steps.py 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365
  1. import asyncio
  2. import json
  3. import os
  4. import re
  5. import socket
  6. import subprocess
  7. import sys
  8. import threading
  9. import time
  10. import requests
  11. from collections.abc import Sequence
  12. from contextlib import closing
  13. from re import RegexFlag
  14. from typing import Any, Literal, cast
  15. import aiohttp
  16. import numpy as np
  17. import openai
  18. from openai.types.chat import ChatCompletionChunk
  19. from behave import step # pyright: ignore[reportAttributeAccessIssue]
  20. from behave.api.async_step import async_run_until_complete
  21. from prometheus_client import parser
  22. # pyright: reportRedeclaration=false
  23. @step("a server listening on {server_fqdn}:{server_port}")
  24. def step_server_config(context, server_fqdn: str, server_port: str):
  25. context.server_fqdn = server_fqdn
  26. context.server_port = int(server_port)
  27. context.n_threads = None
  28. context.n_gpu_layer = None
  29. if 'PORT' in os.environ:
  30. context.server_port = int(os.environ['PORT'])
  31. print(f"$PORT set, overriding server port with to {context.server_port}")
  32. if 'FQDN' in os.environ:
  33. context.server_fqdn = os.environ['FQDN']
  34. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  35. if 'N_GPU_LAYERS' in os.environ:
  36. context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
  37. print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
  38. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  39. context.model_alias = None
  40. context.model_file = None
  41. context.model_hf_repo = None
  42. context.model_hf_file = None
  43. context.model_url = None
  44. context.n_batch = None
  45. context.n_ubatch = None
  46. context.n_ctx = None
  47. context.n_ga = None
  48. context.n_ga_w = None
  49. context.n_predict = None
  50. context.n_prompts = 0
  51. context.n_server_predict = None
  52. context.slot_save_path = None
  53. context.id_slot = None
  54. context.cache_prompt = None
  55. context.n_slots = None
  56. context.prompt_prefix = None
  57. context.prompt_suffix = None
  58. context.server_api_key = None
  59. context.server_continuous_batching = False
  60. context.server_embeddings = False
  61. context.server_metrics = False
  62. context.server_process = None
  63. context.seed = None
  64. context.draft = None
  65. context.server_seed = None
  66. context.user_api_key = None
  67. context.response_format = None
  68. context.temperature = None
  69. context.lora_file = None
  70. context.tasks_result = []
  71. context.concurrent_tasks = []
  72. context.prompts = []
  73. @step('a model file {hf_file} from HF repo {hf_repo}')
  74. def step_download_hf_model(context, hf_file: str, hf_repo: str):
  75. context.model_hf_repo = hf_repo
  76. context.model_hf_file = hf_file
  77. context.model_file = os.path.basename(hf_file)
  78. @step('a lora adapter file from {lora_file_url}')
  79. def step_download_lora_file(context, lora_file_url: str):
  80. file_name = lora_file_url.split('/').pop()
  81. context.lora_file = f'../../../{file_name}'
  82. with open(context.lora_file, 'wb') as f:
  83. f.write(requests.get(lora_file_url).content)
  84. @step('a model file {model_file}')
  85. def step_model_file(context, model_file: str):
  86. context.model_file = model_file
  87. @step('a model url {model_url}')
  88. def step_model_url(context, model_url: str):
  89. context.model_url = model_url
  90. @step('a model alias {model_alias}')
  91. def step_model_alias(context, model_alias: str):
  92. context.model_alias = model_alias
  93. @step('{seed:d} as server seed')
  94. def step_seed(context, seed: int):
  95. context.server_seed = seed
  96. @step('{ngl:d} GPU offloaded layers')
  97. def step_n_gpu_layer(context, ngl: int):
  98. if 'N_GPU_LAYERS' in os.environ:
  99. new_ngl = int(os.environ['N_GPU_LAYERS'])
  100. if context.debug:
  101. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  102. ngl = new_ngl
  103. context.n_gpu_layer = ngl
  104. @step('{n_threads:d} threads')
  105. def step_n_threads(context, n_threads: int):
  106. context.n_thread = n_threads
  107. @step('{draft:d} as draft')
  108. def step_draft(context, draft: int):
  109. context.draft = draft
  110. @step('{n_ctx:d} KV cache size')
  111. def step_n_ctx(context, n_ctx: int):
  112. context.n_ctx = n_ctx
  113. @step('{n_slots:d} slots')
  114. def step_n_slots(context, n_slots: int):
  115. context.n_slots = n_slots
  116. @step('{n_predict:d} server max tokens to predict')
  117. def step_server_n_predict(context, n_predict: int):
  118. context.n_server_predict = n_predict
  119. @step('{slot_save_path} as slot save path')
  120. def step_slot_save_path(context, slot_save_path: str):
  121. context.slot_save_path = slot_save_path
  122. @step('using slot id {id_slot:d}')
  123. def step_id_slot(context, id_slot: int):
  124. context.id_slot = id_slot
  125. @step('prompt caching is enabled')
  126. def step_enable_prompt_cache(context):
  127. context.cache_prompt = True
  128. @step('continuous batching')
  129. def step_server_continuous_batching(context):
  130. context.server_continuous_batching = True
  131. @step('embeddings extraction')
  132. def step_server_embeddings(context):
  133. context.server_embeddings = True
  134. @step('prometheus compatible metrics exposed')
  135. def step_server_metrics(context):
  136. context.server_metrics = True
  137. @step("the server is starting")
  138. def step_start_server(context):
  139. start_server_background(context)
  140. attempts = 0
  141. max_attempts = 20
  142. if 'GITHUB_ACTIONS' in os.environ:
  143. max_attempts *= 2
  144. addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
  145. family, typ, proto, _, sockaddr = addrs[0]
  146. while True:
  147. with closing(socket.socket(family, typ, proto)) as sock:
  148. result = sock.connect_ex(sockaddr)
  149. if result == 0:
  150. print("\x1b[33;46mserver started!\x1b[0m")
  151. return
  152. attempts += 1
  153. if attempts > max_attempts:
  154. assert False, "server not started"
  155. print(f"waiting for server to start, connect error code = {result}...")
