| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365 |
- import asyncio
- import json
- import os
- import re
- import socket
- import subprocess
- import sys
- import threading
- import time
- import requests
- from collections.abc import Sequence
- from contextlib import closing
- from re import RegexFlag
- from typing import Any, Literal, cast
- import aiohttp
- import numpy as np
- import openai
- from openai.types.chat import ChatCompletionChunk
- from behave import step # pyright: ignore[reportAttributeAccessIssue]
- from behave.api.async_step import async_run_until_complete
- from prometheus_client import parser
- # pyright: reportRedeclaration=false
- @step("a server listening on {server_fqdn}:{server_port}")
- def step_server_config(context, server_fqdn: str, server_port: str):
- context.server_fqdn = server_fqdn
- context.server_port = int(server_port)
- context.n_threads = None
- context.n_gpu_layer = None
- if 'PORT' in os.environ:
- context.server_port = int(os.environ['PORT'])
- print(f"$PORT set, overriding server port with to {context.server_port}")
- if 'FQDN' in os.environ:
- context.server_fqdn = os.environ['FQDN']
- print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
- if 'N_GPU_LAYERS' in os.environ:
- context.n_gpu_layer = int(os.environ['N_GPU_LAYERS'])
- print(f"$N_GPU_LAYERS set, overriding n_gpu_layer with to {context.n_gpu_layer}")
- context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
- context.model_alias = None
- context.model_file = None
- context.model_hf_repo = None
- context.model_hf_file = None
- context.model_url = None
- context.n_batch = None
- context.n_ubatch = None
- context.n_ctx = None
- context.n_ga = None
- context.n_ga_w = None
- context.n_predict = None
- context.n_prompts = 0
- context.n_server_predict = None
- context.slot_save_path = None
- context.id_slot = None
- context.cache_prompt = None
- context.n_slots = None
- context.prompt_prefix = None
- context.prompt_suffix = None
- context.server_api_key = None
- context.server_continuous_batching = False
- context.server_embeddings = False
- context.server_metrics = False
- context.server_process = None
- context.seed = None
- context.draft = None
- context.server_seed = None
- context.user_api_key = None
- context.response_format = None
- context.temperature = None
- context.lora_file = None
- context.tasks_result = []
- context.concurrent_tasks = []
- context.prompts = []
- @step('a model file {hf_file} from HF repo {hf_repo}')
- def step_download_hf_model(context, hf_file: str, hf_repo: str):
- context.model_hf_repo = hf_repo
- context.model_hf_file = hf_file
- context.model_file = os.path.basename(hf_file)
- @step('a lora adapter file from {lora_file_url}')
- def step_download_lora_file(context, lora_file_url: str):
- file_name = lora_file_url.split('/').pop()
- context.lora_file = f'../../../{file_name}'
- with open(context.lora_file, 'wb') as f:
- f.write(requests.get(lora_file_url).content)
- @step('a model file {model_file}')
- def step_model_file(context, model_file: str):
- context.model_file = model_file
- @step('a model url {model_url}')
- def step_model_url(context, model_url: str):
- context.model_url = model_url
- @step('a model alias {model_alias}')
- def step_model_alias(context, model_alias: str):
- context.model_alias = model_alias
- @step('{seed:d} as server seed')
- def step_seed(context, seed: int):
- context.server_seed = seed
- @step('{ngl:d} GPU offloaded layers')
- def step_n_gpu_layer(context, ngl: int):
- if 'N_GPU_LAYERS' in os.environ:
- new_ngl = int(os.environ['N_GPU_LAYERS'])
- if context.debug:
- print(f"-ngl upgraded from {ngl} to {new_ngl}")
- ngl = new_ngl
- context.n_gpu_layer = ngl
- @step('{n_threads:d} threads')
- def step_n_threads(context, n_threads: int):
- context.n_thread = n_threads
- @step('{draft:d} as draft')
- def step_draft(context, draft: int):
- context.draft = draft
- @step('{n_ctx:d} KV cache size')
- def step_n_ctx(context, n_ctx: int):
- context.n_ctx = n_ctx
- @step('{n_slots:d} slots')
- def step_n_slots(context, n_slots: int):
- context.n_slots = n_slots
- @step('{n_predict:d} server max tokens to predict')
- def step_server_n_predict(context, n_predict: int):
- context.n_server_predict = n_predict
- @step('{slot_save_path} as slot save path')
- def step_slot_save_path(context, slot_save_path: str):
- context.slot_save_path = slot_save_path
- @step('using slot id {id_slot:d}')
