680. const int nb0 = src0->nb[0];
  9681. const int nb1 = src0->nb[1];
  9682. const int nb2 = src0->nb[2];
  9683. //const int nb3 = src0->nb[3];
  9684. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9685. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9686. GGML_ASSERT(n_head == ne2);
  9687. // add alibi to src0 (KQ_scaled)
  9688. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9689. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9690. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9691. for (int i = 0; i < ne0; i++) {
  9692. for (int j = 0; j < ne1; j++) {
  9693. for (int k = 0; k < ne2_ne3; k++) {
  9694. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9695. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9696. // TODO: k*nb2 or k*nb3
  9697. float m_k;
  9698. if (k < n_heads_log2_floor) {
  9699. m_k = powf(m0, k + 1);
  9700. } else {
  9701. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9702. }
  9703. // we return F32
  9704. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9705. }
  9706. }
  9707. }
  9708. }
  9709. static void ggml_compute_forward_alibi(
  9710. const struct ggml_compute_params * params,
  9711. const struct ggml_tensor * src0,
  9712. struct ggml_tensor * dst) {
  9713. switch (src0->type) {
  9714. case GGML_TYPE_F16:
  9715. {
  9716. ggml_compute_forward_alibi_f16(params, src0, dst);
  9717. } break;
  9718. case GGML_TYPE_F32:
  9719. {
  9720. ggml_compute_forward_alibi_f32(params, src0, dst);
  9721. } break;
  9722. case GGML_TYPE_Q4_0:
  9723. case GGML_TYPE_Q4_1:
  9724. case GGML_TYPE_Q5_0:
  9725. case GGML_TYPE_Q5_1:
  9726. case GGML_TYPE_Q8_0:
  9727. case GGML_TYPE_Q8_1:
  9728. case GGML_TYPE_Q2_K:
  9729. case GGML_TYPE_Q3_K:
  9730. case GGML_TYPE_Q4_K:
  9731. case GGML_TYPE_Q5_K:
  9732. case GGML_TYPE_Q6_K:
  9733. case GGML_TYPE_IQ2_XXS:
  9734. case GGML_TYPE_IQ2_XS:
  9735. case GGML_TYPE_IQ3_XXS:
  9736. case GGML_TYPE_Q8_K:
  9737. case GGML_TYPE_I8:
  9738. case GGML_TYPE_I16:
  9739. case GGML_TYPE_I32:
  9740. case GGML_TYPE_COUNT:
  9741. {
  9742. GGML_ASSERT(false);
  9743. } break;
  9744. }
  9745. }
  9746. // ggml_compute_forward_clamp
  9747. static void ggml_compute_forward_clamp_f32(
  9748. const struct ggml_compute_params * params,
  9749. const struct ggml_tensor * src0,
  9750. struct ggml_tensor * dst) {
  9751. assert(params->ith == 0);
  9752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9753. return;
  9754. }
  9755. float min;
  9756. float max;
  9757. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9758. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9759. const int ith = params->ith;
  9760. const int nth = params->nth;
  9761. const int n = ggml_nrows(src0);
  9762. const int nc = src0->ne[0];
  9763. const size_t nb00 = src0->nb[0];
  9764. const size_t nb01 = src0->nb[1];
  9765. const size_t nb0 = dst->nb[0];
  9766. const size_t nb1 = dst->nb[1];
  9767. GGML_ASSERT( nb0 == sizeof(float));
  9768. GGML_ASSERT(nb00 == sizeof(float));
  9769. for (int j = ith; j < n; j += nth) {
  9770. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9771. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9772. for (int i = 0; i < nc; i++) {
  9773. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9774. }
  9775. }
  9776. }
  9777. static void ggml_compute_forward_clamp(
  9778. const struct ggml_compute_params * params,
  9779. const struct ggml_tensor * src0,
  9780. struct ggml_tensor * dst) {
  9781. switch (src0->type) {
  9782. case GGML_TYPE_F32:
  9783. {
  9784. ggml_compute_forward_clamp_f32(params, src0, dst);
  9785. } break;
  9786. case GGML_TYPE_F16:
  9787. case GGML_TYPE_Q4_0:
  9788. case GGML_TYPE_Q4_1:
  9789. case GGML_TYPE_Q5_0:
  9790. case GGML_TYPE_Q5_1:
  9791. case GGML_TYPE_Q8_0:
  9792. case GGML_TYPE_Q8_1:
  9793. case GGML_TYPE_Q2_K:
  9794. case GGML_TYPE_Q3_K:
  9795. case GGML_TYPE_Q4_K:
  9796. case GGML_TYPE_Q5_K:
  9797. case GGML_TYPE_Q6_K:
  9798. case GGML_TYPE_IQ2_XXS:
  9799. case GGML_TYPE_IQ2_XS:
  9800. case GGML_TYPE_IQ3_XXS:
  9801. case GGML_TYPE_Q8_K:
  9802. case GGML_TYPE_I8:
  9803. case GGML_TYPE_I16:
  9804. case GGML_TYPE_I32:
  9805. case GGML_TYPE_COUNT:
  9806. {
  9807. GGML_ASSERT(false);
  9808. } break;
  9809. }
  9810. }
  9811. // ggml_compute_forward_rope
  9812. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9813. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9814. return 1 - MIN(1, MAX(0, y));
  9815. }
  9816. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9817. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9818. static void rope_yarn(
  9819. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9820. float * cos_theta, float * sin_theta
  9821. ) {
  9822. // Get n-d rotational scaling corrected for extrapolation
  9823. float theta_interp = freq_scale * theta_extrap;
  9824. float theta = theta_interp;
  9825. if (ext_factor != 0.0f) {
  9826. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9827. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9828. // Get n-d magnitude scaling corrected for interpolation
  9829. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9830. }
  9831. *cos_theta = cosf(theta) * mscale;
  9832. *sin_theta = sinf(theta) * mscale;
  9833. }
  9834. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9835. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9836. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9837. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9838. }
  9839. static void ggml_rope_cache_init(
  9840. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9841. float * cache, float sin_sign, float theta_scale
  9842. ) {
  9843. float theta = theta_base;
  9844. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9845. rope_yarn(
  9846. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9847. );
  9848. cache[i0 + 1] *= sin_sign;
  9849. theta *= theta_scale;
  9850. }
  9851. }
  9852. GGML_CALL void ggml_rope_yarn_corr_dims(
  9853. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9854. ) {
  9855. // start and end correction dims
  9856. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9857. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9858. dims[0] = MAX(0, start);
  9859. dims[1] = MIN(n_dims - 1, end);
  9860. }
  9861. static void ggml_compute_forward_rope_f32(
  9862. const struct ggml_compute_params * params,
  9863. const struct ggml_tensor * src0,
  9864. const struct ggml_tensor * src1,
  9865. struct ggml_tensor * dst,
  9866. const bool forward) {
  9867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9868. return;
  9869. }
  9870. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9871. // these two only relevant for xPos RoPE:
  9872. float xpos_base;
  9873. bool xpos_down;
  9874. //const int n_past = ((int32_t *) dst->op_params)[0];
  9875. const int n_dims = ((int32_t *) dst->op_params)[1];
  9876. const int mode = ((int32_t *) dst->op_params)[2];
  9877. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9878. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9879. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9880. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9881. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9882. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9883. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9884. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9885. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9886. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9887. GGML_TENSOR_UNARY_OP_LOCALS
  9888. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9889. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9890. GGML_ASSERT(nb00 == sizeof(float));
  9891. const int ith = params->ith;
  9892. const int nth = params->nth;
  9893. const int nr = ggml_nrows(dst);
  9894. GGML_ASSERT(n_dims <= ne0);
  9895. GGML_ASSERT(n_dims % 2 == 0);
  9896. // rows per thread
  9897. const int dr = (nr + nth - 1)/nth;
  9898. // row range for this thread
  9899. const int ir0 = dr*ith;
  9900. const int ir1 = MIN(ir0 + dr, nr);
  9901. // row index used to determine which thread to use
  9902. int ir = 0;
  9903. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9904. const float inv_ndims = -1.f/n_dims;
  9905. float corr_dims[2];
  9906. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9907. const bool is_neox = mode & 2;
  9908. const bool is_glm = mode & 4;
  9909. // backward process uses inverse rotation by cos and sin.
  9910. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9911. // this essentially just switches the sign of sin.
  9912. const float sin_sign = forward ? 1.0f : -1.0f;
  9913. const int32_t * pos = (const int32_t *) src1->data;
  9914. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9915. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9916. const int64_t p = pos[i2];
  9917. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9918. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9919. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9920. }
  9921. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9922. if (ir++ < ir0) continue;
  9923. if (ir > ir1) break;
  9924. float theta_base = (float)p;
  9925. if (is_glm) {
  9926. theta_base = MIN(p, n_ctx - 2);
  9927. float block_theta = MAX(p - (n_ctx - 2), 0);
  9928. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9929. const float cos_theta = cosf(theta_base);
  9930. const float sin_theta = sinf(theta_base) * sin_sign;
  9931. const float cos_block_theta = cosf(block_theta);
  9932. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9933. theta_base *= theta_scale;
  9934. block_theta *= theta_scale;
  9935. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9936. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9937. const float x0 = src[0];
  9938. const float x1 = src[n_dims/2];
  9939. const float x2 = src[n_dims];
  9940. const float x3 = src[n_dims/2*3];
  9941. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9942. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9943. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9944. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9945. }
  9946. } else if (!is_neox) {
  9947. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9948. const float cos_theta = cache[i0 + 0];
  9949. const float sin_theta = cache[i0 + 1];
  9950. // zeta scaling for xPos only:
  9951. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9952. if (xpos_down) zeta = 1.0f / zeta;
  9953. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9954. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9955. const float x0 = src[0];
  9956. const float x1 = src[1];
  9957. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9958. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9959. }
  9960. } else {
  9961. // TODO: this might be wrong for ne0 != n_dims - need double check
  9962. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9963. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9964. theta_base *= freq_scale;
  9965. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9966. if (ic < n_dims) {
  9967. const int64_t ib = 0;
  9968. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9969. float cur_rot = inv_ndims * ic - ib;
  9970. float cos_theta, sin_theta;
  9971. rope_yarn(
  9972. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9973. &cos_theta, &sin_theta
  9974. );
  9975. sin_theta *= sin_sign;
  9976. theta_base *= theta_scale;
  9977. const int64_t i0 = ib*n_dims + ic/2;
  9978. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9979. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9980. const float x0 = src[0];
  9981. const float x1 = src[n_dims/2];
  9982. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9983. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9984. } else {
  9985. const int64_t i0 = ic;
  9986. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9987. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9988. dst_data[0] = src[0];
  9989. dst_data[1] = src[1];
  9990. }
  9991. }
  9992. }
  9993. }
  9994. }
  9995. }
  9996. }
  9997. static void ggml_compute_forward_rope_f16(
  9998. const struct ggml_compute_params * params,
  9999. const struct ggml_tensor * src0,
  10000. const struct ggml_tensor * src1,
  10001. struct ggml_tensor * dst,
  10002. const bool forward) {
  10003. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10004. return;
  10005. }
  10006. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10007. //const int n_past = ((int32_t *) dst->op_params)[0];
  10008. const int n_dims = ((int32_t *) dst->op_params)[1];
  10009. const int mode = ((int32_t *) dst->op_params)[2];
  10010. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10011. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10012. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10013. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10014. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10015. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10016. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10017. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10018. GGML_TENSOR_UNARY_OP_LOCALS
  10019. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10020. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10021. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10022. const int ith = params->ith;
  10023. const int nth = params->nth;
  10024. const int nr = ggml_nrows(dst);
  10025. GGML_ASSERT(n_dims <= ne0);
  10026. GGML_ASSERT(n_dims % 2 == 0);
  10027. // rows per thread
  10028. const int dr = (nr + nth - 1)/nth;
  10029. // row range for this thread
  10030. const int ir0 = dr*ith;
  10031. const int ir1 = MIN(ir0 + dr, nr);
  10032. // row index used to determine which thread to use
  10033. int ir = 0;
  10034. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10035. const float inv_ndims = -1.f/n_dims;
  10036. float corr_dims[2];
  10037. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10038. const bool is_neox = mode & 2;
  10039. const bool is_glm = mode & 4;
  10040. // backward process uses inverse rotation by cos and sin.
  10041. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10042. // this essentially just switches the sign of sin.
  10043. const float sin_sign = forward ? 1.0f : -1.0f;
  10044. const int32_t * pos = (const int32_t *) src1->data;
  10045. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10046. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10047. const int64_t p = pos[i2];
  10048. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10049. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10050. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10051. }
  10052. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10053. if (ir++ < ir0) continue;
  10054. if (ir > ir1) break;
  10055. float theta_base = (float)p;
  10056. if (is_glm) {
  10057. theta_base = MIN(p, n_ctx - 2);
  10058. float block_theta = MAX(p - (n_ctx - 2), 0);
  10059. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10060. const float cos_theta = cosf(theta_base);
  10061. const float sin_theta = sinf(theta_base) * sin_sign;
  10062. const float cos_block_theta = cosf(block_theta);
  10063. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10064. theta_base *= theta_scale;
  10065. block_theta *= theta_scale;
  10066. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10067. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10068. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10069. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10070. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10071. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10072. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10073. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10074. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10075. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10076. }
  10077. } else if (!is_neox) {
  10078. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10079. const float cos_theta = cache[i0 + 0];
  10080. const float sin_theta = cache[i0 + 1];
  10081. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10082. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10083. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10084. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10085. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10086. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10087. }
  10088. } else {
  10089. // TODO: this might be wrong for ne0 != n_dims - need double check
  10090. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10091. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10092. theta_base *= freq_scale;
  10093. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10094. if (ic < n_dims) {
  10095. const int64_t ib = 0;
  10096. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10097. float cur_rot = inv_ndims * ic - ib;
  10098. float cos_theta, sin_theta;
  10099. rope_yarn(
  10100. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10101. &cos_theta, &sin_theta
  10102. );
  10103. sin_theta *= sin_sign;
  10104. theta_base *= theta_scale;
  10105. const int64_t i0 = ib*n_dims + ic/2;
  10106. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10107. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10108. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10109. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10110. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10111. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10112. } else {
  10113. const int64_t i0 = ic;
  10114. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10115. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10116. dst_data[0] = src[0];
  10117. dst_data[1] = src[1];
  10118. }
  10119. }
  10120. }
  10121. }
  10122. }
  10123. }
  10124. }
  10125. static void ggml_compute_forward_rope(
  10126. const struct ggml_compute_params * params,
  10127. const struct ggml_tensor * src0,
  10128. const struct ggml_tensor * src1,
  10129. struct ggml_tensor * dst) {
  10130. switch (src0->type) {
  10131. case GGML_TYPE_F16:
  10132. {
  10133. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10134. } break;
  10135. case GGML_TYPE_F32:
  10136. {
  10137. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10138. } break;
  10139. default:
  10140. {
  10141. GGML_ASSERT(false);
  10142. } break;
  10143. }
  10144. }
  10145. // ggml_compute_forward_rope_back
  10146. static void ggml_compute_forward_rope_back(
  10147. const struct ggml_compute_params * params,
  10148. const struct ggml_tensor * src0,
  10149. const struct ggml_tensor * src1,
  10150. struct ggml_tensor * dst) {
  10151. switch (src0->type) {
  10152. case GGML_TYPE_F16:
  10153. {
  10154. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10155. } break;
  10156. case GGML_TYPE_F32:
  10157. {
  10158. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10159. } break;
  10160. default:
  10161. {
  10162. GGML_ASSERT(false);
  10163. } break;
  10164. }
  10165. }
  10166. // ggml_compute_forward_conv_transpose_1d
  10167. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10168. const struct ggml_compute_params * params,
  10169. const struct ggml_tensor * src0,
  10170. const struct ggml_tensor * src1,
  10171. struct ggml_tensor * dst) {
  10172. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10173. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10174. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10175. int64_t t0 = ggml_perf_time_us();
  10176. UNUSED(t0);
  10177. GGML_TENSOR_BINARY_OP_LOCALS
  10178. const int ith = params->ith;
  10179. const int nth = params->nth;
  10180. const int nk = ne00*ne01*ne02;
  10181. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10182. GGML_ASSERT(nb10 == sizeof(float));
  10183. if (params->type == GGML_TASK_INIT) {
  10184. if (ith != 0) {
  10185. return;
  10186. }
  10187. memset(params->wdata, 0, params->wsize);
  10188. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10189. {
  10190. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10191. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10192. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10193. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10194. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10195. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10196. dst_data[i00*ne02 + i02] = src[i00];
  10197. }
  10198. }
  10199. }
  10200. }
  10201. // permute source data (src1) from (L x Cin) to (Cin x L)
  10202. {
  10203. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10204. ggml_fp16_t * dst_data = wdata;
  10205. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10206. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10207. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10208. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10209. }
  10210. }
  10211. }
  10212. // need to zero dst since we are accumulating into it
  10213. memset(dst->data, 0, ggml_nbytes(dst));
  10214. return;
  10215. }
  10216. if (params->type == GGML_TASK_FINALIZE) {
  10217. return;
  10218. }
  10219. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10220. // total rows in dst
  10221. const int nr = ne1;
  10222. // rows per thread
  10223. const int dr = (nr + nth - 1)/nth;
  10224. // row range for this thread
  10225. const int ir0 = dr*ith;
  10226. const int ir1 = MIN(ir0 + dr, nr);
  10227. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10228. ggml_fp16_t * const wdata_src = wdata + nk;
  10229. for (int i1 = ir0; i1 < ir1; i1++) {
  10230. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10231. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10232. for (int i10 = 0; i10 < ne10; i10++) {
  10233. const int i1n = i10*ne11;
  10234. for (int i00 = 0; i00 < ne00; i00++) {
  10235. float v = 0;
  10236. ggml_vec_dot_f16(ne02, &v, 0,
  10237. (ggml_fp16_t *) wdata_src + i1n, 0,
  10238. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10239. dst_data[i10*s0 + i00] += v;
  10240. }
  10241. }
  10242. }
  10243. }
  10244. static void ggml_compute_forward_conv_transpose_1d_f32(
  10245. const struct ggml_compute_params * params,
  10246. const struct ggml_tensor * src0,
  10247. const struct ggml_tensor * src1,
  10248. struct ggml_tensor * dst) {
  10249. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10250. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10251. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10252. int64_t t0 = ggml_perf_time_us();
  10253. UNUSED(t0);
  10254. GGML_TENSOR_BINARY_OP_LOCALS
  10255. const int ith = params->ith;
  10256. const int nth = params->nth;
  10257. const int nk = ne00*ne01*ne02;
  10258. GGML_ASSERT(nb00 == sizeof(float));
  10259. GGML_ASSERT(nb10 == sizeof(float));
  10260. if (params->type == GGML_TASK_INIT) {
  10261. if (ith != 0) {
  10262. return;
  10263. }
  10264. memset(params->wdata, 0, params->wsize);
  10265. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10266. {
  10267. float * const wdata = (float *) params->wdata + 0;
  10268. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10269. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10270. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10271. float * dst_data = wdata + i01*ne00*ne02;
  10272. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10273. dst_data[i00*ne02 + i02] = src[i00];
  10274. }
  10275. }
  10276. }
  10277. }
  10278. // prepare source data (src1)
  10279. {
  10280. float * const wdata = (float *) params->wdata + nk;
  10281. float * dst_data = wdata;
  10282. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10283. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10284. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10285. dst_data[i10*ne11 + i11] = src[i10];
  10286. }
  10287. }
  10288. }
  10289. // need to zero dst since we are accumulating into it
  10290. memset(dst->data, 0, ggml_nbytes(dst));
  10291. return;
  10292. }
  10293. if (params->type == GGML_TASK_FINALIZE) {
  10294. return;
  10295. }
  10296. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10297. // total rows in dst
  10298. const int nr = ne1;
  10299. // rows per thread
  10300. const int dr = (nr + nth - 1)/nth;
  10301. // row range for this thread
  10302. const int ir0 = dr*ith;
  10303. const int ir1 = MIN(ir0 + dr, nr);
  10304. float * const wdata = (float *) params->wdata + 0;
  10305. float * const wdata_src = wdata + nk;
  10306. for (int i1 = ir0; i1 < ir1; i1++) {
  10307. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10308. float * wdata_kernel = wdata + i1*ne02*ne00;
  10309. for (int i10 = 0; i10 < ne10; i10++) {
  10310. const int i1n = i10*ne11;
  10311. for (int i00 = 0; i00 < ne00; i00++) {
  10312. float v = 0;
  10313. ggml_vec_dot_f32(ne02, &v, 0,
  10314. wdata_src + i1n, 0,
  10315. wdata_kernel + i00*ne02, 0, 1);
  10316. dst_data[i10*s0 + i00] += v;
  10317. }
  10318. }
  10319. }
  10320. }
  10321. static void ggml_compute_forward_conv_transpose_1d(
  10322. const struct ggml_compute_params * params,
  10323. const struct ggml_tensor * src0,
  10324. const struct ggml_tensor * src1,
  10325. struct ggml_tensor * dst) {
  10326. switch (src0->type) {
  10327. case GGML_TYPE_F16:
  10328. {
  10329. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10330. } break;
  10331. case GGML_TYPE_F32:
  10332. {
  10333. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10334. } break;
  10335. default:
  10336. {
  10337. GGML_ASSERT(false);
  10338. } break;
  10339. }
  10340. }
  10341. // src0: kernel [OC, IC, KH, KW]
  10342. // src1: image [N, IC, IH, IW]
  10343. // dst: result [N, OH, OW, IC*KH*KW]
  10344. static void ggml_compute_forward_im2col_f32(
  10345. const struct ggml_compute_params * params,
  10346. const struct ggml_tensor * src0,
  10347. const struct ggml_tensor * src1,
  10348. struct ggml_tensor * dst) {
  10349. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10350. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10351. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10352. int64_t t0 = ggml_perf_time_us();
  10353. UNUSED(t0);
  10354. GGML_TENSOR_BINARY_OP_LOCALS;
  10355. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10356. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10357. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10358. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10359. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10360. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10361. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10362. const int ith = params->ith;
  10363. const int nth = params->nth;
  10364. const int64_t N = is_2D ? ne13 : ne12;
  10365. const int64_t IC = is_2D ? ne12 : ne11;
  10366. const int64_t IH = is_2D ? ne11 : 1;
  10367. const int64_t IW = ne10;
  10368. const int64_t KH = is_2D ? ne01 : 1;
  10369. const int64_t KW = ne00;
  10370. const int64_t OH = is_2D ? ne2 : 1;
  10371. const int64_t OW = ne1;
  10372. int ofs0 = is_2D ? nb13 : nb12;
  10373. int ofs1 = is_2D ? nb12 : nb11;
  10374. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10375. GGML_ASSERT(nb10 == sizeof(float));
  10376. if (params->type == GGML_TASK_INIT) {
  10377. return;
  10378. }
  10379. if (params->type == GGML_TASK_FINALIZE) {
  10380. return;
  10381. }
  10382. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10383. {
  10384. float * const wdata = (float *) dst->data;
  10385. for (int64_t in = 0; in < N; in++) {
  10386. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10387. for (int64_t iow = 0; iow < OW; iow++) {
  10388. for (int64_t iic = ith; iic < IC; iic += nth) {
  10389. // micro kernel
  10390. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10391. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10392. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10393. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10394. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10395. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10396. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10397. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10398. } else {
  10399. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10400. }
  10401. }
  10402. }
  10403. }
  10404. }
  10405. }
  10406. }
  10407. }
  10408. }
  10409. // src0: kernel [OC, IC, KH, KW]
  10410. // src1: image [N, IC, IH, IW]
  10411. // dst: result [N, OH, OW, IC*KH*KW]
  10412. static void ggml_compute_forward_im2col_f16(
  10413. const struct ggml_compute_params * params,
  10414. const struct ggml_tensor * src0,
  10415. const struct ggml_tensor * src1,
  10416. struct ggml_tensor * dst) {
  10417. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10418. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10419. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10420. int64_t t0 = ggml_perf_time_us();
  10421. UNUSED(t0);
  10422. GGML_TENSOR_BINARY_OP_LOCALS;
  10423. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10424. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10425. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10426. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10427. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10428. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10429. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10430. const int ith = params->ith;
  10431. const int nth = params->nth;
  10432. const int64_t N = is_2D ? ne13 : ne12;
  10433. const int64_t IC = is_2D ? ne12 : ne11;
  10434. const int64_t IH = is_2D ? ne11 : 1;
  10435. const int64_t IW = ne10;
  10436. const int64_t KH = is_2D ? ne01 : 1;
  10437. const int64_t KW = ne00;
  10438. const int64_t OH = is_2D ? ne2 : 1;
  10439. const int64_t OW = ne1;
  10440. int ofs0 = is_2D ? nb13 : nb12;
  10441. int ofs1 = is_2D ? nb12 : nb11;
  10442. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10443. GGML_ASSERT(nb10 == sizeof(float));
  10444. if (params->type == GGML_TASK_INIT) {
  10445. return;
  10446. }
  10447. if (params->type == GGML_TASK_FINALIZE) {
  10448. return;
  10449. }
  10450. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10451. {
  10452. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10453. for (int64_t in = 0; in < N; in++) {
  10454. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10455. for (int64_t iow = 0; iow < OW; iow++) {
  10456. for (int64_t iic = ith; iic < IC; iic += nth) {
  10457. // micro kernel
  10458. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10459. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10460. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10461. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10462. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10463. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10464. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10465. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10466. } else {
  10467. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10468. }
  10469. }
  10470. }
  10471. }
  10472. }
  10473. }
  10474. }
  10475. }
  10476. }
  10477. static void ggml_compute_forward_im2col(
  10478. const struct ggml_compute_params * params,
  10479. const struct ggml_tensor * src0,
  10480. const struct ggml_tensor * src1,
  10481. struct ggml_tensor * dst) {
  10482. switch (dst->type) {
  10483. case GGML_TYPE_F16:
  10484. {
  10485. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10486. } break;
  10487. case GGML_TYPE_F32:
  10488. {
  10489. ggml_compute_forward_im2col_f32(params, src0, src1, dst);
  10490. } break;
  10491. default:
  10492. {
  10493. GGML_ASSERT(false);
  10494. } break;
  10495. }
  10496. }
  10497. // ggml_compute_forward_conv_transpose_2d
  10498. static void ggml_compute_forward_conv_transpose_2d(
  10499. const struct ggml_compute_params * params,
  10500. const struct ggml_tensor * src0,
  10501. const struct ggml_tensor * src1,
  10502. struct ggml_tensor * dst) {
  10503. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10504. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10505. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10506. int64_t t0 = ggml_perf_time_us();
  10507. UNUSED(t0);
  10508. GGML_TENSOR_BINARY_OP_LOCALS
  10509. const int ith = params->ith;
  10510. const int nth = params->nth;
  10511. const int nk = ne00*ne01*ne02*ne03;
  10512. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10513. GGML_ASSERT(nb10 == sizeof(float));
  10514. if (params->type == GGML_TASK_INIT) {
  10515. if (ith != 0) {
  10516. return;
  10517. }
  10518. memset(params->wdata, 0, params->wsize);
  10519. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10520. {
  10521. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10522. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10523. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10524. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10525. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10526. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10527. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10528. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10529. }