  156. time.sleep(0.1)
  157. @step("the server is {expecting_status}")
  158. @async_run_until_complete
  159. async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
  160. match expecting_status:
  161. case 'healthy':
  162. await wait_for_slots_status(context, context.base_url, 200,
  163. timeout=30)
  164. case 'ready' | 'idle':
  165. await wait_for_slots_status(context, context.base_url, 200,
  166. timeout=30,
  167. params={'fail_on_no_slot': 1},
  168. slots_idle=context.n_slots,
  169. slots_processing=0)
  170. case 'busy':
  171. await wait_for_slots_status(context, context.base_url, 503,
  172. params={'fail_on_no_slot': 1},
  173. slots_idle=0,
  174. slots_processing=context.n_slots)
  175. case _:
  176. assert False, "unknown status"
  177. @step('all slots are {expected_slot_status_string}')
  178. @async_run_until_complete
  179. async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
  180. match expected_slot_status_string:
  181. case 'idle':
  182. expected_slot_status = 0
  183. case 'busy':
  184. expected_slot_status = 1
  185. case _:
  186. assert False, "unknown status"
  187. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  188. for slot_id in range(context.n_slots)]
  189. await request_slots_status(context, expected_slots)
  190. @step('a completion request with {api_error} api error')
  191. @async_run_until_complete
  192. async def step_request_completion(context, api_error: Literal['raised'] | str):
  193. expect_api_error = api_error == 'raised'
  194. seeds = await completions_seed(context, num_seeds=1)
  195. completion = await request_completion(context.prompts.pop(),
  196. seeds[0] if seeds is not None else seeds,
  197. context.base_url,
  198. debug=context.debug,
  199. n_predict=context.n_predict,
  200. cache_prompt=context.cache_prompt,
  201. id_slot=context.id_slot,
  202. expect_api_error=expect_api_error,
  203. user_api_key=context.user_api_key,
  204. temperature=context.temperature)
  205. context.tasks_result.append(completion)
  206. if context.debug:
  207. print(f"Completion response: {completion}")
  208. if expect_api_error:
  209. assert completion == 401, f"completion must be an 401 status code: {completion}"
  210. @step('{predicted_n:d} tokens are predicted matching {re_content}')
  211. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  212. context.completion = context.tasks_result.pop()
  213. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  214. @step('{predicted_n:d} tokens are predicted')
  215. def step_n_tokens_predicted(context, predicted_n):
  216. context.completion = context.tasks_result.pop()
  217. assert_n_tokens_predicted(context.completion, predicted_n)
  218. @step('all predictions are equal')
  219. @async_run_until_complete
  220. async def step_predictions_equal(context):
  221. n_completions = await gather_tasks_results(context)
  222. assert n_completions >= 2, "need at least 2 completions"
  223. assert_all_predictions_equal(context.tasks_result)
  224. context.tasks_result = []
  225. @step('all predictions are different')
  226. @async_run_until_complete
  227. async def step_predictions_different(context):
  228. n_completions = await gather_tasks_results(context)
  229. assert n_completions >= 2, "need at least 2 completions"
  230. assert_all_predictions_different(context.tasks_result)
  231. context.tasks_result = []
  232. @step('all token probabilities are equal')
  233. @async_run_until_complete
  234. async def step_token_probabilities_equal(context):
  235. n_completions = await gather_tasks_results(context)
  236. assert n_completions >= 2, "need at least 2 completions"
  237. assert_all_token_probabilities_equal(context.tasks_result)
  238. context.tasks_result = []
  239. @step('the completion is truncated')
  240. def step_assert_completion_truncated(context):
  241. step_assert_completion_truncated(context, '')
  242. @step('the completion is {truncated} truncated')
  243. def step_assert_completion_truncated(context, truncated):
  244. truncated = truncated != "not"
  245. assert context.completion['truncated'] == truncated, f'{context.completion}'
  246. @step('{n_prompt:d} prompt tokens are processed')
  247. def step_impl(context, n_prompt):
  248. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  249. @step('a user prompt {user_prompt}')
  250. def step_user_prompt(context, user_prompt):
  251. context.prompts.append(user_prompt)
  252. context.n_prompts = len(context.prompts)
  253. @step('a system prompt {system_prompt}')
  254. def step_system_prompt(context, system_prompt):
  255. context.system_prompt = system_prompt
  256. @step('a model {model}')
  257. def step_model(context, model):
  258. context.model = model
  259. @step('{max_tokens:d} max tokens to predict')
  260. def step_max_tokens(context, max_tokens):
  261. context.n_predict = max_tokens
  262. @step('a response format {response_format}')
  263. def step_response_format(context, response_format):
  264. context.response_format = json.loads(response_format)
  265. @step('{temperature:f} temperature')
  266. def step_temperature(context, temperature):
  267. context.temperature = temperature
  268. @step('streaming is {enable_streaming}')
  269. def step_streaming(context, enable_streaming):
  270. context.enable_streaming = enable_streaming == 'enabled'
  271. @step('a user api key {user_api_key}')
  272. def step_user_api_key(context, user_api_key):
  273. context.user_api_key = user_api_key
  274. @step('no user api key')
  275. def step_no_user_api_key(context):
  276. context.user_api_key = None
  277. @step('a user api key ')
  278. def step_no_user_api_key_space(context):
  279. context.user_api_key = None
  280. @step('a server api key {server_api_key}')
  281. def step_server_api_key(context, server_api_key):