- def step_id_slot(context, id_slot: int):
- context.id_slot = id_slot
- @step('prompt caching is enabled')
- def step_enable_prompt_cache(context):
- context.cache_prompt = True
- @step('continuous batching')
- def step_server_continuous_batching(context):
- context.server_continuous_batching = True
- @step('embeddings extraction')
- def step_server_embeddings(context):
- context.server_embeddings = True
- @step('prometheus compatible metrics exposed')
- def step_server_metrics(context):
- context.server_metrics = True
- @step("the server is starting")
- def step_start_server(context):
- start_server_background(context)
- attempts = 0
- max_attempts = 20
- if 'GITHUB_ACTIONS' in os.environ:
- max_attempts *= 2
- addrs = socket.getaddrinfo(context.server_fqdn, context.server_port, type=socket.SOCK_STREAM)
- family, typ, proto, _, sockaddr = addrs[0]
- while True:
- with closing(socket.socket(family, typ, proto)) as sock:
- result = sock.connect_ex(sockaddr)
- if result == 0:
- print("\x1b[33;46mserver started!\x1b[0m")
- return
- attempts += 1
- if attempts > max_attempts:
- assert False, "server not started"
- print(f"waiting for server to start, connect error code = {result}...")
- time.sleep(0.1)
- @step("the server is {expecting_status}")
- @async_run_until_complete
- async def step_wait_for_the_server_to_be_started(context, expecting_status: Literal['healthy', 'ready', 'idle', 'busy'] | str):
- match expecting_status:
- case 'healthy':
- await wait_for_slots_status(context, context.base_url, 200,
- timeout=30)
- case 'ready' | 'idle':
- await wait_for_slots_status(context, context.base_url, 200,
- timeout=30,
- params={'fail_on_no_slot': 1},
- slots_idle=context.n_slots,
- slots_processing=0)
- case 'busy':
- await wait_for_slots_status(context, context.base_url, 503,
- params={'fail_on_no_slot': 1},
- slots_idle=0,
- slots_processing=context.n_slots)
- case _:
- assert False, "unknown status"
- @step('all slots are {expected_slot_status_string}')
- @async_run_until_complete
- async def step_all_slots_status(context, expected_slot_status_string: Literal['idle', 'busy'] | str):
- match expected_slot_status_string:
- case 'idle':
- expected_slot_status = 0
- case 'busy':
- expected_slot_status = 1
- case _:
- assert False, "unknown status"
- expected_slots = [{'id': slot_id, 'state': expected_slot_status}
- for slot_id in range(context.n_slots)]
- await request_slots_status(context, expected_slots)
- @step('a completion request with {api_error} api error')
- @async_run_until_complete
- async def step_request_completion(context, api_error: Literal['raised'] | str):
- expect_api_error = api_error == 'raised'
- seeds = await completions_seed(context, num_seeds=1)
- completion = await request_completion(context.prompts.pop(),
- seeds[0] if seeds is not None else seeds,
- context.base_url,
- debug=context.debug,
- n_predict=context.n_predict,
- cache_prompt=context.cache_prompt,
- id_slot=context.id_slot,
- expect_api_error=expect_api_error,
- user_api_key=context.user_api_key,
- temperature=context.temperature)
- context.tasks_result.append(completion)
- if context.debug:
- print(f"Completion response: {completion}")
- if expect_api_error:
- assert completion == 401, f"completion must be an 401 status code: {completion}"
- @step('{predicted_n:d} tokens are predicted matching {re_content}')
- def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
- context.completion = context.tasks_result.pop()
- assert_n_tokens_predicted(context.completion, predicted_n, re_content)
- @step('{predicted_n:d} tokens are predicted')
- def step_n_tokens_predicted(context, predicted_n):
- context.completion = context.tasks_result.pop()
- assert_n_tokens_predicted(context.completion, predicted_n)
- @step('all predictions are equal')
- @async_run_until_complete
- async def step_predictions_equal(context):
- n_completions = await gather_tasks_results(context)
- assert n_completions >= 2, "need at least 2 completions"
- assert_all_predictions_equal(context.tasks_result)
- context.tasks_result = []
- @step('all predictions are different')
- @async_run_until_complete
- async def step_predictions_different(context):
- n_completions = await gather_tasks_results(context)
- assert n_completions >= 2, "need at least 2 completions"
- assert_all_predictions_different(context.tasks_result)
- context.tasks_result = []
- @step('all token probabilities are equal')
- @async_run_until_complete
