ggml.c 596 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void* ggml_aligned_malloc(size_t size) {
  163. void* aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  181. __func__, error_desc, size/(1024.0*1024.0));
  182. return NULL;
  183. }
  184. return aligned_memory;
  185. }
  186. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  187. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  188. #endif
  189. #define UNUSED GGML_UNUSED
  190. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  191. //
  192. // tensor access macros
  193. //
  194. #define GGML_TENSOR_UNARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  199. #define GGML_TENSOR_BINARY_OP_LOCALS \
  200. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  202. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  203. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  204. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  206. #if defined(GGML_USE_ACCELERATE)
  207. #include <Accelerate/Accelerate.h>
  208. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  209. #include "ggml-opencl.h"
  210. #endif
  211. #elif defined(GGML_USE_OPENBLAS)
  212. #if defined(GGML_BLAS_USE_MKL)
  213. #include <mkl.h>
  214. #else
  215. #include <cblas.h>
  216. #endif
  217. #elif defined(GGML_USE_CUBLAS)
  218. #include "ggml-cuda.h"
  219. #elif defined(GGML_USE_CLBLAST)
  220. #include "ggml-opencl.h"
  221. #endif
  222. #undef MIN
  223. #undef MAX
  224. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  225. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  226. // floating point type used to accumulate sums
  227. typedef double ggml_float;
  228. // 16-bit float
  229. // on Arm, we use __fp16
  230. // on x86, we use uint16_t
  231. #ifdef __ARM_NEON
  232. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  233. //
  234. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  235. //
  236. #include <arm_neon.h>
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  239. #define GGML_FP16_TO_FP32(x) ((float) (x))
  240. #define GGML_FP32_TO_FP16(x) (x)
  241. #else
  242. #ifdef __wasm_simd128__
  243. #include <wasm_simd128.h>
  244. #else
  245. #ifdef __POWER9_VECTOR__
  246. #include <altivec.h>
  247. #undef bool
  248. #define bool _Bool
  249. #else
  250. #if defined(_MSC_VER) || defined(__MINGW32__)
  251. #include <intrin.h>
  252. #else
  253. #if !defined(__riscv)
  254. #include <immintrin.h>
  255. #endif
  256. #endif
  257. #endif
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  703. return
  704. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  705. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  706. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  707. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  708. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  709. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  710. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  711. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  712. }
  713. inline static int16_t vaddvq_s8(int8x16_t v) {
  714. return
  715. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  716. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  717. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  718. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  719. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  720. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  721. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  722. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  723. }
  724. inline static int32_t vaddvq_s16(int16x8_t v) {
  725. return
  726. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  727. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  728. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  729. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  730. }
  731. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  732. return
  733. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  734. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  735. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  736. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  737. }
  738. inline static int32_t vaddvq_s32(int32x4_t v) {
  739. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  740. }
  741. inline static float vaddvq_f32(float32x4_t v) {
  742. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  743. }
  744. inline static float vminvq_f32(float32x4_t v) {
  745. return
  746. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  747. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  748. }
  749. inline static float vmaxvq_f32(float32x4_t v) {
  750. return
  751. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  752. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  753. }
  754. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  755. int32x4_t res;
  756. res[0] = roundf(vgetq_lane_f32(v, 0));
  757. res[1] = roundf(vgetq_lane_f32(v, 1));
  758. res[2] = roundf(vgetq_lane_f32(v, 2));
  759. res[3] = roundf(vgetq_lane_f32(v, 3));
  760. return res;
  761. }
  762. #endif
  763. #endif
  764. #define QK4_0 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  768. } block_q4_0;
  769. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  770. #define QK4_1 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. ggml_fp16_t m; // min
  774. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  775. } block_q4_1;
  776. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  777. #define QK5_0 32
  778. typedef struct {
  779. ggml_fp16_t d; // delta
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  782. } block_q5_0;
  783. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  784. #define QK5_1 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. ggml_fp16_t m; // min
  788. uint8_t qh[4]; // 5-th bit of quants
  789. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  790. } block_q5_1;
  791. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  792. #define QK8_0 32
  793. typedef struct {
  794. ggml_fp16_t d; // delta
  795. int8_t qs[QK8_0]; // quants
  796. } block_q8_0;
  797. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  798. #define QK8_1 32
  799. typedef struct {
  800. float d; // delta
  801. float s; // d * sum(qs[i])
  802. int8_t qs[QK8_1]; // quants
  803. } block_q8_1;
  804. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  805. // reference implementation for deterministic creation of model files
  806. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  807. static const int qk = QK4_0;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float amax = 0.0f; // absolute max
  812. float max = 0.0f;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (amax < fabsf(v)) {
  816. amax = fabsf(v);
  817. max = v;
  818. }
  819. }
  820. const float d = max / -8;
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = GGML_FP32_TO_FP16(d);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = x[i*qk + 0 + j]*id;
  825. const float x1 = x[i*qk + qk/2 + j]*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_0_reference(x, y, k);
  835. }
  836. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  837. const int qk = QK4_1;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float min = FLT_MAX;
  842. float max = -FLT_MAX;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (v < min) min = v;
  846. if (v > max) max = v;
  847. }
  848. const float d = (max - min) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].d = GGML_FP32_TO_FP16(d);
  851. y[i].m = GGML_FP32_TO_FP16(min);
  852. for (int j = 0; j < qk/2; ++j) {
  853. const float x0 = (x[i*qk + 0 + j] - min)*id;
  854. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  855. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  856. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  857. y[i].qs[j] = xi0;
  858. y[i].qs[j] |= xi1 << 4;
  859. }
  860. }
  861. }
  862. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  863. quantize_row_q4_1_reference(x, y, k);
  864. }
  865. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  866. static const int qk = QK5_0;
  867. assert(k % qk == 0);
  868. const int nb = k / qk;
  869. for (int i = 0; i < nb; i++) {
  870. float amax = 0.0f; // absolute max
  871. float max = 0.0f;
  872. for (int j = 0; j < qk; j++) {
  873. const float v = x[i*qk + j];
  874. if (amax < fabsf(v)) {
  875. amax = fabsf(v);
  876. max = v;
  877. }
  878. }
  879. const float d = max / -16;
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. uint32_t qh = 0;
  883. for (int j = 0; j < qk/2; ++j) {
  884. const float x0 = x[i*qk + 0 + j]*id;
  885. const float x1 = x[i*qk + qk/2 + j]*id;
  886. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  887. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  888. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  889. // get the 5-th bit and store it in qh at the right position
  890. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  891. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  892. }
  893. memcpy(&y[i].qh, &qh, sizeof(qh));
  894. }
  895. }
  896. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  897. quantize_row_q5_0_reference(x, y, k);
  898. }
  899. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  900. const int qk = QK5_1;
  901. assert(k % qk == 0);
  902. const int nb = k / qk;
  903. for (int i = 0; i < nb; i++) {
  904. float min = FLT_MAX;
  905. float max = -FLT_MAX;
  906. for (int j = 0; j < qk; j++) {
  907. const float v = x[i*qk + j];
  908. if (v < min) min = v;
  909. if (v > max) max = v;
  910. }
  911. const float d = (max - min) / ((1 << 5) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. y[i].m = GGML_FP32_TO_FP16(min);
  915. uint32_t qh = 0;
  916. for (int j = 0; j < qk/2; ++j) {
  917. const float x0 = (x[i*qk + 0 + j] - min)*id;
  918. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  919. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  920. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  921. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  922. // get the 5-th bit and store it in qh at the right position
  923. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  924. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  925. }
  926. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  927. }
  928. }
  929. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  930. quantize_row_q5_1_reference(x, y, k);
  931. }
  932. // reference implementation for deterministic creation of model files
  933. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  934. assert(k % QK8_0 == 0);
  935. const int nb = k / QK8_0;
  936. for (int i = 0; i < nb; i++) {
  937. float amax = 0.0f; // absolute max
  938. for (int j = 0; j < QK8_0; j++) {
  939. const float v = x[i*QK8_0 + j];
  940. amax = MAX(amax, fabsf(v));
  941. }
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < QK8_0; ++j) {
  946. const float x0 = x[i*QK8_0 + j]*id;
  947. y[i].qs[j] = roundf(x0);
  948. }
  949. }
  950. }
  951. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  952. assert(QK8_0 == 32);
  953. assert(k % QK8_0 == 0);
  954. const int nb = k / QK8_0;
  955. block_q8_0 * restrict y = vy;
  956. #if defined(__ARM_NEON)
  957. for (int i = 0; i < nb; i++) {
  958. float32x4_t srcv [8];
  959. float32x4_t asrcv[8];
  960. float32x4_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = vmaxvq_f32(amaxv[0]);
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < 8; j++) {
  971. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  972. const int32x4_t vi = vcvtnq_s32_f32(v);
  973. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  974. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  975. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  976. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  977. }
  978. }
  979. #elif defined(__wasm_simd128__)
  980. for (int i = 0; i < nb; i++) {
  981. v128_t srcv [8];
  982. v128_t asrcv[8];
  983. v128_t amaxv[8];
  984. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  985. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  986. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  987. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  988. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  989. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  990. wasm_f32x4_extract_lane(amaxv[0], 1)),
  991. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  992. wasm_f32x4_extract_lane(amaxv[0], 3)));
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. for (int j = 0; j < 8; j++) {
  997. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  998. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  999. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1000. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1001. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1002. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1003. }
  1004. }
  1005. #elif defined(__AVX2__) || defined(__AVX__)
  1006. for (int i = 0; i < nb; i++) {
  1007. // Load elements into 4 AVX vectors
  1008. __m256 v0 = _mm256_loadu_ps( x );
  1009. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1010. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1011. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1012. x += 32;
  1013. // Compute max(abs(e)) for the block
  1014. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1015. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1018. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Quantize these floats
  1024. const float d = maxScalar / 127.f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1027. const __m256 mul = _mm256_set1_ps( id );
  1028. // Apply the multiplier
  1029. v0 = _mm256_mul_ps( v0, mul );
  1030. v1 = _mm256_mul_ps( v1, mul );
  1031. v2 = _mm256_mul_ps( v2, mul );
  1032. v3 = _mm256_mul_ps( v3, mul );
  1033. // Round to nearest integer
  1034. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1035. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1036. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1037. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1038. // Convert floats to integers
  1039. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1040. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1041. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1042. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1043. #if defined(__AVX2__)
  1044. // Convert int32 to int16
  1045. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1046. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1047. // Convert int16 to int8
  1048. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1049. // We got our precious signed bytes, but the order is now wrong
  1050. // These AVX2 pack instructions process 16-byte pieces independently
  1051. // The following instruction is fixing the order
  1052. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1053. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1054. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1055. #else
  1056. // Since we don't have in AVX some necessary functions,
  1057. // we split the registers in half and call AVX2 analogs from SSE
  1058. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1059. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1060. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1061. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1062. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1063. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1064. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1065. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1066. // Convert int32 to int16
  1067. ni0 = _mm_packs_epi32( ni0, ni1 );
  1068. ni2 = _mm_packs_epi32( ni2, ni3 );
  1069. ni4 = _mm_packs_epi32( ni4, ni5 );
  1070. ni6 = _mm_packs_epi32( ni6, ni7 );
  1071. // Convert int16 to int8
  1072. ni0 = _mm_packs_epi16( ni0, ni2 );
  1073. ni4 = _mm_packs_epi16( ni4, ni6 );
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1075. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1076. #endif
  1077. }
  1078. #else
  1079. // scalar
  1080. quantize_row_q8_0_reference(x, y, k);
  1081. #endif
  1082. }
  1083. // reference implementation for deterministic creation of model files
  1084. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1085. assert(QK8_1 == 32);
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. for (int i = 0; i < nb; i++) {
  1089. float amax = 0.0f; // absolute max
  1090. for (int j = 0; j < QK8_1; j++) {
  1091. const float v = x[i*QK8_1 + j];
  1092. amax = MAX(amax, fabsf(v));
  1093. }
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int sum = 0;
  1098. for (int j = 0; j < QK8_1/2; ++j) {
  1099. const float v0 = x[i*QK8_1 + j]*id;
  1100. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1101. y[i].qs[ j] = roundf(v0);
  1102. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1103. sum += y[i].qs[ j];
  1104. sum += y[i].qs[QK8_1/2 + j];
  1105. }
  1106. y[i].s = sum*d;
  1107. }
  1108. }
  1109. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK8_1 == 0);
  1111. const int nb = k / QK8_1;
  1112. block_q8_1 * restrict y = vy;
  1113. #if defined(__ARM_NEON)
  1114. for (int i = 0; i < nb; i++) {
  1115. float32x4_t srcv [8];
  1116. float32x4_t asrcv[8];
  1117. float32x4_t amaxv[8];
  1118. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1119. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1120. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1121. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1122. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1123. const float amax = vmaxvq_f32(amaxv[0]);
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. int32x4_t accv = vdupq_n_s32(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1130. const int32x4_t vi = vcvtnq_s32_f32(v);
  1131. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1132. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1133. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1134. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1135. accv = vaddq_s32(accv, vi);
  1136. }
  1137. y[i].s = d * vaddvq_s32(accv);
  1138. }
  1139. #elif defined(__wasm_simd128__)
  1140. for (int i = 0; i < nb; i++) {
  1141. v128_t srcv [8];
  1142. v128_t asrcv[8];
  1143. v128_t amaxv[8];
  1144. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1145. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1146. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1147. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1148. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1149. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1150. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1151. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1152. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1153. const float d = amax / ((1 << 7) - 1);
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = d;
  1156. v128_t accv = wasm_i32x4_splat(0);
  1157. for (int j = 0; j < 8; j++) {
  1158. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1159. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1160. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1161. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1162. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1163. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1164. accv = wasm_i32x4_add(accv, vi);
  1165. }
  1166. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1167. wasm_i32x4_extract_lane(accv, 1) +
  1168. wasm_i32x4_extract_lane(accv, 2) +
  1169. wasm_i32x4_extract_lane(accv, 3));
  1170. }
  1171. #elif defined(__AVX2__) || defined(__AVX__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // Load elements into 4 AVX vectors
  1174. __m256 v0 = _mm256_loadu_ps( x );
  1175. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1176. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1177. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1178. x += 32;
  1179. // Compute max(abs(e)) for the block
  1180. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1181. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1184. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1185. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1186. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1187. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1188. const float maxScalar = _mm_cvtss_f32( max4 );
  1189. // Quantize these floats
  1190. const float d = maxScalar / 127.f;
  1191. y[i].d = d;
  1192. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1193. const __m256 mul = _mm256_set1_ps( id );
  1194. // Apply the multiplier
  1195. v0 = _mm256_mul_ps( v0, mul );
  1196. v1 = _mm256_mul_ps( v1, mul );
  1197. v2 = _mm256_mul_ps( v2, mul );
  1198. v3 = _mm256_mul_ps( v3, mul );
  1199. // Round to nearest integer
  1200. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1201. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1202. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1203. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1204. // Convert floats to integers
  1205. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1206. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1207. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1208. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1209. #if defined(__AVX2__)
  1210. // Compute the sum of the quants and set y[i].s
  1211. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1212. // Convert int32 to int16
  1213. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1214. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1215. // Convert int16 to int8
  1216. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1217. // We got our precious signed bytes, but the order is now wrong
  1218. // These AVX2 pack instructions process 16-byte pieces independently
  1219. // The following instruction is fixing the order
  1220. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1221. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1222. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1223. #else
  1224. // Since we don't have in AVX some necessary functions,
  1225. // we split the registers in half and call AVX2 analogs from SSE
  1226. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1227. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1228. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1229. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1230. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1231. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1232. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1233. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1234. // Compute the sum of the quants and set y[i].s
  1235. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1236. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1237. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1238. // Convert int32 to int16
  1239. ni0 = _mm_packs_epi32( ni0, ni1 );
  1240. ni2 = _mm_packs_epi32( ni2, ni3 );
  1241. ni4 = _mm_packs_epi32( ni4, ni5 );
  1242. ni6 = _mm_packs_epi32( ni6, ni7 );
  1243. // Convert int16 to int8
  1244. ni0 = _mm_packs_epi16( ni0, ni2 );
  1245. ni4 = _mm_packs_epi16( ni4, ni6 );
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1247. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1248. #endif
  1249. }
  1250. #else
  1251. // scalar
  1252. quantize_row_q8_1_reference(x, y, k);
  1253. #endif
  1254. }
  1255. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK4_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. for (int j = 0; j < qk/2; ++j) {
  1262. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1263. const int x1 = (x[i].qs[j] >> 4) - 8;
  1264. y[i*qk + j + 0 ] = x0*d;
  1265. y[i*qk + j + qk/2] = x1*d;
  1266. }
  1267. }
  1268. }
  1269. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1270. static const int qk = QK4_1;
  1271. assert(k % qk == 0);
  1272. const int nb = k / qk;
  1273. for (int i = 0; i < nb; i++) {
  1274. const float d = GGML_FP16_TO_FP32(x[i].d);
  1275. const float m = GGML_FP16_TO_FP32(x[i].m);
  1276. for (int j = 0; j < qk/2; ++j) {
  1277. const int x0 = (x[i].qs[j] & 0x0F);
  1278. const int x1 = (x[i].qs[j] >> 4);
  1279. y[i*qk + j + 0 ] = x0*d + m;
  1280. y[i*qk + j + qk/2] = x1*d + m;
  1281. }
  1282. }
  1283. }
  1284. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1285. static const int qk = QK5_0;
  1286. assert(k % qk == 0);
  1287. const int nb = k / qk;
  1288. for (int i = 0; i < nb; i++) {
  1289. const float d = GGML_FP16_TO_FP32(x[i].d);
  1290. uint32_t qh;
  1291. memcpy(&qh, x[i].qh, sizeof(qh));
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1294. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1295. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1296. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1297. y[i*qk + j + 0 ] = x0*d;
  1298. y[i*qk + j + qk/2] = x1*d;
  1299. }
  1300. }
  1301. }
  1302. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1303. static const int qk = QK5_1;
  1304. assert(k % qk == 0);
  1305. const int nb = k / qk;
  1306. for (int i = 0; i < nb; i++) {
  1307. const float d = GGML_FP16_TO_FP32(x[i].d);
  1308. const float m = GGML_FP16_TO_FP32(x[i].m);
  1309. uint32_t qh;
  1310. memcpy(&qh, x[i].qh, sizeof(qh));
  1311. for (int j = 0; j < qk/2; ++j) {
  1312. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1313. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1314. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1315. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1316. y[i*qk + j + 0 ] = x0*d + m;
  1317. y[i*qk + j + qk/2] = x1*d + m;
  1318. }
  1319. }
  1320. }
  1321. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1322. static const int qk = QK8_0;
  1323. assert(k % qk == 0);
  1324. const int nb = k / qk;
  1325. const block_q8_0 * restrict x = vx;
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d = GGML_FP16_TO_FP32(x[i].d);
  1328. for (int j = 0; j < qk; ++j) {
  1329. y[i*qk + j] = x[i].qs[j]*d;
  1330. }
  1331. }
  1332. }
  1333. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1334. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1335. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1341. [GGML_TYPE_F32] = {
  1342. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1343. .vec_dot_type = GGML_TYPE_F32,
  1344. },
  1345. [GGML_TYPE_F16] = {
  1346. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1347. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1348. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1350. .vec_dot_type = GGML_TYPE_F16,
  1351. },
  1352. [GGML_TYPE_Q4_0] = {
  1353. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1354. .from_float = quantize_row_q4_0,
  1355. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1356. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1357. .vec_dot_type = GGML_TYPE_Q8_0,
  1358. },
  1359. [GGML_TYPE_Q4_1] = {
  1360. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1361. .from_float = quantize_row_q4_1,
  1362. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1363. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1364. .vec_dot_type = GGML_TYPE_Q8_1,
  1365. },
  1366. [GGML_TYPE_Q5_0] = {
  1367. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1368. .from_float = quantize_row_q5_0,
  1369. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1370. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1371. .vec_dot_type = GGML_TYPE_Q8_0,
  1372. },
  1373. [GGML_TYPE_Q5_1] = {
  1374. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1375. .from_float = quantize_row_q5_1,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1377. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1378. .vec_dot_type = GGML_TYPE_Q8_1,
  1379. },
  1380. [GGML_TYPE_Q8_0] = {
  1381. .to_float = dequantize_row_q8_0,
  1382. .from_float = quantize_row_q8_0,
  1383. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1384. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1385. .vec_dot_type = GGML_TYPE_Q8_0,
  1386. },
  1387. [GGML_TYPE_Q8_1] = {
  1388. .from_float = quantize_row_q8_1,
  1389. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1390. .vec_dot_type = GGML_TYPE_Q8_1,
  1391. },
  1392. #ifdef GGML_USE_K_QUANTS
  1393. [GGML_TYPE_Q2_K] = {
  1394. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1395. .from_float = quantize_row_q2_K,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1397. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1398. .vec_dot_type = GGML_TYPE_Q8_K,
  1399. },
  1400. [GGML_TYPE_Q3_K] = {
  1401. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1402. .from_float = quantize_row_q3_K,
  1403. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1404. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1405. .vec_dot_type = GGML_TYPE_Q8_K,
  1406. },
  1407. [GGML_TYPE_Q4_K] = {
  1408. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1409. .from_float = quantize_row_q4_K,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1411. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1412. .vec_dot_type = GGML_TYPE_Q8_K,
  1413. },
  1414. [GGML_TYPE_Q5_K] = {
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1416. .from_float = quantize_row_q5_K,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1418. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1419. .vec_dot_type = GGML_TYPE_Q8_K,
  1420. },
  1421. [GGML_TYPE_Q6_K] = {
  1422. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1423. .from_float = quantize_row_q6_K,
  1424. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1425. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1426. .vec_dot_type = GGML_TYPE_Q8_K,
  1427. },
  1428. [GGML_TYPE_Q8_K] = {
  1429. .from_float = quantize_row_q8_K,
  1430. }
  1431. #endif
  1432. };
  1433. // For internal test use
  1434. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1435. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1436. return type_traits[i];
  1437. }
  1438. //
  1439. // simd mappings
  1440. //
  1441. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1442. // we then implement the fundamental computation operations below using only these macros
  1443. // adding support for new architectures requires to define the corresponding SIMD macros
  1444. //
  1445. // GGML_F32_STEP / GGML_F16_STEP
  1446. // number of elements to process in a single step
  1447. //
  1448. // GGML_F32_EPR / GGML_F16_EPR
  1449. // number of elements to fit in a single register
  1450. //
  1451. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1452. #define GGML_SIMD
  1453. // F32 NEON
  1454. #define GGML_F32_STEP 16
  1455. #define GGML_F32_EPR 4
  1456. #define GGML_F32x4 float32x4_t
  1457. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1458. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1459. #define GGML_F32x4_LOAD vld1q_f32
  1460. #define GGML_F32x4_STORE vst1q_f32
  1461. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1462. #define GGML_F32x4_ADD vaddq_f32
  1463. #define GGML_F32x4_MUL vmulq_f32
  1464. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1465. #define GGML_F32x4_REDUCE(res, x) \
  1466. { \
  1467. int offset = GGML_F32_ARR >> 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. offset >>= 1; \
  1476. for (int i = 0; i < offset; ++i) { \
  1477. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1478. } \
  1479. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1480. }
  1481. #define GGML_F32_VEC GGML_F32x4
  1482. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1483. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1484. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1485. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1486. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1487. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1488. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1489. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1490. // F16 NEON
  1491. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1492. #define GGML_F16_STEP 32
  1493. #define GGML_F16_EPR 8
  1494. #define GGML_F16x8 float16x8_t
  1495. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1496. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1497. #define GGML_F16x8_LOAD vld1q_f16
  1498. #define GGML_F16x8_STORE vst1q_f16
  1499. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1500. #define GGML_F16x8_ADD vaddq_f16
  1501. #define GGML_F16x8_MUL vmulq_f16
  1502. #define GGML_F16x8_REDUCE(res, x) \
  1503. { \
  1504. int offset = GGML_F16_ARR >> 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. offset >>= 1; \
  1513. for (int i = 0; i < offset; ++i) { \
  1514. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1515. } \
  1516. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1517. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1518. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1519. }
  1520. #define GGML_F16_VEC GGML_F16x8
  1521. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1522. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1523. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1524. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1525. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1526. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1527. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1528. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1529. #else
  1530. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1531. // and take advantage of the vcvt_ functions to convert to/from FP16
  1532. #define GGML_F16_STEP 16
  1533. #define GGML_F16_EPR 4
  1534. #define GGML_F32Cx4 float32x4_t
  1535. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1536. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1537. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1538. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1539. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1540. #define GGML_F32Cx4_ADD vaddq_f32
  1541. #define GGML_F32Cx4_MUL vmulq_f32
  1542. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1543. #define GGML_F16_VEC GGML_F32Cx4
  1544. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1545. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1546. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1547. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1548. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1549. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1550. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1551. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1552. #endif
  1553. #elif defined(__AVX__)
  1554. #define GGML_SIMD
  1555. // F32 AVX
  1556. #define GGML_F32_STEP 32
  1557. #define GGML_F32_EPR 8
  1558. #define GGML_F32x8 __m256
  1559. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1560. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1561. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1562. #define GGML_F32x8_STORE _mm256_storeu_ps
  1563. #if defined(__FMA__)
  1564. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1565. #else
  1566. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1567. #endif
  1568. #define GGML_F32x8_ADD _mm256_add_ps
  1569. #define GGML_F32x8_MUL _mm256_mul_ps
  1570. #define GGML_F32x8_REDUCE(res, x) \
  1571. { \
  1572. int offset = GGML_F32_ARR >> 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. offset >>= 1; \
  1581. for (int i = 0; i < offset; ++i) { \
  1582. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1583. } \
  1584. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1585. _mm256_extractf128_ps(x[0], 1)); \
  1586. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1587. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1588. }
  1589. // TODO: is this optimal ?
  1590. #define GGML_F32_VEC GGML_F32x8
  1591. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1592. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1593. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1594. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1595. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1596. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1597. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1598. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1599. // F16 AVX
  1600. #define GGML_F16_STEP 32
  1601. #define GGML_F16_EPR 8
  1602. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1603. #define GGML_F32Cx8 __m256
  1604. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1605. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1606. #if defined(__F16C__)
  1607. // the _mm256_cvt intrinsics require F16C
  1608. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1609. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1610. #else
  1611. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1612. float tmp[8];
  1613. for (int i = 0; i < 8; i++) {
  1614. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1615. }
  1616. return _mm256_loadu_ps(tmp);
  1617. }
  1618. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1619. float arr[8];
  1620. _mm256_storeu_ps(arr, y);
  1621. for (int i = 0; i < 8; i++)
  1622. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1623. }
  1624. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1625. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1626. #endif
  1627. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1628. #define GGML_F32Cx8_ADD _mm256_add_ps
  1629. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1630. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1631. #define GGML_F16_VEC GGML_F32Cx8
  1632. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1633. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1634. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1635. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1636. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1637. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1638. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1639. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1640. #elif defined(__POWER9_VECTOR__)
  1641. #define GGML_SIMD
  1642. // F32 POWER9
  1643. #define GGML_F32_STEP 32
  1644. #define GGML_F32_EPR 4
  1645. #define GGML_F32x4 vector float
  1646. #define GGML_F32x4_ZERO 0.0f
  1647. #define GGML_F32x4_SET1 vec_splats
  1648. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1649. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1650. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1651. #define GGML_F32x4_ADD vec_add
  1652. #define GGML_F32x4_MUL vec_mul
  1653. #define GGML_F32x4_REDUCE(res, x) \
  1654. { \
  1655. int offset = GGML_F32_ARR >> 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. offset >>= 1; \
  1664. for (int i = 0; i < offset; ++i) { \
  1665. x[i] = vec_add(x[i], x[offset+i]); \
  1666. } \
  1667. res = vec_extract(x[0], 0) + \
  1668. vec_extract(x[0], 1) + \
  1669. vec_extract(x[0], 2) + \
  1670. vec_extract(x[0], 3); \
  1671. }
  1672. #define GGML_F32_VEC GGML_F32x4
  1673. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1674. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1675. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1676. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1677. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1678. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1679. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1680. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // F16 POWER9
  1682. #define GGML_F16_STEP GGML_F32_STEP
  1683. #define GGML_F16_EPR GGML_F32_EPR
  1684. #define GGML_F16_VEC GGML_F32x4
  1685. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1686. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1687. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1688. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1689. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1690. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1691. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1692. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1693. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1694. #define GGML_F16_VEC_STORE(p, r, i) \
  1695. if (i & 0x1) \
  1696. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1697. r[i - GGML_ENDIAN_BYTE(0)]), \
  1698. 0, p - GGML_F16_EPR)
  1699. #elif defined(__wasm_simd128__)
  1700. #define GGML_SIMD
  1701. // F32 WASM
  1702. #define GGML_F32_STEP 16
  1703. #define GGML_F32_EPR 4
  1704. #define GGML_F32x4 v128_t
  1705. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1706. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1707. #define GGML_F32x4_LOAD wasm_v128_load
  1708. #define GGML_F32x4_STORE wasm_v128_store
  1709. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1710. #define GGML_F32x4_ADD wasm_f32x4_add
  1711. #define GGML_F32x4_MUL wasm_f32x4_mul
  1712. #define GGML_F32x4_REDUCE(res, x) \
  1713. { \
  1714. int offset = GGML_F32_ARR >> 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. offset >>= 1; \
  1723. for (int i = 0; i < offset; ++i) { \
  1724. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1725. } \
  1726. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1727. wasm_f32x4_extract_lane(x[0], 1) + \
  1728. wasm_f32x4_extract_lane(x[0], 2) + \
  1729. wasm_f32x4_extract_lane(x[0], 3); \
  1730. }
  1731. #define GGML_F32_VEC GGML_F32x4
  1732. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1733. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1734. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1735. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1736. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1738. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1739. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1740. // F16 WASM
  1741. #define GGML_F16_STEP 16
  1742. #define GGML_F16_EPR 4
  1743. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1744. float tmp[4];
  1745. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1746. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1747. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1748. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1749. return wasm_v128_load(tmp);
  1750. }
  1751. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1752. float tmp[4];
  1753. wasm_v128_store(tmp, x);
  1754. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1755. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1756. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1757. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1758. }
  1759. #define GGML_F16x4 v128_t
  1760. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1761. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1762. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1763. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1764. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1765. #define GGML_F16x4_ADD wasm_f32x4_add
  1766. #define GGML_F16x4_MUL wasm_f32x4_mul
  1767. #define GGML_F16x4_REDUCE(res, x) \
  1768. { \
  1769. int offset = GGML_F16_ARR >> 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. offset >>= 1; \
  1778. for (int i = 0; i < offset; ++i) { \
  1779. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1780. } \
  1781. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1782. wasm_f32x4_extract_lane(x[0], 1) + \
  1783. wasm_f32x4_extract_lane(x[0], 2) + \
  1784. wasm_f32x4_extract_lane(x[0], 3); \
  1785. }
  1786. #define GGML_F16_VEC GGML_F16x4
  1787. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1788. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1789. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1790. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1791. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1792. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1793. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1794. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1795. #elif defined(__SSE3__)
  1796. #define GGML_SIMD
  1797. // F32 SSE
  1798. #define GGML_F32_STEP 32
  1799. #define GGML_F32_EPR 4
  1800. #define GGML_F32x4 __m128
  1801. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1802. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1803. #define GGML_F32x4_LOAD _mm_loadu_ps
  1804. #define GGML_F32x4_STORE _mm_storeu_ps
  1805. #if defined(__FMA__)
  1806. // TODO: Does this work?
  1807. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1808. #else
  1809. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1810. #endif
  1811. #define GGML_F32x4_ADD _mm_add_ps
  1812. #define GGML_F32x4_MUL _mm_mul_ps
  1813. #define GGML_F32x4_REDUCE(res, x) \
  1814. { \
  1815. int offset = GGML_F32_ARR >> 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. offset >>= 1; \
  1824. for (int i = 0; i < offset; ++i) { \
  1825. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1826. } \
  1827. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1828. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1829. }
  1830. // TODO: is this optimal ?
  1831. #define GGML_F32_VEC GGML_F32x4
  1832. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1833. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1834. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1835. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1836. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1837. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1838. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1839. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1840. // F16 SSE
  1841. #define GGML_F16_STEP 32
  1842. #define GGML_F16_EPR 4
  1843. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1844. float tmp[4];
  1845. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1846. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1847. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1848. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1849. return _mm_loadu_ps(tmp);
  1850. }
  1851. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1852. float arr[4];
  1853. _mm_storeu_ps(arr, y);
  1854. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1855. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1856. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1857. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1858. }
  1859. #define GGML_F32Cx4 __m128
  1860. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1861. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1862. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1863. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1864. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1865. #define GGML_F32Cx4_ADD _mm_add_ps
  1866. #define GGML_F32Cx4_MUL _mm_mul_ps
  1867. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1868. #define GGML_F16_VEC GGML_F32Cx4
  1869. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1870. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1871. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1872. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1873. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1874. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1875. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1876. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1877. #endif
  1878. // GGML_F32_ARR / GGML_F16_ARR
  1879. // number of registers to use per step
  1880. #ifdef GGML_SIMD
  1881. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1882. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1883. #endif
  1884. //
  1885. // fundamental operations
  1886. //
  1887. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1890. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1891. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1892. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1893. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1894. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1895. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1896. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1897. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1898. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1899. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1900. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1901. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1902. #ifdef GGML_SIMD
  1903. float sumf = 0.0f;
  1904. const int np = (n & ~(GGML_F32_STEP - 1));
  1905. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1906. GGML_F32_VEC ax[GGML_F32_ARR];
  1907. GGML_F32_VEC ay[GGML_F32_ARR];
  1908. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1909. for (int j = 0; j < GGML_F32_ARR; j++) {
  1910. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1911. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1912. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1913. }
  1914. }
  1915. // reduce sum0..sum3 to sum0
  1916. GGML_F32_VEC_REDUCE(sumf, sum);
  1917. // leftovers
  1918. for (int i = np; i < n; ++i) {
  1919. sumf += x[i]*y[i];
  1920. }
  1921. #else
  1922. // scalar
  1923. ggml_float sumf = 0.0;
  1924. for (int i = 0; i < n; ++i) {
  1925. sumf += (ggml_float)(x[i]*y[i]);
  1926. }
  1927. #endif
  1928. *s = sumf;
  1929. }
  1930. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1931. ggml_float sumf = 0.0;
  1932. #if defined(GGML_SIMD)
  1933. const int np = (n & ~(GGML_F16_STEP - 1));
  1934. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1935. GGML_F16_VEC ax[GGML_F16_ARR];
  1936. GGML_F16_VEC ay[GGML_F16_ARR];
  1937. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1938. for (int j = 0; j < GGML_F16_ARR; j++) {
  1939. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1940. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1941. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1942. }
  1943. }
  1944. // reduce sum0..sum3 to sum0
  1945. GGML_F16_VEC_REDUCE(sumf, sum);
  1946. // leftovers
  1947. for (int i = np; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #else
  1951. for (int i = 0; i < n; ++i) {
  1952. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1953. }
  1954. #endif
  1955. *s = sumf;
  1956. }
  1957. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1958. const int qk = QK8_0;
  1959. const int nb = n / qk;
  1960. assert(n % qk == 0);
  1961. assert(nb % 2 == 0);
  1962. const block_q4_0 * restrict x = vx;
  1963. const block_q8_0 * restrict y = vy;
  1964. #if defined(__ARM_NEON)
  1965. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1966. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1967. for (int i = 0; i < nb; i += 2) {
  1968. const block_q4_0 * restrict x0 = &x[i + 0];
  1969. const block_q4_0 * restrict x1 = &x[i + 1];
  1970. const block_q8_0 * restrict y0 = &y[i + 0];
  1971. const block_q8_0 * restrict y1 = &y[i + 1];
  1972. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1973. const int8x16_t s8b = vdupq_n_s8(0x8);
  1974. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1975. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1976. // 4-bit -> 8-bit
  1977. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1978. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1979. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1980. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1981. // sub 8
  1982. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1983. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1984. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1985. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1986. // load y
  1987. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1988. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1989. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1990. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1991. #if defined(__ARM_FEATURE_DOTPROD)
  1992. // dot product into int32x4_t
  1993. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1994. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1995. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1996. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1997. #else
  1998. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1999. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2000. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2001. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2002. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2003. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2004. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2005. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2006. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2007. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2008. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2009. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2010. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2011. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2012. #endif
  2013. }
  2014. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2015. #elif defined(__AVX2__)
  2016. // Initialize accumulator with zeros
  2017. __m256 acc = _mm256_setzero_ps();
  2018. // Main loop
  2019. for (int i = 0; i < nb; ++i) {
  2020. /* Compute combined scale for the block */
  2021. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2022. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2023. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2024. const __m256i off = _mm256_set1_epi8( 8 );
  2025. bx = _mm256_sub_epi8( bx, off );
  2026. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2027. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2028. /* Multiply q with scale and accumulate */
  2029. acc = _mm256_fmadd_ps( d, q, acc );
  2030. }
  2031. *s = hsum_float_8(acc);
  2032. #elif defined(__AVX__)
  2033. // Initialize accumulator with zeros
  2034. __m256 acc = _mm256_setzero_ps();
  2035. // Main loop
  2036. for (int i = 0; i < nb; ++i) {
  2037. // Compute combined scale for the block
  2038. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2039. const __m128i lowMask = _mm_set1_epi8(0xF);
  2040. const __m128i off = _mm_set1_epi8(8);
  2041. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2042. __m128i bx = _mm_and_si128(lowMask, tmp);
  2043. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2046. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2047. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2048. bx = _mm_sub_epi8(bx, off);
  2049. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2050. // Convert int32_t to float
  2051. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2052. // Apply the scale, and accumulate
  2053. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2054. }
  2055. *s = hsum_float_8(acc);
  2056. #elif defined(__SSSE3__)
  2057. // set constants
  2058. const __m128i lowMask = _mm_set1_epi8(0xF);
  2059. const __m128i off = _mm_set1_epi8(8);
  2060. // Initialize accumulator with zeros
  2061. __m128 acc_0 = _mm_setzero_ps();
  2062. __m128 acc_1 = _mm_setzero_ps();
  2063. __m128 acc_2 = _mm_setzero_ps();
  2064. __m128 acc_3 = _mm_setzero_ps();
  2065. // First round without accumulation
  2066. {
  2067. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2068. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2069. // Compute combined scale for the block 0 and 1
  2070. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2071. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2072. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2073. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2074. bx_0 = _mm_sub_epi8(bx_0, off);
  2075. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2076. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2077. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2078. bx_1 = _mm_sub_epi8(bx_1, off);
  2079. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2080. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 2 and 3
  2083. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2084. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2085. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2086. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2087. bx_2 = _mm_sub_epi8(bx_2, off);
  2088. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2089. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2090. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2091. bx_3 = _mm_sub_epi8(bx_3, off);
  2092. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2093. // Convert int32_t to float
  2094. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2095. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2096. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2097. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2098. // Apply the scale
  2099. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2100. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2101. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2102. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2103. }
  2104. // Main loop
  2105. for (int i = 2; i < nb; i+=2) {
  2106. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2107. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2108. // Compute combined scale for the block 0 and 1
  2109. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2110. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2111. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2112. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2113. bx_0 = _mm_sub_epi8(bx_0, off);
  2114. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2115. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2116. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2117. bx_1 = _mm_sub_epi8(bx_1, off);
  2118. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2119. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2120. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2121. // Compute combined scale for the block 2 and 3
  2122. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2123. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2124. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2125. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2126. bx_2 = _mm_sub_epi8(bx_2, off);
  2127. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2128. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2129. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2130. bx_3 = _mm_sub_epi8(bx_3, off);
  2131. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2132. // Convert int32_t to float
  2133. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2134. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2135. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2136. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2137. // Apply the scale
  2138. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2139. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2140. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2141. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2142. // Acummulate
  2143. acc_0 = _mm_add_ps(p0_d, acc_0);
  2144. acc_1 = _mm_add_ps(p1_d, acc_1);
  2145. acc_2 = _mm_add_ps(p2_d, acc_2);
  2146. acc_3 = _mm_add_ps(p3_d, acc_3);
  2147. }
  2148. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2149. #else
  2150. // scalar
  2151. float sumf = 0.0;
  2152. for (int i = 0; i < nb; i++) {
  2153. int sumi = 0;
  2154. for (int j = 0; j < qk/2; ++j) {
  2155. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2156. const int v1 = (x[i].qs[j] >> 4) - 8;
  2157. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2158. }
  2159. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2160. }
  2161. *s = sumf;
  2162. #endif
  2163. }
  2164. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2165. const int qk = QK8_1;
  2166. const int nb = n / qk;
  2167. assert(n % qk == 0);
  2168. assert(nb % 2 == 0);
  2169. const block_q4_1 * restrict x = vx;
  2170. const block_q8_1 * restrict y = vy;
  2171. // TODO: add WASM SIMD
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. float summs = 0;
  2176. for (int i = 0; i < nb; i += 2) {
  2177. const block_q4_1 * restrict x0 = &x[i + 0];
  2178. const block_q4_1 * restrict x1 = &x[i + 1];
  2179. const block_q8_1 * restrict y0 = &y[i + 0];
  2180. const block_q8_1 * restrict y1 = &y[i + 1];
  2181. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2182. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2183. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2184. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2185. // 4-bit -> 8-bit
  2186. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2187. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2188. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2189. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2190. // load y
  2191. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2192. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2193. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2194. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2195. #if defined(__ARM_FEATURE_DOTPROD)
  2196. // dot product into int32x4_t
  2197. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2198. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2199. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2201. #else
  2202. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2203. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2204. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2205. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2206. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2207. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2208. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2209. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2210. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2211. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2212. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2213. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2214. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2215. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2216. #endif
  2217. }
  2218. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2219. #elif defined(__AVX2__) || defined(__AVX__)
  2220. // Initialize accumulator with zeros
  2221. __m256 acc = _mm256_setzero_ps();
  2222. float summs = 0;
  2223. // Main loop
  2224. for (int i = 0; i < nb; ++i) {
  2225. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2226. const float d1 = y[i].d;
  2227. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2228. const __m256 d0v = _mm256_set1_ps( d0 );
  2229. const __m256 d1v = _mm256_set1_ps( d1 );
  2230. // Compute combined scales
  2231. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2232. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2233. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2234. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2235. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2236. // Accumulate d0*d1*x*y
  2237. #if defined(__AVX2__)
  2238. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2239. #else
  2240. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2241. #endif
  2242. }
  2243. *s = hsum_float_8(acc) + summs;
  2244. #else
  2245. // scalar
  2246. float sumf = 0.0;
  2247. for (int i = 0; i < nb; i++) {
  2248. int sumi = 0;
  2249. for (int j = 0; j < qk/2; ++j) {
  2250. const int v0 = (x[i].qs[j] & 0x0F);
  2251. const int v1 = (x[i].qs[j] >> 4);
  2252. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2253. }
  2254. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2255. }
  2256. *s = sumf;
  2257. #endif
  2258. }
  2259. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2260. const int qk = QK8_0;
  2261. const int nb = n / qk;
  2262. assert(n % qk == 0);
  2263. assert(nb % 2 == 0);
  2264. assert(qk == QK5_0);
  2265. const block_q5_0 * restrict x = vx;
  2266. const block_q8_0 * restrict y = vy;
  2267. #if defined(__ARM_NEON)
  2268. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2269. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2270. uint32_t qh0;
  2271. uint32_t qh1;
  2272. uint64_t tmp0[4];
  2273. uint64_t tmp1[4];
  2274. for (int i = 0; i < nb; i += 2) {
  2275. const block_q5_0 * restrict x0 = &x[i];
  2276. const block_q5_0 * restrict x1 = &x[i + 1];
  2277. const block_q8_0 * restrict y0 = &y[i];
  2278. const block_q8_0 * restrict y1 = &y[i + 1];
  2279. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2280. // extract the 5th bit via lookup table ((!b) << 4)
  2281. memcpy(&qh0, x0->qh, sizeof(qh0));
  2282. memcpy(&qh1, x1->qh, sizeof(qh1));
  2283. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2284. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2285. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2286. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2287. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2288. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2289. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2290. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2291. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2292. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2293. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2294. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2295. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2296. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2297. // 4-bit -> 8-bit
  2298. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2299. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2300. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2301. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2302. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2303. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2304. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2305. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2306. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2307. // load y
  2308. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2309. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2310. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2311. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2312. #if defined(__ARM_FEATURE_DOTPROD)
  2313. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2316. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2317. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2318. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2319. #else
  2320. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2321. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2322. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2323. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2324. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2325. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2326. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2327. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2328. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2329. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2330. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2331. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2332. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2333. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2334. #endif
  2335. }
  2336. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2337. #elif defined(__wasm_simd128__)
  2338. v128_t sumv = wasm_f32x4_splat(0.0f);
  2339. uint32_t qh;
  2340. uint64_t tmp[4];
  2341. // TODO: check if unrolling this is better
  2342. for (int i = 0; i < nb; ++i) {
  2343. const block_q5_0 * restrict x0 = &x[i];
  2344. const block_q8_0 * restrict y0 = &y[i];
  2345. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2346. // extract the 5th bit
  2347. memcpy(&qh, x0->qh, sizeof(qh));
  2348. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2349. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2350. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2351. tmp[3] = table_b2b_1[(qh >> 24) ];
  2352. const v128_t qhl = wasm_v128_load(tmp + 0);
  2353. const v128_t qhh = wasm_v128_load(tmp + 2);
  2354. const v128_t v0 = wasm_v128_load(x0->qs);
  2355. // 4-bit -> 8-bit
  2356. const v128_t v0l = wasm_v128_and (v0, m4b);
  2357. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2358. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2359. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2360. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2361. // load y
  2362. const v128_t v1l = wasm_v128_load(y0->qs);
  2363. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2364. // int8x16 -> int16x8
  2365. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2366. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2367. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2368. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2369. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2370. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2371. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2372. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2373. // dot product
  2374. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2375. wasm_i32x4_add(
  2376. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2377. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2378. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2379. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2380. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2381. }
  2382. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2383. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2384. #elif defined(__AVX2__)
  2385. // Initialize accumulator with zeros
  2386. __m256 acc = _mm256_setzero_ps();
  2387. // Main loop
  2388. for (int i = 0; i < nb; i++) {
  2389. /* Compute combined scale for the block */
  2390. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2391. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2392. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2393. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2394. bx = _mm256_or_si256(bx, bxhi);
  2395. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2396. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2397. /* Multiply q with scale and accumulate */
  2398. acc = _mm256_fmadd_ps(d, q, acc);
  2399. }
  2400. *s = hsum_float_8(acc);
  2401. #elif defined(__AVX__)
  2402. // Initialize accumulator with zeros
  2403. __m256 acc = _mm256_setzero_ps();
  2404. __m128i mask = _mm_set1_epi8((char)0xF0);
  2405. // Main loop
  2406. for (int i = 0; i < nb; i++) {
  2407. /* Compute combined scale for the block */
  2408. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2409. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2410. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2411. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2412. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2413. bxhil = _mm_andnot_si128(bxhil, mask);
  2414. bxhih = _mm_andnot_si128(bxhih, mask);
  2415. __m128i bxl = _mm256_castsi256_si128(bx);
  2416. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2417. bxl = _mm_or_si128(bxl, bxhil);
  2418. bxh = _mm_or_si128(bxh, bxhih);
  2419. bx = MM256_SET_M128I(bxh, bxl);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2422. /* Multiply q with scale and accumulate */
  2423. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2424. }
  2425. *s = hsum_float_8(acc);
  2426. #else
  2427. // scalar
  2428. float sumf = 0.0;
  2429. for (int i = 0; i < nb; i++) {
  2430. uint32_t qh;
  2431. memcpy(&qh, x[i].qh, sizeof(qh));
  2432. int sumi = 0;
  2433. for (int j = 0; j < qk/2; ++j) {
  2434. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2435. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2436. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2437. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2438. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2439. }
  2440. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2441. }
  2442. *s = sumf;
  2443. #endif
  2444. }
  2445. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2446. const int qk = QK8_1;
  2447. const int nb = n / qk;
  2448. assert(n % qk == 0);
  2449. assert(nb % 2 == 0);
  2450. assert(qk == QK5_1);
  2451. const block_q5_1 * restrict x = vx;
  2452. const block_q8_1 * restrict y = vy;
  2453. #if defined(__ARM_NEON)
  2454. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2455. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2456. float summs0 = 0.0f;
  2457. float summs1 = 0.0f;
  2458. uint32_t qh0;
  2459. uint32_t qh1;
  2460. uint64_t tmp0[4];
  2461. uint64_t tmp1[4];
  2462. for (int i = 0; i < nb; i += 2) {
  2463. const block_q5_1 * restrict x0 = &x[i];
  2464. const block_q5_1 * restrict x1 = &x[i + 1];
  2465. const block_q8_1 * restrict y0 = &y[i];
  2466. const block_q8_1 * restrict y1 = &y[i + 1];
  2467. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2468. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2469. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2470. // extract the 5th bit via lookup table ((b) << 4)
  2471. memcpy(&qh0, x0->qh, sizeof(qh0));
  2472. memcpy(&qh1, x1->qh, sizeof(qh1));
  2473. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2474. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2475. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2476. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2477. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2478. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2479. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2480. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2481. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2482. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2483. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2484. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2485. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2486. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2487. // 4-bit -> 8-bit
  2488. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2489. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2490. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2491. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2492. // add high bit
  2493. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2494. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2495. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2496. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2497. // load y
  2498. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2499. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2500. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2501. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2502. #if defined(__ARM_FEATURE_DOTPROD)
  2503. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2506. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2507. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2508. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2509. #else
  2510. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2511. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2512. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2513. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2514. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2515. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2516. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2517. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2518. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2519. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2520. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2521. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2522. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2523. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2524. #endif
  2525. }
  2526. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2527. #elif defined(__wasm_simd128__)
  2528. v128_t sumv = wasm_f32x4_splat(0.0f);
  2529. float summs = 0.0f;
  2530. uint32_t qh;
  2531. uint64_t tmp[4];
  2532. // TODO: check if unrolling this is better
  2533. for (int i = 0; i < nb; ++i) {
  2534. const block_q5_1 * restrict x0 = &x[i];
  2535. const block_q8_1 * restrict y0 = &y[i];
  2536. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2537. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2538. // extract the 5th bit
  2539. memcpy(&qh, x0->qh, sizeof(qh));
  2540. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2541. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2542. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2543. tmp[3] = table_b2b_0[(qh >> 24) ];
  2544. const v128_t qhl = wasm_v128_load(tmp + 0);
  2545. const v128_t qhh = wasm_v128_load(tmp + 2);
  2546. const v128_t v0 = wasm_v128_load(x0->qs);
  2547. // 4-bit -> 8-bit
  2548. const v128_t v0l = wasm_v128_and (v0, m4b);
  2549. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2550. // add high bit
  2551. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2552. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2553. // load y
  2554. const v128_t v1l = wasm_v128_load(y0->qs);
  2555. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2556. // int8x16 -> int16x8
  2557. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2558. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2559. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2560. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2561. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2562. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2563. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2564. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2565. // dot product
  2566. sumv = wasm_f32x4_add(sumv,
  2567. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2568. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2569. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2570. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2571. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2572. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2573. }
  2574. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2575. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2576. #elif defined(__AVX2__)
  2577. // Initialize accumulator with zeros
  2578. __m256 acc = _mm256_setzero_ps();
  2579. float summs = 0.0f;
  2580. // Main loop
  2581. for (int i = 0; i < nb; i++) {
  2582. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2583. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2584. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2585. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2586. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2587. bx = _mm256_or_si256(bx, bxhi);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #elif defined(__AVX__)
  2595. // Initialize accumulator with zeros
  2596. __m256 acc = _mm256_setzero_ps();
  2597. __m128i mask = _mm_set1_epi8(0x10);
  2598. float summs = 0.0f;
  2599. // Main loop
  2600. for (int i = 0; i < nb; i++) {
  2601. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2602. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2603. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2604. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2605. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2606. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2607. bxhil = _mm_and_si128(bxhil, mask);
  2608. bxhih = _mm_and_si128(bxhih, mask);
  2609. __m128i bxl = _mm256_castsi256_si128(bx);
  2610. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2611. bxl = _mm_or_si128(bxl, bxhil);
  2612. bxh = _mm_or_si128(bxh, bxhih);
  2613. bx = MM256_SET_M128I(bxh, bxl);
  2614. const __m256 dy = _mm256_set1_ps(y[i].d);
  2615. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2616. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2617. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2618. }
  2619. *s = hsum_float_8(acc) + summs;
  2620. #else
  2621. // scalar
  2622. float sumf = 0.0;
  2623. for (int i = 0; i < nb; i++) {
  2624. uint32_t qh;
  2625. memcpy(&qh, x[i].qh, sizeof(qh));
  2626. int sumi = 0;
  2627. for (int j = 0; j < qk/2; ++j) {
  2628. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2629. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2630. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2631. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2632. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2633. }
  2634. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2635. }
  2636. *s = sumf;
  2637. #endif
  2638. }
  2639. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2640. const int qk = QK8_0;
  2641. const int nb = n / qk;
  2642. assert(n % qk == 0);
  2643. assert(nb % 2 == 0);
  2644. const block_q8_0 * restrict x = vx;
  2645. const block_q8_0 * restrict y = vy;
  2646. #if defined(__ARM_NEON)
  2647. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2648. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2649. for (int i = 0; i < nb; i += 2) {
  2650. const block_q8_0 * restrict x0 = &x[i + 0];
  2651. const block_q8_0 * restrict x1 = &x[i + 1];
  2652. const block_q8_0 * restrict y0 = &y[i + 0];
  2653. const block_q8_0 * restrict y1 = &y[i + 1];
  2654. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2655. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2656. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2657. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2658. // load y
  2659. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2660. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2661. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2662. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2663. #if defined(__ARM_FEATURE_DOTPROD)
  2664. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2666. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2667. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2668. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2669. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2670. #else
  2671. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2672. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2673. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2674. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2675. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2676. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2677. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2678. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2679. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2680. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2681. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2682. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2683. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2684. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2685. #endif
  2686. }
  2687. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2688. #elif defined(__AVX2__) || defined(__AVX__)
  2689. // Initialize accumulator with zeros
  2690. __m256 acc = _mm256_setzero_ps();
  2691. // Main loop
  2692. for (int i = 0; i < nb; ++i) {
  2693. // Compute combined scale for the block
  2694. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2695. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2696. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2697. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2698. // Multiply q with scale and accumulate
  2699. #if defined(__AVX2__)
  2700. acc = _mm256_fmadd_ps( d, q, acc );
  2701. #else
  2702. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2703. #endif
  2704. }
  2705. *s = hsum_float_8(acc);
  2706. #else
  2707. // scalar
  2708. float sumf = 0.0;
  2709. for (int i = 0; i < nb; i++) {
  2710. int sumi = 0;
  2711. for (int j = 0; j < qk; j++) {
  2712. sumi += x[i].qs[j]*y[i].qs[j];
  2713. }
  2714. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2715. }
  2716. *s = sumf;
  2717. #endif
  2718. }
  2719. // compute GGML_VEC_DOT_UNROLL dot products at once
  2720. // xs - x row stride in bytes
  2721. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2722. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2723. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2724. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2725. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2726. }
  2727. #if defined(GGML_SIMD)
  2728. const int np = (n & ~(GGML_F16_STEP - 1));
  2729. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2730. GGML_F16_VEC ax[GGML_F16_ARR];
  2731. GGML_F16_VEC ay[GGML_F16_ARR];
  2732. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2733. for (int j = 0; j < GGML_F16_ARR; j++) {
  2734. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2735. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2736. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2737. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2738. }
  2739. }
  2740. }
  2741. // reduce sum0..sum3 to sum0
  2742. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2743. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2744. }
  2745. // leftovers
  2746. for (int i = np; i < n; ++i) {
  2747. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2748. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2749. }
  2750. }
  2751. #else
  2752. for (int i = 0; i < n; ++i) {
  2753. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2754. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2755. }
  2756. }
  2757. #endif
  2758. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2759. s[i] = sumf[i];
  2760. }
  2761. }
  2762. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ax[GGML_F32_ARR];
  2767. GGML_F32_VEC ay[GGML_F32_ARR];
  2768. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2769. for (int j = 0; j < GGML_F32_ARR; j++) {
  2770. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2771. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2772. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2773. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2774. }
  2775. }
  2776. // leftovers
  2777. for (int i = np; i < n; ++i) {
  2778. y[i] += x[i]*v;
  2779. }
  2780. #else
  2781. // scalar
  2782. for (int i = 0; i < n; ++i) {
  2783. y[i] += x[i]*v;
  2784. }
  2785. #endif
  2786. }
  2787. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2788. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2789. #if defined(GGML_SIMD)
  2790. const int np = (n & ~(GGML_F32_STEP - 1));
  2791. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2792. GGML_F32_VEC ay[GGML_F32_ARR];
  2793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2794. for (int j = 0; j < GGML_F32_ARR; j++) {
  2795. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2796. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2797. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2798. }
  2799. }
  2800. // leftovers
  2801. for (int i = np; i < n; ++i) {
  2802. y[i] *= v;
  2803. }
  2804. #else
  2805. // scalar
  2806. for (int i = 0; i < n; ++i) {
  2807. y[i] *= v;
  2808. }
  2809. #endif
  2810. }
  2811. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2812. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2813. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2814. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2815. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2816. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2817. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2818. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2819. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2820. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2821. static const float GELU_COEF_A = 0.044715f;
  2822. static const float GELU_QUICK_COEF = -1.702f;
  2823. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2824. inline static float ggml_gelu_f32(float x) {
  2825. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2826. }
  2827. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2828. const uint16_t * i16 = (const uint16_t *) x;
  2829. for (int i = 0; i < n; ++i) {
  2830. y[i] = table_gelu_f16[i16[i]];
  2831. }
  2832. }
  2833. #ifdef GGML_GELU_FP16
  2834. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2835. uint16_t t;
  2836. for (int i = 0; i < n; ++i) {
  2837. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2838. memcpy(&t, &fp16, sizeof(uint16_t));
  2839. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2840. }
  2841. }
  2842. #else
  2843. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2844. for (int i = 0; i < n; ++i) {
  2845. y[i] = ggml_gelu_f32(x[i]);
  2846. }
  2847. }
  2848. #endif
  2849. inline static float ggml_gelu_quick_f32(float x) {
  2850. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2851. }
  2852. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2853. // const uint16_t * i16 = (const uint16_t *) x;
  2854. // for (int i = 0; i < n; ++i) {
  2855. // y[i] = table_gelu_quick_f16[i16[i]];
  2856. // }
  2857. //}
  2858. #ifdef GGML_GELU_QUICK_FP16
  2859. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2860. uint16_t t;
  2861. for (int i = 0; i < n; ++i) {
  2862. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2863. memcpy(&t, &fp16, sizeof(uint16_t));
  2864. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2865. }
  2866. }
  2867. #else
  2868. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2869. for (int i = 0; i < n; ++i) {
  2870. y[i] = ggml_gelu_quick_f32(x[i]);
  2871. }
  2872. }
  2873. #endif
  2874. // Sigmoid Linear Unit (SiLU) function
  2875. inline static float ggml_silu_f32(float x) {
  2876. return x/(1.0f + expf(-x));
  2877. }
  2878. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2879. // const uint16_t * i16 = (const uint16_t *) x;
  2880. // for (int i = 0; i < n; ++i) {
  2881. // y[i] = table_silu_f16[i16[i]];
  2882. // }
  2883. //}
  2884. #ifdef GGML_SILU_FP16
  2885. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2886. uint16_t t;
  2887. for (int i = 0; i < n; ++i) {
  2888. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2889. memcpy(&t, &fp16, sizeof(uint16_t));
  2890. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2891. }
  2892. }
  2893. #else
  2894. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2895. for (int i = 0; i < n; ++i) {
  2896. y[i] = ggml_silu_f32(x[i]);
  2897. }
  2898. }
  2899. #endif
  2900. inline static float ggml_silu_backward_f32(float x, float dy) {
  2901. const float s = 1.0f/(1.0f + expf(-x));
  2902. return dy*s*(1.0f + x*(1.0f - s));
  2903. }
  2904. #ifdef GGML_SILU_FP16
  2905. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2906. for (int i = 0; i < n; ++i) {
  2907. // we did not use x[i] to compute forward silu but its f16 equivalent
  2908. // take derivative at f16 of x[i]:
  2909. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2910. float usedx = GGML_FP16_TO_FP32(fp16);
  2911. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2912. }
  2913. }
  2914. #else
  2915. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2916. for (int i = 0; i < n; ++i) {
  2917. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2918. }
  2919. }
  2920. #endif
  2921. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2922. #ifndef GGML_USE_ACCELERATE
  2923. ggml_float sum = 0.0;
  2924. for (int i = 0; i < n; ++i) {
  2925. sum += (ggml_float)x[i];
  2926. }
  2927. *s = sum;
  2928. #else
  2929. vDSP_sve(x, 1, s, n);
  2930. #endif
  2931. }
  2932. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2933. ggml_float sum = 0.0;
  2934. for (int i = 0; i < n; ++i) {
  2935. sum += (ggml_float)x[i];
  2936. }
  2937. *s = sum;
  2938. }
  2939. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2940. #ifndef GGML_USE_ACCELERATE
  2941. float max = -INFINITY;
  2942. for (int i = 0; i < n; ++i) {
  2943. max = MAX(max, x[i]);
  2944. }
  2945. *s = max;
  2946. #else
  2947. vDSP_maxv(x, 1, s, n);
  2948. #endif
  2949. }
  2950. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2951. ggml_vec_norm_f32(n, s, x);
  2952. *s = 1.f/(*s);
  2953. }
  2954. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2955. float max = -INFINITY;
  2956. int idx = 0;
  2957. for (int i = 0; i < n; ++i) {
  2958. max = MAX(max, x[i]);
  2959. if (max == x[i]) { idx = i; }
  2960. }
  2961. *s = idx;
  2962. }
  2963. //
  2964. // data types
  2965. //
  2966. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2967. [GGML_TYPE_F32] = 1,
  2968. [GGML_TYPE_F16] = 1,
  2969. [GGML_TYPE_Q4_0] = QK4_0,
  2970. [GGML_TYPE_Q4_1] = QK4_1,
  2971. [GGML_TYPE_Q5_0] = QK5_0,
  2972. [GGML_TYPE_Q5_1] = QK5_1,
  2973. [GGML_TYPE_Q8_0] = QK8_0,
  2974. [GGML_TYPE_Q8_1] = QK8_1,
  2975. #ifdef GGML_USE_K_QUANTS
  2976. [GGML_TYPE_Q2_K] = QK_K,
  2977. [GGML_TYPE_Q3_K] = QK_K,
  2978. [GGML_TYPE_Q4_K] = QK_K,
  2979. [GGML_TYPE_Q5_K] = QK_K,
  2980. [GGML_TYPE_Q6_K] = QK_K,
  2981. [GGML_TYPE_Q8_K] = QK_K,
  2982. #endif
  2983. [GGML_TYPE_I8] = 1,
  2984. [GGML_TYPE_I16] = 1,
  2985. [GGML_TYPE_I32] = 1,
  2986. };
  2987. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2988. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2989. [GGML_TYPE_F32] = sizeof(float),
  2990. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2991. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2992. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2993. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2994. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2995. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2996. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2997. #ifdef GGML_USE_K_QUANTS
  2998. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2999. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  3000. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  3001. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  3002. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3003. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3004. #endif
  3005. [GGML_TYPE_I8] = sizeof(int8_t),
  3006. [GGML_TYPE_I16] = sizeof(int16_t),
  3007. [GGML_TYPE_I32] = sizeof(int32_t),
  3008. };
  3009. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3010. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3011. [GGML_TYPE_F32] = "f32",
  3012. [GGML_TYPE_F16] = "f16",
  3013. [GGML_TYPE_Q4_0] = "q4_0",
  3014. [GGML_TYPE_Q4_1] = "q4_1",
  3015. [GGML_TYPE_Q5_0] = "q5_0",
  3016. [GGML_TYPE_Q5_1] = "q5_1",
  3017. [GGML_TYPE_Q8_0] = "q8_0",
  3018. [GGML_TYPE_Q8_1] = "q8_1",
  3019. [GGML_TYPE_Q2_K] = "q2_K",
  3020. [GGML_TYPE_Q3_K] = "q3_K",
  3021. [GGML_TYPE_Q4_K] = "q4_K",
  3022. [GGML_TYPE_Q5_K] = "q5_K",
  3023. [GGML_TYPE_Q6_K] = "q6_K",
  3024. [GGML_TYPE_Q8_K] = "q8_K",
  3025. [GGML_TYPE_I8] = "i8",
  3026. [GGML_TYPE_I16] = "i16",
  3027. [GGML_TYPE_I32] = "i32",
  3028. };
  3029. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3030. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3031. [GGML_TYPE_F32] = false,
  3032. [GGML_TYPE_F16] = false,
  3033. [GGML_TYPE_Q4_0] = true,
  3034. [GGML_TYPE_Q4_1] = true,
  3035. [GGML_TYPE_Q5_0] = true,
  3036. [GGML_TYPE_Q5_1] = true,
  3037. [GGML_TYPE_Q8_0] = true,
  3038. [GGML_TYPE_Q8_1] = true,
  3039. [GGML_TYPE_Q2_K] = true,
  3040. [GGML_TYPE_Q3_K] = true,
  3041. [GGML_TYPE_Q4_K] = true,
  3042. [GGML_TYPE_Q5_K] = true,
  3043. [GGML_TYPE_Q6_K] = true,
  3044. [GGML_TYPE_Q8_K] = true,
  3045. [GGML_TYPE_I8] = false,
  3046. [GGML_TYPE_I16] = false,
  3047. [GGML_TYPE_I32] = false,
  3048. };
  3049. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3050. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3051. "NONE",
  3052. "DUP",
  3053. "ADD",
  3054. "ADD1",
  3055. "ACC",
  3056. "SUB",
  3057. "MUL",
  3058. "DIV",
  3059. "SQR",
  3060. "SQRT",
  3061. "LOG",
  3062. "SUM",
  3063. "SUM_ROWS",
  3064. "MEAN",
  3065. "ARGMAX",
  3066. "REPEAT",
  3067. "REPEAT_BACK",
  3068. "ABS",
  3069. "SGN",
  3070. "NEG",
  3071. "STEP",
  3072. "TANH",
  3073. "ELU",
  3074. "RELU",
  3075. "GELU",
  3076. "GELU_QUICK",
  3077. "SILU",
  3078. "SILU_BACK",
  3079. "NORM",
  3080. "RMS_NORM",
  3081. "RMS_NORM_BACK",
  3082. "MUL_MAT",
  3083. "OUT_PROD",
  3084. "SCALE",
  3085. "SET",
  3086. "CPY",
  3087. "CONT",
  3088. "RESHAPE",
  3089. "VIEW",
  3090. "PERMUTE",
  3091. "TRANSPOSE",
  3092. "GET_ROWS",
  3093. "GET_ROWS_BACK",
  3094. "DIAG",
  3095. "DIAG_MASK_INF",
  3096. "DIAG_MASK_ZERO",
  3097. "SOFT_MAX",
  3098. "SOFT_MAX_BACK",
  3099. "ROPE",
  3100. "ROPE_BACK",
  3101. "ALIBI",
  3102. "CLAMP",
  3103. "CONV_1D",
  3104. "CONV_2D",
  3105. "POOL_1D",
  3106. "POOL_2D",
  3107. "FLASH_ATTN",
  3108. "FLASH_FF",
  3109. "FLASH_ATTN_BACK",
  3110. "WIN_PART",
  3111. "WIN_UNPART",
  3112. "MAP_UNARY",
  3113. "MAP_BINARY",
  3114. "MAP_CUSTOM1",
  3115. "MAP_CUSTOM2",
  3116. "MAP_CUSTOM3",
  3117. "CROSS_ENTROPY_LOSS",
  3118. "CROSS_ENTROPY_LOSS_BACK",
  3119. };
  3120. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3121. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3122. "none",
  3123. "x",
  3124. "x+y",
  3125. "x+y",
  3126. "view(x,nb,offset)+=y->x",
  3127. "x-y",
  3128. "x*y",
  3129. "x/y",
  3130. "x^2",
  3131. "√x",
  3132. "log(x)",
  3133. "Σx",
  3134. "Σx_k",
  3135. "Σx/n",
  3136. "argmax(x)",
  3137. "repeat(x)",
  3138. "repeat_back(x)",
  3139. "abs(x)",
  3140. "sgn(x)",
  3141. "-x",
  3142. "step(x)",
  3143. "tanh(x)",
  3144. "elu(x)",
  3145. "relu(x)",
  3146. "gelu(x)",
  3147. "gelu_quick(x)",
  3148. "silu(x)",
  3149. "silu_back(x)",
  3150. "norm(x)",
  3151. "rms_norm(x)",
  3152. "rms_norm_back(x)",
  3153. "X*Y",
  3154. "X*Y",
  3155. "x*v",
  3156. "y-\\>view(x)",
  3157. "x-\\>y",
  3158. "cont(x)",
  3159. "reshape(x)",
  3160. "view(x)",
  3161. "permute(x)",
  3162. "transpose(x)",
  3163. "get_rows(x)",
  3164. "get_rows_back(x)",
  3165. "diag(x)",
  3166. "diag_mask_inf(x)",
  3167. "diag_mask_zero(x)",
  3168. "soft_max(x)",
  3169. "soft_max_back(x)",
  3170. "rope(x)",
  3171. "rope_back(x)",
  3172. "alibi(x)",
  3173. "clamp(x)",
  3174. "conv_1d(x)",
  3175. "conv_2d(x)",
  3176. "pool_1d(x)",
  3177. "pool_2d(x)",
  3178. "flash_attn(x)",
  3179. "flash_ff(x)",
  3180. "flash_attn_back(x)",
  3181. "win_part(x)",
  3182. "win_unpart(x)",
  3183. "f(x)",
  3184. "f(x,y)",
  3185. "custom(x)",
  3186. "custom(x,y)",
  3187. "custom(x,y,z)",
  3188. "cross_entropy_loss(x,y)",
  3189. "cross_entropy_loss_back(x,y)",
  3190. };
  3191. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3192. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3193. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3194. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3195. // WARN:
  3196. // Mis-confguration can lead to problem that's hard to reason about:
  3197. // * At best it crash or talks nosense.