  10530. }
  10531. }
  10532. }
  10533. }
  10534. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10535. {
  10536. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10537. for (int i12 = 0; i12 < ne12; i12++) {
  10538. for (int i11 = 0; i11 < ne11; i11++) {
  10539. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10540. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10541. for (int i10 = 0; i10 < ne10; i10++) {
  10542. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10543. }
  10544. }
  10545. }
  10546. }
  10547. memset(dst->data, 0, ggml_nbytes(dst));
  10548. return;
  10549. }
  10550. if (params->type == GGML_TASK_FINALIZE) {
  10551. return;
  10552. }
  10553. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10554. // total patches in dst
  10555. const int np = ne2;
  10556. // patches per thread
  10557. const int dp = (np + nth - 1)/nth;
  10558. // patch range for this thread
  10559. const int ip0 = dp*ith;
  10560. const int ip1 = MIN(ip0 + dp, np);
  10561. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10562. ggml_fp16_t * const wdata_src = wdata + nk;
  10563. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10564. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10565. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10566. for (int i11 = 0; i11 < ne11; i11++) {
  10567. for (int i10 = 0; i10 < ne10; i10++) {
  10568. const int i1n = i11*ne10*ne12 + i10*ne12;
  10569. for (int i01 = 0; i01 < ne01; i01++) {
  10570. for (int i00 = 0; i00 < ne00; i00++) {
  10571. float v = 0;
  10572. ggml_vec_dot_f16(ne03, &v, 0,
  10573. wdata_src + i1n, 0,
  10574. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10575. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10576. }
  10577. }
  10578. }
  10579. }
  10580. }
  10581. }
  10582. // ggml_compute_forward_pool_1d_sk_p0
  10583. static void ggml_compute_forward_pool_1d_sk_p0(
  10584. const struct ggml_compute_params * params,
  10585. const enum ggml_op_pool op,
  10586. const struct ggml_tensor * src,
  10587. const int k,
  10588. struct ggml_tensor * dst) {
  10589. assert(src->type == GGML_TYPE_F32);
  10590. assert(params->ith == 0);
  10591. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10592. return;
  10593. }
  10594. const char * cdata = (const char *)src->data;
  10595. const char * const data_end = cdata + ggml_nbytes(src);
  10596. float * drow = (float *)dst->data;
  10597. const int64_t rs = dst->ne[0];
  10598. while (cdata < data_end) {
  10599. const float * const srow = (const float *)cdata;
  10600. int j = 0;
  10601. for (int64_t i = 0; i < rs; ++i) {
  10602. switch (op) {
  10603. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10604. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10605. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10606. }
  10607. for (int ki = 0; ki < k; ++ki) {
  10608. switch (op) {
  10609. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10610. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10611. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10612. }
  10613. ++j;
  10614. }
  10615. switch (op) {
  10616. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10617. case GGML_OP_POOL_MAX: break;
  10618. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10619. }
  10620. }
  10621. cdata += src->nb[1];
  10622. drow += rs;
  10623. }
  10624. }
  10625. // ggml_compute_forward_pool_1d
  10626. static void ggml_compute_forward_pool_1d(
  10627. const struct ggml_compute_params * params,
  10628. const struct ggml_tensor * src0,
  10629. struct ggml_tensor * dst) {
  10630. const int32_t * opts = (const int32_t *)dst->op_params;
  10631. enum ggml_op_pool op = opts[0];
  10632. const int k0 = opts[1];
  10633. const int s0 = opts[2];
  10634. const int p0 = opts[3];
  10635. GGML_ASSERT(p0 == 0); // padding not supported
  10636. GGML_ASSERT(k0 == s0); // only s = k supported
  10637. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10638. }
  10639. // ggml_compute_forward_pool_2d
  10640. static void ggml_compute_forward_pool_2d(
  10641. const struct ggml_compute_params * params,
  10642. const struct ggml_tensor * src,
  10643. struct ggml_tensor * dst) {
  10644. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10645. GGML_ASSERT(params->ith == 0);
  10646. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10647. return;
  10648. }
  10649. const int32_t * opts = (const int32_t *)dst->op_params;
  10650. enum ggml_op_pool op = opts[0];
  10651. const int k0 = opts[1];
  10652. const int k1 = opts[2];
  10653. const int s0 = opts[3];
  10654. const int s1 = opts[4];
  10655. const int p0 = opts[5];
  10656. const int p1 = opts[6];
  10657. const char * cdata = (const char*)src->data;
  10658. const char * const data_end = cdata + ggml_nbytes(src);
  10659. const int64_t px = dst->ne[0];
  10660. const int64_t py = dst->ne[1];
  10661. const int64_t pa = px * py;
  10662. float * dplane = (float *)dst->data;
  10663. const int ka = k0 * k1;
  10664. const int offset0 = -p0;
  10665. const int offset1 = -p1;
  10666. while (cdata < data_end) {
  10667. for (int oy = 0; oy < py; ++oy) {
  10668. float * const drow = dplane + oy * px;
  10669. for (int ox = 0; ox < px; ++ox) {
  10670. float * const out = drow + ox;
  10671. switch (op) {
  10672. case GGML_OP_POOL_AVG: *out = 0; break;
  10673. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10674. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10675. }
  10676. const int ix = offset0 + ox * s0;
  10677. const int iy = offset1 + oy * s1;
  10678. for (int ky = 0; ky < k1; ++ky) {
  10679. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10680. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10681. for (int kx = 0; kx < k0; ++kx) {
  10682. int j = ix + kx;
  10683. if (j < 0 || j >= src->ne[0]) continue;
  10684. switch (op) {
  10685. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10686. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10687. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10688. }
  10689. }
  10690. }
  10691. switch (op) {
  10692. case GGML_OP_POOL_AVG: *out /= ka; break;
  10693. case GGML_OP_POOL_MAX: break;
  10694. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10695. }
  10696. }
  10697. }
  10698. cdata += src->nb[2];
  10699. dplane += pa;
  10700. }
  10701. }
  10702. // ggml_compute_forward_upscale
  10703. static void ggml_compute_forward_upscale_f32(
  10704. const struct ggml_compute_params * params,
  10705. const struct ggml_tensor * src0,
  10706. struct ggml_tensor * dst) {
  10707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10708. return;
  10709. }
  10710. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10711. const int ith = params->ith;
  10712. const int nth = params->nth;
  10713. GGML_TENSOR_UNARY_OP_LOCALS
  10714. const int scale_factor = dst->op_params[0];
  10715. // TODO: optimize
  10716. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10717. const int64_t i03 = i3;
  10718. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10719. const int64_t i02 = i2;
  10720. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10721. const int64_t i01 = i1 / scale_factor;
  10722. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10723. const int64_t i00 = i0 / scale_factor;
  10724. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10725. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10726. *y = *x;
  10727. }
  10728. }
  10729. }
  10730. }
  10731. }
  10732. static void ggml_compute_forward_upscale(
  10733. const struct ggml_compute_params * params,
  10734. const struct ggml_tensor * src0,
  10735. struct ggml_tensor * dst) {
  10736. switch (src0->type) {
  10737. case GGML_TYPE_F32:
  10738. {
  10739. ggml_compute_forward_upscale_f32(params, src0, dst);
  10740. } break;
  10741. default:
  10742. {
  10743. GGML_ASSERT(false);
  10744. } break;
  10745. }
  10746. }
  10747. // ggml_compute_forward_pad
  10748. static void ggml_compute_forward_pad_f32(
  10749. const struct ggml_compute_params * params,
  10750. const struct ggml_tensor * src0,
  10751. struct ggml_tensor * dst) {
  10752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10753. return;
  10754. }
  10755. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10756. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10757. const int ith = params->ith;
  10758. const int nth = params->nth;
  10759. GGML_TENSOR_UNARY_OP_LOCALS
  10760. float * dst_ptr = (float *) dst->data;
  10761. // TODO: optimize
  10762. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10763. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10764. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10765. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10766. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10767. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10768. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10769. dst_ptr[dst_idx] = *src_ptr;
  10770. } else {
  10771. dst_ptr[dst_idx] = 0;
  10772. }
  10773. }
  10774. }
  10775. }
  10776. }
  10777. }
  10778. static void ggml_compute_forward_pad(
  10779. const struct ggml_compute_params * params,
  10780. const struct ggml_tensor * src0,
  10781. struct ggml_tensor * dst) {
  10782. switch (src0->type) {
  10783. case GGML_TYPE_F32:
  10784. {
  10785. ggml_compute_forward_pad_f32(params, src0, dst);
  10786. } break;
  10787. default:
  10788. {
  10789. GGML_ASSERT(false);
  10790. } break;
  10791. }
  10792. }
  10793. // ggml_compute_forward_argsort
  10794. static void ggml_compute_forward_argsort_f32(
  10795. const struct ggml_compute_params * params,
  10796. const struct ggml_tensor * src0,
  10797. struct ggml_tensor * dst) {
  10798. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10799. return;
  10800. }
  10801. GGML_TENSOR_UNARY_OP_LOCALS
  10802. GGML_ASSERT(nb0 == sizeof(float));
  10803. const int ith = params->ith;
  10804. const int nth = params->nth;
  10805. const int64_t nr = ggml_nrows(src0);
  10806. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10807. for (int64_t i = ith; i < nr; i += nth) {
  10808. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10809. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10810. for (int64_t j = 0; j < ne0; j++) {
  10811. dst_data[j] = j;
  10812. }
  10813. // C doesn't have a functional sort, so we do a bubble sort instead
  10814. for (int64_t j = 0; j < ne0; j++) {
  10815. for (int64_t k = j + 1; k < ne0; k++) {
  10816. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10817. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10818. int32_t tmp = dst_data[j];
  10819. dst_data[j] = dst_data[k];
  10820. dst_data[k] = tmp;
  10821. }
  10822. }
  10823. }
  10824. }
  10825. }
  10826. static void ggml_compute_forward_argsort(
  10827. const struct ggml_compute_params * params,
  10828. const struct ggml_tensor * src0,
  10829. struct ggml_tensor * dst) {
  10830. switch (src0->type) {
  10831. case GGML_TYPE_F32:
  10832. {
  10833. ggml_compute_forward_argsort_f32(params, src0, dst);
  10834. } break;
  10835. default:
  10836. {
  10837. GGML_ASSERT(false);
  10838. } break;
  10839. }
  10840. }
  10841. // ggml_compute_forward_flash_attn
  10842. static void ggml_compute_forward_flash_attn_f32(
  10843. const struct ggml_compute_params * params,
  10844. const struct ggml_tensor * q,
  10845. const struct ggml_tensor * k,
  10846. const struct ggml_tensor * v,
  10847. const bool masked,
  10848. struct ggml_tensor * dst) {
  10849. int64_t t0 = ggml_perf_time_us();
  10850. UNUSED(t0);
  10851. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10852. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10853. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10854. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10855. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10856. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10857. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10858. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10859. const int ith = params->ith;
  10860. const int nth = params->nth;
  10861. const int64_t D = neq0;
  10862. const int64_t N = neq1;
  10863. const int64_t P = nek1 - N;
  10864. const int64_t M = P + N;
  10865. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10866. GGML_ASSERT(ne0 == D);
  10867. GGML_ASSERT(ne1 == N);
  10868. GGML_ASSERT(P >= 0);
  10869. GGML_ASSERT(nbq0 == sizeof(float));
  10870. GGML_ASSERT(nbk0 == sizeof(float));
  10871. GGML_ASSERT(nbv0 == sizeof(float));
  10872. GGML_ASSERT(neq0 == D);
  10873. GGML_ASSERT(nek0 == D);
  10874. GGML_ASSERT(nev1 == D);
  10875. GGML_ASSERT(neq1 == N);
  10876. GGML_ASSERT(nek1 == N + P);
  10877. GGML_ASSERT(nev1 == D);
  10878. // dst cannot be transposed or permuted
  10879. GGML_ASSERT(nb0 == sizeof(float));
  10880. GGML_ASSERT(nb0 <= nb1);
  10881. GGML_ASSERT(nb1 <= nb2);
  10882. GGML_ASSERT(nb2 <= nb3);
  10883. if (params->type == GGML_TASK_INIT) {
  10884. return;
  10885. }
  10886. if (params->type == GGML_TASK_FINALIZE) {
  10887. return;
  10888. }
  10889. // parallelize by q rows using ggml_vec_dot_f32
  10890. // total rows in q
  10891. const int nr = neq1*neq2*neq3;
  10892. // rows per thread
  10893. const int dr = (nr + nth - 1)/nth;
  10894. // row range for this thread
  10895. const int ir0 = dr*ith;
  10896. const int ir1 = MIN(ir0 + dr, nr);
  10897. const float scale = 1.0f/sqrtf(D);
  10898. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10899. for (int ir = ir0; ir < ir1; ++ir) {
  10900. // q indices
  10901. const int iq3 = ir/(neq2*neq1);
  10902. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10903. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10904. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10905. for (int i = M; i < Mup; ++i) {
  10906. S[i] = -INFINITY;
  10907. }
  10908. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10909. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10910. // k indices
  10911. const int ik3 = iq3;
  10912. const int ik2 = iq2 % nek2;
  10913. const int ik1 = ic;
  10914. // S indices
  10915. const int i1 = ik1;
  10916. ggml_vec_dot_f32(neq0,
  10917. S + i1, 0,
  10918. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  10919. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  10920. }
  10921. // scale
  10922. ggml_vec_scale_f32(masked_begin, S, scale);
  10923. for (int64_t i = masked_begin; i < M; i++) {
  10924. S[i] = -INFINITY;
  10925. }
  10926. // softmax
  10927. // exclude known -INF S[..] values from max and loop
  10928. // dont forget to set their SW values to zero
  10929. {
  10930. float max = -INFINITY;
  10931. ggml_vec_max_f32(masked_begin, &max, S);
  10932. ggml_float sum = 0.0;
  10933. {
  10934. #ifdef GGML_SOFT_MAX_ACCELERATE
  10935. max = -max;
  10936. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10937. vvexpf(S, S, &Mup);
  10938. ggml_vec_sum_f32(Mup, &sum, S);
  10939. #else
  10940. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10941. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10942. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10943. if (i >= masked_begin) {
  10944. break;
  10945. }
  10946. float * SS = S + i;
  10947. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10948. if (i + j >= masked_begin) {
  10949. break;
  10950. } else if (SS[j] == -INFINITY) {
  10951. SS[j] = 0.0f;
  10952. } else {
  10953. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10954. const float val = expf(SS[j] - max);
  10955. #else
  10956. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10957. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10958. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10959. #endif
  10960. sump[j] += (ggml_float)val;
  10961. SS[j] = val;
  10962. }
  10963. }
  10964. }
  10965. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10966. sum += sump[i];
  10967. }
  10968. #endif
  10969. }
  10970. assert(sum > 0.0);
  10971. sum = 1.0/sum;
  10972. ggml_vec_scale_f32(masked_begin, S, sum);
  10973. #ifndef NDEBUG
  10974. for (int i = 0; i < masked_begin; ++i) {
  10975. assert(!isnan(S[i]));
  10976. assert(!isinf(S[i]));
  10977. }
  10978. #endif
  10979. }
  10980. for (int64_t ic = 0; ic < nev1; ++ic) {
  10981. // dst indices
  10982. const int i1 = iq1;
  10983. const int i2 = iq2;
  10984. const int i3 = iq3;
  10985. // v indices
  10986. const int iv2 = iq2 % nev2;
  10987. const int iv3 = iq3;
  10988. ggml_vec_dot_f32(masked_begin,
  10989. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  10990. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  10991. S, 0, 1);
  10992. }
  10993. }
  10994. }
  10995. static void ggml_compute_forward_flash_attn_f16(
  10996. const struct ggml_compute_params * params,
  10997. const struct ggml_tensor * q,
  10998. const struct ggml_tensor * k,
  10999. const struct ggml_tensor * v,
  11000. const bool masked,
  11001. struct ggml_tensor * dst) {
  11002. int64_t t0 = ggml_perf_time_us();
  11003. UNUSED(t0);
  11004. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11005. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11006. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11007. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11008. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11009. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11010. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11011. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11012. const int ith = params->ith;
  11013. const int nth = params->nth;
  11014. const int64_t D = neq0;
  11015. const int64_t N = neq1;
  11016. const int64_t P = nek1 - N;
  11017. const int64_t M = P + N;
  11018. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11019. GGML_ASSERT(ne0 == D);
  11020. GGML_ASSERT(ne1 == N);
  11021. GGML_ASSERT(P >= 0);
  11022. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11023. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11024. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11025. GGML_ASSERT(neq0 == D);
  11026. GGML_ASSERT(nek0 == D);
  11027. GGML_ASSERT(nev1 == D);
  11028. GGML_ASSERT(neq1 == N);
  11029. GGML_ASSERT(nek1 == N + P);
  11030. GGML_ASSERT(nev1 == D);
  11031. // dst cannot be transposed or permuted
  11032. GGML_ASSERT(nb0 == sizeof(float));
  11033. GGML_ASSERT(nb0 <= nb1);
  11034. GGML_ASSERT(nb1 <= nb2);
  11035. GGML_ASSERT(nb2 <= nb3);
  11036. if (params->type == GGML_TASK_INIT) {
  11037. return;
  11038. }
  11039. if (params->type == GGML_TASK_FINALIZE) {
  11040. return;
  11041. }
  11042. // parallelize by q rows using ggml_vec_dot_f32
  11043. // total rows in q
  11044. const int nr = neq1*neq2*neq3;
  11045. // rows per thread
  11046. const int dr = (nr + nth - 1)/nth;
  11047. // row range for this thread
  11048. const int ir0 = dr*ith;
  11049. const int ir1 = MIN(ir0 + dr, nr);
  11050. const float scale = 1.0f/sqrtf(D);
  11051. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11052. for (int ir = ir0; ir < ir1; ++ir) {
  11053. // q indices
  11054. const int iq3 = ir/(neq2*neq1);
  11055. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11056. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11057. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11058. for (int i = M; i < Mup; ++i) {
  11059. S[i] = -INFINITY;
  11060. }
  11061. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11062. for (int64_t ic = 0; ic < nek1; ++ic) {
  11063. // k indices
  11064. const int ik3 = iq3;
  11065. const int ik2 = iq2 % nek2;
  11066. const int ik1 = ic;
  11067. // S indices
  11068. const int i1 = ik1;
  11069. ggml_vec_dot_f16(neq0,
  11070. S + i1, 0,
  11071. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11072. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11073. }
  11074. } else {
  11075. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11076. // k indices
  11077. const int ik3 = iq3;
  11078. const int ik2 = iq2 % nek2;
  11079. const int ik1 = ic;
  11080. // S indices
  11081. const int i1 = ik1;
  11082. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11083. S + i1,
  11084. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11085. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11086. }
  11087. }
  11088. // scale
  11089. ggml_vec_scale_f32(nek1, S, scale);
  11090. if (masked) {
  11091. for (int64_t i = P; i < M; i++) {
  11092. if (i > P + iq1) {
  11093. S[i] = -INFINITY;
  11094. }
  11095. }
  11096. }
  11097. // softmax
  11098. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11099. // dont forget to set their S values to zero
  11100. {
  11101. float max = -INFINITY;
  11102. ggml_vec_max_f32(M, &max, S);
  11103. ggml_float sum = 0.0;
  11104. {
  11105. #ifdef GGML_SOFT_MAX_ACCELERATE
  11106. max = -max;
  11107. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11108. vvexpf(S, S, &Mup);
  11109. ggml_vec_sum_f32(Mup, &sum, S);
  11110. #else
  11111. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11112. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11113. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11114. float * SS = S + i;
  11115. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11116. if (SS[j] == -INFINITY) {
  11117. SS[j] = 0.0f;
  11118. } else {
  11119. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11120. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11121. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11122. sump[j] += (ggml_float)val;
  11123. SS[j] = val;
  11124. }
  11125. }
  11126. }
  11127. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11128. sum += sump[i];
  11129. }
  11130. #endif
  11131. }
  11132. assert(sum > 0.0);
  11133. sum = 1.0/sum;
  11134. ggml_vec_scale_f32(M, S, sum);
  11135. #ifndef NDEBUG
  11136. for (int i = 0; i < M; ++i) {
  11137. assert(!isnan(S[i]));
  11138. assert(!isinf(S[i]));
  11139. }
  11140. #endif
  11141. }
  11142. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11143. for (int64_t i = 0; i < M; i++) {
  11144. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11145. }
  11146. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11147. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11148. for (int64_t ic = 0; ic < nev1; ++ic) {
  11149. // dst indices
  11150. const int i1 = iq1;
  11151. const int i2 = iq2;
  11152. const int i3 = iq3;
  11153. // v indices
  11154. const int iv2 = iq2 % nev2;
  11155. const int iv3 = iq3;
  11156. ggml_vec_dot_f16(nev0,
  11157. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11158. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11159. S16, 0, 1);
  11160. }
  11161. } else {
  11162. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11163. // dst indices
  11164. const int i1 = iq1;
  11165. const int i2 = iq2;
  11166. const int i3 = iq3;
  11167. // v indices
  11168. const int iv2 = iq2 % nev2;
  11169. const int iv3 = iq3;
  11170. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11171. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11172. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11173. S16);
  11174. }
  11175. }
  11176. }
  11177. }
  11178. static void ggml_compute_forward_flash_attn(
  11179. const struct ggml_compute_params * params,
  11180. const struct ggml_tensor * q,
  11181. const struct ggml_tensor * k,
  11182. const struct ggml_tensor * v,
  11183. const bool masked,
  11184. struct ggml_tensor * dst) {
  11185. switch (q->type) {
  11186. case GGML_TYPE_F16:
  11187. {
  11188. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11189. } break;
  11190. case GGML_TYPE_F32:
  11191. {
  11192. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11193. } break;
  11194. default:
  11195. {
  11196. GGML_ASSERT(false);
  11197. } break;
  11198. }
  11199. }
  11200. // ggml_compute_forward_flash_ff
  11201. static void ggml_compute_forward_flash_ff_f16(
  11202. const struct ggml_compute_params * params,
  11203. const struct ggml_tensor * a, // F16
  11204. const struct ggml_tensor * b0, // F16 fc_w
  11205. const struct ggml_tensor * b1, // F32 fc_b
  11206. const struct ggml_tensor * c0, // F16 proj_w
  11207. const struct ggml_tensor * c1, // F32 proj_b
  11208. struct ggml_tensor * dst) {
  11209. int64_t t0 = ggml_perf_time_us();
  11210. UNUSED(t0);
  11211. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11212. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11213. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11214. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11215. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11216. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11217. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11218. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11219. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11220. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11221. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11222. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11223. const int ith = params->ith;
  11224. const int nth = params->nth;
  11225. const int64_t D = nea0;
  11226. //const int64_t N = nea1;
  11227. const int64_t M = neb01;
  11228. GGML_ASSERT(ne0 == nea0);
  11229. GGML_ASSERT(ne1 == nea1);
  11230. GGML_ASSERT(ne2 == nea2);
  11231. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11232. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11233. GGML_ASSERT(nbb10 == sizeof(float));
  11234. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11235. GGML_ASSERT(nbc10 == sizeof(float));
  11236. GGML_ASSERT(neb00 == D);
  11237. GGML_ASSERT(neb01 == M);
  11238. GGML_ASSERT(neb10 == M);
  11239. GGML_ASSERT(neb11 == 1);
  11240. GGML_ASSERT(nec00 == M);
  11241. GGML_ASSERT(nec01 == D);
  11242. GGML_ASSERT(nec10 == D);
  11243. GGML_ASSERT(nec11 == 1);
  11244. // dst cannot be transposed or permuted
  11245. GGML_ASSERT(nb0 == sizeof(float));
  11246. GGML_ASSERT(nb0 <= nb1);
  11247. GGML_ASSERT(nb1 <= nb2);
  11248. GGML_ASSERT(nb2 <= nb3);
  11249. if (params->type == GGML_TASK_INIT) {
  11250. return;
  11251. }
  11252. if (params->type == GGML_TASK_FINALIZE) {
  11253. return;
  11254. }
  11255. // parallelize by a rows using ggml_vec_dot_f32
  11256. // total rows in a
  11257. const int nr = nea1*nea2*nea3;
  11258. // rows per thread
  11259. const int dr = (nr + nth - 1)/nth;
  11260. // row range for this thread
  11261. const int ir0 = dr*ith;
  11262. const int ir1 = MIN(ir0 + dr, nr);
  11263. for (int ir = ir0; ir < ir1; ++ir) {
  11264. // a indices
  11265. const int ia3 = ir/(nea2*nea1);
  11266. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11267. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11268. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11269. for (int64_t ic = 0; ic < neb01; ++ic) {
  11270. // b0 indices
  11271. const int ib03 = ia3;
  11272. const int ib02 = ia2;
  11273. const int ib01 = ic;
  11274. // S indices
  11275. const int i1 = ib01;
  11276. ggml_vec_dot_f16(nea0,
  11277. S + i1, 0,
  11278. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11279. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11280. }
  11281. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11282. //ggml_vec_gelu_f32(neb01, S, S);
  11283. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11284. for (int64_t i = 0; i < M; i++) {
  11285. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11286. }
  11287. ggml_vec_gelu_f16(neb01, S16, S16);
  11288. {
  11289. // dst indices
  11290. const int i1 = ia1;
  11291. const int i2 = ia2;
  11292. const int i3 = ia3;
  11293. for (int64_t ic = 0; ic < nec01; ++ic) {
  11294. ggml_vec_dot_f16(neb01,
  11295. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11296. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11297. S16, 0, 1);
  11298. }
  11299. ggml_vec_add_f32(nec01,
  11300. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11301. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11302. (float *) c1->data);
  11303. }
  11304. }
  11305. }
  11306. static void ggml_compute_forward_flash_ff(
  11307. const struct ggml_compute_params * params,
  11308. const struct ggml_tensor * a,
  11309. const struct ggml_tensor * b0,
  11310. const struct ggml_tensor * b1,
  11311. const struct ggml_tensor * c0,
  11312. const struct ggml_tensor * c1,
  11313. struct ggml_tensor * dst) {
  11314. switch (b0->type) {
  11315. case GGML_TYPE_F16:
  11316. {
  11317. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11318. } break;
  11319. case GGML_TYPE_F32:
  11320. {
  11321. GGML_ASSERT(false); // TODO
  11322. } break;
  11323. default:
  11324. {
  11325. GGML_ASSERT(false);
  11326. } break;
  11327. }
  11328. }
  11329. // ggml_compute_forward_flash_attn_back
  11330. static void ggml_compute_forward_flash_attn_back_f32(
  11331. const struct ggml_compute_params * params,
  11332. const struct ggml_tensor * q,
  11333. const struct ggml_tensor * k,
  11334. const struct ggml_tensor * v,
  11335. const struct ggml_tensor * d,
  11336. const bool masked,
  11337. struct ggml_tensor * dst) {
  11338. int64_t t0 = ggml_perf_time_us();
  11339. UNUSED(t0);
  11340. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11341. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11342. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11343. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11344. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11345. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11346. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11347. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11348. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11349. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11350. const int ith = params->ith;
  11351. const int nth = params->nth;
  11352. const int64_t D = neq0;
  11353. const int64_t N = neq1;
  11354. const int64_t P = nek1 - N;
  11355. const int64_t M = P + N;
  11356. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11357. const int mxDM = MAX(D, Mup);
  11358. // GGML_ASSERT(ne0 == D);
  11359. // GGML_ASSERT(ne1 == N);
  11360. GGML_ASSERT(P >= 0);
  11361. GGML_ASSERT(nbq0 == sizeof(float));
  11362. GGML_ASSERT(nbk0 == sizeof(float));
  11363. GGML_ASSERT(nbv0 == sizeof(float));
  11364. GGML_ASSERT(neq0 == D);
  11365. GGML_ASSERT(nek0 == D);
  11366. GGML_ASSERT(nev1 == D);
  11367. GGML_ASSERT(ned0 == D);
  11368. GGML_ASSERT(neq1 == N);
  11369. GGML_ASSERT(nek1 == N + P);
  11370. GGML_ASSERT(nev1 == D);
  11371. GGML_ASSERT(ned1 == N);
  11372. // dst cannot be transposed or permuted
  11373. GGML_ASSERT(nb0 == sizeof(float));
  11374. GGML_ASSERT(nb0 <= nb1);
  11375. GGML_ASSERT(nb1 <= nb2);
  11376. GGML_ASSERT(nb2 <= nb3);
  11377. if (params->type == GGML_TASK_INIT) {
  11378. if (ith == 0) {
  11379. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11380. }
  11381. return;
  11382. }
  11383. if (params->type == GGML_TASK_FINALIZE) {
  11384. return;
  11385. }
  11386. const int64_t elem_q = ggml_nelements(q);
  11387. const int64_t elem_k = ggml_nelements(k);
  11388. enum ggml_type result_type = dst->type;
  11389. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11390. const size_t tsize = ggml_type_size(result_type);
  11391. const size_t offs_q = 0;
  11392. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11393. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11394. void * grad_q = (char *) dst->data;
  11395. void * grad_k = (char *) dst->data + offs_k;
  11396. void * grad_v = (char *) dst->data + offs_v;
  11397. const size_t nbgq1 = nb0*neq0;
  11398. const size_t nbgq2 = nb0*neq0*neq1;
  11399. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11400. const size_t nbgk1 = nb0*nek0;
  11401. const size_t nbgk2 = nb0*nek0*nek1;
  11402. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11403. const size_t nbgv1 = nb0*nev0;
  11404. const size_t nbgv2 = nb0*nev0*nev1;
  11405. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11406. // parallelize by k rows using ggml_vec_dot_f32
  11407. // total rows in k
  11408. const int nr = nek2*nek3;
  11409. // rows per thread
  11410. const int dr = (nr + nth - 1)/nth;
  11411. // row range for this thread
  11412. const int ir0 = dr*ith;
  11413. const int ir1 = MIN(ir0 + dr, nr);
  11414. const float scale = 1.0f/sqrtf(D);
  11415. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11416. // how often k2 (and v2) is repeated in q2
  11417. int nrep = neq2/nek2;
  11418. for (int ir = ir0; ir < ir1; ++ir) {
  11419. // q indices
  11420. const int ik3 = ir/(nek2);
  11421. const int ik2 = ir - ik3*nek2;
  11422. const int iq3 = ik3;
  11423. const int id3 = ik3;
  11424. const int iv3 = ik3;
  11425. const int iv2 = ik2;
  11426. for (int irep = 0; irep < nrep; ++irep) {
  11427. const int iq2 = ik2 + irep*nek2;
  11428. const int id2 = iq2;
  11429. // (ik2 + irep*nek2) % nek2 == ik2
  11430. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11431. const int id1 = iq1;
  11432. // not sure about CACHE_LINE_SIZE_F32..