- async def step_token_probabilities_equal(context):
- n_completions = await gather_tasks_results(context)
- assert n_completions >= 2, "need at least 2 completions"
- assert_all_token_probabilities_equal(context.tasks_result)
- context.tasks_result = []
- @step('the completion is truncated')
- def step_assert_completion_truncated(context):
- step_assert_completion_truncated(context, '')
- @step('the completion is {truncated} truncated')
- def step_assert_completion_truncated(context, truncated):
- truncated = truncated != "not"
- assert context.completion['truncated'] == truncated, f'{context.completion}'
- @step('{n_prompt:d} prompt tokens are processed')
- def step_impl(context, n_prompt):
- assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
- @step('a user prompt {user_prompt}')
- def step_user_prompt(context, user_prompt):
- context.prompts.append(user_prompt)
- context.n_prompts = len(context.prompts)
- @step('a system prompt {system_prompt}')
- def step_system_prompt(context, system_prompt):
- context.system_prompt = system_prompt
- @step('a model {model}')
- def step_model(context, model):
- context.model = model
- @step('{max_tokens:d} max tokens to predict')
- def step_max_tokens(context, max_tokens):
- context.n_predict = max_tokens
- @step('a response format {response_format}')
- def step_response_format(context, response_format):
- context.response_format = json.loads(response_format)
- @step('{temperature:f} temperature')
- def step_temperature(context, temperature):
- context.temperature = temperature
- @step('streaming is {enable_streaming}')
- def step_streaming(context, enable_streaming):
- context.enable_streaming = enable_streaming == 'enabled'
- @step('a user api key {user_api_key}')
- def step_user_api_key(context, user_api_key):
- context.user_api_key = user_api_key
- @step('no user api key')
- def step_no_user_api_key(context):
- context.user_api_key = None
- @step('a user api key ')
- def step_no_user_api_key_space(context):
- context.user_api_key = None
- @step('a server api key {server_api_key}')
- def step_server_api_key(context, server_api_key):
- context.server_api_key = server_api_key
- @step('{n_junk:d} as number of junk')
- def step_n_junk(context, n_junk):
- context.n_junk = n_junk
- @step('{n_batch:d} as batch size')
- def step_n_batch(context, n_batch):
- context.n_batch = n_batch
- @step('{n_ubatch:d} as ubatch size')
- def step_n_ubatch(context, n_ubatch):
- context.n_ubatch = n_ubatch
- @step('{seed:d} as seed')
- def step_seed(context, seed):
- if context.seed is None:
- context.seed = [seed]
- else:
- context.seed.append(seed)
- @step('BOS token is {bos:d}')
- def step_bos_token(context, bos):
- context.bos = bos
- @step('a prefix prompt')
- def step_prompt_prefix(context):
- context.prompt_prefix = context_text(context)
- @step('a junk suffix prompt')
- def step_prompt_junk_suffix(context):
- context.prompt_junk_suffix = context_text(context)
- @step('a suffix prompt')
- def step_prompt_suffix(context):
- context.prompt_suffix = context_text(context)
- @step('{n_ga:d} group attention factor'
- ' to extend context size through self-extend')
- def step_impl(context, n_ga):
- context.n_ga = n_ga
- @step('{n_ga_w:d} group attention width to extend context size through self-extend')
- def step_impl(context, n_ga_w):
- context.n_ga_w = n_ga_w
- @step('a passkey prompt template')
- def step_prompt_passkey(context):
- context.prompt_passkey = context_text(context)
- @step('{n_prompts:d} fixed prompts')
- def step_fixed_prompts(context, n_prompts):
- context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
- context.n_prompts = n_prompts
- @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
- def step_prompt_passkey(context, passkey, i_pos):
- prompt = ""
- for i in range(context.n_junk):
- if i % context.n_junk == i_pos:
- prompt += context.prompt_passkey # the passkey is already substituted
- prompt += context.prompt_junk_suffix
- if context.debug:
- passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
- print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```")
- context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
- context.n_prompts = len(context.prompts)
- @step('an OAI compatible chat completions request with {api_error} api error')
- @async_run_until_complete
- async def step_oai_chat_completions(context, api_error):
- if context.debug:
- print(f"Submitting OAI compatible completions request...")