  3198. // * At worst it talks slightly difference but hard to perceive.
  3199. //
  3200. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3201. // Take care about compile options (e.g., GGML_USE_xxx).
  3202. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3203. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3204. static void ggml_setup_op_has_task_pass(void) {
  3205. { // INIT
  3206. bool * p = GGML_OP_HAS_INIT;
  3207. p[GGML_OP_ACC ] = true;
  3208. p[GGML_OP_MUL_MAT ] = true;
  3209. p[GGML_OP_OUT_PROD ] = true;
  3210. p[GGML_OP_SET ] = true;
  3211. p[GGML_OP_GET_ROWS_BACK ] = true;
  3212. p[GGML_OP_DIAG_MASK_INF ] = true;
  3213. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3214. p[GGML_OP_CONV_1D ] = true;
  3215. p[GGML_OP_CONV_2D ] = true;
  3216. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3217. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3218. }
  3219. { // FINALIZE
  3220. bool * p = GGML_OP_HAS_FINALIZE;
  3221. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3222. }
  3223. }
  3224. //
  3225. // ggml context
  3226. //
  3227. struct ggml_context {
  3228. size_t mem_size;
  3229. void * mem_buffer;
  3230. bool mem_buffer_owned;
  3231. bool no_alloc;
  3232. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3233. int n_objects;
  3234. struct ggml_object * objects_begin;
  3235. struct ggml_object * objects_end;
  3236. struct ggml_scratch scratch;
  3237. struct ggml_scratch scratch_save;
  3238. };
  3239. struct ggml_context_container {
  3240. bool used;
  3241. struct ggml_context context;
  3242. };
  3243. //
  3244. // NUMA support
  3245. //
  3246. #define GGML_NUMA_MAX_NODES 8
  3247. #define GGML_NUMA_MAX_CPUS 512
  3248. struct ggml_numa_node {
  3249. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3250. uint32_t n_cpus;
  3251. };
  3252. struct ggml_numa_nodes {
  3253. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3254. uint32_t n_nodes;
  3255. uint32_t total_cpus; // hardware threads on system
  3256. };
  3257. //
  3258. // ggml state
  3259. //
  3260. struct ggml_state {
  3261. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3262. struct ggml_numa_nodes numa;
  3263. };
  3264. // global state
  3265. static struct ggml_state g_state;
  3266. static atomic_int g_state_barrier = 0;
  3267. // barrier via spin lock
  3268. inline static void ggml_critical_section_start(void) {
  3269. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3270. while (processing > 0) {
  3271. // wait for other threads to finish
  3272. atomic_fetch_sub(&g_state_barrier, 1);
  3273. sched_yield(); // TODO: reconsider this
  3274. processing = atomic_fetch_add(&g_state_barrier, 1);
  3275. }
  3276. }
  3277. // TODO: make this somehow automatically executed
  3278. // some sort of "sentry" mechanism
  3279. inline static void ggml_critical_section_end(void) {
  3280. atomic_fetch_sub(&g_state_barrier, 1);
  3281. }
  3282. void ggml_numa_init(void) {
  3283. if (g_state.numa.n_nodes > 0) {
  3284. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3285. return;
  3286. }
  3287. #ifdef __linux__
  3288. struct stat st;
  3289. char path[256];
  3290. int rv;
  3291. // enumerate nodes
  3292. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3293. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3294. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3295. if (stat(path, &st) != 0) { break; }
  3296. ++g_state.numa.n_nodes;
  3297. }
  3298. // enumerate CPUs
  3299. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3300. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3301. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3302. if (stat(path, &st) != 0) { break; }
  3303. ++g_state.numa.total_cpus;
  3304. }
  3305. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3306. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3307. g_state.numa.n_nodes = 0;
  3308. return;
  3309. }
  3310. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3311. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3312. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3313. node->n_cpus = 0;
  3314. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3315. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3316. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3317. if (stat(path, &st) == 0) {
  3318. node->cpus[node->n_cpus++] = c;
  3319. GGML_PRINT_DEBUG(" %u", c);
  3320. }
  3321. }
  3322. GGML_PRINT_DEBUG("\n");
  3323. }
  3324. if (ggml_is_numa()) {
  3325. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3326. if (fptr != NULL) {
  3327. char buf[42];
  3328. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3329. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3330. }
  3331. fclose(fptr);
  3332. }
  3333. }
  3334. #else
  3335. // TODO
  3336. #endif
  3337. }
  3338. bool ggml_is_numa(void) {
  3339. return g_state.numa.n_nodes > 1;
  3340. }
  3341. ////////////////////////////////////////////////////////////////////////////////
  3342. void ggml_print_object(const struct ggml_object * obj) {
  3343. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3344. obj->offs, obj->size, (const void *) obj->next);
  3345. }
  3346. void ggml_print_objects(const struct ggml_context * ctx) {
  3347. struct ggml_object * obj = ctx->objects_begin;
  3348. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3349. while (obj != NULL) {
  3350. ggml_print_object(obj);
  3351. obj = obj->next;
  3352. }
  3353. GGML_PRINT("%s: --- end ---\n", __func__);
  3354. }
  3355. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3358. }
  3359. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3362. }
  3363. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3364. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3365. // this should handle cases where the tensor is not contiguous in memory
  3366. // probaby just:
  3367. //
  3368. // return tensor->ne[3]*tensor->nb[3]
  3369. //
  3370. // is enough, but just in case, adding the second part
  3371. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3372. }
  3373. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3374. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3375. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3376. }
  3377. int ggml_blck_size(enum ggml_type type) {
  3378. return GGML_BLCK_SIZE[type];
  3379. }
  3380. size_t ggml_type_size(enum ggml_type type) {
  3381. return GGML_TYPE_SIZE[type];
  3382. }
  3383. float ggml_type_sizef(enum ggml_type type) {
  3384. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3385. }
  3386. const char * ggml_type_name(enum ggml_type type) {
  3387. return GGML_TYPE_NAME[type];
  3388. }
  3389. const char * ggml_op_name(enum ggml_op op) {
  3390. return GGML_OP_NAME[op];
  3391. }
  3392. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3393. return GGML_TYPE_SIZE[tensor->type];
  3394. }
  3395. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3398. }
  3399. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3402. }
  3403. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3404. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3405. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3406. }
  3407. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3408. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3409. return (t0->ne[0] == t1->ne[0]) &&
  3410. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3411. (t1->ne[3]%t0->ne[3] == 0);
  3412. }
  3413. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3414. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3415. return
  3416. (t0->ne[1] == t1->ne[1]) &&
  3417. (t0->ne[2] == t1->ne[2]) &&
  3418. (t0->ne[3] == t1->ne[3]);
  3419. }
  3420. bool ggml_is_quantized(enum ggml_type type) {
  3421. return GGML_IS_QUANTIZED[type];
  3422. }
  3423. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3424. enum ggml_type wtype = GGML_TYPE_COUNT;
  3425. switch (ftype) {
  3426. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3427. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3428. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3429. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3430. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3431. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3432. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3433. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3434. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3435. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3436. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3437. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3438. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3439. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3440. }
  3441. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3442. return wtype;
  3443. }
  3444. size_t ggml_tensor_overhead(void) {
  3445. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3446. }
  3447. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3448. return tensor->nb[0] > tensor->nb[1];
  3449. }
  3450. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return
  3453. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3454. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3455. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3456. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3457. }
  3458. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3459. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3460. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3461. }
  3462. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3463. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3464. return
  3465. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3466. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3467. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3468. }
  3469. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3470. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3471. return
  3472. (t0->ne[0] == t1->ne[0] ) &&
  3473. (t0->ne[1] == t1->ne[1] ) &&
  3474. (t0->ne[2] == t1->ne[2] ) &&
  3475. (t0->ne[3] == t1->ne[3] );
  3476. }
  3477. // check if t1 can be represented as a repeatition of t0
  3478. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3479. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3480. return
  3481. (t1->ne[0]%t0->ne[0] == 0) &&
  3482. (t1->ne[1]%t0->ne[1] == 0) &&
  3483. (t1->ne[2]%t0->ne[2] == 0) &&
  3484. (t1->ne[3]%t0->ne[3] == 0);
  3485. }
  3486. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3487. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3488. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3489. }
  3490. static inline int ggml_up32(int n) {
  3491. return (n + 31) & ~31;
  3492. }
  3493. //static inline int ggml_up64(int n) {
  3494. // return (n + 63) & ~63;
  3495. //}
  3496. static inline int ggml_up(int n, int m) {
  3497. // assert m is a power of 2
  3498. GGML_ASSERT((m & (m - 1)) == 0);
  3499. return (n + m - 1) & ~(m - 1);
  3500. }
  3501. // assert that pointer is aligned to GGML_MEM_ALIGN
  3502. #define ggml_assert_aligned(ptr) \
  3503. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3504. ////////////////////////////////////////////////////////////////////////////////
  3505. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3506. // make this function thread safe
  3507. ggml_critical_section_start();
  3508. static bool is_first_call = true;
  3509. if (is_first_call) {
  3510. // initialize time system (required on Windows)
  3511. ggml_time_init();
  3512. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3513. {
  3514. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3515. ggml_fp16_t ii;
  3516. for (int i = 0; i < (1 << 16); ++i) {
  3517. uint16_t ui = i;
  3518. memcpy(&ii, &ui, sizeof(ii));
  3519. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3520. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3521. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3522. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3523. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3524. }
  3525. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3526. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3527. }
  3528. // initialize g_state
  3529. {
  3530. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3531. g_state = (struct ggml_state) {
  3532. /*.contexts =*/ { { 0 } },
  3533. /*.numa =*/ {
  3534. .n_nodes = 0,
  3535. .total_cpus = 0,
  3536. },
  3537. };
  3538. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3539. g_state.contexts[i].used = false;
  3540. }
  3541. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3542. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3543. }
  3544. #if defined(GGML_USE_CUBLAS)
  3545. ggml_init_cublas();
  3546. #elif defined(GGML_USE_CLBLAST)
  3547. ggml_cl_init();
  3548. #endif
  3549. ggml_setup_op_has_task_pass();
  3550. is_first_call = false;
  3551. }
  3552. // find non-used context in g_state
  3553. struct ggml_context * ctx = NULL;
  3554. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3555. if (!g_state.contexts[i].used) {
  3556. g_state.contexts[i].used = true;
  3557. ctx = &g_state.contexts[i].context;
  3558. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3559. break;
  3560. }
  3561. }
  3562. if (ctx == NULL) {
  3563. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3564. ggml_critical_section_end();
  3565. return NULL;
  3566. }
  3567. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3568. *ctx = (struct ggml_context) {
  3569. /*.mem_size =*/ mem_size,
  3570. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3571. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3572. /*.no_alloc =*/ params.no_alloc,
  3573. /*.no_alloc_save =*/ params.no_alloc,
  3574. /*.n_objects =*/ 0,
  3575. /*.objects_begin =*/ NULL,
  3576. /*.objects_end =*/ NULL,
  3577. /*.scratch =*/ { 0, 0, NULL, },
  3578. /*.scratch_save =*/ { 0, 0, NULL, },
  3579. };
  3580. GGML_ASSERT(ctx->mem_buffer != NULL);
  3581. ggml_assert_aligned(ctx->mem_buffer);
  3582. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3583. ggml_critical_section_end();
  3584. return ctx;
  3585. }
  3586. void ggml_free(struct ggml_context * ctx) {
  3587. // make this function thread safe
  3588. ggml_critical_section_start();
  3589. bool found = false;
  3590. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3591. if (&g_state.contexts[i].context == ctx) {
  3592. g_state.contexts[i].used = false;
  3593. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3594. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3595. if (ctx->mem_buffer_owned) {
  3596. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3597. }
  3598. found = true;
  3599. break;
  3600. }
  3601. }
  3602. if (!found) {
  3603. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3604. }
  3605. ggml_critical_section_end();
  3606. }
  3607. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3608. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3609. }
  3610. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3611. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3612. ctx->scratch = scratch;
  3613. return result;
  3614. }
  3615. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3616. ctx->no_alloc = no_alloc;
  3617. }
  3618. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3619. return ctx->mem_buffer;
  3620. }
  3621. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3622. return ctx->mem_size;
  3623. }
  3624. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3625. size_t max_size = 0;
  3626. struct ggml_object * obj = ctx->objects_begin;
  3627. while (obj != NULL) {
  3628. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3629. const size_t size = ggml_nbytes(tensor);
  3630. if (max_size < size) {
  3631. max_size = size;
  3632. }
  3633. obj = obj->next;
  3634. }
  3635. return max_size;
  3636. }
  3637. // IMPORTANT:
  3638. // when creating "opt" tensors, always save and load the scratch buffer
  3639. // this is an error prone process, but it is necessary to support inplace
  3640. // operators when using scratch buffers
  3641. // TODO: implement a better way
  3642. void ggml_scratch_save(struct ggml_context * ctx) {
  3643. // this is needed to allow opt tensors to store their data
  3644. // TODO: again, need to find a better way
  3645. ctx->no_alloc_save = ctx->no_alloc;
  3646. ctx->no_alloc = false;
  3647. ctx->scratch_save = ctx->scratch;
  3648. ctx->scratch.data = NULL;
  3649. }
  3650. void ggml_scratch_load(struct ggml_context * ctx) {
  3651. ctx->no_alloc = ctx->no_alloc_save;
  3652. ctx->scratch = ctx->scratch_save;
  3653. }
  3654. ////////////////////////////////////////////////////////////////////////////////
  3655. struct ggml_tensor * ggml_new_tensor_impl(
  3656. struct ggml_context * ctx,
  3657. enum ggml_type type,
  3658. int n_dims,
  3659. const int64_t* ne,
  3660. void* data) {
  3661. // always insert objects at the end of the context's memory pool
  3662. struct ggml_object * obj_cur = ctx->objects_end;
  3663. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3664. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3665. const size_t cur_end = cur_offs + cur_size;
  3666. size_t size_needed = 0;
  3667. if (data == NULL && !ctx->no_alloc) {
  3668. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3669. for (int i = 1; i < n_dims; i++) {
  3670. size_needed *= ne[i];
  3671. }
  3672. // align to GGML_MEM_ALIGN
  3673. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3674. }
  3675. char * const mem_buffer = ctx->mem_buffer;
  3676. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3677. if (ctx->scratch.data == NULL || data != NULL) {
  3678. size_needed += GGML_TENSOR_SIZE;
  3679. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3680. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3681. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3682. assert(false);
  3683. return NULL;
  3684. }
  3685. *obj_new = (struct ggml_object) {
  3686. .offs = cur_end + GGML_OBJECT_SIZE,
  3687. .size = size_needed,
  3688. .next = NULL,
  3689. };
  3690. } else {
  3691. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3692. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3693. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3694. assert(false);
  3695. return NULL;
  3696. }
  3697. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3698. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3699. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3700. assert(false);
  3701. return NULL;
  3702. }
  3703. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3704. *obj_new = (struct ggml_object) {
  3705. .offs = cur_end + GGML_OBJECT_SIZE,
  3706. .size = GGML_TENSOR_SIZE,
  3707. .next = NULL,
  3708. };
  3709. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3710. ctx->scratch.offs += size_needed;
  3711. }
  3712. if (obj_cur != NULL) {
  3713. obj_cur->next = obj_new;
  3714. } else {
  3715. // this is the first object in this context
  3716. ctx->objects_begin = obj_new;
  3717. }
  3718. ctx->objects_end = obj_new;
  3719. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3720. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3721. ggml_assert_aligned(result);
  3722. *result = (struct ggml_tensor) {
  3723. /*.type =*/ type,
  3724. /*.backend =*/ GGML_BACKEND_CPU,
  3725. /*.n_dims =*/ n_dims,
  3726. /*.ne =*/ { 1, 1, 1, 1 },
  3727. /*.nb =*/ { 0, 0, 0, 0 },
  3728. /*.op =*/ GGML_OP_NONE,
  3729. /*.is_param =*/ false,
  3730. /*.grad =*/ NULL,
  3731. /*.src =*/ { NULL },
  3732. /*.perf_runs =*/ 0,
  3733. /*.perf_cycles =*/ 0,
  3734. /*.perf_time_us =*/ 0,
  3735. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3736. /*.name =*/ { 0 },
  3737. /*.extra =*/ NULL,
  3738. /*.padding =*/ { 0 },
  3739. };
  3740. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3741. //ggml_assert_aligned(result->data);
  3742. for (int i = 0; i < n_dims; i++) {
  3743. result->ne[i] = ne[i];
  3744. }
  3745. result->nb[0] = GGML_TYPE_SIZE[type];
  3746. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3747. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3748. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3749. }
  3750. ctx->n_objects++;
  3751. return result;
  3752. }
  3753. struct ggml_tensor * ggml_new_tensor(
  3754. struct ggml_context * ctx,
  3755. enum ggml_type type,
  3756. int n_dims,
  3757. const int64_t * ne) {
  3758. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3759. }
  3760. struct ggml_tensor * ggml_new_tensor_1d(
  3761. struct ggml_context * ctx,
  3762. enum ggml_type type,
  3763. int64_t ne0) {
  3764. return ggml_new_tensor(ctx, type, 1, &ne0);
  3765. }
  3766. struct ggml_tensor * ggml_new_tensor_2d(
  3767. struct ggml_context * ctx,
  3768. enum ggml_type type,
  3769. int64_t ne0,
  3770. int64_t ne1) {
  3771. const int64_t ne[2] = { ne0, ne1 };
  3772. return ggml_new_tensor(ctx, type, 2, ne);
  3773. }
  3774. struct ggml_tensor * ggml_new_tensor_3d(
  3775. struct ggml_context * ctx,
  3776. enum ggml_type type,
  3777. int64_t ne0,
  3778. int64_t ne1,
  3779. int64_t ne2) {
  3780. const int64_t ne[3] = { ne0, ne1, ne2 };
  3781. return ggml_new_tensor(ctx, type, 3, ne);
  3782. }
  3783. struct ggml_tensor * ggml_new_tensor_4d(
  3784. struct ggml_context * ctx,
  3785. enum ggml_type type,
  3786. int64_t ne0,
  3787. int64_t ne1,
  3788. int64_t ne2,
  3789. int64_t ne3) {
  3790. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3791. return ggml_new_tensor(ctx, type, 4, ne);
  3792. }
  3793. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3794. ggml_scratch_save(ctx);
  3795. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3796. ggml_scratch_load(ctx);
  3797. ggml_set_i32(result, value);
  3798. return result;
  3799. }
  3800. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3801. ggml_scratch_save(ctx);
  3802. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3803. ggml_scratch_load(ctx);
  3804. ggml_set_f32(result, value);
  3805. return result;
  3806. }
  3807. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3808. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3809. }
  3810. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3811. memset(tensor->data, 0, ggml_nbytes(tensor));
  3812. return tensor;
  3813. }
  3814. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3815. const int n = ggml_nrows(tensor);
  3816. const int nc = tensor->ne[0];
  3817. const size_t n1 = tensor->nb[1];
  3818. char * const data = tensor->data;
  3819. switch (tensor->type) {
  3820. case GGML_TYPE_I8:
  3821. {
  3822. assert(tensor->nb[0] == sizeof(int8_t));
  3823. for (int i = 0; i < n; i++) {
  3824. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3825. }
  3826. } break;
  3827. case GGML_TYPE_I16:
  3828. {
  3829. assert(tensor->nb[0] == sizeof(int16_t));
  3830. for (int i = 0; i < n; i++) {
  3831. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3832. }
  3833. } break;
  3834. case GGML_TYPE_I32:
  3835. {
  3836. assert(tensor->nb[0] == sizeof(int32_t));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3839. }
  3840. } break;
  3841. case GGML_TYPE_F16:
  3842. {
  3843. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3844. for (int i = 0; i < n; i++) {
  3845. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3846. }
  3847. } break;
  3848. case GGML_TYPE_F32:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(float));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. default:
  3856. {
  3857. GGML_ASSERT(false);
  3858. } break;
  3859. }
  3860. return tensor;
  3861. }
  3862. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3863. const int n = ggml_nrows(tensor);
  3864. const int nc = tensor->ne[0];
  3865. const size_t n1 = tensor->nb[1];
  3866. char * const data = tensor->data;
  3867. switch (tensor->type) {
  3868. case GGML_TYPE_I8:
  3869. {
  3870. assert(tensor->nb[0] == sizeof(int8_t));
  3871. for (int i = 0; i < n; i++) {
  3872. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3873. }
  3874. } break;
  3875. case GGML_TYPE_I16:
  3876. {
  3877. assert(tensor->nb[0] == sizeof(int16_t));
  3878. for (int i = 0; i < n; i++) {
  3879. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3880. }
  3881. } break;
  3882. case GGML_TYPE_I32:
  3883. {
  3884. assert(tensor->nb[0] == sizeof(int32_t));
  3885. for (int i = 0; i < n; i++) {
  3886. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3887. }
  3888. } break;
  3889. case GGML_TYPE_F16:
  3890. {
  3891. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3892. for (int i = 0; i < n; i++) {
  3893. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3894. }
  3895. } break;
  3896. case GGML_TYPE_F32:
  3897. {
  3898. assert(tensor->nb[0] == sizeof(float));
  3899. for (int i = 0; i < n; i++) {
  3900. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3901. }
  3902. } break;
  3903. default:
  3904. {
  3905. GGML_ASSERT(false);
  3906. } break;
  3907. }
  3908. return tensor;
  3909. }
  3910. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3911. switch (tensor->type) {
  3912. case GGML_TYPE_I8:
  3913. {
  3914. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3915. return ((int8_t *)(tensor->data))[i];
  3916. } break;
  3917. case GGML_TYPE_I16:
  3918. {
  3919. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3920. return ((int16_t *)(tensor->data))[i];
  3921. } break;
  3922. case GGML_TYPE_I32:
  3923. {
  3924. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3925. return ((int32_t *)(tensor->data))[i];
  3926. } break;
  3927. case GGML_TYPE_F16:
  3928. {
  3929. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3930. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3931. } break;
  3932. case GGML_TYPE_F32:
  3933. {
  3934. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3935. return ((float *)(tensor->data))[i];
  3936. } break;
  3937. default:
  3938. {
  3939. GGML_ASSERT(false);
  3940. } break;
  3941. }
  3942. return 0.0f;
  3943. }
  3944. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3945. switch (tensor->type) {
  3946. case GGML_TYPE_I8:
  3947. {
  3948. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3949. ((int8_t *)(tensor->data))[i] = value;
  3950. } break;
  3951. case GGML_TYPE_I16:
  3952. {
  3953. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3954. ((int16_t *)(tensor->data))[i] = value;
  3955. } break;
  3956. case GGML_TYPE_I32:
  3957. {
  3958. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3959. ((int32_t *)(tensor->data))[i] = value;
  3960. } break;
  3961. case GGML_TYPE_F16:
  3962. {
  3963. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3964. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3965. } break;
  3966. case GGML_TYPE_F32:
  3967. {
  3968. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3969. ((float *)(tensor->data))[i] = value;
  3970. } break;
  3971. default:
  3972. {
  3973. GGML_ASSERT(false);
  3974. } break;
  3975. }
  3976. }
  3977. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3978. switch (tensor->type) {
  3979. case GGML_TYPE_I8:
  3980. {
  3981. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3982. return ((int8_t *)(tensor->data))[i];
  3983. } break;
  3984. case GGML_TYPE_I16:
  3985. {
  3986. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3987. return ((int16_t *)(tensor->data))[i];
  3988. } break;
  3989. case GGML_TYPE_I32:
  3990. {
  3991. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3992. return ((int32_t *)(tensor->data))[i];
  3993. } break;
  3994. case GGML_TYPE_F16:
  3995. {
  3996. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3997. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3998. } break;
  3999. case GGML_TYPE_F32:
  4000. {
  4001. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4002. return ((float *)(tensor->data))[i];
  4003. } break;
  4004. default:
  4005. {
  4006. GGML_ASSERT(false);
  4007. } break;
  4008. }
  4009. return 0.0f;
  4010. }
  4011. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4012. switch (tensor->type) {
  4013. case GGML_TYPE_I8:
  4014. {
  4015. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4016. ((int8_t *)(tensor->data))[i] = value;
  4017. } break;
  4018. case GGML_TYPE_I16:
  4019. {
  4020. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4021. ((int16_t *)(tensor->data))[i] = value;
  4022. } break;
  4023. case GGML_TYPE_I32:
  4024. {
  4025. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4026. ((int32_t *)(tensor->data))[i] = value;
  4027. } break;
  4028. case GGML_TYPE_F16:
  4029. {
  4030. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4031. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4032. } break;
  4033. case GGML_TYPE_F32:
  4034. {
  4035. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4036. ((float *)(tensor->data))[i] = value;
  4037. } break;
  4038. default:
  4039. {
  4040. GGML_ASSERT(false);
  4041. } break;
  4042. }
  4043. }
  4044. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4045. return tensor->data;
  4046. }
  4047. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4048. assert(tensor->type == GGML_TYPE_F32);
  4049. return (float *)(tensor->data);
  4050. }
  4051. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4052. return tensor->name;
  4053. }
  4054. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4055. strncpy(tensor->name, name, sizeof(tensor->name));
  4056. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4057. return tensor;
  4058. }
  4059. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4060. va_list args;
  4061. va_start(args, fmt);
  4062. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4063. va_end(args);
  4064. return tensor;
  4065. }
  4066. struct ggml_tensor * ggml_view_tensor(
  4067. struct ggml_context * ctx,
  4068. const struct ggml_tensor * src) {
  4069. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4070. ggml_format_name(result, "%s (view)", src->name);
  4071. result->nb[0] = src->nb[0];
  4072. result->nb[1] = src->nb[1];
  4073. result->nb[2] = src->nb[2];
  4074. result->nb[3] = src->nb[3];
  4075. return result;
  4076. }
  4077. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4078. struct ggml_object * obj = ctx->objects_begin;
  4079. char * const mem_buffer = ctx->mem_buffer;
  4080. while (obj != NULL) {
  4081. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4082. if (strcmp(cur->name, name) == 0) {
  4083. return cur;
  4084. }
  4085. obj = obj->next;
  4086. }
  4087. return NULL;
  4088. }
  4089. ////////////////////////////////////////////////////////////////////////////////
  4090. // ggml_dup
  4091. struct ggml_tensor * ggml_dup_impl(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a,
  4094. bool inplace) {
  4095. bool is_node = false;
  4096. if (!inplace && (a->grad)) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4100. result->op = GGML_OP_DUP;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src[0] = a;
  4103. result->src[1] = NULL;
  4104. return result;
  4105. }
  4106. struct ggml_tensor * ggml_dup(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a) {
  4109. return ggml_dup_impl(ctx, a, false);
  4110. }
  4111. struct ggml_tensor * ggml_dup_inplace(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_dup_impl(ctx, a, true);
  4115. }
  4116. // ggml_add
  4117. struct ggml_tensor * ggml_add_impl(
  4118. struct ggml_context * ctx,
  4119. struct ggml_tensor * a,
  4120. struct ggml_tensor * b,
  4121. bool inplace) {
  4122. // TODO: support less-strict constraint
  4123. // GGML_ASSERT(ggml_can_repeat(b, a));
  4124. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4125. bool is_node = false;
  4126. if (!inplace && (a->grad || b->grad)) {
  4127. // TODO: support backward pass for broadcasting
  4128. GGML_ASSERT(ggml_are_same_shape(a, b));
  4129. is_node = true;
  4130. }
  4131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4132. result->op = GGML_OP_ADD;
  4133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4134. result->src[0] = a;
  4135. result->src[1] = b;
  4136. return result;
  4137. }
  4138. struct ggml_tensor * ggml_add(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. struct ggml_tensor * b) {
  4142. return ggml_add_impl(ctx, a, b, false);
  4143. }
  4144. struct ggml_tensor * ggml_add_inplace(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b) {
  4148. return ggml_add_impl(ctx, a, b, true);
  4149. }
  4150. // ggml_add1
  4151. struct ggml_tensor * ggml_add1_impl(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b,
  4155. bool inplace) {
  4156. GGML_ASSERT(ggml_is_scalar(b));
  4157. GGML_ASSERT(ggml_is_padded_1d(a));
  4158. bool is_node = false;
  4159. if (a->grad || b->grad) {
  4160. is_node = true;
  4161. }
  4162. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4163. result->op = GGML_OP_ADD1;
  4164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4165. result->src[0] = a;
  4166. result->src[1] = b;
  4167. return result;
  4168. }
  4169. struct ggml_tensor * ggml_add1(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. struct ggml_tensor * b) {
  4173. return ggml_add1_impl(ctx, a, b, false);
  4174. }
  4175. struct ggml_tensor * ggml_add1_inplace(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b) {
  4179. return ggml_add1_impl(ctx, a, b, true);
  4180. }
  4181. // ggml_acc
  4182. struct ggml_tensor * ggml_acc_impl(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b,
  4186. size_t nb1,
  4187. size_t nb2,
  4188. size_t nb3,
  4189. size_t offset,
  4190. bool inplace) {
  4191. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4192. GGML_ASSERT(ggml_is_contiguous(a));
  4193. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4194. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4195. bool is_node = false;
  4196. if (!inplace && (a->grad || b->grad)) {
  4197. is_node = true;
  4198. }
  4199. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4200. ggml_scratch_save(ctx);
  4201. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4202. ((int32_t *) c->data)[0] = nb1;
  4203. ((int32_t *) c->data)[1] = nb2;
  4204. ((int32_t *) c->data)[2] = nb3;
  4205. ((int32_t *) c->data)[3] = offset;
  4206. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4207. ggml_scratch_load(ctx);
  4208. result->op = GGML_OP_ACC;
  4209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4210. result->src[0] = a;
  4211. result->src[1] = b;
  4212. result->src[2] = c;
  4213. return result;
  4214. }
  4215. struct ggml_tensor * ggml_acc(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. size_t nb1,
  4220. size_t nb2,
  4221. size_t nb3,
  4222. size_t offset) {
  4223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4224. }
  4225. struct ggml_tensor * ggml_acc_inplace(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. struct ggml_tensor * b,
  4229. size_t nb1,
  4230. size_t nb2,
  4231. size_t nb3,
  4232. size_t offset) {
  4233. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4234. }
  4235. // ggml_sub
  4236. struct ggml_tensor * ggml_sub_impl(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. struct ggml_tensor * b,
  4240. bool inplace) {
  4241. GGML_ASSERT(ggml_are_same_shape(a, b));
  4242. bool is_node = false;
  4243. if (!inplace && (a->grad || b->grad)) {
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4247. result->op = GGML_OP_SUB;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = b;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_sub(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b) {
  4257. return ggml_sub_impl(ctx, a, b, false);
  4258. }
  4259. struct ggml_tensor * ggml_sub_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b) {
  4263. return ggml_sub_impl(ctx, a, b, true);
  4264. }
  4265. // ggml_mul
  4266. struct ggml_tensor * ggml_mul_impl(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. struct ggml_tensor * b,
  4270. bool inplace) {
  4271. // TODO: support less-strict constraint
  4272. // GGML_ASSERT(ggml_can_repeat(b, a));
  4273. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4274. bool is_node = false;
  4275. if (!inplace && (a->grad || b->grad)) {
  4276. // TODO: support backward pass for broadcasting
  4277. GGML_ASSERT(ggml_are_same_shape(a, b));
  4278. is_node = true;
  4279. }
  4280. if (inplace) {
  4281. GGML_ASSERT(is_node == false);
  4282. }
  4283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4284. result->op = GGML_OP_MUL;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. result->src[1] = b;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_mul(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b) {
  4294. return ggml_mul_impl(ctx, a, b, false);
  4295. }
  4296. struct ggml_tensor * ggml_mul_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. return ggml_mul_impl(ctx, a, b, true);
  4301. }
  4302. // ggml_div
  4303. struct ggml_tensor * ggml_div_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. bool inplace) {
  4308. GGML_ASSERT(ggml_are_same_shape(a, b));
  4309. bool is_node = false;
  4310. if (!inplace && (a->grad || b->grad)) {
  4311. is_node = true;
  4312. }
  4313. if (inplace) {
  4314. GGML_ASSERT(is_node == false);
  4315. }
  4316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4317. result->op = GGML_OP_DIV;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src[0] = a;
  4320. result->src[1] = b;
  4321. return result;
  4322. }
  4323. struct ggml_tensor * ggml_div(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b) {
  4327. return ggml_div_impl(ctx, a, b, false);
  4328. }
  4329. struct ggml_tensor * ggml_div_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b) {
  4333. return ggml_div_impl(ctx, a, b, true);
  4334. }
  4335. // ggml_sqr
  4336. struct ggml_tensor * ggml_sqr_impl(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. bool inplace) {
  4340. bool is_node = false;
  4341. if (!inplace && (a->grad)) {
  4342. is_node = true;
  4343. }
  4344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4345. result->op = GGML_OP_SQR;
  4346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4347. result->src[0] = a;
  4348. result->src[1] = NULL;
  4349. return result;
  4350. }
  4351. struct ggml_tensor * ggml_sqr(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a) {
  4354. return ggml_sqr_impl(ctx, a, false);
  4355. }
  4356. struct ggml_tensor * ggml_sqr_inplace(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a) {
  4359. return ggml_sqr_impl(ctx, a, true);
  4360. }
  4361. // ggml_sqrt
  4362. struct ggml_tensor * ggml_sqrt_impl(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a,
  4365. bool inplace) {
  4366. bool is_node = false;
  4367. if (!inplace && (a->grad)) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. result->op = GGML_OP_SQRT;
  4372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4373. result->src[0] = a;
  4374. result->src[1] = NULL;
  4375. return result;
  4376. }
  4377. struct ggml_tensor * ggml_sqrt(
  4378. struct ggml_context * ctx,
  4379. struct ggml_tensor * a) {
  4380. return ggml_sqrt_impl(ctx, a, false);
  4381. }
  4382. struct ggml_tensor * ggml_sqrt_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a) {
  4385. return ggml_sqrt_impl(ctx, a, true);
  4386. }
  4387. // ggml_log
  4388. struct ggml_tensor * ggml_log_impl(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. bool inplace) {
  4392. bool is_node = false;
  4393. if (!inplace && (a->grad)) {
  4394. is_node = true;
  4395. }
  4396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4397. result->op = GGML_OP_LOG;
  4398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4399. result->src[0] = a;
  4400. result->src[1] = NULL;
  4401. return result;
  4402. }
  4403. struct ggml_tensor * ggml_log(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. return ggml_log_impl(ctx, a, false);
  4407. }
  4408. struct ggml_tensor * ggml_log_inplace(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a) {
  4411. return ggml_log_impl(ctx, a, true);
  4412. }
  4413. // ggml_sum
  4414. struct ggml_tensor * ggml_sum(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. bool is_node = false;
  4418. if (a->grad) {
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4422. result->op = GGML_OP_SUM;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. result->src[1] = NULL;
  4426. return result;
  4427. }
  4428. // ggml_sum_rows
  4429. struct ggml_tensor * ggml_sum_rows(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a) {
  4432. bool is_node = false;
  4433. if (a->grad) {
  4434. is_node = true;
  4435. }
  4436. int64_t ne[4] = {1,1,1,1};
  4437. for (int i=1; i<a->n_dims; ++i) {
  4438. ne[i] = a->ne[i];
  4439. }
  4440. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4441. result->op = GGML_OP_SUM_ROWS;
  4442. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4443. result->src[0] = a;
  4444. result->src[1] = NULL;
  4445. return result;
  4446. }
  4447. // ggml_mean
  4448. struct ggml_tensor * ggml_mean(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a) {
  4451. bool is_node = false;
  4452. if (a->grad) {
  4453. GGML_ASSERT(false); // TODO: implement
  4454. is_node = true;
  4455. }
  4456. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4458. result->op = GGML_OP_MEAN;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src[0] = a;
  4461. result->src[1] = NULL;
  4462. return result;
  4463. }
  4464. // ggml_argmax
  4465. struct ggml_tensor * ggml_argmax(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a) {
  4468. GGML_ASSERT(ggml_is_matrix(a));
  4469. bool is_node = false;
  4470. if (a->grad) {
  4471. GGML_ASSERT(false);
  4472. is_node = true;
  4473. }
  4474. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4475. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4476. result->op = GGML_OP_ARGMAX;
  4477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4478. result->src[0] = a;
  4479. result->src[1] = NULL;
  4480. return result;
  4481. }
  4482. // ggml_repeat
  4483. struct ggml_tensor * ggml_repeat(
  4484. struct ggml_context * ctx,
  4485. struct ggml_tensor * a,
  4486. struct ggml_tensor * b) {
  4487. GGML_ASSERT(ggml_can_repeat(a, b));
  4488. bool is_node = false;
  4489. if (a->grad) {
  4490. is_node = true;
  4491. }
  4492. if (ggml_are_same_shape(a, b) && !is_node) {
  4493. return a;
  4494. }
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4496. result->op = GGML_OP_REPEAT;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. result->src[1] = b;
  4500. return result;
  4501. }
  4502. // ggml_repeat_back
  4503. struct ggml_tensor * ggml_repeat_back(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b) {
  4507. GGML_ASSERT(ggml_can_repeat(b, a));
  4508. bool is_node = false;
  4509. if (a->grad) {
  4510. is_node = true;
  4511. }
  4512. if (ggml_are_same_shape(a, b) && !is_node) {
  4513. return a;
  4514. }
  4515. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4516. result->op = GGML_OP_REPEAT_BACK;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src[0] = a;
  4519. result->src[1] = b;
  4520. return result;
  4521. }
  4522. // ggml_abs
  4523. struct ggml_tensor * ggml_abs_impl(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. bool inplace) {
  4527. bool is_node = false;
  4528. if (!inplace && (a->grad)) {
  4529. is_node = true;
  4530. }
  4531. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4532. result->op = GGML_OP_ABS;
  4533. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4534. result->src[0] = a;
  4535. result->src[1] = NULL;
  4536. return result;
  4537. }
  4538. struct ggml_tensor * ggml_abs(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a) {
  4541. return ggml_abs_impl(ctx, a, false);
  4542. }
  4543. struct ggml_tensor * ggml_abs_inplace(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a) {
  4546. return ggml_abs_impl(ctx, a, true);
  4547. }
  4548. // ggml_sgn
  4549. struct ggml_tensor * ggml_sgn_impl(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. bool inplace) {
  4553. bool is_node = false;
  4554. if (!inplace && (a->grad)) {
  4555. is_node = true;
  4556. }
  4557. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4558. result->op = GGML_OP_SGN;
  4559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4560. result->src[0] = a;
  4561. result->src[1] = NULL;
  4562. return result;
  4563. }
  4564. struct ggml_tensor * ggml_sgn(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_sgn_impl(ctx, a, false);
  4568. }
  4569. struct ggml_tensor * ggml_sgn_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_sgn_impl(ctx, a, true);
  4573. }
  4574. // ggml_neg
  4575. struct ggml_tensor * ggml_neg_impl(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a,
  4578. bool inplace) {
  4579. bool is_node = false;
  4580. if (!inplace && (a->grad)) {
  4581. is_node = true;
  4582. }
  4583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4584. result->op = GGML_OP_NEG;
  4585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4586. result->src[0] = a;
  4587. result->src[1] = NULL;
  4588. return result;
  4589. }
  4590. struct ggml_tensor * ggml_neg(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. return ggml_neg_impl(ctx, a, false);
  4594. }
  4595. struct ggml_tensor * ggml_neg_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a) {
  4598. return ggml_neg_impl(ctx, a, true);
  4599. }
  4600. // ggml_step
  4601. struct ggml_tensor * ggml_step_impl(
  4602. struct ggml_context * ctx,
  4603. struct ggml_tensor * a,
  4604. bool inplace) {
  4605. bool is_node = false;
  4606. if (!inplace && (a->grad)) {
  4607. is_node = true;
  4608. }
  4609. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4610. result->op = GGML_OP_STEP;
  4611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4612. result->src[0] = a;
  4613. result->src[1] = NULL;
  4614. return result;
  4615. }
  4616. struct ggml_tensor * ggml_step(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a) {
  4619. return ggml_step_impl(ctx, a, false);
  4620. }
  4621. struct ggml_tensor * ggml_step_inplace(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. return ggml_step_impl(ctx, a, true);
  4625. }
  4626. // ggml_tanh
  4627. struct ggml_tensor * ggml_tanh_impl(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. bool inplace) {
  4631. bool is_node = false;
  4632. if (!inplace && (a->grad)) {
  4633. is_node = true;
  4634. }
  4635. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4636. result->op = GGML_OP_TANH;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = NULL;
  4640. return result;
  4641. }
  4642. struct ggml_tensor * ggml_tanh(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a) {
  4645. return ggml_tanh_impl(ctx, a, false);
  4646. }
  4647. struct ggml_tensor * ggml_tanh_inplace(
  4648. struct ggml_context * ctx,
  4649. struct ggml_tensor * a) {
  4650. return ggml_tanh_impl(ctx, a, true);
  4651. }
  4652. // ggml_elu
  4653. struct ggml_tensor * ggml_elu_impl(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. bool inplace) {
  4657. bool is_node = false;
  4658. if (!inplace && (a->grad)) {
  4659. is_node = true;
  4660. }
  4661. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4662. result->op = GGML_OP_ELU;
  4663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4664. result->src[0] = a;
  4665. result->src[1] = NULL;
  4666. return result;
  4667. }
  4668. struct ggml_tensor * ggml_elu(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a) {
  4671. return ggml_elu_impl(ctx, a, false);
  4672. }
  4673. struct ggml_tensor * ggml_elu_inplace(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a) {
  4676. return ggml_elu_impl(ctx, a, true);
  4677. }
  4678. // ggml_relu
  4679. struct ggml_tensor * ggml_relu_impl(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. bool inplace) {
  4683. bool is_node = false;
  4684. if (!inplace && (a->grad)) {
  4685. is_node = true;
  4686. }
  4687. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4688. result->op = GGML_OP_RELU;
  4689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4690. result->src[0] = a;
  4691. result->src[1] = NULL;
  4692. return result;
  4693. }
  4694. struct ggml_tensor * ggml_relu(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a) {
  4697. return ggml_relu_impl(ctx, a, false);
  4698. }
  4699. struct ggml_tensor * ggml_relu_inplace(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a) {
  4702. return ggml_relu_impl(ctx, a, true);
  4703. }
  4704. // ggml_gelu
  4705. struct ggml_tensor * ggml_gelu_impl(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. bool inplace) {
  4709. bool is_node = false;
  4710. if (!inplace && (a->grad)) {
  4711. is_node = true;
  4712. }
  4713. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4714. result->op = GGML_OP_GELU;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. result->src[1] = NULL;
  4718. return result;
  4719. }
  4720. struct ggml_tensor * ggml_gelu(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a) {
  4723. return ggml_gelu_impl(ctx, a, false);
  4724. }
  4725. struct ggml_tensor * ggml_gelu_inplace(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a) {
  4728. return ggml_gelu_impl(ctx, a, true);
  4729. }
  4730. // ggml_gelu_quick
  4731. struct ggml_tensor * ggml_gelu_quick_impl(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a,
  4734. bool inplace) {
  4735. bool is_node = false;
  4736. if (!inplace && (a->grad)) {
  4737. is_node = true;
  4738. }
  4739. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4740. result->op = GGML_OP_GELU_QUICK;
  4741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4742. result->src[0] = a;
  4743. result->src[1] = NULL;
  4744. return result;
  4745. }
  4746. struct ggml_tensor * ggml_gelu_quick(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a) {
  4749. return ggml_gelu_quick_impl(ctx, a, false);
  4750. }
  4751. struct ggml_tensor * ggml_gelu_quick_inplace(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a) {
  4754. return ggml_gelu_quick_impl(ctx, a, true);
  4755. }
  4756. // ggml_silu
  4757. struct ggml_tensor * ggml_silu_impl(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. bool inplace) {
  4761. bool is_node = false;
  4762. if (!inplace && (a->grad)) {
  4763. is_node = true;
  4764. }
  4765. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4766. result->op = GGML_OP_SILU;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src[0] = a;
  4769. result->src[1] = NULL;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_silu(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a) {
  4775. return ggml_silu_impl(ctx, a, false);
  4776. }
  4777. struct ggml_tensor * ggml_silu_inplace(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a) {
  4780. return ggml_silu_impl(ctx, a, true);
  4781. }
  4782. // ggml_silu_back
  4783. struct ggml_tensor * ggml_silu_back(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b) {
  4787. bool is_node = false;
  4788. if (a->grad || b->grad) {
  4789. // TODO: implement backward
  4790. is_node = true;
  4791. }
  4792. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4793. result->op = GGML_OP_SILU_BACK;
  4794. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4795. result->src[0] = a;
  4796. result->src[1] = b;
  4797. return result;
  4798. }
  4799. // ggml_norm
  4800. struct ggml_tensor * ggml_norm_impl(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. bool inplace) {
  4804. bool is_node = false;
  4805. if (!inplace && (a->grad)) {
  4806. GGML_ASSERT(false); // TODO: implement backward
  4807. is_node = true;
  4808. }
  4809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4810. result->op = GGML_OP_NORM;
  4811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4812. result->src[0] = a;
  4813. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4814. return result;
  4815. }
  4816. struct ggml_tensor * ggml_norm(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a) {
  4819. return ggml_norm_impl(ctx, a, false);
  4820. }
  4821. struct ggml_tensor * ggml_norm_inplace(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a) {
  4824. return ggml_norm_impl(ctx, a, true);
  4825. }
  4826. struct ggml_tensor * ggml_rms_norm_impl(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. bool inplace) {
  4830. bool is_node = false;
  4831. if (!inplace && (a->grad)) {
  4832. is_node = true;
  4833. }
  4834. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4835. result->op = GGML_OP_RMS_NORM;
  4836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4837. result->src[0] = a;
  4838. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4839. return result;
  4840. }
  4841. struct ggml_tensor * ggml_rms_norm(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a) {
  4844. return ggml_rms_norm_impl(ctx, a, false);
  4845. }
  4846. struct ggml_tensor * ggml_rms_norm_inplace(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a) {
  4849. return ggml_rms_norm_impl(ctx, a, true);
  4850. }
  4851. struct ggml_tensor * ggml_rms_norm_back(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b) {
  4855. bool is_node = false;
  4856. if (a->grad) {
  4857. // TODO: implement backward
  4858. is_node = true;
  4859. }
  4860. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4861. result->op = GGML_OP_RMS_NORM_BACK;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. result->src[1] = b;
  4865. return result;
  4866. }
  4867. // ggml_mul_mat
  4868. struct ggml_tensor * ggml_mul_mat(
  4869. struct ggml_context * ctx,
  4870. struct ggml_tensor * a,
  4871. struct ggml_tensor * b) {
  4872. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4873. GGML_ASSERT(!ggml_is_transposed(a));
  4874. bool is_node = false;
  4875. if (a->grad || b->grad) {
  4876. is_node = true;
  4877. }
  4878. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4879. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4880. result->op = GGML_OP_MUL_MAT;
  4881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4882. result->src[0] = a;
  4883. result->src[1] = b;
  4884. return result;
  4885. }
  4886. // ggml_out_prod
  4887. struct ggml_tensor * ggml_out_prod(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b) {
  4891. GGML_ASSERT(ggml_can_out_prod(a, b));
  4892. GGML_ASSERT(!ggml_is_transposed(a));
  4893. bool is_node = false;
  4894. if (a->grad || b->grad) {
  4895. is_node = true;
  4896. }
  4897. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4898. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4899. result->op = GGML_OP_OUT_PROD;
  4900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4901. result->src[0] = a;
  4902. result->src[1] = b;
  4903. return result;
  4904. }
  4905. // ggml_scale
  4906. struct ggml_tensor * ggml_scale_impl(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. struct ggml_tensor * b,
  4910. bool inplace) {
  4911. GGML_ASSERT(ggml_is_scalar(b));
  4912. GGML_ASSERT(ggml_is_padded_1d(a));
  4913. bool is_node = false;
  4914. if (a->grad || b->grad) {
  4915. is_node = true;
  4916. }
  4917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4918. result->op = GGML_OP_SCALE;
  4919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4920. result->src[0] = a;
  4921. result->src[1] = b;
  4922. return result;
  4923. }
  4924. struct ggml_tensor * ggml_scale(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b) {
  4928. return ggml_scale_impl(ctx, a, b, false);
  4929. }
  4930. struct ggml_tensor * ggml_scale_inplace(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b) {
  4934. return ggml_scale_impl(ctx, a, b, true);
  4935. }
  4936. // ggml_set
  4937. struct ggml_tensor * ggml_set_impl(
  4938. struct ggml_context * ctx,
  4939. struct ggml_tensor * a,
  4940. struct ggml_tensor * b,
  4941. size_t nb1,
  4942. size_t nb2,
  4943. size_t nb3,
  4944. size_t offset,
  4945. bool inplace) {
  4946. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4947. bool is_node = false;
  4948. if (a->grad || b->grad) {
  4949. is_node = true;
  4950. }
  4951. // make a view of the destination
  4952. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4953. ggml_scratch_save(ctx);
  4954. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4955. (( int32_t * ) c->data)[0] = nb1;
  4956. (( int32_t * ) c->data)[1] = nb2;
  4957. (( int32_t * ) c->data)[2] = nb3;
  4958. (( int32_t * ) c->data)[3] = offset;
  4959. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4960. ggml_scratch_load(ctx);
  4961. result->op = GGML_OP_SET;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. result->src[1] = b;
  4965. result->src[2] = c;
  4966. return result;
  4967. }
  4968. struct ggml_tensor * ggml_set(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. size_t nb1,
  4973. size_t nb2,
  4974. size_t nb3,
  4975. size_t offset) {
  4976. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4977. }
  4978. struct ggml_tensor * ggml_set_inplace(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. size_t nb1,
  4983. size_t nb2,
  4984. size_t nb3,
  4985. size_t offset) {
  4986. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4987. }
  4988. struct ggml_tensor * ggml_set_1d(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. struct ggml_tensor * b,
  4992. size_t offset) {
  4993. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4994. }
  4995. struct ggml_tensor * ggml_set_1d_inplace(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b,
  4999. size_t offset) {
  5000. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5001. }
  5002. struct ggml_tensor * ggml_set_2d(
  5003. struct ggml_context * ctx,
  5004. struct ggml_tensor * a,
  5005. struct ggml_tensor * b,
  5006. size_t nb1,
  5007. size_t offset) {
  5008. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5009. }
  5010. struct ggml_tensor * ggml_set_2d_inplace(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. struct ggml_tensor * b,
  5014. size_t nb1,
  5015. size_t offset) {
  5016. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5017. }
  5018. // ggml_cpy
  5019. struct ggml_tensor * ggml_cpy_impl(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a,
  5022. struct ggml_tensor * b,
  5023. bool inplace) {
  5024. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5025. bool is_node = false;
  5026. if (!inplace && (a->grad || b->grad)) {
  5027. is_node = true;
  5028. }
  5029. // make a view of the destination
  5030. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5031. if (strlen(b->name) > 0) {