  11433. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11434. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11435. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11436. for (int i = M; i < Mup; ++i) {
  11437. S[i] = -INFINITY;
  11438. }
  11439. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11440. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11441. // k indices
  11442. const int ik1 = ic;
  11443. // S indices
  11444. const int i1 = ik1;
  11445. ggml_vec_dot_f32(neq0,
  11446. S + i1, 0,
  11447. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11448. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11449. }
  11450. // scale
  11451. ggml_vec_scale_f32(masked_begin, S, scale);
  11452. for (int64_t i = masked_begin; i < M; i++) {
  11453. S[i] = -INFINITY;
  11454. }
  11455. // softmax
  11456. // exclude known -INF S[..] values from max and loop
  11457. // dont forget to set their SM values to zero
  11458. {
  11459. float max = -INFINITY;
  11460. ggml_vec_max_f32(masked_begin, &max, S);
  11461. ggml_float sum = 0.0;
  11462. {
  11463. #ifdef GGML_SOFT_MAX_ACCELERATE
  11464. max = -max;
  11465. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11466. vvexpf(SM, SM, &Mup);
  11467. ggml_vec_sum_f32(Mup, &sum, SM);
  11468. #else
  11469. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11470. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11471. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11472. if (i >= masked_begin) {
  11473. break;
  11474. }
  11475. float * SR = S + i;
  11476. float * SW = SM + i;
  11477. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11478. if (i + j >= masked_begin) {
  11479. break;
  11480. } else if (SR[j] == -INFINITY) {
  11481. SW[j] = 0.0f;
  11482. } else {
  11483. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11484. const float val = expf(SR[j] - max);
  11485. #else
  11486. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11487. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11488. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11489. #endif
  11490. sump[j] += (ggml_float)val;
  11491. SW[j] = val;
  11492. }
  11493. }
  11494. }
  11495. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11496. sum += sump[i];
  11497. }
  11498. #endif
  11499. }
  11500. assert(sum > 0.0);
  11501. sum = 1.0/sum;
  11502. ggml_vec_scale_f32(masked_begin, SM, sum);
  11503. }
  11504. // step-by-step explanation
  11505. {
  11506. // forward-process shape grads from backward process
  11507. // parallel_for ik2,ik3:
  11508. // for irep:
  11509. // iq2 = ik2 + irep*nek2
  11510. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11511. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11512. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11513. // for iq1:
  11514. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11515. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11516. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11517. // S0 = -Inf [D,1,1,1]
  11518. // ~S1[i] = dot(kcur[:D,i], qcur)
  11519. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11520. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11521. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11522. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11523. // ~S5[i] = dot(vcur[:,i], S4)
  11524. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11525. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11526. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11527. // dst backward-/ grad[dst] = d
  11528. //
  11529. // output gradients with their dependencies:
  11530. //
  11531. // grad[kcur] = grad[S1].T @ qcur
  11532. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11533. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11534. // grad[S4] = grad[S5] @ vcur
  11535. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11536. // grad[qcur] = grad[S1] @ kcur
  11537. // grad[vcur] = grad[S5].T @ S4
  11538. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11539. //
  11540. // in post-order:
  11541. //
  11542. // S1 = qcur @ kcur.T
  11543. // S2 = S1 * scale
  11544. // S3 = diag_mask_inf(S2, P)
  11545. // S4 = softmax(S3)
  11546. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11547. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11548. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11549. // grad[qcur] = grad[S1] @ kcur
  11550. // grad[kcur] = grad[S1].T @ qcur
  11551. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11552. //
  11553. // using less variables (SM=S4):
  11554. //
  11555. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11556. // SM = softmax(S)
  11557. // S = d[:D,iq1,iq2,iq3] @ vcur
  11558. // dot_SM_gradSM = dot(SM, S)
  11559. // S = SM * (S - dot(SM, S))
  11560. // S = diag_mask_zero(S, P) * scale
  11561. //
  11562. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11563. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11564. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11565. }
  11566. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11567. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11568. // for ic:
  11569. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11570. // exclude known future zero S[..] values from operation
  11571. ggml_vec_set_f32(masked_begin, S, 0);
  11572. for (int64_t ic = 0; ic < D; ++ic) {
  11573. ggml_vec_mad_f32(masked_begin,
  11574. S,
  11575. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11576. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11577. }
  11578. // S = SM * (S - dot(SM, S))
  11579. float dot_SM_gradSM = 0;
  11580. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11581. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11582. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11583. // S = diag_mask_zero(S, P) * scale
  11584. // already done by above ggml_vec_set_f32
  11585. // exclude known zero S[..] values from operation
  11586. ggml_vec_scale_f32(masked_begin, S, scale);
  11587. // S shape [M,1]
  11588. // SM shape [M,1]
  11589. // kcur shape [D,M]
  11590. // qcur shape [D,1]
  11591. // vcur shape [M,D]
  11592. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11593. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11594. // for ic:
  11595. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11596. // exclude known zero S[..] values from loop
  11597. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11598. ggml_vec_mad_f32(D,
  11599. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11600. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11601. S[ic]);
  11602. }
  11603. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11604. // for ic:
  11605. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11606. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11607. // exclude known zero S[..] values from loop
  11608. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11609. ggml_vec_mad_f32(D,
  11610. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11611. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11612. S[ic]);
  11613. }
  11614. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11615. // for ic:
  11616. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11617. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11618. // exclude known zero SM[..] values from mad
  11619. for (int64_t ic = 0; ic < D; ++ic) {
  11620. ggml_vec_mad_f32(masked_begin,
  11621. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11622. SM,
  11623. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11624. }
  11625. }
  11626. }
  11627. }
  11628. }
  11629. static void ggml_compute_forward_flash_attn_back(
  11630. const struct ggml_compute_params * params,
  11631. const struct ggml_tensor * q,
  11632. const struct ggml_tensor * k,
  11633. const struct ggml_tensor * v,
  11634. const struct ggml_tensor * d,
  11635. const bool masked,
  11636. struct ggml_tensor * dst) {
  11637. switch (q->type) {
  11638. case GGML_TYPE_F32:
  11639. {
  11640. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11641. } break;
  11642. default:
  11643. {
  11644. GGML_ASSERT(false);
  11645. } break;
  11646. }
  11647. }
  11648. // ggml_compute_forward_win_part
  11649. static void ggml_compute_forward_win_part_f32(
  11650. const struct ggml_compute_params * params,
  11651. const struct ggml_tensor * src0,
  11652. struct ggml_tensor * dst) {
  11653. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11654. return;
  11655. }
  11656. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11657. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11658. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11659. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11660. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11661. assert(ne00 == ne0);
  11662. assert(ne3 == nep0*nep1);
  11663. // TODO: optimize / multi-thread
  11664. for (int py = 0; py < nep1; ++py) {
  11665. for (int px = 0; px < nep0; ++px) {
  11666. const int64_t i3 = py*nep0 + px;
  11667. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11668. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11669. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11670. const int64_t i02 = py*w + i2;
  11671. const int64_t i01 = px*w + i1;
  11672. const int64_t i00 = i0;
  11673. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11674. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11675. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11676. ((float *) dst->data)[i] = 0.0f;
  11677. } else {
  11678. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11679. }
  11680. }
  11681. }
  11682. }
  11683. }
  11684. }
  11685. }
  11686. static void ggml_compute_forward_win_part(
  11687. const struct ggml_compute_params * params,
  11688. const struct ggml_tensor * src0,
  11689. struct ggml_tensor * dst) {
  11690. switch (src0->type) {
  11691. case GGML_TYPE_F32:
  11692. {
  11693. ggml_compute_forward_win_part_f32(params, src0, dst);
  11694. } break;
  11695. default:
  11696. {
  11697. GGML_ASSERT(false);
  11698. } break;
  11699. }
  11700. }
  11701. // ggml_compute_forward_win_unpart
  11702. static void ggml_compute_forward_win_unpart_f32(
  11703. const struct ggml_compute_params * params,
  11704. const struct ggml_tensor * src0,
  11705. struct ggml_tensor * dst) {
  11706. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11707. return;
  11708. }
  11709. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11710. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11711. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11712. // padding
  11713. const int px = (w - ne1%w)%w;
  11714. //const int py = (w - ne2%w)%w;
  11715. const int npx = (px + ne1)/w;
  11716. //const int npy = (py + ne2)/w;
  11717. assert(ne0 == ne00);
  11718. // TODO: optimize / multi-thread
  11719. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11720. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11721. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11722. const int ip2 = i2/w;
  11723. const int ip1 = i1/w;
  11724. const int64_t i02 = i2%w;
  11725. const int64_t i01 = i1%w;
  11726. const int64_t i00 = i0;
  11727. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11728. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11729. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11730. }
  11731. }
  11732. }
  11733. }
  11734. static void ggml_compute_forward_win_unpart(
  11735. const struct ggml_compute_params * params,
  11736. const struct ggml_tensor * src0,
  11737. struct ggml_tensor * dst) {
  11738. switch (src0->type) {
  11739. case GGML_TYPE_F32:
  11740. {
  11741. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11742. } break;
  11743. default:
  11744. {
  11745. GGML_ASSERT(false);
  11746. } break;
  11747. }
  11748. }
  11749. //gmml_compute_forward_unary
  11750. static void ggml_compute_forward_unary(
  11751. const struct ggml_compute_params * params,
  11752. const struct ggml_tensor * src0,
  11753. struct ggml_tensor * dst) {
  11754. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11755. switch (op) {
  11756. case GGML_UNARY_OP_ABS:
  11757. {
  11758. ggml_compute_forward_abs(params, src0, dst);
  11759. } break;
  11760. case GGML_UNARY_OP_SGN:
  11761. {
  11762. ggml_compute_forward_sgn(params, src0, dst);
  11763. } break;
  11764. case GGML_UNARY_OP_NEG:
  11765. {
  11766. ggml_compute_forward_neg(params, src0, dst);
  11767. } break;
  11768. case GGML_UNARY_OP_STEP:
  11769. {
  11770. ggml_compute_forward_step(params, src0, dst);
  11771. } break;
  11772. case GGML_UNARY_OP_TANH:
  11773. {
  11774. ggml_compute_forward_tanh(params, src0, dst);
  11775. } break;
  11776. case GGML_UNARY_OP_ELU:
  11777. {
  11778. ggml_compute_forward_elu(params, src0, dst);
  11779. } break;
  11780. case GGML_UNARY_OP_RELU:
  11781. {
  11782. ggml_compute_forward_relu(params, src0, dst);
  11783. } break;
  11784. case GGML_UNARY_OP_GELU:
  11785. {
  11786. ggml_compute_forward_gelu(params, src0, dst);
  11787. } break;
  11788. case GGML_UNARY_OP_GELU_QUICK:
  11789. {
  11790. ggml_compute_forward_gelu_quick(params, src0, dst);
  11791. } break;
  11792. case GGML_UNARY_OP_SILU:
  11793. {
  11794. ggml_compute_forward_silu(params, src0, dst);
  11795. } break;
  11796. case GGML_UNARY_OP_HARDSWISH:
  11797. {
  11798. ggml_compute_forward_hardswish(params, src0, dst);
  11799. } break;
  11800. case GGML_UNARY_OP_HARDSIGMOID:
  11801. {
  11802. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11803. } break;
  11804. default:
  11805. {
  11806. GGML_ASSERT(false);
  11807. } break;
  11808. }
  11809. }
  11810. // ggml_compute_forward_get_rel_pos
  11811. static void ggml_compute_forward_get_rel_pos_f16(
  11812. const struct ggml_compute_params * params,
  11813. const struct ggml_tensor * src0,
  11814. struct ggml_tensor * dst) {
  11815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11816. return;
  11817. }
  11818. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11819. GGML_TENSOR_UNARY_OP_LOCALS
  11820. const int64_t w = ne1;
  11821. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11822. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11823. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11824. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11825. const int64_t pos = (w - i1 - 1) + i2;
  11826. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11827. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11828. }
  11829. }
  11830. }
  11831. }
  11832. static void ggml_compute_forward_get_rel_pos(
  11833. const struct ggml_compute_params * params,
  11834. const struct ggml_tensor * src0,
  11835. struct ggml_tensor * dst) {
  11836. switch (src0->type) {
  11837. case GGML_TYPE_F16:
  11838. {
  11839. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11840. } break;
  11841. default:
  11842. {
  11843. GGML_ASSERT(false);
  11844. } break;
  11845. }
  11846. }
  11847. // ggml_compute_forward_add_rel_pos
  11848. static void ggml_compute_forward_add_rel_pos_f32(
  11849. const struct ggml_compute_params * params,
  11850. const struct ggml_tensor * src0,
  11851. const struct ggml_tensor * src1,
  11852. const struct ggml_tensor * src2,
  11853. struct ggml_tensor * dst) {
  11854. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11855. if (!inplace && params->type == GGML_TASK_INIT) {
  11856. if (params->ith != 0) {
  11857. return;
  11858. }
  11859. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11860. return;
  11861. }
  11862. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11863. return;
  11864. }
  11865. int64_t t0 = ggml_perf_time_us();
  11866. UNUSED(t0);
  11867. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11868. float * src1_data = (float *) src1->data;
  11869. float * src2_data = (float *) src2->data;
  11870. float * dst_data = (float *) dst->data;
  11871. const int64_t ne10 = src1->ne[0];
  11872. const int64_t ne11 = src1->ne[1];
  11873. const int64_t ne12 = src1->ne[2];
  11874. const int64_t ne13 = src1->ne[3];
  11875. const int ith = params->ith;
  11876. const int nth = params->nth;
  11877. // total patches in dst
  11878. const int np = ne13;
  11879. // patches per thread
  11880. const int dp = (np + nth - 1)/nth;
  11881. // patch range for this thread
  11882. const int ip0 = dp*ith;
  11883. const int ip1 = MIN(ip0 + dp, np);
  11884. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11885. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11886. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11887. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11888. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11889. const int64_t jp0 = jp1 + i10;
  11890. const float src1_e = src1_data[jp0];
  11891. const float src2_e = src2_data[jp0];
  11892. const int64_t jdh = jp0 * ne10;
  11893. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11894. for (int64_t j = 0; j < ne10; ++j) {
  11895. dst_data[jdh + j ] += src2_e;
  11896. dst_data[jdw + j*ne10] += src1_e;
  11897. }
  11898. }
  11899. }
  11900. }
  11901. }
  11902. }
  11903. static void ggml_compute_forward_add_rel_pos(
  11904. const struct ggml_compute_params * params,
  11905. const struct ggml_tensor * src0,
  11906. const struct ggml_tensor * src1,
  11907. const struct ggml_tensor * src2,
  11908. struct ggml_tensor * dst) {
  11909. switch (src0->type) {
  11910. case GGML_TYPE_F32:
  11911. {
  11912. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11913. } break;
  11914. default:
  11915. {
  11916. GGML_ASSERT(false);
  11917. } break;
  11918. }
  11919. }
  11920. // ggml_compute_forward_map_unary
  11921. static void ggml_compute_forward_map_unary_f32(
  11922. const struct ggml_compute_params * params,
  11923. const struct ggml_tensor * src0,
  11924. struct ggml_tensor * dst,
  11925. const ggml_unary_op_f32_t fun) {
  11926. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11928. return;
  11929. }
  11930. const int n = ggml_nrows(src0);
  11931. const int nc = src0->ne[0];
  11932. assert( dst->nb[0] == sizeof(float));
  11933. assert(src0->nb[0] == sizeof(float));
  11934. for (int i = 0; i < n; i++) {
  11935. fun(nc,
  11936. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11937. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11938. }
  11939. }
  11940. static void ggml_compute_forward_map_unary(
  11941. const struct ggml_compute_params * params,
  11942. const struct ggml_tensor * src0,
  11943. struct ggml_tensor * dst,
  11944. const ggml_unary_op_f32_t fun) {
  11945. switch (src0->type) {
  11946. case GGML_TYPE_F32:
  11947. {
  11948. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11949. } break;
  11950. default:
  11951. {
  11952. GGML_ASSERT(false);
  11953. } break;
  11954. }
  11955. }
  11956. // ggml_compute_forward_map_binary
  11957. static void ggml_compute_forward_map_binary_f32(
  11958. const struct ggml_compute_params * params,
  11959. const struct ggml_tensor * src0,
  11960. const struct ggml_tensor * src1,
  11961. struct ggml_tensor * dst,
  11962. const ggml_binary_op_f32_t fun) {
  11963. assert(params->ith == 0);
  11964. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11965. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11966. return;
  11967. }
  11968. const int n = ggml_nrows(src0);
  11969. const int nc = src0->ne[0];
  11970. assert( dst->nb[0] == sizeof(float));
  11971. assert(src0->nb[0] == sizeof(float));
  11972. assert(src1->nb[0] == sizeof(float));
  11973. for (int i = 0; i < n; i++) {
  11974. fun(nc,
  11975. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11976. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11977. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11978. }
  11979. }
  11980. static void ggml_compute_forward_map_binary(
  11981. const struct ggml_compute_params * params,
  11982. const struct ggml_tensor * src0,
  11983. const struct ggml_tensor * src1,
  11984. struct ggml_tensor * dst,
  11985. const ggml_binary_op_f32_t fun) {
  11986. switch (src0->type) {
  11987. case GGML_TYPE_F32:
  11988. {
  11989. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11990. } break;
  11991. default:
  11992. {
  11993. GGML_ASSERT(false);
  11994. } break;
  11995. }
  11996. }
  11997. // ggml_compute_forward_map_custom1
  11998. static void ggml_compute_forward_map_custom1_f32(
  11999. const struct ggml_compute_params * params,
  12000. const struct ggml_tensor * a,
  12001. struct ggml_tensor * dst,
  12002. const ggml_custom1_op_f32_t fun) {
  12003. assert(params->ith == 0);
  12004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12005. return;
  12006. }
  12007. fun(dst, a);
  12008. }
  12009. // ggml_compute_forward_map_custom2
  12010. static void ggml_compute_forward_map_custom2_f32(
  12011. const struct ggml_compute_params * params,
  12012. const struct ggml_tensor * a,
  12013. const struct ggml_tensor * b,
  12014. struct ggml_tensor * dst,
  12015. const ggml_custom2_op_f32_t fun) {
  12016. assert(params->ith == 0);
  12017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12018. return;
  12019. }
  12020. fun(dst, a, b);
  12021. }
  12022. // ggml_compute_forward_map_custom3
  12023. static void ggml_compute_forward_map_custom3_f32(
  12024. const struct ggml_compute_params * params,
  12025. const struct ggml_tensor * a,
  12026. const struct ggml_tensor * b,
  12027. const struct ggml_tensor * c,
  12028. struct ggml_tensor * dst,
  12029. const ggml_custom3_op_f32_t fun) {
  12030. assert(params->ith == 0);
  12031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12032. return;
  12033. }
  12034. fun(dst, a, b, c);
  12035. }
  12036. // ggml_compute_forward_map_custom1
  12037. static void ggml_compute_forward_map_custom1(
  12038. const struct ggml_compute_params * params,
  12039. const struct ggml_tensor * a,
  12040. struct ggml_tensor * dst) {
  12041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12042. return;
  12043. }
  12044. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12045. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12046. }
  12047. // ggml_compute_forward_map_custom2
  12048. static void ggml_compute_forward_map_custom2(
  12049. const struct ggml_compute_params * params,
  12050. const struct ggml_tensor * a,
  12051. const struct ggml_tensor * b,
  12052. struct ggml_tensor * dst) {
  12053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12054. return;
  12055. }
  12056. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12057. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12058. }
  12059. // ggml_compute_forward_map_custom3
  12060. static void ggml_compute_forward_map_custom3(
  12061. const struct ggml_compute_params * params,
  12062. const struct ggml_tensor * a,
  12063. const struct ggml_tensor * b,
  12064. const struct ggml_tensor * c,
  12065. struct ggml_tensor * dst) {
  12066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12067. return;
  12068. }
  12069. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12070. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12071. }
  12072. // ggml_compute_forward_cross_entropy_loss
  12073. static void ggml_compute_forward_cross_entropy_loss_f32(
  12074. const struct ggml_compute_params * params,
  12075. const struct ggml_tensor * src0,
  12076. const struct ggml_tensor * src1,
  12077. struct ggml_tensor * dst) {
  12078. GGML_ASSERT(ggml_is_contiguous(src0));
  12079. GGML_ASSERT(ggml_is_contiguous(src1));
  12080. GGML_ASSERT(ggml_is_scalar(dst));
  12081. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12082. const int ith = params->ith;
  12083. const int nth = params->nth;
  12084. float * sums = (float *) params->wdata;
  12085. // TODO: handle transposed/permuted matrices
  12086. const int nc = src0->ne[0];
  12087. const int nr = ggml_nrows(src0);
  12088. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12089. if (params->type == GGML_TASK_INIT) {
  12090. if (ith == 0) {
  12091. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12092. }
  12093. return;
  12094. }
  12095. if (params->type == GGML_TASK_FINALIZE) {
  12096. if (ith == 0) {
  12097. float * dp = (float *) dst->data;
  12098. ggml_vec_sum_f32(nth, dp, sums);
  12099. dp[0] *= -1.0f / (float) nr;
  12100. }
  12101. return;
  12102. }
  12103. const double eps = 1e-9;
  12104. // rows per thread
  12105. const int dr = (nr + nth - 1)/nth;
  12106. // row range for this thread
  12107. const int ir0 = dr*ith;
  12108. const int ir1 = MIN(ir0 + dr, nr);
  12109. for (int i1 = ir0; i1 < ir1; i1++) {
  12110. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12111. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12112. float * st = ((float *) params->wdata) + nth + ith*nc;
  12113. #ifndef NDEBUG
  12114. for (int i = 0; i < nc; ++i) {
  12115. //printf("p[%d] = %f\n", i, p[i]);
  12116. assert(!isnan(s0[i]));
  12117. assert(!isnan(s1[i]));
  12118. }
  12119. #endif
  12120. // soft_max
  12121. ggml_float sum = 0.0;
  12122. {
  12123. float max = -INFINITY;
  12124. ggml_vec_max_f32(nc, &max, s0);
  12125. uint16_t scvt; UNUSED(scvt);
  12126. for (int i = 0; i < nc; i++) {
  12127. if (s0[i] == -INFINITY) {
  12128. st[i] = 0.0f;
  12129. } else {
  12130. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12131. const float s = s0[i] - max;
  12132. const float val = expf(s);
  12133. #else
  12134. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12135. memcpy(&scvt, &s, sizeof(scvt));
  12136. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12137. #endif
  12138. sum += (ggml_float)val;
  12139. st[i] = val;
  12140. }
  12141. }
  12142. assert(sum > 0.0);
  12143. // sum = 1.0/sum;
  12144. }
  12145. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12146. sum = (1.0 - eps) / sum;
  12147. ggml_vec_scale_f32(nc, st, sum);
  12148. ggml_vec_add1_f32(nc, st, st, eps);
  12149. ggml_vec_log_f32(nc, st, st);
  12150. ggml_vec_mul_f32(nc, st, st, s1);
  12151. float st_sum = 0;
  12152. ggml_vec_sum_f32(nc, &st_sum, st);
  12153. sums[ith] += st_sum;
  12154. #ifndef NDEBUG
  12155. for (int i = 0; i < nc; ++i) {
  12156. assert(!isnan(st[i]));
  12157. assert(!isinf(st[i]));
  12158. }
  12159. #endif
  12160. }
  12161. }
  12162. static void ggml_compute_forward_cross_entropy_loss(
  12163. const struct ggml_compute_params * params,
  12164. const struct ggml_tensor * src0,
  12165. const struct ggml_tensor * src1,
  12166. struct ggml_tensor * dst) {
  12167. switch (src0->type) {
  12168. case GGML_TYPE_F32:
  12169. {
  12170. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12171. } break;
  12172. default:
  12173. {
  12174. GGML_ASSERT(false);
  12175. } break;
  12176. }
  12177. }
  12178. // ggml_compute_forward_cross_entropy_loss_back
  12179. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12180. const struct ggml_compute_params * params,
  12181. const struct ggml_tensor * src0,
  12182. const struct ggml_tensor * src1,
  12183. const struct ggml_tensor * opt0,
  12184. struct ggml_tensor * dst) {
  12185. GGML_ASSERT(ggml_is_contiguous(dst));
  12186. GGML_ASSERT(ggml_is_contiguous(src0));
  12187. GGML_ASSERT(ggml_is_contiguous(src1));
  12188. GGML_ASSERT(ggml_is_contiguous(opt0));
  12189. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12190. const int64_t ith = params->ith;
  12191. const int64_t nth = params->nth;
  12192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12193. return;
  12194. }
  12195. const double eps = 1e-9;
  12196. // TODO: handle transposed/permuted matrices
  12197. const int64_t nc = src0->ne[0];
  12198. const int64_t nr = ggml_nrows(src0);
  12199. // rows per thread
  12200. const int64_t dr = (nr + nth - 1)/nth;
  12201. // row range for this thread
  12202. const int64_t ir0 = dr*ith;
  12203. const int64_t ir1 = MIN(ir0 + dr, nr);
  12204. float * d = (float *) opt0->data;
  12205. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12206. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12207. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12208. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12209. #ifndef NDEBUG
  12210. for (int i = 0; i < nc; ++i) {
  12211. //printf("p[%d] = %f\n", i, p[i]);
  12212. assert(!isnan(s0[i]));
  12213. assert(!isnan(s1[i]));
  12214. }
  12215. #endif
  12216. // soft_max
  12217. ggml_float sum = 0.0;
  12218. {
  12219. float max = -INFINITY;
  12220. ggml_vec_max_f32(nc, &max, s0);
  12221. uint16_t scvt; UNUSED(scvt);
  12222. for (int i = 0; i < nc; i++) {
  12223. if (s0[i] == -INFINITY) {
  12224. ds0[i] = 0.0f;
  12225. } else {
  12226. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12227. const float s = s0[i] - max;
  12228. const float val = expf(s);
  12229. #else
  12230. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12231. memcpy(&scvt, &s, sizeof(scvt));
  12232. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12233. #endif
  12234. sum += (ggml_float)val;
  12235. ds0[i] = val;
  12236. }
  12237. }
  12238. assert(sum > 0.0);
  12239. sum = (1.0 - eps)/sum;
  12240. }
  12241. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12242. ggml_vec_scale_f32(nc, ds0, sum);
  12243. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12244. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12245. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12246. #ifndef NDEBUG
  12247. for (int i = 0; i < nc; ++i) {
  12248. assert(!isnan(ds0[i]));
  12249. assert(!isinf(ds0[i]));
  12250. }
  12251. #endif
  12252. }
  12253. }
  12254. static void ggml_compute_forward_cross_entropy_loss_back(
  12255. const struct ggml_compute_params * params,
  12256. const struct ggml_tensor * src0,
  12257. const struct ggml_tensor * src1,
  12258. const struct ggml_tensor * opt0,
  12259. struct ggml_tensor * dst) {
  12260. switch (src0->type) {
  12261. case GGML_TYPE_F32:
  12262. {
  12263. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12264. } break;
  12265. default:
  12266. {
  12267. GGML_ASSERT(false);
  12268. } break;
  12269. }
  12270. }
  12271. /////////////////////////////////
  12272. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12273. GGML_ASSERT(params);
  12274. if (tensor->op == GGML_OP_NONE) {
  12275. return;
  12276. }
  12277. #ifdef GGML_USE_CUBLAS
  12278. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12279. if (skip_cpu) {
  12280. return;
  12281. }
  12282. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12283. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12284. #elif defined(GGML_USE_VULKAN)
  12285. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12286. #ifdef GGML_VULKAN_CHECK_RESULTS
  12287. if (skip_cpu) {
  12288. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12289. }
  12290. #endif
  12291. if (skip_cpu) {
  12292. return;
  12293. }
  12294. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12295. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12296. #endif // GGML_USE_CUBLAS
  12297. #ifdef GGML_USE_SYCL
  12298. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12299. if (skip_cpu) {
  12300. return;
  12301. }
  12302. #endif // GGML_USE_SYCL
  12303. switch (tensor->op) {
  12304. case GGML_OP_DUP:
  12305. {
  12306. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12307. } break;
  12308. case GGML_OP_ADD:
  12309. {
  12310. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12311. } break;
  12312. case GGML_OP_ADD1:
  12313. {
  12314. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12315. } break;
  12316. case GGML_OP_ACC:
  12317. {
  12318. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12319. } break;
  12320. case GGML_OP_SUB:
  12321. {
  12322. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12323. } break;
  12324. case GGML_OP_MUL:
  12325. {
  12326. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12327. } break;
  12328. case GGML_OP_DIV:
  12329. {
  12330. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12331. } break;
  12332. case GGML_OP_SQR:
  12333. {
  12334. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12335. } break;
  12336. case GGML_OP_SQRT:
  12337. {
  12338. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12339. } break;
  12340. case GGML_OP_LOG:
  12341. {
  12342. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12343. } break;
  12344. case GGML_OP_SUM:
  12345. {
  12346. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12347. } break;
  12348. case GGML_OP_SUM_ROWS:
  12349. {
  12350. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12351. } break;
  12352. case GGML_OP_MEAN:
  12353. {
  12354. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12355. } break;
  12356. case GGML_OP_ARGMAX:
  12357. {
  12358. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12359. } break;
  12360. case GGML_OP_REPEAT:
  12361. {
  12362. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12363. } break;
  12364. case GGML_OP_REPEAT_BACK:
  12365. {
  12366. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12367. } break;
  12368. case GGML_OP_CONCAT:
  12369. {
  12370. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12371. } break;
  12372. case GGML_OP_SILU_BACK:
  12373. {
  12374. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12375. } break;
  12376. case GGML_OP_NORM:
  12377. {
  12378. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12379. } break;
  12380. case GGML_OP_RMS_NORM:
  12381. {
  12382. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12383. } break;
  12384. case GGML_OP_RMS_NORM_BACK:
  12385. {
  12386. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12387. } break;
  12388. case GGML_OP_GROUP_NORM:
  12389. {
  12390. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12391. } break;
  12392. case GGML_OP_MUL_MAT:
  12393. {
  12394. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12395. } break;
  12396. case GGML_OP_MUL_MAT_ID:
  12397. {
  12398. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12399. } break;
  12400. case GGML_OP_OUT_PROD:
  12401. {
  12402. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12403. } break;
  12404. case GGML_OP_SCALE:
  12405. {
  12406. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12407. } break;
  12408. case GGML_OP_SET:
  12409. {
  12410. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12411. } break;
  12412. case GGML_OP_CPY:
  12413. {
  12414. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12415. } break;
  12416. case GGML_OP_CONT:
  12417. {
  12418. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12419. } break;
  12420. case GGML_OP_RESHAPE:
  12421. {
  12422. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12423. } break;
  12424. case GGML_OP_VIEW:
  12425. {
  12426. ggml_compute_forward_view(params, tensor->src[0]);
  12427. } break;
  12428. case GGML_OP_PERMUTE:
  12429. {
  12430. ggml_compute_forward_permute(params, tensor->src[0]);
  12431. } break;
  12432. case GGML_OP_TRANSPOSE:
  12433. {
  12434. ggml_compute_forward_transpose(params, tensor->src[0]);
  12435. } break;
  12436. case GGML_OP_GET_ROWS:
  12437. {
  12438. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12439. } break;
  12440. case GGML_OP_GET_ROWS_BACK:
  12441. {
  12442. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12443. } break;
  12444. case GGML_OP_DIAG:
  12445. {
  12446. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12447. } break;
  12448. case GGML_OP_DIAG_MASK_INF:
  12449. {
  12450. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12451. } break;
  12452. case GGML_OP_DIAG_MASK_ZERO:
  12453. {
  12454. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12455. } break;
  12456. case GGML_OP_SOFT_MAX:
  12457. {
  12458. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12459. } break;
  12460. case GGML_OP_SOFT_MAX_BACK:
  12461. {
  12462. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12463. } break;
  12464. case GGML_OP_ROPE:
  12465. {
  12466. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12467. } break;
  12468. case GGML_OP_ROPE_BACK:
  12469. {
  12470. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12471. } break;
  12472. case GGML_OP_ALIBI:
  12473. {
  12474. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12475. } break;
  12476. case GGML_OP_CLAMP:
  12477. {
  12478. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12479. } break;
  12480. case GGML_OP_CONV_TRANSPOSE_1D:
  12481. {
  12482. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12483. } break;
  12484. case GGML_OP_IM2COL:
  12485. {
  12486. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12487. } break;
  12488. case GGML_OP_CONV_TRANSPOSE_2D:
  12489. {
  12490. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12491. } break;
  12492. case GGML_OP_POOL_1D:
  12493. {
  12494. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12495. } break;
  12496. case GGML_OP_POOL_2D:
  12497. {
  12498. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12499. } break;
  12500. case GGML_OP_UPSCALE:
  12501. {
  12502. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12503. } break;
  12504. case GGML_OP_PAD:
  12505. {
  12506. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12507. } break;
  12508. case GGML_OP_ARGSORT:
  12509. {
  12510. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12511. } break;
  12512. case GGML_OP_LEAKY_RELU:
  12513. {
  12514. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12515. } break;
  12516. case GGML_OP_FLASH_ATTN:
  12517. {
  12518. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12519. GGML_ASSERT(t == 0 || t == 1);
  12520. const bool masked = t != 0;
  12521. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12522. } break;
  12523. case GGML_OP_FLASH_FF:
  12524. {
  12525. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12526. } break;
  12527. case GGML_OP_FLASH_ATTN_BACK:
  12528. {
  12529. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12530. GGML_ASSERT(t == 0 || t == 1);
  12531. bool masked = t != 0;
  12532. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12533. } break;
  12534. case GGML_OP_WIN_PART:
  12535. {
  12536. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12537. } break;
  12538. case GGML_OP_WIN_UNPART:
  12539. {
  12540. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12541. } break;
  12542. case GGML_OP_UNARY:
  12543. {
  12544. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12545. } break;
  12546. case GGML_OP_GET_REL_POS:
  12547. {
  12548. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12549. } break;
  12550. case GGML_OP_ADD_REL_POS:
  12551. {
  12552. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12553. } break;
  12554. case GGML_OP_MAP_UNARY:
  12555. {
  12556. ggml_unary_op_f32_t fun;
  12557. memcpy(&fun, tensor->op_params, sizeof(fun));
  12558. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12559. }
  12560. break;
  12561. case GGML_OP_MAP_BINARY:
  12562. {
  12563. ggml_binary_op_f32_t fun;
  12564. memcpy(&fun, tensor->op_params, sizeof(fun));
  12565. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12566. }
  12567. break;
  12568. case GGML_OP_MAP_CUSTOM1_F32:
  12569. {
  12570. ggml_custom1_op_f32_t fun;
  12571. memcpy(&fun, tensor->op_params, sizeof(fun));
  12572. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12573. }
  12574. break;
  12575. case GGML_OP_MAP_CUSTOM2_F32:
  12576. {
  12577. ggml_custom2_op_f32_t fun;
  12578. memcpy(&fun, tensor->op_params, sizeof(fun));
  12579. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12580. }
  12581. break;
  12582. case GGML_OP_MAP_CUSTOM3_F32:
  12583. {
  12584. ggml_custom3_op_f32_t fun;
  12585. memcpy(&fun, tensor->op_params, sizeof(fun));
  12586. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12587. }
  12588. break;
  12589. case GGML_OP_MAP_CUSTOM1:
  12590. {
  12591. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12592. }
  12593. break;
  12594. case GGML_OP_MAP_CUSTOM2:
  12595. {
  12596. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12597. }
  12598. break;
  12599. case GGML_OP_MAP_CUSTOM3:
  12600. {
  12601. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12602. }
  12603. break;
  12604. case GGML_OP_CROSS_ENTROPY_LOSS:
  12605. {
  12606. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12607. }
  12608. break;
  12609. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12610. {
  12611. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12612. }
  12613. break;
  12614. case GGML_OP_NONE:
  12615. {
  12616. // nop
  12617. } break;
  12618. case GGML_OP_COUNT:
  12619. {
  12620. GGML_ASSERT(false);
  12621. } break;
  12622. }
  12623. }
  12624. ////////////////////////////////////////////////////////////////////////////////
  12625. static size_t ggml_hash_size(size_t min_sz) {
  12626. // next primes after powers of two
  12627. static const size_t primes[] = {
  12628. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12629. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12630. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12631. 16777259, 33554467, 67108879, 134217757, 268435459,
  12632. 536870923, 1073741827, 2147483659
  12633. };
  12634. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12635. // find the smallest prime that is larger or equal to min_sz
  12636. size_t l = 0;
  12637. size_t r = n_primes;
  12638. while (l < r) {
  12639. size_t m = (l + r)/2;
  12640. if (primes[m] < min_sz) {
  12641. l = m + 1;
  12642. } else {
  12643. r = m;
  12644. }
  12645. }
  12646. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12647. return sz;
  12648. }
  12649. static size_t ggml_hash(const void * p) {
  12650. return (size_t)p;
  12651. }
  12652. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12653. size_t h = ggml_hash(key) % hash_set.size;
  12654. // linear probing
  12655. size_t i = h;
  12656. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12657. i = (i + 1) % hash_set.size;
  12658. if (i == h) {
  12659. // visited all hash table entries -> not found
  12660. return GGML_HASHTABLE_FULL;
  12661. }
  12662. }
  12663. return i;
  12664. }
  12665. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12666. size_t i = ggml_hash_find(hash_set, key);
  12667. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12668. }
  12669. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12670. size_t i = ggml_hash_find(hash_set, key);
  12671. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12672. if (hash_set.keys[i] == key) {
  12673. return GGML_HASHTABLE_ALREADY_EXISTS;
  12674. }
  12675. // insert
  12676. GGML_ASSERT(hash_set.keys[i] == NULL);
  12677. hash_set.keys[i] = key;
  12678. return i;
  12679. }
  12680. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12681. size_t i = ggml_hash_find(hash_set, key);
  12682. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12683. hash_set.keys[i] = key;
  12684. return i;
  12685. }
  12686. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12687. size = ggml_hash_size(size);
  12688. struct ggml_hash_set result;
  12689. result.size = size;
  12690. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12691. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12692. return result;
  12693. }
  12694. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12695. GGML_FREE(hash_set.keys);
  12696. }
  12697. struct hash_map {
  12698. struct ggml_hash_set set;
  12699. struct ggml_tensor ** vals;
  12700. };
  12701. static struct hash_map * ggml_new_hash_map(size_t size) {
  12702. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12703. result->set = ggml_hash_set_new(size);
  12704. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12705. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12706. return result;
  12707. }
  12708. static void ggml_hash_map_free(struct hash_map * map) {
  12709. ggml_hash_set_free(map->set);
  12710. GGML_FREE(map->vals);
  12711. GGML_FREE(map);
  12712. }
  12713. // gradient checkpointing
  12714. static struct ggml_tensor * ggml_recompute_graph_node(
  12715. struct ggml_context * ctx,
  12716. struct ggml_cgraph * graph,
  12717. struct hash_map * replacements,
  12718. struct ggml_tensor * node) {
  12719. if (node == NULL) {
  12720. return NULL;
  12721. }
  12722. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12723. return node;
  12724. }
  12725. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12726. return node;
  12727. }
  12728. int count_children = 0;
  12729. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12730. if (node->src[k]) {
  12731. ++count_children;
  12732. }
  12733. }
  12734. if (count_children == 0) {
  12735. return node;
  12736. }
  12737. size_t i = ggml_hash_find(replacements->set, node);
  12738. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12739. if (replacements->set.keys[i] == node) {
  12740. return replacements->vals[i];
  12741. }
  12742. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12743. // insert clone into replacements
  12744. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12745. replacements->set.keys[i] = node;
  12746. replacements->vals[i] = clone;
  12747. clone->op = node->op;
  12748. clone->grad = node->grad;
  12749. clone->flags = node->flags;
  12750. clone->extra = node->extra;
  12751. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12752. clone->nb[k] = node->nb[k];
  12753. }
  12754. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12755. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12756. }
  12757. if (node->view_src != NULL) {
  12758. clone->data = (node->view_src->data == NULL)
  12759. ? NULL // view_src not yet allocated
  12760. : (char *) node->view_src->data // view_src already allocated
  12761. + node->view_offs;
  12762. clone->view_src = node->view_src;
  12763. clone->view_offs = node->view_offs;
  12764. }
  12765. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12766. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12767. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12768. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12769. return clone;
  12770. }
  12771. void ggml_build_backward_gradient_checkpointing(
  12772. struct ggml_context * ctx,
  12773. struct ggml_cgraph * gf,
  12774. struct ggml_cgraph * gb,
  12775. struct ggml_cgraph * gb_tmp,
  12776. struct ggml_tensor * * checkpoints,
  12777. int n_checkpoints) {
  12778. ggml_graph_cpy(gf, gb_tmp);
  12779. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12780. if (n_checkpoints <= 0) {
  12781. ggml_graph_cpy(gb_tmp, gb);
  12782. return;
  12783. }
  12784. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12785. // insert checkpoints in replacements
  12786. for (int i = 0; i < n_checkpoints; ++i) {
  12787. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12788. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12789. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12790. replacements->set.keys[k] = checkpoints[i];
  12791. replacements->vals[k] = checkpoints[i];
  12792. }
  12793. ggml_graph_cpy(gf, gb);
  12794. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12795. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12796. // by recomputing them from checkpoints
  12797. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12798. struct ggml_tensor * node = gb_tmp->nodes[i];
  12799. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12800. // insert new tensors recomputing src, reusing already made replacements,
  12801. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12802. // recurse for input tensors,
  12803. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12804. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12805. }
  12806. // insert rewritten backward node with replacements made into resulting backward graph gb
  12807. ggml_build_forward_expand(gb, node);
  12808. }
  12809. ggml_hash_map_free(replacements);
  12810. }
  12811. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12812. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12813. if (ggml_hash_contains(zero_table, a)) {
  12814. return b;
  12815. } else {
  12816. return ggml_add_impl(ctx, a, b, false);
  12817. }
  12818. }
  12819. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12820. if (ggml_hash_contains(zero_table, a)) {
  12821. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12822. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12823. } else {
  12824. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12825. }
  12826. }
  12827. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12828. if (ggml_hash_contains(zero_table, a)) {
  12829. return ggml_repeat(ctx, b, a);
  12830. } else {
  12831. return ggml_add1_impl(ctx, a, b, false);
  12832. }
  12833. }
  12834. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12835. if (ggml_hash_contains(zero_table, a)) {
  12836. return ggml_neg(ctx, b);
  12837. } else {
  12838. return ggml_sub_impl(ctx, a, b, false);
  12839. }
  12840. }
  12841. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12842. struct ggml_tensor * src0 = tensor->src[0];
  12843. struct ggml_tensor * src1 = tensor->src[1];
  12844. switch (tensor->op) {
  12845. case GGML_OP_DUP:
  12846. {
  12847. if (src0->grad) {
  12848. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12849. }
  12850. } break;
  12851. case GGML_OP_ADD:
  12852. {
  12853. if (src0->grad) {
  12854. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12855. }
  12856. if (src1->grad) {
  12857. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12858. }
  12859. } break;
  12860. case GGML_OP_ADD1:
  12861. {
  12862. if (src0->grad) {
  12863. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12864. }
  12865. if (src1->grad) {
  12866. src1->grad = ggml_add_or_set(ctx,
  12867. src1->grad,
  12868. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12869. zero_table);
  12870. }
  12871. } break;
  12872. case GGML_OP_ACC:
  12873. {
  12874. if (src0->grad) {
  12875. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12876. }
  12877. if (src1->grad) {
  12878. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12879. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12880. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12881. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12882. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12883. tensor->grad,
  12884. src1->grad->ne[0],
  12885. src1->grad->ne[1],
  12886. src1->grad->ne[2],
  12887. src1->grad->ne[3],
  12888. nb1, nb2, nb3, offset);
  12889. src1->grad =
  12890. ggml_add_or_set(ctx,
  12891. src1->grad,
  12892. ggml_reshape(ctx,
  12893. ggml_cont(ctx, tensor_grad_view),
  12894. src1->grad),
  12895. zero_table);
  12896. }
  12897. } break;
  12898. case GGML_OP_SUB:
  12899. {
  12900. if (src0->grad) {
  12901. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12902. }
  12903. if (src1->grad) {
  12904. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12905. }
  12906. } break;
  12907. case GGML_OP_MUL:
  12908. {
  12909. if (src0->grad) {
  12910. src0->grad =
  12911. ggml_add_or_set(ctx,
  12912. src0->grad,
  12913. ggml_mul(ctx, src1, tensor->grad),
  12914. zero_table);
  12915. }
  12916. if (src1->grad) {
  12917. src1->grad =
  12918. ggml_add_or_set(ctx,
  12919. src1->grad,
  12920. ggml_mul(ctx, src0, tensor->grad),
  12921. zero_table);
  12922. }
  12923. } break;
  12924. case GGML_OP_DIV:
  12925. {
  12926. if (src0->grad) {
  12927. src0->grad =
  12928. ggml_add_or_set(ctx,
  12929. src0->grad,
  12930. ggml_div(ctx, tensor->grad, src1),
  12931. zero_table);
  12932. }
  12933. if (src1->grad) {
  12934. src1->grad =
  12935. ggml_sub_or_set(ctx,
  12936. src1->grad,
  12937. ggml_mul(ctx,
  12938. tensor->grad,
  12939. ggml_div(ctx, tensor, src1)),
  12940. zero_table);
  12941. }
  12942. } break;
  12943. case GGML_OP_SQR:
  12944. {
  12945. if (src0->grad) {
  12946. src0->grad =
  12947. ggml_add_or_set(ctx,
  12948. src0->grad,
  12949. ggml_scale(ctx,
  12950. ggml_mul(ctx, src0, tensor->grad),
  12951. 2.0f),
  12952. zero_table);
  12953. }
  12954. } break;
  12955. case GGML_OP_SQRT:
  12956. {
  12957. if (src0->grad) {
  12958. src0->grad =
  12959. ggml_add_or_set(ctx,
  12960. src0->grad,
  12961. ggml_scale(ctx,
  12962. ggml_div(ctx,
  12963. tensor->grad,
  12964. tensor),
  12965. 0.5f),
  12966. zero_table);
  12967. }
  12968. } break;
  12969. case GGML_OP_LOG:
  12970. {
  12971. if (src0->grad) {
  12972. src0->grad =
  12973. ggml_add_or_set(ctx,
  12974. src0->grad,
  12975. ggml_div(ctx,
  12976. tensor->grad,
  12977. src0),
  12978. zero_table);
  12979. }
  12980. } break;
  12981. case GGML_OP_SUM:
  12982. {
  12983. if (src0->grad) {
  12984. src0->grad =
  12985. ggml_add1_or_set(ctx,
  12986. src0->grad,
  12987. tensor->grad,
  12988. zero_table);
  12989. }
  12990. } break;
  12991. case GGML_OP_SUM_ROWS:
  12992. {
  12993. if (src0->grad) {
  12994. src0->grad =
  12995. ggml_add_or_set(ctx,
  12996. src0->grad,
  12997. ggml_repeat(ctx,
  12998. tensor->grad,
  12999. src0->grad),
  13000. zero_table);
  13001. }
  13002. } break;
  13003. case GGML_OP_MEAN:
  13004. case GGML_OP_ARGMAX:
  13005. {
  13006. GGML_ASSERT(false); // TODO: implement
  13007. } break;
  13008. case GGML_OP_REPEAT:
  13009. {
  13010. // necessary for llama
  13011. if (src0->grad) {
  13012. src0->grad = ggml_add_or_set(ctx,
  13013. src0->grad,
  13014. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13015. zero_table);
  13016. }
  13017. } break;
  13018. case GGML_OP_REPEAT_BACK:
  13019. {
  13020. if (src0->grad) {
  13021. // TODO: test this
  13022. src0->grad = ggml_add_or_set(ctx,
  13023. src0->grad,
  13024. ggml_repeat(ctx, tensor->grad, src0->grad),
  13025. zero_table);
  13026. }
  13027. } break;
  13028. case GGML_OP_CONCAT:
  13029. {
  13030. GGML_ASSERT(false); // TODO: implement
  13031. } break;
  13032. case GGML_OP_SILU_BACK:
  13033. {
  13034. GGML_ASSERT(false); // TODO: not implemented
  13035. } break;
  13036. case GGML_OP_NORM:
  13037. {
  13038. GGML_ASSERT(false); // TODO: not implemented
  13039. } break;
  13040. case GGML_OP_RMS_NORM:
  13041. {
  13042. // necessary for llama
  13043. if (src0->grad) {
  13044. float eps;
  13045. memcpy(&eps, tensor->op_params, sizeof(float));
  13046. src0->grad = ggml_add_or_set(ctx,
  13047. src0->grad,
  13048. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13049. zero_table);
  13050. }
  13051. } break;
  13052. case GGML_OP_RMS_NORM_BACK:
  13053. {
  13054. GGML_ASSERT(false); // TODO: not implemented
  13055. } break;
  13056. case GGML_OP_GROUP_NORM:
  13057. {
  13058. GGML_ASSERT(false); // TODO: not implemented
  13059. } break;
  13060. case GGML_OP_MUL_MAT:
  13061. {
  13062. // https://cs231n.github.io/optimization-2/#staged
  13063. // # forward pass
  13064. // s0 = np.random.randn(5, 10)
  13065. // s1 = np.random.randn(10, 3)
  13066. // t = s0.dot(s1)
  13067. // # now suppose we had the gradient on t from above in the circuit
  13068. // dt = np.random.randn(*t.shape) # same shape as t
  13069. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13070. // ds1 = t.T.dot(dt)
  13071. // tensor.shape [m,p,qq,rr]
  13072. // src0.shape [n,m,q1,r1]
  13073. // src1.shape [n,p,qq,rr]
  13074. // necessary for llama
  13075. if (src0->grad) {
  13076. struct ggml_tensor * s1_tg =
  13077. ggml_out_prod(ctx, // [n,m,qq,rr]
  13078. src1, // [n,p,qq,rr]
  13079. tensor->grad); // [m,p,qq,rr]
  13080. const int64_t qq = s1_tg->ne[2];
  13081. const int64_t rr = s1_tg->ne[3];
  13082. const int64_t q1 = src0->ne[2];
  13083. const int64_t r1 = src0->ne[3];
  13084. const bool ne2_broadcasted = qq > q1;
  13085. const bool ne3_broadcasted = rr > r1;
  13086. if (ne2_broadcasted || ne3_broadcasted) {
  13087. // sum broadcast repetitions of s1_tg into shape of src0
  13088. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13089. }
  13090. src0->grad =
  13091. ggml_add_or_set(ctx,
  13092. src0->grad, // [n,m,q1,r1]
  13093. s1_tg, // [n,m,q1,r1]
  13094. zero_table);
  13095. }
  13096. if (src1->grad) {
  13097. src1->grad =
  13098. ggml_add_or_set(ctx,
  13099. src1->grad, // [n,p,qq,rr]
  13100. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13101. // ggml_cont(ctx, // [m,n,q1,r1]
  13102. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13103. // tensor->grad), // [m,p,qq,rr]
  13104. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13105. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13106. // // and then use ggml_out_prod
  13107. ggml_out_prod(ctx, // [n,p,qq,rr]
  13108. src0, // [n,m,q1,r1]
  13109. ggml_transpose(ctx, // [p,m,qq,rr]
  13110. tensor->grad)), // [m,p,qq,rr]
  13111. zero_table);
  13112. }
  13113. } break;
  13114. case GGML_OP_MUL_MAT_ID:
  13115. {
  13116. GGML_ASSERT(false); // TODO: not implemented
  13117. } break;
  13118. case GGML_OP_OUT_PROD:
  13119. {
  13120. GGML_ASSERT(false); // TODO: not implemented
  13121. } break;
  13122. case GGML_OP_SCALE:
  13123. {
  13124. // necessary for llama
  13125. if (src0->grad) {
  13126. float s;
  13127. memcpy(&s, tensor->op_params, sizeof(float));
  13128. src0->grad =
  13129. ggml_add_or_set(ctx,
  13130. src0->grad,
  13131. ggml_scale_impl(ctx, tensor->grad, s, false),
  13132. zero_table);
  13133. }
  13134. } break;
  13135. case GGML_OP_SET:
  13136. {
  13137. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13138. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13139. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13140. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13141. struct ggml_tensor * tensor_grad_view = NULL;
  13142. if (src0->grad || src1->grad) {
  13143. GGML_ASSERT(src0->type == tensor->type);
  13144. GGML_ASSERT(tensor->grad->type == tensor->type);
  13145. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13146. tensor_grad_view = ggml_view_4d(ctx,
  13147. tensor->grad,
  13148. src1->grad->ne[0],
  13149. src1->grad->ne[1],
  13150. src1->grad->ne[2],
  13151. src1->grad->ne[3],
  13152. nb1, nb2, nb3, offset);
  13153. }
  13154. if (src0->grad) {
  13155. src0->grad = ggml_add_or_set(ctx,
  13156. src0->grad,
  13157. ggml_acc_impl(ctx,
  13158. tensor->grad,
  13159. ggml_neg(ctx, tensor_grad_view),
  13160. nb1, nb2, nb3, offset, false),
  13161. zero_table);
  13162. }
  13163. if (src1->grad) {
  13164. src1->grad =
  13165. ggml_add_or_set(ctx,
  13166. src1->grad,
  13167. ggml_reshape(ctx,
  13168. ggml_cont(ctx, tensor_grad_view),
  13169. src1->grad),
  13170. zero_table);
  13171. }
  13172. } break;
  13173. case GGML_OP_CPY:
  13174. {
  13175. // necessary for llama
  13176. // cpy overwrites value of src1 by src0 and returns view(src1)
  13177. // the overwriting is mathematically equivalent to:
  13178. // tensor = src0 * 1 + src1 * 0
  13179. if (src0->grad) {
  13180. // dsrc0 = dtensor * 1
  13181. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13182. }
  13183. if (src1->grad) {
  13184. // dsrc1 = dtensor * 0 -> noop
  13185. }
  13186. } break;
  13187. case GGML_OP_CONT:
  13188. {
  13189. // same as cpy
  13190. if (src0->grad) {
  13191. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13192. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13193. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13194. }
  13195. } break;
  13196. case GGML_OP_RESHAPE:
  13197. {
  13198. // necessary for llama
  13199. if (src0->grad) {
  13200. src0->grad =
  13201. ggml_add_or_set(ctx, src0->grad,
  13202. ggml_reshape(ctx,
  13203. ggml_is_contiguous(tensor->grad)
  13204. ? tensor->grad
  13205. : ggml_cont(ctx, tensor->grad),
  13206. src0->grad),
  13207. zero_table);
  13208. }
  13209. } break;
  13210. case GGML_OP_VIEW:
  13211. {
  13212. // necessary for llama
  13213. if (src0->grad) {
  13214. size_t offset;
  13215. memcpy(&offset, tensor->op_params, sizeof(offset));
  13216. size_t nb1 = tensor->nb[1];
  13217. size_t nb2 = tensor->nb[2];
  13218. size_t nb3 = tensor->nb[3];
  13219. if (src0->type != src0->grad->type) {
  13220. // gradient is typically F32, but src0 could be other type
  13221. size_t ng = ggml_element_size(src0->grad);
  13222. size_t n0 = ggml_element_size(src0);
  13223. GGML_ASSERT(offset % n0 == 0);
  13224. GGML_ASSERT(nb1 % n0 == 0);
  13225. GGML_ASSERT(nb2 % n0 == 0);
  13226. GGML_ASSERT(nb3 % n0 == 0);
  13227. offset = (offset / n0) * ng;
  13228. nb1 = (nb1 / n0) * ng;
  13229. nb2 = (nb2 / n0) * ng;
  13230. nb3 = (nb3 / n0) * ng;
  13231. }
  13232. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13233. }
  13234. } break;
  13235. case GGML_OP_PERMUTE:
  13236. {
  13237. // necessary for llama
  13238. if (src0->grad) {
  13239. int32_t * axes = (int32_t *) tensor->op_params;
  13240. int axis0 = axes[0] & 0x3;
  13241. int axis1 = axes[1] & 0x3;
  13242. int axis2 = axes[2] & 0x3;
  13243. int axis3 = axes[3] & 0x3;
  13244. int axes_backward[4] = {0,0,0,0};
  13245. axes_backward[axis0] = 0;
  13246. axes_backward[axis1] = 1;
  13247. axes_backward[axis2] = 2;
  13248. axes_backward[axis3] = 3;
  13249. src0->grad =
  13250. ggml_add_or_set(ctx, src0->grad,
  13251. ggml_permute(ctx,
  13252. tensor->grad,
  13253. axes_backward[0],
  13254. axes_backward[1],
  13255. axes_backward[2],
  13256. axes_backward[3]),
  13257. zero_table);
  13258. }
  13259. } break;
  13260. case GGML_OP_TRANSPOSE:
  13261. {
  13262. // necessary for llama
  13263. if (src0->grad) {
  13264. src0->grad =
  13265. ggml_add_or_set(ctx, src0->grad,
  13266. ggml_transpose(ctx, tensor->grad),
  13267. zero_table);
  13268. }
  13269. } break;
  13270. case GGML_OP_GET_ROWS:
  13271. {
  13272. // necessary for llama (only for tokenizer)
  13273. if (src0->grad) {
  13274. src0->grad =
  13275. ggml_add_or_set(ctx, src0->grad,
  13276. // last ggml_get_rows_back argument src0->grad is only
  13277. // necessary to setup correct output shape
  13278. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13279. zero_table);
  13280. }
  13281. if (src1->grad) {
  13282. // noop
  13283. }
  13284. } break;
  13285. case GGML_OP_GET_ROWS_BACK:
  13286. {
  13287. GGML_ASSERT(false); // TODO: not implemented
  13288. } break;
  13289. case GGML_OP_DIAG:
  13290. {
  13291. GGML_ASSERT(false); // TODO: not implemented
  13292. } break;
  13293. case GGML_OP_DIAG_MASK_INF:
  13294. {
  13295. // necessary for llama
  13296. if (src0->grad) {
  13297. const int n_past = ((int32_t *) tensor->op_params)[0];
  13298. src0->grad =
  13299. ggml_add_or_set(ctx, src0->grad,
  13300. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13301. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13302. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13303. zero_table);
  13304. }
  13305. } break;
  13306. case GGML_OP_DIAG_MASK_ZERO:
  13307. {
  13308. // necessary for llama
  13309. if (src0->grad) {
  13310. const int n_past = ((int32_t *) tensor->op_params)[0];
  13311. src0->grad =
  13312. ggml_add_or_set(ctx, src0->grad,
  13313. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13314. zero_table);
  13315. }
  13316. } break;
  13317. case GGML_OP_SOFT_MAX:
  13318. {
  13319. // necessary for llama
  13320. if (src0->grad) {
  13321. src0->grad =
  13322. ggml_add_or_set(ctx, src0->grad,
  13323. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13324. zero_table);
  13325. }
  13326. } break;
  13327. case GGML_OP_SOFT_MAX_BACK:
  13328. {
  13329. GGML_ASSERT(false); // TODO: not implemented
  13330. } break;
  13331. case GGML_OP_ROPE:
  13332. {
  13333. // necessary for llama
  13334. if (src0->grad) {
  13335. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13336. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13337. const int mode = ((int32_t *) tensor->op_params)[2];