  282. context.server_api_key = server_api_key
  283. @step('{n_junk:d} as number of junk')
  284. def step_n_junk(context, n_junk):
  285. context.n_junk = n_junk
  286. @step('{n_batch:d} as batch size')
  287. def step_n_batch(context, n_batch):
  288. context.n_batch = n_batch
  289. @step('{n_ubatch:d} as ubatch size')
  290. def step_n_ubatch(context, n_ubatch):
  291. context.n_ubatch = n_ubatch
  292. @step('{seed:d} as seed')
  293. def step_seed(context, seed):
  294. if context.seed is None:
  295. context.seed = [seed]
  296. else:
  297. context.seed.append(seed)
  298. @step('BOS token is {bos:d}')
  299. def step_bos_token(context, bos):
  300. context.bos = bos
  301. @step('a prefix prompt')
  302. def step_prompt_prefix(context):
  303. context.prompt_prefix = context_text(context)
  304. @step('a junk suffix prompt')
  305. def step_prompt_junk_suffix(context):
  306. context.prompt_junk_suffix = context_text(context)
  307. @step('a suffix prompt')
  308. def step_prompt_suffix(context):
  309. context.prompt_suffix = context_text(context)
  310. @step('{n_ga:d} group attention factor'
  311. ' to extend context size through self-extend')
  312. def step_impl(context, n_ga):
  313. context.n_ga = n_ga
  314. @step('{n_ga_w:d} group attention width to extend context size through self-extend')
  315. def step_impl(context, n_ga_w):
  316. context.n_ga_w = n_ga_w
  317. @step('a passkey prompt template')
  318. def step_prompt_passkey(context):
  319. context.prompt_passkey = context_text(context)
  320. @step('{n_prompts:d} fixed prompts')
  321. def step_fixed_prompts(context, n_prompts):
  322. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  323. context.n_prompts = n_prompts
  324. @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  325. def step_prompt_passkey(context, passkey, i_pos):
  326. prompt = ""
  327. for i in range(context.n_junk):
  328. if i % context.n_junk == i_pos:
  329. prompt += context.prompt_passkey # the passkey is already substituted
  330. prompt += context.prompt_junk_suffix
  331. if context.debug:
  332. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  333. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
  334. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  335. context.n_prompts = len(context.prompts)
  336. @step('an OAI compatible chat completions request with {api_error} api error')
  337. @async_run_until_complete
  338. async def step_oai_chat_completions(context, api_error):
  339. if context.debug:
  340. print(f"Submitting OAI compatible completions request...")
  341. expect_api_error = api_error == 'raised'
  342. seeds = await completions_seed(context, num_seeds=1),
  343. completion = await oai_chat_completions(context.prompts.pop(),
  344. seeds[0] if seeds is not None else seeds,
  345. context.system_prompt,
  346. context.base_url,
  347. '/v1/chat',
  348. False,
  349. model=context.model if hasattr(context, 'model') else None,
  350. n_predict=context.n_predict
  351. if hasattr(context, 'n_predict') else None,
  352. enable_streaming=context.enable_streaming
  353. if hasattr(context, 'enable_streaming') else None,
  354. response_format=context.response_format
  355. if hasattr(context, 'response_format') else None,
  356. user_api_key=context.user_api_key
  357. if hasattr(context, 'user_api_key') else None,
  358. expect_api_error=expect_api_error)
  359. context.tasks_result.append(completion)
  360. if context.debug:
  361. print(f"Completion response: {completion}")
  362. if expect_api_error:
  363. assert completion == 401, f"completion must be an 401 status code: {completion}"
  364. if context.debug:
  365. print(f"Completion response: {completion}")
  366. @step('a prompt')
  367. def step_a_prompt(context):
  368. context.prompts.append(context_text(context))
  369. context.n_prompts = len(context.prompts)
  370. @step('a prompt {prompt}')
  371. def step_a_prompt_prompt(context, prompt):
  372. context.prompts.append(prompt)
  373. context.n_prompts = len(context.prompts)
  374. @step('{num_prompts:d} prompts {prompt} with seed {seed:d}')
  375. def step_many_prompts(context, num_prompts, prompt, seed):
  376. if context.seed is None:
  377. context.seed = []
  378. for _ in range(num_prompts):
  379. context.seed.append(seed)
  380. context.prompts.append(prompt)
  381. context.n_prompts = len(context.prompts)
  382. @step('concurrent completion requests')
  383. @async_run_until_complete()
  384. async def step_concurrent_completion_requests(context):
  385. await concurrent_requests(
  386. context,
  387. request_completion,
  388. # prompt is inserted automatically
  389. context.base_url,
  390. debug=context.debug,
  391. prompt_prefix=context.prompt_prefix,
  392. prompt_suffix=context.prompt_suffix,
  393. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  394. user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None,
  395. temperature=context.temperature,
  396. )
  397. @step('concurrent OAI completions requests')
  398. @async_run_until_complete
  399. async def step_oai_chat_completions(context):
  400. await concurrent_requests(context, oai_chat_completions,
  401. # user_prompt is inserted automatically
  402. context.system_prompt,
  403. context.base_url,
  404. '/v1/chat/completions',
  405. True, # async_client
  406. model=context.model
  407. if hasattr(context, 'model') else None,
  408. n_predict=context.n_predict
  409. if hasattr(context, 'n_predict') else None,
  410. enable_streaming=context.enable_streaming
  411. if hasattr(context, 'enable_streaming') else None,
  412. response_format=context.response_format
  413. if hasattr(context, 'response_format') else None,
  414. user_api_key=context.user_api_key
  415. if hasattr(context, 'user_api_key') else None)