  5032. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5033. } else {
  5034. ggml_format_name(result, "%s (copy)", a->name);
  5035. }
  5036. result->op = GGML_OP_CPY;
  5037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5038. result->src[0] = a;
  5039. result->src[1] = b;
  5040. return result;
  5041. }
  5042. struct ggml_tensor * ggml_cpy(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * b) {
  5046. return ggml_cpy_impl(ctx, a, b, false);
  5047. }
  5048. struct ggml_tensor * ggml_cpy_inplace(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b) {
  5052. return ggml_cpy_impl(ctx, a, b, true);
  5053. }
  5054. // ggml_cont
  5055. struct ggml_tensor * ggml_cont_impl(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. bool inplace) {
  5059. bool is_node = false;
  5060. if (!inplace && a->grad) {
  5061. is_node = true;
  5062. }
  5063. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5064. ggml_format_name(result, "%s (cont)", a->name);
  5065. result->op = GGML_OP_CONT;
  5066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5067. result->src[0] = a;
  5068. result->src[1] = NULL;
  5069. return result;
  5070. }
  5071. struct ggml_tensor * ggml_cont(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a) {
  5074. return ggml_cont_impl(ctx, a, false);
  5075. }
  5076. struct ggml_tensor * ggml_cont_inplace(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a) {
  5079. return ggml_cont_impl(ctx, a, true);
  5080. }
  5081. // ggml_reshape
  5082. struct ggml_tensor * ggml_reshape(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. struct ggml_tensor * b) {
  5086. GGML_ASSERT(ggml_is_contiguous(a));
  5087. GGML_ASSERT(ggml_is_contiguous(b));
  5088. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5089. bool is_node = false;
  5090. if (a->grad) {
  5091. is_node = true;
  5092. }
  5093. if (b->grad) {
  5094. // gradient propagation is not supported
  5095. //GGML_ASSERT(false);
  5096. }
  5097. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5098. ggml_format_name(result, "%s (reshaped)", a->name);
  5099. result->op = GGML_OP_RESHAPE;
  5100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5101. result->src[0] = a;
  5102. result->src[1] = NULL;
  5103. return result;
  5104. }
  5105. struct ggml_tensor * ggml_reshape_1d(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. int64_t ne0) {
  5109. GGML_ASSERT(ggml_is_contiguous(a));
  5110. GGML_ASSERT(ggml_nelements(a) == ne0);
  5111. bool is_node = false;
  5112. if (a->grad) {
  5113. is_node = true;
  5114. }
  5115. const int64_t ne[1] = { ne0 };
  5116. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5117. ggml_format_name(result, "%s (reshaped)", a->name);
  5118. result->op = GGML_OP_RESHAPE;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = NULL;
  5122. return result;
  5123. }
  5124. struct ggml_tensor * ggml_reshape_2d(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. int64_t ne0,
  5128. int64_t ne1) {
  5129. GGML_ASSERT(ggml_is_contiguous(a));
  5130. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5131. bool is_node = false;
  5132. if (a->grad) {
  5133. is_node = true;
  5134. }
  5135. const int64_t ne[2] = { ne0, ne1 };
  5136. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5137. ggml_format_name(result, "%s (reshaped)", a->name);
  5138. result->op = GGML_OP_RESHAPE;
  5139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5140. result->src[0] = a;
  5141. result->src[1] = NULL;
  5142. return result;
  5143. }
  5144. struct ggml_tensor * ggml_reshape_3d(
  5145. struct ggml_context * ctx,
  5146. struct ggml_tensor * a,
  5147. int64_t ne0,
  5148. int64_t ne1,
  5149. int64_t ne2) {
  5150. GGML_ASSERT(ggml_is_contiguous(a));
  5151. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5152. bool is_node = false;
  5153. if (a->grad) {
  5154. is_node = true;
  5155. }
  5156. const int64_t ne[3] = { ne0, ne1, ne2 };
  5157. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5158. ggml_format_name(result, "%s (reshaped)", a->name);
  5159. result->op = GGML_OP_RESHAPE;
  5160. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5161. result->src[0] = a;
  5162. result->src[1] = NULL;
  5163. return result;
  5164. }
  5165. struct ggml_tensor * ggml_reshape_4d(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. int64_t ne0,
  5169. int64_t ne1,
  5170. int64_t ne2,
  5171. int64_t ne3) {
  5172. GGML_ASSERT(ggml_is_contiguous(a));
  5173. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5174. bool is_node = false;
  5175. if (a->grad) {
  5176. is_node = true;
  5177. }
  5178. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5179. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5180. ggml_format_name(result, "%s (reshaped)", a->name);
  5181. result->op = GGML_OP_RESHAPE;
  5182. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5183. result->src[0] = a;
  5184. result->src[1] = NULL;
  5185. return result;
  5186. }
  5187. // ggml_view_1d
  5188. struct ggml_tensor * ggml_view_1d(
  5189. struct ggml_context * ctx,
  5190. struct ggml_tensor * a,
  5191. int64_t ne0,
  5192. size_t offset) {
  5193. bool is_node = false;
  5194. if (a->grad) {
  5195. is_node = true;
  5196. }
  5197. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5198. ggml_format_name(result, "%s (view)", a->name);
  5199. ggml_scratch_save(ctx);
  5200. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5201. ggml_set_name(offs, "offset");
  5202. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5203. ggml_scratch_load(ctx);
  5204. result->op = GGML_OP_VIEW;
  5205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5206. result->src[0] = a;
  5207. result->src[1] = NULL;
  5208. result->src[2] = offs;
  5209. return result;
  5210. }
  5211. // ggml_view_2d
  5212. struct ggml_tensor * ggml_view_2d(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. int64_t ne0,
  5216. int64_t ne1,
  5217. size_t nb1,
  5218. size_t offset) {
  5219. bool is_node = false;
  5220. if (a->grad) {
  5221. is_node = true;
  5222. }
  5223. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5224. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5225. ggml_format_name(result, "%s (view)", a->name);
  5226. ggml_scratch_save(ctx);
  5227. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5228. ggml_set_name(offs, "offset");
  5229. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5230. ggml_scratch_load(ctx);
  5231. result->nb[1] = nb1;
  5232. result->nb[2] = result->nb[1]*ne1;
  5233. result->nb[3] = result->nb[2];
  5234. result->op = GGML_OP_VIEW;
  5235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5236. result->src[0] = a;
  5237. result->src[1] = NULL;
  5238. result->src[2] = offs;
  5239. return result;
  5240. }
  5241. // ggml_view_3d
  5242. struct ggml_tensor * ggml_view_3d(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. int64_t ne0,
  5246. int64_t ne1,
  5247. int64_t ne2,
  5248. size_t nb1,
  5249. size_t nb2,
  5250. size_t offset) {
  5251. bool is_node = false;
  5252. if (a->grad) {
  5253. is_node = true;
  5254. }
  5255. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5256. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5257. ggml_format_name(result, "%s (view)", a->name);
  5258. ggml_scratch_save(ctx);
  5259. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5260. ggml_set_name(offs, "offset");
  5261. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5262. ggml_scratch_load(ctx);
  5263. result->nb[1] = nb1;
  5264. result->nb[2] = nb2;
  5265. result->nb[3] = result->nb[2]*ne2;
  5266. result->op = GGML_OP_VIEW;
  5267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5268. result->src[0] = a;
  5269. result->src[1] = NULL;
  5270. result->src[2] = offs;
  5271. return result;
  5272. }
  5273. // ggml_view_4d
  5274. struct ggml_tensor * ggml_view_4d(
  5275. struct ggml_context * ctx,
  5276. struct ggml_tensor * a,
  5277. int64_t ne0,
  5278. int64_t ne1,
  5279. int64_t ne2,
  5280. int64_t ne3,
  5281. size_t nb1,
  5282. size_t nb2,
  5283. size_t nb3,
  5284. size_t offset) {
  5285. bool is_node = false;
  5286. if (a->grad) {
  5287. is_node = true;
  5288. }
  5289. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5290. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5291. ggml_format_name(result, "%s (view)", a->name);
  5292. ggml_scratch_save(ctx);
  5293. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5294. ggml_set_name(offs, "offset");
  5295. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5296. ggml_scratch_load(ctx);
  5297. result->nb[1] = nb1;
  5298. result->nb[2] = nb2;
  5299. result->nb[3] = nb3;
  5300. result->op = GGML_OP_VIEW;
  5301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5302. result->src[0] = a;
  5303. result->src[1] = NULL;
  5304. result->src[2] = offs;
  5305. return result;
  5306. }
  5307. // ggml_permute
  5308. struct ggml_tensor * ggml_permute(
  5309. struct ggml_context * ctx,
  5310. struct ggml_tensor * a,
  5311. int axis0,
  5312. int axis1,
  5313. int axis2,
  5314. int axis3) {
  5315. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5316. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5317. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5318. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5319. GGML_ASSERT(axis0 != axis1);
  5320. GGML_ASSERT(axis0 != axis2);
  5321. GGML_ASSERT(axis0 != axis3);
  5322. GGML_ASSERT(axis1 != axis2);
  5323. GGML_ASSERT(axis1 != axis3);
  5324. GGML_ASSERT(axis2 != axis3);
  5325. bool is_node = false;
  5326. if (a->grad) {
  5327. is_node = true;
  5328. }
  5329. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5330. ggml_format_name(result, "%s (permuted)", a->name);
  5331. int ne[GGML_MAX_DIMS];
  5332. int nb[GGML_MAX_DIMS];
  5333. ne[axis0] = a->ne[0];
  5334. ne[axis1] = a->ne[1];
  5335. ne[axis2] = a->ne[2];
  5336. ne[axis3] = a->ne[3];
  5337. nb[axis0] = a->nb[0];
  5338. nb[axis1] = a->nb[1];
  5339. nb[axis2] = a->nb[2];
  5340. nb[axis3] = a->nb[3];
  5341. result->ne[0] = ne[0];
  5342. result->ne[1] = ne[1];
  5343. result->ne[2] = ne[2];
  5344. result->ne[3] = ne[3];
  5345. result->nb[0] = nb[0];
  5346. result->nb[1] = nb[1];
  5347. result->nb[2] = nb[2];
  5348. result->nb[3] = nb[3];
  5349. result->op = GGML_OP_PERMUTE;
  5350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5351. result->src[0] = a;
  5352. result->src[1] = NULL;
  5353. if (is_node) {
  5354. ggml_scratch_save(ctx);
  5355. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5356. ((int32_t *) b->data)[0] = axis0;
  5357. ((int32_t *) b->data)[1] = axis1;
  5358. ((int32_t *) b->data)[2] = axis2;
  5359. ((int32_t *) b->data)[3] = axis3;
  5360. ggml_scratch_load(ctx);
  5361. result->src[2] = b;
  5362. }
  5363. return result;
  5364. }
  5365. // ggml_transpose
  5366. struct ggml_tensor * ggml_transpose(
  5367. struct ggml_context * ctx,
  5368. struct ggml_tensor * a) {
  5369. bool is_node = false;
  5370. if (a->grad) {
  5371. is_node = true;
  5372. }
  5373. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5374. ggml_format_name(result, "%s (transposed)", a->name);
  5375. result->ne[0] = a->ne[1];
  5376. result->ne[1] = a->ne[0];
  5377. result->nb[0] = a->nb[1];
  5378. result->nb[1] = a->nb[0];
  5379. result->op = GGML_OP_TRANSPOSE;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src[0] = a;
  5382. result->src[1] = NULL;
  5383. return result;
  5384. }
  5385. // ggml_get_rows
  5386. struct ggml_tensor * ggml_get_rows(
  5387. struct ggml_context * ctx,
  5388. struct ggml_tensor * a,
  5389. struct ggml_tensor * b) {
  5390. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5391. bool is_node = false;
  5392. if (a->grad || b->grad) {
  5393. is_node = true;
  5394. }
  5395. // TODO: implement non F32 return
  5396. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5397. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5398. result->op = GGML_OP_GET_ROWS;
  5399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5400. result->src[0] = a;
  5401. result->src[1] = b;
  5402. return result;
  5403. }
  5404. // ggml_get_rows_back
  5405. struct ggml_tensor * ggml_get_rows_back(
  5406. struct ggml_context * ctx,
  5407. struct ggml_tensor * a,
  5408. struct ggml_tensor * b,
  5409. struct ggml_tensor * c) {
  5410. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5411. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5412. bool is_node = false;
  5413. if (a->grad || b->grad) {
  5414. is_node = true;
  5415. }
  5416. // TODO: implement non F32 return
  5417. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5418. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5419. result->op = GGML_OP_GET_ROWS_BACK;
  5420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5421. result->src[0] = a;
  5422. result->src[1] = b;
  5423. result->src[2] = c;
  5424. return result;
  5425. }
  5426. // ggml_diag
  5427. struct ggml_tensor * ggml_diag(
  5428. struct ggml_context * ctx,
  5429. struct ggml_tensor * a) {
  5430. GGML_ASSERT(a->ne[1] == 1);
  5431. bool is_node = false;
  5432. if (a->grad) {
  5433. is_node = true;
  5434. }
  5435. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5436. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5437. result->op = GGML_OP_DIAG;
  5438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5439. result->src[0] = a;
  5440. result->src[1] = NULL;
  5441. return result;
  5442. }
  5443. // ggml_diag_mask_inf
  5444. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * a,
  5447. int n_past,
  5448. bool inplace) {
  5449. bool is_node = false;
  5450. if (a->grad) {
  5451. is_node = true;
  5452. }
  5453. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5454. ggml_scratch_save(ctx);
  5455. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5456. ((int32_t *) b->data)[0] = n_past;
  5457. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5458. ggml_scratch_load(ctx);
  5459. result->op = GGML_OP_DIAG_MASK_INF;
  5460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5461. result->src[0] = a;
  5462. result->src[1] = b;
  5463. return result;
  5464. }
  5465. struct ggml_tensor * ggml_diag_mask_inf(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. int n_past) {
  5469. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5470. }
  5471. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. int n_past) {
  5475. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5476. }
  5477. // ggml_diag_mask_zero
  5478. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. int n_past,
  5482. bool inplace) {
  5483. bool is_node = false;
  5484. if (a->grad) {
  5485. is_node = true;
  5486. }
  5487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5488. ggml_scratch_save(ctx);
  5489. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5490. ggml_set_name(b, "n_past, inplace");
  5491. ((int32_t *) b->data)[0] = n_past;
  5492. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5493. ggml_scratch_load(ctx);
  5494. result->op = GGML_OP_DIAG_MASK_ZERO;
  5495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5496. result->src[0] = a;
  5497. result->src[1] = b;
  5498. return result;
  5499. }
  5500. struct ggml_tensor * ggml_diag_mask_zero(
  5501. struct ggml_context * ctx,
  5502. struct ggml_tensor * a,
  5503. int n_past) {
  5504. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5505. }
  5506. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5507. struct ggml_context * ctx,
  5508. struct ggml_tensor * a,
  5509. int n_past) {
  5510. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5511. }
  5512. // ggml_soft_max
  5513. struct ggml_tensor * ggml_soft_max_impl(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * a,
  5516. bool inplace) {
  5517. bool is_node = false;
  5518. if (a->grad) {
  5519. is_node = true;
  5520. }
  5521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5522. result->op = GGML_OP_SOFT_MAX;
  5523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5524. result->src[0] = a;
  5525. result->src[1] = NULL;
  5526. return result;
  5527. }
  5528. struct ggml_tensor * ggml_soft_max(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * a) {
  5531. return ggml_soft_max_impl(ctx, a, false);
  5532. }
  5533. struct ggml_tensor * ggml_soft_max_inplace(
  5534. struct ggml_context * ctx,
  5535. struct ggml_tensor * a) {
  5536. return ggml_soft_max_impl(ctx, a, true);
  5537. }
  5538. // ggml_soft_max_back
  5539. struct ggml_tensor * ggml_soft_max_back_impl(
  5540. struct ggml_context * ctx,
  5541. struct ggml_tensor * a,
  5542. struct ggml_tensor * b,
  5543. bool inplace) {
  5544. bool is_node = false;
  5545. if (a->grad || b->grad) {
  5546. is_node = true; // TODO : implement backward pass
  5547. }
  5548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5549. result->op = GGML_OP_SOFT_MAX_BACK;
  5550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5551. result->src[0] = a;
  5552. result->src[1] = b;
  5553. return result;
  5554. }
  5555. struct ggml_tensor * ggml_soft_max_back(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b) {
  5559. return ggml_soft_max_back_impl(ctx, a, b, false);
  5560. }
  5561. struct ggml_tensor * ggml_soft_max_back_inplace(
  5562. struct ggml_context * ctx,
  5563. struct ggml_tensor * a,
  5564. struct ggml_tensor * b) {
  5565. return ggml_soft_max_back_impl(ctx, a, b, true);
  5566. }
  5567. // ggml_rope
  5568. struct ggml_tensor * ggml_rope_impl(
  5569. struct ggml_context * ctx,
  5570. struct ggml_tensor * a,
  5571. int n_past,
  5572. int n_dims,
  5573. int mode,
  5574. float freq_base,
  5575. float freq_scale,
  5576. int n_ctx,
  5577. bool inplace) {
  5578. GGML_ASSERT(n_past >= 0);
  5579. bool is_node = false;
  5580. if (a->grad) {
  5581. is_node = true;
  5582. }
  5583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5584. ggml_scratch_save(ctx);
  5585. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5586. ((int32_t *) b->data)[0] = n_past;
  5587. ((int32_t *) b->data)[1] = n_dims;
  5588. ((int32_t *) b->data)[2] = mode;
  5589. ((int32_t *) b->data)[3] = n_ctx;
  5590. memcpy((int32_t *) b->data + 4, &freq_base, sizeof(float));
  5591. memcpy((int32_t *) b->data + 5, &freq_scale, sizeof(float));
  5592. ggml_scratch_load(ctx);
  5593. result->op = GGML_OP_ROPE;
  5594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5595. result->src[0] = a;
  5596. result->src[1] = b;
  5597. return result;
  5598. }
  5599. struct ggml_tensor * ggml_rope(
  5600. struct ggml_context * ctx,
  5601. struct ggml_tensor * a,
  5602. int n_past,
  5603. int n_dims,
  5604. int mode,
  5605. int n_ctx) {
  5606. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, false);
  5607. }
  5608. struct ggml_tensor * ggml_rope_inplace(
  5609. struct ggml_context * ctx,
  5610. struct ggml_tensor * a,
  5611. int n_past,
  5612. int n_dims,
  5613. int mode,
  5614. int n_ctx) {
  5615. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, 10000.0f, 1.0f, n_ctx, true);
  5616. }
  5617. struct ggml_tensor * ggml_rope_custom_inplace(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. int n_past,
  5621. int n_dims,
  5622. int mode,
  5623. float freq_base,
  5624. float freq_scale,
  5625. int n_ctx) {
  5626. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, freq_base, freq_scale, n_ctx, true);
  5627. }
  5628. // ggml_rope_back
  5629. struct ggml_tensor * ggml_rope_back(
  5630. struct ggml_context * ctx,
  5631. struct ggml_tensor * a,
  5632. int n_past,
  5633. int n_dims,
  5634. int mode) {
  5635. GGML_ASSERT(n_past >= 0);
  5636. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5637. bool is_node = false;
  5638. if (a->grad) {
  5639. is_node = false; // TODO: implement backward
  5640. }
  5641. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5642. ggml_scratch_save(ctx);
  5643. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5644. ggml_set_name(b, "n_past, n_dims, mode");
  5645. ((int32_t *) b->data)[0] = n_past;
  5646. ((int32_t *) b->data)[1] = n_dims;
  5647. ((int32_t *) b->data)[2] = mode;
  5648. ggml_scratch_load(ctx);
  5649. result->op = GGML_OP_ROPE_BACK;
  5650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5651. result->src[0] = a;
  5652. result->src[1] = b;
  5653. return result;
  5654. }
  5655. // ggml_alibi
  5656. struct ggml_tensor * ggml_alibi(
  5657. struct ggml_context * ctx,
  5658. struct ggml_tensor * a,
  5659. int n_past,
  5660. int n_head,
  5661. float bias_max) {
  5662. GGML_ASSERT(n_past >= 0);
  5663. bool is_node = false;
  5664. if (a->grad) {
  5665. GGML_ASSERT(false); // TODO: implement backward
  5666. is_node = true;
  5667. }
  5668. // TODO: when implement backward, fix this:
  5669. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5670. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5671. ggml_scratch_save(ctx);
  5672. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5673. ((int32_t *) b->data)[0] = n_past;
  5674. ((int32_t *) b->data)[1] = n_head;
  5675. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5676. (((float *) b->data)[2]) = bias_max;
  5677. ggml_scratch_load(ctx);
  5678. result->op = GGML_OP_ALIBI;
  5679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5680. result->src[0] = a;
  5681. result->src[1] = b;
  5682. return result;
  5683. }
  5684. // ggml_clamp
  5685. struct ggml_tensor * ggml_clamp(
  5686. struct ggml_context * ctx,
  5687. struct ggml_tensor * a,
  5688. float min,
  5689. float max) {
  5690. bool is_node = false;
  5691. if (a->grad) {
  5692. GGML_ASSERT(false); // TODO: implement backward
  5693. is_node = true;
  5694. }
  5695. // TODO: when implement backward, fix this:
  5696. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5697. ggml_scratch_save(ctx);
  5698. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5699. ((float *) b->data)[0] = min;
  5700. ((float *) b->data)[1] = max;
  5701. ggml_scratch_load(ctx);
  5702. result->op = GGML_OP_CLAMP;
  5703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5704. result->src[0] = a;
  5705. result->src[1] = b;
  5706. return result;
  5707. }
  5708. // ggml_conv_1d
  5709. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5710. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5711. }
  5712. GGML_API struct ggml_tensor * ggml_conv_1d(
  5713. struct ggml_context * ctx,
  5714. struct ggml_tensor * a,
  5715. struct ggml_tensor * b,
  5716. int s0,
  5717. int p0,
  5718. int d0) {
  5719. GGML_ASSERT(ggml_is_matrix(b));
  5720. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5721. bool is_node = false;
  5722. if (a->grad || b->grad) {
  5723. GGML_ASSERT(false); // TODO: implement backward
  5724. is_node = true;
  5725. }
  5726. const int64_t ne[4] = {
  5727. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5728. a->ne[2], 1, 1,
  5729. };
  5730. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5731. ggml_scratch_save(ctx);
  5732. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5733. ((int32_t*)c->data)[0] = s0;
  5734. ((int32_t*)c->data)[1] = p0;
  5735. ((int32_t*)c->data)[2] = d0;
  5736. ggml_scratch_load(ctx);
  5737. result->op = GGML_OP_CONV_1D;
  5738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5739. result->src[0] = a;
  5740. result->src[1] = b;
  5741. result->src[2] = c;
  5742. return result;
  5743. }
  5744. // ggml_conv_2d
  5745. struct ggml_tensor* ggml_conv_2d(
  5746. struct ggml_context* ctx,
  5747. struct ggml_tensor * a,
  5748. struct ggml_tensor * b,
  5749. int s0,
  5750. int s1,
  5751. int p0,
  5752. int p1,
  5753. int d0,
  5754. int d1) {
  5755. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5756. bool is_node = false;
  5757. if (a->grad || b->grad) {
  5758. GGML_ASSERT(false); // TODO: implement backward
  5759. is_node = true;
  5760. }
  5761. const int64_t ne[4] = {
  5762. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5763. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5764. a->ne[3], b->ne[3],
  5765. };
  5766. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5767. ggml_scratch_save(ctx);
  5768. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5769. ((int32_t*)c->data)[0] = s0;
  5770. ((int32_t*)c->data)[1] = s1;
  5771. ((int32_t*)c->data)[2] = p0;
  5772. ((int32_t*)c->data)[3] = p1;
  5773. ((int32_t*)c->data)[4] = d0;
  5774. ((int32_t*)c->data)[5] = d1;
  5775. ggml_scratch_load(ctx);
  5776. result->op = GGML_OP_CONV_2D;
  5777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5778. result->src[0] = a;
  5779. result->src[1] = b;
  5780. result->src[2] = c;
  5781. return result;
  5782. }
  5783. // ggml_conv_1d_ph
  5784. struct ggml_tensor* ggml_conv_1d_ph(
  5785. struct ggml_context * ctx,
  5786. struct ggml_tensor * a,
  5787. struct ggml_tensor * b,
  5788. int s,
  5789. int d) {
  5790. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5791. }
  5792. // ggml_pool_*
  5793. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5794. return (ins + 2 * p - ks) / s + 1;
  5795. }
  5796. // ggml_pool_2d
  5797. struct ggml_tensor* ggml_pool_1d(
  5798. struct ggml_context * ctx,
  5799. struct ggml_tensor * a,
  5800. enum ggml_op_pool op,
  5801. int k0,
  5802. int s0,
  5803. int p0) {
  5804. bool is_node = false;
  5805. if (a->grad) {
  5806. GGML_ASSERT(false); // TODO: implement backward
  5807. is_node = true;
  5808. }
  5809. const int64_t ne[3] = {
  5810. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5811. a->ne[1],
  5812. };
  5813. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5814. ggml_scratch_save(ctx);
  5815. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5816. ((int32_t*)c->data)[0] = op;
  5817. ((int32_t*)c->data)[1] = k0;
  5818. ((int32_t*)c->data)[2] = s0;
  5819. ((int32_t*)c->data)[3] = p0;
  5820. ggml_scratch_load(ctx);
  5821. result->op = GGML_OP_POOL_1D;
  5822. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5823. result->src[0] = a;
  5824. result->src[1] = c;
  5825. return result;
  5826. }
  5827. // ggml_pool_2d
  5828. struct ggml_tensor* ggml_pool_2d(
  5829. struct ggml_context * ctx,
  5830. struct ggml_tensor * a,
  5831. enum ggml_op_pool op,
  5832. int k0,
  5833. int k1,
  5834. int s0,
  5835. int s1,
  5836. int p0,
  5837. int p1) {
  5838. bool is_node = false;
  5839. if (a->grad) {
  5840. GGML_ASSERT(false); // TODO: implement backward
  5841. is_node = true;
  5842. }
  5843. const int64_t ne[3] = {
  5844. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5845. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5846. a->ne[2],
  5847. };
  5848. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5849. ggml_scratch_save(ctx);
  5850. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 7);
  5851. ((int32_t*)c->data)[0] = op;
  5852. ((int32_t*)c->data)[1] = k0;
  5853. ((int32_t*)c->data)[2] = k1;
  5854. ((int32_t*)c->data)[3] = s0;
  5855. ((int32_t*)c->data)[4] = s1;
  5856. ((int32_t*)c->data)[5] = p0;
  5857. ((int32_t*)c->data)[6] = p1;
  5858. ggml_scratch_load(ctx);
  5859. result->op = GGML_OP_POOL_2D;
  5860. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5861. result->src[0] = a;
  5862. result->src[1] = c;
  5863. return result;
  5864. }
  5865. // ggml_flash_attn
  5866. struct ggml_tensor * ggml_flash_attn(
  5867. struct ggml_context * ctx,
  5868. struct ggml_tensor * q,
  5869. struct ggml_tensor * k,
  5870. struct ggml_tensor * v,
  5871. bool masked) {
  5872. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5873. // TODO: check if vT can be multiplied by (k*qT)
  5874. bool is_node = false;
  5875. if (q->grad || k->grad || v->grad) {
  5876. is_node = true;
  5877. }
  5878. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5879. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5880. result->op = GGML_OP_FLASH_ATTN;
  5881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5882. result->src[0] = q;
  5883. result->src[1] = k;
  5884. result->src[2] = v;
  5885. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5886. return result;
  5887. }
  5888. // ggml_flash_ff
  5889. struct ggml_tensor * ggml_flash_ff(
  5890. struct ggml_context * ctx,
  5891. struct ggml_tensor * a,
  5892. struct ggml_tensor * b0,
  5893. struct ggml_tensor * b1,
  5894. struct ggml_tensor * c0,
  5895. struct ggml_tensor * c1) {
  5896. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5897. // TODO: more checks
  5898. bool is_node = false;
  5899. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5900. is_node = true;
  5901. }
  5902. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5903. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5904. result->op = GGML_OP_FLASH_FF;
  5905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5906. result->src[0] = a;
  5907. result->src[1] = b0;
  5908. result->src[2] = b1;
  5909. result->src[3] = c0;
  5910. result->src[4] = c1;
  5911. return result;
  5912. }
  5913. // ggml_flash_attn_back
  5914. struct ggml_tensor * ggml_flash_attn_back(
  5915. struct ggml_context * ctx,
  5916. struct ggml_tensor * q,
  5917. struct ggml_tensor * k,
  5918. struct ggml_tensor * v,
  5919. struct ggml_tensor * d,
  5920. bool masked) {
  5921. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5922. // TODO: check if vT can be multiplied by (k*qT)
  5923. // d shape [D,N,ne2,ne3]
  5924. // q shape [D,N,ne2,ne3]
  5925. // k shape [D,M,ne2,ne3]
  5926. // v shape [M,D,ne2,ne3]
  5927. const int64_t D = q->ne[0];
  5928. const int64_t N = q->ne[1];
  5929. const int64_t M = k->ne[1];
  5930. const int64_t ne2 = q->ne[2];
  5931. const int64_t ne3 = q->ne[3];
  5932. GGML_ASSERT(k->ne[0] == D);
  5933. GGML_ASSERT(v->ne[0] == M);
  5934. GGML_ASSERT(v->ne[1] == D);
  5935. GGML_ASSERT(d->ne[0] == D);
  5936. GGML_ASSERT(d->ne[1] == N);
  5937. GGML_ASSERT(k->ne[2] == ne2);
  5938. GGML_ASSERT(k->ne[3] == ne3);
  5939. GGML_ASSERT(v->ne[2] == ne2);
  5940. GGML_ASSERT(v->ne[3] == ne3);
  5941. GGML_ASSERT(d->ne[2] == ne2);
  5942. GGML_ASSERT(d->ne[3] == ne3);
  5943. bool is_node = false;
  5944. if (q->grad || k->grad || v->grad) {
  5945. // when using this operation (in backwards pass) these grads are set.
  5946. // we don't want to create (big) grad of our result, so is_node is false.
  5947. is_node = false;
  5948. }
  5949. // store gradients of q, k and v as continuous tensors concatenated in result.
  5950. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5951. // gradq->data = result->data
  5952. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5953. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5954. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5955. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5957. result->op = GGML_OP_FLASH_ATTN_BACK;
  5958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5959. result->src[0] = q;
  5960. result->src[1] = k;
  5961. result->src[2] = v;
  5962. result->src[3] = d;
  5963. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5964. return result;
  5965. }
  5966. // ggml_win_part
  5967. struct ggml_tensor * ggml_win_part(
  5968. struct ggml_context * ctx,
  5969. struct ggml_tensor * a,
  5970. int w) {
  5971. GGML_ASSERT(a->ne[3] == 1);
  5972. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5973. bool is_node = false;
  5974. if (a->grad) {
  5975. GGML_ASSERT(false); // TODO: implement backward
  5976. is_node = true;
  5977. }
  5978. // padding
  5979. const int px = (w - a->ne[1]%w)%w;
  5980. const int py = (w - a->ne[2]%w)%w;
  5981. const int npx = (px + a->ne[1])/w;
  5982. const int npy = (py + a->ne[2])/w;
  5983. const int np = npx*npy;
  5984. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5985. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5986. ggml_scratch_save(ctx);
  5987. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5988. ((int32_t *) b->data)[0] = npx;
  5989. ((int32_t *) b->data)[1] = npy;
  5990. ((int32_t *) b->data)[2] = w;
  5991. ggml_scratch_load(ctx);
  5992. result->op = GGML_OP_WIN_PART;
  5993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5994. result->src[0] = a;
  5995. result->src[1] = NULL;
  5996. result->src[2] = b;
  5997. return result;
  5998. }
  5999. // ggml_win_unpart
  6000. struct ggml_tensor * ggml_win_unpart(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * a,
  6003. int w0,
  6004. int h0,
  6005. int w) {
  6006. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6007. bool is_node = false;
  6008. if (a->grad) {
  6009. GGML_ASSERT(false); // TODO: implement backward
  6010. is_node = true;
  6011. }
  6012. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6013. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6014. ggml_scratch_save(ctx);
  6015. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  6016. ((int32_t *) b->data)[0] = w;
  6017. ggml_scratch_load(ctx);
  6018. result->op = GGML_OP_WIN_UNPART;
  6019. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6020. result->src[0] = a;
  6021. result->src[1] = NULL;
  6022. result->src[2] = b;
  6023. return result;
  6024. }
  6025. // ggml_map_unary
  6026. struct ggml_tensor * ggml_map_unary_impl_f32(
  6027. struct ggml_context * ctx,
  6028. struct ggml_tensor * a,
  6029. const ggml_unary_op_f32_t fun,
  6030. bool inplace) {
  6031. bool is_node = false;
  6032. if (!inplace && a->grad) {
  6033. is_node = true;
  6034. }
  6035. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6036. ggml_scratch_save(ctx);
  6037. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6038. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6039. ggml_scratch_load(ctx);
  6040. result->op = GGML_OP_MAP_UNARY;
  6041. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6042. result->src[0] = a;
  6043. result->src[2] = addr_tensor;
  6044. return result;
  6045. }
  6046. struct ggml_tensor * ggml_map_unary_f32(
  6047. struct ggml_context * ctx,
  6048. struct ggml_tensor * a,
  6049. const ggml_unary_op_f32_t fun) {
  6050. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6051. }
  6052. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6053. struct ggml_context * ctx,
  6054. struct ggml_tensor * a,
  6055. const ggml_unary_op_f32_t fun) {
  6056. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6057. }
  6058. // ggml_map_binary
  6059. struct ggml_tensor * ggml_map_binary_impl_f32(
  6060. struct ggml_context * ctx,
  6061. struct ggml_tensor * a,
  6062. struct ggml_tensor * b,
  6063. const ggml_binary_op_f32_t fun,
  6064. bool inplace) {
  6065. GGML_ASSERT(ggml_are_same_shape(a, b));
  6066. bool is_node = false;
  6067. if (!inplace && (a->grad || b->grad)) {
  6068. is_node = true;
  6069. }
  6070. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6071. ggml_scratch_save(ctx);
  6072. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6073. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6074. ggml_scratch_load(ctx);
  6075. result->op = GGML_OP_MAP_BINARY;
  6076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6077. result->src[0] = a;
  6078. result->src[1] = b;
  6079. result->src[2] = addr_tensor;
  6080. return result;
  6081. }
  6082. struct ggml_tensor * ggml_map_binary_f32(
  6083. struct ggml_context * ctx,
  6084. struct ggml_tensor * a,
  6085. struct ggml_tensor * b,
  6086. const ggml_binary_op_f32_t fun) {
  6087. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6088. }
  6089. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6090. struct ggml_context * ctx,
  6091. struct ggml_tensor * a,
  6092. struct ggml_tensor * b,
  6093. const ggml_binary_op_f32_t fun) {
  6094. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6095. }
  6096. // ggml_map_custom1
  6097. struct ggml_tensor * ggml_map_custom1_impl_f32(
  6098. struct ggml_context * ctx,
  6099. struct ggml_tensor * a,
  6100. const ggml_custom1_op_f32_t fun,
  6101. bool inplace) {
  6102. bool is_node = false;
  6103. if (!inplace && a->grad) {
  6104. is_node = true;
  6105. }
  6106. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6107. ggml_scratch_save(ctx);
  6108. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6109. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6110. ggml_scratch_load(ctx);
  6111. result->op = GGML_OP_MAP_CUSTOM1;
  6112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6113. result->src[0] = a;
  6114. result->src[2] = addr_tensor;
  6115. return result;
  6116. }
  6117. struct ggml_tensor * ggml_map_custom1_f32(
  6118. struct ggml_context * ctx,
  6119. struct ggml_tensor * a,
  6120. const ggml_custom1_op_f32_t fun) {
  6121. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6122. }
  6123. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6124. struct ggml_context * ctx,
  6125. struct ggml_tensor * a,
  6126. const ggml_custom1_op_f32_t fun) {
  6127. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6128. }
  6129. // ggml_map_custom2
  6130. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6131. struct ggml_context * ctx,
  6132. struct ggml_tensor * a,
  6133. struct ggml_tensor * b,
  6134. const ggml_custom2_op_f32_t fun,
  6135. bool inplace) {
  6136. bool is_node = false;
  6137. if (!inplace && (a->grad || b->grad)) {
  6138. is_node = true;
  6139. }
  6140. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6141. ggml_scratch_save(ctx);
  6142. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6143. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6144. ggml_scratch_load(ctx);
  6145. result->op = GGML_OP_MAP_CUSTOM2;
  6146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6147. result->src[0] = a;
  6148. result->src[1] = b;
  6149. result->src[2] = addr_tensor;
  6150. return result;
  6151. }
  6152. struct ggml_tensor * ggml_map_custom2_f32(
  6153. struct ggml_context * ctx,
  6154. struct ggml_tensor * a,
  6155. struct ggml_tensor * b,
  6156. const ggml_custom2_op_f32_t fun) {
  6157. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6158. }
  6159. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6160. struct ggml_context * ctx,
  6161. struct ggml_tensor * a,
  6162. struct ggml_tensor * b,
  6163. const ggml_custom2_op_f32_t fun) {
  6164. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6165. }
  6166. // ggml_map_custom3
  6167. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6168. struct ggml_context * ctx,
  6169. struct ggml_tensor * a,
  6170. struct ggml_tensor * b,
  6171. struct ggml_tensor * c,
  6172. const ggml_custom3_op_f32_t fun,
  6173. bool inplace) {
  6174. bool is_node = false;
  6175. if (!inplace && (a->grad || b->grad || c->grad)) {
  6176. is_node = true;
  6177. }
  6178. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6179. ggml_scratch_save(ctx);
  6180. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6181. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6182. ggml_scratch_load(ctx);
  6183. result->op = GGML_OP_MAP_CUSTOM3;
  6184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6185. result->src[0] = a;
  6186. result->src[1] = b;
  6187. result->src[2] = addr_tensor;
  6188. result->src[3] = c;
  6189. return result;
  6190. }
  6191. struct ggml_tensor * ggml_map_custom3_f32(
  6192. struct ggml_context * ctx,
  6193. struct ggml_tensor * a,
  6194. struct ggml_tensor * b,
  6195. struct ggml_tensor * c,
  6196. const ggml_custom3_op_f32_t fun) {
  6197. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6198. }
  6199. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6200. struct ggml_context * ctx,
  6201. struct ggml_tensor * a,
  6202. struct ggml_tensor * b,
  6203. struct ggml_tensor * c,
  6204. const ggml_custom3_op_f32_t fun) {
  6205. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6206. }
  6207. // ggml_cross_entropy_loss
  6208. struct ggml_tensor * ggml_cross_entropy_loss(
  6209. struct ggml_context * ctx,
  6210. struct ggml_tensor * a,
  6211. struct ggml_tensor * b) {
  6212. GGML_ASSERT(ggml_are_same_shape(a, b));
  6213. bool is_node = false;
  6214. if (a->grad || b->grad) {
  6215. is_node = true;
  6216. }
  6217. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6218. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6220. result->src[0] = a;
  6221. result->src[1] = b;
  6222. return result;
  6223. }
  6224. // ggml_cross_entropy_loss_back
  6225. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6226. struct ggml_context * ctx,
  6227. struct ggml_tensor * a,
  6228. struct ggml_tensor * b,
  6229. struct ggml_tensor * c) {
  6230. GGML_ASSERT(ggml_are_same_shape(a, b));
  6231. GGML_ASSERT(ggml_is_scalar(c));
  6232. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6233. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6234. result->grad = NULL;
  6235. result->src[0] = a;
  6236. result->src[1] = b;
  6237. result->src[2] = c;
  6238. return result;
  6239. }
  6240. ////////////////////////////////////////////////////////////////////////////////
  6241. void ggml_set_param(
  6242. struct ggml_context * ctx,
  6243. struct ggml_tensor * tensor) {
  6244. tensor->is_param = true;
  6245. GGML_ASSERT(tensor->grad == NULL);
  6246. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6247. }
  6248. // ggml_compute_forward_dup
  6249. static void ggml_compute_forward_dup_same_cont(
  6250. const struct ggml_compute_params * params,
  6251. const struct ggml_tensor * src0,
  6252. struct ggml_tensor * dst) {
  6253. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6254. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6255. GGML_ASSERT(src0->type == dst->type);
  6256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6257. return;
  6258. }
  6259. const size_t nb00 = src0->nb[0];
  6260. const size_t nb0 = dst->nb[0];
  6261. const int ith = params->ith; // thread index
  6262. const int nth = params->nth; // number of threads
  6263. // parallelize by elements
  6264. const int ne = ggml_nelements(dst);
  6265. const int dr = (ne + nth - 1) / nth;
  6266. const int ie0 = dr * ith;
  6267. const int ie1 = MIN(ie0 + dr, ne);
  6268. if (ie0 < ie1) {
  6269. memcpy(
  6270. ((char *) dst->data + ie0*nb0),
  6271. ((char *) src0->data + ie0*nb00),
  6272. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6273. }
  6274. }
  6275. static void ggml_compute_forward_dup_f16(
  6276. const struct ggml_compute_params * params,
  6277. const struct ggml_tensor * src0,
  6278. struct ggml_tensor * dst) {
  6279. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6281. return;
  6282. }
  6283. GGML_TENSOR_UNARY_OP_LOCALS;
  6284. const int ith = params->ith; // thread index
  6285. const int nth = params->nth; // number of threads
  6286. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6287. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6288. return;
  6289. }
  6290. // parallelize by rows
  6291. const int nr = ne01;
  6292. // number of rows per thread
  6293. const int dr = (nr + nth - 1) / nth;
  6294. // row range for this thread
  6295. const int ir0 = dr * ith;
  6296. const int ir1 = MIN(ir0 + dr, nr);
  6297. if (src0->type == dst->type &&
  6298. ne00 == ne0 &&
  6299. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6300. // copy by rows
  6301. const size_t rs = ne00*nb00;
  6302. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6303. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6304. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6305. memcpy(
  6306. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6307. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6308. rs);
  6309. }
  6310. }
  6311. }
  6312. return;
  6313. }
  6314. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6315. if (ggml_is_contiguous(dst)) {
  6316. if (nb00 == sizeof(ggml_fp16_t)) {
  6317. if (dst->type == GGML_TYPE_F16) {
  6318. size_t id = 0;
  6319. const size_t rs = ne00 * nb00;
  6320. char * dst_ptr = (char *) dst->data;
  6321. for (int i03 = 0; i03 < ne03; i03++) {
  6322. for (int i02 = 0; i02 < ne02; i02++) {
  6323. id += rs * ir0;
  6324. for (int i01 = ir0; i01 < ir1; i01++) {
  6325. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6326. memcpy(dst_ptr + id, src0_ptr, rs);
  6327. id += rs;
  6328. }
  6329. id += rs * (ne01 - ir1);
  6330. }
  6331. }
  6332. } else if (dst->type == GGML_TYPE_F32) {
  6333. size_t id = 0;
  6334. float * dst_ptr = (float *) dst->data;
  6335. for (int i03 = 0; i03 < ne03; i03++) {
  6336. for (int i02 = 0; i02 < ne02; i02++) {
  6337. id += ne00 * ir0;
  6338. for (int i01 = ir0; i01 < ir1; i01++) {
  6339. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6340. for (int i00 = 0; i00 < ne00; i00++) {
  6341. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6342. id++;
  6343. }
  6344. }
  6345. id += ne00 * (ne01 - ir1);
  6346. }
  6347. }
  6348. } else if (type_traits[dst->type].from_float) {
  6349. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6350. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6351. size_t id = 0;
  6352. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6353. char * dst_ptr = (char *) dst->data;
  6354. for (int i03 = 0; i03 < ne03; i03++) {
  6355. for (int i02 = 0; i02 < ne02; i02++) {
  6356. id += rs * ir0;
  6357. for (int i01 = ir0; i01 < ir1; i01++) {
  6358. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6359. for (int i00 = 0; i00 < ne00; i00++) {
  6360. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6361. }
  6362. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6363. id += rs;
  6364. }
  6365. id += rs * (ne01 - ir1);
  6366. }
  6367. }
  6368. } else {
  6369. GGML_ASSERT(false); // TODO: implement
  6370. }
  6371. } else {
  6372. //printf("%s: this is not optimal - fix me\n", __func__);
  6373. if (dst->type == GGML_TYPE_F32) {
  6374. size_t id = 0;
  6375. float * dst_ptr = (float *) dst->data;
  6376. for (int i03 = 0; i03 < ne03; i03++) {
  6377. for (int i02 = 0; i02 < ne02; i02++) {
  6378. id += ne00 * ir0;
  6379. for (int i01 = ir0; i01 < ir1; i01++) {
  6380. for (int i00 = 0; i00 < ne00; i00++) {
  6381. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6382. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6383. id++;
  6384. }
  6385. }
  6386. id += ne00 * (ne01 - ir1);
  6387. }
  6388. }
  6389. } else if (dst->type == GGML_TYPE_F16) {
  6390. size_t id = 0;
  6391. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6392. for (int i03 = 0; i03 < ne03; i03++) {
  6393. for (int i02 = 0; i02 < ne02; i02++) {
  6394. id += ne00 * ir0;
  6395. for (int i01 = ir0; i01 < ir1; i01++) {
  6396. for (int i00 = 0; i00 < ne00; i00++) {
  6397. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6398. dst_ptr[id] = *src0_ptr;
  6399. id++;
  6400. }
  6401. }
  6402. id += ne00 * (ne01 - ir1);
  6403. }
  6404. }
  6405. } else {
  6406. GGML_ASSERT(false); // TODO: implement
  6407. }
  6408. }
  6409. return;
  6410. }
  6411. // dst counters
  6412. int64_t i10 = 0;
  6413. int64_t i11 = 0;
  6414. int64_t i12 = 0;
  6415. int64_t i13 = 0;
  6416. if (dst->type == GGML_TYPE_F16) {
  6417. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6418. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6419. i10 += ne00 * ir0;
  6420. while (i10 >= ne0) {
  6421. i10 -= ne0;
  6422. if (++i11 == ne1) {
  6423. i11 = 0;
  6424. if (++i12 == ne2) {
  6425. i12 = 0;
  6426. if (++i13 == ne3) {
  6427. i13 = 0;
  6428. }
  6429. }
  6430. }
  6431. }
  6432. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6433. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6434. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6435. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6436. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6437. if (++i10 == ne00) {
  6438. i10 = 0;
  6439. if (++i11 == ne01) {
  6440. i11 = 0;
  6441. if (++i12 == ne02) {
  6442. i12 = 0;
  6443. if (++i13 == ne03) {
  6444. i13 = 0;
  6445. }
  6446. }
  6447. }
  6448. }
  6449. }
  6450. }
  6451. i10 += ne00 * (ne01 - ir1);
  6452. while (i10 >= ne0) {
  6453. i10 -= ne0;
  6454. if (++i11 == ne1) {
  6455. i11 = 0;
  6456. if (++i12 == ne2) {
  6457. i12 = 0;
  6458. if (++i13 == ne3) {
  6459. i13 = 0;
  6460. }
  6461. }
  6462. }
  6463. }
  6464. }
  6465. }
  6466. } else if (dst->type == GGML_TYPE_F32) {
  6467. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6468. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6469. i10 += ne00 * ir0;
  6470. while (i10 >= ne0) {
  6471. i10 -= ne0;
  6472. if (++i11 == ne1) {
  6473. i11 = 0;
  6474. if (++i12 == ne2) {
  6475. i12 = 0;
  6476. if (++i13 == ne3) {
  6477. i13 = 0;
  6478. }
  6479. }
  6480. }
  6481. }
  6482. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6483. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6484. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6485. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6486. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6487. if (++i10 == ne0) {
  6488. i10 = 0;
  6489. if (++i11 == ne1) {
  6490. i11 = 0;
  6491. if (++i12 == ne2) {
  6492. i12 = 0;
  6493. if (++i13 == ne3) {
  6494. i13 = 0;
  6495. }
  6496. }
  6497. }
  6498. }
  6499. }
  6500. }
  6501. i10 += ne00 * (ne01 - ir1);
  6502. while (i10 >= ne0) {
  6503. i10 -= ne0;
  6504. if (++i11 == ne1) {
  6505. i11 = 0;
  6506. if (++i12 == ne2) {
  6507. i12 = 0;
  6508. if (++i13 == ne3) {
  6509. i13 = 0;
  6510. }
  6511. }
  6512. }
  6513. }
  6514. }
  6515. }
  6516. } else {
  6517. GGML_ASSERT(false); // TODO: implement
  6518. }
  6519. }
  6520. static void ggml_compute_forward_dup_f32(
  6521. const struct ggml_compute_params * params,
  6522. const struct ggml_tensor * src0,
  6523. struct ggml_tensor * dst) {
  6524. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6526. return;
  6527. }
  6528. GGML_TENSOR_UNARY_OP_LOCALS;
  6529. const int ith = params->ith; // thread index
  6530. const int nth = params->nth; // number of threads
  6531. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6532. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6533. return;
  6534. }
  6535. // parallelize by rows
  6536. const int nr = ne01;
  6537. // number of rows per thread
  6538. const int dr = (nr + nth - 1) / nth;
  6539. // row range for this thread
  6540. const int ir0 = dr * ith;
  6541. const int ir1 = MIN(ir0 + dr, nr);
  6542. if (src0->type == dst->type &&
  6543. ne00 == ne0 &&
  6544. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6545. // copy by rows
  6546. const size_t rs = ne00*nb00;
  6547. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6549. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6550. memcpy(
  6551. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6552. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6553. rs);
  6554. }
  6555. }
  6556. }
  6557. return;
  6558. }
  6559. if (ggml_is_contiguous(dst)) {
  6560. // TODO: simplify
  6561. if (nb00 == sizeof(float)) {
  6562. if (dst->type == GGML_TYPE_F32) {
  6563. size_t id = 0;
  6564. const size_t rs = ne00 * nb00;
  6565. char * dst_ptr = (char *) dst->data;
  6566. for (int i03 = 0; i03 < ne03; i03++) {
  6567. for (int i02 = 0; i02 < ne02; i02++) {
  6568. id += rs * ir0;
  6569. for (int i01 = ir0; i01 < ir1; i01++) {
  6570. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6571. memcpy(dst_ptr + id, src0_ptr, rs);
  6572. id += rs;
  6573. }
  6574. id += rs * (ne01 - ir1);
  6575. }
  6576. }
  6577. } else if (type_traits[dst->type].from_float) {
  6578. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6579. size_t id = 0;
  6580. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6581. char * dst_ptr = (char *) dst->data;
  6582. for (int i03 = 0; i03 < ne03; i03++) {
  6583. for (int i02 = 0; i02 < ne02; i02++) {
  6584. id += rs * ir0;
  6585. for (int i01 = ir0; i01 < ir1; i01++) {
  6586. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6587. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6588. id += rs;
  6589. }
  6590. id += rs * (ne01 - ir1);
  6591. }
  6592. }
  6593. } else {
  6594. GGML_ASSERT(false); // TODO: implement
  6595. }
  6596. } else {
  6597. //printf("%s: this is not optimal - fix me\n", __func__);
  6598. if (dst->type == GGML_TYPE_F32) {
  6599. size_t id = 0;
  6600. float * dst_ptr = (float *) dst->data;
  6601. for (int i03 = 0; i03 < ne03; i03++) {
  6602. for (int i02 = 0; i02 < ne02; i02++) {
  6603. id += ne00 * ir0;
  6604. for (int i01 = ir0; i01 < ir1; i01++) {
  6605. for (int i00 = 0; i00 < ne00; i00++) {
  6606. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6607. dst_ptr[id] = *src0_ptr;
  6608. id++;
  6609. }
  6610. }
  6611. id += ne00 * (ne01 - ir1);
  6612. }
  6613. }
  6614. } else if (dst->type == GGML_TYPE_F16) {
  6615. size_t id = 0;
  6616. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6617. for (int i03 = 0; i03 < ne03; i03++) {
  6618. for (int i02 = 0; i02 < ne02; i02++) {
  6619. id += ne00 * ir0;
  6620. for (int i01 = ir0; i01 < ir1; i01++) {
  6621. for (int i00 = 0; i00 < ne00; i00++) {
  6622. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6623. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6624. id++;
  6625. }
  6626. }
  6627. id += ne00 * (ne01 - ir1);
  6628. }
  6629. }
  6630. } else {
  6631. GGML_ASSERT(false); // TODO: implement
  6632. }
  6633. }
  6634. return;
  6635. }
  6636. // dst counters
  6637. int64_t i10 = 0;
  6638. int64_t i11 = 0;
  6639. int64_t i12 = 0;
  6640. int64_t i13 = 0;
  6641. if (dst->type == GGML_TYPE_F32) {
  6642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6643. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6644. i10 += ne00 * ir0;
  6645. while (i10 >= ne0) {
  6646. i10 -= ne0;
  6647. if (++i11 == ne1) {
  6648. i11 = 0;
  6649. if (++i12 == ne2) {
  6650. i12 = 0;
  6651. if (++i13 == ne3) {
  6652. i13 = 0;
  6653. }
  6654. }
  6655. }
  6656. }
  6657. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6658. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6659. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6660. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6661. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6662. if (++i10 == ne0) {
  6663. i10 = 0;
  6664. if (++i11 == ne1) {
  6665. i11 = 0;
  6666. if (++i12 == ne2) {
  6667. i12 = 0;
  6668. if (++i13 == ne3) {
  6669. i13 = 0;
  6670. }
  6671. }
  6672. }
  6673. }
  6674. }
  6675. }
  6676. i10 += ne00 * (ne01 - ir1);
  6677. while (i10 >= ne0) {
  6678. i10 -= ne0;
  6679. if (++i11 == ne1) {
  6680. i11 = 0;
  6681. if (++i12 == ne2) {
  6682. i12 = 0;
  6683. if (++i13 == ne3) {
  6684. i13 = 0;
  6685. }
  6686. }
  6687. }
  6688. }
  6689. }
  6690. }
  6691. } else if (dst->type == GGML_TYPE_F16) {
  6692. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6693. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6694. i10 += ne00 * ir0;
  6695. while (i10 >= ne0) {
  6696. i10 -= ne0;
  6697. if (++i11 == ne1) {
  6698. i11 = 0;
  6699. if (++i12 == ne2) {
  6700. i12 = 0;
  6701. if (++i13 == ne3) {
  6702. i13 = 0;
  6703. }
  6704. }
  6705. }
  6706. }
  6707. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6708. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6709. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6710. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6711. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6712. if (++i10 == ne0) {
  6713. i10 = 0;
  6714. if (++i11 == ne1) {
  6715. i11 = 0;
  6716. if (++i12 == ne2) {
  6717. i12 = 0;
  6718. if (++i13 == ne3) {
  6719. i13 = 0;
  6720. }
  6721. }
  6722. }
  6723. }
  6724. }
  6725. }
  6726. i10 += ne00 * (ne01 - ir1);
  6727. while (i10 >= ne0) {
  6728. i10 -= ne0;
  6729. if (++i11 == ne1) {
  6730. i11 = 0;
  6731. if (++i12 == ne2) {
  6732. i12 = 0;
  6733. if (++i13 == ne3) {
  6734. i13 = 0;
  6735. }
  6736. }
  6737. }
  6738. }
  6739. }
  6740. }
  6741. } else {
  6742. GGML_ASSERT(false); // TODO: implement
  6743. }
  6744. }
  6745. static void ggml_compute_forward_dup(
  6746. const struct ggml_compute_params * params,
  6747. const struct ggml_tensor * src0,
  6748. struct ggml_tensor * dst) {
  6749. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6750. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6751. return;
  6752. }
  6753. switch (src0->type) {
  6754. case GGML_TYPE_F16:
  6755. {
  6756. ggml_compute_forward_dup_f16(params, src0, dst);
  6757. } break;
  6758. case GGML_TYPE_F32:
  6759. {
  6760. ggml_compute_forward_dup_f32(params, src0, dst);
  6761. } break;
  6762. default:
  6763. {
  6764. GGML_ASSERT(false);
  6765. } break;
  6766. }
  6767. }
  6768. // ggml_compute_forward_add
  6769. static void ggml_compute_forward_add_f32(
  6770. const struct ggml_compute_params * params,
  6771. const struct ggml_tensor * src0,
  6772. const struct ggml_tensor * src1,
  6773. struct ggml_tensor * dst) {
  6774. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6775. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6776. return;
  6777. }
  6778. const int ith = params->ith;
  6779. const int nth = params->nth;
  6780. const int nr = ggml_nrows(src0);
  6781. GGML_TENSOR_BINARY_OP_LOCALS;
  6782. GGML_ASSERT( nb0 == sizeof(float));
  6783. GGML_ASSERT(nb00 == sizeof(float));
  6784. // rows per thread
  6785. const int dr = (nr + nth - 1)/nth;
  6786. // row range for this thread
  6787. const int ir0 = dr*ith;
  6788. const int ir1 = MIN(ir0 + dr, nr);
  6789. if (nb10 == sizeof(float)) {
  6790. for (int ir = ir0; ir < ir1; ++ir) {
  6791. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6792. const int64_t i03 = ir/(ne02*ne01);
  6793. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6794. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6795. const int64_t i13 = i03 % ne13;
  6796. const int64_t i12 = i02 % ne12;
  6797. const int64_t i11 = i01 % ne11;
  6798. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6799. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6800. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6801. #ifdef GGML_USE_ACCELERATE
  6802. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6803. #else
  6804. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6805. #endif
  6806. // }
  6807. // }
  6808. }
  6809. } else {
  6810. // src1 is not contiguous
  6811. for (int ir = ir0; ir < ir1; ++ir) {
  6812. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6813. const int64_t i03 = ir/(ne02*ne01);
  6814. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6815. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6816. const int64_t i13 = i03 % ne13;
  6817. const int64_t i12 = i02 % ne12;
  6818. const int64_t i11 = i01 % ne11;