- expect_api_error = api_error == 'raised'
- seeds = await completions_seed(context, num_seeds=1),
- completion = await oai_chat_completions(context.prompts.pop(),
- seeds[0] if seeds is not None else seeds,
- context.system_prompt,
- context.base_url,
- '/v1/chat',
- False,
- model=context.model if hasattr(context, 'model') else None,
- n_predict=context.n_predict
- if hasattr(context, 'n_predict') else None,
- enable_streaming=context.enable_streaming
- if hasattr(context, 'enable_streaming') else None,
- response_format=context.response_format
- if hasattr(context, 'response_format') else None,
- user_api_key=context.user_api_key
- if hasattr(context, 'user_api_key') else None,
- expect_api_error=expect_api_error)
- context.tasks_result.append(completion)
- if context.debug:
- print(f"Completion response: {completion}")
- if expect_api_error:
- assert completion == 401, f"completion must be an 401 status code: {completion}"
- if context.debug:
- print(f"Completion response: {completion}")
- @step('a prompt')
- def step_a_prompt(context):
- context.prompts.append(context_text(context))
- context.n_prompts = len(context.prompts)
- @step('a prompt {prompt}')
- def step_a_prompt_prompt(context, prompt):
- context.prompts.append(prompt)
- context.n_prompts = len(context.prompts)
- @step('{num_prompts:d} prompts {prompt} with seed {seed:d}')
- def step_many_prompts(context, num_prompts, prompt, seed):
- if context.seed is None:
- context.seed = []
- for _ in range(num_prompts):
- context.seed.append(seed)
- context.prompts.append(prompt)
- context.n_prompts = len(context.prompts)
- @step('concurrent completion requests')
- @async_run_until_complete()
- async def step_concurrent_completion_requests(context):
- await concurrent_requests(
- context,
- request_completion,
- # prompt is inserted automatically
- context.base_url,
- debug=context.debug,
- prompt_prefix=context.prompt_prefix,
- prompt_suffix=context.prompt_suffix,
- n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
- user_api_key=context.user_api_key if hasattr(context, 'user_api_key') else None,
- temperature=context.temperature,
- )
- @step('concurrent OAI completions requests')
- @async_run_until_complete
- async def step_oai_chat_completions(context):
- await concurrent_requests(context, oai_chat_completions,
- # user_prompt is inserted automatically
- context.system_prompt,
- context.base_url,
- '/v1/chat/completions',
- True, # async_client
- model=context.model
- if hasattr(context, 'model') else None,
- n_predict=context.n_predict
- if hasattr(context, 'n_predict') else None,
- enable_streaming=context.enable_streaming
- if hasattr(context, 'enable_streaming') else None,
- response_format=context.response_format
- if hasattr(context, 'response_format') else None,
- user_api_key=context.user_api_key
- if hasattr(context, 'user_api_key') else None)
- @step('concurrent OAI completions requests no v1')
- @async_run_until_complete
- async def step_oai_chat_completions(context):
- await concurrent_requests(context, oai_chat_completions,
- # user_prompt is inserted automatically
- context.system_prompt,
- context.base_url,
- '/chat/completions',
- True, # async_client
- model=context.model
- if hasattr(context, 'model') else None,
- n_predict=context.n_predict
- if hasattr(context, 'n_predict') else None,
- enable_streaming=context.enable_streaming
- if hasattr(context, 'enable_streaming') else None,
- response_format=context.response_format
- if hasattr(context, 'response_format') else None,
- user_api_key=context.user_api_key
- if hasattr(context, 'user_api_key') else None)
- @step('all prompts are predicted')
- @async_run_until_complete
- async def step_all_prompts_are_predicted(context):
- await all_prompts_are_predicted(context)
- @step('all prompts are predicted with {n_expected_predicted:d} tokens')
- @async_run_until_complete
- async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