  416. @step('concurrent OAI completions requests no v1')
  417. @async_run_until_complete
  418. async def step_oai_chat_completions(context):
  419. await concurrent_requests(context, oai_chat_completions,
  420. # user_prompt is inserted automatically
  421. context.system_prompt,
  422. context.base_url,
  423. '/chat/completions',
  424. True, # async_client
  425. model=context.model
  426. if hasattr(context, 'model') else None,
  427. n_predict=context.n_predict
  428. if hasattr(context, 'n_predict') else None,
  429. enable_streaming=context.enable_streaming
  430. if hasattr(context, 'enable_streaming') else None,
  431. response_format=context.response_format
  432. if hasattr(context, 'response_format') else None,
  433. user_api_key=context.user_api_key
  434. if hasattr(context, 'user_api_key') else None)
  435. @step('all prompts are predicted')
  436. @async_run_until_complete
  437. async def step_all_prompts_are_predicted(context):
  438. await all_prompts_are_predicted(context)
  439. @step('all prompts are predicted with {n_expected_predicted:d} tokens')
  440. @async_run_until_complete
  441. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  442. await all_prompts_are_predicted(context, n_expected_predicted)
  443. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  444. n_completions = await gather_tasks_results(context)
  445. assert n_completions > 0
  446. for i in range(n_completions):
  447. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  448. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  449. @step('embeddings are computed for')
  450. @async_run_until_complete
  451. async def step_compute_embedding(context):
  452. context.n_prompts = 1
  453. context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url)
  454. @step('all embeddings are the same')
  455. @async_run_until_complete
  456. async def step_all_embeddings_are_the_same(context):
  457. n_embedding_requests = await gather_tasks_results(context)
  458. assert n_embedding_requests > 0
  459. embeddings = []
  460. for i in range(n_embedding_requests):
  461. embedding = context.tasks_result.pop().pop()
  462. embeddings.append(embedding)
  463. assert_embeddings(embedding)
  464. n = len(embeddings)
  465. for i in range(n-1):
  466. for j in range(i+1, n):
  467. embedding1 = np.array(embeddings[i])
  468. embedding2 = np.array(embeddings[j])
  469. if context.debug:
  470. print(f"embedding1: {embedding1[-8:]}")
  471. print(f"embedding2: {embedding2[-8:]}")
  472. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  473. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  474. if context.debug:
  475. print(f"{msg}")
  476. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  477. @step('embeddings are generated')
  478. def step_assert_embeddings(context):
  479. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  480. f"context.n_prompts={context.n_prompts}\n"
  481. f"context.embeddings={context.embeddings}")
  482. for embedding in context.embeddings:
  483. assert_embeddings(embedding)
  484. @step('an OAI compatible embeddings computation request for')
  485. @async_run_until_complete
  486. async def step_oai_compute_embeddings(context):
  487. context.n_prompts = 1
  488. context.embeddings = await request_oai_embeddings(context_text(context), None,
  489. base_url=context.base_url,
  490. user_api_key=context.user_api_key,
  491. model=context.model)
  492. @step('an OAI compatible embeddings computation request for multiple inputs')
  493. @async_run_until_complete
  494. async def step_oai_compute_embeddings_multiple_inputs(context):
  495. context.embeddings = await request_oai_embeddings(context.prompts, None,
  496. base_url=context.base_url,
  497. user_api_key=context.user_api_key,
  498. model=context.model)
  499. context.prompts.clear()
  500. @step('concurrent embedding requests')
  501. @async_run_until_complete()
  502. async def step_concurrent_embedding_requests(context):
  503. await concurrent_requests(context,
  504. request_embedding,
  505. # prompt is inserted automatically
  506. base_url=context.base_url)
  507. @step('concurrent OAI embedding requests')
  508. @async_run_until_complete()
  509. async def step_concurrent_oai_embedding_requests(context):
  510. await concurrent_requests(context,
  511. request_oai_embeddings,
  512. # prompt is inserted automatically
  513. base_url=context.base_url,
  514. async_client=True,
  515. model=context.model)
  516. @step('all embeddings are generated')
  517. @async_run_until_complete()
  518. async def all_embeddings_are_generated(context):
  519. n_embedding_requests = await gather_tasks_results(context)
  520. assert n_embedding_requests == context.n_prompts
  521. for i in range(n_embedding_requests):
  522. assert_embeddings(context.tasks_result.pop().pop())
  523. @step('adding special tokens')
  524. def step_tokenize_set_add_special(context):
  525. context.tokenize_add_special = True
  526. @step('tokenizing')
  527. @async_run_until_complete
  528. async def step_tokenize(context):
  529. context.tokenized_text = context_text(context)
  530. async with aiohttp.ClientSession() as session:
  531. tokenize_args = {
  532. "content": context.tokenized_text,
  533. }
  534. if getattr(context, 'tokenize_add_special', None) is not None:
  535. tokenize_args['add_special'] = context.tokenize_add_special
  536. async with session.post(f'{context.base_url}/tokenize',
  537. json=tokenize_args) as response:
  538. assert response.status == 200
  539. tokenize_json = await response.json()
  540. context.tokens = tokenize_json['tokens']
  541. @step('tokens can be detokenized')
  542. @async_run_until_complete
  543. async def step_detokenize(context):
  544. assert len(context.tokens) > 0
  545. async with aiohttp.ClientSession() as session:
  546. async with session.post(f'{context.base_url}/detokenize',
  547. json={
  548. "tokens": context.tokens,
  549. }) as response:
  550. assert response.status == 200
  551. detokenize_json = await response.json()
  552. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  553. assert context.tokenized_text == detokenize_json['content'].strip()
  554. @step('tokens begin with BOS')
  555. def step_strings_for_tokenization(context):
  556. assert context.tokens[0] == context.bos
  557. @step('tokens do not begin with BOS')
  558. def step_strings_for_tokenization(context):
  559. assert context.tokens[0] != context.bos
  560. @step('first token is removed')
  561. def step_strings_for_tokenization(context):
  562. context.tokens = context.tokens[1:]
  563. @step('an OPTIONS request is sent from {origin}')
  564. @async_run_until_complete
  565. async def step_options_request(context, origin):
  566. async with aiohttp.ClientSession() as session:
  567. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  568. async with session.options(f'{context.base_url}/v1/chat/completions',
  569. headers=headers) as response:
  570. assert response.status == 200
  571. context.options_response = response
  572. @step('CORS header {cors_header} is set to {cors_header_value}')
  573. def step_check_options_header_value(context, cors_header, cors_header_value):
  574. assert context.options_response.headers[cors_header] == cors_header_value
  575. @step('prometheus metrics are exposed')
  576. @async_run_until_complete
  577. async def step_prometheus_metrics_exported(context):
  578. async with aiohttp.ClientSession() as session:
  579. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  580. assert metrics_response.status == 200
  581. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  582. metrics_raw = await metrics_response.text()
  583. metric_exported = False
  584. if context.debug:
  585. print(f"/metrics answer:\n{metrics_raw}")
  586. context.metrics = {}
  587. for metric in parser.text_string_to_metric_families(metrics_raw):
  588. match metric.name:
  589. case "llamacpp:kv_cache_usage_ratio":
  590. assert len(metric.samples) > 0
  591. metric_exported = True
  592. context.metrics[metric.name] = metric
  593. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  594. assert metric_exported, "No metrics exported"
  595. @step('metric {metric_name} is {metric_value:d}')
  596. def step_assert_metric_value(context, metric_name, metric_value):
  597. if metric_name not in context.metrics:
  598. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  599. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  600. @step('available models')
  601. def step_available_models(context):
  602. # openai client always expects an api_key
  603. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  604. openai.base_url = f'{context.base_url}/v1/'
  605. context.models = openai.models.list().data
  606. @step('{n_model:d} models are supported')
  607. def step_supported_models(context, n_model):
  608. if context.debug:
  609. print("server models available:", context.models)
  610. assert len(context.models) == n_model
  611. @step('model {i_model:d} is {param} {preposition} {param_value}')
  612. def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
  613. assert i_model < len(context.models)
  614. model = context.models[i_model]
  615. param_value = param_value.split(' ', 1)[0]
  616. match param:
  617. case 'identified':
  618. value = model.id
  619. case 'trained':
  620. value = str(model.meta["n_ctx_train"])
  621. case _:
  622. assert False, "param {param} not supported"
  623. assert param_value == value, f"model param {param} {value} != {param_value}"
  624. async def concurrent_requests(context, f_completion, *args, **kwargs):
  625. context.n_prompts = len(context.prompts)
  626. if context.debug:
  627. print(f"starting {context.n_prompts} concurrent completion requests...")
  628. assert context.n_prompts > 0
  629. seeds = await completions_seed(context)
  630. assert seeds is not None
  631. for prompt_no in range(context.n_prompts):
  632. shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
  633. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  634. await asyncio.sleep(0.01)
  635. @step('the slot {slot_id:d} is saved with filename "{filename}"')
  636. @async_run_until_complete
  637. async def step_save_slot(context, slot_id, filename):
  638. async with aiohttp.ClientSession() as session:
  639. async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
  640. json={"filename": filename},
  641. headers={"Content-Type": "application/json"}) as response:
  642. context.response = response
  643. @step('the slot {slot_id:d} is restored with filename "{filename}"')
  644. @async_run_until_complete
  645. async def step_restore_slot(context, slot_id, filename):
  646. async with aiohttp.ClientSession() as session:
  647. async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
  648. json={"filename": filename},
  649. headers={"Content-Type": "application/json"}) as response:
  650. context.response = response
  651. @step('the slot {slot_id:d} is erased')
  652. @async_run_until_complete
  653. async def step_erase_slot(context, slot_id):
  654. async with aiohttp.ClientSession() as session:
  655. async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
  656. headers={"Content-Type": "application/json"}) as response:
  657. context.response = response
  658. @step('switch {on_or_off} lora adapter {lora_id:d}')
  659. @async_run_until_complete
  660. async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
  661. async with aiohttp.ClientSession() as session:
  662. async with session.post(f'{context.base_url}/lora-adapters',
  663. json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