  6819. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6820. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6821. for (int i0 = 0; i0 < ne0; i0++) {
  6822. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6823. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6824. }
  6825. }
  6826. }
  6827. }
  6828. static void ggml_compute_forward_add_f16_f32(
  6829. const struct ggml_compute_params * params,
  6830. const struct ggml_tensor * src0,
  6831. const struct ggml_tensor * src1,
  6832. struct ggml_tensor * dst) {
  6833. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6835. return;
  6836. }
  6837. const int ith = params->ith;
  6838. const int nth = params->nth;
  6839. const int nr = ggml_nrows(src0);
  6840. GGML_TENSOR_BINARY_OP_LOCALS;
  6841. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6842. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6843. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6844. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6845. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6846. // rows per thread
  6847. const int dr = (nr + nth - 1)/nth;
  6848. // row range for this thread
  6849. const int ir0 = dr*ith;
  6850. const int ir1 = MIN(ir0 + dr, nr);
  6851. if (nb10 == sizeof(float)) {
  6852. for (int ir = ir0; ir < ir1; ++ir) {
  6853. // src0, src1 and dst are same shape => same indices
  6854. const int i3 = ir/(ne2*ne1);
  6855. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6856. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6857. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6858. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6859. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6860. for (int i = 0; i < ne0; i++) {
  6861. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6862. }
  6863. }
  6864. }
  6865. else {
  6866. // src1 is not contiguous
  6867. GGML_ASSERT(false);
  6868. }
  6869. }
  6870. static void ggml_compute_forward_add_f16_f16(
  6871. const struct ggml_compute_params * params,
  6872. const struct ggml_tensor * src0,
  6873. const struct ggml_tensor * src1,
  6874. struct ggml_tensor * dst) {
  6875. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6876. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6877. return;
  6878. }
  6879. const int ith = params->ith;
  6880. const int nth = params->nth;
  6881. const int nr = ggml_nrows(src0);
  6882. GGML_TENSOR_BINARY_OP_LOCALS;
  6883. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6884. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6885. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6886. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6887. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6888. // rows per thread
  6889. const int dr = (nr + nth - 1)/nth;
  6890. // row range for this thread
  6891. const int ir0 = dr*ith;
  6892. const int ir1 = MIN(ir0 + dr, nr);
  6893. if (nb10 == sizeof(ggml_fp16_t)) {
  6894. for (int ir = ir0; ir < ir1; ++ir) {
  6895. // src0, src1 and dst are same shape => same indices
  6896. const int i3 = ir/(ne2*ne1);
  6897. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6898. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6899. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6900. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6901. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6902. for (int i = 0; i < ne0; i++) {
  6903. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6904. }
  6905. }
  6906. }
  6907. else {
  6908. // src1 is not contiguous
  6909. GGML_ASSERT(false);
  6910. }
  6911. }
  6912. static void ggml_compute_forward_add_q_f32(
  6913. const struct ggml_compute_params * params,
  6914. const struct ggml_tensor * src0,
  6915. const struct ggml_tensor * src1,
  6916. struct ggml_tensor * dst) {
  6917. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6919. return;
  6920. }
  6921. const int nr = ggml_nrows(src0);
  6922. GGML_TENSOR_BINARY_OP_LOCALS;
  6923. const int ith = params->ith;
  6924. const int nth = params->nth;
  6925. const enum ggml_type type = src0->type;
  6926. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6927. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6928. // we don't support permuted src0 or src1
  6929. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6930. GGML_ASSERT(nb10 == sizeof(float));
  6931. // dst cannot be transposed or permuted
  6932. GGML_ASSERT(nb0 <= nb1);
  6933. GGML_ASSERT(nb1 <= nb2);
  6934. GGML_ASSERT(nb2 <= nb3);
  6935. GGML_ASSERT(ggml_is_quantized(src0->type));
  6936. GGML_ASSERT(dst->type == src0->type);
  6937. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6938. // rows per thread
  6939. const int dr = (nr + nth - 1)/nth;
  6940. // row range for this thread
  6941. const int ir0 = dr*ith;
  6942. const int ir1 = MIN(ir0 + dr, nr);
  6943. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6944. for (int ir = ir0; ir < ir1; ++ir) {
  6945. // src0 indices
  6946. const int i03 = ir/(ne02*ne01);
  6947. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6948. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6949. // src1 and dst are same shape as src0 => same indices
  6950. const int i13 = i03;
  6951. const int i12 = i02;
  6952. const int i11 = i01;
  6953. const int i3 = i03;
  6954. const int i2 = i02;
  6955. const int i1 = i01;
  6956. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6957. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6958. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6959. assert(ne00 % 32 == 0);
  6960. // unquantize row from src0 to temp buffer
  6961. dequantize_row_q(src0_row, wdata, ne00);
  6962. // add src1
  6963. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6964. // quantize row to dst
  6965. quantize_row_q(wdata, dst_row, ne00);
  6966. }
  6967. }
  6968. static void ggml_compute_forward_add(
  6969. const struct ggml_compute_params * params,
  6970. const struct ggml_tensor * src0,
  6971. const struct ggml_tensor * src1,
  6972. struct ggml_tensor * dst) {
  6973. switch (src0->type) {
  6974. case GGML_TYPE_F32:
  6975. {
  6976. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6977. } break;
  6978. case GGML_TYPE_F16:
  6979. {
  6980. if (src1->type == GGML_TYPE_F16) {
  6981. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6982. }
  6983. else if (src1->type == GGML_TYPE_F32) {
  6984. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6985. }
  6986. else {
  6987. GGML_ASSERT(false);
  6988. }
  6989. } break;
  6990. case GGML_TYPE_Q4_0:
  6991. case GGML_TYPE_Q4_1:
  6992. case GGML_TYPE_Q5_0:
  6993. case GGML_TYPE_Q5_1:
  6994. case GGML_TYPE_Q8_0:
  6995. case GGML_TYPE_Q2_K:
  6996. case GGML_TYPE_Q3_K:
  6997. case GGML_TYPE_Q4_K:
  6998. case GGML_TYPE_Q5_K:
  6999. case GGML_TYPE_Q6_K:
  7000. {
  7001. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7002. } break;
  7003. default:
  7004. {
  7005. GGML_ASSERT(false);
  7006. } break;
  7007. }
  7008. }
  7009. // ggml_compute_forward_add1
  7010. static void ggml_compute_forward_add1_f32(
  7011. const struct ggml_compute_params * params,
  7012. const struct ggml_tensor * src0,
  7013. const struct ggml_tensor * src1,
  7014. struct ggml_tensor * dst) {
  7015. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7016. GGML_ASSERT(ggml_is_scalar(src1));
  7017. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7018. return;
  7019. }
  7020. const int ith = params->ith;
  7021. const int nth = params->nth;
  7022. const int nr = ggml_nrows(src0);
  7023. GGML_TENSOR_UNARY_OP_LOCALS;
  7024. GGML_ASSERT( nb0 == sizeof(float));
  7025. GGML_ASSERT(nb00 == sizeof(float));
  7026. // rows per thread
  7027. const int dr = (nr + nth - 1)/nth;
  7028. // row range for this thread
  7029. const int ir0 = dr*ith;
  7030. const int ir1 = MIN(ir0 + dr, nr);
  7031. for (int ir = ir0; ir < ir1; ++ir) {
  7032. // src0 and dst are same shape => same indices
  7033. const int i3 = ir/(ne2*ne1);
  7034. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7035. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7036. #ifdef GGML_USE_ACCELERATE
  7037. UNUSED(ggml_vec_add1_f32);
  7038. vDSP_vadd(
  7039. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7040. (float *) ((char *) src1->data), 0,
  7041. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7042. ne0);
  7043. #else
  7044. ggml_vec_add1_f32(ne0,
  7045. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7046. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7047. *(float *) src1->data);
  7048. #endif
  7049. }
  7050. }
  7051. static void ggml_compute_forward_add1_f16_f32(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. const struct ggml_tensor * src1,
  7055. struct ggml_tensor * dst) {
  7056. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7057. GGML_ASSERT(ggml_is_scalar(src1));
  7058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7059. return;
  7060. }
  7061. // scalar to add
  7062. const float v = *(float *) src1->data;
  7063. const int ith = params->ith;
  7064. const int nth = params->nth;
  7065. const int nr = ggml_nrows(src0);
  7066. GGML_TENSOR_UNARY_OP_LOCALS;
  7067. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7068. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7069. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7070. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7071. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7072. // rows per thread
  7073. const int dr = (nr + nth - 1)/nth;
  7074. // row range for this thread
  7075. const int ir0 = dr*ith;
  7076. const int ir1 = MIN(ir0 + dr, nr);
  7077. for (int ir = ir0; ir < ir1; ++ir) {
  7078. // src0 and dst are same shape => same indices
  7079. const int i3 = ir/(ne2*ne1);
  7080. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7081. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7082. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7083. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7084. for (int i = 0; i < ne0; i++) {
  7085. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7086. }
  7087. }
  7088. }
  7089. static void ggml_compute_forward_add1_f16_f16(
  7090. const struct ggml_compute_params * params,
  7091. const struct ggml_tensor * src0,
  7092. const struct ggml_tensor * src1,
  7093. struct ggml_tensor * dst) {
  7094. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7095. GGML_ASSERT(ggml_is_scalar(src1));
  7096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7097. return;
  7098. }
  7099. // scalar to add
  7100. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7101. const int ith = params->ith;
  7102. const int nth = params->nth;
  7103. const int nr = ggml_nrows(src0);
  7104. GGML_TENSOR_UNARY_OP_LOCALS;
  7105. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7106. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7107. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7108. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7109. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7110. // rows per thread
  7111. const int dr = (nr + nth - 1)/nth;
  7112. // row range for this thread
  7113. const int ir0 = dr*ith;
  7114. const int ir1 = MIN(ir0 + dr, nr);
  7115. for (int ir = ir0; ir < ir1; ++ir) {
  7116. // src0 and dst are same shape => same indices
  7117. const int i3 = ir/(ne2*ne1);
  7118. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7119. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7120. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7121. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7122. for (int i = 0; i < ne0; i++) {
  7123. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7124. }
  7125. }
  7126. }
  7127. static void ggml_compute_forward_add1_q_f32(
  7128. const struct ggml_compute_params * params,
  7129. const struct ggml_tensor * src0,
  7130. const struct ggml_tensor * src1,
  7131. struct ggml_tensor * dst) {
  7132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7133. GGML_ASSERT(ggml_is_scalar(src1));
  7134. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7135. return;
  7136. }
  7137. // scalar to add
  7138. const float v = *(float *) src1->data;
  7139. const int ith = params->ith;
  7140. const int nth = params->nth;
  7141. const int nr = ggml_nrows(src0);
  7142. GGML_TENSOR_UNARY_OP_LOCALS;
  7143. const enum ggml_type type = src0->type;
  7144. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7145. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7146. // we don't support permuted src0
  7147. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7148. // dst cannot be transposed or permuted
  7149. GGML_ASSERT(nb0 <= nb1);
  7150. GGML_ASSERT(nb1 <= nb2);
  7151. GGML_ASSERT(nb2 <= nb3);
  7152. GGML_ASSERT(ggml_is_quantized(src0->type));
  7153. GGML_ASSERT(dst->type == src0->type);
  7154. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7155. // rows per thread
  7156. const int dr = (nr + nth - 1)/nth;
  7157. // row range for this thread
  7158. const int ir0 = dr*ith;
  7159. const int ir1 = MIN(ir0 + dr, nr);
  7160. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7161. for (int ir = ir0; ir < ir1; ++ir) {
  7162. // src0 and dst are same shape => same indices
  7163. const int i3 = ir/(ne2*ne1);
  7164. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7165. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7166. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7167. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7168. assert(ne0 % 32 == 0);
  7169. // unquantize row from src0 to temp buffer
  7170. dequantize_row_q(src0_row, wdata, ne0);
  7171. // add src1
  7172. ggml_vec_acc1_f32(ne0, wdata, v);
  7173. // quantize row to dst
  7174. quantize_row_q(wdata, dst_row, ne0);
  7175. }
  7176. }
  7177. static void ggml_compute_forward_add1(
  7178. const struct ggml_compute_params * params,
  7179. const struct ggml_tensor * src0,
  7180. const struct ggml_tensor * src1,
  7181. struct ggml_tensor * dst) {
  7182. switch (src0->type) {
  7183. case GGML_TYPE_F32:
  7184. {
  7185. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7186. } break;
  7187. case GGML_TYPE_F16:
  7188. {
  7189. if (src1->type == GGML_TYPE_F16) {
  7190. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7191. }
  7192. else if (src1->type == GGML_TYPE_F32) {
  7193. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7194. }
  7195. else {
  7196. GGML_ASSERT(false);
  7197. }
  7198. } break;
  7199. case GGML_TYPE_Q4_0:
  7200. case GGML_TYPE_Q4_1:
  7201. case GGML_TYPE_Q5_0:
  7202. case GGML_TYPE_Q5_1:
  7203. case GGML_TYPE_Q8_0:
  7204. case GGML_TYPE_Q8_1:
  7205. case GGML_TYPE_Q2_K:
  7206. case GGML_TYPE_Q3_K:
  7207. case GGML_TYPE_Q4_K:
  7208. case GGML_TYPE_Q5_K:
  7209. case GGML_TYPE_Q6_K:
  7210. {
  7211. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7212. } break;
  7213. default:
  7214. {
  7215. GGML_ASSERT(false);
  7216. } break;
  7217. }
  7218. }
  7219. // ggml_compute_forward_acc
  7220. static void ggml_compute_forward_acc_f32(
  7221. const struct ggml_compute_params * params,
  7222. const struct ggml_tensor * src0,
  7223. const struct ggml_tensor * src1,
  7224. const struct ggml_tensor * opt0,
  7225. struct ggml_tensor * dst) {
  7226. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7227. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7228. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7229. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7230. // view src0 and dst with these strides and data offset inbytes during acc
  7231. // nb0 is implicitely element_size because src0 and dst are contiguous
  7232. size_t nb1 = ((int32_t *) opt0->data)[0];
  7233. size_t nb2 = ((int32_t *) opt0->data)[1];
  7234. size_t nb3 = ((int32_t *) opt0->data)[2];
  7235. size_t offset = ((int32_t *) opt0->data)[3];
  7236. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7237. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7238. // memcpy needs to be synchronized across threads to avoid race conditions.
  7239. // => do it in INIT phase
  7240. memcpy(
  7241. ((char *) dst->data),
  7242. ((char *) src0->data),
  7243. ggml_nbytes(dst));
  7244. }
  7245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7246. return;
  7247. }
  7248. const int ith = params->ith;
  7249. const int nth = params->nth;
  7250. const int nr = ggml_nrows(src1);
  7251. const int nc = src1->ne[0];
  7252. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7253. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7254. // src0 and dst as viewed during acc
  7255. const size_t nb0 = ggml_element_size(src0);
  7256. const size_t nb00 = nb0;
  7257. const size_t nb01 = nb1;
  7258. const size_t nb02 = nb2;
  7259. const size_t nb03 = nb3;
  7260. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7261. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7262. GGML_ASSERT(nb10 == sizeof(float));
  7263. // rows per thread
  7264. const int dr = (nr + nth - 1)/nth;
  7265. // row range for this thread
  7266. const int ir0 = dr*ith;
  7267. const int ir1 = MIN(ir0 + dr, nr);
  7268. for (int ir = ir0; ir < ir1; ++ir) {
  7269. // src0 and dst are viewed with shape of src1 and offset
  7270. // => same indices
  7271. const int i3 = ir/(ne12*ne11);
  7272. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7273. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7274. #ifdef GGML_USE_ACCELERATE
  7275. vDSP_vadd(
  7276. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7277. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7278. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7279. #else
  7280. ggml_vec_add_f32(nc,
  7281. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7282. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7283. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7284. #endif
  7285. }
  7286. }
  7287. static void ggml_compute_forward_acc(
  7288. const struct ggml_compute_params * params,
  7289. const struct ggml_tensor * src0,
  7290. const struct ggml_tensor * src1,
  7291. const struct ggml_tensor * opt0,
  7292. struct ggml_tensor * dst) {
  7293. switch (src0->type) {
  7294. case GGML_TYPE_F32:
  7295. {
  7296. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7297. } break;
  7298. case GGML_TYPE_F16:
  7299. case GGML_TYPE_Q4_0:
  7300. case GGML_TYPE_Q4_1:
  7301. case GGML_TYPE_Q5_0:
  7302. case GGML_TYPE_Q5_1:
  7303. case GGML_TYPE_Q8_0:
  7304. case GGML_TYPE_Q8_1:
  7305. case GGML_TYPE_Q2_K:
  7306. case GGML_TYPE_Q3_K:
  7307. case GGML_TYPE_Q4_K:
  7308. case GGML_TYPE_Q5_K:
  7309. case GGML_TYPE_Q6_K:
  7310. default:
  7311. {
  7312. GGML_ASSERT(false);
  7313. } break;
  7314. }
  7315. }
  7316. // ggml_compute_forward_sub
  7317. static void ggml_compute_forward_sub_f32(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. const struct ggml_tensor * src1,
  7321. struct ggml_tensor * dst) {
  7322. assert(params->ith == 0);
  7323. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7325. return;
  7326. }
  7327. const int nr = ggml_nrows(src0);
  7328. GGML_TENSOR_BINARY_OP_LOCALS;
  7329. GGML_ASSERT( nb0 == sizeof(float));
  7330. GGML_ASSERT(nb00 == sizeof(float));
  7331. if (nb10 == sizeof(float)) {
  7332. for (int ir = 0; ir < nr; ++ir) {
  7333. // src0, src1 and dst are same shape => same indices
  7334. const int i3 = ir/(ne2*ne1);
  7335. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7336. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7337. #ifdef GGML_USE_ACCELERATE
  7338. vDSP_vsub(
  7339. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7340. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7341. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7342. ne0);
  7343. #else
  7344. ggml_vec_sub_f32(ne0,
  7345. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7346. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7347. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7348. #endif
  7349. // }
  7350. // }
  7351. }
  7352. } else {
  7353. // src1 is not contiguous
  7354. for (int ir = 0; ir < nr; ++ir) {
  7355. // src0, src1 and dst are same shape => same indices
  7356. const int i3 = ir/(ne2*ne1);
  7357. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7358. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7359. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7360. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7361. for (int i0 = 0; i0 < ne0; i0++) {
  7362. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7363. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7364. }
  7365. }
  7366. }
  7367. }
  7368. static void ggml_compute_forward_sub(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. const struct ggml_tensor * src1,
  7372. struct ggml_tensor * dst) {
  7373. switch (src0->type) {
  7374. case GGML_TYPE_F32:
  7375. {
  7376. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7377. } break;
  7378. default:
  7379. {
  7380. GGML_ASSERT(false);
  7381. } break;
  7382. }
  7383. }
  7384. // ggml_compute_forward_mul
  7385. static void ggml_compute_forward_mul_f32(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. const struct ggml_tensor * src1,
  7389. struct ggml_tensor * dst) {
  7390. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7392. return;
  7393. }
  7394. const int ith = params->ith;
  7395. const int nth = params->nth;
  7396. #ifdef GGML_USE_CLBLAST
  7397. if (src1->backend == GGML_BACKEND_GPU) {
  7398. if (ith == 0) {
  7399. ggml_cl_mul(src0, src1, dst);
  7400. }
  7401. return;
  7402. }
  7403. #endif
  7404. const int64_t nr = ggml_nrows(src0);
  7405. GGML_TENSOR_BINARY_OP_LOCALS;
  7406. GGML_ASSERT( nb0 == sizeof(float));
  7407. GGML_ASSERT(nb00 == sizeof(float));
  7408. GGML_ASSERT(ne00 == ne10);
  7409. if (nb10 == sizeof(float)) {
  7410. for (int64_t ir = ith; ir < nr; ir += nth) {
  7411. // src0 and dst are same shape => same indices
  7412. const int64_t i03 = ir/(ne02*ne01);
  7413. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7414. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7415. const int64_t i13 = i03 % ne13;
  7416. const int64_t i12 = i02 % ne12;
  7417. const int64_t i11 = i01 % ne11;
  7418. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7419. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7420. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7421. #ifdef GGML_USE_ACCELERATE
  7422. UNUSED(ggml_vec_mul_f32);
  7423. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7424. #else
  7425. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7426. #endif
  7427. // }
  7428. // }
  7429. }
  7430. } else {
  7431. // src1 is not contiguous
  7432. for (int64_t ir = ith; ir < nr; ir += nth) {
  7433. // src0 and dst are same shape => same indices
  7434. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7435. const int64_t i03 = ir/(ne02*ne01);
  7436. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7437. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7438. const int64_t i13 = i03 % ne13;
  7439. const int64_t i12 = i02 % ne12;
  7440. const int64_t i11 = i01 % ne11;
  7441. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7442. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7443. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7444. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7445. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7446. }
  7447. }
  7448. }
  7449. }
  7450. static void ggml_compute_forward_mul(
  7451. const struct ggml_compute_params * params,
  7452. const struct ggml_tensor * src0,
  7453. const struct ggml_tensor * src1,
  7454. struct ggml_tensor * dst) {
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. {
  7458. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7459. } break;
  7460. default:
  7461. {
  7462. GGML_ASSERT(false);
  7463. } break;
  7464. }
  7465. }
  7466. // ggml_compute_forward_div
  7467. static void ggml_compute_forward_div_f32(
  7468. const struct ggml_compute_params * params,
  7469. const struct ggml_tensor * src0,
  7470. const struct ggml_tensor * src1,
  7471. struct ggml_tensor * dst) {
  7472. assert(params->ith == 0);
  7473. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7475. return;
  7476. }
  7477. const int nr = ggml_nrows(src0);
  7478. GGML_TENSOR_BINARY_OP_LOCALS;
  7479. GGML_ASSERT( nb0 == sizeof(float));
  7480. GGML_ASSERT(nb00 == sizeof(float));
  7481. if (nb10 == sizeof(float)) {
  7482. for (int ir = 0; ir < nr; ++ir) {
  7483. // src0, src1 and dst are same shape => same indices
  7484. const int i3 = ir/(ne2*ne1);
  7485. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7486. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7487. #ifdef GGML_USE_ACCELERATE
  7488. vDSP_vdiv(
  7489. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7490. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7491. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7492. ne0);
  7493. #else
  7494. ggml_vec_div_f32(ne0,
  7495. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7496. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7497. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7498. #endif
  7499. // }
  7500. // }
  7501. }
  7502. } else {
  7503. // src1 is not contiguous
  7504. for (int ir = 0; ir < nr; ++ir) {
  7505. // src0, src1 and dst are same shape => same indices
  7506. const int i3 = ir/(ne2*ne1);
  7507. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7508. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7509. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7510. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7511. for (int i0 = 0; i0 < ne0; i0++) {
  7512. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7513. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7514. }
  7515. }
  7516. }
  7517. }
  7518. static void ggml_compute_forward_div(
  7519. const struct ggml_compute_params * params,
  7520. const struct ggml_tensor * src0,
  7521. const struct ggml_tensor * src1,
  7522. struct ggml_tensor * dst) {
  7523. switch (src0->type) {
  7524. case GGML_TYPE_F32:
  7525. {
  7526. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7527. } break;
  7528. default:
  7529. {
  7530. GGML_ASSERT(false);
  7531. } break;
  7532. }
  7533. }
  7534. // ggml_compute_forward_sqr
  7535. static void ggml_compute_forward_sqr_f32(
  7536. const struct ggml_compute_params * params,
  7537. const struct ggml_tensor * src0,
  7538. struct ggml_tensor * dst) {
  7539. assert(params->ith == 0);
  7540. assert(ggml_are_same_shape(src0, dst));
  7541. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7542. return;
  7543. }
  7544. const int n = ggml_nrows(src0);
  7545. const int nc = src0->ne[0];
  7546. assert( dst->nb[0] == sizeof(float));
  7547. assert(src0->nb[0] == sizeof(float));
  7548. for (int i = 0; i < n; i++) {
  7549. ggml_vec_sqr_f32(nc,
  7550. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7551. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7552. }
  7553. }
  7554. static void ggml_compute_forward_sqr(
  7555. const struct ggml_compute_params * params,
  7556. const struct ggml_tensor * src0,
  7557. struct ggml_tensor * dst) {
  7558. switch (src0->type) {
  7559. case GGML_TYPE_F32:
  7560. {
  7561. ggml_compute_forward_sqr_f32(params, src0, dst);
  7562. } break;
  7563. default:
  7564. {
  7565. GGML_ASSERT(false);
  7566. } break;
  7567. }
  7568. }
  7569. // ggml_compute_forward_sqrt
  7570. static void ggml_compute_forward_sqrt_f32(
  7571. const struct ggml_compute_params * params,
  7572. const struct ggml_tensor * src0,
  7573. struct ggml_tensor * dst) {
  7574. assert(params->ith == 0);
  7575. assert(ggml_are_same_shape(src0, dst));
  7576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7577. return;
  7578. }
  7579. const int n = ggml_nrows(src0);
  7580. const int nc = src0->ne[0];
  7581. assert( dst->nb[0] == sizeof(float));
  7582. assert(src0->nb[0] == sizeof(float));
  7583. for (int i = 0; i < n; i++) {
  7584. ggml_vec_sqrt_f32(nc,
  7585. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7586. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7587. }
  7588. }
  7589. static void ggml_compute_forward_sqrt(
  7590. const struct ggml_compute_params * params,
  7591. const struct ggml_tensor * src0,
  7592. struct ggml_tensor * dst) {
  7593. switch (src0->type) {
  7594. case GGML_TYPE_F32:
  7595. {
  7596. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7597. } break;
  7598. default:
  7599. {
  7600. GGML_ASSERT(false);
  7601. } break;
  7602. }
  7603. }
  7604. // ggml_compute_forward_log
  7605. static void ggml_compute_forward_log_f32(
  7606. const struct ggml_compute_params * params,
  7607. const struct ggml_tensor * src0,
  7608. struct ggml_tensor * dst) {
  7609. GGML_ASSERT(params->ith == 0);
  7610. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7611. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7612. return;
  7613. }
  7614. const int n = ggml_nrows(src0);
  7615. const int nc = src0->ne[0];
  7616. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7617. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7618. for (int i = 0; i < n; i++) {
  7619. ggml_vec_log_f32(nc,
  7620. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7621. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7622. }
  7623. }
  7624. static void ggml_compute_forward_log(
  7625. const struct ggml_compute_params * params,
  7626. const struct ggml_tensor * src0,
  7627. struct ggml_tensor * dst) {
  7628. switch (src0->type) {
  7629. case GGML_TYPE_F32:
  7630. {
  7631. ggml_compute_forward_log_f32(params, src0, dst);
  7632. } break;
  7633. default:
  7634. {
  7635. GGML_ASSERT(false);
  7636. } break;
  7637. }
  7638. }
  7639. // ggml_compute_forward_sum
  7640. static void ggml_compute_forward_sum_f32(
  7641. const struct ggml_compute_params * params,
  7642. const struct ggml_tensor * src0,
  7643. struct ggml_tensor * dst) {
  7644. assert(params->ith == 0);
  7645. assert(ggml_is_scalar(dst));
  7646. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7647. return;
  7648. }
  7649. assert(ggml_is_scalar(dst));
  7650. assert(src0->nb[0] == sizeof(float));
  7651. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7652. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7653. ggml_float sum = 0;
  7654. ggml_float row_sum = 0;
  7655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7657. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7658. ggml_vec_sum_ggf(ne00,
  7659. &row_sum,
  7660. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7661. sum += row_sum;
  7662. }
  7663. }
  7664. }
  7665. ((float *) dst->data)[0] = sum;
  7666. }
  7667. static void ggml_compute_forward_sum(
  7668. const struct ggml_compute_params * params,
  7669. const struct ggml_tensor * src0,
  7670. struct ggml_tensor * dst) {
  7671. switch (src0->type) {
  7672. case GGML_TYPE_F32:
  7673. {
  7674. ggml_compute_forward_sum_f32(params, src0, dst);
  7675. } break;
  7676. default:
  7677. {
  7678. GGML_ASSERT(false);
  7679. } break;
  7680. }
  7681. }
  7682. // ggml_compute_forward_sum_rows
  7683. static void ggml_compute_forward_sum_rows_f32(
  7684. const struct ggml_compute_params * params,
  7685. const struct ggml_tensor * src0,
  7686. struct ggml_tensor * dst) {
  7687. GGML_ASSERT(params->ith == 0);
  7688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7689. return;
  7690. }
  7691. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7692. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7693. GGML_TENSOR_UNARY_OP_LOCALS;
  7694. GGML_ASSERT(ne0 == 1);
  7695. GGML_ASSERT(ne1 == ne01);
  7696. GGML_ASSERT(ne2 == ne02);
  7697. GGML_ASSERT(ne3 == ne03);
  7698. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7699. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7700. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7701. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7702. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7703. float row_sum = 0;
  7704. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7705. dst_row[0] = row_sum;
  7706. }
  7707. }
  7708. }
  7709. }
  7710. static void ggml_compute_forward_sum_rows(
  7711. const struct ggml_compute_params * params,
  7712. const struct ggml_tensor * src0,
  7713. struct ggml_tensor * dst) {
  7714. switch (src0->type) {
  7715. case GGML_TYPE_F32:
  7716. {
  7717. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7718. } break;
  7719. default:
  7720. {
  7721. GGML_ASSERT(false);
  7722. } break;
  7723. }
  7724. }
  7725. // ggml_compute_forward_mean
  7726. static void ggml_compute_forward_mean_f32(
  7727. const struct ggml_compute_params * params,
  7728. const struct ggml_tensor * src0,
  7729. struct ggml_tensor * dst) {
  7730. assert(params->ith == 0);
  7731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7732. return;
  7733. }
  7734. assert(src0->nb[0] == sizeof(float));
  7735. GGML_TENSOR_UNARY_OP_LOCALS;
  7736. assert(ne0 == 1);
  7737. assert(ne1 == ne01);
  7738. assert(ne2 == ne02);
  7739. assert(ne3 == ne03);
  7740. UNUSED(ne0);
  7741. UNUSED(ne1);
  7742. UNUSED(ne2);
  7743. UNUSED(ne3);
  7744. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7745. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7746. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7747. ggml_vec_sum_f32(ne00,
  7748. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7749. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7750. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7751. }
  7752. }
  7753. }
  7754. }
  7755. static void ggml_compute_forward_mean(
  7756. const struct ggml_compute_params * params,
  7757. const struct ggml_tensor * src0,
  7758. struct ggml_tensor * dst) {
  7759. switch (src0->type) {
  7760. case GGML_TYPE_F32:
  7761. {
  7762. ggml_compute_forward_mean_f32(params, src0, dst);
  7763. } break;
  7764. default:
  7765. {
  7766. GGML_ASSERT(false);
  7767. } break;
  7768. }
  7769. }
  7770. // ggml_compute_forward_argmax
  7771. static void ggml_compute_forward_argmax_f32(
  7772. const struct ggml_compute_params * params,
  7773. const struct ggml_tensor * src0,
  7774. struct ggml_tensor * dst) {
  7775. assert(params->ith == 0);
  7776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7777. return;
  7778. }
  7779. assert(src0->nb[0] == sizeof(float));
  7780. assert(dst->nb[0] == sizeof(float));
  7781. const int64_t ne00 = src0->ne[0];
  7782. const int64_t ne01 = src0->ne[1];
  7783. const size_t nb01 = src0->nb[1];
  7784. const size_t nb0 = dst->nb[0];
  7785. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7786. float * src = (float *) ((char *) src0->data + i1*nb01);
  7787. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7788. int v = 0;
  7789. ggml_vec_argmax_f32(ne00, &v, src);
  7790. dst_[0] = v;
  7791. }
  7792. }
  7793. static void ggml_compute_forward_argmax(
  7794. const struct ggml_compute_params * params,
  7795. const struct ggml_tensor * src0,
  7796. struct ggml_tensor * dst) {
  7797. switch (src0->type) {
  7798. case GGML_TYPE_F32:
  7799. {
  7800. ggml_compute_forward_argmax_f32(params, src0, dst);
  7801. } break;
  7802. default:
  7803. {
  7804. GGML_ASSERT(false);
  7805. } break;
  7806. }
  7807. }
  7808. // ggml_compute_forward_repeat
  7809. static void ggml_compute_forward_repeat_f32(
  7810. const struct ggml_compute_params * params,
  7811. const struct ggml_tensor * src0,
  7812. struct ggml_tensor * dst) {
  7813. GGML_ASSERT(params->ith == 0);
  7814. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7816. return;
  7817. }
  7818. GGML_TENSOR_UNARY_OP_LOCALS;
  7819. // guaranteed to be an integer due to the check in ggml_can_repeat
  7820. const int nr0 = (int)(ne0/ne00);
  7821. const int nr1 = (int)(ne1/ne01);
  7822. const int nr2 = (int)(ne2/ne02);
  7823. const int nr3 = (int)(ne3/ne03);
  7824. // TODO: support for transposed / permuted tensors
  7825. GGML_ASSERT(nb0 == sizeof(float));
  7826. GGML_ASSERT(nb00 == sizeof(float));
  7827. // TODO: maybe this is not optimal?
  7828. for (int i3 = 0; i3 < nr3; i3++) {
  7829. for (int k3 = 0; k3 < ne03; k3++) {
  7830. for (int i2 = 0; i2 < nr2; i2++) {
  7831. for (int k2 = 0; k2 < ne02; k2++) {
  7832. for (int i1 = 0; i1 < nr1; i1++) {
  7833. for (int k1 = 0; k1 < ne01; k1++) {
  7834. for (int i0 = 0; i0 < nr0; i0++) {
  7835. ggml_vec_cpy_f32(ne00,
  7836. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7837. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7838. }
  7839. }
  7840. }
  7841. }
  7842. }
  7843. }
  7844. }
  7845. }
  7846. static void ggml_compute_forward_repeat(
  7847. const struct ggml_compute_params * params,
  7848. const struct ggml_tensor * src0,
  7849. struct ggml_tensor * dst) {
  7850. switch (src0->type) {
  7851. case GGML_TYPE_F32:
  7852. {
  7853. ggml_compute_forward_repeat_f32(params, src0, dst);
  7854. } break;
  7855. default:
  7856. {
  7857. GGML_ASSERT(false);
  7858. } break;
  7859. }
  7860. }
  7861. // ggml_compute_forward_repeat_back
  7862. static void ggml_compute_forward_repeat_back_f32(
  7863. const struct ggml_compute_params * params,
  7864. const struct ggml_tensor * src0,
  7865. struct ggml_tensor * dst) {
  7866. GGML_ASSERT(params->ith == 0);
  7867. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7869. return;
  7870. }
  7871. GGML_TENSOR_UNARY_OP_LOCALS;
  7872. // guaranteed to be an integer due to the check in ggml_can_repeat
  7873. const int nr0 = (int)(ne00/ne0);
  7874. const int nr1 = (int)(ne01/ne1);
  7875. const int nr2 = (int)(ne02/ne2);
  7876. const int nr3 = (int)(ne03/ne3);
  7877. // TODO: support for transposed / permuted tensors
  7878. GGML_ASSERT(nb0 == sizeof(float));
  7879. GGML_ASSERT(nb00 == sizeof(float));
  7880. if (ggml_is_contiguous(dst)) {
  7881. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7882. } else {
  7883. for (int k3 = 0; k3 < ne3; k3++) {
  7884. for (int k2 = 0; k2 < ne2; k2++) {
  7885. for (int k1 = 0; k1 < ne1; k1++) {
  7886. ggml_vec_set_f32(ne0,
  7887. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7888. 0);
  7889. }
  7890. }
  7891. }
  7892. }
  7893. // TODO: maybe this is not optimal?
  7894. for (int i3 = 0; i3 < nr3; i3++) {
  7895. for (int k3 = 0; k3 < ne3; k3++) {
  7896. for (int i2 = 0; i2 < nr2; i2++) {
  7897. for (int k2 = 0; k2 < ne2; k2++) {
  7898. for (int i1 = 0; i1 < nr1; i1++) {
  7899. for (int k1 = 0; k1 < ne1; k1++) {
  7900. for (int i0 = 0; i0 < nr0; i0++) {
  7901. ggml_vec_acc_f32(ne0,
  7902. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7903. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7904. }
  7905. }
  7906. }
  7907. }
  7908. }
  7909. }
  7910. }
  7911. }
  7912. static void ggml_compute_forward_repeat_back(
  7913. const struct ggml_compute_params * params,
  7914. const struct ggml_tensor * src0,
  7915. struct ggml_tensor * dst) {
  7916. switch (src0->type) {
  7917. case GGML_TYPE_F32:
  7918. {
  7919. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7920. } break;
  7921. default:
  7922. {
  7923. GGML_ASSERT(false);
  7924. } break;
  7925. }
  7926. }
  7927. // ggml_compute_forward_abs
  7928. static void ggml_compute_forward_abs_f32(
  7929. const struct ggml_compute_params * params,
  7930. const struct ggml_tensor * src0,
  7931. struct ggml_tensor * dst) {
  7932. assert(params->ith == 0);
  7933. assert(ggml_are_same_shape(src0, dst));
  7934. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7935. return;
  7936. }
  7937. const int n = ggml_nrows(src0);
  7938. const int nc = src0->ne[0];
  7939. assert(dst->nb[0] == sizeof(float));
  7940. assert(src0->nb[0] == sizeof(float));
  7941. for (int i = 0; i < n; i++) {
  7942. ggml_vec_abs_f32(nc,
  7943. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7944. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7945. }
  7946. }
  7947. static void ggml_compute_forward_abs(
  7948. const struct ggml_compute_params * params,
  7949. const struct ggml_tensor * src0,
  7950. struct ggml_tensor * dst) {
  7951. switch (src0->type) {
  7952. case GGML_TYPE_F32:
  7953. {
  7954. ggml_compute_forward_abs_f32(params, src0, dst);
  7955. } break;
  7956. default:
  7957. {
  7958. GGML_ASSERT(false);
  7959. } break;
  7960. }
  7961. }
  7962. // ggml_compute_forward_sgn
  7963. static void ggml_compute_forward_sgn_f32(
  7964. const struct ggml_compute_params * params,
  7965. const struct ggml_tensor * src0,
  7966. struct ggml_tensor * dst) {
  7967. assert(params->ith == 0);
  7968. assert(ggml_are_same_shape(src0, dst));
  7969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7970. return;
  7971. }
  7972. const int n = ggml_nrows(src0);
  7973. const int nc = src0->ne[0];
  7974. assert(dst->nb[0] == sizeof(float));
  7975. assert(src0->nb[0] == sizeof(float));
  7976. for (int i = 0; i < n; i++) {
  7977. ggml_vec_sgn_f32(nc,
  7978. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7979. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7980. }
  7981. }
  7982. static void ggml_compute_forward_sgn(
  7983. const struct ggml_compute_params * params,
  7984. const struct ggml_tensor * src0,
  7985. struct ggml_tensor * dst) {
  7986. switch (src0->type) {
  7987. case GGML_TYPE_F32:
  7988. {
  7989. ggml_compute_forward_sgn_f32(params, src0, dst);
  7990. } break;
  7991. default:
  7992. {
  7993. GGML_ASSERT(false);
  7994. } break;
  7995. }
  7996. }
  7997. // ggml_compute_forward_neg
  7998. static void ggml_compute_forward_neg_f32(
  7999. const struct ggml_compute_params * params,
  8000. const struct ggml_tensor * src0,
  8001. struct ggml_tensor * dst) {
  8002. assert(params->ith == 0);
  8003. assert(ggml_are_same_shape(src0, dst));
  8004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8005. return;
  8006. }
  8007. const int n = ggml_nrows(src0);
  8008. const int nc = src0->ne[0];
  8009. assert(dst->nb[0] == sizeof(float));
  8010. assert(src0->nb[0] == sizeof(float));
  8011. for (int i = 0; i < n; i++) {
  8012. ggml_vec_neg_f32(nc,
  8013. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8014. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8015. }
  8016. }
  8017. static void ggml_compute_forward_neg(
  8018. const struct ggml_compute_params * params,
  8019. const struct ggml_tensor * src0,
  8020. struct ggml_tensor * dst) {
  8021. switch (src0->type) {
  8022. case GGML_TYPE_F32:
  8023. {
  8024. ggml_compute_forward_neg_f32(params, src0, dst);
  8025. } break;
  8026. default:
  8027. {
  8028. GGML_ASSERT(false);
  8029. } break;
  8030. }
  8031. }
  8032. // ggml_compute_forward_step
  8033. static void ggml_compute_forward_step_f32(
  8034. const struct ggml_compute_params * params,
  8035. const struct ggml_tensor * src0,
  8036. struct ggml_tensor * dst) {
  8037. assert(params->ith == 0);
  8038. assert(ggml_are_same_shape(src0, dst));
  8039. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8040. return;
  8041. }
  8042. const int n = ggml_nrows(src0);
  8043. const int nc = src0->ne[0];
  8044. assert(dst->nb[0] == sizeof(float));
  8045. assert(src0->nb[0] == sizeof(float));
  8046. for (int i = 0; i < n; i++) {
  8047. ggml_vec_step_f32(nc,
  8048. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8049. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8050. }
  8051. }
  8052. static void ggml_compute_forward_step(
  8053. const struct ggml_compute_params * params,
  8054. const struct ggml_tensor * src0,
  8055. struct ggml_tensor * dst) {
  8056. switch (src0->type) {
  8057. case GGML_TYPE_F32:
  8058. {
  8059. ggml_compute_forward_step_f32(params, src0, dst);
  8060. } break;
  8061. default:
  8062. {
  8063. GGML_ASSERT(false);
  8064. } break;
  8065. }
  8066. }
  8067. // ggml_compute_forward_tanh
  8068. static void ggml_compute_forward_tanh_f32(
  8069. const struct ggml_compute_params * params,
  8070. const struct ggml_tensor * src0,
  8071. struct ggml_tensor * dst) {
  8072. assert(params->ith == 0);
  8073. assert(ggml_are_same_shape(src0, dst));
  8074. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8075. return;
  8076. }
  8077. const int n = ggml_nrows(src0);
  8078. const int nc = src0->ne[0];
  8079. assert(dst->nb[0] == sizeof(float));
  8080. assert(src0->nb[0] == sizeof(float));
  8081. for (int i = 0; i < n; i++) {
  8082. ggml_vec_tanh_f32(nc,
  8083. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8084. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8085. }
  8086. }
  8087. static void ggml_compute_forward_tanh(
  8088. const struct ggml_compute_params * params,
  8089. const struct ggml_tensor * src0,
  8090. struct ggml_tensor * dst) {
  8091. switch (src0->type) {
  8092. case GGML_TYPE_F32:
  8093. {
  8094. ggml_compute_forward_tanh_f32(params, src0, dst);
  8095. } break;
  8096. default:
  8097. {
  8098. GGML_ASSERT(false);
  8099. } break;
  8100. }
  8101. }
  8102. // ggml_compute_forward_elu
  8103. static void ggml_compute_forward_elu_f32(
  8104. const struct ggml_compute_params * params,
  8105. const struct ggml_tensor * src0,
  8106. struct ggml_tensor * dst) {
  8107. assert(params->ith == 0);
  8108. assert(ggml_are_same_shape(src0, dst));
  8109. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8110. return;
  8111. }
  8112. const int n = ggml_nrows(src0);
  8113. const int nc = src0->ne[0];
  8114. assert(dst->nb[0] == sizeof(float));
  8115. assert(src0->nb[0] == sizeof(float));
  8116. for (int i = 0; i < n; i++) {
  8117. ggml_vec_elu_f32(nc,
  8118. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8119. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8120. }
  8121. }
  8122. static void ggml_compute_forward_elu(
  8123. const struct ggml_compute_params * params,
  8124. const struct ggml_tensor * src0,
  8125. struct ggml_tensor * dst) {
  8126. switch (src0->type) {
  8127. case GGML_TYPE_F32:
  8128. {
  8129. ggml_compute_forward_elu_f32(params, src0, dst);
  8130. } break;
  8131. default:
  8132. {
  8133. GGML_ASSERT(false);
  8134. } break;
  8135. }
  8136. }
  8137. // ggml_compute_forward_relu
  8138. static void ggml_compute_forward_relu_f32(
  8139. const struct ggml_compute_params * params,
  8140. const struct ggml_tensor * src0,
  8141. struct ggml_tensor * dst) {
  8142. assert(params->ith == 0);
  8143. assert(ggml_are_same_shape(src0, dst));
  8144. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8145. return;
  8146. }
  8147. const int n = ggml_nrows(src0);
  8148. const int nc = src0->ne[0];
  8149. assert(dst->nb[0] == sizeof(float));
  8150. assert(src0->nb[0] == sizeof(float));
  8151. for (int i = 0; i < n; i++) {
  8152. ggml_vec_relu_f32(nc,
  8153. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8154. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8155. }
  8156. }
  8157. static void ggml_compute_forward_relu(
  8158. const struct ggml_compute_params * params,
  8159. const struct ggml_tensor * src0,
  8160. struct ggml_tensor * dst) {
  8161. switch (src0->type) {
  8162. case GGML_TYPE_F32:
  8163. {
  8164. ggml_compute_forward_relu_f32(params, src0, dst);
  8165. } break;
  8166. default:
  8167. {
  8168. GGML_ASSERT(false);
  8169. } break;
  8170. }
  8171. }
  8172. // ggml_compute_forward_gelu
  8173. static void ggml_compute_forward_gelu_f32(
  8174. const struct ggml_compute_params * params,
  8175. const struct ggml_tensor * src0,
  8176. struct ggml_tensor * dst) {
  8177. GGML_ASSERT(ggml_is_contiguous(src0));
  8178. GGML_ASSERT(ggml_is_contiguous(dst));
  8179. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8180. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8181. return;
  8182. }
  8183. const int ith = params->ith;
  8184. const int nth = params->nth;
  8185. const int nc = src0->ne[0];
  8186. const int nr = ggml_nrows(src0);
  8187. // rows per thread
  8188. const int dr = (nr + nth - 1)/nth;
  8189. // row range for this thread
  8190. const int ir0 = dr*ith;
  8191. const int ir1 = MIN(ir0 + dr, nr);
  8192. for (int i1 = ir0; i1 < ir1; i1++) {
  8193. ggml_vec_gelu_f32(nc,
  8194. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8195. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8196. #ifndef NDEBUG
  8197. for (int k = 0; k < nc; k++) {
  8198. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8199. UNUSED(x);
  8200. assert(!isnan(x));
  8201. assert(!isinf(x));
  8202. }
  8203. #endif
  8204. }
  8205. }
  8206. static void ggml_compute_forward_gelu(
  8207. const struct ggml_compute_params * params,
  8208. const struct ggml_tensor * src0,
  8209. struct ggml_tensor * dst) {
  8210. switch (src0->type) {
  8211. case GGML_TYPE_F32:
  8212. {
  8213. ggml_compute_forward_gelu_f32(params, src0, dst);
  8214. } break;
  8215. default:
  8216. {
  8217. GGML_ASSERT(false);
  8218. } break;
  8219. }
  8220. }
  8221. // ggml_compute_forward_gelu_quick
  8222. static void ggml_compute_forward_gelu_quick_f32(
  8223. const struct ggml_compute_params * params,
  8224. const struct ggml_tensor * src0,
  8225. struct ggml_tensor * dst) {
  8226. GGML_ASSERT(ggml_is_contiguous(src0));
  8227. GGML_ASSERT(ggml_is_contiguous(dst));
  8228. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8230. return;
  8231. }
  8232. const int ith = params->ith;
  8233. const int nth = params->nth;
  8234. const int nc = src0->ne[0];
  8235. const int nr = ggml_nrows(src0);
  8236. // rows per thread
  8237. const int dr = (nr + nth - 1)/nth;
  8238. // row range for this thread
  8239. const int ir0 = dr*ith;
  8240. const int ir1 = MIN(ir0 + dr, nr);
  8241. for (int i1 = ir0; i1 < ir1; i1++) {
  8242. ggml_vec_gelu_quick_f32(nc,
  8243. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8244. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8245. #ifndef NDEBUG
  8246. for (int k = 0; k < nc; k++) {
  8247. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8248. UNUSED(x);
  8249. assert(!isnan(x));
  8250. assert(!isinf(x));
  8251. }
  8252. #endif
  8253. }
  8254. }
  8255. static void ggml_compute_forward_gelu_quick(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. struct ggml_tensor * dst) {
  8259. switch (src0->type) {
  8260. case GGML_TYPE_F32:
  8261. {
  8262. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8263. } break;
  8264. default:
  8265. {
  8266. GGML_ASSERT(false);
  8267. } break;
  8268. }
  8269. }
  8270. // ggml_compute_forward_silu
  8271. static void ggml_compute_forward_silu_f32(
  8272. const struct ggml_compute_params * params,
  8273. const struct ggml_tensor * src0,
  8274. struct ggml_tensor * dst) {
  8275. GGML_ASSERT(ggml_is_contiguous(src0));
  8276. GGML_ASSERT(ggml_is_contiguous(dst));
  8277. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8279. return;
  8280. }
  8281. const int ith = params->ith;
  8282. const int nth = params->nth;
  8283. const int nc = src0->ne[0];
  8284. const int nr = ggml_nrows(src0);
  8285. // rows per thread
  8286. const int dr = (nr + nth - 1)/nth;
  8287. // row range for this thread
  8288. const int ir0 = dr*ith;
  8289. const int ir1 = MIN(ir0 + dr, nr);
  8290. for (int i1 = ir0; i1 < ir1; i1++) {
  8291. ggml_vec_silu_f32(nc,
  8292. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8293. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8294. #ifndef NDEBUG
  8295. for (int k = 0; k < nc; k++) {
  8296. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8297. UNUSED(x);
  8298. assert(!isnan(x));
  8299. assert(!isinf(x));
  8300. }
  8301. #endif
  8302. }
  8303. }
  8304. static void ggml_compute_forward_silu(
  8305. const struct ggml_compute_params * params,
  8306. const struct ggml_tensor * src0,
  8307. struct ggml_tensor * dst) {
  8308. switch (src0->type) {
  8309. case GGML_TYPE_F32:
  8310. {
  8311. ggml_compute_forward_silu_f32(params, src0, dst);
  8312. } break;
  8313. default:
  8314. {
  8315. GGML_ASSERT(false);
  8316. } break;
  8317. }
  8318. }
  8319. // ggml_compute_forward_silu_back
  8320. static void ggml_compute_forward_silu_back_f32(
  8321. const struct ggml_compute_params * params,
  8322. const struct ggml_tensor * src0,
  8323. const struct ggml_tensor * grad,
  8324. struct ggml_tensor * dst) {
  8325. GGML_ASSERT(ggml_is_contiguous(grad));
  8326. GGML_ASSERT(ggml_is_contiguous(src0));
  8327. GGML_ASSERT(ggml_is_contiguous(dst));
  8328. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8329. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8331. return;
  8332. }
  8333. const int ith = params->ith;
  8334. const int nth = params->nth;
  8335. const int nc = src0->ne[0];
  8336. const int nr = ggml_nrows(src0);
  8337. // rows per thread
  8338. const int dr = (nr + nth - 1)/nth;
  8339. // row range for this thread
  8340. const int ir0 = dr*ith;
  8341. const int ir1 = MIN(ir0 + dr, nr);
  8342. for (int i1 = ir0; i1 < ir1; i1++) {
  8343. ggml_vec_silu_backward_f32(nc,
  8344. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8345. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8346. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8347. #ifndef NDEBUG
  8348. for (int k = 0; k < nc; k++) {
  8349. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8350. UNUSED(x);
  8351. assert(!isnan(x));
  8352. assert(!isinf(x));
  8353. }
  8354. #endif
  8355. }
  8356. }
  8357. static void ggml_compute_forward_silu_back(
  8358. const struct ggml_compute_params * params,
  8359. const struct ggml_tensor * src0,
  8360. const struct ggml_tensor * grad,
  8361. struct ggml_tensor * dst) {
  8362. switch (src0->type) {
  8363. case GGML_TYPE_F32:
  8364. {
  8365. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8366. } break;
  8367. default:
  8368. {
  8369. GGML_ASSERT(false);
  8370. } break;
  8371. }
  8372. }
  8373. // ggml_compute_forward_norm
  8374. static void ggml_compute_forward_norm_f32(
  8375. const struct ggml_compute_params * params,
  8376. const struct ggml_tensor * src0,
  8377. struct ggml_tensor * dst) {
  8378. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8380. return;
  8381. }
  8382. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8383. const int ith = params->ith;
  8384. const int nth = params->nth;
  8385. GGML_TENSOR_UNARY_OP_LOCALS;
  8386. const float eps = 1e-5f; // TODO: make this a parameter
  8387. // TODO: optimize
  8388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8390. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8391. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8392. ggml_float sum = 0.0;
  8393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8394. sum += (ggml_float)x[i00];
  8395. }
  8396. float mean = sum/ne00;
  8397. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8398. ggml_float sum2 = 0.0;
  8399. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8400. float v = x[i00] - mean;
  8401. y[i00] = v;
  8402. sum2 += (ggml_float)(v*v);
  8403. }
  8404. float variance = sum2/ne00;
  8405. const float scale = 1.0f/sqrtf(variance + eps);
  8406. ggml_vec_scale_f32(ne00, y, scale);
  8407. }
  8408. }
  8409. }
  8410. }
  8411. static void ggml_compute_forward_norm(
  8412. const struct ggml_compute_params * params,
  8413. const struct ggml_tensor * src0,
  8414. struct ggml_tensor * dst) {
  8415. switch (src0->type) {
  8416. case GGML_TYPE_F32:
  8417. {
  8418. ggml_compute_forward_norm_f32(params, src0, dst);
  8419. } break;
  8420. default:
  8421. {
  8422. GGML_ASSERT(false);
  8423. } break;
  8424. }
  8425. }
  8426. static void ggml_compute_forward_rms_norm_f32(
  8427. const struct ggml_compute_params * params,
  8428. const struct ggml_tensor * src0,
  8429. struct ggml_tensor * dst) {
  8430. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8432. return;
  8433. }
  8434. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8435. const int ith = params->ith;
  8436. const int nth = params->nth;
  8437. GGML_TENSOR_UNARY_OP_LOCALS;
  8438. const float eps = 1e-6f; // TODO: make this a parameter
  8439. // TODO: optimize
  8440. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8441. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8442. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8443. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8444. ggml_float sum = 0.0;
  8445. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8446. sum += (ggml_float)(x[i00] * x[i00]);
  8447. }
  8448. const float mean = sum/ne00;
  8449. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8450. memcpy(y, x, ne00 * sizeof(float));
  8451. // for (int i00 = 0; i00 < ne00; i00++) {
  8452. // y[i00] = x[i00];
  8453. // }
  8454. const float scale = 1.0f/sqrtf(mean + eps);
  8455. ggml_vec_scale_f32(ne00, y, scale);
  8456. }
  8457. }
  8458. }
  8459. }
  8460. static void ggml_compute_forward_rms_norm(
  8461. const struct ggml_compute_params * params,
  8462. const struct ggml_tensor * src0,
  8463. struct ggml_tensor * dst) {
  8464. switch (src0->type) {
  8465. case GGML_TYPE_F32:
  8466. {
  8467. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8468. } break;
  8469. default:
  8470. {
  8471. GGML_ASSERT(false);
  8472. } break;
  8473. }
  8474. }
  8475. static void ggml_compute_forward_rms_norm_back_f32(
  8476. const struct ggml_compute_params * params,
  8477. const struct ggml_tensor * src0,
  8478. const struct ggml_tensor * src1,
  8479. struct ggml_tensor * dst) {
  8480. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8482. return;
  8483. }
  8484. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8485. const int ith = params->ith;
  8486. const int nth = params->nth;
  8487. GGML_TENSOR_BINARY_OP_LOCALS;
  8488. const float eps = 1e-6f; // TODO: make this a parameter
  8489. // TODO: optimize
  8490. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8491. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8492. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8493. // src1 is same shape as src0 => same indices
  8494. const int64_t i11 = i01;
  8495. const int64_t i12 = i02;
  8496. const int64_t i13 = i03;
  8497. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8498. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8499. ggml_float sum_xx = 0.0;
  8500. ggml_float sum_xdz = 0.0;
  8501. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8502. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8503. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8504. }
  8505. //const float mean = (float)(sum_xx)/ne00;
  8506. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8507. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8508. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8509. // we could cache rms from forward pass to improve performance.