  13338. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13339. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13340. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13341. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13342. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13343. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13344. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13345. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13346. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13347. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13348. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13349. src0->grad = ggml_add_or_set(ctx,
  13350. src0->grad,
  13351. ggml_rope_back(ctx,
  13352. tensor->grad,
  13353. src1,
  13354. n_dims,
  13355. mode,
  13356. n_ctx,
  13357. n_orig_ctx,
  13358. freq_base,
  13359. freq_scale,
  13360. ext_factor,
  13361. attn_factor,
  13362. beta_fast,
  13363. beta_slow,
  13364. xpos_base,
  13365. xpos_down),
  13366. zero_table);
  13367. }
  13368. } break;
  13369. case GGML_OP_ROPE_BACK:
  13370. {
  13371. if (src0->grad) {
  13372. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13373. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13374. const int mode = ((int32_t *) tensor->op_params)[2];
  13375. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13376. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13377. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13378. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13379. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13380. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13381. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13382. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13383. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13384. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13385. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13386. src0->grad = ggml_add_or_set(ctx,
  13387. src0->grad,
  13388. ggml_rope_impl(ctx,
  13389. tensor->grad,
  13390. src1,
  13391. n_dims,
  13392. mode,
  13393. n_ctx,
  13394. n_orig_ctx,
  13395. freq_base,
  13396. freq_scale,
  13397. ext_factor,
  13398. attn_factor,
  13399. beta_fast,
  13400. beta_slow,
  13401. xpos_base,
  13402. xpos_down,
  13403. false),
  13404. zero_table);
  13405. }
  13406. } break;
  13407. case GGML_OP_ALIBI:
  13408. {
  13409. GGML_ASSERT(false); // TODO: not implemented
  13410. } break;
  13411. case GGML_OP_CLAMP:
  13412. {
  13413. GGML_ASSERT(false); // TODO: not implemented
  13414. } break;
  13415. case GGML_OP_CONV_TRANSPOSE_1D:
  13416. {
  13417. GGML_ASSERT(false); // TODO: not implemented
  13418. } break;
  13419. case GGML_OP_IM2COL:
  13420. {
  13421. GGML_ASSERT(false); // TODO: not implemented
  13422. } break;
  13423. case GGML_OP_CONV_TRANSPOSE_2D:
  13424. {
  13425. GGML_ASSERT(false); // TODO: not implemented
  13426. } break;
  13427. case GGML_OP_POOL_1D:
  13428. {
  13429. GGML_ASSERT(false); // TODO: not implemented
  13430. } break;
  13431. case GGML_OP_POOL_2D:
  13432. {
  13433. GGML_ASSERT(false); // TODO: not implemented
  13434. } break;
  13435. case GGML_OP_UPSCALE:
  13436. {
  13437. GGML_ASSERT(false); // TODO: not implemented
  13438. } break;
  13439. case GGML_OP_PAD:
  13440. {
  13441. GGML_ASSERT(false); // TODO: not implemented
  13442. } break;
  13443. case GGML_OP_ARGSORT:
  13444. {
  13445. GGML_ASSERT(false); // TODO: not implemented
  13446. } break;
  13447. case GGML_OP_LEAKY_RELU:
  13448. {
  13449. GGML_ASSERT(false); // TODO: not implemented
  13450. } break;
  13451. case GGML_OP_FLASH_ATTN:
  13452. {
  13453. struct ggml_tensor * flash_grad = NULL;
  13454. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13455. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13456. GGML_ASSERT(t == 0 || t == 1);
  13457. bool masked = t != 0;
  13458. flash_grad =
  13459. ggml_flash_attn_back(ctx,
  13460. src0,
  13461. src1,
  13462. tensor->src[2],
  13463. tensor->grad,
  13464. masked);
  13465. }
  13466. struct ggml_tensor * src2 = tensor->src[2];
  13467. const int64_t elem_q = ggml_nelements(src0);
  13468. const int64_t elem_k = ggml_nelements(src1);
  13469. const int64_t elem_v = ggml_nelements(src2);
  13470. enum ggml_type result_type = flash_grad->type;
  13471. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13472. const size_t tsize = ggml_type_size(result_type);
  13473. const size_t offs_q = 0;
  13474. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13475. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13476. if (src0->grad) {
  13477. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13478. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13479. src0->grad = ggml_add_or_set(ctx,
  13480. src0->grad,
  13481. grad_q,
  13482. zero_table);
  13483. }
  13484. if (src1->grad) {
  13485. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13486. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13487. src1->grad = ggml_add_or_set(ctx,
  13488. src1->grad,
  13489. grad_k,
  13490. zero_table);
  13491. }
  13492. if (src2->grad) {
  13493. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13494. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13495. src2->grad = ggml_add_or_set(ctx,
  13496. src2->grad,
  13497. grad_v,
  13498. zero_table);
  13499. }
  13500. } break;
  13501. case GGML_OP_FLASH_FF:
  13502. {
  13503. GGML_ASSERT(false); // not supported
  13504. } break;
  13505. case GGML_OP_FLASH_ATTN_BACK:
  13506. {
  13507. GGML_ASSERT(false); // not supported
  13508. } break;
  13509. case GGML_OP_WIN_PART:
  13510. case GGML_OP_WIN_UNPART:
  13511. case GGML_OP_UNARY:
  13512. {
  13513. switch (ggml_get_unary_op(tensor)) {
  13514. case GGML_UNARY_OP_ABS:
  13515. {
  13516. if (src0->grad) {
  13517. src0->grad =
  13518. ggml_add_or_set(ctx,
  13519. src0->grad,
  13520. ggml_mul(ctx,
  13521. ggml_sgn(ctx, src0),
  13522. tensor->grad),
  13523. zero_table);
  13524. }
  13525. } break;
  13526. case GGML_UNARY_OP_SGN:
  13527. {
  13528. if (src0->grad) {
  13529. // noop
  13530. }
  13531. } break;
  13532. case GGML_UNARY_OP_NEG:
  13533. {
  13534. if (src0->grad) {
  13535. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13536. }
  13537. } break;
  13538. case GGML_UNARY_OP_STEP:
  13539. {
  13540. if (src0->grad) {
  13541. // noop
  13542. }
  13543. } break;
  13544. case GGML_UNARY_OP_TANH:
  13545. {
  13546. GGML_ASSERT(false); // TODO: not implemented
  13547. } break;
  13548. case GGML_UNARY_OP_ELU:
  13549. {
  13550. GGML_ASSERT(false); // TODO: not implemented
  13551. } break;
  13552. case GGML_UNARY_OP_RELU:
  13553. {
  13554. if (src0->grad) {
  13555. src0->grad = ggml_add_or_set(ctx,
  13556. src0->grad,
  13557. ggml_mul(ctx,
  13558. ggml_step(ctx, src0),
  13559. tensor->grad),
  13560. zero_table);
  13561. }
  13562. } break;
  13563. case GGML_UNARY_OP_GELU:
  13564. {
  13565. GGML_ASSERT(false); // TODO: not implemented
  13566. } break;
  13567. case GGML_UNARY_OP_GELU_QUICK:
  13568. {
  13569. GGML_ASSERT(false); // TODO: not implemented
  13570. } break;
  13571. case GGML_UNARY_OP_SILU:
  13572. {
  13573. // necessary for llama
  13574. if (src0->grad) {
  13575. src0->grad = ggml_add_or_set(ctx,
  13576. src0->grad,
  13577. ggml_silu_back(ctx, src0, tensor->grad),
  13578. zero_table);
  13579. }
  13580. } break;
  13581. default:
  13582. GGML_ASSERT(false);
  13583. }
  13584. } break;
  13585. case GGML_OP_GET_REL_POS:
  13586. case GGML_OP_ADD_REL_POS:
  13587. case GGML_OP_MAP_UNARY:
  13588. case GGML_OP_MAP_BINARY:
  13589. case GGML_OP_MAP_CUSTOM1_F32:
  13590. case GGML_OP_MAP_CUSTOM2_F32:
  13591. case GGML_OP_MAP_CUSTOM3_F32:
  13592. case GGML_OP_MAP_CUSTOM1:
  13593. case GGML_OP_MAP_CUSTOM2:
  13594. case GGML_OP_MAP_CUSTOM3:
  13595. {
  13596. GGML_ASSERT(false); // not supported
  13597. } break;
  13598. case GGML_OP_CROSS_ENTROPY_LOSS:
  13599. {
  13600. if (src0->grad) {
  13601. src0->grad = ggml_add_or_set(ctx,
  13602. src0->grad,
  13603. ggml_cross_entropy_loss_back(ctx,
  13604. src0,
  13605. src1,
  13606. tensor->grad),
  13607. zero_table);
  13608. }
  13609. } break;
  13610. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13611. {
  13612. GGML_ASSERT(false); // not supported
  13613. } break;
  13614. case GGML_OP_NONE:
  13615. {
  13616. // nop
  13617. } break;
  13618. case GGML_OP_COUNT:
  13619. {
  13620. GGML_ASSERT(false);
  13621. } break;
  13622. }
  13623. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13624. if (tensor->src[i] && tensor->src[i]->grad) {
  13625. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13626. }
  13627. }
  13628. }
  13629. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13630. if (node->grad == NULL) {
  13631. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13632. // it can also happen during forward pass, if the user performs computations with constants
  13633. if (node->op != GGML_OP_NONE) {
  13634. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13635. }
  13636. }
  13637. // check if already visited
  13638. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13639. return;
  13640. }
  13641. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13642. const int k =
  13643. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13644. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13645. /* unknown order, just fall back to using i*/ i;
  13646. if (node->src[k]) {
  13647. ggml_visit_parents(cgraph, node->src[k]);
  13648. }
  13649. }
  13650. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13651. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13652. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13653. if (strlen(node->name) == 0) {
  13654. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13655. }
  13656. cgraph->leafs[cgraph->n_leafs] = node;
  13657. cgraph->n_leafs++;
  13658. } else {
  13659. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13660. if (strlen(node->name) == 0) {
  13661. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13662. }
  13663. cgraph->nodes[cgraph->n_nodes] = node;
  13664. if (cgraph->grads) {
  13665. cgraph->grads[cgraph->n_nodes] = node->grad;
  13666. }
  13667. cgraph->n_nodes++;
  13668. }
  13669. }
  13670. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13671. if (!expand) {
  13672. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13673. ggml_graph_clear(cgraph);
  13674. }
  13675. const int n0 = cgraph->n_nodes;
  13676. UNUSED(n0);
  13677. ggml_visit_parents(cgraph, tensor);
  13678. const int n_new = cgraph->n_nodes - n0;
  13679. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13680. if (n_new > 0) {
  13681. // the last added node should always be starting point
  13682. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13683. }
  13684. }
  13685. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13686. ggml_build_forward_impl(cgraph, tensor, true);
  13687. }
  13688. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13689. GGML_ASSERT(gf->n_nodes > 0);
  13690. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13691. if (keep) {
  13692. for (int i = 0; i < gf->n_nodes; i++) {
  13693. struct ggml_tensor * node = gf->nodes[i];
  13694. if (node->grad) {
  13695. node->grad = ggml_dup_tensor(ctx, node);
  13696. gf->grads[i] = node->grad;
  13697. }
  13698. }
  13699. }
  13700. // remember original gradients which start with zero values
  13701. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13702. for (int i = 0; i < gf->n_nodes; i++) {
  13703. if (gf->grads[i]) {
  13704. ggml_hash_insert(zero_table, gf->grads[i]);
  13705. }
  13706. }
  13707. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13708. struct ggml_tensor * node = gf->nodes[i];
  13709. // inplace operations to add gradients are not created by ggml_compute_backward
  13710. // use allocator to automatically make inplace operations
  13711. if (node->grad) {
  13712. ggml_compute_backward(ctx, node, zero_table);
  13713. }
  13714. }
  13715. for (int i = 0; i < gf->n_nodes; i++) {
  13716. struct ggml_tensor * node = gf->nodes[i];
  13717. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13718. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13719. ggml_build_forward_expand(gb, node->grad);
  13720. }
  13721. }
  13722. ggml_hash_set_free(zero_table);
  13723. }
  13724. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13725. size_t nbytes = sizeof(struct ggml_cgraph);
  13726. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13727. if (grads) {
  13728. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13729. }
  13730. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13731. return nbytes;
  13732. }
  13733. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13734. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13735. }
  13736. size_t ggml_graph_overhead(void) {
  13737. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13738. }
  13739. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13740. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13741. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13742. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13743. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13744. size_t hash_size = ggml_hash_size(size * 2);
  13745. struct ggml_tensor ** nodes_ptr = data_start;
  13746. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13747. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13748. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13749. // check that we allocated the correct amount of memory
  13750. assert(obj_size == (size_t) (
  13751. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13752. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13753. *cgraph = (struct ggml_cgraph) {
  13754. /*.size =*/ size,
  13755. /*.n_nodes =*/ 0,
  13756. /*.n_leafs =*/ 0,
  13757. /*.nodes =*/ nodes_ptr,
  13758. /*.grads =*/ grads_ptr,
  13759. /*.leafs =*/ leafs_ptr,
  13760. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13761. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13762. /*.perf_runs =*/ 0,
  13763. /*.perf_cycles =*/ 0,
  13764. /*.perf_time_us =*/ 0,
  13765. };
  13766. return cgraph;
  13767. }
  13768. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13769. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13770. }
  13771. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13772. struct ggml_cgraph cgraph = {
  13773. /*.size =*/ 0,
  13774. /*.n_nodes =*/ i1 - i0,
  13775. /*.n_leafs =*/ 0,
  13776. /*.nodes =*/ cgraph0->nodes + i0,
  13777. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13778. /*.leafs =*/ NULL,
  13779. /*.hash_table =*/ { 0, NULL },
  13780. /*.order =*/ cgraph0->order,
  13781. /*.perf_runs =*/ 0,
  13782. /*.perf_cycles =*/ 0,
  13783. /*.perf_time_us =*/ 0,
  13784. };
  13785. return cgraph;
  13786. }
  13787. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13788. GGML_ASSERT(dst->size >= src->n_leafs);
  13789. GGML_ASSERT(dst->size >= src->n_nodes);
  13790. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13791. dst->n_leafs = src->n_leafs;
  13792. dst->n_nodes = src->n_nodes;
  13793. dst->order = src->order;
  13794. for (int i = 0; i < src->n_leafs; ++i) {
  13795. dst->leafs[i] = src->leafs[i];
  13796. }
  13797. for (int i = 0; i < src->n_nodes; ++i) {
  13798. dst->nodes[i] = src->nodes[i];
  13799. }
  13800. if (src->grads) {
  13801. GGML_ASSERT(dst->grads != NULL);
  13802. for (int i = 0; i < src->n_nodes; ++i) {
  13803. dst->grads[i] = src->grads[i];
  13804. }
  13805. }
  13806. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13807. if (src->visited_hash_table.keys[i]) {
  13808. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13809. }
  13810. }
  13811. }
  13812. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13813. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13814. ggml_graph_cpy(cgraph, result);
  13815. return result;
  13816. }
  13817. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13818. GGML_ASSERT(cgraph->grads != NULL);
  13819. for (int i = 0; i < cgraph->n_nodes; i++) {
  13820. struct ggml_tensor * grad = cgraph->grads[i];
  13821. if (grad) {
  13822. ggml_set_zero(grad);
  13823. }
  13824. }
  13825. }
  13826. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13827. cgraph->n_leafs = 0;
  13828. cgraph->n_nodes = 0;
  13829. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13830. }
  13831. //
  13832. // thread data
  13833. //
  13834. // synchronization is done via busy loops
  13835. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13836. //
  13837. #ifdef __APPLE__
  13838. //#include <os/lock.h>
  13839. //
  13840. //typedef os_unfair_lock ggml_lock_t;
  13841. //
  13842. //#define ggml_lock_init(x) UNUSED(x)
  13843. //#define ggml_lock_destroy(x) UNUSED(x)
  13844. //#define ggml_lock_lock os_unfair_lock_lock
  13845. //#define ggml_lock_unlock os_unfair_lock_unlock
  13846. //
  13847. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13848. typedef int ggml_lock_t;
  13849. #define ggml_lock_init(x) UNUSED(x)
  13850. #define ggml_lock_destroy(x) UNUSED(x)
  13851. #define ggml_lock_lock(x) UNUSED(x)
  13852. #define ggml_lock_unlock(x) UNUSED(x)
  13853. #define GGML_LOCK_INITIALIZER 0
  13854. typedef pthread_t ggml_thread_t;
  13855. #define ggml_thread_create pthread_create
  13856. #define ggml_thread_join pthread_join
  13857. #else
  13858. //typedef pthread_spinlock_t ggml_lock_t;
  13859. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13860. //#define ggml_lock_destroy pthread_spin_destroy
  13861. //#define ggml_lock_lock pthread_spin_lock
  13862. //#define ggml_lock_unlock pthread_spin_unlock
  13863. typedef int ggml_lock_t;
  13864. #define ggml_lock_init(x) UNUSED(x)
  13865. #define ggml_lock_destroy(x) UNUSED(x)
  13866. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13867. #define ggml_lock_lock(x) _mm_pause()
  13868. #else
  13869. #define ggml_lock_lock(x) UNUSED(x)
  13870. #endif
  13871. #define ggml_lock_unlock(x) UNUSED(x)
  13872. #define GGML_LOCK_INITIALIZER 0
  13873. typedef pthread_t ggml_thread_t;
  13874. #define ggml_thread_create pthread_create
  13875. #define ggml_thread_join pthread_join
  13876. #endif
  13877. // Android's libc implementation "bionic" does not support setting affinity
  13878. #if defined(__linux__) && !defined(__BIONIC__)
  13879. static void set_numa_thread_affinity(int thread_n) {
  13880. if (!ggml_is_numa()) {
  13881. return;
  13882. }
  13883. int node_num;
  13884. int rv;
  13885. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13886. switch(g_state.numa.numa_strategy) {
  13887. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13888. // run thread on node_num thread_n / (threads per node)
  13889. node_num = thread_n % g_state.numa.n_nodes;
  13890. break;
  13891. case GGML_NUMA_STRATEGY_ISOLATE:
  13892. // run thread on current_node
  13893. node_num = g_state.numa.current_node;
  13894. break;
  13895. case GGML_NUMA_STRATEGY_NUMACTL:
  13896. // use the cpuset that numactl gave us
  13897. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  13898. if (rv) {
  13899. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  13900. }
  13901. return;
  13902. default:
  13903. return;
  13904. }
  13905. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13906. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13907. CPU_ZERO_S(setsize, cpus);
  13908. for (size_t i = 0; i < node->n_cpus; ++i) {
  13909. CPU_SET_S(node->cpus[i], setsize, cpus);
  13910. }
  13911. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13912. if (rv) {
  13913. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13914. }
  13915. CPU_FREE(cpus);
  13916. }
  13917. static void clear_numa_thread_affinity(void) {
  13918. if (!ggml_is_numa()) {
  13919. return;
  13920. }
  13921. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13922. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13923. CPU_ZERO_S(setsize, cpus);
  13924. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13925. CPU_SET_S(i, setsize, cpus);
  13926. }
  13927. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13928. if (rv) {
  13929. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  13930. }
  13931. CPU_FREE(cpus);
  13932. }
  13933. #else
  13934. // TODO: Windows etc.
  13935. // (the linux implementation may also work on BSD, someone should test)
  13936. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  13937. static void clear_numa_thread_affinity(void) {}
  13938. #endif
  13939. struct ggml_compute_state_shared {
  13940. const struct ggml_cgraph * cgraph;
  13941. const struct ggml_cplan * cplan;
  13942. int64_t perf_node_start_cycles;
  13943. int64_t perf_node_start_time_us;
  13944. const int n_threads;
  13945. // synchronization primitives
  13946. atomic_int n_active; // num active threads
  13947. atomic_int node_n; // active graph node
  13948. atomic_int node_task; // active graph node task phase
  13949. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  13950. void * abort_callback_data;
  13951. };
  13952. struct ggml_compute_state {
  13953. ggml_thread_t thrd;
  13954. int ith;
  13955. struct ggml_compute_state_shared * shared;
  13956. };
  13957. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13958. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13959. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13960. node->perf_runs++;
  13961. node->perf_cycles += cycles_cur;
  13962. node->perf_time_us += time_us_cur;
  13963. }
  13964. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13965. int n_tasks = 0;
  13966. switch (node->op) {
  13967. case GGML_OP_CPY:
  13968. case GGML_OP_DUP:
  13969. case GGML_OP_ADD:
  13970. case GGML_OP_ADD1:
  13971. case GGML_OP_ACC:
  13972. {
  13973. n_tasks = n_threads;
  13974. } break;
  13975. case GGML_OP_SUB:
  13976. case GGML_OP_SQR:
  13977. case GGML_OP_SQRT:
  13978. case GGML_OP_LOG:
  13979. case GGML_OP_SUM:
  13980. case GGML_OP_SUM_ROWS:
  13981. case GGML_OP_MEAN:
  13982. case GGML_OP_ARGMAX:
  13983. case GGML_OP_REPEAT:
  13984. case GGML_OP_REPEAT_BACK:
  13985. case GGML_OP_LEAKY_RELU:
  13986. {
  13987. n_tasks = 1;
  13988. } break;
  13989. case GGML_OP_UNARY:
  13990. switch (ggml_get_unary_op(node)) {
  13991. case GGML_UNARY_OP_ABS:
  13992. case GGML_UNARY_OP_SGN:
  13993. case GGML_UNARY_OP_NEG:
  13994. case GGML_UNARY_OP_STEP:
  13995. case GGML_UNARY_OP_TANH:
  13996. case GGML_UNARY_OP_ELU:
  13997. case GGML_UNARY_OP_RELU:
  13998. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13999. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14000. {
  14001. n_tasks = 1;
  14002. } break;
  14003. case GGML_UNARY_OP_GELU:
  14004. case GGML_UNARY_OP_GELU_QUICK:
  14005. case GGML_UNARY_OP_SILU:
  14006. {
  14007. n_tasks = n_threads;
  14008. } break;
  14009. default:
  14010. GGML_ASSERT(false);
  14011. }
  14012. break;
  14013. case GGML_OP_SILU_BACK:
  14014. case GGML_OP_MUL:
  14015. case GGML_OP_DIV:
  14016. case GGML_OP_NORM:
  14017. case GGML_OP_RMS_NORM:
  14018. case GGML_OP_RMS_NORM_BACK:
  14019. case GGML_OP_GROUP_NORM:
  14020. case GGML_OP_CONCAT:
  14021. {
  14022. n_tasks = n_threads;
  14023. } break;
  14024. case GGML_OP_MUL_MAT:
  14025. {
  14026. n_tasks = n_threads;
  14027. // TODO: use different scheduling for different matrix sizes
  14028. //const int nr0 = ggml_nrows(node->src[0]);
  14029. //const int nr1 = ggml_nrows(node->src[1]);
  14030. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14031. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14032. } break;
  14033. case GGML_OP_MUL_MAT_ID:
  14034. {
  14035. n_tasks = n_threads;
  14036. } break;
  14037. case GGML_OP_OUT_PROD:
  14038. {
  14039. n_tasks = n_threads;
  14040. } break;
  14041. case GGML_OP_SCALE:
  14042. case GGML_OP_SET:
  14043. case GGML_OP_CONT:
  14044. case GGML_OP_RESHAPE:
  14045. case GGML_OP_VIEW:
  14046. case GGML_OP_PERMUTE:
  14047. case GGML_OP_TRANSPOSE:
  14048. case GGML_OP_GET_ROWS:
  14049. case GGML_OP_GET_ROWS_BACK:
  14050. case GGML_OP_DIAG:
  14051. {
  14052. n_tasks = 1;
  14053. } break;
  14054. case GGML_OP_DIAG_MASK_ZERO:
  14055. case GGML_OP_DIAG_MASK_INF:
  14056. case GGML_OP_SOFT_MAX_BACK:
  14057. case GGML_OP_ROPE:
  14058. case GGML_OP_ROPE_BACK:
  14059. case GGML_OP_ADD_REL_POS:
  14060. {
  14061. n_tasks = n_threads;
  14062. } break;
  14063. case GGML_OP_ALIBI:
  14064. {
  14065. n_tasks = 1; //TODO
  14066. } break;
  14067. case GGML_OP_CLAMP:
  14068. {
  14069. n_tasks = 1; //TODO
  14070. } break;
  14071. case GGML_OP_SOFT_MAX:
  14072. {
  14073. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14074. } break;
  14075. case GGML_OP_CONV_TRANSPOSE_1D:
  14076. {
  14077. n_tasks = n_threads;
  14078. } break;
  14079. case GGML_OP_IM2COL:
  14080. {
  14081. n_tasks = n_threads;
  14082. } break;
  14083. case GGML_OP_CONV_TRANSPOSE_2D:
  14084. {
  14085. n_tasks = n_threads;
  14086. } break;
  14087. case GGML_OP_POOL_1D:
  14088. case GGML_OP_POOL_2D:
  14089. {
  14090. n_tasks = 1;
  14091. } break;
  14092. case GGML_OP_UPSCALE:
  14093. {
  14094. n_tasks = n_threads;
  14095. } break;
  14096. case GGML_OP_PAD:
  14097. {
  14098. n_tasks = n_threads;
  14099. } break;
  14100. case GGML_OP_ARGSORT:
  14101. {
  14102. n_tasks = n_threads;
  14103. } break;
  14104. case GGML_OP_FLASH_ATTN:
  14105. {
  14106. n_tasks = n_threads;
  14107. } break;
  14108. case GGML_OP_FLASH_FF:
  14109. {
  14110. n_tasks = n_threads;
  14111. } break;
  14112. case GGML_OP_FLASH_ATTN_BACK:
  14113. {
  14114. n_tasks = n_threads;
  14115. } break;
  14116. case GGML_OP_WIN_PART:
  14117. case GGML_OP_WIN_UNPART:
  14118. case GGML_OP_GET_REL_POS:
  14119. case GGML_OP_MAP_UNARY:
  14120. case GGML_OP_MAP_BINARY:
  14121. case GGML_OP_MAP_CUSTOM1_F32:
  14122. case GGML_OP_MAP_CUSTOM2_F32:
  14123. case GGML_OP_MAP_CUSTOM3_F32:
  14124. {
  14125. n_tasks = 1;
  14126. } break;
  14127. case GGML_OP_MAP_CUSTOM1:
  14128. {
  14129. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14130. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14131. n_tasks = n_threads;
  14132. } else {
  14133. n_tasks = MIN(p->n_tasks, n_threads);
  14134. }
  14135. } break;
  14136. case GGML_OP_MAP_CUSTOM2:
  14137. {
  14138. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14139. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14140. n_tasks = n_threads;
  14141. } else {
  14142. n_tasks = MIN(p->n_tasks, n_threads);
  14143. }
  14144. } break;
  14145. case GGML_OP_MAP_CUSTOM3:
  14146. {
  14147. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14148. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14149. n_tasks = n_threads;
  14150. } else {
  14151. n_tasks = MIN(p->n_tasks, n_threads);
  14152. }
  14153. } break;
  14154. case GGML_OP_CROSS_ENTROPY_LOSS:
  14155. {
  14156. n_tasks = n_threads;
  14157. } break;
  14158. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14159. {
  14160. n_tasks = n_threads;
  14161. } break;
  14162. case GGML_OP_NONE:
  14163. {
  14164. n_tasks = 1;
  14165. } break;
  14166. case GGML_OP_COUNT:
  14167. {
  14168. GGML_ASSERT(false);
  14169. } break;
  14170. default:
  14171. {
  14172. fprintf(stderr, "%s: op not implemented: ", __func__);
  14173. if (node->op < GGML_OP_COUNT) {
  14174. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14175. } else {
  14176. fprintf(stderr, "%d\n", node->op);
  14177. }
  14178. GGML_ASSERT(false);
  14179. } break;
  14180. }
  14181. assert(n_tasks > 0);
  14182. return n_tasks;
  14183. }
  14184. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14185. // wait for other threads to finish
  14186. const int last_node_n = * node_n;
  14187. while (true) {
  14188. if (do_yield) {
  14189. sched_yield();
  14190. }
  14191. * node_n = atomic_load(&state->shared->node_n);
  14192. if (* node_n != last_node_n) break;
  14193. }
  14194. }
  14195. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14196. // wait for other threads to finish
  14197. const int last_task_phase = * task_phase;
  14198. while (true) {
  14199. if (do_yield) {
  14200. sched_yield();
  14201. }
  14202. * task_phase = atomic_load(&state->shared->node_task);
  14203. if (* task_phase != last_task_phase) break;
  14204. }
  14205. }
  14206. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14207. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14208. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14209. const struct ggml_cplan * cplan = state->shared->cplan;
  14210. const int n_threads = state->shared->n_threads;
  14211. set_numa_thread_affinity(state->ith);
  14212. int node_n = -1;
  14213. int task_phase = GGML_TASK_FINALIZE;
  14214. while (true) {
  14215. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14216. state->shared->node_n += 1;
  14217. return (thread_ret_t) GGML_EXIT_ABORTED;
  14218. }
  14219. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14220. // all other threads are finished and spinning
  14221. // do finalize and init here so we don't have synchronize again
  14222. struct ggml_compute_params params = {
  14223. /*.type =*/ GGML_TASK_FINALIZE,
  14224. /*.ith =*/ 0,
  14225. /*.nth =*/ 0,
  14226. /*.wsize =*/ cplan->work_size,
  14227. /*.wdata =*/ cplan->work_data,
  14228. };
  14229. if (node_n != -1) {
  14230. /* FINALIZE */
  14231. struct ggml_tensor * node = cgraph->nodes[node_n];
  14232. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14233. params.nth = ggml_get_n_tasks(node, n_threads);
  14234. ggml_compute_forward(&params, node);
  14235. }
  14236. ggml_graph_compute_perf_stats_node(node, state->shared);
  14237. }
  14238. // distribute new work or execute it direct if 1T
  14239. while (++node_n < cgraph->n_nodes) {
  14240. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14241. struct ggml_tensor * node = cgraph->nodes[node_n];
  14242. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14243. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14244. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14245. params.nth = n_tasks;
  14246. if (n_tasks == 1) {
  14247. /* INIT */
  14248. if (GGML_OP_HAS_INIT[node->op]) {
  14249. params.type = GGML_TASK_INIT;
  14250. ggml_compute_forward(&params, node);
  14251. }
  14252. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14253. // they do something more efficient than spinning (?)
  14254. params.type = GGML_TASK_COMPUTE;
  14255. ggml_compute_forward(&params, node);
  14256. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14257. params.type = GGML_TASK_FINALIZE;
  14258. ggml_compute_forward(&params, node);
  14259. }
  14260. ggml_graph_compute_perf_stats_node(node, state->shared);
  14261. } else {
  14262. break;
  14263. }
  14264. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14265. break;
  14266. }
  14267. }
  14268. task_phase = GGML_TASK_INIT;
  14269. atomic_store(&state->shared->n_active, n_threads);
  14270. atomic_store(&state->shared->node_n, node_n);
  14271. atomic_store(&state->shared->node_task, task_phase);
  14272. } else {
  14273. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14274. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14275. }
  14276. // check if we should stop
  14277. if (node_n >= cgraph->n_nodes) break;
  14278. /* INIT & COMPUTE */
  14279. struct ggml_tensor * node = cgraph->nodes[node_n];
  14280. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14281. struct ggml_compute_params params = {
  14282. /*.type =*/ GGML_TASK_INIT,
  14283. /*.ith =*/ state->ith,
  14284. /*.nth =*/ n_tasks,
  14285. /*.wsize =*/ cplan->work_size,
  14286. /*.wdata =*/ cplan->work_data,
  14287. };
  14288. if (state->ith < n_tasks) {
  14289. if (GGML_OP_HAS_INIT[node->op]) {
  14290. ggml_compute_forward(&params, node);
  14291. }
  14292. }
  14293. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14294. task_phase = GGML_TASK_COMPUTE;
  14295. atomic_store(&state->shared->n_active, n_threads);
  14296. atomic_store(&state->shared->node_task, task_phase);
  14297. }
  14298. else {
  14299. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14300. // depending on the workload and the operating system.