- await all_prompts_are_predicted(context, n_expected_predicted)
- async def all_prompts_are_predicted(context, expected_predicted_n=None):
- n_completions = await gather_tasks_results(context)
- assert n_completions > 0
- for i in range(n_completions):
- assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
- assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
- @step('embeddings are computed for')
- @async_run_until_complete
- async def step_compute_embedding(context):
- context.n_prompts = 1
- context.embeddings = await request_embedding(context_text(context), None, base_url=context.base_url)
- @step('all embeddings are the same')
- @async_run_until_complete
- async def step_all_embeddings_are_the_same(context):
- n_embedding_requests = await gather_tasks_results(context)
- assert n_embedding_requests > 0
- embeddings = []
- for i in range(n_embedding_requests):
- embedding = context.tasks_result.pop().pop()
- embeddings.append(embedding)
- assert_embeddings(embedding)
- n = len(embeddings)
- for i in range(n-1):
- for j in range(i+1, n):
- embedding1 = np.array(embeddings[i])
- embedding2 = np.array(embeddings[j])
- if context.debug:
- print(f"embedding1: {embedding1[-8:]}")
- print(f"embedding2: {embedding2[-8:]}")
- similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
- msg = f"Similarity between {i} and {j}: {similarity:.10f}"
- if context.debug:
- print(f"{msg}")
- assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
- @step('embeddings are generated')
- def step_assert_embeddings(context):
- assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
- f"context.n_prompts={context.n_prompts}\n"
- f"context.embeddings={context.embeddings}")
- for embedding in context.embeddings:
- assert_embeddings(embedding)
- @step('an OAI compatible embeddings computation request for')
- @async_run_until_complete
- async def step_oai_compute_embeddings(context):
- context.n_prompts = 1
- context.embeddings = await request_oai_embeddings(context_text(context), None,
- base_url=context.base_url,
- user_api_key=context.user_api_key,
- model=context.model)
- @step('an OAI compatible embeddings computation request for multiple inputs')
- @async_run_until_complete
- async def step_oai_compute_embeddings_multiple_inputs(context):
- context.embeddings = await request_oai_embeddings(context.prompts, None,
- base_url=context.base_url,
- user_api_key=context.user_api_key,
- model=context.model)
- context.prompts.clear()
- @step('concurrent embedding requests')
- @async_run_until_complete()
- async def step_concurrent_embedding_requests(context):
- await concurrent_requests(context,
- request_embedding,
- # prompt is inserted automatically
- base_url=context.base_url)
- @step('concurrent OAI embedding requests')
- @async_run_until_complete()
- async def step_concurrent_oai_embedding_requests(context):
- await concurrent_requests(context,
- request_oai_embeddings,
- # prompt is inserted automatically
- base_url=context.base_url,
- async_client=True,
- model=context.model)
- @step('all embeddings are generated')
- @async_run_until_complete()
- async def all_embeddings_are_generated(context):
- n_embedding_requests = await gather_tasks_results(context)
- assert n_embedding_requests == context.n_prompts
- for i in range(n_embedding_requests):
- assert_embeddings(context.tasks_result.pop().pop())
- @step('adding special tokens')
- def step_tokenize_set_add_special(context):
- context.tokenize_add_special = True
- @step('tokenizing')
- @async_run_until_complete
- async def step_tokenize(context):
- context.tokenized_text = context_text(context)
- async with aiohttp.ClientSession() as session:
- tokenize_args = {
- "content": context.tokenized_text,
- }
- if getattr(context, 'tokenize_add_special', None) is not None:
- tokenize_args['add_special'] = context.tokenize_add_special
- async with session.post(f'{context.base_url}/tokenize',
- json=tokenize_args) as response:
- assert response.status == 200