  8510. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8511. //const float rms = sqrtf(mean_eps);
  8512. const float rrms = 1.0f / sqrtf(mean_eps);
  8513. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8514. {
  8515. // z = rms_norm(x)
  8516. //
  8517. // rms_norm(src0) =
  8518. // scale(
  8519. // src0,
  8520. // div(
  8521. // 1,
  8522. // sqrt(
  8523. // add(
  8524. // scale(
  8525. // sum(
  8526. // sqr(
  8527. // src0)),
  8528. // (1.0/N)),
  8529. // eps))));
  8530. // postorder:
  8531. // ## op args grad
  8532. // 00 param src0 grad[#00]
  8533. // 01 const 1
  8534. // 02 sqr (#00) grad[#02]
  8535. // 03 sum (#02) grad[#03]
  8536. // 04 const 1/N
  8537. // 05 scale (#03, #04) grad[#05]
  8538. // 06 const eps
  8539. // 07 add (#05, #06) grad[#07]
  8540. // 08 sqrt (#07) grad[#08]
  8541. // 09 div (#01,#08) grad[#09]
  8542. // 10 scale (#00,#09) grad[#10]
  8543. //
  8544. // backward pass, given grad[#10]
  8545. // #10: scale
  8546. // grad[#00] += scale(grad[#10],#09)
  8547. // grad[#09] += sum(mul(grad[#10],#00))
  8548. // #09: div
  8549. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8550. // #08: sqrt
  8551. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8552. // #07: add
  8553. // grad[#05] += grad[#07]
  8554. // #05: scale
  8555. // grad[#03] += scale(grad[#05],#04)
  8556. // #03: sum
  8557. // grad[#02] += repeat(grad[#03], #02)
  8558. // #02:
  8559. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8560. //
  8561. // substitute and simplify:
  8562. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8563. // grad[#02] = repeat(grad[#03], #02)
  8564. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8565. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8566. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8567. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8568. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8569. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8570. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8571. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8572. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8573. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8574. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8575. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8576. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8577. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8578. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8579. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8580. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8581. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8582. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8583. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8584. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8585. // a = b*c + d*e
  8586. // a = b*c*f/f + d*e*f/f
  8587. // a = (b*c*f + d*e*f)*(1/f)
  8588. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8589. // a = (b + d*e/c)*c
  8590. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8591. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8592. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8593. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8594. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8595. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8596. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8597. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8598. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8599. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8600. }
  8601. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8602. // post-order:
  8603. // dx := x
  8604. // dx := scale(dx,-mean_xdz/mean_eps)
  8605. // dx := add(dx, dz)
  8606. // dx := scale(dx, rrms)
  8607. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8608. ggml_vec_cpy_f32 (ne00, dx, x);
  8609. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8610. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8611. ggml_vec_acc_f32 (ne00, dx, dz);
  8612. ggml_vec_scale_f32(ne00, dx, rrms);
  8613. }
  8614. }
  8615. }
  8616. }
  8617. static void ggml_compute_forward_rms_norm_back(
  8618. const struct ggml_compute_params * params,
  8619. const struct ggml_tensor * src0,
  8620. const struct ggml_tensor * src1,
  8621. struct ggml_tensor * dst) {
  8622. switch (src0->type) {
  8623. case GGML_TYPE_F32:
  8624. {
  8625. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8626. } break;
  8627. default:
  8628. {
  8629. GGML_ASSERT(false);
  8630. } break;
  8631. }
  8632. }
  8633. // ggml_compute_forward_mul_mat
  8634. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8635. // helper function to determine if it is better to use BLAS or not
  8636. // for large matrices, BLAS is faster
  8637. static bool ggml_compute_forward_mul_mat_use_blas(
  8638. const struct ggml_tensor * src0,
  8639. const struct ggml_tensor * src1,
  8640. struct ggml_tensor * dst) {
  8641. //const int64_t ne00 = src0->ne[0];
  8642. //const int64_t ne01 = src0->ne[1];
  8643. const int64_t ne10 = src1->ne[0];
  8644. const int64_t ne0 = dst->ne[0];
  8645. const int64_t ne1 = dst->ne[1];
  8646. // TODO: find the optimal values for these
  8647. if (ggml_is_contiguous(src0) &&
  8648. ggml_is_contiguous(src1) &&
  8649. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8650. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8651. return true;
  8652. }
  8653. return false;
  8654. }
  8655. #endif
  8656. static void ggml_compute_forward_mul_mat(
  8657. const struct ggml_compute_params * params,
  8658. const struct ggml_tensor * src0,
  8659. const struct ggml_tensor * src1,
  8660. struct ggml_tensor * dst) {
  8661. int64_t t0 = ggml_perf_time_us();
  8662. UNUSED(t0);
  8663. GGML_TENSOR_BINARY_OP_LOCALS;
  8664. const int ith = params->ith;
  8665. const int nth = params->nth;
  8666. const enum ggml_type type = src0->type;
  8667. const bool src1_cont = ggml_is_contiguous(src1);
  8668. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8669. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8670. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8671. GGML_ASSERT(ne0 == ne01);
  8672. GGML_ASSERT(ne1 == ne11);
  8673. GGML_ASSERT(ne2 == ne12);
  8674. GGML_ASSERT(ne3 == ne13);
  8675. // we don't support permuted src0 or src1
  8676. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8677. GGML_ASSERT(nb10 == sizeof(float));
  8678. // dst cannot be transposed or permuted
  8679. GGML_ASSERT(nb0 == sizeof(float));
  8680. GGML_ASSERT(nb0 <= nb1);
  8681. GGML_ASSERT(nb1 <= nb2);
  8682. GGML_ASSERT(nb2 <= nb3);
  8683. // nb01 >= nb00 - src0 is not transposed
  8684. // compute by src0 rows
  8685. #if defined(GGML_USE_CLBLAST)
  8686. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8687. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8688. // ref: https://github.com/ggerganov/ggml/pull/224
  8689. GGML_ASSERT(ne02 == ne12);
  8690. GGML_ASSERT(ne03 == ne13);
  8691. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8692. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8693. }
  8694. return;
  8695. }
  8696. #endif
  8697. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8698. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8699. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8700. // ref: https://github.com/ggerganov/ggml/pull/224
  8701. GGML_ASSERT(ne02 == ne12);
  8702. GGML_ASSERT(ne03 == ne13);
  8703. if (params->ith != 0) {
  8704. return;
  8705. }
  8706. if (params->type == GGML_TASK_INIT) {
  8707. return;
  8708. }
  8709. if (params->type == GGML_TASK_FINALIZE) {
  8710. return;
  8711. }
  8712. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8713. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8714. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8715. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8716. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8717. if (type != GGML_TYPE_F32) {
  8718. float * const wdata = params->wdata;
  8719. ggml_to_float_t const to_float = type_traits[type].to_float;
  8720. size_t id = 0;
  8721. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8722. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8723. id += ne00;
  8724. }
  8725. assert(id*sizeof(float) <= params->wsize);
  8726. x = wdata;
  8727. }
  8728. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8729. ne11, ne01, ne10,
  8730. 1.0f, y, ne10,
  8731. x, ne00,
  8732. 0.0f, d, ne01);
  8733. }
  8734. }
  8735. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8736. return;
  8737. }
  8738. #endif
  8739. if (params->type == GGML_TASK_INIT) {
  8740. if (src1->type != vec_dot_type) {
  8741. char * wdata = params->wdata;
  8742. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8743. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8744. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8745. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8746. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8747. wdata += row_size;
  8748. }
  8749. }
  8750. }
  8751. }
  8752. return;
  8753. }
  8754. if (params->type == GGML_TASK_FINALIZE) {
  8755. return;
  8756. }
  8757. // parallelize by src0 rows
  8758. const int64_t dr = (ne01 + nth - 1)/nth;
  8759. const int64_t ir10 = dr*ith;
  8760. const int64_t ir11 = MIN(ir10 + dr, ne01);
  8761. // src1 rows
  8762. const int64_t nr1 = ne11*ne12*ne13;
  8763. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8764. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8765. for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
  8766. const int64_t i13 = (ir1/(ne12*ne11));
  8767. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8768. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8769. const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
  8770. const int64_t i03 = (ir0/(ne02));
  8771. // Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
  8772. // See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
  8773. // GG: this is likely the correct way to broadcast, though need some more thought
  8774. // therefore leaving the comments to remind us for now
  8775. const int64_t i02 = (i12 / (ne12 / ne02));
  8776. // Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
  8777. // const int64_t i02 = (ir0 - i03*ne02);
  8778. const int64_t i1 = i11;
  8779. const int64_t i2 = i12;
  8780. const int64_t i3 = i13;
  8781. const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
  8782. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8783. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8784. // the original src1 data pointer, so we should index using the indices directly
  8785. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8786. const char * src1_col = (const char *) wdata +
  8787. (src1_cont || src1->type != vec_dot_type
  8788. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8789. : (i11*nb11 + i12*nb12 + i13*nb13));
  8790. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8791. for (int64_t ir = ir10; ir < ir11; ++ir) {
  8792. vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
  8793. }
  8794. }
  8795. //int64_t t1 = ggml_time_us();
  8796. //static int64_t acc = 0;
  8797. //acc += t1 - t0;
  8798. //if (t1 - t0 > 10) {
  8799. // printf("\n");
  8800. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8801. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8802. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8803. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8804. //}
  8805. }
  8806. // ggml_compute_forward_out_prod
  8807. static void ggml_compute_forward_out_prod_f32(
  8808. const struct ggml_compute_params * params,
  8809. const struct ggml_tensor * src0,
  8810. const struct ggml_tensor * src1,
  8811. struct ggml_tensor * dst) {
  8812. int64_t t0 = ggml_perf_time_us();
  8813. UNUSED(t0);
  8814. GGML_TENSOR_BINARY_OP_LOCALS;
  8815. const int ith = params->ith;
  8816. const int nth = params->nth;
  8817. GGML_ASSERT(ne02 == ne12);
  8818. GGML_ASSERT(ne03 == ne13);
  8819. GGML_ASSERT(ne2 == ne12);
  8820. GGML_ASSERT(ne3 == ne13);
  8821. // we don't support permuted src0 or src1
  8822. GGML_ASSERT(nb00 == sizeof(float));
  8823. // dst cannot be transposed or permuted
  8824. GGML_ASSERT(nb0 == sizeof(float));
  8825. // GGML_ASSERT(nb0 <= nb1);
  8826. // GGML_ASSERT(nb1 <= nb2);
  8827. // GGML_ASSERT(nb2 <= nb3);
  8828. GGML_ASSERT(ne0 == ne00);
  8829. GGML_ASSERT(ne1 == ne10);
  8830. GGML_ASSERT(ne2 == ne02);
  8831. GGML_ASSERT(ne3 == ne03);
  8832. // nb01 >= nb00 - src0 is not transposed
  8833. // compute by src0 rows
  8834. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8835. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8836. if (params->type == GGML_TASK_INIT) {
  8837. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8838. return;
  8839. }
  8840. if (params->type == GGML_TASK_FINALIZE) {
  8841. return;
  8842. }
  8843. // parallelize by last three dimensions
  8844. // total rows in dst
  8845. const int64_t nr = ne1*ne2*ne3;
  8846. // rows per thread
  8847. const int64_t dr = (nr + nth - 1)/nth;
  8848. // row range for this thread
  8849. const int64_t ir0 = dr*ith;
  8850. const int64_t ir1 = MIN(ir0 + dr, nr);
  8851. // dst[:,:,:,:] = 0
  8852. // for i2,i3:
  8853. // for i1:
  8854. // for i01:
  8855. // for i0:
  8856. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8857. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8858. // dst indices
  8859. const int64_t i3 = ir/(ne2*ne1);
  8860. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8861. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8862. const int64_t i02 = i2;
  8863. const int64_t i03 = i3;
  8864. //const int64_t i10 = i1;
  8865. const int64_t i12 = i2;
  8866. const int64_t i13 = i3;
  8867. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8868. const int64_t i11 = i01;
  8869. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8870. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8871. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8872. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8873. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8874. // d[i0] += s0[i0] * s1[i1];
  8875. // }
  8876. }
  8877. }
  8878. //int64_t t1 = ggml_perf_time_us();
  8879. //static int64_t acc = 0;
  8880. //acc += t1 - t0;
  8881. //if (t1 - t0 > 10) {
  8882. // printf("\n");
  8883. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8884. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8885. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8886. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8887. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8888. //}
  8889. }
  8890. static void ggml_compute_forward_out_prod(
  8891. const struct ggml_compute_params * params,
  8892. const struct ggml_tensor * src0,
  8893. const struct ggml_tensor * src1,
  8894. struct ggml_tensor * dst) {
  8895. switch (src0->type) {
  8896. case GGML_TYPE_Q4_0:
  8897. case GGML_TYPE_Q4_1:
  8898. case GGML_TYPE_Q5_0:
  8899. case GGML_TYPE_Q5_1:
  8900. case GGML_TYPE_Q8_0:
  8901. case GGML_TYPE_Q8_1:
  8902. {
  8903. GGML_ASSERT(false); // todo
  8904. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8905. } break;
  8906. case GGML_TYPE_F16:
  8907. {
  8908. GGML_ASSERT(false); // todo
  8909. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8910. } break;
  8911. case GGML_TYPE_F32:
  8912. {
  8913. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8914. } break;
  8915. default:
  8916. {
  8917. GGML_ASSERT(false);
  8918. } break;
  8919. }
  8920. }
  8921. // ggml_compute_forward_scale
  8922. static void ggml_compute_forward_scale_f32(
  8923. const struct ggml_compute_params * params,
  8924. const struct ggml_tensor * src0,
  8925. const struct ggml_tensor * src1,
  8926. struct ggml_tensor * dst) {
  8927. GGML_ASSERT(ggml_is_contiguous(src0));
  8928. GGML_ASSERT(ggml_is_contiguous(dst));
  8929. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8930. GGML_ASSERT(ggml_is_scalar(src1));
  8931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8932. return;
  8933. }
  8934. // scale factor
  8935. const float v = *(float *) src1->data;
  8936. const int ith = params->ith;
  8937. const int nth = params->nth;
  8938. const int nc = src0->ne[0];
  8939. const int nr = ggml_nrows(src0);
  8940. // rows per thread
  8941. const int dr = (nr + nth - 1)/nth;
  8942. // row range for this thread
  8943. const int ir0 = dr*ith;
  8944. const int ir1 = MIN(ir0 + dr, nr);
  8945. const size_t nb01 = src0->nb[1];
  8946. const size_t nb1 = dst->nb[1];
  8947. for (int i1 = ir0; i1 < ir1; i1++) {
  8948. if (dst->data != src0->data) {
  8949. // src0 is same shape as dst => same indices
  8950. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8951. }
  8952. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8953. }
  8954. }
  8955. static void ggml_compute_forward_scale(
  8956. const struct ggml_compute_params * params,
  8957. const struct ggml_tensor * src0,
  8958. const struct ggml_tensor * src1,
  8959. struct ggml_tensor * dst) {
  8960. switch (src0->type) {
  8961. case GGML_TYPE_F32:
  8962. {
  8963. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8964. } break;
  8965. default:
  8966. {
  8967. GGML_ASSERT(false);
  8968. } break;
  8969. }
  8970. }
  8971. // ggml_compute_forward_set
  8972. static void ggml_compute_forward_set_f32(
  8973. const struct ggml_compute_params * params,
  8974. const struct ggml_tensor * src0,
  8975. const struct ggml_tensor * src1,
  8976. const struct ggml_tensor * opt0,
  8977. struct ggml_tensor * dst) {
  8978. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8979. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8980. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8981. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8982. // view src0 and dst with these strides and data offset inbytes during set
  8983. // nb0 is implicitely element_size because src0 and dst are contiguous
  8984. size_t nb1 = ((int32_t *) opt0->data)[0];
  8985. size_t nb2 = ((int32_t *) opt0->data)[1];
  8986. size_t nb3 = ((int32_t *) opt0->data)[2];
  8987. size_t offset = ((int32_t *) opt0->data)[3];
  8988. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8989. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8990. // memcpy needs to be synchronized across threads to avoid race conditions.
  8991. // => do it in INIT phase
  8992. memcpy(
  8993. ((char *) dst->data),
  8994. ((char *) src0->data),
  8995. ggml_nbytes(dst));
  8996. }
  8997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8998. return;
  8999. }
  9000. const int ith = params->ith;
  9001. const int nth = params->nth;
  9002. const int nr = ggml_nrows(src1);
  9003. const int nc = src1->ne[0];
  9004. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9005. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9006. // src0 and dst as viewed during set
  9007. const size_t nb0 = ggml_element_size(src0);
  9008. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9009. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9010. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9011. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9012. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9013. GGML_ASSERT(nb10 == sizeof(float));
  9014. // rows per thread
  9015. const int dr = (nr + nth - 1)/nth;
  9016. // row range for this thread
  9017. const int ir0 = dr*ith;
  9018. const int ir1 = MIN(ir0 + dr, nr);
  9019. for (int ir = ir0; ir < ir1; ++ir) {
  9020. // src0 and dst are viewed with shape of src1 and offset
  9021. // => same indices
  9022. const int i3 = ir/(ne12*ne11);
  9023. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9024. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9025. ggml_vec_cpy_f32(nc,
  9026. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9027. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9028. }
  9029. }
  9030. static void ggml_compute_forward_set(
  9031. const struct ggml_compute_params * params,
  9032. const struct ggml_tensor * src0,
  9033. const struct ggml_tensor * src1,
  9034. const struct ggml_tensor * opt0,
  9035. struct ggml_tensor * dst) {
  9036. switch (src0->type) {
  9037. case GGML_TYPE_F32:
  9038. {
  9039. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9040. } break;
  9041. case GGML_TYPE_F16:
  9042. case GGML_TYPE_Q4_0:
  9043. case GGML_TYPE_Q4_1:
  9044. case GGML_TYPE_Q5_0:
  9045. case GGML_TYPE_Q5_1:
  9046. case GGML_TYPE_Q8_0:
  9047. case GGML_TYPE_Q8_1:
  9048. case GGML_TYPE_Q2_K:
  9049. case GGML_TYPE_Q3_K:
  9050. case GGML_TYPE_Q4_K:
  9051. case GGML_TYPE_Q5_K:
  9052. case GGML_TYPE_Q6_K:
  9053. default:
  9054. {
  9055. GGML_ASSERT(false);
  9056. } break;
  9057. }
  9058. }
  9059. // ggml_compute_forward_cpy
  9060. static void ggml_compute_forward_cpy(
  9061. const struct ggml_compute_params * params,
  9062. const struct ggml_tensor * src0,
  9063. struct ggml_tensor * dst) {
  9064. ggml_compute_forward_dup(params, src0, dst);
  9065. }
  9066. // ggml_compute_forward_cont
  9067. static void ggml_compute_forward_cont(
  9068. const struct ggml_compute_params * params,
  9069. const struct ggml_tensor * src0,
  9070. struct ggml_tensor * dst) {
  9071. ggml_compute_forward_dup(params, src0, dst);
  9072. }
  9073. // ggml_compute_forward_reshape
  9074. static void ggml_compute_forward_reshape(
  9075. const struct ggml_compute_params * params,
  9076. const struct ggml_tensor * src0,
  9077. struct ggml_tensor * dst) {
  9078. // NOP
  9079. UNUSED(params);
  9080. UNUSED(src0);
  9081. UNUSED(dst);
  9082. }
  9083. // ggml_compute_forward_view
  9084. static void ggml_compute_forward_view(
  9085. const struct ggml_compute_params * params,
  9086. const struct ggml_tensor * src0) {
  9087. // NOP
  9088. UNUSED(params);
  9089. UNUSED(src0);
  9090. }
  9091. // ggml_compute_forward_permute
  9092. static void ggml_compute_forward_permute(
  9093. const struct ggml_compute_params * params,
  9094. const struct ggml_tensor * src0) {
  9095. // NOP
  9096. UNUSED(params);
  9097. UNUSED(src0);
  9098. }
  9099. // ggml_compute_forward_transpose
  9100. static void ggml_compute_forward_transpose(
  9101. const struct ggml_compute_params * params,
  9102. const struct ggml_tensor * src0) {
  9103. // NOP
  9104. UNUSED(params);
  9105. UNUSED(src0);
  9106. }
  9107. // ggml_compute_forward_get_rows
  9108. static void ggml_compute_forward_get_rows_q(
  9109. const struct ggml_compute_params * params,
  9110. const struct ggml_tensor * src0,
  9111. const struct ggml_tensor * src1,
  9112. struct ggml_tensor * dst) {
  9113. assert(params->ith == 0);
  9114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9115. return;
  9116. }
  9117. const int nc = src0->ne[0];
  9118. const int nr = ggml_nelements(src1);
  9119. const enum ggml_type type = src0->type;
  9120. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9121. assert( dst->ne[0] == nc);
  9122. assert( dst->ne[1] == nr);
  9123. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9124. for (int i = 0; i < nr; ++i) {
  9125. const int r = ((int32_t *) src1->data)[i];
  9126. dequantize_row_q(
  9127. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9128. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9129. }
  9130. }
  9131. static void ggml_compute_forward_get_rows_f16(
  9132. const struct ggml_compute_params * params,
  9133. const struct ggml_tensor * src0,
  9134. const struct ggml_tensor * src1,
  9135. struct ggml_tensor * dst) {
  9136. assert(params->ith == 0);
  9137. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9138. return;
  9139. }
  9140. const int nc = src0->ne[0];
  9141. const int nr = ggml_nelements(src1);
  9142. assert( dst->ne[0] == nc);
  9143. assert( dst->ne[1] == nr);
  9144. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9145. for (int i = 0; i < nr; ++i) {
  9146. const int r = ((int32_t *) src1->data)[i];
  9147. for (int j = 0; j < nc; ++j) {
  9148. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9149. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9150. }
  9151. }
  9152. }
  9153. static void ggml_compute_forward_get_rows_f32(
  9154. const struct ggml_compute_params * params,
  9155. const struct ggml_tensor * src0,
  9156. const struct ggml_tensor * src1,
  9157. struct ggml_tensor * dst) {
  9158. assert(params->ith == 0);
  9159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9160. return;
  9161. }
  9162. const int nc = src0->ne[0];
  9163. const int nr = ggml_nelements(src1);
  9164. assert( dst->ne[0] == nc);
  9165. assert( dst->ne[1] == nr);
  9166. assert(src0->nb[0] == sizeof(float));
  9167. for (int i = 0; i < nr; ++i) {
  9168. const int r = ((int32_t *) src1->data)[i];
  9169. ggml_vec_cpy_f32(nc,
  9170. (float *) ((char *) dst->data + i*dst->nb[1]),
  9171. (float *) ((char *) src0->data + r*src0->nb[1]));
  9172. }
  9173. }
  9174. static void ggml_compute_forward_get_rows(
  9175. const struct ggml_compute_params * params,
  9176. const struct ggml_tensor * src0,
  9177. const struct ggml_tensor * src1,
  9178. struct ggml_tensor * dst) {
  9179. switch (src0->type) {
  9180. case GGML_TYPE_Q4_0:
  9181. case GGML_TYPE_Q4_1:
  9182. case GGML_TYPE_Q5_0:
  9183. case GGML_TYPE_Q5_1:
  9184. case GGML_TYPE_Q8_0:
  9185. case GGML_TYPE_Q8_1:
  9186. case GGML_TYPE_Q2_K:
  9187. case GGML_TYPE_Q3_K:
  9188. case GGML_TYPE_Q4_K:
  9189. case GGML_TYPE_Q5_K:
  9190. case GGML_TYPE_Q6_K:
  9191. {
  9192. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9193. } break;
  9194. case GGML_TYPE_F16:
  9195. {
  9196. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9197. } break;
  9198. case GGML_TYPE_F32:
  9199. {
  9200. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9201. } break;
  9202. default:
  9203. {
  9204. GGML_ASSERT(false);
  9205. } break;
  9206. }
  9207. //static bool first = true;
  9208. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9209. //if (first) {
  9210. // first = false;
  9211. //} else {
  9212. // for (int k = 0; k < dst->ne[1]; ++k) {
  9213. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9214. // for (int i = 0; i < 16; ++i) {
  9215. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9216. // }
  9217. // printf("\n");
  9218. // }
  9219. // printf("\n");
  9220. // }
  9221. // printf("\n");
  9222. // exit(0);
  9223. //}
  9224. }
  9225. // ggml_compute_forward_get_rows_back
  9226. static void ggml_compute_forward_get_rows_back_f32_f16(
  9227. const struct ggml_compute_params * params,
  9228. const struct ggml_tensor * src0,
  9229. const struct ggml_tensor * src1,
  9230. const struct ggml_tensor * opt0,
  9231. struct ggml_tensor * dst) {
  9232. GGML_ASSERT(params->ith == 0);
  9233. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9234. GGML_ASSERT(ggml_is_contiguous(opt0));
  9235. GGML_ASSERT(ggml_is_contiguous(dst));
  9236. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9237. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9238. return;
  9239. }
  9240. const int nc = src0->ne[0];
  9241. const int nr = ggml_nelements(src1);
  9242. GGML_ASSERT( dst->ne[0] == nc);
  9243. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9244. for (int i = 0; i < nr; ++i) {
  9245. const int r = ((int32_t *) src1->data)[i];
  9246. for (int j = 0; j < nc; ++j) {
  9247. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9248. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9249. }
  9250. }
  9251. }
  9252. static void ggml_compute_forward_get_rows_back_f32(
  9253. const struct ggml_compute_params * params,
  9254. const struct ggml_tensor * src0,
  9255. const struct ggml_tensor * src1,
  9256. const struct ggml_tensor * opt0,
  9257. struct ggml_tensor * dst) {
  9258. GGML_ASSERT(params->ith == 0);
  9259. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9260. GGML_ASSERT(ggml_is_contiguous(opt0));
  9261. GGML_ASSERT(ggml_is_contiguous(dst));
  9262. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9263. if (params->type == GGML_TASK_INIT) {
  9264. memset(dst->data, 0, ggml_nbytes(dst));
  9265. }
  9266. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9267. return;
  9268. }
  9269. const int nc = src0->ne[0];
  9270. const int nr = ggml_nelements(src1);
  9271. GGML_ASSERT( dst->ne[0] == nc);
  9272. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9273. for (int i = 0; i < nr; ++i) {
  9274. const int r = ((int32_t *) src1->data)[i];
  9275. ggml_vec_add_f32(nc,
  9276. (float *) ((char *) dst->data + r*dst->nb[1]),
  9277. (float *) ((char *) dst->data + r*dst->nb[1]),
  9278. (float *) ((char *) src0->data + i*src0->nb[1]));
  9279. }
  9280. }
  9281. static void ggml_compute_forward_get_rows_back(
  9282. const struct ggml_compute_params * params,
  9283. const struct ggml_tensor * src0,
  9284. const struct ggml_tensor * src1,
  9285. const struct ggml_tensor * opt0,
  9286. struct ggml_tensor * dst) {
  9287. switch (src0->type) {
  9288. case GGML_TYPE_F16:
  9289. {
  9290. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9291. } break;
  9292. case GGML_TYPE_F32:
  9293. {
  9294. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9295. } break;
  9296. default:
  9297. {
  9298. GGML_ASSERT(false);
  9299. } break;
  9300. }
  9301. //static bool first = true;
  9302. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9303. //if (first) {
  9304. // first = false;
  9305. //} else {
  9306. // for (int k = 0; k < dst->ne[1]; ++k) {
  9307. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9308. // for (int i = 0; i < 16; ++i) {
  9309. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9310. // }
  9311. // printf("\n");
  9312. // }
  9313. // printf("\n");
  9314. // }
  9315. // printf("\n");
  9316. // exit(0);
  9317. //}
  9318. }
  9319. // ggml_compute_forward_diag
  9320. static void ggml_compute_forward_diag_f32(
  9321. const struct ggml_compute_params * params,
  9322. const struct ggml_tensor * src0,
  9323. struct ggml_tensor * dst) {
  9324. GGML_ASSERT(params->ith == 0);
  9325. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9326. return;
  9327. }
  9328. // TODO: handle transposed/permuted matrices
  9329. GGML_TENSOR_UNARY_OP_LOCALS;
  9330. GGML_ASSERT(ne00 == ne0);
  9331. GGML_ASSERT(ne00 == ne1);
  9332. GGML_ASSERT(ne01 == 1);
  9333. GGML_ASSERT(ne02 == ne2);
  9334. GGML_ASSERT(ne03 == ne3);
  9335. GGML_ASSERT(nb00 == sizeof(float));
  9336. GGML_ASSERT(nb0 == sizeof(float));
  9337. for (int i3 = 0; i3 < ne3; i3++) {
  9338. for (int i2 = 0; i2 < ne2; i2++) {
  9339. for (int i1 = 0; i1 < ne1; i1++) {
  9340. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9341. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9342. for (int i0 = 0; i0 < i1; i0++) {
  9343. d[i0] = 0;
  9344. }
  9345. d[i1] = s[i1];
  9346. for (int i0 = i1+1; i0 < ne0; i0++) {
  9347. d[i0] = 0;
  9348. }
  9349. }
  9350. }
  9351. }
  9352. }
  9353. static void ggml_compute_forward_diag(
  9354. const struct ggml_compute_params * params,
  9355. const struct ggml_tensor * src0,
  9356. struct ggml_tensor * dst) {
  9357. switch (src0->type) {
  9358. case GGML_TYPE_F32:
  9359. {
  9360. ggml_compute_forward_diag_f32(params, src0, dst);
  9361. } break;
  9362. default:
  9363. {
  9364. GGML_ASSERT(false);
  9365. } break;
  9366. }
  9367. }
  9368. // ggml_compute_forward_diag_mask_inf
  9369. static void ggml_compute_forward_diag_mask_f32(
  9370. const struct ggml_compute_params * params,
  9371. const struct ggml_tensor * src0,
  9372. const struct ggml_tensor * src1,
  9373. struct ggml_tensor * dst,
  9374. const float value) {
  9375. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9376. GGML_ASSERT(ggml_nelements(src1) == 2);
  9377. const int ith = params->ith;
  9378. const int nth = params->nth;
  9379. const int n_past = ((int32_t *) src1->data)[0];
  9380. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9381. GGML_ASSERT(n_past >= 0);
  9382. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9383. // memcpy needs to be synchronized across threads to avoid race conditions.
  9384. // => do it in INIT phase
  9385. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9386. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9387. memcpy(
  9388. ((char *) dst->data),
  9389. ((char *) src0->data),
  9390. ggml_nbytes(dst));
  9391. }
  9392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9393. return;
  9394. }
  9395. // TODO: handle transposed/permuted matrices
  9396. const int n = ggml_nrows(src0);
  9397. const int nc = src0->ne[0];
  9398. const int nr = src0->ne[1];
  9399. const int nz = n/nr;
  9400. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9401. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9402. for (int k = 0; k < nz; k++) {
  9403. for (int j = ith; j < nr; j += nth) {
  9404. for (int i = n_past; i < nc; i++) {
  9405. if (i > n_past + j) {
  9406. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9407. }
  9408. }
  9409. }
  9410. }
  9411. }
  9412. static void ggml_compute_forward_diag_mask_inf(
  9413. const struct ggml_compute_params * params,
  9414. const struct ggml_tensor * src0,
  9415. const struct ggml_tensor * src1,
  9416. struct ggml_tensor * dst) {
  9417. switch (src0->type) {
  9418. case GGML_TYPE_F32:
  9419. {
  9420. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9421. } break;
  9422. default:
  9423. {
  9424. GGML_ASSERT(false);
  9425. } break;
  9426. }
  9427. }
  9428. static void ggml_compute_forward_diag_mask_zero(
  9429. const struct ggml_compute_params * params,
  9430. const struct ggml_tensor * src0,
  9431. const struct ggml_tensor * src1,
  9432. struct ggml_tensor * dst) {
  9433. switch (src0->type) {
  9434. case GGML_TYPE_F32:
  9435. {
  9436. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9437. } break;
  9438. default:
  9439. {
  9440. GGML_ASSERT(false);
  9441. } break;
  9442. }
  9443. }
  9444. // ggml_compute_forward_soft_max
  9445. static void ggml_compute_forward_soft_max_f32(
  9446. const struct ggml_compute_params * params,
  9447. const struct ggml_tensor * src0,
  9448. struct ggml_tensor * dst) {
  9449. GGML_ASSERT(ggml_is_contiguous(src0));
  9450. GGML_ASSERT(ggml_is_contiguous(dst));
  9451. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9453. return;
  9454. }
  9455. // TODO: handle transposed/permuted matrices
  9456. const int ith = params->ith;
  9457. const int nth = params->nth;
  9458. const int nc = src0->ne[0];
  9459. const int nr = ggml_nrows(src0);
  9460. // rows per thread
  9461. const int dr = (nr + nth - 1)/nth;
  9462. // row range for this thread
  9463. const int ir0 = dr*ith;
  9464. const int ir1 = MIN(ir0 + dr, nr);
  9465. for (int i1 = ir0; i1 < ir1; i1++) {
  9466. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9467. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9468. #ifndef NDEBUG
  9469. for (int i = 0; i < nc; ++i) {
  9470. //printf("p[%d] = %f\n", i, p[i]);
  9471. assert(!isnan(sp[i]));
  9472. }
  9473. #endif
  9474. float max = -INFINITY;
  9475. ggml_vec_max_f32(nc, &max, sp);
  9476. ggml_float sum = 0.0;
  9477. uint16_t scvt;
  9478. for (int i = 0; i < nc; i++) {
  9479. if (sp[i] == -INFINITY) {
  9480. dp[i] = 0.0f;
  9481. } else {
  9482. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9483. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9484. memcpy(&scvt, &s, sizeof(scvt));
  9485. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9486. sum += (ggml_float)val;
  9487. dp[i] = val;
  9488. }
  9489. }
  9490. assert(sum > 0.0);
  9491. sum = 1.0/sum;
  9492. ggml_vec_scale_f32(nc, dp, sum);
  9493. #ifndef NDEBUG
  9494. for (int i = 0; i < nc; ++i) {
  9495. assert(!isnan(dp[i]));
  9496. assert(!isinf(dp[i]));
  9497. }
  9498. #endif
  9499. }
  9500. }
  9501. static void ggml_compute_forward_soft_max(
  9502. const struct ggml_compute_params * params,
  9503. const struct ggml_tensor * src0,
  9504. struct ggml_tensor * dst) {
  9505. switch (src0->type) {
  9506. case GGML_TYPE_F32:
  9507. {
  9508. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9509. } break;
  9510. default:
  9511. {
  9512. GGML_ASSERT(false);
  9513. } break;
  9514. }
  9515. }
  9516. // ggml_compute_forward_soft_max_back
  9517. static void ggml_compute_forward_soft_max_back_f32(
  9518. const struct ggml_compute_params * params,
  9519. const struct ggml_tensor * src0,
  9520. const struct ggml_tensor * src1,
  9521. struct ggml_tensor * dst) {
  9522. GGML_ASSERT(ggml_is_contiguous(src0));
  9523. GGML_ASSERT(ggml_is_contiguous(src1));
  9524. GGML_ASSERT(ggml_is_contiguous(dst));
  9525. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9526. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9528. return;
  9529. }
  9530. // TODO: handle transposed/permuted matrices
  9531. const int ith = params->ith;
  9532. const int nth = params->nth;
  9533. const int nc = src0->ne[0];
  9534. const int nr = ggml_nrows(src0);
  9535. // rows per thread
  9536. const int dr = (nr + nth - 1)/nth;
  9537. // row range for this thread
  9538. const int ir0 = dr*ith;
  9539. const int ir1 = MIN(ir0 + dr, nr);
  9540. for (int i1 = ir0; i1 < ir1; i1++) {
  9541. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9542. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9543. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9544. #ifndef NDEBUG
  9545. for (int i = 0; i < nc; ++i) {
  9546. //printf("p[%d] = %f\n", i, p[i]);
  9547. assert(!isnan(dy[i]));
  9548. assert(!isnan(y[i]));
  9549. }
  9550. #endif
  9551. // Jii = yi - yi*yi
  9552. // Jij = -yi*yj
  9553. // J = diag(y)-y.T*y
  9554. // dx = J * dy
  9555. // dxk = sum_i(Jki * dyi)
  9556. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9557. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9558. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9559. // dxk = -yk * dot(y, dy) + yk*dyk
  9560. // dxk = yk * (- dot(y, dy) + dyk)
  9561. // dxk = yk * (dyk - dot(y, dy))
  9562. //
  9563. // post-order:
  9564. // dot_y_dy := dot(y, dy)
  9565. // dx := dy
  9566. // dx := dx - dot_y_dy
  9567. // dx := dx * y
  9568. // linear runtime, no additional memory
  9569. float dot_y_dy = 0;
  9570. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9571. ggml_vec_cpy_f32 (nc, dx, dy);
  9572. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9573. ggml_vec_mul_f32 (nc, dx, dx, y);
  9574. #ifndef NDEBUG
  9575. for (int i = 0; i < nc; ++i) {
  9576. assert(!isnan(dx[i]));
  9577. assert(!isinf(dx[i]));
  9578. }
  9579. #endif
  9580. }
  9581. }
  9582. static void ggml_compute_forward_soft_max_back(
  9583. const struct ggml_compute_params * params,
  9584. const struct ggml_tensor * src0,
  9585. const struct ggml_tensor * src1,
  9586. struct ggml_tensor * dst) {
  9587. switch (src0->type) {
  9588. case GGML_TYPE_F32:
  9589. {
  9590. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9591. } break;
  9592. default:
  9593. {
  9594. GGML_ASSERT(false);
  9595. } break;
  9596. }
  9597. }
  9598. // ggml_compute_forward_alibi
  9599. static void ggml_compute_forward_alibi_f32(
  9600. const struct ggml_compute_params * params,
  9601. const struct ggml_tensor * src0,
  9602. const struct ggml_tensor * src1,
  9603. struct ggml_tensor * dst) {
  9604. assert(params->ith == 0);
  9605. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9606. GGML_ASSERT(ggml_nelements(src1) == 3);
  9607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9608. return;
  9609. }
  9610. const int n_past = ((int32_t *) src1->data)[0];
  9611. const int n_head = ((int32_t *) src1->data)[1];
  9612. const float max_bias = ((float *) src1->data)[2];
  9613. assert(n_past >= 0);
  9614. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9615. const int ne1 = src0->ne[1]; // seq_len_without_past
  9616. const int ne2 = src0->ne[2]; // n_head -> this is k
  9617. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9618. const int n = ggml_nrows(src0);
  9619. const int ne2_ne3 = n/ne1; // ne2*ne3
  9620. const int nb0 = src0->nb[0];
  9621. const int nb1 = src0->nb[1];
  9622. const int nb2 = src0->nb[2];
  9623. //const int nb3 = src0->nb[3];
  9624. GGML_ASSERT(nb0 == sizeof(float));
  9625. GGML_ASSERT(ne1 + n_past == ne0);
  9626. GGML_ASSERT(n_head == ne2);
  9627. // add alibi to src0 (KQ_scaled)
  9628. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9629. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9630. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9631. for (int i = 0; i < ne0; i++) {
  9632. for (int j = 0; j < ne1; j++) {
  9633. for (int k = 0; k < ne2_ne3; k++) {
  9634. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9635. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9636. // TODO: k*nb2 or k*nb3
  9637. float m_k;
  9638. if (k < n_heads_log2_floor) {
  9639. m_k = powf(m0, k + 1);
  9640. } else {
  9641. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9642. }
  9643. pdst[0] = i * m_k + src[0];
  9644. }
  9645. }
  9646. }
  9647. }
  9648. static void ggml_compute_forward_alibi_f16(
  9649. const struct ggml_compute_params * params,
  9650. const struct ggml_tensor * src0,
  9651. const struct ggml_tensor * src1,
  9652. struct ggml_tensor * dst) {
  9653. assert(params->ith == 0);
  9654. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9655. GGML_ASSERT(ggml_nelements(src1) == 3);
  9656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9657. return;
  9658. }
  9659. const int n_past = ((int32_t *) src1->data)[0];
  9660. const int n_head = ((int32_t *) src1->data)[1];
  9661. const float max_bias = ((float *) src1->data)[2];
  9662. assert(n_past >= 0);
  9663. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9664. const int ne1 = src0->ne[1]; // seq_len_without_past
  9665. const int ne2 = src0->ne[2]; // n_head -> this is k
  9666. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9667. const int n = ggml_nrows(src0);
  9668. const int ne2_ne3 = n/ne1; // ne2*ne3
  9669. const int nb0 = src0->nb[0];
  9670. const int nb1 = src0->nb[1];
  9671. const int nb2 = src0->nb[2];
  9672. //const int nb3 = src0->nb[3];
  9673. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9674. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9675. GGML_ASSERT(n_head == ne2);
  9676. // add alibi to src0 (KQ_scaled)
  9677. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9678. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9679. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9680. for (int i = 0; i < ne0; i++) {
  9681. for (int j = 0; j < ne1; j++) {
  9682. for (int k = 0; k < ne2_ne3; k++) {
  9683. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9684. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9685. // TODO: k*nb2 or k*nb3
  9686. float m_k;
  9687. if (k < n_heads_log2_floor) {
  9688. m_k = powf(m0, k + 1);
  9689. } else {
  9690. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9691. }
  9692. // we return F32
  9693. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9694. }
  9695. }
  9696. }
  9697. }
  9698. static void ggml_compute_forward_alibi(
  9699. const struct ggml_compute_params * params,
  9700. const struct ggml_tensor * src0,
  9701. const struct ggml_tensor * src1,
  9702. struct ggml_tensor * dst) {
  9703. switch (src0->type) {
  9704. case GGML_TYPE_F16:
  9705. {
  9706. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9707. } break;
  9708. case GGML_TYPE_F32:
  9709. {
  9710. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9711. } break;
  9712. case GGML_TYPE_Q4_0:
  9713. case GGML_TYPE_Q4_1:
  9714. case GGML_TYPE_Q5_0:
  9715. case GGML_TYPE_Q5_1:
  9716. case GGML_TYPE_Q8_0:
  9717. case GGML_TYPE_Q8_1:
  9718. case GGML_TYPE_Q2_K:
  9719. case GGML_TYPE_Q3_K:
  9720. case GGML_TYPE_Q4_K:
  9721. case GGML_TYPE_Q5_K:
  9722. case GGML_TYPE_Q6_K:
  9723. case GGML_TYPE_Q8_K:
  9724. case GGML_TYPE_I8:
  9725. case GGML_TYPE_I16:
  9726. case GGML_TYPE_I32:
  9727. case GGML_TYPE_COUNT:
  9728. {
  9729. GGML_ASSERT(false);
  9730. } break;
  9731. }
  9732. }
  9733. // ggml_compute_forward_clamp
  9734. static void ggml_compute_forward_clamp_f32(
  9735. const struct ggml_compute_params * params,
  9736. const struct ggml_tensor * src0,
  9737. const struct ggml_tensor * src1,
  9738. struct ggml_tensor * dst) {
  9739. assert(params->ith == 0);
  9740. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9741. GGML_ASSERT(ggml_nelements(src1) == 2);
  9742. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9743. return;
  9744. }
  9745. const float min = ((float *) src1->data)[0];
  9746. const float max = ((float *) src1->data)[1];
  9747. const int ith = params->ith;
  9748. const int nth = params->nth;
  9749. const int n = ggml_nrows(src0);
  9750. const int nc = src0->ne[0];
  9751. const size_t nb00 = src0->nb[0];
  9752. const size_t nb01 = src0->nb[1];
  9753. const size_t nb0 = dst->nb[0];
  9754. const size_t nb1 = dst->nb[1];
  9755. GGML_ASSERT( nb0 == sizeof(float));
  9756. GGML_ASSERT(nb00 == sizeof(float));
  9757. for (int j = ith; j < n; j += nth) {
  9758. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9759. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9760. for (int i = 0; i < nc; i++) {
  9761. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9762. }
  9763. }
  9764. }
  9765. static void ggml_compute_forward_clamp(
  9766. const struct ggml_compute_params * params,
  9767. const struct ggml_tensor * src0,
  9768. const struct ggml_tensor * src1,
  9769. struct ggml_tensor * dst) {
  9770. switch (src0->type) {
  9771. case GGML_TYPE_F32:
  9772. {
  9773. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9774. } break;
  9775. case GGML_TYPE_F16:
  9776. case GGML_TYPE_Q4_0:
  9777. case GGML_TYPE_Q4_1:
  9778. case GGML_TYPE_Q5_0:
  9779. case GGML_TYPE_Q5_1:
  9780. case GGML_TYPE_Q8_0:
  9781. case GGML_TYPE_Q8_1:
  9782. case GGML_TYPE_Q2_K:
  9783. case GGML_TYPE_Q3_K:
  9784. case GGML_TYPE_Q4_K:
  9785. case GGML_TYPE_Q5_K:
  9786. case GGML_TYPE_Q6_K:
  9787. case GGML_TYPE_Q8_K:
  9788. case GGML_TYPE_I8:
  9789. case GGML_TYPE_I16:
  9790. case GGML_TYPE_I32:
  9791. case GGML_TYPE_COUNT:
  9792. {
  9793. GGML_ASSERT(false);
  9794. } break;
  9795. }
  9796. }
  9797. // ggml_compute_forward_rope
  9798. static void ggml_compute_forward_rope_f32(
  9799. const struct ggml_compute_params * params,
  9800. const struct ggml_tensor * src0,
  9801. const struct ggml_tensor * src1,
  9802. struct ggml_tensor * dst) {
  9803. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9804. GGML_ASSERT(ggml_nelements(src1) == 6);
  9805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9806. return;
  9807. }
  9808. float freq_base;
  9809. float freq_scale;
  9810. const int n_past = ((int32_t *) src1->data)[0];
  9811. const int n_dims = ((int32_t *) src1->data)[1];
  9812. const int mode = ((int32_t *) src1->data)[2];
  9813. const int n_ctx = ((int32_t *) src1->data)[3];
  9814. memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
  9815. memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
  9816. assert(n_past >= 0);
  9817. GGML_TENSOR_UNARY_OP_LOCALS;
  9818. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9819. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9820. GGML_ASSERT(nb00 == sizeof(float));
  9821. const int ith = params->ith;
  9822. const int nth = params->nth;
  9823. const int nr = ggml_nrows(dst);
  9824. GGML_ASSERT(n_dims <= ne0);
  9825. GGML_ASSERT(n_dims % 2 == 0);
  9826. // rows per thread
  9827. const int dr = (nr + nth - 1)/nth;
  9828. // row range for this thread
  9829. const int ir0 = dr*ith;
  9830. const int ir1 = MIN(ir0 + dr, nr);
  9831. // row index used to determine which thread to use
  9832. int ir = 0;
  9833. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9834. const bool is_neox = mode & 2;
  9835. const bool is_glm = mode & 4;
  9836. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9837. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9838. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9839. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9840. if (ir++ < ir0) continue;
  9841. if (ir > ir1) break;
  9842. float theta = freq_scale * (float)p;
  9843. if (is_glm) {
  9844. theta = MIN(p, n_ctx - 2);
  9845. float block_theta = MAX(p - (n_ctx - 2), 0);
  9846. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9847. const float cos_theta = cosf(theta);
  9848. const float sin_theta = sinf(theta);
  9849. const float cos_block_theta = cosf(block_theta);
  9850. const float sin_block_theta = sinf(block_theta);
  9851. theta *= theta_scale;
  9852. block_theta *= theta_scale;
  9853. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9854. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9855. const float x0 = src[0];
  9856. const float x1 = src[n_dims/2];
  9857. const float x2 = src[n_dims];
  9858. const float x3 = src[n_dims/2*3];
  9859. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9860. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9861. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9862. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9863. }
  9864. } else if (!is_neox) {
  9865. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9866. const float cos_theta = cosf(theta);
  9867. const float sin_theta = sinf(theta);
  9868. theta *= theta_scale;
  9869. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9870. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9871. const float x0 = src[0];
  9872. const float x1 = src[1];
  9873. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9874. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9875. }
  9876. } else {
  9877. // TODO: this is probably wrong, but I can't figure it out ..
  9878. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9879. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9880. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9881. const float cos_theta = cosf(theta);
  9882. const float sin_theta = sinf(theta);
  9883. theta *= theta_scale;
  9884. const int64_t i0 = ib*n_dims + ic/2;
  9885. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9886. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9887. const float x0 = src[0];
  9888. const float x1 = src[n_dims/2];
  9889. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9890. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9891. }
  9892. }
  9893. }
  9894. }
  9895. }
  9896. }
  9897. }
  9898. static void ggml_compute_forward_rope_f16(
  9899. const struct ggml_compute_params * params,
  9900. const struct ggml_tensor * src0,
  9901. const struct ggml_tensor * src1,
  9902. struct ggml_tensor * dst) {
  9903. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9904. GGML_ASSERT(ggml_nelements(src1) == 6);
  9905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9906. return;
  9907. }
  9908. float freq_base;
  9909. float freq_scale;
  9910. const int n_past = ((int32_t *) src1->data)[0];
  9911. const int n_dims = ((int32_t *) src1->data)[1];
  9912. const int mode = ((int32_t *) src1->data)[2];
  9913. const int n_ctx = ((int32_t *) src1->data)[3];
  9914. memcpy(&freq_base, (int32_t *) src1->data + 4, sizeof(float));
  9915. memcpy(&freq_scale, (int32_t *) src1->data + 5, sizeof(float));
  9916. assert(n_past >= 0);
  9917. GGML_TENSOR_UNARY_OP_LOCALS;
  9918. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9919. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9920. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9921. const int ith = params->ith;
  9922. const int nth = params->nth;
  9923. const int nr = ggml_nrows(dst);
  9924. GGML_ASSERT(n_dims <= ne0);
  9925. GGML_ASSERT(n_dims % 2 == 0);
  9926. // rows per thread
  9927. const int dr = (nr + nth - 1)/nth;
  9928. // row range for this thread
  9929. const int ir0 = dr*ith;
  9930. const int ir1 = MIN(ir0 + dr, nr);
  9931. // row index used to determine which thread to use
  9932. int ir = 0;
  9933. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9934. const bool is_neox = mode & 2;
  9935. const bool is_glm = mode & 4;
  9936. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9937. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9938. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9939. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9940. if (ir++ < ir0) continue;
  9941. if (ir > ir1) break;
  9942. float theta = freq_scale * (float)p;
  9943. if (is_glm) {
  9944. theta = MIN(p, n_ctx - 2);
  9945. float block_theta = MAX(p - (n_ctx - 2), 0);
  9946. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9947. const float cos_theta = cosf(theta);
  9948. const float sin_theta = sinf(theta);
  9949. const float cos_block_theta = cosf(block_theta);
  9950. const float sin_block_theta = sinf(block_theta);
  9951. theta *= theta_scale;
  9952. block_theta *= theta_scale;
  9953. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9954. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9955. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9956. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9957. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9958. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9959. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9960. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9961. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9962. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9963. }
  9964. } if (!is_neox) {
  9965. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9966. const float cos_theta = cosf(theta);
  9967. const float sin_theta = sinf(theta);
  9968. theta *= theta_scale;
  9969. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9970. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9971. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9972. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9973. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9974. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9975. }
  9976. } else {
  9977. // TODO: this is probably wrong, but I can't figure it out ..