  14301. // since it is not clear what is the best approach, it should potentially become user-configurable
  14302. // ref: https://github.com/ggerganov/ggml/issues/291
  14303. // UPD: adding the do_yield flag seems to resolve the issue universally
  14304. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14305. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14306. }
  14307. if (state->ith < n_tasks) {
  14308. params.type = GGML_TASK_COMPUTE;
  14309. ggml_compute_forward(&params, node);
  14310. }
  14311. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14312. task_phase = GGML_TASK_FINALIZE;
  14313. atomic_store(&state->shared->n_active, n_threads);
  14314. atomic_store(&state->shared->node_task, task_phase);
  14315. }
  14316. else {
  14317. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14318. }
  14319. }
  14320. return GGML_EXIT_SUCCESS;
  14321. }
  14322. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14323. if (n_threads <= 0) {
  14324. n_threads = GGML_DEFAULT_N_THREADS;
  14325. }
  14326. size_t work_size = 0;
  14327. struct ggml_cplan cplan;
  14328. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14329. int max_tasks = 1;
  14330. // thread scheduling for the different operations + work buffer size estimation
  14331. for (int i = 0; i < cgraph->n_nodes; i++) {
  14332. struct ggml_tensor * node = cgraph->nodes[i];
  14333. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14334. max_tasks = MAX(max_tasks, n_tasks);
  14335. size_t cur = 0;
  14336. switch (node->op) {
  14337. case GGML_OP_CPY:
  14338. case GGML_OP_DUP:
  14339. {
  14340. if (ggml_is_quantized(node->type)) {
  14341. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14342. }
  14343. } break;
  14344. case GGML_OP_ADD:
  14345. case GGML_OP_ADD1:
  14346. {
  14347. if (ggml_is_quantized(node->src[0]->type)) {
  14348. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14349. }
  14350. } break;
  14351. case GGML_OP_ACC:
  14352. {
  14353. if (ggml_is_quantized(node->src[0]->type)) {
  14354. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14355. }
  14356. } break;
  14357. case GGML_OP_MUL_MAT:
  14358. {
  14359. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14360. #if defined(GGML_USE_CLBLAST)
  14361. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14362. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14363. } else
  14364. #endif
  14365. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14366. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14367. if (node->src[0]->type != GGML_TYPE_F32) {
  14368. // here we need memory for fully dequantized matrix from src0
  14369. // take into account that src0 can be broadcasted into src1[2,3]
  14370. cur = ggml_type_size(GGML_TYPE_F32)
  14371. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14372. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14373. }
  14374. } else
  14375. #endif
  14376. if (node->src[1]->type != vec_dot_type) {
  14377. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14378. }
  14379. } break;
  14380. case GGML_OP_MUL_MAT_ID:
  14381. {
  14382. cur = 0;
  14383. const struct ggml_tensor * src0 = node->src[2];
  14384. const struct ggml_tensor * src1 = node->src[1];
  14385. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14386. if (src1->type != vec_dot_type) {
  14387. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14388. }
  14389. const int n_as = ggml_get_op_params_i32(node, 1);
  14390. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14391. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14392. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14393. } break;
  14394. case GGML_OP_OUT_PROD:
  14395. {
  14396. if (ggml_is_quantized(node->src[0]->type)) {
  14397. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14398. }
  14399. } break;
  14400. case GGML_OP_SOFT_MAX:
  14401. case GGML_OP_ROPE:
  14402. {
  14403. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14404. } break;
  14405. case GGML_OP_CONV_TRANSPOSE_1D:
  14406. {
  14407. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14408. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14409. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14410. const int64_t ne00 = node->src[0]->ne[0]; // K
  14411. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14412. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14413. const int64_t ne10 = node->src[1]->ne[0]; // L
  14414. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14415. if (node->src[0]->type == GGML_TYPE_F16 &&
  14416. node->src[1]->type == GGML_TYPE_F32) {
  14417. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14418. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14419. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14420. node->src[1]->type == GGML_TYPE_F32) {
  14421. cur += sizeof(float)*ne00*ne01*ne02;
  14422. cur += sizeof(float)*ne10*ne11;
  14423. } else {
  14424. GGML_ASSERT(false);
  14425. }
  14426. } break;
  14427. case GGML_OP_CONV_TRANSPOSE_2D:
  14428. {
  14429. const int64_t ne00 = node->src[0]->ne[0]; // W
  14430. const int64_t ne01 = node->src[0]->ne[1]; // H
  14431. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14432. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14433. const int64_t ne10 = node->src[1]->ne[0]; // W
  14434. const int64_t ne11 = node->src[1]->ne[1]; // H
  14435. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14436. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14437. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14438. } break;
  14439. case GGML_OP_FLASH_ATTN:
  14440. {
  14441. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14442. if (node->src[1]->type == GGML_TYPE_F32) {
  14443. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14444. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14445. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14446. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14447. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14448. }
  14449. } break;
  14450. case GGML_OP_FLASH_FF:
  14451. {
  14452. if (node->src[1]->type == GGML_TYPE_F32) {
  14453. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14454. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14455. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14456. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14457. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14458. }
  14459. } break;
  14460. case GGML_OP_FLASH_ATTN_BACK:
  14461. {
  14462. const int64_t D = node->src[0]->ne[0];
  14463. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14464. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14465. if (node->src[1]->type == GGML_TYPE_F32) {
  14466. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14467. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14468. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14469. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14470. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14471. }
  14472. } break;
  14473. case GGML_OP_CROSS_ENTROPY_LOSS:
  14474. {
  14475. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14476. } break;
  14477. case GGML_OP_COUNT:
  14478. {
  14479. GGML_ASSERT(false);
  14480. } break;
  14481. default:
  14482. break;
  14483. }
  14484. work_size = MAX(work_size, cur);
  14485. }
  14486. if (work_size > 0) {
  14487. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14488. }
  14489. cplan.n_threads = MIN(max_tasks, n_threads);
  14490. cplan.work_size = work_size;
  14491. cplan.work_data = NULL;
  14492. return cplan;
  14493. }
  14494. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14495. {
  14496. GGML_ASSERT(cplan);
  14497. GGML_ASSERT(cplan->n_threads > 0);
  14498. if (cplan->work_size > 0) {
  14499. GGML_ASSERT(cplan->work_data);
  14500. }
  14501. }
  14502. #ifdef GGML_USE_VULKAN
  14503. for (int i = 0; i < cgraph->n_nodes; i++) {
  14504. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14505. }
  14506. ggml_vk_preallocate_buffers_cpu_assist();
  14507. for (int i = 0; i < cgraph->n_nodes; i++) {
  14508. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14509. }
  14510. #endif
  14511. const int n_threads = cplan->n_threads;
  14512. struct ggml_compute_state_shared state_shared = {
  14513. /*.cgraph =*/ cgraph,
  14514. /*.cgraph_plan =*/ cplan,
  14515. /*.perf_node_start_cycles =*/ 0,
  14516. /*.perf_node_start_time_us =*/ 0,
  14517. /*.n_threads =*/ n_threads,
  14518. /*.n_active =*/ n_threads,
  14519. /*.node_n =*/ -1,
  14520. /*.node_task =*/ GGML_TASK_FINALIZE,
  14521. /*.abort_callback =*/ NULL,
  14522. /*.abort_callback_data =*/ NULL,
  14523. };
  14524. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14525. // create thread pool
  14526. if (n_threads > 1) {
  14527. for (int j = 1; j < n_threads; ++j) {
  14528. workers[j] = (struct ggml_compute_state) {
  14529. .thrd = 0,
  14530. .ith = j,
  14531. .shared = &state_shared,
  14532. };
  14533. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14534. GGML_ASSERT(rc == 0);
  14535. UNUSED(rc);
  14536. }
  14537. }
  14538. workers[0].ith = 0;
  14539. workers[0].shared = &state_shared;
  14540. const int64_t perf_start_cycles = ggml_perf_cycles();
  14541. const int64_t perf_start_time_us = ggml_perf_time_us();
  14542. // this is a work thread too
  14543. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14544. // don't leave affinity set on the main thread
  14545. clear_numa_thread_affinity();
  14546. // join or kill thread pool
  14547. if (n_threads > 1) {
  14548. for (int j = 1; j < n_threads; j++) {
  14549. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14550. GGML_ASSERT(rc == 0);
  14551. }
  14552. }
  14553. #ifdef GGML_USE_VULKAN
  14554. ggml_vk_graph_cleanup_cpu_assist();
  14555. #endif
  14556. // performance stats (graph)
  14557. {
  14558. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14559. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14560. cgraph->perf_runs++;
  14561. cgraph->perf_cycles += perf_cycles_cur;
  14562. cgraph->perf_time_us += perf_time_us_cur;
  14563. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14564. __func__, cgraph->perf_runs,
  14565. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14566. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14567. (double) perf_time_us_cur / 1000.0,
  14568. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14569. }
  14570. return compute_status;
  14571. }
  14572. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14573. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14574. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14575. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14576. ggml_graph_compute(cgraph, &cplan);
  14577. }
  14578. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14579. for (int i = 0; i < cgraph->n_leafs; i++) {
  14580. struct ggml_tensor * leaf = cgraph->leafs[i];
  14581. if (strcmp(leaf->name, name) == 0) {
  14582. return leaf;
  14583. }
  14584. }
  14585. for (int i = 0; i < cgraph->n_nodes; i++) {
  14586. struct ggml_tensor * node = cgraph->nodes[i];
  14587. if (strcmp(node->name, name) == 0) {
  14588. return node;
  14589. }
  14590. }
  14591. return NULL;
  14592. }
  14593. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14594. const int64_t * ne = tensor->ne;
  14595. const size_t * nb = tensor->nb;
  14596. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14597. ggml_type_name(tensor->type),
  14598. ggml_op_name (tensor->op),
  14599. ggml_n_dims(tensor),
  14600. ne[0], ne[1], ne[2], ne[3],
  14601. nb[0], nb[1], nb[2], nb[3],
  14602. tensor->data,
  14603. tensor->name);
  14604. }
  14605. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14606. const int64_t * ne = tensor->ne;
  14607. const size_t * nb = tensor->nb;
  14608. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14609. arg,
  14610. ggml_type_name(tensor->type),
  14611. ggml_op_name (tensor->op),
  14612. ggml_n_dims(tensor),
  14613. ne[0], ne[1], ne[2], ne[3],
  14614. nb[0], nb[1], nb[2], nb[3],
  14615. tensor->data,
  14616. tensor->name);
  14617. }
  14618. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14619. uint64_t size_eval = 0;
  14620. // compute size of intermediate results
  14621. // TODO: does not take into account scratch buffers !!!!
  14622. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14623. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14624. }
  14625. // print
  14626. {
  14627. FILE * fout = stdout;
  14628. fprintf(fout, "\n");
  14629. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14630. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14631. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14632. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14633. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14634. // header
  14635. fprintf(fout, "\n");
  14636. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14637. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14638. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14639. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14640. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14641. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14642. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14643. }
  14644. // header
  14645. fprintf(fout, "\n");
  14646. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14647. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14648. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14649. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14650. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14651. if (cgraph->nodes[i]->src[j]) {
  14652. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14653. }
  14654. }
  14655. fprintf(fout, "\n");
  14656. }
  14657. fprintf(fout, "\n");
  14658. }
  14659. // write binary data
  14660. {
  14661. FILE * fout = fopen(fname, "wb");
  14662. if (!fout) {
  14663. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14664. return;
  14665. }
  14666. // header
  14667. {
  14668. const uint32_t magic = GGML_FILE_MAGIC;
  14669. const uint32_t version = GGML_FILE_VERSION;
  14670. const uint32_t n_leafs = cgraph->n_leafs;
  14671. const uint32_t n_nodes = cgraph->n_nodes;
  14672. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14673. fwrite(&version, sizeof(uint32_t), 1, fout);
  14674. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14675. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14676. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14677. }
  14678. // leafs
  14679. {
  14680. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14681. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14682. const uint32_t type = tensor->type;
  14683. const uint32_t op = tensor->op;
  14684. fwrite(&type, sizeof(uint32_t), 1, fout);
  14685. fwrite(&op, sizeof(uint32_t), 1, fout);
  14686. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14687. const uint64_t ne = tensor->ne[j];
  14688. const uint64_t nb = tensor->nb[j];
  14689. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14690. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14691. }
  14692. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14693. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14694. // dump the data
  14695. // TODO: pad this to 32 byte boundary
  14696. {
  14697. const size_t size = ggml_nbytes(tensor);
  14698. fwrite(tensor->data, sizeof(char), size, fout);
  14699. }
  14700. }
  14701. }
  14702. // nodes
  14703. {
  14704. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14705. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14706. const uint32_t type = tensor->type;
  14707. const uint32_t op = tensor->op;
  14708. fwrite(&type, sizeof(uint32_t), 1, fout);
  14709. fwrite(&op, sizeof(uint32_t), 1, fout);
  14710. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14711. const uint64_t ne = tensor->ne[j];
  14712. const uint64_t nb = tensor->nb[j];
  14713. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14714. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14715. }
  14716. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14717. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14718. // output the op arguments
  14719. {
  14720. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14721. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14722. args[j] = tensor->src[j];
  14723. }
  14724. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14725. if (args[j]) {
  14726. int32_t idx = -1;
  14727. // check if leaf
  14728. {
  14729. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14730. if (args[j] == cgraph->leafs[k]) {
  14731. idx = k;
  14732. break;
  14733. }
  14734. }
  14735. }
  14736. // check if node
  14737. if (idx == -1) {
  14738. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14739. if (args[j] == cgraph->nodes[k]) {
  14740. idx = cgraph->n_leafs + k;
  14741. break;
  14742. }
  14743. }
  14744. }
  14745. if (idx == -1) {
  14746. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14747. fclose(fout);
  14748. return;
  14749. }
  14750. fwrite(&idx, sizeof(int32_t), 1, fout);
  14751. } else {
  14752. const int32_t nul = -1;
  14753. fwrite(&nul, sizeof(int32_t), 1, fout);
  14754. }
  14755. }
  14756. }
  14757. }
  14758. }
  14759. fclose(fout);
  14760. }
  14761. }
  14762. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14763. assert(*ctx_data == NULL);
  14764. assert(*ctx_eval == NULL);
  14765. struct ggml_cgraph * result = NULL;
  14766. struct ggml_tensor * data = NULL;
  14767. // read file into data
  14768. {
  14769. FILE * fin = fopen(fname, "rb");
  14770. if (!fin) {
  14771. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14772. return result;
  14773. }
  14774. size_t fsize = 0;
  14775. fseek(fin, 0, SEEK_END);
  14776. fsize = ftell(fin);
  14777. fseek(fin, 0, SEEK_SET);
  14778. // create the data context
  14779. {
  14780. const size_t overhead = 1*ggml_tensor_overhead();
  14781. struct ggml_init_params params = {
  14782. .mem_size = fsize + overhead,
  14783. .mem_buffer = NULL,
  14784. .no_alloc = false,
  14785. };
  14786. *ctx_data = ggml_init(params);
  14787. if (!*ctx_data) {
  14788. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14789. fclose(fin);
  14790. return result;
  14791. }
  14792. }
  14793. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14794. {
  14795. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14796. if (ret != fsize) {
  14797. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14798. fclose(fin);
  14799. return result;
  14800. }
  14801. }
  14802. fclose(fin);
  14803. }
  14804. // populate result
  14805. {
  14806. char * ptr = (char *) data->data;
  14807. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14808. if (magic != GGML_FILE_MAGIC) {
  14809. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14810. return result;
  14811. }
  14812. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14813. if (version != GGML_FILE_VERSION) {
  14814. fprintf(stderr, "%s: invalid version number\n", __func__);
  14815. return result;
  14816. }
  14817. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14818. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14819. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14820. const int graph_size = MAX(n_leafs, n_nodes);
  14821. // create the data context
  14822. {
  14823. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14824. struct ggml_init_params params = {
  14825. .mem_size = size_eval + overhead,
  14826. .mem_buffer = NULL,
  14827. .no_alloc = true,
  14828. };
  14829. *ctx_eval = ggml_init(params);
  14830. if (!*ctx_eval) {
  14831. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14832. return result;
  14833. }
  14834. }
  14835. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14836. result->n_leafs = n_leafs;
  14837. result->n_nodes = n_nodes;
  14838. // leafs
  14839. {
  14840. uint32_t type;
  14841. uint32_t op;
  14842. for (uint32_t i = 0; i < n_leafs; ++i) {
  14843. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14844. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14845. int64_t ne[GGML_MAX_DIMS];
  14846. size_t nb[GGML_MAX_DIMS];
  14847. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14848. uint64_t ne_cur;
  14849. uint64_t nb_cur;
  14850. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14851. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14852. ne[j] = ne_cur;
  14853. nb[j] = nb_cur;
  14854. }
  14855. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14856. tensor->op = (enum ggml_op) op;
  14857. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14858. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14859. tensor->data = (void *) ptr;
  14860. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14861. tensor->nb[j] = nb[j];
  14862. }
  14863. result->leafs[i] = tensor;
  14864. ptr += ggml_nbytes(tensor);
  14865. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14866. }
  14867. }
  14868. ggml_set_no_alloc(*ctx_eval, false);
  14869. // nodes
  14870. {
  14871. uint32_t type;
  14872. uint32_t op;
  14873. for (uint32_t i = 0; i < n_nodes; ++i) {
  14874. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14875. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14876. enum ggml_op eop = (enum ggml_op) op;
  14877. int64_t ne[GGML_MAX_DIMS];
  14878. size_t nb[GGML_MAX_DIMS];
  14879. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14880. uint64_t ne_cur;
  14881. uint64_t nb_cur;
  14882. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14883. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14884. ne[j] = ne_cur;
  14885. nb[j] = nb_cur;
  14886. }
  14887. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14888. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14889. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14890. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14891. // parse args
  14892. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14893. const int32_t arg_idx = ptr_arg_idx[j];
  14894. if (arg_idx == -1) {
  14895. continue;
  14896. }
  14897. if (arg_idx < result->n_leafs) {
  14898. args[j] = result->leafs[arg_idx];
  14899. } else {
  14900. args[j] = result->nodes[arg_idx - result->n_leafs];
  14901. }
  14902. }
  14903. // create the tensor
  14904. // "view" operations are handled differently
  14905. // TODO: handle inplace ops - currently a copy is always made
  14906. struct ggml_tensor * tensor = NULL;
  14907. switch (eop) {
  14908. // TODO: implement other view ops
  14909. case GGML_OP_RESHAPE:
  14910. {
  14911. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14912. } break;
  14913. case GGML_OP_VIEW:
  14914. {
  14915. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14916. size_t offs;
  14917. memcpy(&offs, ptr_op_params, sizeof(offs));
  14918. tensor->data = ((char *) tensor->data) + offs;
  14919. } break;
  14920. case GGML_OP_TRANSPOSE:
  14921. {
  14922. tensor = ggml_transpose(*ctx_eval, args[0]);
  14923. } break;
  14924. case GGML_OP_PERMUTE:
  14925. {
  14926. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14927. } break;
  14928. default:
  14929. {
  14930. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14931. tensor->op = eop;
  14932. } break;
  14933. }
  14934. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14935. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14936. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14937. tensor->nb[j] = nb[j];
  14938. }
  14939. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14940. tensor->src[j] = args[j];
  14941. }
  14942. result->nodes[i] = tensor;
  14943. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14944. }
  14945. }
  14946. }
  14947. return result;
  14948. }
  14949. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14950. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14951. GGML_PRINT("=== GRAPH ===\n");
  14952. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14953. for (int i = 0; i < cgraph->n_nodes; i++) {
  14954. struct ggml_tensor * node = cgraph->nodes[i];
  14955. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14956. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14957. i,
  14958. node->ne[0], node->ne[1], node->ne[2],
  14959. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14960. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14961. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14962. (double) node->perf_time_us / 1000.0,
  14963. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14964. }
  14965. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14966. for (int i = 0; i < cgraph->n_leafs; i++) {
  14967. struct ggml_tensor * node = cgraph->leafs[i];
  14968. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14969. i,
  14970. node->ne[0], node->ne[1],
  14971. ggml_op_name(node->op),
  14972. ggml_get_name(node));
  14973. }
  14974. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14975. if (perf_total_per_op_us[i] == 0) {
  14976. continue;
  14977. }
  14978. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14979. }
  14980. GGML_PRINT("========================================\n");
  14981. }
  14982. // check if node is part of the graph
  14983. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14984. if (cgraph == NULL) {
  14985. return true;
  14986. }
  14987. for (int i = 0; i < cgraph->n_nodes; i++) {
  14988. if (cgraph->nodes[i] == node) {
  14989. return true;
  14990. }
  14991. }
  14992. return false;
  14993. }
  14994. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14995. for (int i = 0; i < cgraph->n_nodes; i++) {
  14996. struct ggml_tensor * parent = cgraph->nodes[i];
  14997. if (parent->grad == node) {
  14998. return parent;
  14999. }
  15000. }
  15001. return NULL;
  15002. }
  15003. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15004. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15005. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15006. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15007. gparent0 ? (void *) gparent0 : (void *) parent,
  15008. gparent0 ? "g" : "x",
  15009. gparent ? (void *) gparent : (void *) node,
  15010. gparent ? "g" : "x",
  15011. gparent ? "empty" : "vee",
  15012. gparent ? "dashed" : "solid",
  15013. label);
  15014. }
  15015. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15016. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15017. (void *) parent, "x",
  15018. (void *) node, "x",
  15019. label);
  15020. }
  15021. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15022. char color[16];
  15023. FILE * fp = fopen(filename, "w");
  15024. GGML_ASSERT(fp);
  15025. fprintf(fp, "digraph G {\n");
  15026. fprintf(fp, " newrank = true;\n");
  15027. fprintf(fp, " rankdir = LR;\n");
  15028. for (int i = 0; i < gb->n_nodes; i++) {
  15029. struct ggml_tensor * node = gb->nodes[i];
  15030. if (ggml_graph_get_parent(gb, node) != NULL) {
  15031. continue;
  15032. }
  15033. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15034. snprintf(color, sizeof(color), "yellow");
  15035. } else if (node->grad) {
  15036. if (ggml_graph_find(gf, node)) {
  15037. snprintf(color, sizeof(color), "green");
  15038. } else {
  15039. snprintf(color, sizeof(color), "lightblue");
  15040. }
  15041. } else {
  15042. snprintf(color, sizeof(color), "white");
  15043. }
  15044. fprintf(fp, " \"%p\" [ "
  15045. "style = filled; fillcolor = %s; shape = record; "
  15046. "label=\"",
  15047. (void *) node, color);
  15048. if (strlen(node->name) > 0) {
  15049. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15050. } else {
  15051. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15052. }
  15053. if (ggml_is_matrix(node)) {
  15054. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15055. } else {
  15056. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15057. }
  15058. if (node->grad) {
  15059. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15060. } else {
  15061. fprintf(fp, "\"; ]\n");
  15062. }
  15063. }
  15064. for (int i = 0; i < gb->n_leafs; i++) {
  15065. struct ggml_tensor * node = gb->leafs[i];
  15066. snprintf(color, sizeof(color), "pink");
  15067. fprintf(fp, " \"%p\" [ "
  15068. "style = filled; fillcolor = %s; shape = record; "
  15069. "label=\"<x>",
  15070. (void *) node, color);
  15071. if (strlen(node->name) > 0) {
  15072. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15073. } else {
  15074. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15075. }
  15076. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15077. if (ggml_nelements(node) < 5) {
  15078. fprintf(fp, " | (");
  15079. for (int j = 0; j < ggml_nelements(node); j++) {
  15080. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15081. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15082. }
  15083. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15084. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15085. }
  15086. else {
  15087. fprintf(fp, "#");
  15088. }
  15089. if (j < ggml_nelements(node) - 1) {
  15090. fprintf(fp, ", ");
  15091. }
  15092. }
  15093. fprintf(fp, ")");
  15094. }
  15095. fprintf(fp, "\"; ]\n");
  15096. }
  15097. for (int i = 0; i < gb->n_nodes; i++) {
  15098. struct ggml_tensor * node = gb->nodes[i];
  15099. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15100. if (node->src[j]) {
  15101. char label[16];
  15102. snprintf(label, sizeof(label), "src %d", j);
  15103. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15104. }
  15105. }
  15106. }
  15107. for (int i = 0; i < gb->n_leafs; i++) {
  15108. struct ggml_tensor * node = gb->leafs[i];
  15109. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15110. if (node->src[j]) {
  15111. char label[16];
  15112. snprintf(label, sizeof(label), "src %d", j);
  15113. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15114. }
  15115. }
  15116. }
  15117. fprintf(fp, "}\n");
  15118. fclose(fp);
  15119. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15120. }
  15121. ////////////////////////////////////////////////////////////////////////////////
  15122. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15123. int i = 0;
  15124. for (int p = 0; p < np; ++p) {
  15125. const int64_t ne = ggml_nelements(ps[p]) ;
  15126. // TODO: add function to set tensor from array
  15127. for (int64_t j = 0; j < ne; ++j) {
  15128. ggml_set_f32_1d(ps[p], j, x[i++]);
  15129. }
  15130. }
  15131. }
  15132. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15133. int i = 0;
  15134. for (int p = 0; p < np; ++p) {
  15135. const int64_t ne = ggml_nelements(ps[p]) ;
  15136. // TODO: add function to get all elements at once
  15137. for (int64_t j = 0; j < ne; ++j) {
  15138. x[i++] = ggml_get_f32_1d(ps[p], j);
  15139. }
  15140. }
  15141. }
  15142. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15143. int64_t i = 0;
  15144. for (int p = 0; p < np; ++p) {
  15145. const int64_t ne = ggml_nelements(ps[p]) ;
  15146. // TODO: add function to get all elements at once
  15147. for (int64_t j = 0; j < ne; ++j) {
  15148. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15149. }
  15150. }
  15151. }
  15152. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15153. int64_t i = 0;
  15154. for (int p = 0; p < np; ++p) {
  15155. const int64_t ne = ggml_nelements(ps[p]) ;
  15156. // TODO: add function to get all elements at once
  15157. for (int64_t j = 0; j < ne; ++j) {
  15158. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15159. }
  15160. }
  15161. }
  15162. //
  15163. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15164. //
  15165. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15166. //
  15167. static enum ggml_opt_result ggml_opt_adam(
  15168. struct ggml_context * ctx,
  15169. struct ggml_opt_context * opt,
  15170. struct ggml_opt_params params,
  15171. struct ggml_tensor * f,
  15172. struct ggml_cgraph * gf,
  15173. struct ggml_cgraph * gb,
  15174. ggml_opt_callback callback,
  15175. void * callback_data) {
  15176. GGML_ASSERT(ggml_is_scalar(f));
  15177. // these will store the parameters we want to optimize
  15178. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15179. int np = 0;
  15180. int64_t nx = 0;
  15181. for (int i = 0; i < gf->n_nodes; ++i) {
  15182. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15183. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15184. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15185. ps[np++] = gf->nodes[i];
  15186. nx += ggml_nelements(gf->nodes[i]);
  15187. }
  15188. }
  15189. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15190. int iter = opt->iter;
  15191. ggml_opt_init(opt->ctx, opt, params, nx);
  15192. opt->iter = iter;
  15193. }
  15194. // constants
  15195. float sched = params.adam.sched;
  15196. const float alpha = params.adam.alpha;
  15197. const float decay = params.adam.decay * alpha;
  15198. const float beta1 = params.adam.beta1;
  15199. const float beta2 = params.adam.beta2;
  15200. const float eps = params.adam.eps;
  15201. const float gclip = params.adam.gclip;
  15202. const int decay_min_ndim = params.adam.decay_min_ndim;
  15203. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15204. const float accum_norm = 1.0f / (float) n_accum;
  15205. float * g = opt->adam.g->data; // gradients
  15206. float * m = opt->adam.m->data; // first moment
  15207. float * v = opt->adam.v->data; // second moment
  15208. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15209. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15210. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15211. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15212. bool cancel = false;
  15213. // compute the function value
  15214. float fx = 0;
  15215. ggml_set_zero(opt->adam.g);
  15216. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15217. if (callback) {
  15218. callback(callback_data, accum_step, &sched, &cancel);
  15219. if (cancel) {
  15220. return GGML_OPT_CANCEL;
  15221. }
  15222. }
  15223. // ggml_graph_reset (gf);
  15224. ggml_set_f32 (f->grad, 1.0f);
  15225. ggml_graph_compute(gb, &cplan);
  15226. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15227. fx += ggml_get_f32_1d(f, 0);
  15228. }
  15229. fx *= accum_norm;
  15230. opt->adam.fx_prev = fx;
  15231. opt->adam.fx_best = opt->adam.fx_prev;
  15232. if (pf) {
  15233. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15234. }
  15235. opt->loss_before = opt->adam.fx_prev;
  15236. opt->loss_after = opt->adam.fx_prev;
  15237. // initialize
  15238. if (opt->just_initialized) {
  15239. opt->adam.n_no_improvement = 0;
  15240. opt->just_initialized = false;
  15241. }
  15242. float * fx_best = &opt->adam.fx_best;
  15243. float * fx_prev = &opt->adam.fx_prev;
  15244. int * n_no_improvement = &opt->adam.n_no_improvement;
  15245. int iter0 = opt->iter;
  15246. // run the optimizer
  15247. for (int t = 0; t < params.adam.n_iter; ++t) {
  15248. opt->iter = iter0 + t + 1;
  15249. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15250. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15251. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15252. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15253. for (int i = 0; i < np; ++i) {
  15254. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15255. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15256. }
  15257. const int64_t t_start_wall = ggml_time_us();
  15258. const int64_t t_start_cpu = ggml_cycles();
  15259. UNUSED(t_start_wall);
  15260. UNUSED(t_start_cpu);
  15261. {
  15262. float gnorm = 1.0f;
  15263. if (gclip > 0.0f) {
  15264. // gradient clipping
  15265. ggml_float sum = 0.0;
  15266. for (int64_t i = 0; i < nx; ++i) {
  15267. sum += (ggml_float)(g[i]*g[i]);
  15268. }
  15269. ggml_float norm = sqrt(sum);
  15270. if (norm > (ggml_float) gclip) {
  15271. gnorm = (float) ((ggml_float) gclip / norm);
  15272. }
  15273. }
  15274. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15275. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15276. int64_t i = 0;
  15277. for (int p = 0; p < np; ++p) {
  15278. const int64_t ne = ggml_nelements(ps[p]);
  15279. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15280. for (int64_t j = 0; j < ne; ++j) {
  15281. float x = ggml_get_f32_1d(ps[p], j);
  15282. float g_ = g[i]*gnorm;
  15283. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15284. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15285. float mh = m[i]*beta1h;
  15286. float vh = v[i]*beta2h;
  15287. vh = sqrtf(vh) + eps;
  15288. x = x*(1.0f - p_decay) - mh/vh;
  15289. ggml_set_f32_1d(ps[p], j, x);
  15290. ++i;
  15291. }
  15292. }
  15293. }
  15294. fx = 0;
  15295. ggml_set_zero(opt->adam.g);
  15296. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15297. if (callback) {
  15298. callback(callback_data, accum_step, &sched, &cancel);
  15299. if (cancel) {
  15300. return GGML_OPT_CANCEL;;
  15301. }
  15302. }
  15303. // ggml_graph_reset (gf);
  15304. ggml_set_f32 (f->grad, 1.0f);
  15305. ggml_graph_compute(gb, &cplan);
  15306. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15307. fx += ggml_get_f32_1d(f, 0);
  15308. }
  15309. fx *= accum_norm;
  15310. opt->loss_after = fx;
  15311. // check convergence
  15312. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15313. GGML_PRINT_DEBUG("converged\n");
  15314. return GGML_OPT_OK;
  15315. }
  15316. // delta-based convergence test
  15317. if (pf != NULL) {
  15318. // need at least params.past iterations to start checking for convergence
  15319. if (params.past <= iter0 + t) {
  15320. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15321. if (fabsf(rate) < params.delta) {
  15322. return GGML_OPT_OK;
  15323. }
  15324. }
  15325. pf[(iter0 + t)%params.past] = fx;
  15326. }
  15327. // check for improvement
  15328. if (params.max_no_improvement > 0) {
  15329. if (fx_best[0] > fx) {
  15330. fx_best[0] = fx;
  15331. n_no_improvement[0] = 0;
  15332. } else {
  15333. ++n_no_improvement[0];
  15334. if (n_no_improvement[0] >= params.max_no_improvement) {
  15335. return GGML_OPT_OK;
  15336. }
  15337. }
  15338. }
  15339. fx_prev[0] = fx;
  15340. {
  15341. const int64_t t_end_cpu = ggml_cycles();
  15342. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15343. UNUSED(t_end_cpu);
  15344. const int64_t t_end_wall = ggml_time_us();
  15345. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15346. UNUSED(t_end_wall);
  15347. }
  15348. }
  15349. return GGML_OPT_DID_NOT_CONVERGE;
  15350. }
  15351. //
  15352. // L-BFGS
  15353. //
  15354. // the L-BFGS implementation below is based on the following implementation:
  15355. //
  15356. // https://github.com/chokkan/liblbfgs
  15357. //
  15358. struct ggml_lbfgs_iteration_data {
  15359. float alpha;
  15360. float ys;
  15361. float * s;
  15362. float * y;
  15363. };
  15364. static enum ggml_opt_result linesearch_backtracking(
  15365. const struct ggml_opt_params * params,
  15366. int nx,
  15367. float * x,
  15368. float * fx,
  15369. float * g,
  15370. float * d,
  15371. float * step,
  15372. const float * xp,
  15373. struct ggml_tensor * f,
  15374. struct ggml_cgraph * gb,
  15375. struct ggml_cplan * cplan,
  15376. const int np,
  15377. struct ggml_tensor * ps[],
  15378. bool * cancel,
  15379. ggml_opt_callback callback,
  15380. void * callback_data) {
  15381. int count = 0;
  15382. float width = 0.0f;
  15383. float dg = 0.0f;
  15384. float finit = 0.0f;
  15385. float dginit = 0.0f;
  15386. float dgtest = 0.0f;
  15387. const float dec = 0.5f;