  664. headers={"Content-Type": "application/json"}) as response:
  665. context.response = response
  666. print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}])
  667. @step('the server responds with status code {status_code:d}')
  668. def step_server_responds_with_status_code(context, status_code):
  669. assert context.response.status == status_code
  670. async def request_completion(prompt,
  671. seed,
  672. base_url,
  673. debug=False,
  674. prompt_prefix=None,
  675. prompt_suffix=None,
  676. n_predict=None,
  677. cache_prompt=False,
  678. id_slot=None,
  679. expect_api_error=None,
  680. user_api_key=None,
  681. temperature=None) -> int | dict[str, Any]:
  682. if debug:
  683. print(f"Sending completion request: {prompt}")
  684. origin = "my.super.domain"
  685. headers = {
  686. 'Origin': origin
  687. }
  688. if user_api_key is not None:
  689. if debug:
  690. print(f"Set user_api_key: {user_api_key}")
  691. headers['Authorization'] = f'Bearer {user_api_key}'
  692. async with aiohttp.ClientSession() as session:
  693. async with session.post(f'{base_url}/completion',
  694. json={
  695. "input_prefix": prompt_prefix,
  696. "prompt": prompt,
  697. "input_suffix": prompt_suffix,
  698. "n_predict": n_predict if n_predict is not None else -1,
  699. "cache_prompt": cache_prompt,
  700. "id_slot": id_slot,
  701. "seed": seed if seed is not None else 42,
  702. "temperature": temperature if temperature is not None else 0.8,
  703. "n_probs": 2,
  704. },
  705. headers=headers,
  706. timeout=3600) as response:
  707. if expect_api_error is None or not expect_api_error:
  708. assert response.status == 200
  709. assert response.headers['Access-Control-Allow-Origin'] == origin
  710. return await response.json()
  711. else:
  712. return response.status
  713. async def oai_chat_completions(user_prompt,
  714. seed,
  715. system_prompt,
  716. base_url: str,
  717. base_path: str,
  718. async_client,
  719. debug=False,
  720. temperature=None,
  721. model=None,
  722. n_predict=None,
  723. enable_streaming=None,
  724. response_format=None,
  725. user_api_key=None,
  726. expect_api_error=None) -> int | dict[str, Any]:
  727. if debug:
  728. print(f"Sending OAI Chat completions request: {user_prompt}")
  729. # openai client always expects an api key
  730. user_api_key = user_api_key if user_api_key is not None else 'nope'
  731. seed = seed if seed is not None else 42
  732. enable_streaming = enable_streaming if enable_streaming is not None else False
  733. payload = {
  734. "messages": [
  735. {
  736. "role": "system",
  737. "content": system_prompt,
  738. },
  739. {
  740. "role": "user",
  741. "content": user_prompt,
  742. }
  743. ],
  744. "model": model,
  745. "max_tokens": n_predict,
  746. "stream": enable_streaming,
  747. "temperature": temperature if temperature is not None else 0.0,
  748. "seed": seed,
  749. }
  750. if response_format is not None:
  751. payload['response_format'] = response_format
  752. completion_response = {
  753. 'content': '',
  754. 'timings': {
  755. 'predicted_n': 0,
  756. 'prompt_n': 0
  757. }
  758. }
  759. if async_client:
  760. origin = 'llama.cpp'
  761. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  762. async with aiohttp.ClientSession() as session:
  763. async with session.post(f'{base_url}{base_path}',
  764. json=payload,
  765. headers=headers) as response:
  766. if enable_streaming:
  767. assert response.status == 200
  768. assert response.headers['Access-Control-Allow-Origin'] == origin
  769. assert response.headers['Content-Type'] == "text/event-stream"
  770. event_received = True
  771. while event_received:
  772. event_received = False
  773. async for line_in_bytes in response.content:
  774. line = line_in_bytes.decode('utf-8')
  775. line = line.rstrip('\n').rstrip('\r')
  776. if line == '':
  777. continue
  778. event_data = line.split(': ', 1)
  779. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  780. chunk_raw = event_data[1]
  781. chunk = json.loads(chunk_raw)
  782. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  783. delta = chunk['choices'][0]['delta']
  784. if 'content' in delta:
  785. completion_response['content'] += delta['content']
  786. completion_response['timings']['predicted_n'] += 1
  787. else:
  788. if expect_api_error is None or not expect_api_error:
  789. assert response.status == 200
  790. assert response.headers['Access-Control-Allow-Origin'] == origin
  791. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  792. chat_completion_raw = await response.json()
  793. completion_response = {
  794. 'content': chat_completion_raw['choices'][0]['message'],
  795. 'timings': {
  796. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  797. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  798. }
  799. }
  800. else:
  801. return response.status
  802. else:
  803. try:
  804. openai.api_key = user_api_key
  805. openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
  806. assert model is not None
  807. chat_completion = openai.chat.completions.create(
  808. messages=payload['messages'],
  809. model=model,
  810. max_tokens=n_predict,
  811. stream=enable_streaming,
  812. response_format=payload.get('response_format') or openai.NOT_GIVEN,
  813. seed=seed,
  814. temperature=payload['temperature']
  815. )
  816. except openai.AuthenticationError as e:
  817. if expect_api_error is not None and expect_api_error:
  818. return 401
  819. else:
  820. assert False, f'error raised: {e}'
  821. if enable_streaming:
  822. chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
  823. for chunk in chat_completion:
  824. assert len(chunk.choices) == 1
  825. delta = chunk.choices[0].delta
  826. if delta.content is not None:
  827. completion_response['content'] += delta.content
  828. completion_response['timings']['predicted_n'] += 1
  829. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  830. else:
  831. assert len(chat_completion.choices) == 1
  832. assert chat_completion.usage is not None
  833. completion_response = {
  834. 'content': chat_completion.choices[0].message.content,
  835. 'timings': {
  836. 'predicted_n': chat_completion.usage.completion_tokens,
  837. 'prompt_n': chat_completion.usage.prompt_tokens
  838. },
  839. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  840. }
  841. if debug:
  842. print("OAI response formatted to llama.cpp:", completion_response)
  843. return completion_response
  844. async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
  845. async with aiohttp.ClientSession() as session:
  846. async with session.post(f'{base_url}/embedding',
  847. json={
  848. "content": content,
  849. }) as response:
  850. assert response.status == 200
  851. response_json = await response.json()
  852. return [response_json['embedding']]
  853. async def request_oai_embeddings(input, seed,
  854. base_url=None, user_api_key=None,
  855. model=None, async_client=False) -> list[list[float]]:
  856. # openai client always expects an api_key
  857. user_api_key = user_api_key if user_api_key is not None else 'nope'
  858. if async_client:
  859. origin = 'llama.cpp'
  860. headers=[]
  861. if user_api_key is not None:
  862. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  863. async with aiohttp.ClientSession() as session:
  864. async with session.post(f'{base_url}/v1/embeddings',
  865. json={
  866. "input": input,
  867. "model": model,
  868. },
  869. headers=headers,
  870. timeout=3600) as response:
  871. assert response.status == 200, f"received status code not expected: {response.status}"
  872. assert response.headers['Access-Control-Allow-Origin'] == origin
  873. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  874. response_json = await response.json()
  875. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  876. assert response_json['object'] == 'list'
  877. if isinstance(input, Sequence):
  878. embeddings = []
  879. for an_oai_embeddings in response_json['data']:
  880. embeddings.append(an_oai_embeddings['embedding'])
  881. else:
  882. embeddings = [response_json['data']['embedding']]
  883. return embeddings
  884. else:
  885. openai.api_key = user_api_key
  886. openai.base_url = f'{base_url}/v1/'
  887. assert model is not None
  888. oai_embeddings = openai.embeddings.create(
  889. model=model,
  890. input=input,
  891. )
  892. return [e.embedding for e in oai_embeddings.data]
  893. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  894. content = completion_response['content']
  895. n_predicted = completion_response['timings']['predicted_n']
  896. assert len(content) > 0, "no token predicted"
  897. if re_content is not None:
  898. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  899. matches = p.finditer(content)
  900. last_match = 0
  901. highlighted = ''
  902. for match in matches:
  903. start, end = match.span()
  904. highlighted += content[last_match: start]
  905. highlighted += '\x1b[33m'
  906. highlighted += content[start: end]
  907. highlighted += '\x1b[0m'
  908. last_match = end
  909. highlighted += content[last_match:]
  910. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  911. print(f"Checking completion response: {highlighted}")
  912. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  913. if expected_predicted_n and expected_predicted_n > 0:
  914. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  915. f' {n_predicted} <> {expected_predicted_n}')
  916. def assert_all_predictions_equal(completion_responses):
  917. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  918. for i, response_i in enumerate(completion_responses):
  919. content_i = response_i['content']
  920. print(f"content {i}: {content_i}")
  921. for i, response_i in enumerate(completion_responses):
  922. content_i = response_i['content']
  923. for j, response_j in enumerate(completion_responses):
  924. if i == j:
  925. continue
  926. content_j = response_j['content']
  927. assert content_i == content_j, "contents not equal"
  928. def assert_all_predictions_different(completion_responses):
  929. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  930. for i, response_i in enumerate(completion_responses):
  931. content_i = response_i['content']
  932. print(f"content {i}: {content_i}")
  933. for i, response_i in enumerate(completion_responses):
  934. content_i = response_i['content']
  935. for j, response_j in enumerate(completion_responses):
  936. if i == j:
  937. continue
  938. content_j = response_j['content']
  939. assert content_i != content_j, "contents not different"
  940. def assert_all_token_probabilities_equal(completion_responses):
  941. n_predict = len(completion_responses[0]['completion_probabilities'])
  942. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  943. for pos in range(n_predict):
  944. for i, response_i in enumerate(completion_responses):
  945. probs_i = response_i['completion_probabilities'][pos]['probs']
  946. print(f"pos {pos}, probs {i}: {probs_i}")
  947. for pos in range(n_predict):
  948. for i, response_i in enumerate(completion_responses):
  949. probs_i = response_i['completion_probabilities'][pos]['probs']
  950. for j, response_j in enumerate(completion_responses):
  951. if i == j:
  952. continue
  953. probs_j = response_j['completion_probabilities'][pos]['probs']
  954. assert probs_i == probs_j, "contents not equal"
  955. async def gather_tasks_results(context):
  956. n_tasks = len(context.concurrent_tasks)
  957. if context.debug:
  958. print(f"Waiting for all {n_tasks} tasks results...")