  9978. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9979. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9980. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9981. const float cos_theta = cosf(theta);
  9982. const float sin_theta = sinf(theta);
  9983. theta *= theta_scale;
  9984. const int64_t i0 = ib*n_dims + ic/2;
  9985. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9986. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9987. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9988. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9989. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9990. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9991. }
  9992. }
  9993. }
  9994. }
  9995. }
  9996. }
  9997. }
  9998. static void ggml_compute_forward_rope(
  9999. const struct ggml_compute_params * params,
  10000. const struct ggml_tensor * src0,
  10001. const struct ggml_tensor * src1,
  10002. struct ggml_tensor * dst) {
  10003. switch (src0->type) {
  10004. case GGML_TYPE_F16:
  10005. {
  10006. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10007. } break;
  10008. case GGML_TYPE_F32:
  10009. {
  10010. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10011. } break;
  10012. default:
  10013. {
  10014. GGML_ASSERT(false);
  10015. } break;
  10016. }
  10017. }
  10018. // ggml_compute_forward_rope_back
  10019. static void ggml_compute_forward_rope_back_f32(
  10020. const struct ggml_compute_params * params,
  10021. const struct ggml_tensor * src0,
  10022. const struct ggml_tensor * src1,
  10023. struct ggml_tensor * dst) {
  10024. assert(src1->type == GGML_TYPE_I32);
  10025. assert(ggml_nelements(src1) == 3);
  10026. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10027. return;
  10028. }
  10029. // y = rope(x, src1)
  10030. // dx = rope_back(dy, src1)
  10031. // src0 is dy, src1 contains options
  10032. const int n_past = ((int32_t *) src1->data)[0];
  10033. const int n_dims = ((int32_t *) src1->data)[1];
  10034. const int mode = ((int32_t *) src1->data)[2];
  10035. assert(n_past >= 0);
  10036. GGML_TENSOR_UNARY_OP_LOCALS;
  10037. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10038. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10039. assert(nb0 == sizeof(float));
  10040. const int ith = params->ith;
  10041. const int nth = params->nth;
  10042. const int nr = ggml_nrows(dst);
  10043. // rows per thread
  10044. const int dr = (nr + nth - 1)/nth;
  10045. // row range for this thread
  10046. const int ir0 = dr*ith;
  10047. const int ir1 = MIN(ir0 + dr, nr);
  10048. // row index used to determine which thread to use
  10049. int ir = 0;
  10050. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10051. const bool is_neox = mode & 2;
  10052. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10053. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10054. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10055. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10056. if (ir++ < ir0) continue;
  10057. if (ir > ir1) break;
  10058. float theta = (float)p;
  10059. if (!is_neox) {
  10060. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10061. const float cos_theta = cosf(theta);
  10062. const float sin_theta = sinf(theta);
  10063. theta *= theta_scale;
  10064. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10065. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10066. const float dy0 = dy[0];
  10067. const float dy1 = dy[1];
  10068. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10069. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10070. }
  10071. } else {
  10072. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10073. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10074. const float cos_theta = cosf(theta);
  10075. const float sin_theta = sinf(theta);
  10076. theta *= theta_scale;
  10077. const int64_t i0 = ib*n_dims + ic/2;
  10078. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10079. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10080. const float dy0 = dy[0];
  10081. const float dy1 = dy[n_dims/2];
  10082. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10083. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10084. }
  10085. }
  10086. }
  10087. }
  10088. }
  10089. }
  10090. }
  10091. static void ggml_compute_forward_rope_back_f16(
  10092. const struct ggml_compute_params * params,
  10093. const struct ggml_tensor * src0,
  10094. const struct ggml_tensor * src1,
  10095. struct ggml_tensor * dst) {
  10096. assert(src1->type == GGML_TYPE_I32);
  10097. assert(ggml_nelements(src1) == 3);
  10098. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10099. return;
  10100. }
  10101. // y = rope(x, src1)
  10102. // dx = rope_back(dy, src1)
  10103. // src0 is dy, src1 contains options
  10104. const int n_past = ((int32_t *) src1->data)[0];
  10105. const int n_dims = ((int32_t *) src1->data)[1];
  10106. const int mode = ((int32_t *) src1->data)[2];
  10107. assert(n_past >= 0);
  10108. GGML_TENSOR_UNARY_OP_LOCALS;
  10109. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10110. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10111. assert(nb0 == sizeof(ggml_fp16_t));
  10112. const int ith = params->ith;
  10113. const int nth = params->nth;
  10114. const int nr = ggml_nrows(dst);
  10115. // rows per thread
  10116. const int dr = (nr + nth - 1)/nth;
  10117. // row range for this thread
  10118. const int ir0 = dr*ith;
  10119. const int ir1 = MIN(ir0 + dr, nr);
  10120. // row index used to determine which thread to use
  10121. int ir = 0;
  10122. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10123. const bool is_neox = mode & 2;
  10124. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10125. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10126. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10127. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10128. if (ir++ < ir0) continue;
  10129. if (ir > ir1) break;
  10130. float theta = (float)p;
  10131. if (!is_neox) {
  10132. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10133. const float cos_theta = cosf(theta);
  10134. const float sin_theta = sinf(theta);
  10135. theta *= theta_scale;
  10136. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10137. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10138. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10139. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10140. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10141. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10142. }
  10143. } else {
  10144. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10145. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10146. const float cos_theta = cosf(theta);
  10147. const float sin_theta = sinf(theta);
  10148. theta *= theta_scale;
  10149. const int64_t i0 = ib*n_dims + ic/2;
  10150. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10151. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10152. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10153. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10154. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10155. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10156. }
  10157. }
  10158. }
  10159. }
  10160. }
  10161. }
  10162. }
  10163. static void ggml_compute_forward_rope_back(
  10164. const struct ggml_compute_params * params,
  10165. const struct ggml_tensor * src0,
  10166. const struct ggml_tensor * src1,
  10167. struct ggml_tensor * dst) {
  10168. switch (src0->type) {
  10169. case GGML_TYPE_F16:
  10170. {
  10171. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10172. } break;
  10173. case GGML_TYPE_F32:
  10174. {
  10175. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10176. } break;
  10177. default:
  10178. {
  10179. GGML_ASSERT(false);
  10180. } break;
  10181. }
  10182. }
  10183. // ggml_compute_forward_conv_1d
  10184. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10185. const struct ggml_compute_params * params,
  10186. const struct ggml_tensor * src0,
  10187. const struct ggml_tensor * src1,
  10188. struct ggml_tensor * dst) {
  10189. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10190. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10191. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10192. int64_t t0 = ggml_perf_time_us();
  10193. UNUSED(t0);
  10194. GGML_TENSOR_BINARY_OP_LOCALS;
  10195. const int ith = params->ith;
  10196. const int nth = params->nth;
  10197. const int nk = ne00;
  10198. const int nh = nk/2;
  10199. const int ew0 = ggml_up32(ne01);
  10200. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10201. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10202. GGML_ASSERT(nb10 == sizeof(float));
  10203. if (params->type == GGML_TASK_INIT) {
  10204. // TODO: fix this memset (wsize is overestimated)
  10205. memset(params->wdata, 0, params->wsize);
  10206. // prepare kernel data (src0)
  10207. {
  10208. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10209. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10210. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10211. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10212. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10213. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10214. dst_data[i00*ew0 + i01] = src[i00];
  10215. }
  10216. }
  10217. }
  10218. }
  10219. // prepare source data (src1)
  10220. {
  10221. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10222. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10223. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10224. ggml_fp16_t * dst_data = wdata;
  10225. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10226. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10227. }
  10228. }
  10229. }
  10230. return;
  10231. }
  10232. if (params->type == GGML_TASK_FINALIZE) {
  10233. return;
  10234. }
  10235. // total rows in dst
  10236. const int nr = ne02;
  10237. // rows per thread
  10238. const int dr = (nr + nth - 1)/nth;
  10239. // row range for this thread
  10240. const int ir0 = dr*ith;
  10241. const int ir1 = MIN(ir0 + dr, nr);
  10242. for (int i1 = ir0; i1 < ir1; i1++) {
  10243. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10244. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10245. dst_data[i0] = 0;
  10246. for (int k = -nh; k <= nh; k++) {
  10247. float v = 0.0f;
  10248. ggml_vec_dot_f16(ew0, &v,
  10249. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10250. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10251. dst_data[i0] += v;
  10252. }
  10253. }
  10254. }
  10255. }
  10256. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10257. const struct ggml_compute_params * params,
  10258. const struct ggml_tensor * src0,
  10259. const struct ggml_tensor * src1,
  10260. struct ggml_tensor * dst) {
  10261. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10262. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10263. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10264. int64_t t0 = ggml_perf_time_us();
  10265. UNUSED(t0);
  10266. GGML_TENSOR_BINARY_OP_LOCALS;
  10267. const int ith = params->ith;
  10268. const int nth = params->nth;
  10269. const int nk = ne00;
  10270. const int nh = nk/2;
  10271. const int ew0 = ggml_up32(ne01);
  10272. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10273. GGML_ASSERT(nb00 == sizeof(float));
  10274. GGML_ASSERT(nb10 == sizeof(float));
  10275. if (params->type == GGML_TASK_INIT) {
  10276. // TODO: fix this memset (wsize is overestimated)
  10277. memset(params->wdata, 0, params->wsize);
  10278. // prepare kernel data (src0)
  10279. {
  10280. float * const wdata = (float *) params->wdata + 0;
  10281. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10282. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10283. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10284. float * dst_data = wdata + i02*ew0*ne00;
  10285. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10286. dst_data[i00*ew0 + i01] = src[i00];
  10287. }
  10288. }
  10289. }
  10290. }
  10291. // prepare source data (src1)
  10292. {
  10293. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10294. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10295. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10296. float * dst_data = wdata;
  10297. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10298. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10299. }
  10300. }
  10301. }
  10302. return;
  10303. }
  10304. if (params->type == GGML_TASK_FINALIZE) {
  10305. return;
  10306. }
  10307. // total rows in dst
  10308. const int nr = ne02;
  10309. // rows per thread
  10310. const int dr = (nr + nth - 1)/nth;
  10311. // row range for this thread
  10312. const int ir0 = dr*ith;
  10313. const int ir1 = MIN(ir0 + dr, nr);
  10314. for (int i1 = ir0; i1 < ir1; i1++) {
  10315. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10316. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10317. dst_data[i0] = 0;
  10318. for (int k = -nh; k <= nh; k++) {
  10319. float v = 0.0f;
  10320. ggml_vec_dot_f32(ew0, &v,
  10321. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10322. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10323. dst_data[i0] += v;
  10324. }
  10325. }
  10326. }
  10327. }
  10328. static void ggml_compute_forward_conv_1d_s1_ph(
  10329. const struct ggml_compute_params * params,
  10330. const struct ggml_tensor * src0,
  10331. const struct ggml_tensor * src1,
  10332. struct ggml_tensor * dst) {
  10333. switch (src0->type) {
  10334. case GGML_TYPE_F16:
  10335. {
  10336. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10337. } break;
  10338. case GGML_TYPE_F32:
  10339. {
  10340. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10341. } break;
  10342. default:
  10343. {
  10344. GGML_ASSERT(false);
  10345. } break;
  10346. }
  10347. }
  10348. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10349. const struct ggml_compute_params * params,
  10350. const struct ggml_tensor * src0,
  10351. const struct ggml_tensor * src1,
  10352. struct ggml_tensor * dst) {
  10353. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10354. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10355. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10356. int64_t t0 = ggml_perf_time_us();
  10357. UNUSED(t0);
  10358. GGML_TENSOR_BINARY_OP_LOCALS;
  10359. const int ith = params->ith;
  10360. const int nth = params->nth;
  10361. const int nk = ne00;
  10362. const int nh = nk/2;
  10363. const int ew0 = ggml_up32(ne01);
  10364. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10365. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10366. GGML_ASSERT(nb10 == sizeof(float));
  10367. if (params->type == GGML_TASK_INIT) {
  10368. // TODO: fix this memset (wsize is overestimated)
  10369. memset(params->wdata, 0, params->wsize);
  10370. // prepare kernel data (src0)
  10371. {
  10372. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10373. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10374. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10375. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10376. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10377. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10378. dst_data[i00*ew0 + i01] = src[i00];
  10379. }
  10380. }
  10381. }
  10382. }
  10383. // prepare source data (src1)
  10384. {
  10385. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10386. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10387. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10388. ggml_fp16_t * dst_data = wdata;
  10389. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10390. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10391. }
  10392. }
  10393. }
  10394. return;
  10395. }
  10396. if (params->type == GGML_TASK_FINALIZE) {
  10397. return;
  10398. }
  10399. // total rows in dst
  10400. const int nr = ne02;
  10401. // rows per thread
  10402. const int dr = (nr + nth - 1)/nth;
  10403. // row range for this thread
  10404. const int ir0 = dr*ith;
  10405. const int ir1 = MIN(ir0 + dr, nr);
  10406. for (int i1 = ir0; i1 < ir1; i1++) {
  10407. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10408. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10409. dst_data[i0/2] = 0;
  10410. for (int k = -nh; k <= nh; k++) {
  10411. float v = 0.0f;
  10412. ggml_vec_dot_f16(ew0, &v,
  10413. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10414. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10415. dst_data[i0/2] += v;
  10416. }
  10417. }
  10418. }
  10419. }
  10420. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10421. const struct ggml_compute_params * params,
  10422. const struct ggml_tensor * src0,
  10423. const struct ggml_tensor * src1,
  10424. struct ggml_tensor * dst) {
  10425. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10426. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10427. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10428. int64_t t0 = ggml_perf_time_us();
  10429. UNUSED(t0);
  10430. GGML_TENSOR_BINARY_OP_LOCALS;
  10431. const int ith = params->ith;
  10432. const int nth = params->nth;
  10433. const int nk = ne00;
  10434. const int nh = nk/2;
  10435. const int ew0 = ggml_up32(ne01);
  10436. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10437. GGML_ASSERT(nb00 == sizeof(float));
  10438. GGML_ASSERT(nb10 == sizeof(float));
  10439. if (params->type == GGML_TASK_INIT) {
  10440. // TODO: fix this memset (wsize is overestimated)
  10441. memset(params->wdata, 0, params->wsize);
  10442. // prepare kernel data (src0)
  10443. {
  10444. float * const wdata = (float *) params->wdata + 0;
  10445. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10446. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10447. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10448. float * dst_data = wdata + i02*ew0*ne00;
  10449. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10450. dst_data[i00*ew0 + i01] = src[i00];
  10451. }
  10452. }
  10453. }
  10454. }
  10455. // prepare source data (src1)
  10456. {
  10457. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10458. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10459. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10460. float * dst_data = wdata;
  10461. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10462. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10463. }
  10464. }
  10465. }
  10466. return;
  10467. }
  10468. if (params->type == GGML_TASK_FINALIZE) {
  10469. return;
  10470. }
  10471. // total rows in dst
  10472. const int nr = ne02;
  10473. // rows per thread
  10474. const int dr = (nr + nth - 1)/nth;
  10475. // row range for this thread
  10476. const int ir0 = dr*ith;
  10477. const int ir1 = MIN(ir0 + dr, nr);
  10478. for (int i1 = ir0; i1 < ir1; i1++) {
  10479. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10480. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10481. dst_data[i0/2] = 0;
  10482. for (int k = -nh; k <= nh; k++) {
  10483. float v = 0.0f;
  10484. ggml_vec_dot_f32(ew0, &v,
  10485. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10486. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10487. dst_data[i0/2] += v;
  10488. }
  10489. }
  10490. }
  10491. }
  10492. static void ggml_compute_forward_conv_1d_s2_ph(
  10493. const struct ggml_compute_params * params,
  10494. const struct ggml_tensor * src0,
  10495. const struct ggml_tensor * src1,
  10496. struct ggml_tensor * dst) {
  10497. switch (src0->type) {
  10498. case GGML_TYPE_F16:
  10499. {
  10500. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10501. } break;
  10502. case GGML_TYPE_F32:
  10503. {
  10504. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10505. } break;
  10506. default:
  10507. {
  10508. GGML_ASSERT(false);
  10509. } break;
  10510. }
  10511. }
  10512. // ggml_compute_forward_conv_1d
  10513. static void ggml_compute_forward_conv_1d(
  10514. const struct ggml_compute_params * params,
  10515. const struct ggml_tensor * src0,
  10516. const struct ggml_tensor * src1,
  10517. const struct ggml_tensor * opt0,
  10518. struct ggml_tensor * dst) {
  10519. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10520. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10521. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10522. GGML_ASSERT(d0 == 1); // dilation not supported
  10523. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10524. if (s0 == 1) {
  10525. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10526. } else if (s0 == 2) {
  10527. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10528. } else {
  10529. GGML_ASSERT(false); // only stride 1 and 2 supported
  10530. };
  10531. }
  10532. // ggml_compute_forward_conv_2d
  10533. static void ggml_compute_forward_conv_2d_f16_f32(
  10534. const struct ggml_compute_params * params,
  10535. const struct ggml_tensor * src0,
  10536. const struct ggml_tensor * src1,
  10537. const struct ggml_tensor * opt0,
  10538. struct ggml_tensor * dst) {
  10539. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10540. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10541. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10542. int64_t t0 = ggml_perf_time_us();
  10543. UNUSED(t0);
  10544. GGML_TENSOR_BINARY_OP_LOCALS;
  10545. const int ith = params->ith;
  10546. const int nth = params->nth;
  10547. const int nk0 = ne00;
  10548. const int nk1 = ne01;
  10549. // size of the convolution row - the kernel size unrolled across all channels
  10550. const int ew0 = nk0*nk1*ne02;
  10551. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10552. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10553. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10554. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10555. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10556. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10557. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10558. GGML_ASSERT(nb10 == sizeof(float));
  10559. if (params->type == GGML_TASK_INIT) {
  10560. memset(params->wdata, 0, params->wsize);
  10561. // prepare source data (src1)
  10562. {
  10563. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10564. for (int i12 = 0; i12 < ne12; i12++) {
  10565. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10566. ggml_fp16_t * dst_data = wdata;
  10567. for (int i1 = 0; i1 < ne1; i1++) {
  10568. for (int i0 = 0; i0 < ne0; i0++) {
  10569. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10570. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10571. const int idx0 = i0*s0 + ik0*d0 - p0;
  10572. const int idx1 = i1*s1 + ik1*d1 - p1;
  10573. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10574. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10575. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10576. }
  10577. }
  10578. }
  10579. }
  10580. }
  10581. }
  10582. }
  10583. return;
  10584. }
  10585. if (params->type == GGML_TASK_FINALIZE) {
  10586. return;
  10587. }
  10588. // total patches in dst
  10589. const int np = ne2;
  10590. // patches per thread
  10591. const int dp = (np + nth - 1)/nth;
  10592. // patch range for this thread
  10593. const int ip0 = dp*ith;
  10594. const int ip1 = MIN(ip0 + dp, np);
  10595. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10596. for (int i3 = 0; i3 < ne3; i3++) {
  10597. for (int i2 = ip0; i2 < ip1; i2++) {
  10598. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10599. for (int i1 = 0; i1 < ne1; ++i1) {
  10600. for (int i0 = 0; i0 < ne0; ++i0) {
  10601. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10602. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10603. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10604. }
  10605. }
  10606. }
  10607. }
  10608. }
  10609. static void ggml_compute_forward_conv_2d(
  10610. const struct ggml_compute_params * params,
  10611. const struct ggml_tensor * src0,
  10612. const struct ggml_tensor * src1,
  10613. const struct ggml_tensor * opt0,
  10614. struct ggml_tensor * dst
  10615. ) {
  10616. switch (src0->type) {
  10617. case GGML_TYPE_F16:
  10618. {
  10619. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, opt0, dst);
  10620. } break;
  10621. case GGML_TYPE_F32:
  10622. {
  10623. //ggml_compute_forward_conv_2d_f32(params, src0, src1, opt0, dst);
  10624. GGML_ASSERT(false);
  10625. } break;
  10626. default:
  10627. {
  10628. GGML_ASSERT(false);
  10629. } break;
  10630. }
  10631. }
  10632. // ggml_compute_forward_pool_1d_sk_p0
  10633. static void ggml_compute_forward_pool_1d_sk_p0(
  10634. const struct ggml_compute_params * params,
  10635. const enum ggml_op_pool op,
  10636. const struct ggml_tensor * src,
  10637. const int k,
  10638. struct ggml_tensor * dst) {
  10639. assert(src->type == GGML_TYPE_F32);
  10640. assert(params->ith == 0);
  10641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10642. return;
  10643. }
  10644. const char * cdata = (const char *)src->data;
  10645. const char * const data_end = cdata + ggml_nbytes(src);
  10646. float * drow = (float *)dst->data;
  10647. const int64_t rs = dst->ne[0];
  10648. while (cdata < data_end) {
  10649. const float * const srow = (const float *)cdata;
  10650. int j = 0;
  10651. for (int64_t i = 0; i < rs; ++i) {
  10652. switch (op) {
  10653. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10654. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10655. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10656. }
  10657. for (int ki = 0; ki < k; ++ki) {
  10658. switch (op) {
  10659. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10660. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10661. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10662. }
  10663. ++j;
  10664. }
  10665. switch (op) {
  10666. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10667. case GGML_OP_POOL_MAX: break;
  10668. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10669. }
  10670. }
  10671. cdata += src->nb[1];
  10672. drow += rs;
  10673. }
  10674. }
  10675. // ggml_compute_forward_pool_1d
  10676. static void ggml_compute_forward_pool_1d(
  10677. const struct ggml_compute_params* params,
  10678. const struct ggml_tensor* src0,
  10679. const struct ggml_tensor* opt0,
  10680. struct ggml_tensor* dst) {
  10681. GGML_ASSERT(opt0->ne[0] == 4);
  10682. const int* opts = (const int*)opt0->data;
  10683. enum ggml_op_pool op = opts[0];
  10684. const int k0 = opts[1];
  10685. const int s0 = opts[2];
  10686. const int p0 = opts[3];
  10687. GGML_ASSERT(p0 == 0); // padding not supported
  10688. GGML_ASSERT(k0 == s0); // only s = k supported
  10689. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10690. }
  10691. // ggml_compute_forward_pool_2d_sk_p0
  10692. static void ggml_compute_forward_pool_2d_sk_p0(
  10693. const struct ggml_compute_params * params,
  10694. const enum ggml_op_pool op,
  10695. const struct ggml_tensor * src,
  10696. const int k0,
  10697. const int k1,
  10698. struct ggml_tensor * dst) {
  10699. assert(src->type == GGML_TYPE_F32);
  10700. assert(params->ith == 0);
  10701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10702. return;
  10703. }
  10704. const char * cdata = (const char*)src->data;
  10705. const char * const data_end = cdata + ggml_nbytes(src);
  10706. const int64_t px = dst->ne[0];
  10707. const int64_t py = dst->ne[1];
  10708. const int64_t pa = px * py;
  10709. float * dplane = (float *)dst->data;
  10710. const int ka = k0 * k1;
  10711. while (cdata < data_end) {
  10712. for (int oy = 0; oy < py; ++oy) {
  10713. float * const drow = dplane + oy * px;
  10714. for (int ox = 0; ox < px; ++ox) {
  10715. float * const out = drow + ox;
  10716. switch (op) {
  10717. case GGML_OP_POOL_AVG: *out = 0; break;
  10718. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10719. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10720. }
  10721. const int ix = ox * k0;
  10722. const int iy = oy * k1;
  10723. for (int ky = 0; ky < k1; ++ky) {
  10724. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10725. for (int kx = 0; kx < k0; ++kx) {
  10726. int j = ix + kx;
  10727. switch (op) {
  10728. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10729. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10730. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10731. }
  10732. }
  10733. }
  10734. switch (op) {
  10735. case GGML_OP_POOL_AVG: *out /= ka; break;
  10736. case GGML_OP_POOL_MAX: break;
  10737. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10738. }
  10739. }
  10740. }
  10741. cdata += src->nb[2];
  10742. dplane += pa;
  10743. }
  10744. }
  10745. // ggml_compute_forward_pool_2d
  10746. static void ggml_compute_forward_pool_2d(
  10747. const struct ggml_compute_params * params,
  10748. const struct ggml_tensor * src0,
  10749. const struct ggml_tensor * opt0,
  10750. struct ggml_tensor * dst) {
  10751. GGML_ASSERT(opt0->ne[0] == 7);
  10752. const int* opts = (const int*)opt0->data;
  10753. enum ggml_op_pool op = opts[0];
  10754. const int k0 = opts[1];
  10755. const int k1 = opts[2];
  10756. const int s0 = opts[3];
  10757. const int s1 = opts[4];
  10758. const int p0 = opts[5];
  10759. const int p1 = opts[6];
  10760. GGML_ASSERT(p0 == 0);
  10761. GGML_ASSERT(p1 == 0); // padding not supported
  10762. GGML_ASSERT(k0 == s0);
  10763. GGML_ASSERT(k1 == s1); // only s = k supported
  10764. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10765. }
  10766. // ggml_compute_forward_flash_attn
  10767. static void ggml_compute_forward_flash_attn_f32(
  10768. const struct ggml_compute_params * params,
  10769. const struct ggml_tensor * q,
  10770. const struct ggml_tensor * k,
  10771. const struct ggml_tensor * v,
  10772. const bool masked,
  10773. struct ggml_tensor * dst) {
  10774. int64_t t0 = ggml_perf_time_us();
  10775. UNUSED(t0);
  10776. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10777. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10778. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10779. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10780. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10781. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10782. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10783. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10784. const int ith = params->ith;
  10785. const int nth = params->nth;
  10786. const int64_t D = neq0;
  10787. const int64_t N = neq1;
  10788. const int64_t P = nek1 - N;
  10789. const int64_t M = P + N;
  10790. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10791. GGML_ASSERT(ne0 == D);
  10792. GGML_ASSERT(ne1 == N);
  10793. GGML_ASSERT(P >= 0);
  10794. GGML_ASSERT(nbq0 == sizeof(float));
  10795. GGML_ASSERT(nbk0 == sizeof(float));
  10796. GGML_ASSERT(nbv0 == sizeof(float));
  10797. GGML_ASSERT(neq0 == D);
  10798. GGML_ASSERT(nek0 == D);
  10799. GGML_ASSERT(nev1 == D);
  10800. GGML_ASSERT(neq1 == N);
  10801. GGML_ASSERT(nek1 == N + P);
  10802. GGML_ASSERT(nev1 == D);
  10803. // dst cannot be transposed or permuted
  10804. GGML_ASSERT(nb0 == sizeof(float));
  10805. GGML_ASSERT(nb0 <= nb1);
  10806. GGML_ASSERT(nb1 <= nb2);
  10807. GGML_ASSERT(nb2 <= nb3);
  10808. if (params->type == GGML_TASK_INIT) {
  10809. return;
  10810. }
  10811. if (params->type == GGML_TASK_FINALIZE) {
  10812. return;
  10813. }
  10814. // parallelize by q rows using ggml_vec_dot_f32
  10815. // total rows in q
  10816. const int nr = neq1*neq2*neq3;
  10817. // rows per thread
  10818. const int dr = (nr + nth - 1)/nth;
  10819. // row range for this thread
  10820. const int ir0 = dr*ith;
  10821. const int ir1 = MIN(ir0 + dr, nr);
  10822. const float scale = 1.0f/sqrtf(D);
  10823. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10824. for (int ir = ir0; ir < ir1; ++ir) {
  10825. // q indices
  10826. const int iq3 = ir/(neq2*neq1);
  10827. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10828. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10829. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10830. for (int i = M; i < Mup; ++i) {
  10831. S[i] = -INFINITY;
  10832. }
  10833. for (int64_t ic = 0; ic < nek1; ++ic) {
  10834. // k indices
  10835. const int ik3 = iq3;
  10836. const int ik2 = iq2;
  10837. const int ik1 = ic;
  10838. // S indices
  10839. const int i1 = ik1;
  10840. ggml_vec_dot_f32(neq0,
  10841. S + i1,
  10842. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10843. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10844. }
  10845. // scale
  10846. ggml_vec_scale_f32(nek1, S, scale);
  10847. if (masked) {
  10848. for (int64_t i = P; i < M; i++) {
  10849. if (i > P + iq1) {
  10850. S[i] = -INFINITY;
  10851. }
  10852. }
  10853. }
  10854. // softmax
  10855. {
  10856. float max = -INFINITY;
  10857. ggml_vec_max_f32(M, &max, S);
  10858. ggml_float sum = 0.0;
  10859. {
  10860. #ifdef GGML_SOFT_MAX_ACCELERATE
  10861. max = -max;
  10862. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10863. vvexpf(S, S, &Mup);
  10864. ggml_vec_sum_f32(Mup, &sum, S);
  10865. #else
  10866. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10867. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10868. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10869. float * SS = S + i;
  10870. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10871. if (SS[j] == -INFINITY) {
  10872. SS[j] = 0.0f;
  10873. } else {
  10874. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10875. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10876. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10877. sump[j] += (ggml_float)val;
  10878. SS[j] = val;
  10879. }
  10880. }
  10881. }
  10882. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10883. sum += sump[i];
  10884. }
  10885. #endif
  10886. }
  10887. assert(sum > 0.0);
  10888. sum = 1.0/sum;
  10889. ggml_vec_scale_f32(M, S, sum);
  10890. #ifndef NDEBUG
  10891. for (int i = 0; i < M; ++i) {
  10892. assert(!isnan(S[i]));
  10893. assert(!isinf(S[i]));
  10894. }
  10895. #endif
  10896. }
  10897. for (int64_t ic = 0; ic < nev1; ++ic) {
  10898. // dst indices
  10899. const int i1 = iq1;
  10900. const int i2 = iq2;
  10901. const int i3 = iq3;
  10902. ggml_vec_dot_f32(nek1,
  10903. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10904. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10905. S);
  10906. }
  10907. }
  10908. }
  10909. static void ggml_compute_forward_flash_attn_f16(
  10910. const struct ggml_compute_params * params,
  10911. const struct ggml_tensor * q,
  10912. const struct ggml_tensor * k,
  10913. const struct ggml_tensor * v,
  10914. const bool masked,
  10915. struct ggml_tensor * dst) {
  10916. int64_t t0 = ggml_perf_time_us();
  10917. UNUSED(t0);
  10918. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10919. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10920. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10921. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10922. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10923. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10924. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10925. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10926. const int ith = params->ith;
  10927. const int nth = params->nth;
  10928. const int64_t D = neq0;
  10929. const int64_t N = neq1;
  10930. const int64_t P = nek1 - N;
  10931. const int64_t M = P + N;
  10932. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10933. GGML_ASSERT(ne0 == D);
  10934. GGML_ASSERT(ne1 == N);
  10935. GGML_ASSERT(P >= 0);
  10936. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10937. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10938. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10939. GGML_ASSERT(neq0 == D);
  10940. GGML_ASSERT(nek0 == D);
  10941. GGML_ASSERT(nev1 == D);
  10942. GGML_ASSERT(neq1 == N);
  10943. GGML_ASSERT(nek1 == N + P);
  10944. GGML_ASSERT(nev1 == D);
  10945. // dst cannot be transposed or permuted
  10946. GGML_ASSERT(nb0 == sizeof(float));
  10947. GGML_ASSERT(nb0 <= nb1);
  10948. GGML_ASSERT(nb1 <= nb2);
  10949. GGML_ASSERT(nb2 <= nb3);
  10950. if (params->type == GGML_TASK_INIT) {
  10951. return;
  10952. }
  10953. if (params->type == GGML_TASK_FINALIZE) {
  10954. return;
  10955. }
  10956. // parallelize by q rows using ggml_vec_dot_f32
  10957. // total rows in q
  10958. const int nr = neq1*neq2*neq3;
  10959. // rows per thread
  10960. const int dr = (nr + nth - 1)/nth;
  10961. // row range for this thread
  10962. const int ir0 = dr*ith;
  10963. const int ir1 = MIN(ir0 + dr, nr);
  10964. const float scale = 1.0f/sqrtf(D);
  10965. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10966. for (int ir = ir0; ir < ir1; ++ir) {
  10967. // q indices
  10968. const int iq3 = ir/(neq2*neq1);
  10969. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10970. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10971. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10972. for (int i = M; i < Mup; ++i) {
  10973. S[i] = -INFINITY;
  10974. }
  10975. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10976. for (int64_t ic = 0; ic < nek1; ++ic) {
  10977. // k indices
  10978. const int ik3 = iq3;
  10979. const int ik2 = iq2;
  10980. const int ik1 = ic;
  10981. // S indices
  10982. const int i1 = ik1;
  10983. ggml_vec_dot_f16(neq0,
  10984. S + i1,
  10985. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10986. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10987. }
  10988. } else {
  10989. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10990. // k indices
  10991. const int ik3 = iq3;
  10992. const int ik2 = iq2;
  10993. const int ik1 = ic;
  10994. // S indices
  10995. const int i1 = ik1;
  10996. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10997. S + i1,
  10998. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10999. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11000. }
  11001. }
  11002. // scale
  11003. ggml_vec_scale_f32(nek1, S, scale);
  11004. if (masked) {
  11005. for (int64_t i = P; i < M; i++) {
  11006. if (i > P + iq1) {
  11007. S[i] = -INFINITY;
  11008. }
  11009. }
  11010. }
  11011. // softmax
  11012. {
  11013. float max = -INFINITY;
  11014. ggml_vec_max_f32(M, &max, S);
  11015. ggml_float sum = 0.0;
  11016. {
  11017. #ifdef GGML_SOFT_MAX_ACCELERATE
  11018. max = -max;
  11019. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11020. vvexpf(S, S, &Mup);
  11021. ggml_vec_sum_f32(Mup, &sum, S);
  11022. #else
  11023. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11024. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11025. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11026. float * SS = S + i;
  11027. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11028. if (SS[j] == -INFINITY) {
  11029. SS[j] = 0.0f;
  11030. } else {
  11031. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11032. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11033. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11034. sump[j] += (ggml_float)val;
  11035. SS[j] = val;
  11036. }
  11037. }
  11038. }
  11039. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11040. sum += sump[i];
  11041. }
  11042. #endif
  11043. }
  11044. assert(sum > 0.0);
  11045. sum = 1.0/sum;
  11046. ggml_vec_scale_f32(M, S, sum);
  11047. #ifndef NDEBUG
  11048. for (int i = 0; i < M; ++i) {
  11049. assert(!isnan(S[i]));
  11050. assert(!isinf(S[i]));
  11051. }
  11052. #endif
  11053. }
  11054. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11055. for (int64_t i = 0; i < M; i++) {
  11056. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11057. }
  11058. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11059. for (int64_t ic = 0; ic < nev1; ++ic) {
  11060. // dst indices
  11061. const int i1 = iq1;
  11062. const int i2 = iq2;
  11063. const int i3 = iq3;
  11064. ggml_vec_dot_f16(nek1,
  11065. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11066. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11067. S16);
  11068. }
  11069. } else {
  11070. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11071. // dst indices
  11072. const int i1 = iq1;
  11073. const int i2 = iq2;
  11074. const int i3 = iq3;
  11075. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11076. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11077. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11078. S16);
  11079. }
  11080. }
  11081. }
  11082. }
  11083. static void ggml_compute_forward_flash_attn(
  11084. const struct ggml_compute_params * params,
  11085. const struct ggml_tensor * q,
  11086. const struct ggml_tensor * k,
  11087. const struct ggml_tensor * v,
  11088. const bool masked,
  11089. struct ggml_tensor * dst) {
  11090. switch (q->type) {
  11091. case GGML_TYPE_F16:
  11092. {
  11093. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11094. } break;
  11095. case GGML_TYPE_F32:
  11096. {
  11097. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11098. } break;
  11099. default:
  11100. {
  11101. GGML_ASSERT(false);
  11102. } break;
  11103. }
  11104. }
  11105. // ggml_compute_forward_flash_ff
  11106. static void ggml_compute_forward_flash_ff_f16(
  11107. const struct ggml_compute_params * params,
  11108. const struct ggml_tensor * a, // F16
  11109. const struct ggml_tensor * b0, // F16 fc_w
  11110. const struct ggml_tensor * b1, // F32 fc_b
  11111. const struct ggml_tensor * c0, // F16 proj_w
  11112. const struct ggml_tensor * c1, // F32 proj_b
  11113. struct ggml_tensor * dst) {
  11114. int64_t t0 = ggml_perf_time_us();
  11115. UNUSED(t0);
  11116. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11117. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11118. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11119. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11120. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11121. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11122. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11123. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11124. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11125. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11126. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11127. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11128. const int ith = params->ith;
  11129. const int nth = params->nth;
  11130. const int64_t D = nea0;
  11131. //const int64_t N = nea1;
  11132. const int64_t M = neb01;
  11133. GGML_ASSERT(ne0 == nea0);
  11134. GGML_ASSERT(ne1 == nea1);
  11135. GGML_ASSERT(ne2 == nea2);
  11136. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11137. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11138. GGML_ASSERT(nbb10 == sizeof(float));
  11139. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11140. GGML_ASSERT(nbc10 == sizeof(float));
  11141. GGML_ASSERT(neb00 == D);
  11142. GGML_ASSERT(neb01 == M);
  11143. GGML_ASSERT(neb10 == M);
  11144. GGML_ASSERT(neb11 == 1);
  11145. GGML_ASSERT(nec00 == M);
  11146. GGML_ASSERT(nec01 == D);
  11147. GGML_ASSERT(nec10 == D);
  11148. GGML_ASSERT(nec11 == 1);
  11149. // dst cannot be transposed or permuted
  11150. GGML_ASSERT(nb0 == sizeof(float));
  11151. GGML_ASSERT(nb0 <= nb1);
  11152. GGML_ASSERT(nb1 <= nb2);
  11153. GGML_ASSERT(nb2 <= nb3);
  11154. if (params->type == GGML_TASK_INIT) {
  11155. return;
  11156. }
  11157. if (params->type == GGML_TASK_FINALIZE) {
  11158. return;
  11159. }
  11160. // parallelize by a rows using ggml_vec_dot_f32
  11161. // total rows in a
  11162. const int nr = nea1*nea2*nea3;
  11163. // rows per thread
  11164. const int dr = (nr + nth - 1)/nth;
  11165. // row range for this thread
  11166. const int ir0 = dr*ith;
  11167. const int ir1 = MIN(ir0 + dr, nr);
  11168. for (int ir = ir0; ir < ir1; ++ir) {
  11169. // a indices
  11170. const int ia3 = ir/(nea2*nea1);
  11171. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11172. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11173. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11174. for (int64_t ic = 0; ic < neb01; ++ic) {
  11175. // b0 indices
  11176. const int ib03 = ia3;
  11177. const int ib02 = ia2;
  11178. const int ib01 = ic;
  11179. // S indices
  11180. const int i1 = ib01;
  11181. ggml_vec_dot_f16(nea0,
  11182. S + i1,
  11183. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11184. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11185. }
  11186. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11187. //ggml_vec_gelu_f32(neb01, S, S);
  11188. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11189. for (int64_t i = 0; i < M; i++) {
  11190. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11191. }
  11192. ggml_vec_gelu_f16(neb01, S16, S16);
  11193. {
  11194. // dst indices
  11195. const int i1 = ia1;
  11196. const int i2 = ia2;
  11197. const int i3 = ia3;
  11198. for (int64_t ic = 0; ic < nec01; ++ic) {
  11199. ggml_vec_dot_f16(neb01,
  11200. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11201. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11202. S16);
  11203. }
  11204. ggml_vec_add_f32(nec01,
  11205. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11206. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11207. (float *) c1->data);
  11208. }
  11209. }
  11210. }
  11211. static void ggml_compute_forward_flash_ff(
  11212. const struct ggml_compute_params * params,
  11213. const struct ggml_tensor * a,
  11214. const struct ggml_tensor * b0,
  11215. const struct ggml_tensor * b1,
  11216. const struct ggml_tensor * c0,
  11217. const struct ggml_tensor * c1,
  11218. struct ggml_tensor * dst) {
  11219. switch (b0->type) {
  11220. case GGML_TYPE_F16:
  11221. {
  11222. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11223. } break;
  11224. case GGML_TYPE_F32:
  11225. {
  11226. GGML_ASSERT(false); // TODO
  11227. } break;
  11228. default:
  11229. {
  11230. GGML_ASSERT(false);
  11231. } break;
  11232. }
  11233. }
  11234. // ggml_compute_forward_flash_attn_back
  11235. static void ggml_compute_forward_flash_attn_back_f32(
  11236. const struct ggml_compute_params * params,
  11237. const struct ggml_tensor * q,
  11238. const struct ggml_tensor * k,
  11239. const struct ggml_tensor * v,
  11240. const struct ggml_tensor * d,
  11241. const bool masked,
  11242. struct ggml_tensor * dst) {
  11243. int64_t t0 = ggml_perf_time_us();
  11244. UNUSED(t0);
  11245. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11246. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11247. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11248. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11249. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11250. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11251. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11252. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11253. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11254. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11255. const int ith = params->ith;
  11256. const int nth = params->nth;
  11257. const int64_t D = neq0;
  11258. const int64_t N = neq1;
  11259. const int64_t P = nek1 - N;
  11260. const int64_t M = P + N;
  11261. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11262. const int mxDM = MAX(D, Mup);
  11263. // GGML_ASSERT(ne0 == D);
  11264. // GGML_ASSERT(ne1 == N);
  11265. GGML_ASSERT(P >= 0);
  11266. GGML_ASSERT(nbq0 == sizeof(float));
  11267. GGML_ASSERT(nbk0 == sizeof(float));
  11268. GGML_ASSERT(nbv0 == sizeof(float));
  11269. GGML_ASSERT(neq0 == D);
  11270. GGML_ASSERT(nek0 == D);
  11271. GGML_ASSERT(nev1 == D);
  11272. GGML_ASSERT(ned0 == D);
  11273. GGML_ASSERT(neq1 == N);
  11274. GGML_ASSERT(nek1 == N + P);
  11275. GGML_ASSERT(nev1 == D);
  11276. GGML_ASSERT(ned1 == N);
  11277. // dst cannot be transposed or permuted
  11278. GGML_ASSERT(nb0 == sizeof(float));
  11279. GGML_ASSERT(nb0 <= nb1);
  11280. GGML_ASSERT(nb1 <= nb2);
  11281. GGML_ASSERT(nb2 <= nb3);
  11282. if (params->type == GGML_TASK_INIT) {
  11283. if (ith == 0) {
  11284. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11285. }
  11286. return;
  11287. }
  11288. if (params->type == GGML_TASK_FINALIZE) {
  11289. return;
  11290. }
  11291. // parallelize by q rows using ggml_vec_dot_f32
  11292. // total rows in q
  11293. const int nr = neq2*neq3;
  11294. // rows per thread
  11295. const int dr = (nr + nth - 1)/nth;
  11296. // row range for this thread
  11297. const int ir0 = dr*ith;
  11298. const int ir1 = MIN(ir0 + dr, nr);
  11299. const float scale = 1.0f/sqrtf(D);
  11300. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11301. for (int ir = ir0; ir < ir1; ++ir) {
  11302. // q indices
  11303. const int iq3 = ir/(neq2);
  11304. const int iq2 = ir - iq3*neq2;
  11305. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11306. // not sure about CACHE_LINE_SIZE_F32..