  15388. const float inc = 2.1f;
  15389. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15390. const float accum_norm = 1.0f / (float) n_accum;
  15391. if (*step <= 0.f) {
  15392. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15393. }
  15394. // compute the initial gradient in the search direction
  15395. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15396. // make sure that d points to a descent direction
  15397. if (0 < dginit) {
  15398. return GGML_LINESEARCH_FAIL;
  15399. }
  15400. // initialize local variables
  15401. finit = *fx;
  15402. dgtest = params->lbfgs.ftol*dginit;
  15403. while (true) {
  15404. ggml_vec_cpy_f32(nx, x, xp);
  15405. ggml_vec_mad_f32(nx, x, d, *step);
  15406. // evaluate the function and gradient values
  15407. {
  15408. ggml_opt_set_params(np, ps, x);
  15409. *fx = 0;
  15410. memset(g, 0, sizeof(float)*nx);
  15411. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15412. if (callback) {
  15413. // LBFG-S does not support learning rate -> ignore learning schedule
  15414. float sched = 0;
  15415. callback(callback_data, accum_step, &sched, cancel);
  15416. if (*cancel) {
  15417. return GGML_OPT_CANCEL;
  15418. }
  15419. }
  15420. // ggml_graph_reset (gf);
  15421. ggml_set_f32 (f->grad, 1.0f);
  15422. ggml_graph_compute(gb, cplan);
  15423. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15424. *fx += ggml_get_f32_1d(f, 0);
  15425. }
  15426. *fx *= accum_norm;
  15427. }
  15428. ++count;
  15429. if (*fx > finit + (*step)*dgtest) {
  15430. width = dec;
  15431. } else {
  15432. // Armijo condition is satisfied
  15433. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15434. return count;
  15435. }
  15436. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15437. // check the Wolfe condition
  15438. if (dg < params->lbfgs.wolfe * dginit) {
  15439. width = inc;
  15440. } else {
  15441. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15442. // regular Wolfe conditions
  15443. return count;
  15444. }
  15445. if(dg > -params->lbfgs.wolfe*dginit) {
  15446. width = dec;
  15447. } else {
  15448. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15449. return count;
  15450. }
  15451. }
  15452. }
  15453. if (*step < params->lbfgs.min_step) {
  15454. return GGML_LINESEARCH_MINIMUM_STEP;
  15455. }
  15456. if (*step > params->lbfgs.max_step) {
  15457. return GGML_LINESEARCH_MAXIMUM_STEP;
  15458. }
  15459. if (params->lbfgs.max_linesearch <= count) {
  15460. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15461. }
  15462. (*step) *= width;
  15463. }
  15464. GGML_ASSERT(false && "line search failed");
  15465. return GGML_LINESEARCH_FAIL;
  15466. }
  15467. static enum ggml_opt_result ggml_opt_lbfgs(
  15468. struct ggml_context * ctx,
  15469. struct ggml_opt_context * opt,
  15470. struct ggml_opt_params params,
  15471. struct ggml_tensor * f,
  15472. struct ggml_cgraph * gf,
  15473. struct ggml_cgraph * gb,
  15474. ggml_opt_callback callback,
  15475. void * callback_data) {
  15476. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15477. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15478. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15479. return GGML_OPT_INVALID_WOLFE;
  15480. }
  15481. }
  15482. const int m = params.lbfgs.m;
  15483. // these will store the parameters we want to optimize
  15484. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15485. int np = 0;
  15486. int nx = 0;
  15487. for (int i = 0; i < gf->n_nodes; ++i) {
  15488. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15489. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15490. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15491. ps[np++] = gf->nodes[i];
  15492. nx += ggml_nelements(gf->nodes[i]);
  15493. }
  15494. }
  15495. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15496. int iter = opt->iter;
  15497. ggml_opt_init(ctx, opt, params, nx);
  15498. opt->iter = iter;
  15499. }
  15500. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15501. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15502. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15503. float * x = opt->lbfgs.x->data; // current parameters
  15504. float * xp = opt->lbfgs.xp->data; // previous parameters
  15505. float * g = opt->lbfgs.g->data; // current gradient
  15506. float * gp = opt->lbfgs.gp->data; // previous gradient
  15507. float * d = opt->lbfgs.d->data; // search direction
  15508. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15509. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15510. const float accum_norm = 1.0f / (float) n_accum;
  15511. float fx = 0.0f; // cost function value
  15512. float xnorm = 0.0f; // ||x||
  15513. float gnorm = 0.0f; // ||g||
  15514. // initialize x from the graph nodes
  15515. ggml_opt_get_params(np, ps, x);
  15516. // the L-BFGS memory
  15517. float * lm_alpha = opt->lbfgs.lmal->data;
  15518. float * lm_ys = opt->lbfgs.lmys->data;
  15519. float * lm_s = opt->lbfgs.lms->data;
  15520. float * lm_y = opt->lbfgs.lmy->data;
  15521. bool cancel = false;
  15522. // evaluate the function value and its gradient
  15523. {
  15524. ggml_opt_set_params(np, ps, x);
  15525. fx = 0;
  15526. memset(g, 0, sizeof(float)*nx);
  15527. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15528. if (callback) {
  15529. // LBFG-S does not support learning rate -> ignore learning schedule
  15530. float sched = 0;
  15531. callback(callback_data, accum_step, &sched, &cancel);
  15532. if (cancel) {
  15533. return GGML_OPT_CANCEL;
  15534. }
  15535. }
  15536. // ggml_graph_reset (gf);
  15537. ggml_set_f32 (f->grad, 1.0f);
  15538. ggml_graph_compute(gb, &cplan);
  15539. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15540. fx += ggml_get_f32_1d(f, 0);
  15541. }
  15542. fx *= accum_norm;
  15543. opt->loss_before = fx;
  15544. opt->loss_after = fx;
  15545. }
  15546. // search direction = -gradient
  15547. ggml_vec_neg_f32(nx, d, g);
  15548. // ||x||, ||g||
  15549. ggml_vec_norm_f32(nx, &xnorm, x);
  15550. ggml_vec_norm_f32(nx, &gnorm, g);
  15551. if (xnorm < 1.0f) {
  15552. xnorm = 1.0f;
  15553. }
  15554. // already optimized
  15555. if (gnorm/xnorm <= params.lbfgs.eps) {
  15556. return GGML_OPT_OK;
  15557. }
  15558. if (opt->just_initialized) {
  15559. if (pf) {
  15560. pf[0] = fx;
  15561. }
  15562. opt->lbfgs.fx_best = fx;
  15563. // initial step
  15564. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15565. opt->lbfgs.j = 0;
  15566. opt->lbfgs.k = 1;
  15567. opt->lbfgs.end = 0;
  15568. opt->lbfgs.n_no_improvement = 0;
  15569. opt->just_initialized = false;
  15570. }
  15571. float * fx_best = &opt->lbfgs.fx_best;
  15572. float * step = &opt->lbfgs.step;
  15573. int * j = &opt->lbfgs.j;
  15574. int * k = &opt->lbfgs.k;
  15575. int * end = &opt->lbfgs.end;
  15576. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15577. int ls = 0;
  15578. int bound = 0;
  15579. float ys = 0.0f;
  15580. float yy = 0.0f;
  15581. float beta = 0.0f;
  15582. int it = 0;
  15583. while (true) {
  15584. // store the current position and gradient vectors
  15585. ggml_vec_cpy_f32(nx, xp, x);
  15586. ggml_vec_cpy_f32(nx, gp, g);
  15587. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15588. // to determine if the optimization should be cancelled
  15589. // this is a simple change, but not doing this atm, since I don't have a nice
  15590. // way to test and don't want to break something with so many changes lined up
  15591. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15592. if (cancel) {
  15593. return GGML_OPT_CANCEL;
  15594. }
  15595. if (ls < 0) {
  15596. // linesearch failed - go back to the previous point and return
  15597. ggml_vec_cpy_f32(nx, x, xp);
  15598. ggml_vec_cpy_f32(nx, g, gp);
  15599. return ls;
  15600. }
  15601. opt->loss_after = fx;
  15602. ggml_vec_norm_f32(nx, &xnorm, x);
  15603. ggml_vec_norm_f32(nx, &gnorm, g);
  15604. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15605. if (xnorm < 1.0f) {
  15606. xnorm = 1.0f;
  15607. }
  15608. if (gnorm/xnorm <= params.lbfgs.eps) {
  15609. // converged
  15610. return GGML_OPT_OK;
  15611. }
  15612. // delta-based convergence test
  15613. if (pf != NULL) {
  15614. // need at least params.past iterations to start checking for convergence
  15615. if (params.past <= k[0]) {
  15616. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15617. if (fabsf(rate) < params.delta) {
  15618. return GGML_OPT_OK;
  15619. }
  15620. }
  15621. pf[k[0]%params.past] = fx;
  15622. }
  15623. // check for improvement
  15624. if (params.max_no_improvement > 0) {
  15625. if (fx < fx_best[0]) {
  15626. fx_best[0] = fx;
  15627. n_no_improvement[0] = 0;
  15628. } else {
  15629. n_no_improvement[0]++;
  15630. if (n_no_improvement[0] >= params.max_no_improvement) {
  15631. return GGML_OPT_OK;
  15632. }
  15633. }
  15634. }
  15635. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15636. // reached the maximum number of iterations
  15637. return GGML_OPT_DID_NOT_CONVERGE;
  15638. }
  15639. // update vectors s and y:
  15640. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15641. // y_{k+1} = g_{k+1} - g_{k}.
  15642. //
  15643. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15644. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15645. // compute scalars ys and yy:
  15646. // ys = y^t \cdot s -> 1 / \rho.
  15647. // yy = y^t \cdot y.
  15648. //
  15649. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15650. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15651. lm_ys[end[0]] = ys;
  15652. // find new search direction
  15653. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15654. bound = (m <= k[0]) ? m : k[0];
  15655. k[0]++;
  15656. it++;
  15657. end[0] = (end[0] + 1)%m;
  15658. // initialize search direction with -g
  15659. ggml_vec_neg_f32(nx, d, g);
  15660. j[0] = end[0];
  15661. for (int i = 0; i < bound; ++i) {
  15662. j[0] = (j[0] + m - 1) % m;
  15663. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15664. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15665. lm_alpha[j[0]] /= lm_ys[j[0]];
  15666. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15667. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15668. }
  15669. ggml_vec_scale_f32(nx, d, ys/yy);
  15670. for (int i = 0; i < bound; ++i) {
  15671. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15672. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15673. beta /= lm_ys[j[0]];
  15674. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15675. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15676. j[0] = (j[0] + 1)%m;
  15677. }
  15678. step[0] = 1.0;
  15679. }
  15680. GGML_ASSERT(false && "lbfgs failed");
  15681. return GGML_OPT_DID_NOT_CONVERGE;
  15682. }
  15683. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15684. struct ggml_opt_params result;
  15685. switch (type) {
  15686. case GGML_OPT_ADAM:
  15687. {
  15688. result = (struct ggml_opt_params) {
  15689. .type = GGML_OPT_ADAM,
  15690. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15691. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15692. .past = 0,
  15693. .delta = 1e-5f,
  15694. .max_no_improvement = 100,
  15695. .print_forward_graph = true,
  15696. .print_backward_graph = true,
  15697. .n_gradient_accumulation = 1,
  15698. .adam = {
  15699. .n_iter = 10000,
  15700. .sched = 1.000f,
  15701. .decay = 0.0f,
  15702. .decay_min_ndim = 2,
  15703. .alpha = 0.001f,
  15704. .beta1 = 0.9f,
  15705. .beta2 = 0.999f,
  15706. .eps = 1e-8f,
  15707. .eps_f = 1e-5f,
  15708. .eps_g = 1e-3f,
  15709. .gclip = 0.0f,
  15710. },
  15711. };
  15712. } break;
  15713. case GGML_OPT_LBFGS:
  15714. {
  15715. result = (struct ggml_opt_params) {
  15716. .type = GGML_OPT_LBFGS,
  15717. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15718. .n_threads = 1,
  15719. .past = 0,
  15720. .delta = 1e-5f,
  15721. .max_no_improvement = 0,
  15722. .print_forward_graph = true,
  15723. .print_backward_graph = true,
  15724. .n_gradient_accumulation = 1,
  15725. .lbfgs = {
  15726. .m = 6,
  15727. .n_iter = 100,
  15728. .max_linesearch = 20,
  15729. .eps = 1e-5f,
  15730. .ftol = 1e-4f,
  15731. .wolfe = 0.9f,
  15732. .min_step = 1e-20f,
  15733. .max_step = 1e+20f,
  15734. .linesearch = GGML_LINESEARCH_DEFAULT,
  15735. },
  15736. };
  15737. } break;
  15738. }
  15739. return result;
  15740. }
  15741. GGML_API void ggml_opt_init(
  15742. struct ggml_context * ctx,
  15743. struct ggml_opt_context * opt,
  15744. struct ggml_opt_params params,
  15745. int64_t nx) {
  15746. opt->ctx = ctx;
  15747. opt->params = params;
  15748. opt->iter = 0;
  15749. opt->nx = nx;
  15750. opt->just_initialized = true;
  15751. if (opt->ctx == NULL) {
  15752. struct ggml_init_params ctx_opt_params;
  15753. if (opt->params.type == GGML_OPT_ADAM) {
  15754. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15755. if (opt->params.past > 0) {
  15756. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15757. }
  15758. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15759. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15760. if (opt->params.past > 0) {
  15761. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15762. }
  15763. }
  15764. ctx_opt_params.mem_buffer = NULL;
  15765. ctx_opt_params.no_alloc = false;
  15766. opt->ctx = ggml_init(ctx_opt_params);
  15767. }
  15768. switch (opt->params.type) {
  15769. case GGML_OPT_ADAM:
  15770. {
  15771. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15772. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15773. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15774. opt->adam.pf = params.past > 0
  15775. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15776. : NULL;
  15777. ggml_set_zero(opt->adam.m);
  15778. ggml_set_zero(opt->adam.v);
  15779. if (opt->adam.pf) {
  15780. ggml_set_zero(opt->adam.pf);
  15781. }
  15782. } break;
  15783. case GGML_OPT_LBFGS:
  15784. {
  15785. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15786. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15787. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15788. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15789. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15790. opt->lbfgs.pf = params.past > 0
  15791. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15792. : NULL;
  15793. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15794. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15795. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15796. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15797. ggml_set_zero(opt->lbfgs.x);
  15798. ggml_set_zero(opt->lbfgs.xp);
  15799. ggml_set_zero(opt->lbfgs.g);
  15800. ggml_set_zero(opt->lbfgs.gp);
  15801. ggml_set_zero(opt->lbfgs.d);
  15802. if (opt->lbfgs.pf) {
  15803. ggml_set_zero(opt->lbfgs.pf);
  15804. }
  15805. ggml_set_zero(opt->lbfgs.lmal);
  15806. ggml_set_zero(opt->lbfgs.lmys);
  15807. ggml_set_zero(opt->lbfgs.lms);
  15808. ggml_set_zero(opt->lbfgs.lmy);
  15809. } break;
  15810. }
  15811. }
  15812. enum ggml_opt_result ggml_opt(
  15813. struct ggml_context * ctx,
  15814. struct ggml_opt_params params,
  15815. struct ggml_tensor * f) {
  15816. bool free_ctx = false;
  15817. if (ctx == NULL) {
  15818. struct ggml_init_params params_ctx = {
  15819. .mem_size = 16*1024*1024,
  15820. .mem_buffer = NULL,
  15821. .no_alloc = false,
  15822. };
  15823. ctx = ggml_init(params_ctx);
  15824. if (ctx == NULL) {
  15825. return GGML_OPT_NO_CONTEXT;
  15826. }
  15827. free_ctx = true;
  15828. }
  15829. enum ggml_opt_result result = GGML_OPT_OK;
  15830. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15831. ggml_opt_init(ctx, opt, params, 0);
  15832. result = ggml_opt_resume(ctx, opt, f);
  15833. if (free_ctx) {
  15834. ggml_free(ctx);
  15835. }
  15836. return result;
  15837. }
  15838. enum ggml_opt_result ggml_opt_resume(
  15839. struct ggml_context * ctx,
  15840. struct ggml_opt_context * opt,
  15841. struct ggml_tensor * f) {
  15842. // build forward + backward compute graphs
  15843. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15844. ggml_build_forward_expand(gf, f);
  15845. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15846. ggml_build_backward_expand(ctx, gf, gb, true);
  15847. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15848. }
  15849. enum ggml_opt_result ggml_opt_resume_g(
  15850. struct ggml_context * ctx,
  15851. struct ggml_opt_context * opt,
  15852. struct ggml_tensor * f,
  15853. struct ggml_cgraph * gf,
  15854. struct ggml_cgraph * gb,
  15855. ggml_opt_callback callback,
  15856. void * callback_data) {
  15857. // build forward + backward compute graphs
  15858. enum ggml_opt_result result = GGML_OPT_OK;
  15859. switch (opt->params.type) {
  15860. case GGML_OPT_ADAM:
  15861. {
  15862. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15863. } break;
  15864. case GGML_OPT_LBFGS:
  15865. {
  15866. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15867. } break;
  15868. }
  15869. if (opt->params.print_forward_graph) {
  15870. ggml_graph_print (gf);
  15871. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15872. }
  15873. if (opt->params.print_backward_graph) {
  15874. ggml_graph_print (gb);
  15875. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15876. }
  15877. return result;
  15878. }
  15879. ////////////////////////////////////////////////////////////////////////////////
  15880. void ggml_set_input(struct ggml_tensor * tensor) {
  15881. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15882. }
  15883. void ggml_set_output(struct ggml_tensor * tensor) {
  15884. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15885. }
  15886. ////////////////////////////////////////////////////////////////////////////////
  15887. void ggml_quantize_init(enum ggml_type type) {
  15888. ggml_critical_section_start();
  15889. switch (type) {
  15890. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15891. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15892. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15893. default: // nothing
  15894. break;
  15895. }
  15896. ggml_critical_section_end();
  15897. }
  15898. void ggml_quantize_free(void) {
  15899. ggml_critical_section_start();
  15900. iq2xs_free_impl(256);
  15901. iq2xs_free_impl(512);
  15902. ggml_critical_section_end();
  15903. }
  15904. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15905. assert(k % QK4_0 == 0);
  15906. const int nb = k / QK4_0;
  15907. for (int b = 0; b < n; b += k) {
  15908. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15909. quantize_row_q4_0_reference(src + b, y, k);
  15910. for (int i = 0; i < nb; i++) {
  15911. for (int j = 0; j < QK4_0; j += 2) {
  15912. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15913. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15914. hist[vi0]++;
  15915. hist[vi1]++;
  15916. }
  15917. }
  15918. }
  15919. return (n/QK4_0*sizeof(block_q4_0));
  15920. }
  15921. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15922. assert(k % QK4_1 == 0);
  15923. const int nb = k / QK4_1;
  15924. for (int b = 0; b < n; b += k) {
  15925. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15926. quantize_row_q4_1_reference(src + b, y, k);
  15927. for (int i = 0; i < nb; i++) {
  15928. for (int j = 0; j < QK4_1; j += 2) {
  15929. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15930. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15931. hist[vi0]++;
  15932. hist[vi1]++;
  15933. }
  15934. }
  15935. }
  15936. return (n/QK4_1*sizeof(block_q4_1));
  15937. }
  15938. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15939. assert(k % QK5_0 == 0);
  15940. const int nb = k / QK5_0;
  15941. for (int b = 0; b < n; b += k) {
  15942. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15943. quantize_row_q5_0_reference(src + b, y, k);
  15944. for (int i = 0; i < nb; i++) {
  15945. uint32_t qh;
  15946. memcpy(&qh, &y[i].qh, sizeof(qh));
  15947. for (int j = 0; j < QK5_0; j += 2) {
  15948. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15949. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15950. // cast to 16 bins
  15951. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15952. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15953. hist[vi0]++;
  15954. hist[vi1]++;
  15955. }
  15956. }
  15957. }
  15958. return (n/QK5_0*sizeof(block_q5_0));
  15959. }
  15960. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15961. assert(k % QK5_1 == 0);
  15962. const int nb = k / QK5_1;
  15963. for (int b = 0; b < n; b += k) {
  15964. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15965. quantize_row_q5_1_reference(src + b, y, k);
  15966. for (int i = 0; i < nb; i++) {
  15967. uint32_t qh;
  15968. memcpy(&qh, &y[i].qh, sizeof(qh));
  15969. for (int j = 0; j < QK5_1; j += 2) {
  15970. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15971. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15972. // cast to 16 bins
  15973. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15974. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15975. hist[vi0]++;
  15976. hist[vi1]++;
  15977. }
  15978. }
  15979. }
  15980. return (n/QK5_1*sizeof(block_q5_1));
  15981. }
  15982. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15983. assert(k % QK8_0 == 0);
  15984. const int nb = k / QK8_0;
  15985. for (int b = 0; b < n; b += k) {
  15986. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15987. quantize_row_q8_0_reference(src + b, y, k);
  15988. for (int i = 0; i < nb; i++) {
  15989. for (int j = 0; j < QK8_0; ++j) {
  15990. const int8_t vi = y[i].qs[j];
  15991. hist[vi/16 + 8]++;
  15992. }
  15993. }
  15994. }
  15995. return (n/QK8_0*sizeof(block_q8_0));
  15996. }
  15997. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15998. return
  15999. type == GGML_TYPE_IQ2_XXS ||
  16000. type == GGML_TYPE_IQ2_XS;
  16001. }
  16002. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16003. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16004. ggml_quantize_init(type); // this is noop if already initialized
  16005. size_t result = 0;
  16006. int n = nrows * n_per_row;
  16007. switch (type) {
  16008. case GGML_TYPE_Q4_0:
  16009. {
  16010. GGML_ASSERT(start % QK4_0 == 0);
  16011. GGML_ASSERT(start % n_per_row == 0);
  16012. size_t start_row = start / n_per_row;
  16013. size_t row_size = ggml_row_size(type, n_per_row);
  16014. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16015. GGML_ASSERT(result == row_size * nrows);
  16016. } break;
  16017. case GGML_TYPE_Q4_1:
  16018. {
  16019. GGML_ASSERT(start % QK4_1 == 0);
  16020. GGML_ASSERT(start % n_per_row == 0);
  16021. size_t start_row = start / n_per_row;
  16022. size_t row_size = ggml_row_size(type, n_per_row);
  16023. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16024. GGML_ASSERT(result == row_size * nrows);
  16025. } break;
  16026. case GGML_TYPE_Q5_0:
  16027. {
  16028. GGML_ASSERT(start % QK5_0 == 0);
  16029. GGML_ASSERT(start % n_per_row == 0);
  16030. size_t start_row = start / n_per_row;
  16031. size_t row_size = ggml_row_size(type, n_per_row);
  16032. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16033. GGML_ASSERT(result == row_size * nrows);
  16034. } break;
  16035. case GGML_TYPE_Q5_1:
  16036. {
  16037. GGML_ASSERT(start % QK5_1 == 0);
  16038. GGML_ASSERT(start % n_per_row == 0);
  16039. size_t start_row = start / n_per_row;
  16040. size_t row_size = ggml_row_size(type, n_per_row);
  16041. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16042. GGML_ASSERT(result == row_size * nrows);
  16043. } break;
  16044. case GGML_TYPE_Q8_0:
  16045. {
  16046. GGML_ASSERT(start % QK8_0 == 0);
  16047. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16048. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16049. } break;
  16050. case GGML_TYPE_Q2_K:
  16051. {
  16052. GGML_ASSERT(start % QK_K == 0);
  16053. GGML_ASSERT(start % n_per_row == 0);
  16054. size_t start_row = start / n_per_row;
  16055. size_t row_size = ggml_row_size(type, n_per_row);
  16056. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16057. GGML_ASSERT(result == row_size * nrows);
  16058. } break;
  16059. case GGML_TYPE_Q3_K:
  16060. {
  16061. GGML_ASSERT(start % QK_K == 0);
  16062. GGML_ASSERT(start % n_per_row == 0);
  16063. size_t start_row = start / n_per_row;
  16064. size_t row_size = ggml_row_size(type, n_per_row);
  16065. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16066. GGML_ASSERT(result == row_size * nrows);
  16067. } break;
  16068. case GGML_TYPE_Q4_K:
  16069. {
  16070. GGML_ASSERT(start % QK_K == 0);
  16071. GGML_ASSERT(start % n_per_row == 0);
  16072. size_t start_row = start / n_per_row;
  16073. size_t row_size = ggml_row_size(type, n_per_row);
  16074. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16075. GGML_ASSERT(result == row_size * nrows);
  16076. } break;
  16077. case GGML_TYPE_Q5_K:
  16078. {
  16079. GGML_ASSERT(start % QK_K == 0);
  16080. GGML_ASSERT(start % n_per_row == 0);
  16081. size_t start_row = start / n_per_row;
  16082. size_t row_size = ggml_row_size(type, n_per_row);
  16083. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16084. GGML_ASSERT(result == row_size * nrows);
  16085. } break;
  16086. case GGML_TYPE_Q6_K:
  16087. {
  16088. GGML_ASSERT(start % QK_K == 0);
  16089. GGML_ASSERT(start % n_per_row == 0);
  16090. size_t start_row = start / n_per_row;
  16091. size_t row_size = ggml_row_size(type, n_per_row);
  16092. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16093. GGML_ASSERT(result == row_size * nrows);
  16094. } break;
  16095. case GGML_TYPE_IQ2_XXS:
  16096. {
  16097. GGML_ASSERT(start % QK_K == 0);
  16098. GGML_ASSERT(start % n_per_row == 0);
  16099. GGML_ASSERT(imatrix);
  16100. size_t start_row = start / n_per_row;
  16101. size_t row_size = ggml_row_size(type, n_per_row);
  16102. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16103. GGML_ASSERT(result == row_size * nrows);
  16104. } break;
  16105. case GGML_TYPE_IQ2_XS:
  16106. {
  16107. GGML_ASSERT(start % QK_K == 0);
  16108. GGML_ASSERT(start % n_per_row == 0);
  16109. GGML_ASSERT(imatrix);
  16110. size_t start_row = start / n_per_row;
  16111. size_t row_size = ggml_row_size(type, n_per_row);
  16112. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16113. GGML_ASSERT(result == row_size * nrows);
  16114. } break;
  16115. case GGML_TYPE_IQ3_XXS:
  16116. {
  16117. GGML_ASSERT(start % QK_K == 0);
  16118. GGML_ASSERT(start % n_per_row == 0);
  16119. size_t start_row = start / n_per_row;
  16120. size_t row_size = ggml_row_size(type, n_per_row);
  16121. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16122. GGML_ASSERT(result == row_size * nrows);
  16123. } break;
  16124. case GGML_TYPE_F16:
  16125. {
  16126. size_t elemsize = sizeof(ggml_fp16_t);
  16127. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16128. result = n * elemsize;
  16129. } break;
  16130. case GGML_TYPE_F32:
  16131. {
  16132. size_t elemsize = sizeof(float);
  16133. result = n * elemsize;
  16134. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16135. } break;
  16136. default:
  16137. assert(false);
  16138. }
  16139. return result;
  16140. }
  16141. ////////////////////////////////////////////////////////////////////////////////
  16142. struct gguf_str {
  16143. uint64_t n; // GGUFv2
  16144. char * data;
  16145. };
  16146. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16147. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16148. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16149. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16150. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16151. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16152. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16153. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16154. [GGUF_TYPE_BOOL] = sizeof(bool),
  16155. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16156. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16157. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16158. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16159. [GGUF_TYPE_ARRAY] = 0, // undefined
  16160. };
  16161. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16162. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16163. [GGUF_TYPE_UINT8] = "u8",
  16164. [GGUF_TYPE_INT8] = "i8",
  16165. [GGUF_TYPE_UINT16] = "u16",
  16166. [GGUF_TYPE_INT16] = "i16",
  16167. [GGUF_TYPE_UINT32] = "u32",
  16168. [GGUF_TYPE_INT32] = "i32",
  16169. [GGUF_TYPE_FLOAT32] = "f32",
  16170. [GGUF_TYPE_BOOL] = "bool",
  16171. [GGUF_TYPE_STRING] = "str",
  16172. [GGUF_TYPE_ARRAY] = "arr",
  16173. [GGUF_TYPE_UINT64] = "u64",
  16174. [GGUF_TYPE_INT64] = "i64",
  16175. [GGUF_TYPE_FLOAT64] = "f64",
  16176. };
  16177. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16178. union gguf_value {
  16179. uint8_t uint8;
  16180. int8_t int8;
  16181. uint16_t uint16;
  16182. int16_t int16;
  16183. uint32_t uint32;
  16184. int32_t int32;
  16185. float float32;
  16186. uint64_t uint64;
  16187. int64_t int64;
  16188. double float64;
  16189. bool bool_;
  16190. struct gguf_str str;
  16191. struct {
  16192. enum gguf_type type;
  16193. uint64_t n; // GGUFv2
  16194. void * data;
  16195. } arr;
  16196. };
  16197. struct gguf_kv {
  16198. struct gguf_str key;
  16199. enum gguf_type type;
  16200. union gguf_value value;
  16201. };
  16202. struct gguf_header {
  16203. char magic[4];
  16204. uint32_t version;
  16205. uint64_t n_tensors; // GGUFv2
  16206. uint64_t n_kv; // GGUFv2
  16207. };
  16208. struct gguf_tensor_info {
  16209. struct gguf_str name;
  16210. uint32_t n_dims;
  16211. uint64_t ne[GGML_MAX_DIMS];
  16212. enum ggml_type type;
  16213. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16214. // for writing API
  16215. const void * data;
  16216. size_t size;
  16217. };
  16218. struct gguf_context {
  16219. struct gguf_header header;
  16220. struct gguf_kv * kv;
  16221. struct gguf_tensor_info * infos;
  16222. size_t alignment;
  16223. size_t offset; // offset of `data` from beginning of file
  16224. size_t size; // size of `data` in bytes
  16225. //uint8_t * padding;
  16226. void * data;
  16227. };
  16228. static size_t gguf_type_size(enum gguf_type type) {
  16229. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16230. return GGUF_TYPE_SIZE[type];
  16231. }
  16232. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16233. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16234. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16235. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16236. GGML_ASSERT(info->ne[i] > 0);
  16237. }
  16238. // prevent overflow for total number of elements
  16239. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16240. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16241. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16242. }
  16243. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16244. const size_t n = fread(dst, 1, size, file);
  16245. *offset += n;
  16246. return n == size;
  16247. }
  16248. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16249. p->n = 0;
  16250. p->data = NULL;
  16251. bool ok = true;
  16252. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16253. // early exit if string length is invalid, prevents from integer overflow
  16254. if (p->n == SIZE_MAX) {
  16255. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16256. return false;
  16257. }
  16258. p->data = GGML_CALLOC(p->n + 1, 1);
  16259. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16260. return ok;
  16261. }
  16262. struct gguf_context * gguf_init_empty(void) {
  16263. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16264. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16265. ctx->header.version = GGUF_VERSION;
  16266. ctx->header.n_tensors = 0;
  16267. ctx->header.n_kv = 0;
  16268. ctx->kv = NULL;
  16269. ctx->infos = NULL;
  16270. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16271. ctx->offset = 0;
  16272. ctx->size = 0;
  16273. ctx->data = NULL;
  16274. return ctx;
  16275. }
  16276. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16277. FILE * file = fopen(fname, "rb");
  16278. if (!file) {
  16279. return NULL;
  16280. }
  16281. // offset from start of file
  16282. size_t offset = 0;
  16283. char magic[4];
  16284. // check the magic before making allocations
  16285. {
  16286. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16287. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16288. if (magic[i] != GGUF_MAGIC[i]) {
  16289. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16290. fclose(file);
  16291. return NULL;
  16292. }
  16293. }
  16294. }
  16295. bool ok = true;
  16296. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16297. // read the header
  16298. {
  16299. strncpy(ctx->header.magic, magic, 4);
  16300. ctx->kv = NULL;
  16301. ctx->infos = NULL;
  16302. ctx->data = NULL;
  16303. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16304. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16305. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16306. if (ctx->header.version == 1) {
  16307. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16308. fclose(file);
  16309. gguf_free(ctx);
  16310. return NULL;
  16311. }
  16312. // sanity-checks to prevent from integer/buffer overflows
  16313. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16314. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16315. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16316. if (!ok) {
  16317. fprintf(stderr, "%s: failed to read header\n", __func__);
  16318. fclose(file);
  16319. gguf_free(ctx);
  16320. return NULL;
  16321. }
  16322. }
  16323. // read the kv pairs
  16324. {
  16325. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16326. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16327. struct gguf_kv * kv = &ctx->kv[i];
  16328. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16329. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16330. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16331. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16332. switch (kv->type) {
  16333. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16334. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16335. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16336. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16337. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16338. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16339. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16340. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16341. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16342. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16343. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16344. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16345. case GGUF_TYPE_ARRAY:
  16346. {
  16347. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16348. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16349. switch (kv->value.arr.type) {
  16350. case GGUF_TYPE_UINT8:
  16351. case GGUF_TYPE_INT8:
  16352. case GGUF_TYPE_UINT16:
  16353. case GGUF_TYPE_INT16:
  16354. case GGUF_TYPE_UINT32:
  16355. case GGUF_TYPE_INT32:
  16356. case GGUF_TYPE_FLOAT32:
  16357. case GGUF_TYPE_UINT64:
  16358. case GGUF_TYPE_INT64:
  16359. case GGUF_TYPE_FLOAT64:
  16360. case GGUF_TYPE_BOOL:
  16361. {
  16362. // prevent from integer overflow in the malloc below
  16363. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16364. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16365. fclose(file);
  16366. gguf_free(ctx);
  16367. return NULL;
  16368. }
  16369. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16370. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16371. } break;
  16372. case GGUF_TYPE_STRING:
  16373. {
  16374. // prevent from integer overflow in the malloc below
  16375. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16376. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16377. fclose(file);
  16378. gguf_free(ctx);
  16379. return NULL;
  16380. }
  16381. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16382. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16383. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16384. }
  16385. } break;
  16386. case GGUF_TYPE_ARRAY:
  16387. default: GGML_ASSERT(false && "invalid type"); break;
  16388. }
  16389. } break;
  16390. default: GGML_ASSERT(false && "invalid type");
  16391. }
  16392. if (!ok) {
  16393. break;
  16394. }
  16395. }
  16396. if (!ok) {
  16397. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16398. fclose(file);
  16399. gguf_free(ctx);
  16400. return NULL;
  16401. }
  16402. }
  16403. // read the tensor infos
  16404. {
  16405. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16406. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16407. struct gguf_tensor_info * info = &ctx->infos[i];
  16408. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16409. info->ne[j] = 1;
  16410. }
  16411. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16412. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16413. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16414. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16415. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16416. }
  16417. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16418. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16419. gguf_tensor_info_sanitize(info);
  16420. if (!ok) {
  16421. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16422. fclose(file);
  16423. gguf_free(ctx);
  16424. return NULL;
  16425. }
  16426. }
  16427. }
  16428. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16429. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16430. if (alignment_idx != -1) {
  16431. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16432. }
  16433. // we require the data section to be aligned, so take into account any padding
  16434. {
  16435. const size_t offset_pad = offset % ctx->alignment;
  16436. if (offset_pad != 0) {
  16437. offset += ctx->alignment - offset_pad;
  16438. fseek(file, offset, SEEK_SET);
  16439. }
  16440. }
  16441. // store the current file offset - this is where the data section starts
  16442. ctx->offset = offset;
  16443. // compute the total size of the data section, taking into account the alignment
  16444. {
  16445. ctx->size = 0;
  16446. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16447. struct gguf_tensor_info * info = &ctx->infos[i];
  16448. const int64_t ne =
  16449. (int64_t) info->ne[0] *
  16450. (int64_t) info->ne[1] *
  16451. (int64_t) info->ne[2] *
  16452. (int64_t) info->ne[3];
  16453. if (ne % ggml_blck_size(info->type) != 0) {
  16454. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16455. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16456. fclose(file);
  16457. gguf_free(ctx);
  16458. return NULL;
  16459. }
  16460. const size_t size_cur = ggml_row_size(info->type, ne);
  16461. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16462. }
  16463. }
  16464. // load the tensor data only if requested
  16465. if (params.ctx != NULL) {
  16466. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16467. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16468. // the ggml_tensor structs to the appropriate locations in the binary blob
  16469. // compute the exact size needed for the new ggml_context
  16470. const size_t mem_size =
  16471. params.no_alloc ?