- tokenize_json = await response.json()
- context.tokens = tokenize_json['tokens']
- @step('tokens can be detokenized')
- @async_run_until_complete
- async def step_detokenize(context):
- assert len(context.tokens) > 0
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{context.base_url}/detokenize',
- json={
- "tokens": context.tokens,
- }) as response:
- assert response.status == 200
- detokenize_json = await response.json()
- # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
- assert context.tokenized_text == detokenize_json['content'].strip()
- @step('tokens begin with BOS')
- def step_strings_for_tokenization(context):
- assert context.tokens[0] == context.bos
- @step('tokens do not begin with BOS')
- def step_strings_for_tokenization(context):
- assert context.tokens[0] != context.bos
- @step('first token is removed')
- def step_strings_for_tokenization(context):
- context.tokens = context.tokens[1:]
- @step('an OPTIONS request is sent from {origin}')
- @async_run_until_complete
- async def step_options_request(context, origin):
- async with aiohttp.ClientSession() as session:
- headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
- async with session.options(f'{context.base_url}/v1/chat/completions',
- headers=headers) as response:
- assert response.status == 200
- context.options_response = response
- @step('CORS header {cors_header} is set to {cors_header_value}')
- def step_check_options_header_value(context, cors_header, cors_header_value):
- assert context.options_response.headers[cors_header] == cors_header_value
- @step('prometheus metrics are exposed')
- @async_run_until_complete
- async def step_prometheus_metrics_exported(context):
- async with aiohttp.ClientSession() as session:
- async with await session.get(f'{context.base_url}/metrics') as metrics_response:
- assert metrics_response.status == 200
- assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
- metrics_raw = await metrics_response.text()
- metric_exported = False
- if context.debug:
- print(f"/metrics answer:\n{metrics_raw}")
- context.metrics = {}
- for metric in parser.text_string_to_metric_families(metrics_raw):
- match metric.name:
- case "llamacpp:kv_cache_usage_ratio":
- assert len(metric.samples) > 0
- metric_exported = True
- context.metrics[metric.name] = metric
- assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
- assert metric_exported, "No metrics exported"
- @step('metric {metric_name} is {metric_value:d}')
- def step_assert_metric_value(context, metric_name, metric_value):
- if metric_name not in context.metrics:
- assert False, f"no metric {metric_name} in {context.metrics.keys()}"
- assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
- @step('available models')
- def step_available_models(context):
- # openai client always expects an api_key
- openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
- openai.base_url = f'{context.base_url}/v1/'
- context.models = openai.models.list().data
- @step('{n_model:d} models are supported')
- def step_supported_models(context, n_model):
- if context.debug:
- print("server models available:", context.models)
- assert len(context.models) == n_model
- @step('model {i_model:d} is {param} {preposition} {param_value}')
- def step_supported_models(context, i_model: int, param: Literal['identified', 'trained'] | str, preposition: str, param_value: str):
- assert i_model < len(context.models)
- model = context.models[i_model]
- param_value = param_value.split(' ', 1)[0]
- match param:
- case 'identified':
- value = model.id
- case 'trained':
- value = str(model.meta["n_ctx_train"])
- case _:
- assert False, "param {param} not supported"
- assert param_value == value, f"model param {param} {value} != {param_value}"
- async def concurrent_requests(context, f_completion, *args, **kwargs):
- context.n_prompts = len(context.prompts)
- if context.debug:
- print(f"starting {context.n_prompts} concurrent completion requests...")