  959. for task_no in range(n_tasks):
  960. context.tasks_result.append(await context.concurrent_tasks.pop())
  961. n_completions = len(context.tasks_result)
  962. return n_completions
  963. async def wait_for_slots_status(context,
  964. base_url,
  965. expected_http_status_code,
  966. timeout=3,
  967. params=None,
  968. slots_idle=None,
  969. slots_processing=None):
  970. if context.debug:
  971. print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}")
  972. interval = 0.5
  973. counter = 0
  974. if 'GITHUB_ACTIONS' in os.environ:
  975. timeout *= 2
  976. async with aiohttp.ClientSession() as session:
  977. while True:
  978. async with await session.get(f'{base_url}/slots', params=params) as slots_response:
  979. status_code = slots_response.status
  980. slots = await slots_response.json()
  981. if context.debug:
  982. print(f"slots responses {slots}\n")
  983. if status_code == 503 and status_code == expected_http_status_code:
  984. return
  985. if status_code == 200 and status_code == expected_http_status_code:
  986. n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots)
  987. n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots)
  988. if ((slots_idle is None or slots_idle == n_slots_idle)
  989. and (slots_processing is None or slots_processing == n_slots_processing)):
  990. return
  991. await asyncio.sleep(interval)
  992. counter += interval
  993. if counter >= timeout:
  994. # Sometimes health requests are triggered after completions are predicted
  995. if expected_http_status_code == 503:
  996. if len(context.tasks_result) == 0:
  997. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  998. " busy health check missed, probably too fast inference\x1b[0m\n")
  999. n_completions = await gather_tasks_results(context)
  1000. if n_completions > 0:
  1001. return
  1002. assert False, f'slots check timeout exceeded {counter}s>={timeout}'
  1003. def assert_embeddings(embeddings):
  1004. assert len(embeddings) > 0
  1005. embeddings_computed = False
  1006. for emb in embeddings:
  1007. if not isinstance(emb, float):
  1008. assert False, f"Bad embeddings: {embeddings}"
  1009. if emb != 0:
  1010. embeddings_computed = True
  1011. assert embeddings_computed, f"Embeddings: {embeddings}"
  1012. async def request_slots_status(context, expected_slots):
  1013. async with aiohttp.ClientSession() as session:
  1014. async with await session.get(f'{context.base_url}/slots') as slots_response:
  1015. assert slots_response.status == 200
  1016. slots = await slots_response.json()
  1017. assert_slots_status(slots, expected_slots)
  1018. def assert_slots_status(slots, expected_slots):
  1019. assert len(slots) == len(expected_slots)
  1020. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  1021. for key in expected:
  1022. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  1023. f" expected[{key}] != slot[{key}]"
  1024. f" = {expected[key]} != {slot[key]}")
  1025. async def completions_seed(context, num_seeds=None):
  1026. if hasattr(context, "seed") and context.seed is not None:
  1027. assert len(context.seed) == context.n_prompts
  1028. if num_seeds is None:
  1029. num_seeds = context.n_prompts
  1030. assert num_seeds <= context.n_prompts
  1031. seeds = context.seed[:num_seeds]
  1032. context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None
  1033. return seeds
  1034. if hasattr(context, "server_seed") and context.server_seed is not None:
  1035. if num_seeds is None:
  1036. return [context.server_seed] * context.n_prompts
  1037. else:
  1038. return [context.server_seed] * num_seeds
  1039. return None
  1040. def context_text(context):
  1041. return context.text.replace('\r', '')
  1042. def start_server_background(context):
  1043. if os.name == 'nt':
  1044. context.server_path = '../../../build/bin/Release/llama-server.exe'
  1045. else:
  1046. context.server_path = '../../../build/bin/llama-server'
  1047. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  1048. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  1049. server_listen_addr = context.server_fqdn
  1050. server_args = [
  1051. '--host', server_listen_addr,
  1052. '--port', context.server_port,
  1053. ]
  1054. if context.model_file:
  1055. server_args.extend(['--model', context.model_file])
  1056. if context.model_url:
  1057. server_args.extend(['--model-url', context.model_url])
  1058. if context.model_hf_repo:
  1059. server_args.extend(['--hf-repo', context.model_hf_repo])
  1060. if context.model_hf_file:
  1061. server_args.extend(['--hf-file', context.model_hf_file])
  1062. if context.n_batch:
  1063. server_args.extend(['--batch-size', context.n_batch])
  1064. if context.n_ubatch:
  1065. server_args.extend(['--ubatch-size', context.n_ubatch])
  1066. if context.n_threads:
  1067. server_args.extend(['--threads', context.threads])
  1068. if context.n_gpu_layer:
  1069. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  1070. if context.draft is not None:
  1071. server_args.extend(['--draft', context.draft])
  1072. if context.server_continuous_batching:
  1073. server_args.append('--cont-batching')
  1074. if context.server_embeddings:
  1075. server_args.append('--embedding')
  1076. if context.server_metrics:
  1077. server_args.append('--metrics')
  1078. if context.model_alias:
  1079. server_args.extend(['--alias', context.model_alias])
  1080. if context.n_ctx:
  1081. server_args.extend(['--ctx-size', context.n_ctx])
  1082. if context.n_slots:
  1083. server_args.extend(['--parallel', context.n_slots])
  1084. if context.n_server_predict:
  1085. server_args.extend(['--n-predict', context.n_server_predict])
  1086. if context.slot_save_path:
  1087. server_args.extend(['--slot-save-path', context.slot_save_path])
  1088. if context.server_api_key:
  1089. server_args.extend(['--api-key', context.server_api_key])
  1090. if context.n_ga:
  1091. server_args.extend(['--grp-attn-n', context.n_ga])
  1092. if context.n_ga_w:
  1093. server_args.extend(['--grp-attn-w', context.n_ga_w])
  1094. if context.debug:
  1095. server_args.append('--verbose')
  1096. if context.lora_file:
  1097. server_args.extend(['--lora', context.lora_file])
  1098. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  1099. server_args.extend(['--log-format', "text"])
  1100. args = [str(arg) for arg in [context.server_path, *server_args]]
  1101. print(f"bench: starting server with: {' '.join(args)}")
  1102. flags = 0
  1103. if 'nt' == os.name:
  1104. flags |= subprocess.DETACHED_PROCESS
  1105. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  1106. flags |= subprocess.CREATE_NO_WINDOW
  1107. pkwargs = {
  1108. 'creationflags': flags,
  1109. 'stdout': subprocess.PIPE,
  1110. 'stderr': subprocess.PIPE
  1111. }
  1112. context.server_process = subprocess.Popen(
  1113. [str(arg) for arg in [context.server_path, *server_args]],
  1114. **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
  1115. def server_log(in_stream, out_stream):
  1116. for line in iter(in_stream.readline, b''):
  1117. print(line.decode('utf-8'), end='', file=out_stream)
  1118. thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
  1119. thread_stdout.start()
  1120. thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
  1121. thread_stderr.start()
  1122. print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")