  16472. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16473. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16474. struct ggml_init_params pdata = {
  16475. .mem_size = mem_size,
  16476. .mem_buffer = NULL,
  16477. .no_alloc = params.no_alloc,
  16478. };
  16479. *params.ctx = ggml_init(pdata);
  16480. struct ggml_context * ctx_data = *params.ctx;
  16481. struct ggml_tensor * data = NULL;
  16482. if (!params.no_alloc) {
  16483. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16484. ok = ok && data != NULL;
  16485. // read the binary blob with the tensor data
  16486. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16487. if (!ok) {
  16488. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16489. fclose(file);
  16490. ggml_free(ctx_data);
  16491. gguf_free(ctx);
  16492. return NULL;
  16493. }
  16494. ctx->data = data->data;
  16495. }
  16496. ggml_set_no_alloc(ctx_data, true);
  16497. // create the tensors
  16498. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16499. const int64_t ne[GGML_MAX_DIMS] = {
  16500. ctx->infos[i].ne[0],
  16501. ctx->infos[i].ne[1],
  16502. ctx->infos[i].ne[2],
  16503. ctx->infos[i].ne[3],
  16504. };
  16505. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16506. ok = ok && cur != NULL;
  16507. ggml_set_name(cur, ctx->infos[i].name.data);
  16508. if (!ok) {
  16509. break;
  16510. }
  16511. // point the data member to the appropriate location in the binary blob using the tensor infos
  16512. if (!params.no_alloc) {
  16513. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16514. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16515. }
  16516. }
  16517. if (!ok) {
  16518. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16519. fclose(file);
  16520. ggml_free(ctx_data);
  16521. gguf_free(ctx);
  16522. return NULL;
  16523. }
  16524. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16525. }
  16526. fclose(file);
  16527. return ctx;
  16528. }
  16529. void gguf_free(struct gguf_context * ctx) {
  16530. if (ctx == NULL) {
  16531. return;
  16532. }
  16533. if (ctx->kv) {
  16534. // free string memory - not great..
  16535. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16536. struct gguf_kv * kv = &ctx->kv[i];
  16537. if (kv->key.data) {
  16538. GGML_FREE(kv->key.data);
  16539. }
  16540. if (kv->type == GGUF_TYPE_STRING) {
  16541. if (kv->value.str.data) {
  16542. GGML_FREE(kv->value.str.data);
  16543. }
  16544. }
  16545. if (kv->type == GGUF_TYPE_ARRAY) {
  16546. if (kv->value.arr.data) {
  16547. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16548. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16549. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16550. if (str->data) {
  16551. GGML_FREE(str->data);
  16552. }
  16553. }
  16554. }
  16555. GGML_FREE(kv->value.arr.data);
  16556. }
  16557. }
  16558. }
  16559. GGML_FREE(ctx->kv);
  16560. }
  16561. if (ctx->infos) {
  16562. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16563. struct gguf_tensor_info * info = &ctx->infos[i];
  16564. if (info->name.data) {
  16565. GGML_FREE(info->name.data);
  16566. }
  16567. }
  16568. GGML_FREE(ctx->infos);
  16569. }
  16570. GGML_ALIGNED_FREE(ctx);
  16571. }
  16572. const char * gguf_type_name(enum gguf_type type) {
  16573. return GGUF_TYPE_NAME[type];
  16574. }
  16575. int gguf_get_version(const struct gguf_context * ctx) {
  16576. return ctx->header.version;
  16577. }
  16578. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16579. return ctx->alignment;
  16580. }
  16581. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16582. return ctx->offset;
  16583. }
  16584. void * gguf_get_data(const struct gguf_context * ctx) {
  16585. return ctx->data;
  16586. }
  16587. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16588. return ctx->header.n_kv;
  16589. }
  16590. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16591. // return -1 if key not found
  16592. int keyfound = -1;
  16593. const int n_kv = gguf_get_n_kv(ctx);
  16594. for (int i = 0; i < n_kv; ++i) {
  16595. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16596. keyfound = i;
  16597. break;
  16598. }
  16599. }
  16600. return keyfound;
  16601. }
  16602. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16603. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16604. return ctx->kv[key_id].key.data;
  16605. }
  16606. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16607. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16608. return ctx->kv[key_id].type;
  16609. }
  16610. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16611. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16612. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16613. return ctx->kv[key_id].value.arr.type;
  16614. }
  16615. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16616. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16617. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16618. return ctx->kv[key_id].value.arr.data;
  16619. }
  16620. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16621. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16622. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16623. struct gguf_kv * kv = &ctx->kv[key_id];
  16624. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16625. return str->data;
  16626. }
  16627. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16628. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16629. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16630. return ctx->kv[key_id].value.arr.n;
  16631. }
  16632. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16633. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16634. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16635. return ctx->kv[key_id].value.uint8;
  16636. }
  16637. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16638. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16639. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16640. return ctx->kv[key_id].value.int8;
  16641. }
  16642. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16643. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16644. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16645. return ctx->kv[key_id].value.uint16;
  16646. }
  16647. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16648. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16649. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16650. return ctx->kv[key_id].value.int16;
  16651. }
  16652. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16653. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16654. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16655. return ctx->kv[key_id].value.uint32;
  16656. }
  16657. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16658. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16659. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16660. return ctx->kv[key_id].value.int32;
  16661. }
  16662. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16663. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16664. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16665. return ctx->kv[key_id].value.float32;
  16666. }
  16667. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16668. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16669. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16670. return ctx->kv[key_id].value.uint64;
  16671. }
  16672. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16673. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16674. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16675. return ctx->kv[key_id].value.int64;
  16676. }
  16677. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16678. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16679. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16680. return ctx->kv[key_id].value.float64;
  16681. }
  16682. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16683. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16684. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16685. return ctx->kv[key_id].value.bool_;
  16686. }
  16687. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16688. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16689. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16690. return ctx->kv[key_id].value.str.data;
  16691. }
  16692. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16693. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16694. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16695. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16696. return &ctx->kv[key_id].value;
  16697. }
  16698. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16699. return ctx->header.n_tensors;
  16700. }
  16701. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16702. // return -1 if tensor not found
  16703. int tensorfound = -1;
  16704. const int n_tensors = gguf_get_n_tensors(ctx);
  16705. for (int i = 0; i < n_tensors; ++i) {
  16706. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16707. tensorfound = i;
  16708. break;
  16709. }
  16710. }
  16711. return tensorfound;
  16712. }
  16713. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16714. return ctx->infos[i].offset;
  16715. }
  16716. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16717. return ctx->infos[i].name.data;
  16718. }
  16719. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16720. return ctx->infos[i].type;
  16721. }
  16722. // returns the index
  16723. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16724. const int idx = gguf_find_key(ctx, key);
  16725. if (idx >= 0) {
  16726. return idx;
  16727. }
  16728. const int n_kv = gguf_get_n_kv(ctx);
  16729. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16730. ctx->kv[n_kv].key.n = strlen(key);
  16731. ctx->kv[n_kv].key.data = strdup(key);
  16732. ctx->header.n_kv++;
  16733. return n_kv;
  16734. }
  16735. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16736. const int idx = gguf_get_or_add_key(ctx, key);
  16737. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16738. ctx->kv[idx].value.uint8 = val;
  16739. }
  16740. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16741. const int idx = gguf_get_or_add_key(ctx, key);
  16742. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16743. ctx->kv[idx].value.int8 = val;
  16744. }
  16745. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16746. const int idx = gguf_get_or_add_key(ctx, key);
  16747. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16748. ctx->kv[idx].value.uint16 = val;
  16749. }
  16750. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16751. const int idx = gguf_get_or_add_key(ctx, key);
  16752. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16753. ctx->kv[idx].value.int16 = val;
  16754. }
  16755. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16756. const int idx = gguf_get_or_add_key(ctx, key);
  16757. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16758. ctx->kv[idx].value.uint32 = val;
  16759. }
  16760. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16761. const int idx = gguf_get_or_add_key(ctx, key);
  16762. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16763. ctx->kv[idx].value.int32 = val;
  16764. }
  16765. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16766. const int idx = gguf_get_or_add_key(ctx, key);
  16767. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16768. ctx->kv[idx].value.float32 = val;
  16769. }
  16770. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16771. const int idx = gguf_get_or_add_key(ctx, key);
  16772. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16773. ctx->kv[idx].value.uint64 = val;
  16774. }
  16775. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16776. const int idx = gguf_get_or_add_key(ctx, key);
  16777. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16778. ctx->kv[idx].value.int64 = val;
  16779. }
  16780. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16781. const int idx = gguf_get_or_add_key(ctx, key);
  16782. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16783. ctx->kv[idx].value.float64 = val;
  16784. }
  16785. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16786. const int idx = gguf_get_or_add_key(ctx, key);
  16787. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16788. ctx->kv[idx].value.bool_ = val;
  16789. }
  16790. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16791. const int idx = gguf_get_or_add_key(ctx, key);
  16792. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16793. ctx->kv[idx].value.str.n = strlen(val);
  16794. ctx->kv[idx].value.str.data = strdup(val);
  16795. }
  16796. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16797. const int idx = gguf_get_or_add_key(ctx, key);
  16798. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16799. ctx->kv[idx].value.arr.type = type;
  16800. ctx->kv[idx].value.arr.n = n;
  16801. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16802. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16803. }
  16804. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16805. const int idx = gguf_get_or_add_key(ctx, key);
  16806. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16807. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16808. ctx->kv[idx].value.arr.n = n;
  16809. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16810. for (int i = 0; i < n; i++) {
  16811. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16812. str->n = strlen(data[i]);
  16813. str->data = strdup(data[i]);
  16814. }
  16815. }
  16816. // set or add KV pairs from another context
  16817. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16818. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16819. switch (src->kv[i].type) {
  16820. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16821. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16822. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16823. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16824. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16825. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16826. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16827. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16828. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16829. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16830. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16831. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16832. case GGUF_TYPE_ARRAY:
  16833. {
  16834. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16835. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16836. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16837. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16838. }
  16839. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16840. GGML_FREE((void *)data);
  16841. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16842. GGML_ASSERT(false && "nested arrays not supported");
  16843. } else {
  16844. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16845. }
  16846. } break;
  16847. default: GGML_ASSERT(false && "invalid type"); break;
  16848. }
  16849. }
  16850. }
  16851. void gguf_add_tensor(
  16852. struct gguf_context * ctx,
  16853. const struct ggml_tensor * tensor) {
  16854. const int idx = ctx->header.n_tensors;
  16855. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16856. ctx->infos[idx].name.n = strlen(tensor->name);
  16857. ctx->infos[idx].name.data = strdup(tensor->name);
  16858. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16859. ctx->infos[idx].ne[i] = 1;
  16860. }
  16861. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16862. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16863. ctx->infos[idx].ne[i] = tensor->ne[i];
  16864. }
  16865. ctx->infos[idx].type = tensor->type;
  16866. ctx->infos[idx].offset = 0;
  16867. ctx->infos[idx].data = tensor->data;
  16868. ctx->infos[idx].size = ggml_nbytes(tensor);
  16869. if (ctx->header.n_tensors > 0) {
  16870. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16871. }
  16872. ctx->header.n_tensors++;
  16873. }
  16874. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16875. const int idx = gguf_find_tensor(ctx, name);
  16876. if (idx < 0) {
  16877. GGML_ASSERT(false && "tensor not found");
  16878. }
  16879. ctx->infos[idx].type = type;
  16880. }
  16881. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16882. const int idx = gguf_find_tensor(ctx, name);
  16883. if (idx < 0) {
  16884. GGML_ASSERT(false && "tensor not found");
  16885. }
  16886. ctx->infos[idx].data = data;
  16887. ctx->infos[idx].size = size;
  16888. // update offsets
  16889. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16890. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16891. }
  16892. }
  16893. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16894. // fwrite(&val->n, sizeof(val->n), 1, file);
  16895. // fwrite(val->data, sizeof(char), val->n, file);
  16896. //}
  16897. //
  16898. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16899. // fwrite(val, sizeof(char), size, file);
  16900. //}
  16901. struct gguf_buf {
  16902. void * data;
  16903. size_t size;
  16904. size_t offset;
  16905. };
  16906. static struct gguf_buf gguf_buf_init(size_t size) {
  16907. struct gguf_buf buf = {
  16908. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16909. /*buf.size =*/ size,
  16910. /*buf.offset =*/ 0,
  16911. };
  16912. return buf;
  16913. }
  16914. static void gguf_buf_free(struct gguf_buf buf) {
  16915. if (buf.data) {
  16916. GGML_FREE(buf.data);
  16917. }
  16918. }
  16919. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16920. if (buf->offset + size > buf->size) {
  16921. buf->size = 1.5*(buf->offset + size);
  16922. if (buf->data) {
  16923. buf->data = realloc(buf->data, buf->size);
  16924. }
  16925. }
  16926. }
  16927. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16928. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16929. if (buf->data) {
  16930. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16931. }
  16932. buf->offset += sizeof(val->n);
  16933. if (buf->data) {
  16934. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16935. }
  16936. buf->offset += val->n;
  16937. }
  16938. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16939. gguf_buf_grow(buf, el_size);
  16940. if (buf->data) {
  16941. memcpy((char *) buf->data + buf->offset, val, el_size);
  16942. }
  16943. buf->offset += el_size;
  16944. }
  16945. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16946. // write header
  16947. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16948. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16949. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16950. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16951. // write key-value pairs
  16952. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16953. struct gguf_kv * kv = &ctx->kv[i];
  16954. gguf_bwrite_str(buf, &kv->key);
  16955. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16956. switch (kv->type) {
  16957. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16958. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16959. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16960. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16961. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16962. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16963. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16964. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16965. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16966. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16967. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16968. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16969. case GGUF_TYPE_ARRAY:
  16970. {
  16971. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16972. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16973. switch (kv->value.arr.type) {
  16974. case GGUF_TYPE_UINT8:
  16975. case GGUF_TYPE_INT8:
  16976. case GGUF_TYPE_UINT16:
  16977. case GGUF_TYPE_INT16:
  16978. case GGUF_TYPE_UINT32:
  16979. case GGUF_TYPE_INT32:
  16980. case GGUF_TYPE_FLOAT32:
  16981. case GGUF_TYPE_UINT64:
  16982. case GGUF_TYPE_INT64:
  16983. case GGUF_TYPE_FLOAT64:
  16984. case GGUF_TYPE_BOOL:
  16985. {
  16986. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16987. } break;
  16988. case GGUF_TYPE_STRING:
  16989. {
  16990. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16991. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16992. }
  16993. } break;
  16994. case GGUF_TYPE_ARRAY:
  16995. default: GGML_ASSERT(false && "invalid type"); break;
  16996. }
  16997. } break;
  16998. default: GGML_ASSERT(false && "invalid type");
  16999. }
  17000. }
  17001. // write tensor infos
  17002. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17003. struct gguf_tensor_info * info = &ctx->infos[i];
  17004. gguf_bwrite_str(buf, &info->name);
  17005. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17006. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17007. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17008. }
  17009. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17010. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17011. }
  17012. // we require the data section to be aligned, so take into account any padding
  17013. {
  17014. const size_t offset = buf->offset;
  17015. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17016. if (offset_pad != offset) {
  17017. uint8_t pad = 0;
  17018. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17019. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17020. }
  17021. }
  17022. }
  17023. if (only_meta) {
  17024. return;
  17025. }
  17026. size_t offset = 0;
  17027. // write tensor data
  17028. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17029. struct gguf_tensor_info * info = &ctx->infos[i];
  17030. const size_t size = info->size;
  17031. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17032. gguf_bwrite_el(buf, info->data, size);
  17033. if (size_pad != size) {
  17034. uint8_t pad = 0;
  17035. for (size_t j = 0; j < size_pad - size; ++j) {
  17036. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17037. }
  17038. }
  17039. GGML_ASSERT(offset == info->offset);
  17040. offset += size_pad;
  17041. }
  17042. }
  17043. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17044. FILE * file = fopen(fname, "wb");
  17045. if (!file) {
  17046. GGML_ASSERT(false && "failed to open file for writing");
  17047. }
  17048. struct gguf_buf buf = gguf_buf_init(16*1024);
  17049. gguf_write_to_buf(ctx, &buf, only_meta);
  17050. fwrite(buf.data, 1, buf.offset, file);
  17051. gguf_buf_free(buf);
  17052. fclose(file);
  17053. }
  17054. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17055. // no allocs - only compute size
  17056. struct gguf_buf buf = gguf_buf_init(0);
  17057. gguf_write_to_buf(ctx, &buf, true);
  17058. return buf.offset;
  17059. }
  17060. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17061. struct gguf_buf buf = gguf_buf_init(16*1024);
  17062. gguf_write_to_buf(ctx, &buf, true);
  17063. memcpy(data, buf.data, buf.offset);
  17064. gguf_buf_free(buf);
  17065. }
  17066. ////////////////////////////////////////////////////////////////////////////////
  17067. int ggml_cpu_has_avx(void) {
  17068. #if defined(__AVX__)
  17069. return 1;
  17070. #else
  17071. return 0;
  17072. #endif
  17073. }
  17074. int ggml_cpu_has_avx_vnni(void) {
  17075. #if defined(__AVXVNNI__)
  17076. return 1;
  17077. #else
  17078. return 0;
  17079. #endif
  17080. }
  17081. int ggml_cpu_has_avx2(void) {
  17082. #if defined(__AVX2__)
  17083. return 1;
  17084. #else
  17085. return 0;
  17086. #endif
  17087. }
  17088. int ggml_cpu_has_avx512(void) {
  17089. #if defined(__AVX512F__)
  17090. return 1;
  17091. #else
  17092. return 0;
  17093. #endif
  17094. }
  17095. int ggml_cpu_has_avx512_vbmi(void) {
  17096. #if defined(__AVX512VBMI__)
  17097. return 1;
  17098. #else
  17099. return 0;
  17100. #endif
  17101. }
  17102. int ggml_cpu_has_avx512_vnni(void) {
  17103. #if defined(__AVX512VNNI__)
  17104. return 1;
  17105. #else
  17106. return 0;
  17107. #endif
  17108. }
  17109. int ggml_cpu_has_fma(void) {
  17110. #if defined(__FMA__)
  17111. return 1;
  17112. #else
  17113. return 0;
  17114. #endif
  17115. }
  17116. int ggml_cpu_has_neon(void) {
  17117. #if defined(__ARM_NEON)
  17118. return 1;
  17119. #else
  17120. return 0;
  17121. #endif
  17122. }
  17123. int ggml_cpu_has_arm_fma(void) {
  17124. #if defined(__ARM_FEATURE_FMA)
  17125. return 1;
  17126. #else
  17127. return 0;
  17128. #endif
  17129. }
  17130. int ggml_cpu_has_metal(void) {
  17131. #if defined(GGML_USE_METAL)
  17132. return 1;
  17133. #else
  17134. return 0;
  17135. #endif
  17136. }
  17137. int ggml_cpu_has_f16c(void) {
  17138. #if defined(__F16C__)
  17139. return 1;
  17140. #else
  17141. return 0;
  17142. #endif
  17143. }
  17144. int ggml_cpu_has_fp16_va(void) {
  17145. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17146. return 1;
  17147. #else
  17148. return 0;
  17149. #endif
  17150. }
  17151. int ggml_cpu_has_wasm_simd(void) {
  17152. #if defined(__wasm_simd128__)
  17153. return 1;
  17154. #else
  17155. return 0;
  17156. #endif
  17157. }
  17158. int ggml_cpu_has_blas(void) {
  17159. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17160. return 1;
  17161. #else
  17162. return 0;
  17163. #endif
  17164. }
  17165. int ggml_cpu_has_cublas(void) {
  17166. #if defined(GGML_USE_CUBLAS)
  17167. return 1;
  17168. #else
  17169. return 0;
  17170. #endif
  17171. }
  17172. int ggml_cpu_has_clblast(void) {
  17173. #if defined(GGML_USE_CLBLAST)
  17174. return 1;
  17175. #else
  17176. return 0;
  17177. #endif
  17178. }
  17179. int ggml_cpu_has_vulkan(void) {
  17180. #if defined(GGML_USE_VULKAN)
  17181. return 1;
  17182. #else
  17183. return 0;
  17184. #endif
  17185. }
  17186. int ggml_cpu_has_kompute(void) {
  17187. #if defined(GGML_USE_KOMPUTE)
  17188. return 1;
  17189. #else
  17190. return 0;
  17191. #endif
  17192. }
  17193. int ggml_cpu_has_sycl(void) {
  17194. #if defined(GGML_USE_SYCL)
  17195. return 1;
  17196. #else
  17197. return 0;
  17198. #endif
  17199. }
  17200. int ggml_cpu_has_gpublas(void) {
  17201. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17202. ggml_cpu_has_sycl();
  17203. }
  17204. int ggml_cpu_has_sse3(void) {
  17205. #if defined(__SSE3__)
  17206. return 1;
  17207. #else
  17208. return 0;
  17209. #endif
  17210. }
  17211. int ggml_cpu_has_ssse3(void) {
  17212. #if defined(__SSSE3__)
  17213. return 1;
  17214. #else
  17215. return 0;
  17216. #endif
  17217. }
  17218. int ggml_cpu_has_vsx(void) {
  17219. #if defined(__POWER9_VECTOR__)
  17220. return 1;
  17221. #else
  17222. return 0;
  17223. #endif
  17224. }
  17225. int ggml_cpu_has_matmul_int8(void) {
  17226. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17227. return 1;
  17228. #else
  17229. return 0;
  17230. #endif
  17231. }
  17232. ////////////////////////////////////////////////////////////////////////////////