  11307. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11308. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11309. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11310. for (int i = M; i < Mup; ++i) {
  11311. S[i] = -INFINITY;
  11312. }
  11313. for (int64_t ic = 0; ic < nek1; ++ic) {
  11314. // k indices
  11315. const int ik3 = iq3;
  11316. const int ik2 = iq2;
  11317. const int ik1 = ic;
  11318. // S indices
  11319. const int i1 = ik1;
  11320. ggml_vec_dot_f32(neq0,
  11321. S + i1,
  11322. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11323. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11324. }
  11325. // scale
  11326. ggml_vec_scale_f32(nek1, S, scale);
  11327. if (masked) {
  11328. for (int64_t i = P; i < M; i++) {
  11329. if (i > P + iq1) {
  11330. S[i] = -INFINITY;
  11331. }
  11332. }
  11333. }
  11334. // softmax
  11335. {
  11336. float max = -INFINITY;
  11337. ggml_vec_max_f32(M, &max, S);
  11338. ggml_float sum = 0.0;
  11339. {
  11340. #ifdef GGML_SOFT_MAX_ACCELERATE
  11341. max = -max;
  11342. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11343. vvexpf(SM, SM, &Mup);
  11344. ggml_vec_sum_f32(Mup, &sum, SM);
  11345. #else
  11346. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11347. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11348. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11349. float * SR = S + i;
  11350. float * SW = SM + i;
  11351. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11352. if (SR[j] == -INFINITY) {
  11353. SW[j] = 0.0f;
  11354. } else {
  11355. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11356. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11357. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11358. sump[j] += (ggml_float)val;
  11359. SW[j] = val;
  11360. }
  11361. }
  11362. }
  11363. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11364. sum += sump[i];
  11365. }
  11366. #endif
  11367. }
  11368. assert(sum > 0.0);
  11369. sum = 1.0/sum;
  11370. ggml_vec_scale_f32(M, SM, sum);
  11371. }
  11372. // step-by-step explanation
  11373. {
  11374. // forward-process shape grads from backward process
  11375. // parallel_for iq2,iq3:
  11376. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11377. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11378. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11379. // for iq1:
  11380. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11381. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11382. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11383. // S0 = -Inf [D,1,1,1]
  11384. // ~S1[i] = dot(kcur[:D,i], qcur)
  11385. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11386. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11387. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11388. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11389. // ~S5[i] = dot(vcur[:,i], S4)
  11390. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11391. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11392. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11393. // dst backward-/ grad[dst] = d
  11394. //
  11395. // output gradients with their dependencies:
  11396. //
  11397. // grad[kcur] = grad[S1].T @ qcur
  11398. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11399. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11400. // grad[S4] = grad[S5] @ vcur
  11401. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11402. // grad[qcur] = grad[S1] @ kcur
  11403. // grad[vcur] = grad[S5].T @ S4
  11404. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11405. //
  11406. // in post-order:
  11407. //
  11408. // S1 = qcur @ kcur.T
  11409. // S2 = S1 * scale
  11410. // S3 = diag_mask_inf(S2, P)
  11411. // S4 = softmax(S3)
  11412. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11413. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11414. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11415. // grad[qcur] = grad[S1] @ kcur
  11416. // grad[kcur] = grad[S1].T @ qcur
  11417. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11418. //
  11419. // using less variables (SM=S4):
  11420. //
  11421. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11422. // SM = softmax(S)
  11423. // S = d[:D,iq1,iq2,iq3] @ vcur
  11424. // dot_SM_gradSM = dot(SM, S)
  11425. // S = SM * (S - dot(SM, S))
  11426. // S = diag_mask_zero(S, P) * scale
  11427. //
  11428. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11429. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11430. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11431. }
  11432. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11433. // S = d[:D,iq1,iq2,iq3] @ vcur
  11434. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11435. ggml_vec_set_f32(M, S, 0);
  11436. for (int64_t ic = 0; ic < D; ++ic) {
  11437. // dst indices
  11438. const int i1 = iq1;
  11439. const int i2 = iq2;
  11440. const int i3 = iq3;
  11441. ggml_vec_mad_f32(M,
  11442. S,
  11443. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11444. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11445. }
  11446. // S = SM * (S - dot(SM, S))
  11447. float dot_SM_gradSM = 0;
  11448. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11449. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11450. ggml_vec_mul_f32 (M, S, S, SM);
  11451. // S = diag_mask_zero(S, P) * scale
  11452. if (masked) {
  11453. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11454. // S[i] = 0;
  11455. // }
  11456. for (int64_t i = P; i < M; i++) {
  11457. if (i > P + iq1) {
  11458. S[i] = 0;
  11459. }
  11460. }
  11461. }
  11462. ggml_vec_scale_f32(M, S, scale);
  11463. void * grad_q = (char *) dst->data;
  11464. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11465. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11466. const size_t nbgq1 = nb0*neq0;
  11467. const size_t nbgq2 = nb0*neq0*neq1;
  11468. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11469. const size_t nbgk1 = nb0*nek0;
  11470. const size_t nbgk2 = nb0*nek0*nek1;
  11471. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11472. const size_t nbgv1 = nb0*nev0;
  11473. const size_t nbgv2 = nb0*nev0*nev1;
  11474. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11475. // S shape [M,1]
  11476. // SM shape [M,1]
  11477. // kcur shape [D,M]
  11478. // qcur shape [D,1]
  11479. // vcur shape [M,D]
  11480. //
  11481. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11482. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11483. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11484. //
  11485. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11486. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11487. for (int64_t ic = 0; ic < M; ++ic) {
  11488. // dst indices
  11489. const int i1 = iq1;
  11490. const int i2 = iq2;
  11491. const int i3 = iq3;
  11492. ggml_vec_mad_f32(D,
  11493. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11494. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11495. S[ic]);
  11496. }
  11497. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11498. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11499. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11500. for (int64_t ic = 0; ic < M; ++ic) {
  11501. // dst indices
  11502. const int i1 = iq1;
  11503. const int i2 = iq2;
  11504. const int i3 = iq3;
  11505. // ggml_vec_set_f32(D,
  11506. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11507. // 0);
  11508. ggml_vec_mad_f32(D,
  11509. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11510. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11511. S[ic]);
  11512. }
  11513. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11514. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11515. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11516. for (int64_t ic = 0; ic < D; ++ic) {
  11517. // dst indices
  11518. const int i1 = iq1;
  11519. const int i2 = iq2;
  11520. const int i3 = iq3;
  11521. // ggml_vec_set_f32(M,
  11522. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11523. // 0);
  11524. ggml_vec_mad_f32(M,
  11525. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11526. SM,
  11527. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11528. }
  11529. }
  11530. }
  11531. }
  11532. static void ggml_compute_forward_flash_attn_back(
  11533. const struct ggml_compute_params * params,
  11534. const struct ggml_tensor * q,
  11535. const struct ggml_tensor * k,
  11536. const struct ggml_tensor * v,
  11537. const struct ggml_tensor * d,
  11538. const bool masked,
  11539. struct ggml_tensor * dst) {
  11540. switch (q->type) {
  11541. case GGML_TYPE_F32:
  11542. {
  11543. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11544. } break;
  11545. default:
  11546. {
  11547. GGML_ASSERT(false);
  11548. } break;
  11549. }
  11550. }
  11551. // ggml_compute_forward_win_part
  11552. static void ggml_compute_forward_win_part_f32(
  11553. const struct ggml_compute_params * params,
  11554. const struct ggml_tensor * src0,
  11555. const struct ggml_tensor * opt0,
  11556. struct ggml_tensor * dst) {
  11557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11558. return;
  11559. }
  11560. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11561. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11562. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11563. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11564. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11565. assert(ne00 == ne0);
  11566. assert(ne3 == nep0*nep1);
  11567. // TODO: optimize / multi-thread
  11568. for (int py = 0; py < nep1; ++py) {
  11569. for (int px = 0; px < nep0; ++px) {
  11570. const int64_t i3 = py*nep0 + px;
  11571. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11572. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11573. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11574. const int64_t i02 = py*w + i2;
  11575. const int64_t i01 = px*w + i1;
  11576. const int64_t i00 = i0;
  11577. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11578. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11579. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11580. ((float *) dst->data)[i] = 0.0f;
  11581. } else {
  11582. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11583. }
  11584. }
  11585. }
  11586. }
  11587. }
  11588. }
  11589. }
  11590. static void ggml_compute_forward_win_part(
  11591. const struct ggml_compute_params * params,
  11592. const struct ggml_tensor * src0,
  11593. const struct ggml_tensor * opt0,
  11594. struct ggml_tensor * dst) {
  11595. switch (src0->type) {
  11596. case GGML_TYPE_F32:
  11597. {
  11598. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11599. } break;
  11600. default:
  11601. {
  11602. GGML_ASSERT(false);
  11603. } break;
  11604. }
  11605. }
  11606. // ggml_compute_forward_win_unpart
  11607. static void ggml_compute_forward_win_unpart_f32(
  11608. const struct ggml_compute_params * params,
  11609. const struct ggml_tensor * src0,
  11610. const struct ggml_tensor * opt0,
  11611. struct ggml_tensor * dst) {
  11612. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11613. return;
  11614. }
  11615. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11616. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11617. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11618. // padding
  11619. const int px = (w - ne1%w)%w;
  11620. //const int py = (w - ne2%w)%w;
  11621. const int npx = (px + ne1)/w;
  11622. //const int npy = (py + ne2)/w;
  11623. assert(ne0 == ne00);
  11624. // TODO: optimize / multi-thread
  11625. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11626. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11627. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11628. const int ip2 = i2/w;
  11629. const int ip1 = i1/w;
  11630. const int64_t i02 = i2%w;
  11631. const int64_t i01 = i1%w;
  11632. const int64_t i00 = i0;
  11633. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11634. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11635. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11636. }
  11637. }
  11638. }
  11639. }
  11640. static void ggml_compute_forward_win_unpart(
  11641. const struct ggml_compute_params * params,
  11642. const struct ggml_tensor * src0,
  11643. const struct ggml_tensor * opt0,
  11644. struct ggml_tensor * dst) {
  11645. switch (src0->type) {
  11646. case GGML_TYPE_F32:
  11647. {
  11648. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11649. } break;
  11650. default:
  11651. {
  11652. GGML_ASSERT(false);
  11653. } break;
  11654. }
  11655. }
  11656. // ggml_compute_forward_map_unary
  11657. static void ggml_compute_forward_map_unary_f32(
  11658. const struct ggml_compute_params * params,
  11659. const struct ggml_tensor * src0,
  11660. struct ggml_tensor * dst,
  11661. const ggml_unary_op_f32_t fun) {
  11662. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11664. return;
  11665. }
  11666. const int n = ggml_nrows(src0);
  11667. const int nc = src0->ne[0];
  11668. assert( dst->nb[0] == sizeof(float));
  11669. assert(src0->nb[0] == sizeof(float));
  11670. for (int i = 0; i < n; i++) {
  11671. fun(nc,
  11672. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11673. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11674. }
  11675. }
  11676. static void ggml_compute_forward_map_unary(
  11677. const struct ggml_compute_params * params,
  11678. const struct ggml_tensor * src0,
  11679. struct ggml_tensor * dst,
  11680. const ggml_unary_op_f32_t fun) {
  11681. switch (src0->type) {
  11682. case GGML_TYPE_F32:
  11683. {
  11684. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11685. } break;
  11686. default:
  11687. {
  11688. GGML_ASSERT(false);
  11689. } break;
  11690. }
  11691. }
  11692. // ggml_compute_forward_map_binary
  11693. static void ggml_compute_forward_map_binary_f32(
  11694. const struct ggml_compute_params * params,
  11695. const struct ggml_tensor * src0,
  11696. const struct ggml_tensor * src1,
  11697. struct ggml_tensor * dst,
  11698. const ggml_binary_op_f32_t fun) {
  11699. assert(params->ith == 0);
  11700. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11702. return;
  11703. }
  11704. const int n = ggml_nrows(src0);
  11705. const int nc = src0->ne[0];
  11706. assert( dst->nb[0] == sizeof(float));
  11707. assert(src0->nb[0] == sizeof(float));
  11708. assert(src1->nb[0] == sizeof(float));
  11709. for (int i = 0; i < n; i++) {
  11710. fun(nc,
  11711. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11712. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11713. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11714. }
  11715. }
  11716. static void ggml_compute_forward_map_binary(
  11717. const struct ggml_compute_params * params,
  11718. const struct ggml_tensor * src0,
  11719. const struct ggml_tensor * src1,
  11720. struct ggml_tensor * dst,
  11721. const ggml_binary_op_f32_t fun) {
  11722. switch (src0->type) {
  11723. case GGML_TYPE_F32:
  11724. {
  11725. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11726. } break;
  11727. default:
  11728. {
  11729. GGML_ASSERT(false);
  11730. } break;
  11731. }
  11732. }
  11733. // ggml_compute_forward_map_custom1
  11734. static void ggml_compute_forward_map_custom1_f32(
  11735. const struct ggml_compute_params * params,
  11736. const struct ggml_tensor * a,
  11737. struct ggml_tensor * dst,
  11738. const ggml_custom1_op_f32_t fun) {
  11739. assert(params->ith == 0);
  11740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11741. return;
  11742. }
  11743. fun(dst, a);
  11744. }
  11745. static void ggml_compute_forward_map_custom1(
  11746. const struct ggml_compute_params * params,
  11747. const struct ggml_tensor * a,
  11748. struct ggml_tensor * dst,
  11749. const ggml_custom1_op_f32_t fun) {
  11750. switch (a->type) {
  11751. case GGML_TYPE_F32:
  11752. {
  11753. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11754. } break;
  11755. default:
  11756. {
  11757. GGML_ASSERT(false);
  11758. } break;
  11759. }
  11760. }
  11761. // ggml_compute_forward_map_custom2
  11762. static void ggml_compute_forward_map_custom2_f32(
  11763. const struct ggml_compute_params * params,
  11764. const struct ggml_tensor * a,
  11765. const struct ggml_tensor * b,
  11766. struct ggml_tensor * dst,
  11767. const ggml_custom2_op_f32_t fun) {
  11768. assert(params->ith == 0);
  11769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11770. return;
  11771. }
  11772. fun(dst, a, b);
  11773. }
  11774. static void ggml_compute_forward_map_custom2(
  11775. const struct ggml_compute_params * params,
  11776. const struct ggml_tensor * a,
  11777. const struct ggml_tensor * b,
  11778. struct ggml_tensor * dst,
  11779. const ggml_custom2_op_f32_t fun) {
  11780. switch (a->type) {
  11781. case GGML_TYPE_F32:
  11782. {
  11783. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11784. } break;
  11785. default:
  11786. {
  11787. GGML_ASSERT(false);
  11788. } break;
  11789. }
  11790. }
  11791. // ggml_compute_forward_map_custom3
  11792. static void ggml_compute_forward_map_custom3_f32(
  11793. const struct ggml_compute_params * params,
  11794. const struct ggml_tensor * a,
  11795. const struct ggml_tensor * b,
  11796. const struct ggml_tensor * c,
  11797. struct ggml_tensor * dst,
  11798. const ggml_custom3_op_f32_t fun) {
  11799. assert(params->ith == 0);
  11800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11801. return;
  11802. }
  11803. fun(dst, a, b, c);
  11804. }
  11805. static void ggml_compute_forward_map_custom3(
  11806. const struct ggml_compute_params * params,
  11807. const struct ggml_tensor * a,
  11808. const struct ggml_tensor * b,
  11809. const struct ggml_tensor * c,
  11810. struct ggml_tensor * dst,
  11811. const ggml_custom3_op_f32_t fun) {
  11812. switch (a->type) {
  11813. case GGML_TYPE_F32:
  11814. {
  11815. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11816. } break;
  11817. default:
  11818. {
  11819. GGML_ASSERT(false);
  11820. } break;
  11821. }
  11822. }
  11823. // ggml_compute_forward_cross_entropy_loss
  11824. static void ggml_compute_forward_cross_entropy_loss_f32(
  11825. const struct ggml_compute_params * params,
  11826. const struct ggml_tensor * src0,
  11827. const struct ggml_tensor * src1,
  11828. struct ggml_tensor * dst) {
  11829. GGML_ASSERT(ggml_is_contiguous(src0));
  11830. GGML_ASSERT(ggml_is_contiguous(src1));
  11831. GGML_ASSERT(ggml_is_scalar(dst));
  11832. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11833. const int ith = params->ith;
  11834. const int nth = params->nth;
  11835. float * sums = (float *) params->wdata;
  11836. // TODO: handle transposed/permuted matrices
  11837. const int nc = src0->ne[0];
  11838. const int nr = ggml_nrows(src0);
  11839. if (params->type == GGML_TASK_INIT) {
  11840. if (ith == 0) {
  11841. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11842. }
  11843. return;
  11844. }
  11845. if (params->type == GGML_TASK_FINALIZE) {
  11846. if (ith == 0) {
  11847. float * dp = (float *) dst->data;
  11848. ggml_vec_sum_f32(nth, dp, sums);
  11849. dp[0] *= -1.0f;
  11850. }
  11851. return;
  11852. }
  11853. const double eps = 1e-9;
  11854. // rows per thread
  11855. const int dr = (nr + nth - 1)/nth;
  11856. // row range for this thread
  11857. const int ir0 = dr*ith;
  11858. const int ir1 = MIN(ir0 + dr, nr);
  11859. for (int i1 = ir0; i1 < ir1; i1++) {
  11860. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11861. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11862. float * st = (float *) params->wdata + nth + ith*nc;
  11863. #ifndef NDEBUG
  11864. for (int i = 0; i < nc; ++i) {
  11865. //printf("p[%d] = %f\n", i, p[i]);
  11866. assert(!isnan(s0[i]));
  11867. assert(!isnan(s1[i]));
  11868. }
  11869. #endif
  11870. // soft_max
  11871. ggml_float sum = 0.0;
  11872. {
  11873. float max = -INFINITY;
  11874. ggml_vec_max_f32(nc, &max, s0);
  11875. uint16_t scvt;
  11876. for (int i = 0; i < nc; i++) {
  11877. if (s0[i] == -INFINITY) {
  11878. st[i] = 0.0f;
  11879. } else {
  11880. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11881. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11882. memcpy(&scvt, &s, sizeof(scvt));
  11883. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11884. sum += (ggml_float)val;
  11885. st[i] = val;
  11886. }
  11887. }
  11888. assert(sum > 0.0);
  11889. // sum = 1.0/sum;
  11890. }
  11891. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11892. sum = (1.0 - eps) / sum;
  11893. ggml_vec_scale_f32(nc, st, sum);
  11894. ggml_vec_add1_f32(nc, st, st, eps);
  11895. ggml_vec_log_f32(nc, st, st);
  11896. ggml_vec_mul_f32(nc, st, st, s1);
  11897. ggml_vec_sum_f32(nc, sums + ith, st);
  11898. #ifndef NDEBUG
  11899. for (int i = 0; i < nc; ++i) {
  11900. assert(!isnan(st[i]));
  11901. assert(!isinf(st[i]));
  11902. }
  11903. #endif
  11904. }
  11905. }
  11906. static void ggml_compute_forward_cross_entropy_loss(
  11907. const struct ggml_compute_params * params,
  11908. const struct ggml_tensor * src0,
  11909. const struct ggml_tensor * src1,
  11910. struct ggml_tensor * dst) {
  11911. switch (src0->type) {
  11912. case GGML_TYPE_F32:
  11913. {
  11914. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11915. } break;
  11916. default:
  11917. {
  11918. GGML_ASSERT(false);
  11919. } break;
  11920. }
  11921. }
  11922. // ggml_compute_forward_cross_entropy_loss_back
  11923. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11924. const struct ggml_compute_params * params,
  11925. const struct ggml_tensor * src0,
  11926. const struct ggml_tensor * src1,
  11927. const struct ggml_tensor * opt0,
  11928. struct ggml_tensor * dst) {
  11929. GGML_ASSERT(ggml_is_contiguous(dst));
  11930. GGML_ASSERT(ggml_is_contiguous(src0));
  11931. GGML_ASSERT(ggml_is_contiguous(src1));
  11932. GGML_ASSERT(ggml_is_contiguous(opt0));
  11933. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11934. const int64_t ith = params->ith;
  11935. const int64_t nth = params->nth;
  11936. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11937. return;
  11938. }
  11939. const float eps = 1e-9f;
  11940. // TODO: handle transposed/permuted matrices
  11941. const int64_t nc = src0->ne[0];
  11942. const int64_t nr = ggml_nrows(src0);
  11943. // rows per thread
  11944. const int64_t dr = (nr + nth - 1)/nth;
  11945. // row range for this thread
  11946. const int64_t ir0 = dr*ith;
  11947. const int64_t ir1 = MIN(ir0 + dr, nr);
  11948. float * d = (float *) opt0->data;
  11949. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11950. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11951. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11952. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11953. float * sm = (float *) params->wdata + ith*nc;
  11954. #ifndef NDEBUG
  11955. for (int i = 0; i < nc; ++i) {
  11956. //printf("p[%d] = %f\n", i, p[i]);
  11957. assert(!isnan(s0[i]));
  11958. assert(!isnan(s1[i]));
  11959. }
  11960. #endif
  11961. // step by step explanation:
  11962. {
  11963. //float * sums = (float *) params->wdata;
  11964. // forward pass with annotated gradients from backward pass
  11965. // (built by going in reverse operation order, adding to gradients of current operation args)
  11966. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11967. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11968. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11969. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11970. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11971. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11972. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11973. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11974. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11975. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11976. // postorder:
  11977. // grad[st1] := softmax(s0)
  11978. // grad[st1] := grad[st1]*(1.0 - eps)
  11979. // grad[st1] := grad[st1] + eps
  11980. // grad[st1] := s1 / grad[st1]
  11981. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11982. // src0 gradients by going through softmax_back
  11983. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11984. // from softmax_back:
  11985. // dxk = yk * (dyk - dot(y, dy))
  11986. // dot_y_dy := dot(y, dy)
  11987. // dx := dy
  11988. // dx := dx - dot_y_dy
  11989. // dx := dx * y
  11990. // postorder:
  11991. // dot_st1_dst1 := dot(st1, grad[st1])
  11992. // grad[s0] := grad[st1]
  11993. // grad[s0] := grad[s0] - dot_st1_dst1
  11994. // grad[s0] := grad[s0] * st1
  11995. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11996. // sm := softmax(s0)
  11997. // grad[s0] := sm*(1.0 - eps)
  11998. // grad[s0] := grad[s0] + eps
  11999. // grad[s0] := s1 / grad[s0]
  12000. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12001. // dot_st1_dst1 := dot(sm, grad[s0])
  12002. // grad[s0] := grad[s0] - dot_st1_dst1
  12003. // grad[s0] := grad[s0] * sm
  12004. }
  12005. // soft_max
  12006. ggml_float sum = 0.0;
  12007. {
  12008. float max = -INFINITY;
  12009. ggml_vec_max_f32(nc, &max, s0);
  12010. uint16_t scvt;
  12011. for (int i = 0; i < nc; i++) {
  12012. if (s0[i] == -INFINITY) {
  12013. sm[i] = 0.0f;
  12014. } else {
  12015. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12016. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12017. memcpy(&scvt, &s, sizeof(scvt));
  12018. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12019. sum += (ggml_float)val;
  12020. sm[i] = val;
  12021. }
  12022. }
  12023. assert(sum > 0.0);
  12024. sum = 1.0/sum;
  12025. }
  12026. float dot_st1_dst1 = 0;
  12027. ggml_vec_scale_f32(nc, sm, sum);
  12028. ggml_vec_cpy_f32 (nc, ds0, sm);
  12029. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12030. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12031. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12032. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12033. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12034. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12035. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12036. #ifndef NDEBUG
  12037. for (int i = 0; i < nc; ++i) {
  12038. assert(!isnan(sm[i]));
  12039. assert(!isinf(sm[i]));
  12040. assert(!isnan(ds0[i]));
  12041. assert(!isinf(ds0[i]));
  12042. }
  12043. #endif
  12044. }
  12045. }
  12046. static void ggml_compute_forward_cross_entropy_loss_back(
  12047. const struct ggml_compute_params * params,
  12048. const struct ggml_tensor * src0,
  12049. const struct ggml_tensor * src1,
  12050. const struct ggml_tensor * opt0,
  12051. struct ggml_tensor * dst) {
  12052. switch (src0->type) {
  12053. case GGML_TYPE_F32:
  12054. {
  12055. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12056. } break;
  12057. default:
  12058. {
  12059. GGML_ASSERT(false);
  12060. } break;
  12061. }
  12062. }
  12063. /////////////////////////////////
  12064. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12065. GGML_ASSERT(params);
  12066. #ifdef GGML_USE_CUBLAS
  12067. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12068. if (skip_cpu) {
  12069. return;
  12070. }
  12071. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12072. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12073. #endif // GGML_USE_CUBLAS
  12074. switch (tensor->op) {
  12075. case GGML_OP_DUP:
  12076. {
  12077. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12078. } break;
  12079. case GGML_OP_ADD:
  12080. {
  12081. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12082. } break;
  12083. case GGML_OP_ADD1:
  12084. {
  12085. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12086. } break;
  12087. case GGML_OP_ACC:
  12088. {
  12089. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12090. } break;
  12091. case GGML_OP_SUB:
  12092. {
  12093. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12094. } break;
  12095. case GGML_OP_MUL:
  12096. {
  12097. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12098. } break;
  12099. case GGML_OP_DIV:
  12100. {
  12101. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12102. } break;
  12103. case GGML_OP_SQR:
  12104. {
  12105. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12106. } break;
  12107. case GGML_OP_SQRT:
  12108. {
  12109. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12110. } break;
  12111. case GGML_OP_LOG:
  12112. {
  12113. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12114. } break;
  12115. case GGML_OP_SUM:
  12116. {
  12117. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12118. } break;
  12119. case GGML_OP_SUM_ROWS:
  12120. {
  12121. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12122. } break;
  12123. case GGML_OP_MEAN:
  12124. {
  12125. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12126. } break;
  12127. case GGML_OP_ARGMAX:
  12128. {
  12129. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12130. } break;
  12131. case GGML_OP_REPEAT:
  12132. {
  12133. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12134. } break;
  12135. case GGML_OP_REPEAT_BACK:
  12136. {
  12137. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12138. } break;
  12139. case GGML_OP_ABS:
  12140. {
  12141. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  12142. } break;
  12143. case GGML_OP_SGN:
  12144. {
  12145. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  12146. } break;
  12147. case GGML_OP_NEG:
  12148. {
  12149. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  12150. } break;
  12151. case GGML_OP_STEP:
  12152. {
  12153. ggml_compute_forward_step(params, tensor->src[0], tensor);
  12154. } break;
  12155. case GGML_OP_TANH:
  12156. {
  12157. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  12158. } break;
  12159. case GGML_OP_ELU:
  12160. {
  12161. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  12162. } break;
  12163. case GGML_OP_RELU:
  12164. {
  12165. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  12166. } break;
  12167. case GGML_OP_GELU:
  12168. {
  12169. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  12170. } break;
  12171. case GGML_OP_GELU_QUICK:
  12172. {
  12173. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  12174. } break;
  12175. case GGML_OP_SILU:
  12176. {
  12177. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  12178. } break;
  12179. case GGML_OP_SILU_BACK:
  12180. {
  12181. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12182. } break;
  12183. case GGML_OP_NORM:
  12184. {
  12185. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12186. } break;
  12187. case GGML_OP_RMS_NORM:
  12188. {
  12189. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12190. } break;
  12191. case GGML_OP_RMS_NORM_BACK:
  12192. {
  12193. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12194. } break;
  12195. case GGML_OP_MUL_MAT:
  12196. {
  12197. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12198. } break;
  12199. case GGML_OP_OUT_PROD:
  12200. {
  12201. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12202. } break;
  12203. case GGML_OP_SCALE:
  12204. {
  12205. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12206. } break;
  12207. case GGML_OP_SET:
  12208. {
  12209. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12210. } break;
  12211. case GGML_OP_CPY:
  12212. {
  12213. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12214. } break;
  12215. case GGML_OP_CONT:
  12216. {
  12217. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12218. } break;
  12219. case GGML_OP_RESHAPE:
  12220. {
  12221. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12222. } break;
  12223. case GGML_OP_VIEW:
  12224. {
  12225. ggml_compute_forward_view(params, tensor->src[0]);
  12226. } break;
  12227. case GGML_OP_PERMUTE:
  12228. {
  12229. ggml_compute_forward_permute(params, tensor->src[0]);
  12230. } break;
  12231. case GGML_OP_TRANSPOSE:
  12232. {
  12233. ggml_compute_forward_transpose(params, tensor->src[0]);
  12234. } break;
  12235. case GGML_OP_GET_ROWS:
  12236. {
  12237. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12238. } break;
  12239. case GGML_OP_GET_ROWS_BACK:
  12240. {
  12241. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12242. } break;
  12243. case GGML_OP_DIAG:
  12244. {
  12245. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12246. } break;
  12247. case GGML_OP_DIAG_MASK_INF:
  12248. {
  12249. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
  12250. } break;
  12251. case GGML_OP_DIAG_MASK_ZERO:
  12252. {
  12253. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
  12254. } break;
  12255. case GGML_OP_SOFT_MAX:
  12256. {
  12257. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12258. } break;
  12259. case GGML_OP_SOFT_MAX_BACK:
  12260. {
  12261. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12262. } break;
  12263. case GGML_OP_ROPE:
  12264. {
  12265. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12266. } break;
  12267. case GGML_OP_ROPE_BACK:
  12268. {
  12269. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12270. } break;
  12271. case GGML_OP_ALIBI:
  12272. {
  12273. ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
  12274. } break;
  12275. case GGML_OP_CLAMP:
  12276. {
  12277. ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
  12278. } break;
  12279. case GGML_OP_CONV_1D:
  12280. {
  12281. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12282. } break;
  12283. case GGML_OP_CONV_2D:
  12284. {
  12285. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12286. } break;
  12287. case GGML_OP_POOL_1D:
  12288. {
  12289. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor->src[1], tensor);
  12290. } break;
  12291. case GGML_OP_POOL_2D:
  12292. {
  12293. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor->src[1], tensor);
  12294. } break;
  12295. case GGML_OP_FLASH_ATTN:
  12296. {
  12297. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12298. GGML_ASSERT(t == 0 || t == 1);
  12299. const bool masked = t != 0;
  12300. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12301. } break;
  12302. case GGML_OP_FLASH_FF:
  12303. {
  12304. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12305. } break;
  12306. case GGML_OP_FLASH_ATTN_BACK:
  12307. {
  12308. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12309. GGML_ASSERT(t == 0 || t == 1);
  12310. bool masked = t != 0;
  12311. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12312. } break;
  12313. case GGML_OP_WIN_PART:
  12314. {
  12315. ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
  12316. } break;
  12317. case GGML_OP_WIN_UNPART:
  12318. {
  12319. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
  12320. } break;
  12321. case GGML_OP_MAP_UNARY:
  12322. {
  12323. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
  12324. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12325. }
  12326. break;
  12327. case GGML_OP_MAP_BINARY:
  12328. {
  12329. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
  12330. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12331. }
  12332. break;
  12333. case GGML_OP_MAP_CUSTOM1:
  12334. {
  12335. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
  12336. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12337. }
  12338. break;
  12339. case GGML_OP_MAP_CUSTOM2:
  12340. {
  12341. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
  12342. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12343. }
  12344. break;
  12345. case GGML_OP_MAP_CUSTOM3:
  12346. {
  12347. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
  12348. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
  12349. }
  12350. break;
  12351. case GGML_OP_CROSS_ENTROPY_LOSS:
  12352. {
  12353. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12354. }
  12355. break;
  12356. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12357. {
  12358. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12359. }
  12360. break;
  12361. case GGML_OP_NONE:
  12362. {
  12363. // nop
  12364. } break;
  12365. case GGML_OP_COUNT:
  12366. {
  12367. GGML_ASSERT(false);
  12368. } break;
  12369. }
  12370. }
  12371. ////////////////////////////////////////////////////////////////////////////////
  12372. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12373. struct ggml_tensor * src0 = tensor->src[0];
  12374. struct ggml_tensor * src1 = tensor->src[1];
  12375. switch (tensor->op) {
  12376. case GGML_OP_DUP:
  12377. {
  12378. if (src0->grad) {
  12379. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12380. }
  12381. } break;
  12382. case GGML_OP_ADD:
  12383. {
  12384. if (src0->grad) {
  12385. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12386. }
  12387. if (src1->grad) {
  12388. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12389. }
  12390. } break;
  12391. case GGML_OP_ADD1:
  12392. {
  12393. if (src0->grad) {
  12394. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12395. }
  12396. if (src1->grad) {
  12397. src1->grad = ggml_add_impl(ctx,
  12398. src1->grad,
  12399. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12400. inplace);
  12401. }
  12402. } break;
  12403. case GGML_OP_ACC:
  12404. {
  12405. if (src0->grad) {
  12406. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12407. }
  12408. if (src1->grad) {
  12409. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12410. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12411. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12412. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12413. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12414. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12415. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12416. tensor->grad,
  12417. src1->grad->ne[0],
  12418. src1->grad->ne[1],
  12419. src1->grad->ne[2],
  12420. src1->grad->ne[3],
  12421. nb1, nb2, nb3, offset);
  12422. src1->grad =
  12423. ggml_add_impl(ctx,
  12424. src1->grad,
  12425. ggml_reshape(ctx,
  12426. ggml_cont(ctx, tensor_grad_view),
  12427. src1->grad),
  12428. inplace);
  12429. }
  12430. } break;
  12431. case GGML_OP_SUB:
  12432. {
  12433. if (src0->grad) {
  12434. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12435. }
  12436. if (src1->grad) {
  12437. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12438. }
  12439. } break;
  12440. case GGML_OP_MUL:
  12441. {
  12442. if (src0->grad) {
  12443. src0->grad =
  12444. ggml_add_impl(ctx,
  12445. src0->grad,
  12446. ggml_mul(ctx, src1, tensor->grad),
  12447. inplace);
  12448. }
  12449. if (src1->grad) {
  12450. src1->grad =
  12451. ggml_add_impl(ctx,
  12452. src1->grad,
  12453. ggml_mul(ctx, src0, tensor->grad),
  12454. inplace);
  12455. }
  12456. } break;
  12457. case GGML_OP_DIV:
  12458. {
  12459. if (src0->grad) {
  12460. src0->grad =
  12461. ggml_add_impl(ctx,
  12462. src0->grad,
  12463. ggml_div(ctx, tensor->grad, src1),
  12464. inplace);
  12465. }
  12466. if (src1->grad) {
  12467. src1->grad =
  12468. ggml_sub_impl(ctx,
  12469. src1->grad,
  12470. ggml_mul(ctx,
  12471. tensor->grad,
  12472. ggml_div(ctx, tensor, src1)),
  12473. inplace);
  12474. }
  12475. } break;
  12476. case GGML_OP_SQR:
  12477. {
  12478. if (src0->grad) {
  12479. src0->grad =
  12480. ggml_add_impl(ctx,
  12481. src0->grad,
  12482. ggml_scale(ctx,
  12483. ggml_mul(ctx, src0, tensor->grad),
  12484. ggml_new_f32(ctx, 2.0f)),
  12485. inplace);
  12486. }
  12487. } break;
  12488. case GGML_OP_SQRT:
  12489. {
  12490. if (src0->grad) {
  12491. src0->grad =
  12492. ggml_add_impl(ctx,
  12493. src0->grad,
  12494. ggml_scale(ctx,
  12495. ggml_div(ctx,
  12496. tensor->grad,
  12497. tensor),
  12498. ggml_new_f32(ctx, 0.5f)),
  12499. inplace);
  12500. }
  12501. } break;
  12502. case GGML_OP_LOG:
  12503. {
  12504. if (src0->grad) {
  12505. src0->grad =
  12506. ggml_add_impl(ctx,
  12507. src0->grad,
  12508. ggml_div(ctx,
  12509. tensor->grad,
  12510. src0),
  12511. inplace);
  12512. }
  12513. } break;
  12514. case GGML_OP_SUM:
  12515. {
  12516. if (src0->grad) {
  12517. src0->grad =
  12518. ggml_add1_impl(ctx,
  12519. src0->grad,
  12520. tensor->grad,
  12521. inplace);
  12522. }
  12523. } break;
  12524. case GGML_OP_SUM_ROWS:
  12525. {
  12526. if (src0->grad) {
  12527. src0->grad =
  12528. ggml_add_impl(ctx,
  12529. src0->grad,
  12530. ggml_repeat(ctx,
  12531. tensor->grad,
  12532. src0->grad),
  12533. inplace);
  12534. }
  12535. } break;
  12536. case GGML_OP_MEAN:
  12537. case GGML_OP_ARGMAX:
  12538. {
  12539. GGML_ASSERT(false); // TODO: implement
  12540. } break;
  12541. case GGML_OP_REPEAT:
  12542. {
  12543. // necessary for llama
  12544. if (src0->grad) {
  12545. src0->grad = ggml_add_impl(ctx,
  12546. src0->grad,
  12547. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12548. inplace);
  12549. }
  12550. } break;
  12551. case GGML_OP_REPEAT_BACK:
  12552. {
  12553. if (src0->grad) {
  12554. // TODO: test this
  12555. src0->grad = ggml_add_impl(ctx,
  12556. src0->grad,
  12557. ggml_repeat(ctx, tensor->grad, src0->grad),
  12558. inplace);
  12559. }
  12560. } break;
  12561. case GGML_OP_ABS:
  12562. {
  12563. if (src0->grad) {
  12564. src0->grad =
  12565. ggml_add_impl(ctx,
  12566. src0->grad,
  12567. ggml_mul(ctx,
  12568. ggml_sgn(ctx, src0),
  12569. tensor->grad),
  12570. inplace);
  12571. }
  12572. } break;
  12573. case GGML_OP_SGN:
  12574. {
  12575. if (src0->grad) {
  12576. // noop
  12577. }
  12578. } break;
  12579. case GGML_OP_NEG:
  12580. {
  12581. if (src0->grad) {
  12582. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12583. }
  12584. } break;
  12585. case GGML_OP_STEP:
  12586. {
  12587. if (src0->grad) {
  12588. // noop
  12589. }
  12590. } break;
  12591. case GGML_OP_TANH:
  12592. {
  12593. GGML_ASSERT(false); // TODO: not implemented
  12594. } break;
  12595. case GGML_OP_ELU:
  12596. {
  12597. GGML_ASSERT(false); // TODO: not implemented
  12598. } break;
  12599. case GGML_OP_RELU:
  12600. {
  12601. if (src0->grad) {
  12602. src0->grad = ggml_sub_impl(ctx,
  12603. src0->grad,
  12604. ggml_mul(ctx,
  12605. ggml_step(ctx, src0),
  12606. tensor->grad),
  12607. inplace);
  12608. }
  12609. } break;
  12610. case GGML_OP_GELU:
  12611. {
  12612. GGML_ASSERT(false); // TODO: not implemented
  12613. } break;
  12614. case GGML_OP_GELU_QUICK:
  12615. {
  12616. GGML_ASSERT(false); // TODO: not implemented
  12617. } break;
  12618. case GGML_OP_SILU:
  12619. {
  12620. // necessary for llama
  12621. if (src0->grad) {
  12622. src0->grad = ggml_add_impl(ctx,
  12623. src0->grad,
  12624. ggml_silu_back(ctx, src0, tensor->grad),
  12625. inplace);
  12626. }
  12627. } break;
  12628. case GGML_OP_SILU_BACK:
  12629. {
  12630. GGML_ASSERT(false); // TODO: not implemented
  12631. } break;
  12632. case GGML_OP_NORM:
  12633. {
  12634. GGML_ASSERT(false); // TODO: not implemented
  12635. } break;
  12636. case GGML_OP_RMS_NORM:
  12637. {
  12638. // necessary for llama
  12639. if (src0->grad) {
  12640. src0->grad = ggml_add_impl(ctx,
  12641. src0->grad,
  12642. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12643. inplace);
  12644. }
  12645. } break;
  12646. case GGML_OP_RMS_NORM_BACK:
  12647. {
  12648. GGML_ASSERT(false); // TODO: not implemented
  12649. } break;
  12650. case GGML_OP_MUL_MAT:
  12651. {
  12652. // https://cs231n.github.io/optimization-2/#staged
  12653. // # forward pass
  12654. // s0 = np.random.randn(5, 10)
  12655. // s1 = np.random.randn(10, 3)
  12656. // t = s0.dot(s1)
  12657. // # now suppose we had the gradient on t from above in the circuit
  12658. // dt = np.random.randn(*t.shape) # same shape as t
  12659. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12660. // ds1 = t.T.dot(dt)
  12661. // tensor.shape [m,p]
  12662. // src0.shape [n,m]
  12663. // src1.shape [n,p]
  12664. // necessary for llama
  12665. if (src0->grad) {
  12666. src0->grad =
  12667. ggml_add_impl(ctx,
  12668. src0->grad,
  12669. ggml_out_prod(ctx, // [n,m]
  12670. src1, // [n,p]
  12671. tensor->grad), // [m,p]
  12672. inplace);
  12673. }
  12674. if (src1->grad) {
  12675. src1->grad =
  12676. ggml_add_impl(ctx,
  12677. src1->grad,
  12678. // ggml_mul_mat(ctx, // [n,p]
  12679. // ggml_cont(ctx, // [m,n]
  12680. // ggml_transpose(ctx, src0)), // [m,n]
  12681. // tensor->grad), // [m,p]
  12682. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12683. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12684. // // and then use ggml_out_prod
  12685. ggml_out_prod(ctx, // [n,p]
  12686. src0, // [n,m]
  12687. ggml_transpose(ctx, // [p,m]
  12688. tensor->grad)), // [m,p]
  12689. inplace);
  12690. }
  12691. } break;
  12692. case GGML_OP_OUT_PROD:
  12693. {
  12694. GGML_ASSERT(false); // TODO: not implemented
  12695. } break;
  12696. case GGML_OP_SCALE:
  12697. {
  12698. // necessary for llama
  12699. if (src0->grad) {
  12700. src0->grad =
  12701. ggml_add_impl(ctx,
  12702. src0->grad,
  12703. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12704. inplace);
  12705. }
  12706. if (src1->grad) {
  12707. src1->grad =
  12708. ggml_add_impl(ctx,
  12709. src1->grad,
  12710. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12711. inplace);
  12712. }
  12713. } break;
  12714. case GGML_OP_SET:
  12715. {
  12716. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12717. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12718. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12719. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12720. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12721. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12722. struct ggml_tensor * tensor_grad_view = NULL;
  12723. if (src0->grad || src1->grad) {
  12724. GGML_ASSERT(src0->type == tensor->type);
  12725. GGML_ASSERT(tensor->grad->type == tensor->type);
  12726. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12727. tensor_grad_view = ggml_view_4d(ctx,
  12728. tensor->grad,
  12729. src1->grad->ne[0],
  12730. src1->grad->ne[1],
  12731. src1->grad->ne[2],
  12732. src1->grad->ne[3],
  12733. nb1, nb2, nb3, offset);
  12734. }
  12735. if (src0->grad) {
  12736. src0->grad = ggml_add_impl(ctx,
  12737. src0->grad,
  12738. ggml_acc_impl(ctx,
  12739. tensor->grad,
  12740. ggml_neg(ctx, tensor_grad_view),
  12741. nb1, nb2, nb3, offset, false),
  12742. inplace);
  12743. }
  12744. if (src1->grad) {
  12745. src1->grad =
  12746. ggml_add_impl(ctx,
  12747. src1->grad,
  12748. ggml_reshape(ctx,
  12749. ggml_cont(ctx, tensor_grad_view),
  12750. src1->grad),
  12751. inplace);
  12752. }
  12753. } break;
  12754. case GGML_OP_CPY:
  12755. {
  12756. // necessary for llama
  12757. // cpy overwrites value of src1 by src0 and returns view(src1)
  12758. // the overwriting is mathematically equivalent to:
  12759. // tensor = src0 * 1 + src1 * 0
  12760. if (src0->grad) {
  12761. // dsrc0 = dtensor * 1
  12762. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12763. }
  12764. if (src1->grad) {
  12765. // dsrc1 = dtensor * 0 -> noop
  12766. }
  12767. } break;
  12768. case GGML_OP_CONT:
  12769. {
  12770. // same as cpy
  12771. if (src0->grad) {
  12772. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12773. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12774. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12775. }
  12776. } break;
  12777. case GGML_OP_RESHAPE:
  12778. {
  12779. // necessary for llama
  12780. if (src0->grad) {
  12781. src0->grad =
  12782. ggml_add_impl(ctx, src0->grad,
  12783. ggml_reshape(ctx, tensor->grad, src0->grad),
  12784. inplace);
  12785. }
  12786. } break;
  12787. case GGML_OP_VIEW:
  12788. {
  12789. // necessary for llama
  12790. if (src0->grad) {
  12791. size_t offset;
  12792. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
  12793. memcpy(&offset, tensor->src[2]->data, sizeof(offset));
  12794. size_t nb1 = tensor->nb[1];
  12795. size_t nb2 = tensor->nb[2];
  12796. size_t nb3 = tensor->nb[3];
  12797. if (src0->type != src0->grad->type) {
  12798. // gradient is typically F32, but src0 could be other type
  12799. size_t ng = ggml_element_size(src0->grad);
  12800. size_t n0 = ggml_element_size(src0);
  12801. GGML_ASSERT(offset % n0 == 0);
  12802. GGML_ASSERT(nb1 % n0 == 0);
  12803. GGML_ASSERT(nb2 % n0 == 0);
  12804. GGML_ASSERT(nb3 % n0 == 0);
  12805. offset = (offset / n0) * ng;
  12806. nb1 = (nb1 / n0) * ng;
  12807. nb2 = (nb2 / n0) * ng;
  12808. nb3 = (nb3 / n0) * ng;
  12809. }
  12810. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12811. }
  12812. } break;
  12813. case GGML_OP_PERMUTE:
  12814. {
  12815. // necessary for llama
  12816. if (src0->grad) {
  12817. int32_t * axes = (int32_t *) tensor->src[2]->data;
  12818. int axis0 = axes[0] & 0x3;
  12819. int axis1 = axes[1] & 0x3;
  12820. int axis2 = axes[2] & 0x3;
  12821. int axis3 = axes[3] & 0x3;
  12822. int axes_backward[4] = {0,0,0,0};
  12823. axes_backward[axis0] = 0;
  12824. axes_backward[axis1] = 1;
  12825. axes_backward[axis2] = 2;
  12826. axes_backward[axis3] = 3;
  12827. src0->grad =
  12828. ggml_add_impl(ctx, src0->grad,
  12829. ggml_permute(ctx,
  12830. tensor->grad,
  12831. axes_backward[0],
  12832. axes_backward[1],
  12833. axes_backward[2],
  12834. axes_backward[3]),
  12835. inplace);
  12836. }
  12837. } break;
  12838. case GGML_OP_TRANSPOSE:
  12839. {
  12840. // necessary for llama
  12841. if (src0->grad) {
  12842. src0->grad =
  12843. ggml_add_impl(ctx, src0->grad,
  12844. ggml_transpose(ctx, tensor->grad),
  12845. inplace);
  12846. }
  12847. } break;
  12848. case GGML_OP_GET_ROWS:
  12849. {
  12850. // necessary for llama (only for tokenizer)
  12851. if (src0->grad) {
  12852. src0->grad =
  12853. ggml_add_impl(ctx, src0->grad,
  12854. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12855. inplace);
  12856. }
  12857. if (src1->grad) {
  12858. // noop
  12859. }
  12860. } break;
  12861. case GGML_OP_GET_ROWS_BACK:
  12862. {
  12863. GGML_ASSERT(false); // TODO: not implemented
  12864. } break;
  12865. case GGML_OP_DIAG:
  12866. {
  12867. GGML_ASSERT(false); // TODO: not implemented
  12868. } break;
  12869. case GGML_OP_DIAG_MASK_INF:
  12870. {
  12871. // necessary for llama
  12872. if (src0->grad) {
  12873. assert(src1->type == GGML_TYPE_I32);
  12874. assert(ggml_nelements(src1) == 2);
  12875. const int n_past = ((int32_t *) src1->data)[0];
  12876. src0->grad =
  12877. ggml_add_impl(ctx, src0->grad,
  12878. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12879. inplace);
  12880. }
  12881. if (src1->grad) {
  12882. // noop
  12883. }
  12884. } break;
  12885. case GGML_OP_DIAG_MASK_ZERO:
  12886. {
  12887. // necessary for llama
  12888. if (src0->grad) {
  12889. assert(src1->type == GGML_TYPE_I32);
  12890. assert(ggml_nelements(src1) == 2);
  12891. const int n_past = ((int32_t *) src1->data)[0];
  12892. src0->grad =
  12893. ggml_add_impl(ctx, src0->grad,
  12894. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12895. inplace);
  12896. }
  12897. if (src1->grad) {
  12898. // noop
  12899. }
  12900. } break;
  12901. case GGML_OP_SOFT_MAX:
  12902. {
  12903. // necessary for llama
  12904. if (src0->grad) {
  12905. src0->grad =
  12906. ggml_add_impl(ctx, src0->grad,
  12907. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12908. inplace);
  12909. }
  12910. } break;
  12911. case GGML_OP_SOFT_MAX_BACK:
  12912. {
  12913. GGML_ASSERT(false); // TODO: not implemented
  12914. } break;
  12915. case GGML_OP_ROPE:
  12916. {
  12917. // necessary for llama
  12918. if (src0->grad) {
  12919. assert(src1->type == GGML_TYPE_I32);
  12920. assert(ggml_nelements(src1) == 6);
  12921. const int n_past = ((int32_t *) src1->data)[0];
  12922. const int n_dims = ((int32_t *) src1->data)[1];
  12923. const int mode = ((int32_t *) src1->data)[2];
  12924. src0->grad = ggml_add_impl(ctx,
  12925. src0->grad,
  12926. ggml_rope_back(ctx,
  12927. tensor->grad,
  12928. n_past,
  12929. n_dims,
  12930. mode),
  12931. inplace);
  12932. }
  12933. if (src1->grad) {
  12934. // noop
  12935. }
  12936. } break;
  12937. case GGML_OP_ROPE_BACK:
  12938. {
  12939. if (src0->grad) {
  12940. assert(src1->type == GGML_TYPE_I32);
  12941. assert(ggml_nelements(src1) == 3);
  12942. const int n_past = ((int32_t *) src1->data)[0];
  12943. const int n_dims = ((int32_t *) src1->data)[1];
  12944. const int mode = ((int32_t *) src1->data)[2];
  12945. const int n_ctx = ((int32_t *) src1->data)[3];
  12946. src0->grad = ggml_add_impl(ctx,
  12947. src0->grad,
  12948. ggml_rope(ctx,
  12949. tensor->grad,
  12950. n_past,
  12951. n_dims,
  12952. mode,
  12953. n_ctx),
  12954. inplace);
  12955. }
  12956. if (src1->grad) {
  12957. // noop
  12958. }
  12959. } break;
  12960. case GGML_OP_ALIBI:
  12961. {
  12962. GGML_ASSERT(false); // TODO: not implemented
  12963. } break;
  12964. case GGML_OP_CLAMP:
  12965. {
  12966. GGML_ASSERT(false); // TODO: not implemented
  12967. } break;
  12968. case GGML_OP_CONV_1D:
  12969. {
  12970. GGML_ASSERT(false); // TODO: not implemented
  12971. } break;
  12972. case GGML_OP_CONV_2D:
  12973. {
  12974. GGML_ASSERT(false); // TODO: not implemented
  12975. } break;
  12976. case GGML_OP_POOL_1D:
  12977. {
  12978. GGML_ASSERT(false); // TODO: not implemented
  12979. } break;
  12980. case GGML_OP_POOL_2D:
  12981. {
  12982. GGML_ASSERT(false); // TODO: not implemented
  12983. } break;
  12984. case GGML_OP_FLASH_ATTN:
  12985. {
  12986. struct ggml_tensor * flash_grad = NULL;
  12987. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12988. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12989. GGML_ASSERT(t == 0 || t == 1);
  12990. bool masked = t != 0;
  12991. flash_grad =
  12992. ggml_flash_attn_back(ctx,
  12993. src0,
  12994. src1,
  12995. tensor->src[2],
  12996. tensor->grad,
  12997. masked);
  12998. }
  12999. if (src0->grad) {
  13000. struct ggml_tensor * grad_q = NULL;
  13001. const size_t nb0 = flash_grad->nb[0];
  13002. const size_t offset = 0;
  13003. switch(src0->n_dims) {
  13004. case 2:
  13005. {
  13006. grad_q = ggml_view_2d(ctx,
  13007. flash_grad,
  13008. src0->ne[0],
  13009. src0->ne[1],
  13010. nb0*src0->ne[0],
  13011. offset);
  13012. } break;
  13013. case 3:
  13014. {
  13015. grad_q = ggml_view_3d(ctx,
  13016. flash_grad,
  13017. src0->ne[0],
  13018. src0->ne[1],
  13019. src0->ne[2],
  13020. nb0*src0->ne[0],
  13021. nb0*src0->ne[0]*src0->ne[1],
  13022. offset);
  13023. } break;
  13024. case 4:
  13025. {
  13026. grad_q = ggml_view_4d(ctx,
  13027. flash_grad,
  13028. src0->ne[0],
  13029. src0->ne[1],
  13030. src0->ne[2],
  13031. src0->ne[3],
  13032. nb0*src0->ne[0],
  13033. nb0*src0->ne[0]*src0->ne[1],
  13034. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13035. offset);
  13036. } break;
  13037. }
  13038. src0->grad = ggml_add_impl(ctx,
  13039. src0->grad,
  13040. grad_q,
  13041. inplace);
  13042. }
  13043. if (src1->grad) {
  13044. struct ggml_tensor * grad_k = NULL;
  13045. const size_t nb0 = flash_grad->nb[0];
  13046. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13047. switch(src1->n_dims) {
  13048. case 2:
  13049. {
  13050. grad_k = ggml_view_2d(ctx,
  13051. flash_grad,
  13052. src1->ne[0],
  13053. src1->ne[1],
  13054. nb0*src1->ne[0],
  13055. offset);
  13056. } break;
  13057. case 3:
  13058. {
  13059. grad_k = ggml_view_3d(ctx,
  13060. flash_grad,
  13061. src1->ne[0],
  13062. src1->ne[1],
  13063. src1->ne[2],
  13064. nb0*src1->ne[0],
  13065. nb0*src1->ne[0]*src1->ne[1],
  13066. offset);
  13067. } break;
  13068. case 4:
  13069. {
  13070. grad_k = ggml_view_4d(ctx,
  13071. flash_grad,
  13072. src1->ne[0],
  13073. src1->ne[1],
  13074. src1->ne[2],
  13075. src1->ne[3],
  13076. nb0*src1->ne[0],
  13077. nb0*src1->ne[0]*src1->ne[1],
  13078. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13079. offset);
  13080. } break;
  13081. }
  13082. src1->grad = ggml_add_impl(ctx,
  13083. src1->grad,
  13084. grad_k,
  13085. inplace);
  13086. }
  13087. struct ggml_tensor * opt0 = tensor->src[2];
  13088. if (opt0->grad) {
  13089. struct ggml_tensor * grad_v = NULL;
  13090. const size_t nb0 = flash_grad->nb[0];
  13091. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13092. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13093. switch(opt0->n_dims) {
  13094. case 2:
  13095. {
  13096. grad_v = ggml_view_2d(ctx,
  13097. flash_grad,
  13098. opt0->ne[0],
  13099. opt0->ne[1],
  13100. nb0*opt0->ne[0],
  13101. offset);
  13102. } break;
  13103. case 3:
  13104. {
  13105. grad_v = ggml_view_3d(ctx,
  13106. flash_grad,
  13107. opt0->ne[0],
  13108. opt0->ne[1],
  13109. opt0->ne[2],
  13110. nb0*opt0->ne[0],
  13111. nb0*opt0->ne[0]*opt0->ne[1],
  13112. offset);
  13113. } break;
  13114. case 4:
  13115. {
  13116. grad_v = ggml_view_4d(ctx,
  13117. flash_grad,
  13118. opt0->ne[0],
  13119. opt0->ne[1],
  13120. opt0->ne[2],
  13121. opt0->ne[3],
  13122. nb0*opt0->ne[0],
  13123. nb0*opt0->ne[0]*opt0->ne[1],
  13124. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13125. offset);
  13126. } break;
  13127. }
  13128. opt0->grad = ggml_add_impl(ctx,
  13129. opt0->grad,
  13130. grad_v,
  13131. inplace);
  13132. }
  13133. } break;
  13134. case GGML_OP_FLASH_FF:
  13135. {
  13136. GGML_ASSERT(false); // not supported
  13137. } break;
  13138. case GGML_OP_FLASH_ATTN_BACK:
  13139. {
  13140. GGML_ASSERT(false); // not supported
  13141. } break;
  13142. case GGML_OP_WIN_PART:
  13143. case GGML_OP_WIN_UNPART:
  13144. case GGML_OP_MAP_UNARY:
  13145. case GGML_OP_MAP_BINARY:
  13146. case GGML_OP_MAP_CUSTOM1:
  13147. case GGML_OP_MAP_CUSTOM2:
  13148. case GGML_OP_MAP_CUSTOM3:
  13149. {
  13150. GGML_ASSERT(false); // not supported
  13151. } break;
  13152. case GGML_OP_CROSS_ENTROPY_LOSS:
  13153. {
  13154. if (src0->grad) {
  13155. src0->grad = ggml_add_impl(ctx,
  13156. src0->grad,
  13157. ggml_cross_entropy_loss_back(ctx,
  13158. src0,
  13159. src1,
  13160. tensor->grad),
  13161. inplace);
  13162. }
  13163. } break;
  13164. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13165. {
  13166. GGML_ASSERT(false); // not supported
  13167. } break;
  13168. case GGML_OP_NONE:
  13169. {
  13170. // nop
  13171. } break;
  13172. case GGML_OP_COUNT:
  13173. {
  13174. GGML_ASSERT(false);
  13175. } break;
  13176. }
  13177. }
  13178. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13179. if (node->grad == NULL) {
  13180. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13181. // it can also happen during forward pass, if the user performs computations with constants
  13182. if (node->op != GGML_OP_NONE) {
  13183. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13184. }
  13185. }
  13186. // check if already visited
  13187. for (int i = 0; i < cgraph->n_nodes; i++) {
  13188. if (cgraph->nodes[i] == node) {
  13189. return;
  13190. }
  13191. }
  13192. for (int i = 0; i < cgraph->n_leafs; i++) {
  13193. if (cgraph->leafs[i] == node) {
  13194. return;
  13195. }
  13196. }
  13197. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13198. if (node->src[i]) {
  13199. ggml_visit_parents(cgraph, node->src[i]);
  13200. }
  13201. }
  13202. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13203. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13204. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13205. if (strlen(node->name) == 0) {
  13206. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13207. }
  13208. cgraph->leafs[cgraph->n_leafs] = node;
  13209. cgraph->n_leafs++;
  13210. } else {
  13211. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13212. if (strlen(node->name) == 0) {
  13213. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13214. }
  13215. cgraph->nodes[cgraph->n_nodes] = node;
  13216. cgraph->grads[cgraph->n_nodes] = node->grad;
  13217. cgraph->n_nodes++;
  13218. }
  13219. }
  13220. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13221. if (!expand) {
  13222. cgraph->n_nodes = 0;
  13223. cgraph->n_leafs = 0;
  13224. }
  13225. const int n0 = cgraph->n_nodes;
  13226. UNUSED(n0);
  13227. ggml_visit_parents(cgraph, tensor);
  13228. const int n_new = cgraph->n_nodes - n0;
  13229. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13230. if (n_new > 0) {
  13231. // the last added node should always be starting point
  13232. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13233. }
  13234. }
  13235. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13236. ggml_build_forward_impl(cgraph, tensor, true);
  13237. }
  13238. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13239. struct ggml_cgraph result = {
  13240. /*.n_nodes =*/ 0,
  13241. /*.n_leafs =*/ 0,
  13242. /*.nodes =*/ { NULL },
  13243. /*.grads =*/ { NULL },
  13244. /*.leafs =*/ { NULL },
  13245. /*.perf_runs =*/ 0,
  13246. /*.perf_cycles =*/ 0,
  13247. /*.perf_time_us =*/ 0,
  13248. };
  13249. ggml_build_forward_impl(&result, tensor, false);
  13250. return result;
  13251. }
  13252. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13253. struct ggml_cgraph result = *gf;
  13254. GGML_ASSERT(gf->n_nodes > 0);
  13255. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13256. if (keep) {
  13257. for (int i = 0; i < gf->n_nodes; i++) {
  13258. struct ggml_tensor * node = gf->nodes[i];
  13259. if (node->grad) {
  13260. node->grad = ggml_dup_tensor(ctx, node);
  13261. gf->grads[i] = node->grad;
  13262. }
  13263. }
  13264. }
  13265. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13266. struct ggml_tensor * node = gf->nodes[i];
  13267. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13268. if (node->grad) {
  13269. ggml_compute_backward(ctx, node, keep);
  13270. }
  13271. }
  13272. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13273. struct ggml_tensor * node = gf->nodes[i];
  13274. if (node->is_param) {
  13275. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13276. ggml_build_forward_impl(&result, node->grad, true);
  13277. }
  13278. }
  13279. return result;
  13280. }
  13281. //
  13282. // thread data
  13283. //
  13284. // synchronization is done via busy loops
  13285. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13286. //
  13287. #ifdef __APPLE__
  13288. //#include <os/lock.h>
  13289. //
  13290. //typedef os_unfair_lock ggml_lock_t;
  13291. //
  13292. //#define ggml_lock_init(x) UNUSED(x)
  13293. //#define ggml_lock_destroy(x) UNUSED(x)
  13294. //#define ggml_lock_lock os_unfair_lock_lock
  13295. //#define ggml_lock_unlock os_unfair_lock_unlock
  13296. //
  13297. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13298. typedef int ggml_lock_t;
  13299. #define ggml_lock_init(x) UNUSED(x)
  13300. #define ggml_lock_destroy(x) UNUSED(x)
  13301. #define ggml_lock_lock(x) UNUSED(x)
  13302. #define ggml_lock_unlock(x) UNUSED(x)
  13303. #define GGML_LOCK_INITIALIZER 0
  13304. typedef pthread_t ggml_thread_t;
  13305. #define ggml_thread_create pthread_create
  13306. #define ggml_thread_join pthread_join
  13307. #else
  13308. //typedef pthread_spinlock_t ggml_lock_t;
  13309. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13310. //#define ggml_lock_destroy pthread_spin_destroy
  13311. //#define ggml_lock_lock pthread_spin_lock
  13312. //#define ggml_lock_unlock pthread_spin_unlock
  13313. typedef int ggml_lock_t;
  13314. #define ggml_lock_init(x) UNUSED(x)
  13315. #define ggml_lock_destroy(x) UNUSED(x)
  13316. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13317. #define ggml_lock_lock(x) _mm_pause()
  13318. #else
  13319. #define ggml_lock_lock(x) UNUSED(x)
  13320. #endif
  13321. #define ggml_lock_unlock(x) UNUSED(x)
  13322. #define GGML_LOCK_INITIALIZER 0
  13323. typedef pthread_t ggml_thread_t;
  13324. #define ggml_thread_create pthread_create
  13325. #define ggml_thread_join pthread_join
  13326. #endif
  13327. // Android's libc implementation "bionic" does not support setting affinity
  13328. #if defined(__linux__) && !defined(__BIONIC__)
  13329. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13330. if (!ggml_is_numa()) {
  13331. return;
  13332. }
  13333. // run thread on node_num thread_n / (threads per node)
  13334. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13335. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13336. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13337. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13338. CPU_ZERO_S(setsize, cpus);
  13339. for (size_t i = 0; i < node->n_cpus; ++i) {
  13340. CPU_SET_S(node->cpus[i], setsize, cpus);
  13341. }
  13342. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13343. if (rv) {
  13344. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13345. strerror(rv));
  13346. }
  13347. CPU_FREE(cpus);
  13348. }
  13349. void clear_numa_thread_affinity(void) {
  13350. if (!ggml_is_numa()) {
  13351. return;
  13352. }
  13353. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13354. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13355. CPU_ZERO_S(setsize, cpus);
  13356. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13357. CPU_SET_S(i, setsize, cpus);
  13358. }
  13359. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13360. if (rv) {
  13361. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13362. strerror(rv));
  13363. }
  13364. CPU_FREE(cpus);
  13365. }
  13366. #else
  13367. // TODO: Windows etc.
  13368. // (the linux implementation may also work on BSD, someone should test)
  13369. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13370. void clear_numa_thread_affinity(void) {}
  13371. #endif
  13372. struct ggml_compute_state_shared {
  13373. const struct ggml_cgraph * cgraph;
  13374. const struct ggml_cplan * cplan;
  13375. int64_t perf_node_start_cycles;
  13376. int64_t perf_node_start_time_us;
  13377. const int n_threads;
  13378. // synchronization primitives
  13379. atomic_int n_active; // num active threads
  13380. atomic_int node_n; // active graph node
  13381. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13382. void * abort_callback_data;
  13383. };
  13384. struct ggml_compute_state {
  13385. ggml_thread_t thrd;
  13386. int ith;
  13387. struct ggml_compute_state_shared * shared;
  13388. };
  13389. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13390. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13391. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13392. node->perf_runs++;
  13393. node->perf_cycles += cycles_cur;
  13394. node->perf_time_us += time_us_cur;
  13395. }
  13396. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13397. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13398. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13399. const struct ggml_cplan * cplan = state->shared->cplan;
  13400. const int * n_tasks_arr = cplan->n_tasks;
  13401. const int n_threads = state->shared->n_threads;
  13402. set_numa_thread_affinity(state->ith, n_threads);
  13403. int node_n = -1;
  13404. while (true) {
  13405. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13406. state->shared->node_n += 1;
  13407. return (thread_ret_t) GGML_EXIT_ABORTED;
  13408. }
  13409. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13410. // all other threads are finished and spinning
  13411. // do finalize and init here so we don't have synchronize again
  13412. struct ggml_compute_params params = {
  13413. /*.type =*/ GGML_TASK_FINALIZE,
  13414. /*.ith =*/ 0,
  13415. /*.nth =*/ 0,
  13416. /*.wsize =*/ cplan->work_size,
  13417. /*.wdata =*/ cplan->work_data,
  13418. };
  13419. if (node_n != -1) {
  13420. /* FINALIZE */
  13421. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13422. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13423. params.nth = n_tasks_arr[node_n];
  13424. ggml_compute_forward(&params, node);
  13425. ggml_graph_compute_perf_stats_node(node, state->shared);
  13426. }
  13427. }
  13428. // distribute new work or execute it direct if 1T
  13429. while (++node_n < cgraph->n_nodes) {
  13430. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13431. struct ggml_tensor * node = cgraph->nodes[node_n];
  13432. const int n_tasks = n_tasks_arr[node_n];
  13433. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13434. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13435. params.nth = n_tasks;
  13436. /* INIT */
  13437. if (GGML_OP_HAS_INIT[node->op]) {
  13438. params.type = GGML_TASK_INIT;
  13439. ggml_compute_forward(&params, node);
  13440. }
  13441. if (n_tasks == 1) {
  13442. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13443. // they do something more efficient than spinning (?)
  13444. params.type = GGML_TASK_COMPUTE;
  13445. ggml_compute_forward(&params, node);
  13446. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13447. params.type = GGML_TASK_FINALIZE;
  13448. ggml_compute_forward(&params, node);
  13449. ggml_graph_compute_perf_stats_node(node, state->shared);
  13450. }
  13451. } else {
  13452. break;
  13453. }
  13454. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13455. break;
  13456. }
  13457. }
  13458. atomic_store(&state->shared->n_active, n_threads);
  13459. atomic_store(&state->shared->node_n, node_n);
  13460. } else {
  13461. // wait for other threads to finish
  13462. const int last = node_n;
  13463. do {
  13464. //sched_yield();
  13465. node_n = atomic_load(&state->shared->node_n);
  13466. } while (node_n == last);
  13467. }
  13468. // check if we should stop
  13469. if (node_n >= cgraph->n_nodes) break;
  13470. /* COMPUTE */
  13471. struct ggml_tensor * node = cgraph->nodes[node_n];
  13472. const int n_tasks = n_tasks_arr[node_n];
  13473. struct ggml_compute_params params = {
  13474. /*.type =*/ GGML_TASK_COMPUTE,
  13475. /*.ith =*/ state->ith,
  13476. /*.nth =*/ n_tasks,
  13477. /*.wsize =*/ cplan->work_size,
  13478. /*.wdata =*/ cplan->work_data,
  13479. };
  13480. if (state->ith < n_tasks) {
  13481. ggml_compute_forward(&params, node);
  13482. }
  13483. }
  13484. return GGML_EXIT_SUCCESS;
  13485. }
  13486. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13487. if (n_threads <= 0) {
  13488. n_threads = GGML_DEFAULT_N_THREADS;
  13489. }
  13490. size_t work_size = 0;
  13491. struct ggml_cplan cplan;
  13492. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13493. // thread scheduling for the different operations + work buffer size estimation
  13494. for (int i = 0; i < cgraph->n_nodes; i++) {
  13495. int n_tasks = 1;
  13496. struct ggml_tensor * node = cgraph->nodes[i];
  13497. switch (node->op) {
  13498. case GGML_OP_CPY:
  13499. case GGML_OP_DUP:
  13500. {
  13501. n_tasks = n_threads;
  13502. size_t cur = 0;
  13503. if (ggml_is_quantized(node->type)) {
  13504. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13505. }
  13506. work_size = MAX(work_size, cur);
  13507. } break;
  13508. case GGML_OP_ADD:
  13509. case GGML_OP_ADD1:
  13510. {
  13511. n_tasks = n_threads;
  13512. size_t cur = 0;
  13513. if (ggml_is_quantized(node->src[0]->type)) {
  13514. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13515. }
  13516. work_size = MAX(work_size, cur);
  13517. } break;
  13518. case GGML_OP_ACC:
  13519. {
  13520. n_tasks = n_threads;
  13521. size_t cur = 0;
  13522. if (ggml_is_quantized(node->src[0]->type)) {
  13523. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13524. }
  13525. work_size = MAX(work_size, cur);
  13526. } break;
  13527. case GGML_OP_SUB:
  13528. case GGML_OP_DIV:
  13529. case GGML_OP_SQR:
  13530. case GGML_OP_SQRT:
  13531. case GGML_OP_LOG:
  13532. case GGML_OP_SUM:
  13533. case GGML_OP_SUM_ROWS:
  13534. case GGML_OP_MEAN:
  13535. case GGML_OP_ARGMAX:
  13536. case GGML_OP_REPEAT:
  13537. case GGML_OP_REPEAT_BACK:
  13538. case GGML_OP_ABS:
  13539. case GGML_OP_SGN:
  13540. case GGML_OP_NEG:
  13541. case GGML_OP_STEP:
  13542. case GGML_OP_TANH:
  13543. case GGML_OP_ELU:
  13544. case GGML_OP_RELU:
  13545. {
  13546. n_tasks = 1;
  13547. } break;
  13548. case GGML_OP_MUL:
  13549. case GGML_OP_GELU:
  13550. case GGML_OP_GELU_QUICK:
  13551. case GGML_OP_SILU:
  13552. case GGML_OP_SILU_BACK:
  13553. case GGML_OP_NORM:
  13554. case GGML_OP_RMS_NORM:
  13555. case GGML_OP_RMS_NORM_BACK:
  13556. {
  13557. n_tasks = n_threads;
  13558. } break;
  13559. case GGML_OP_MUL_MAT:
  13560. case GGML_OP_OUT_PROD:
  13561. {
  13562. n_tasks = n_threads;
  13563. // TODO: use different scheduling for different matrix sizes
  13564. //const int nr0 = ggml_nrows(node->src[0]);
  13565. //const int nr1 = ggml_nrows(node->src[1]);
  13566. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13567. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13568. size_t cur = 0;
  13569. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13570. #if defined(GGML_USE_CUBLAS)
  13571. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13572. n_tasks = 1; // TODO: this actually is doing nothing
  13573. // the threads are still spinning
  13574. } else
  13575. #elif defined(GGML_USE_CLBLAST)
  13576. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13577. n_tasks = 1; // TODO: this actually is doing nothing
  13578. // the threads are still spinning
  13579. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13580. } else
  13581. #endif
  13582. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13583. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13584. n_tasks = 1; // TODO: this actually is doing nothing
  13585. // the threads are still spinning
  13586. if (node->src[0]->type != GGML_TYPE_F32) {
  13587. // here we need memory just for single 2D matrix from src0
  13588. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13589. }
  13590. } else
  13591. #endif
  13592. if (node->src[1]->type != vec_dot_type) {
  13593. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13594. } else {
  13595. cur = 0;
  13596. }
  13597. work_size = MAX(work_size, cur);
  13598. } break;
  13599. case GGML_OP_SCALE:
  13600. {
  13601. n_tasks = 1;
  13602. } break;
  13603. case GGML_OP_SET:
  13604. case GGML_OP_CONT:
  13605. case GGML_OP_RESHAPE:
  13606. case GGML_OP_VIEW:
  13607. case GGML_OP_PERMUTE:
  13608. case GGML_OP_TRANSPOSE:
  13609. case GGML_OP_GET_ROWS:
  13610. case GGML_OP_GET_ROWS_BACK:
  13611. case GGML_OP_DIAG:
  13612. case GGML_OP_DIAG_MASK_ZERO:
  13613. {
  13614. n_tasks = 1;
  13615. } break;
  13616. case GGML_OP_DIAG_MASK_INF:
  13617. case GGML_OP_SOFT_MAX:
  13618. case GGML_OP_SOFT_MAX_BACK:
  13619. case GGML_OP_ROPE:
  13620. case GGML_OP_ROPE_BACK:
  13621. {
  13622. n_tasks = n_threads;
  13623. } break;
  13624. case GGML_OP_ALIBI:
  13625. {
  13626. n_tasks = 1; //TODO
  13627. } break;
  13628. case GGML_OP_CLAMP:
  13629. {
  13630. n_tasks = 1; //TODO
  13631. } break;
  13632. case GGML_OP_CONV_1D:
  13633. {
  13634. n_tasks = n_threads;
  13635. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13636. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13637. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13638. size_t cur = 0;
  13639. const int nk = node->src[0]->ne[0];
  13640. if (node->src[0]->type == GGML_TYPE_F16 &&
  13641. node->src[1]->type == GGML_TYPE_F32) {
  13642. cur = sizeof(ggml_fp16_t)*(
  13643. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13644. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13645. );
  13646. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13647. node->src[1]->type == GGML_TYPE_F32) {
  13648. cur = sizeof(float)*(
  13649. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13650. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13651. );
  13652. } else {
  13653. GGML_ASSERT(false);
  13654. }
  13655. work_size = MAX(work_size, cur);
  13656. } break;
  13657. case GGML_OP_CONV_2D:
  13658. {
  13659. n_tasks = n_threads;
  13660. const int64_t ne00 = node->src[0]->ne[0]; // W
  13661. const int64_t ne01 = node->src[0]->ne[1]; // H
  13662. const int64_t ne02 = node->src[0]->ne[2]; // C
  13663. const int64_t ne03 = node->src[0]->ne[3]; // N
  13664. const int64_t ne10 = node->src[1]->ne[0]; // W
  13665. const int64_t ne11 = node->src[1]->ne[1]; // H
  13666. const int64_t ne12 = node->src[1]->ne[2]; // C
  13667. const int64_t ne0 = node->ne[0];
  13668. const int64_t ne1 = node->ne[1];
  13669. const int64_t ne2 = node->ne[2];
  13670. const int64_t nk = ne00*ne01;
  13671. const int64_t ew0 = nk * ne02;
  13672. UNUSED(ne03);
  13673. UNUSED(ne2);
  13674. size_t cur = 0;
  13675. if (node->src[0]->type == GGML_TYPE_F16 &&
  13676. node->src[1]->type == GGML_TYPE_F32) {
  13677. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13678. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13679. node->src[1]->type == GGML_TYPE_F32) {
  13680. cur = sizeof(float)* (ne10*ne11*ne12);
  13681. } else {
  13682. GGML_ASSERT(false);
  13683. }
  13684. work_size = MAX(work_size, cur);
  13685. } break;
  13686. case GGML_OP_POOL_1D:
  13687. case GGML_OP_POOL_2D:
  13688. {
  13689. n_tasks = 1;
  13690. } break;
  13691. case GGML_OP_FLASH_ATTN:
  13692. {
  13693. n_tasks = n_threads;
  13694. size_t cur = 0;
  13695. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13696. if (node->src[1]->type == GGML_TYPE_F32) {
  13697. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13698. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13699. }
  13700. if (node->src[1]->type == GGML_TYPE_F16) {
  13701. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13702. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13703. }
  13704. work_size = MAX(work_size, cur);
  13705. } break;
  13706. case GGML_OP_FLASH_FF:
  13707. {
  13708. n_tasks = n_threads;
  13709. size_t cur = 0;
  13710. if (node->src[1]->type == GGML_TYPE_F32) {
  13711. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13712. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13713. }
  13714. if (node->src[1]->type == GGML_TYPE_F16) {
  13715. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13716. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13717. }
  13718. work_size = MAX(work_size, cur);
  13719. } break;
  13720. case GGML_OP_FLASH_ATTN_BACK:
  13721. {
  13722. n_tasks = n_threads;
  13723. size_t cur = 0;
  13724. const int64_t D = node->src[0]->ne[0];
  13725. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13726. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13727. if (node->src[1]->type == GGML_TYPE_F32) {
  13728. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13729. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13730. }
  13731. if (node->src[1]->type == GGML_TYPE_F16) {
  13732. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13733. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13734. }
  13735. work_size = MAX(work_size, cur);
  13736. } break;
  13737. case GGML_OP_WIN_PART:
  13738. case GGML_OP_WIN_UNPART:
  13739. case GGML_OP_MAP_UNARY:
  13740. case GGML_OP_MAP_BINARY:
  13741. case GGML_OP_MAP_CUSTOM1:
  13742. case GGML_OP_MAP_CUSTOM2:
  13743. case GGML_OP_MAP_CUSTOM3:
  13744. {
  13745. n_tasks = 1;
  13746. } break;
  13747. case GGML_OP_CROSS_ENTROPY_LOSS:
  13748. {
  13749. n_tasks = n_threads;
  13750. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13751. work_size = MAX(work_size, cur);
  13752. } break;
  13753. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13754. {
  13755. n_tasks = n_threads;
  13756. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13757. work_size = MAX(work_size, cur);
  13758. } break;
  13759. case GGML_OP_NONE:
  13760. {
  13761. n_tasks = 1;
  13762. } break;
  13763. case GGML_OP_COUNT:
  13764. {
  13765. GGML_ASSERT(false);
  13766. } break;
  13767. }
  13768. cplan.n_tasks[i] = n_tasks;
  13769. }
  13770. if (work_size > 0) {
  13771. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13772. }
  13773. cplan.n_threads = n_threads;
  13774. cplan.work_size = work_size;
  13775. cplan.work_data = NULL;
  13776. return cplan;
  13777. }
  13778. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13779. {
  13780. GGML_ASSERT(cplan);
  13781. GGML_ASSERT(cplan->n_threads > 0);
  13782. if (cplan->work_size > 0) {
  13783. GGML_ASSERT(cplan->work_data);
  13784. }
  13785. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13786. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13787. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13788. }
  13789. }
  13790. }
  13791. const int n_threads = cplan->n_threads;
  13792. struct ggml_compute_state_shared state_shared = {
  13793. /*.cgraph =*/ cgraph,
  13794. /*.cgraph_plan =*/ cplan,
  13795. /*.perf_node_start_cycles =*/ 0,
  13796. /*.perf_node_start_time_us =*/ 0,
  13797. /*.n_threads =*/ n_threads,
  13798. /*.n_active =*/ n_threads,
  13799. /*.node_n =*/ -1,
  13800. /*.abort_callback =*/ NULL,
  13801. /*.abort_callback_data =*/ NULL,
  13802. };
  13803. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13804. // create thread pool
  13805. if (n_threads > 1) {
  13806. for (int j = 1; j < n_threads; ++j) {
  13807. workers[j] = (struct ggml_compute_state) {
  13808. .thrd = 0,
  13809. .ith = j,
  13810. .shared = &state_shared,
  13811. };
  13812. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13813. GGML_ASSERT(rc == 0);
  13814. }
  13815. }
  13816. workers[0].ith = 0;
  13817. workers[0].shared = &state_shared;
  13818. const int64_t perf_start_cycles = ggml_perf_cycles();
  13819. const int64_t perf_start_time_us = ggml_perf_time_us();
  13820. // this is a work thread too
  13821. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13822. // don't leave affinity set on the main thread
  13823. clear_numa_thread_affinity();
  13824. // join or kill thread pool
  13825. if (n_threads > 1) {
  13826. for (int j = 1; j < n_threads; j++) {
  13827. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13828. GGML_ASSERT(rc == 0);
  13829. }
  13830. }
  13831. // performance stats (graph)
  13832. {
  13833. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13834. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13835. cgraph->perf_runs++;
  13836. cgraph->perf_cycles += perf_cycles_cur;
  13837. cgraph->perf_time_us += perf_time_us_cur;
  13838. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13839. __func__, cgraph->perf_runs,
  13840. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13841. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13842. (double) perf_time_us_cur / 1000.0,
  13843. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13844. }
  13845. return compute_status;
  13846. }
  13847. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13848. for (int i = 0; i < cgraph->n_nodes; i++) {
  13849. struct ggml_tensor * grad = cgraph->grads[i];
  13850. if (grad) {
  13851. ggml_set_zero(grad);
  13852. }
  13853. }
  13854. }
  13855. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13856. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13857. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13858. GGML_ASSERT(buf);
  13859. cplan.work_data = buf->data;
  13860. ggml_graph_compute(cgraph, &cplan);
  13861. }
  13862. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13863. for (int i = 0; i < cgraph->n_leafs; i++) {
  13864. struct ggml_tensor * leaf = cgraph->leafs[i];
  13865. if (strcmp(leaf->name, name) == 0) {
  13866. return leaf;
  13867. }
  13868. }
  13869. for (int i = 0; i < cgraph->n_nodes; i++) {
  13870. struct ggml_tensor * node = cgraph->nodes[i];
  13871. if (strcmp(node->name, name) == 0) {
  13872. return node;
  13873. }
  13874. }
  13875. return NULL;
  13876. }
  13877. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13878. const int64_t * ne = tensor->ne;
  13879. const size_t * nb = tensor->nb;
  13880. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13881. ggml_type_name(tensor->type),
  13882. ggml_op_name (tensor->op),
  13883. tensor->n_dims,
  13884. ne[0], ne[1], ne[2], ne[3],
  13885. nb[0], nb[1], nb[2], nb[3],
  13886. tensor->data,
  13887. tensor->name);
  13888. }
  13889. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13890. const int64_t * ne = tensor->ne;
  13891. const size_t * nb = tensor->nb;
  13892. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13893. arg,
  13894. ggml_type_name(tensor->type),
  13895. ggml_op_name (tensor->op),
  13896. tensor->n_dims,
  13897. ne[0], ne[1], ne[2], ne[3],
  13898. nb[0], nb[1], nb[2], nb[3],
  13899. tensor->data,
  13900. tensor->name);
  13901. }
  13902. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13903. //assert(cgraph->work == NULL);
  13904. //assert(cgraph->work_size == 0);
  13905. uint64_t size_eval = 0;
  13906. // compute size of intermediate results
  13907. // TODO: does not take into account scratch buffers !!!!
  13908. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13909. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13910. }
  13911. // print
  13912. {
  13913. FILE * fout = stdout;
  13914. fprintf(fout, "\n");
  13915. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13916. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13917. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13918. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13919. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13920. // header
  13921. fprintf(fout, "\n");
  13922. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13923. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13924. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13925. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13926. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13927. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13928. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13929. }
  13930. // header
  13931. fprintf(fout, "\n");
  13932. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13933. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13934. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13935. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13936. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13937. if (cgraph->nodes[i]->src[j]) {
  13938. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13939. }
  13940. }
  13941. fprintf(fout, "\n");
  13942. }
  13943. fprintf(fout, "\n");
  13944. }
  13945. // write binary data
  13946. {
  13947. FILE * fout = fopen(fname, "wb");
  13948. if (!fout) {
  13949. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13950. return;
  13951. }
  13952. // header
  13953. {
  13954. const uint32_t magic = GGML_FILE_MAGIC;
  13955. const uint32_t version = GGML_FILE_VERSION;
  13956. const uint32_t n_leafs = cgraph->n_leafs;
  13957. const uint32_t nodes = cgraph->n_nodes;
  13958. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13959. fwrite(&version, sizeof(uint32_t), 1, fout);
  13960. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13961. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13962. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13963. }
  13964. // leafs
  13965. {
  13966. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13967. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13968. const uint32_t type = tensor->type;
  13969. const uint32_t op = tensor->op;
  13970. const uint32_t n_dims = tensor->n_dims;
  13971. fwrite(&type, sizeof(uint32_t), 1, fout);
  13972. fwrite(&op, sizeof(uint32_t), 1, fout);
  13973. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13974. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13975. const uint64_t ne = tensor->ne[j];
  13976. const uint64_t nb = tensor->nb[j];
  13977. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13978. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13979. }
  13980. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13981. // dump the data
  13982. // TODO: pad this to 32 byte boundary
  13983. {
  13984. const size_t size = ggml_nbytes(tensor);
  13985. fwrite(tensor->data, sizeof(char), size, fout);
  13986. }
  13987. }
  13988. }
  13989. // nodes
  13990. {
  13991. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13992. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13993. const uint32_t type = tensor->type;
  13994. const uint32_t op = tensor->op;
  13995. const uint32_t n_dims = tensor->n_dims;
  13996. fwrite(&type, sizeof(uint32_t), 1, fout);
  13997. fwrite(&op, sizeof(uint32_t), 1, fout);
  13998. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13999. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14000. const uint64_t ne = tensor->ne[j];
  14001. const uint64_t nb = tensor->nb[j];
  14002. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14003. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14004. }
  14005. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14006. // output the op arguments
  14007. {
  14008. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14009. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14010. args[j] = tensor->src[j];
  14011. }
  14012. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14013. if (args[j]) {
  14014. int32_t idx = -1;
  14015. // check if leaf
  14016. {
  14017. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14018. if (args[j] == cgraph->leafs[k]) {
  14019. idx = k;
  14020. break;
  14021. }
  14022. }
  14023. }
  14024. // check if node
  14025. if (idx == -1) {
  14026. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14027. if (args[j] == cgraph->nodes[k]) {
  14028. idx = GGML_MAX_NODES + k;
  14029. break;
  14030. }
  14031. }
  14032. }
  14033. if (idx == -1) {
  14034. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14035. return;
  14036. }
  14037. fwrite(&idx, sizeof(int32_t), 1, fout);
  14038. } else {
  14039. const int32_t nul = -1;
  14040. fwrite(&nul, sizeof(int32_t), 1, fout);
  14041. }
  14042. }
  14043. }
  14044. }
  14045. }
  14046. fclose(fout);
  14047. }
  14048. }
  14049. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14050. assert(*ctx_data == NULL);
  14051. assert(*ctx_eval == NULL);
  14052. struct ggml_cgraph result = { 0 };
  14053. struct ggml_tensor * data = NULL;
  14054. // read file into data
  14055. {
  14056. FILE * fin = fopen(fname, "rb");
  14057. if (!fin) {
  14058. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14059. return result;
  14060. }
  14061. size_t fsize = 0;
  14062. fseek(fin, 0, SEEK_END);
  14063. fsize = ftell(fin);
  14064. fseek(fin, 0, SEEK_SET);
  14065. // create the data context
  14066. {
  14067. const size_t overhead = 1*ggml_tensor_overhead();
  14068. struct ggml_init_params params = {
  14069. .mem_size = fsize + overhead,
  14070. .mem_buffer = NULL,
  14071. .no_alloc = false,
  14072. };
  14073. *ctx_data = ggml_init(params);
  14074. if (!*ctx_data) {
  14075. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14076. fclose(fin);
  14077. return result;
  14078. }
  14079. }
  14080. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14081. {
  14082. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14083. if (ret != fsize) {
  14084. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14085. fclose(fin);
  14086. return result;
  14087. }
  14088. }
  14089. fclose(fin);
  14090. }
  14091. // populate result
  14092. {
  14093. char * ptr = (char *) data->data;
  14094. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14095. if (magic != GGML_FILE_MAGIC) {
  14096. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14097. return result;
  14098. }
  14099. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14100. if (version != GGML_FILE_VERSION) {
  14101. fprintf(stderr, "%s: invalid version number\n", __func__);
  14102. return result;
  14103. }
  14104. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14105. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14106. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14107. result.n_leafs = n_leafs;
  14108. result.n_nodes = n_nodes;
  14109. // create the data context
  14110. {
  14111. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14112. struct ggml_init_params params = {
  14113. .mem_size = size_eval + overhead,
  14114. .mem_buffer = NULL,
  14115. .no_alloc = true,
  14116. };
  14117. *ctx_eval = ggml_init(params);
  14118. if (!*ctx_eval) {
  14119. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14120. return result;
  14121. }
  14122. }
  14123. // leafs
  14124. {
  14125. uint32_t type;
  14126. uint32_t op;
  14127. uint32_t n_dims;
  14128. for (uint32_t i = 0; i < n_leafs; ++i) {
  14129. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14130. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14131. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14132. int64_t ne[GGML_MAX_DIMS];
  14133. size_t nb[GGML_MAX_DIMS];
  14134. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14135. uint64_t ne_cur;
  14136. uint64_t nb_cur;
  14137. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14138. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14139. ne[j] = ne_cur;
  14140. nb[j] = nb_cur;
  14141. }
  14142. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14143. tensor->op = (enum ggml_op) op;
  14144. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14145. tensor->data = (void *) ptr;
  14146. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14147. tensor->nb[j] = nb[j];
  14148. }
  14149. result.leafs[i] = tensor;
  14150. ptr += ggml_nbytes(tensor);
  14151. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14152. }
  14153. }
  14154. ggml_set_no_alloc(*ctx_eval, false);
  14155. // nodes
  14156. {
  14157. uint32_t type;
  14158. uint32_t op;
  14159. uint32_t n_dims;
  14160. for (uint32_t i = 0; i < n_nodes; ++i) {
  14161. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14162. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14163. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14164. enum ggml_op eop = (enum ggml_op) op;
  14165. int64_t ne[GGML_MAX_DIMS];
  14166. size_t nb[GGML_MAX_DIMS];
  14167. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14168. uint64_t ne_cur;
  14169. uint64_t nb_cur;
  14170. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14171. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14172. ne[j] = ne_cur;
  14173. nb[j] = nb_cur;
  14174. }
  14175. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14176. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14177. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14178. // parse args
  14179. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14180. const int32_t arg_idx = ptr_arg_idx[j];
  14181. if (arg_idx == -1) {
  14182. continue;
  14183. }
  14184. if (arg_idx < GGML_MAX_NODES) {
  14185. args[j] = result.leafs[arg_idx];
  14186. } else {
  14187. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14188. }
  14189. }
  14190. // create the tensor
  14191. // "view" operations are handled differently
  14192. // TODO: handle inplace ops - currently a copy is always made
  14193. struct ggml_tensor * tensor = NULL;
  14194. switch (eop) {
  14195. // TODO: implement other view ops
  14196. case GGML_OP_RESHAPE:
  14197. {
  14198. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14199. } break;
  14200. case GGML_OP_VIEW:
  14201. {
  14202. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14203. uint64_t offs;
  14204. memcpy(&offs, args[2]->data, sizeof(offs));
  14205. tensor->data = ((char *) tensor->data) + offs;
  14206. } break;
  14207. case GGML_OP_TRANSPOSE:
  14208. {
  14209. tensor = ggml_transpose(*ctx_eval, args[0]);
  14210. } break;
  14211. case GGML_OP_PERMUTE:
  14212. {
  14213. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14214. } break;
  14215. default:
  14216. {
  14217. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14218. tensor->op = eop;
  14219. } break;
  14220. }
  14221. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14222. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14223. tensor->nb[j] = nb[j];
  14224. }
  14225. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14226. tensor->src[j] = args[j];
  14227. }
  14228. result.nodes[i] = tensor;
  14229. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14230. }
  14231. }
  14232. }
  14233. return result;
  14234. }
  14235. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14236. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14237. GGML_PRINT("=== GRAPH ===\n");
  14238. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14239. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14240. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14241. for (int i = 0; i < cgraph->n_nodes; i++) {
  14242. struct ggml_tensor * node = cgraph->nodes[i];
  14243. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14244. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14245. i,
  14246. node->ne[0], node->ne[1], node->ne[2],
  14247. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14248. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14249. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14250. (double) node->perf_time_us / 1000.0,
  14251. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14252. }
  14253. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14254. for (int i = 0; i < cgraph->n_leafs; i++) {
  14255. struct ggml_tensor * node = cgraph->leafs[i];
  14256. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14257. i,
  14258. node->ne[0], node->ne[1],
  14259. GGML_OP_NAME[node->op]);
  14260. }
  14261. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14262. if (perf_total_per_op_us[i] == 0) {
  14263. continue;
  14264. }
  14265. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14266. }
  14267. GGML_PRINT("========================================\n");
  14268. }
  14269. // check if node is part of the graph
  14270. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14271. if (cgraph == NULL) {
  14272. return true;
  14273. }
  14274. for (int i = 0; i < cgraph->n_nodes; i++) {
  14275. if (cgraph->nodes[i] == node) {
  14276. return true;
  14277. }
  14278. }
  14279. return false;
  14280. }
  14281. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14282. for (int i = 0; i < cgraph->n_nodes; i++) {
  14283. struct ggml_tensor * parent = cgraph->nodes[i];
  14284. if (parent->grad == node) {
  14285. return parent;
  14286. }
  14287. }
  14288. return NULL;
  14289. }
  14290. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14291. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14292. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14293. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14294. gparent0 ? (void *) gparent0 : (void *) parent,
  14295. gparent0 ? "g" : "x",
  14296. gparent ? (void *) gparent : (void *) node,
  14297. gparent ? "g" : "x",
  14298. gparent ? "empty" : "vee",
  14299. gparent ? "dashed" : "solid",
  14300. label);
  14301. }
  14302. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14303. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14304. (void *) parent, "x",
  14305. (void *) node, "x",
  14306. label);
  14307. }
  14308. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14309. char color[16];
  14310. FILE * fp = fopen(filename, "w");
  14311. GGML_ASSERT(fp);
  14312. fprintf(fp, "digraph G {\n");
  14313. fprintf(fp, " newrank = true;\n");
  14314. fprintf(fp, " rankdir = LR;\n");
  14315. for (int i = 0; i < gb->n_nodes; i++) {
  14316. struct ggml_tensor * node = gb->nodes[i];
  14317. if (ggml_graph_get_parent(gb, node) != NULL) {
  14318. continue;
  14319. }
  14320. if (node->is_param) {
  14321. snprintf(color, sizeof(color), "yellow");
  14322. } else if (node->grad) {
  14323. if (ggml_graph_find(gf, node)) {
  14324. snprintf(color, sizeof(color), "green");
  14325. } else {
  14326. snprintf(color, sizeof(color), "lightblue");
  14327. }
  14328. } else {
  14329. snprintf(color, sizeof(color), "white");
  14330. }
  14331. fprintf(fp, " \"%p\" [ "
  14332. "style = filled; fillcolor = %s; shape = record; "
  14333. "label=\"",
  14334. (void *) node, color);
  14335. if (strlen(node->name) > 0) {
  14336. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14337. } else {
  14338. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14339. }
  14340. if (node->n_dims == 2) {
  14341. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14342. } else {
  14343. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14344. }
  14345. if (node->grad) {
  14346. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14347. } else {
  14348. fprintf(fp, "\"; ]\n");
  14349. }
  14350. }
  14351. for (int i = 0; i < gb->n_leafs; i++) {
  14352. struct ggml_tensor * node = gb->leafs[i];
  14353. snprintf(color, sizeof(color), "pink");
  14354. fprintf(fp, " \"%p\" [ "
  14355. "style = filled; fillcolor = %s; shape = record; "
  14356. "label=\"<x>",
  14357. (void *) node, color);
  14358. if (strlen(node->name) > 0) {
  14359. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14360. } else {
  14361. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14362. }
  14363. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14364. if (ggml_nelements(node) < 5) {
  14365. fprintf(fp, " | (");
  14366. for (int j = 0; j < ggml_nelements(node); j++) {
  14367. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14368. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14369. }
  14370. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14371. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14372. }
  14373. else {
  14374. fprintf(fp, "#");
  14375. }
  14376. if (j < ggml_nelements(node) - 1) {
  14377. fprintf(fp, ", ");
  14378. }
  14379. }
  14380. fprintf(fp, ")");
  14381. }
  14382. fprintf(fp, "\"; ]\n");
  14383. }
  14384. for (int i = 0; i < gb->n_nodes; i++) {
  14385. struct ggml_tensor * node = gb->nodes[i];
  14386. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14387. if (node->src[j]) {
  14388. char label[16];
  14389. snprintf(label, sizeof(label), "src %d", j);
  14390. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14391. }
  14392. }
  14393. }
  14394. for (int i = 0; i < gb->n_leafs; i++) {
  14395. struct ggml_tensor * node = gb->leafs[i];
  14396. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14397. if (node->src[j]) {
  14398. char label[16];
  14399. snprintf(label, sizeof(label), "src %d", j);
  14400. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14401. }
  14402. }
  14403. }
  14404. fprintf(fp, "}\n");
  14405. fclose(fp);
  14406. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14407. }
  14408. ////////////////////////////////////////////////////////////////////////////////
  14409. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14410. int i = 0;
  14411. for (int p = 0; p < np; ++p) {
  14412. const int64_t ne = ggml_nelements(ps[p]) ;
  14413. // TODO: add function to set tensor from array
  14414. for (int64_t j = 0; j < ne; ++j) {
  14415. ggml_set_f32_1d(ps[p], j, x[i++]);
  14416. }
  14417. }
  14418. }
  14419. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14420. int i = 0;
  14421. for (int p = 0; p < np; ++p) {
  14422. const int64_t ne = ggml_nelements(ps[p]) ;
  14423. // TODO: add function to get all elements at once
  14424. for (int64_t j = 0; j < ne; ++j) {
  14425. x[i++] = ggml_get_f32_1d(ps[p], j);
  14426. }
  14427. }
  14428. }
  14429. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14430. int i = 0;
  14431. for (int p = 0; p < np; ++p) {
  14432. const int64_t ne = ggml_nelements(ps[p]) ;
  14433. // TODO: add function to get all elements at once
  14434. for (int64_t j = 0; j < ne; ++j) {
  14435. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14436. }
  14437. }
  14438. }
  14439. //
  14440. // ADAM
  14441. //
  14442. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14443. //
  14444. static enum ggml_opt_result ggml_opt_adam(
  14445. struct ggml_context * ctx,
  14446. struct ggml_opt_context * opt,
  14447. struct ggml_opt_params params,
  14448. struct ggml_tensor * f,
  14449. struct ggml_cgraph * gf,
  14450. struct ggml_cgraph * gb) {
  14451. GGML_ASSERT(ggml_is_scalar(f));
  14452. // these will store the parameters we want to optimize
  14453. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14454. int np = 0;
  14455. int nx = 0;
  14456. for (int i = 0; i < gf->n_nodes; ++i) {
  14457. if (gf->nodes[i]->is_param) {
  14458. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14459. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14460. ps[np++] = gf->nodes[i];
  14461. nx += ggml_nelements(gf->nodes[i]);
  14462. }
  14463. }
  14464. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14465. int iter = opt->iter;
  14466. ggml_opt_init(opt->ctx, opt, params, nx);
  14467. opt->iter = iter;
  14468. }
  14469. // constants
  14470. const float sched = params.adam.sched;
  14471. const float decay = params.adam.decay * sched;
  14472. const float alpha = params.adam.alpha * sched;
  14473. const float beta1 = params.adam.beta1;
  14474. const float beta2 = params.adam.beta2;
  14475. const float eps = params.adam.eps;
  14476. float * x = opt->adam.x->data; // view of the parameters
  14477. float * g1 = opt->adam.g1->data; // gradient
  14478. float * g2 = opt->adam.g2->data; // gradient squared
  14479. float * m = opt->adam.m->data; // first moment
  14480. float * v = opt->adam.v->data; // second moment
  14481. float * mh = opt->adam.mh->data; // first moment hat
  14482. float * vh = opt->adam.vh->data; // second moment hat
  14483. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14484. // update view
  14485. ggml_opt_get_params(np, ps, x);
  14486. // compute the function value
  14487. ggml_graph_reset (gf);
  14488. ggml_set_f32 (f->grad, 1.0f);
  14489. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14490. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14491. opt->adam.fx_best = opt->adam.fx_prev;
  14492. if (pf) {
  14493. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14494. }
  14495. // initialize
  14496. if (opt->just_initialized) {
  14497. opt->adam.n_no_improvement = 0;
  14498. opt->just_initialized = false;
  14499. }
  14500. float * fx_best = &opt->adam.fx_best;
  14501. float * fx_prev = &opt->adam.fx_prev;
  14502. int * n_no_improvement = &opt->adam.n_no_improvement;
  14503. int iter0 = opt->iter;
  14504. // run the optimizer
  14505. for (int t = 0; t < params.adam.n_iter; ++t) {
  14506. opt->iter = iter0 + t + 1;
  14507. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14508. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14509. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14510. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14511. for (int i = 0; i < np; ++i) {
  14512. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14513. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14514. }
  14515. const int64_t t_start_wall = ggml_time_us();
  14516. const int64_t t_start_cpu = ggml_cycles();
  14517. UNUSED(t_start_wall);
  14518. UNUSED(t_start_cpu);
  14519. {
  14520. // update the gradient
  14521. ggml_opt_get_grad(np, ps, g1);
  14522. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14523. ggml_vec_scale_f32(nx, m, beta1);
  14524. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14525. // g2 = g1^2
  14526. ggml_vec_sqr_f32 (nx, g2, g1);
  14527. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14528. ggml_vec_scale_f32(nx, v, beta2);
  14529. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14530. // m^hat = m_t / (1 - beta1^t)
  14531. // v^hat = v_t / (1 - beta2^t)
  14532. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14533. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14534. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14535. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14536. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14537. ggml_vec_cpy_f32 (nx, mh, m);
  14538. ggml_vec_cpy_f32 (nx, vh, v);
  14539. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14540. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14541. ggml_vec_sqrt_f32 (nx, vh, vh);
  14542. ggml_vec_acc1_f32 (nx, vh, eps);
  14543. ggml_vec_div_f32 (nx, mh, mh, vh);
  14544. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14545. ggml_vec_sub_f32 (nx, x, x, mh);
  14546. // update the parameters
  14547. ggml_opt_set_params(np, ps, x);
  14548. }
  14549. ggml_graph_reset (gf);
  14550. ggml_set_f32 (f->grad, 1.0f);
  14551. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14552. const float fx = ggml_get_f32_1d(f, 0);
  14553. // check convergence
  14554. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14555. GGML_PRINT_DEBUG("converged\n");
  14556. return GGML_OPT_OK;
  14557. }
  14558. // delta-based convergence test
  14559. if (pf != NULL) {
  14560. // need at least params.past iterations to start checking for convergence
  14561. if (params.past <= iter0 + t) {
  14562. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14563. if (fabsf(rate) < params.delta) {
  14564. return GGML_OPT_OK;
  14565. }
  14566. }
  14567. pf[(iter0 + t)%params.past] = fx;
  14568. }
  14569. // check for improvement
  14570. if (params.max_no_improvement > 0) {
  14571. if (fx_best[0] > fx) {
  14572. fx_best[0] = fx;
  14573. n_no_improvement[0] = 0;
  14574. } else {
  14575. ++n_no_improvement[0];
  14576. if (n_no_improvement[0] >= params.max_no_improvement) {
  14577. return GGML_OPT_OK;
  14578. }
  14579. }
  14580. }
  14581. fx_prev[0] = fx;
  14582. {
  14583. const int64_t t_end_cpu = ggml_cycles();
  14584. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14585. UNUSED(t_end_cpu);
  14586. const int64_t t_end_wall = ggml_time_us();
  14587. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14588. UNUSED(t_end_wall);
  14589. }
  14590. }
  14591. return GGML_OPT_DID_NOT_CONVERGE;
  14592. }
  14593. //
  14594. // L-BFGS
  14595. //
  14596. // the L-BFGS implementation below is based on the following implementation:
  14597. //
  14598. // https://github.com/chokkan/liblbfgs
  14599. //
  14600. struct ggml_lbfgs_iteration_data {
  14601. float alpha;
  14602. float ys;
  14603. float * s;
  14604. float * y;
  14605. };
  14606. static enum ggml_opt_result linesearch_backtracking(
  14607. struct ggml_context * ctx,
  14608. const struct ggml_opt_params * params,
  14609. int nx,
  14610. float * x,
  14611. float * fx,
  14612. float * g,
  14613. float * d,
  14614. float * step,
  14615. const float * xp,
  14616. struct ggml_tensor * f,
  14617. struct ggml_cgraph * gf,
  14618. struct ggml_cgraph * gb,
  14619. const int np,
  14620. struct ggml_tensor * ps[]) {
  14621. int count = 0;
  14622. float width = 0.0f;
  14623. float dg = 0.0f;
  14624. float finit = 0.0f;
  14625. float dginit = 0.0f;
  14626. float dgtest = 0.0f;
  14627. const float dec = 0.5f;
  14628. const float inc = 2.1f;
  14629. if (*step <= 0.f) {
  14630. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14631. }
  14632. // compute the initial gradient in the search direction
  14633. ggml_vec_dot_f32(nx, &dginit, g, d);
  14634. // make sure that d points to a descent direction
  14635. if (0 < dginit) {
  14636. return GGML_LINESEARCH_FAIL;
  14637. }
  14638. // initialize local variables
  14639. finit = *fx;
  14640. dgtest = params->lbfgs.ftol*dginit;
  14641. while (true) {
  14642. ggml_vec_cpy_f32(nx, x, xp);
  14643. ggml_vec_mad_f32(nx, x, d, *step);
  14644. // evaluate the function and gradient values
  14645. {
  14646. ggml_opt_set_params(np, ps, x);
  14647. ggml_graph_reset (gf);
  14648. ggml_set_f32 (f->grad, 1.0f);
  14649. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14650. ggml_opt_get_grad(np, ps, g);
  14651. *fx = ggml_get_f32_1d(f, 0);
  14652. }
  14653. ++count;
  14654. if (*fx > finit + (*step)*dgtest) {
  14655. width = dec;
  14656. } else {
  14657. // Armijo condition is satisfied
  14658. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14659. return count;
  14660. }
  14661. ggml_vec_dot_f32(nx, &dg, g, d);
  14662. // check the Wolfe condition
  14663. if (dg < params->lbfgs.wolfe * dginit) {
  14664. width = inc;
  14665. } else {
  14666. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14667. // regular Wolfe conditions
  14668. return count;
  14669. }
  14670. if(dg > -params->lbfgs.wolfe*dginit) {
  14671. width = dec;
  14672. } else {
  14673. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14674. return count;
  14675. }
  14676. return count;
  14677. }
  14678. }
  14679. if (*step < params->lbfgs.min_step) {
  14680. return GGML_LINESEARCH_MINIMUM_STEP;
  14681. }
  14682. if (*step > params->lbfgs.max_step) {
  14683. return GGML_LINESEARCH_MAXIMUM_STEP;
  14684. }
  14685. if (params->lbfgs.max_linesearch <= count) {
  14686. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14687. }
  14688. (*step) *= width;
  14689. }
  14690. return GGML_LINESEARCH_FAIL;
  14691. }
  14692. static enum ggml_opt_result ggml_opt_lbfgs(
  14693. struct ggml_context * ctx,
  14694. struct ggml_opt_context * opt,
  14695. struct ggml_opt_params params,
  14696. struct ggml_tensor * f,
  14697. struct ggml_cgraph * gf,
  14698. struct ggml_cgraph * gb) {
  14699. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14700. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14701. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14702. return GGML_OPT_INVALID_WOLFE;
  14703. }
  14704. }
  14705. const int m = params.lbfgs.m;
  14706. // these will store the parameters we want to optimize
  14707. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14708. int np = 0;
  14709. int nx = 0;
  14710. for (int i = 0; i < gf->n_nodes; ++i) {
  14711. if (gf->nodes[i]->is_param) {
  14712. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14713. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14714. ps[np++] = gf->nodes[i];
  14715. nx += ggml_nelements(gf->nodes[i]);
  14716. }
  14717. }
  14718. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14719. int iter = opt->iter;
  14720. ggml_opt_init(ctx, opt, params, nx);
  14721. opt->iter = iter;
  14722. }
  14723. float * x = opt->lbfgs.x->data; // current parameters
  14724. float * xp = opt->lbfgs.xp->data; // previous parameters
  14725. float * g = opt->lbfgs.g->data; // current gradient
  14726. float * gp = opt->lbfgs.gp->data; // previous gradient
  14727. float * d = opt->lbfgs.d->data; // search direction
  14728. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14729. float fx = 0.0f; // cost function value
  14730. float xnorm = 0.0f; // ||x||
  14731. float gnorm = 0.0f; // ||g||
  14732. // initialize x from the graph nodes
  14733. ggml_opt_get_params(np, ps, x);
  14734. // the L-BFGS memory
  14735. float * lm_alpha = opt->lbfgs.lmal->data;
  14736. float * lm_ys = opt->lbfgs.lmys->data;
  14737. float * lm_s = opt->lbfgs.lms->data;
  14738. float * lm_y = opt->lbfgs.lmy->data;
  14739. // evaluate the function value and its gradient
  14740. {
  14741. ggml_opt_set_params(np, ps, x);
  14742. ggml_graph_reset (gf);
  14743. ggml_set_f32 (f->grad, 1.0f);
  14744. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14745. ggml_opt_get_grad(np, ps, g);
  14746. fx = ggml_get_f32_1d(f, 0);
  14747. }
  14748. // search direction = -gradient
  14749. ggml_vec_neg_f32(nx, d, g);
  14750. // ||x||, ||g||
  14751. ggml_vec_norm_f32(nx, &xnorm, x);
  14752. ggml_vec_norm_f32(nx, &gnorm, g);
  14753. if (xnorm < 1.0f) {
  14754. xnorm = 1.0f;
  14755. }
  14756. // already optimized
  14757. if (gnorm/xnorm <= params.lbfgs.eps) {
  14758. return GGML_OPT_OK;
  14759. }
  14760. if (opt->just_initialized) {
  14761. if (pf) {
  14762. pf[0] = fx;
  14763. }
  14764. opt->lbfgs.fx_best = fx;
  14765. // initial step
  14766. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14767. opt->lbfgs.j = 0;
  14768. opt->lbfgs.k = 1;
  14769. opt->lbfgs.end = 0;
  14770. opt->lbfgs.n_no_improvement = 0;
  14771. opt->just_initialized = false;
  14772. }
  14773. float * fx_best = &opt->lbfgs.fx_best;
  14774. float * step = &opt->lbfgs.step;
  14775. int * j = &opt->lbfgs.j;
  14776. int * k = &opt->lbfgs.k;
  14777. int * end = &opt->lbfgs.end;
  14778. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14779. int ls = 0;
  14780. int bound = 0;
  14781. float ys = 0.0f;
  14782. float yy = 0.0f;
  14783. float beta = 0.0f;
  14784. int it = 0;
  14785. while (true) {
  14786. // store the current position and gradient vectors
  14787. ggml_vec_cpy_f32(nx, xp, x);
  14788. ggml_vec_cpy_f32(nx, gp, g);
  14789. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14790. if (ls < 0) {
  14791. // linesearch failed - go back to the previous point and return
  14792. ggml_vec_cpy_f32(nx, x, xp);
  14793. ggml_vec_cpy_f32(nx, g, gp);
  14794. return ls;
  14795. }
  14796. ggml_vec_norm_f32(nx, &xnorm, x);
  14797. ggml_vec_norm_f32(nx, &gnorm, g);
  14798. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14799. if (xnorm < 1.0f) {
  14800. xnorm = 1.0f;
  14801. }
  14802. if (gnorm/xnorm <= params.lbfgs.eps) {
  14803. // converged
  14804. return GGML_OPT_OK;
  14805. }
  14806. // delta-based convergence test
  14807. if (pf != NULL) {
  14808. // need at least params.past iterations to start checking for convergence
  14809. if (params.past <= k[0]) {
  14810. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14811. if (fabsf(rate) < params.delta) {
  14812. return GGML_OPT_OK;
  14813. }
  14814. }
  14815. pf[k[0]%params.past] = fx;
  14816. }
  14817. // check for improvement
  14818. if (params.max_no_improvement > 0) {
  14819. if (fx < fx_best[0]) {
  14820. fx_best[0] = fx;
  14821. n_no_improvement[0] = 0;
  14822. } else {
  14823. n_no_improvement[0]++;
  14824. if (n_no_improvement[0] >= params.max_no_improvement) {
  14825. return GGML_OPT_OK;
  14826. }
  14827. }
  14828. }
  14829. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14830. // reached the maximum number of iterations
  14831. return GGML_OPT_DID_NOT_CONVERGE;
  14832. }
  14833. // update vectors s and y:
  14834. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14835. // y_{k+1} = g_{k+1} - g_{k}.
  14836. //
  14837. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14838. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14839. // compute scalars ys and yy:
  14840. // ys = y^t \cdot s -> 1 / \rho.
  14841. // yy = y^t \cdot y.
  14842. //
  14843. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14844. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14845. lm_ys[end[0]] = ys;
  14846. // find new search direction
  14847. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14848. bound = (m <= k[0]) ? m : k[0];
  14849. k[0]++;
  14850. it++;
  14851. end[0] = (end[0] + 1)%m;
  14852. // initialize search direction with -g
  14853. ggml_vec_neg_f32(nx, d, g);
  14854. j[0] = end[0];
  14855. for (int i = 0; i < bound; ++i) {
  14856. j[0] = (j[0] + m - 1) % m;
  14857. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14858. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14859. lm_alpha[j[0]] /= lm_ys[j[0]];
  14860. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14861. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14862. }
  14863. ggml_vec_scale_f32(nx, d, ys/yy);
  14864. for (int i = 0; i < bound; ++i) {
  14865. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14866. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14867. beta /= lm_ys[j[0]];
  14868. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14869. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14870. j[0] = (j[0] + 1)%m;
  14871. }
  14872. step[0] = 1.0;
  14873. }
  14874. return GGML_OPT_DID_NOT_CONVERGE;
  14875. }
  14876. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14877. struct ggml_opt_params result;
  14878. switch (type) {
  14879. case GGML_OPT_ADAM:
  14880. {
  14881. result = (struct ggml_opt_params) {
  14882. .type = GGML_OPT_ADAM,
  14883. .n_threads = 1,
  14884. .past = 0,
  14885. .delta = 1e-5f,
  14886. .max_no_improvement = 100,
  14887. .print_forward_graph = true,
  14888. .print_backward_graph = true,
  14889. .adam = {
  14890. .n_iter = 10000,
  14891. .sched = 1.000f,
  14892. .decay = 0.001f,
  14893. .alpha = 0.001f,
  14894. .beta1 = 0.9f,
  14895. .beta2 = 0.999f,
  14896. .eps = 1e-8f,
  14897. .eps_f = 1e-5f,
  14898. .eps_g = 1e-3f,
  14899. },
  14900. };
  14901. } break;
  14902. case GGML_OPT_LBFGS:
  14903. {
  14904. result = (struct ggml_opt_params) {
  14905. .type = GGML_OPT_LBFGS,
  14906. .n_threads = 1,
  14907. .past = 0,
  14908. .delta = 1e-5f,
  14909. .max_no_improvement = 0,
  14910. .print_forward_graph = true,
  14911. .print_backward_graph = true,
  14912. .lbfgs = {
  14913. .m = 6,
  14914. .n_iter = 100,
  14915. .max_linesearch = 20,
  14916. .eps = 1e-5f,
  14917. .ftol = 1e-4f,
  14918. .wolfe = 0.9f,
  14919. .min_step = 1e-20f,
  14920. .max_step = 1e+20f,
  14921. .linesearch = GGML_LINESEARCH_DEFAULT,
  14922. },
  14923. };
  14924. } break;
  14925. }
  14926. return result;
  14927. }
  14928. GGML_API void ggml_opt_init(
  14929. struct ggml_context * ctx,
  14930. struct ggml_opt_context * opt,
  14931. struct ggml_opt_params params,
  14932. int64_t nx) {
  14933. opt->ctx = ctx;
  14934. opt->params = params;
  14935. opt->iter = 0;
  14936. opt->nx = nx;
  14937. opt->just_initialized = true;
  14938. switch (opt->params.type) {
  14939. case GGML_OPT_ADAM:
  14940. {
  14941. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14942. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14943. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14944. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14945. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14946. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14947. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14948. opt->adam.pf = params.past > 0
  14949. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14950. : NULL;
  14951. ggml_set_zero(opt->adam.x);
  14952. ggml_set_zero(opt->adam.g1);
  14953. ggml_set_zero(opt->adam.g2);
  14954. ggml_set_zero(opt->adam.m);
  14955. ggml_set_zero(opt->adam.v);
  14956. ggml_set_zero(opt->adam.mh);
  14957. ggml_set_zero(opt->adam.vh);
  14958. if (opt->adam.pf) {
  14959. ggml_set_zero(opt->adam.pf);
  14960. }
  14961. } break;
  14962. case GGML_OPT_LBFGS:
  14963. {
  14964. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14965. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14966. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14967. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14968. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14969. opt->lbfgs.pf = params.past > 0
  14970. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14971. : NULL;
  14972. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14973. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14974. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14975. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14976. ggml_set_zero(opt->lbfgs.x);
  14977. ggml_set_zero(opt->lbfgs.xp);
  14978. ggml_set_zero(opt->lbfgs.g);
  14979. ggml_set_zero(opt->lbfgs.gp);
  14980. ggml_set_zero(opt->lbfgs.d);
  14981. if (opt->lbfgs.pf) {
  14982. ggml_set_zero(opt->lbfgs.pf);
  14983. }
  14984. ggml_set_zero(opt->lbfgs.lmal);
  14985. ggml_set_zero(opt->lbfgs.lmys);
  14986. ggml_set_zero(opt->lbfgs.lms);
  14987. ggml_set_zero(opt->lbfgs.lmy);
  14988. } break;
  14989. }
  14990. }
  14991. enum ggml_opt_result ggml_opt(
  14992. struct ggml_context * ctx,
  14993. struct ggml_opt_params params,
  14994. struct ggml_tensor * f) {
  14995. bool free_ctx = false;
  14996. if (ctx == NULL) {
  14997. struct ggml_init_params params_ctx = {
  14998. .mem_size = 16*1024*1024,
  14999. .mem_buffer = NULL,
  15000. .no_alloc = false,
  15001. };
  15002. ctx = ggml_init(params_ctx);
  15003. if (ctx == NULL) {
  15004. return GGML_OPT_NO_CONTEXT;
  15005. }
  15006. free_ctx = true;
  15007. }
  15008. enum ggml_opt_result result = GGML_OPT_OK;
  15009. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15010. ggml_opt_init(ctx, opt, params, 0);
  15011. result = ggml_opt_resume(ctx, opt, f);
  15012. if (free_ctx) {
  15013. ggml_free(ctx);
  15014. }
  15015. return result;
  15016. }
  15017. enum ggml_opt_result ggml_opt_resume(
  15018. struct ggml_context * ctx,
  15019. struct ggml_opt_context * opt,
  15020. struct ggml_tensor * f) {
  15021. // build forward + backward compute graphs
  15022. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15023. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15024. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15025. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15026. *gf = ggml_build_forward (f);
  15027. *gb = ggml_build_backward(ctx, gf, true);
  15028. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15029. }
  15030. enum ggml_opt_result ggml_opt_resume_g(
  15031. struct ggml_context * ctx,
  15032. struct ggml_opt_context * opt,
  15033. struct ggml_tensor * f,
  15034. struct ggml_cgraph * gf,
  15035. struct ggml_cgraph * gb) {
  15036. // build forward + backward compute graphs
  15037. enum ggml_opt_result result = GGML_OPT_OK;
  15038. switch (opt->params.type) {
  15039. case GGML_OPT_ADAM:
  15040. {
  15041. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15042. } break;
  15043. case GGML_OPT_LBFGS:
  15044. {
  15045. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15046. } break;
  15047. }
  15048. if (opt->params.print_forward_graph) {
  15049. ggml_graph_print (gf);
  15050. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15051. }
  15052. if (opt->params.print_backward_graph) {
  15053. ggml_graph_print (gb);
  15054. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15055. }
  15056. return result;
  15057. }
  15058. ////////////////////////////////////////////////////////////////////////////////
  15059. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15060. assert(k % QK4_0 == 0);
  15061. const int nb = k / QK4_0;
  15062. for (int b = 0; b < n; b += k) {
  15063. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15064. quantize_row_q4_0_reference(src + b, y, k);
  15065. for (int i = 0; i < nb; i++) {
  15066. for (int j = 0; j < QK4_0; j += 2) {
  15067. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15068. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15069. hist[vi0]++;
  15070. hist[vi1]++;
  15071. }
  15072. }
  15073. }
  15074. return (n/QK4_0*sizeof(block_q4_0));
  15075. }
  15076. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15077. assert(k % QK4_1 == 0);
  15078. const int nb = k / QK4_1;
  15079. for (int b = 0; b < n; b += k) {
  15080. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15081. quantize_row_q4_1_reference(src + b, y, k);
  15082. for (int i = 0; i < nb; i++) {
  15083. for (int j = 0; j < QK4_1; j += 2) {
  15084. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15085. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15086. hist[vi0]++;
  15087. hist[vi1]++;
  15088. }
  15089. }
  15090. }
  15091. return (n/QK4_1*sizeof(block_q4_1));
  15092. }
  15093. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15094. assert(k % QK5_0 == 0);
  15095. const int nb = k / QK5_0;
  15096. for (int b = 0; b < n; b += k) {
  15097. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15098. quantize_row_q5_0_reference(src + b, y, k);
  15099. for (int i = 0; i < nb; i++) {
  15100. uint32_t qh;
  15101. memcpy(&qh, &y[i].qh, sizeof(qh));
  15102. for (int j = 0; j < QK5_0; j += 2) {
  15103. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15104. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15105. // cast to 16 bins
  15106. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15107. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15108. hist[vi0]++;
  15109. hist[vi1]++;
  15110. }
  15111. }
  15112. }
  15113. return (n/QK5_0*sizeof(block_q5_0));
  15114. }
  15115. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15116. assert(k % QK5_1 == 0);
  15117. const int nb = k / QK5_1;
  15118. for (int b = 0; b < n; b += k) {
  15119. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15120. quantize_row_q5_1_reference(src + b, y, k);
  15121. for (int i = 0; i < nb; i++) {
  15122. uint32_t qh;
  15123. memcpy(&qh, &y[i].qh, sizeof(qh));
  15124. for (int j = 0; j < QK5_1; j += 2) {
  15125. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15126. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15127. // cast to 16 bins
  15128. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15129. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15130. hist[vi0]++;
  15131. hist[vi1]++;
  15132. }
  15133. }
  15134. }
  15135. return (n/QK5_1*sizeof(block_q5_1));
  15136. }
  15137. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15138. assert(k % QK8_0 == 0);
  15139. const int nb = k / QK8_0;
  15140. for (int b = 0; b < n; b += k) {
  15141. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15142. quantize_row_q8_0_reference(src + b, y, k);
  15143. for (int i = 0; i < nb; i++) {
  15144. for (int j = 0; j < QK8_0; ++j) {
  15145. const int8_t vi = y[i].qs[j];
  15146. hist[vi/16 + 8]++;
  15147. }
  15148. }
  15149. }
  15150. return (n/QK8_0*sizeof(block_q8_0));
  15151. }
  15152. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15153. size_t result = 0;
  15154. switch (type) {
  15155. case GGML_TYPE_Q4_0:
  15156. {
  15157. GGML_ASSERT(start % QK4_0 == 0);
  15158. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15159. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15160. } break;
  15161. case GGML_TYPE_Q4_1:
  15162. {
  15163. GGML_ASSERT(start % QK4_1 == 0);
  15164. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15165. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15166. } break;
  15167. case GGML_TYPE_Q5_0:
  15168. {
  15169. GGML_ASSERT(start % QK5_0 == 0);
  15170. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15171. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15172. } break;
  15173. case GGML_TYPE_Q5_1:
  15174. {
  15175. GGML_ASSERT(start % QK5_1 == 0);
  15176. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15177. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15178. } break;
  15179. case GGML_TYPE_Q8_0:
  15180. {
  15181. GGML_ASSERT(start % QK8_0 == 0);
  15182. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15183. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15184. } break;
  15185. #ifdef GGML_USE_K_QUANTS
  15186. case GGML_TYPE_Q2_K:
  15187. {
  15188. GGML_ASSERT(start % QK_K == 0);
  15189. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15190. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15191. } break;
  15192. case GGML_TYPE_Q3_K:
  15193. {
  15194. GGML_ASSERT(start % QK_K == 0);
  15195. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15196. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15197. } break;
  15198. case GGML_TYPE_Q4_K:
  15199. {
  15200. GGML_ASSERT(start % QK_K == 0);
  15201. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15202. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15203. } break;
  15204. case GGML_TYPE_Q5_K:
  15205. {
  15206. GGML_ASSERT(start % QK_K == 0);
  15207. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15208. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15209. } break;
  15210. case GGML_TYPE_Q6_K:
  15211. {
  15212. GGML_ASSERT(start % QK_K == 0);
  15213. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15214. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15215. } break;
  15216. #endif
  15217. case GGML_TYPE_F16:
  15218. {
  15219. int elemsize = sizeof(ggml_fp16_t);
  15220. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15221. result = n * elemsize;
  15222. } break;
  15223. case GGML_TYPE_F32:
  15224. {
  15225. int elemsize = sizeof(float);
  15226. result = n * elemsize;
  15227. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15228. } break;
  15229. default:
  15230. assert(false);
  15231. }
  15232. return result;
  15233. }
  15234. ////////////////////////////////////////////////////////////////////////////////
  15235. int ggml_cpu_has_avx(void) {
  15236. #if defined(__AVX__)
  15237. return 1;
  15238. #else
  15239. return 0;
  15240. #endif
  15241. }
  15242. int ggml_cpu_has_avx2(void) {
  15243. #if defined(__AVX2__)
  15244. return 1;
  15245. #else
  15246. return 0;
  15247. #endif
  15248. }
  15249. int ggml_cpu_has_avx512(void) {
  15250. #if defined(__AVX512F__)
  15251. return 1;
  15252. #else
  15253. return 0;
  15254. #endif
  15255. }
  15256. int ggml_cpu_has_avx512_vbmi(void) {
  15257. #if defined(__AVX512VBMI__)
  15258. return 1;
  15259. #else
  15260. return 0;
  15261. #endif
  15262. }
  15263. int ggml_cpu_has_avx512_vnni(void) {
  15264. #if defined(__AVX512VNNI__)
  15265. return 1;
  15266. #else
  15267. return 0;
  15268. #endif
  15269. }
  15270. int ggml_cpu_has_fma(void) {
  15271. #if defined(__FMA__)
  15272. return 1;
  15273. #else
  15274. return 0;
  15275. #endif
  15276. }
  15277. int ggml_cpu_has_neon(void) {
  15278. #if defined(__ARM_NEON)
  15279. return 1;
  15280. #else
  15281. return 0;
  15282. #endif
  15283. }
  15284. int ggml_cpu_has_arm_fma(void) {
  15285. #if defined(__ARM_FEATURE_FMA)
  15286. return 1;
  15287. #else
  15288. return 0;
  15289. #endif
  15290. }
  15291. int ggml_cpu_has_f16c(void) {
  15292. #if defined(__F16C__)
  15293. return 1;
  15294. #else
  15295. return 0;
  15296. #endif
  15297. }
  15298. int ggml_cpu_has_fp16_va(void) {
  15299. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15300. return 1;
  15301. #else
  15302. return 0;
  15303. #endif
  15304. }
  15305. int ggml_cpu_has_wasm_simd(void) {
  15306. #if defined(__wasm_simd128__)
  15307. return 1;
  15308. #else
  15309. return 0;
  15310. #endif
  15311. }
  15312. int ggml_cpu_has_blas(void) {
  15313. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15314. return 1;
  15315. #else
  15316. return 0;
  15317. #endif
  15318. }
  15319. int ggml_cpu_has_cublas(void) {
  15320. #if defined(GGML_USE_CUBLAS)
  15321. return 1;
  15322. #else
  15323. return 0;
  15324. #endif
  15325. }
  15326. int ggml_cpu_has_clblast(void) {
  15327. #if defined(GGML_USE_CLBLAST)
  15328. return 1;
  15329. #else
  15330. return 0;
  15331. #endif
  15332. }
  15333. int ggml_cpu_has_gpublas(void) {
  15334. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15335. }
  15336. int ggml_cpu_has_sse3(void) {
  15337. #if defined(__SSE3__)
  15338. return 1;
  15339. #else
  15340. return 0;
  15341. #endif
  15342. }
  15343. int ggml_cpu_has_vsx(void) {
  15344. #if defined(__POWER9_VECTOR__)
  15345. return 1;
  15346. #else
  15347. return 0;
  15348. #endif
  15349. }
  15350. ////////////////////////////////////////////////////////////////////////////////