- assert context.n_prompts > 0
- seeds = await completions_seed(context)
- assert seeds is not None
- for prompt_no in range(context.n_prompts):
- shifted_args = [context.prompts.pop(), seeds[prompt_no], *args]
- context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
- await asyncio.sleep(0.01)
- @step('the slot {slot_id:d} is saved with filename "{filename}"')
- @async_run_until_complete
- async def step_save_slot(context, slot_id, filename):
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{context.base_url}/slots/{slot_id}?action=save',
- json={"filename": filename},
- headers={"Content-Type": "application/json"}) as response:
- context.response = response
- @step('the slot {slot_id:d} is restored with filename "{filename}"')
- @async_run_until_complete
- async def step_restore_slot(context, slot_id, filename):
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{context.base_url}/slots/{slot_id}?action=restore',
- json={"filename": filename},
- headers={"Content-Type": "application/json"}) as response:
- context.response = response
- @step('the slot {slot_id:d} is erased')
- @async_run_until_complete
- async def step_erase_slot(context, slot_id):
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{context.base_url}/slots/{slot_id}?action=erase',
- headers={"Content-Type": "application/json"}) as response:
- context.response = response
- @step('switch {on_or_off} lora adapter {lora_id:d}')
- @async_run_until_complete
- async def toggle_lora_adapter(context, on_or_off: str, lora_id: int):
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{context.base_url}/lora-adapters',
- json=[{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}],
- headers={"Content-Type": "application/json"}) as response:
- context.response = response
- print([{'id': lora_id, 'scale': 1 if on_or_off == 'on' else 0}])
- @step('the server responds with status code {status_code:d}')
- def step_server_responds_with_status_code(context, status_code):
- assert context.response.status == status_code
- async def request_completion(prompt,
- seed,
- base_url,
- debug=False,
- prompt_prefix=None,
- prompt_suffix=None,
- n_predict=None,
- cache_prompt=False,
- id_slot=None,
- expect_api_error=None,
- user_api_key=None,
- temperature=None) -> int | dict[str, Any]:
- if debug:
- print(f"Sending completion request: {prompt}")
- origin = "my.super.domain"
- headers = {
- 'Origin': origin
- }
- if user_api_key is not None:
- if debug:
- print(f"Set user_api_key: {user_api_key}")
- headers['Authorization'] = f'Bearer {user_api_key}'
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{base_url}/completion',
- json={
- "input_prefix": prompt_prefix,
- "prompt": prompt,
- "input_suffix": prompt_suffix,
- "n_predict": n_predict if n_predict is not None else -1,
- "cache_prompt": cache_prompt,
- "id_slot": id_slot,
- "seed": seed if seed is not None else 42,
- "temperature": temperature if temperature is not None else 0.8,
- "n_probs": 2,
- },
- headers=headers,
- timeout=3600) as response:
- if expect_api_error is None or not expect_api_error:
- assert response.status == 200
- assert response.headers['Access-Control-Allow-Origin'] == origin
- return await response.json()
- else:
- return response.status
- async def oai_chat_completions(user_prompt,
- seed,
- system_prompt,
- base_url: str,
- base_path: str,
- async_client,
- debug=False,
- temperature=None,
- model=None,
- n_predict=None,
- enable_streaming=None,
- response_format=None,
- user_api_key=None,
- expect_api_error=None) -> int | dict[str, Any]:
- if debug:
- print(f"Sending OAI Chat completions request: {user_prompt}")
- # openai client always expects an api key
- user_api_key = user_api_key if user_api_key is not None else 'nope'
- seed = seed if seed is not None else 42
- enable_streaming = enable_streaming if enable_streaming is not None else False
- payload = {
- "messages": [
- {
- "role": "system",
- "content": system_prompt,
- },
- {
- "role": "user",
- "content": user_prompt,
- }
- ],
- "model": model,
- "max_tokens": n_predict,
- "stream": enable_streaming,
- "temperature": temperature if temperature is not None else 0.0,
- "seed": seed,
- }
- if response_format is not None:
- payload['response_format'] = response_format
- completion_response = {
- 'content': '',
- 'timings': {
- 'predicted_n': 0,
- 'prompt_n': 0
- }
- }
- if async_client:
- origin = 'llama.cpp'
- headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{base_url}{base_path}',
- json=payload,
- headers=headers) as response:
- if enable_streaming:
- assert response.status == 200
- assert response.headers['Access-Control-Allow-Origin'] == origin
- assert response.headers['Content-Type'] == "text/event-stream"
- event_received = True
- while event_received:
- event_received = False
- async for line_in_bytes in response.content:
- line = line_in_bytes.decode('utf-8')
- line = line.rstrip('\n').rstrip('\r')
- if line == '':
- continue
- event_data = line.split(': ', 1)
- assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
- chunk_raw = event_data[1]
- chunk = json.loads(chunk_raw)
- assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
- delta = chunk['choices'][0]['delta']
- if 'content' in delta:
- completion_response['content'] += delta['content']
- completion_response['timings']['predicted_n'] += 1
- else:
- if expect_api_error is None or not expect_api_error:
- assert response.status == 200
- assert response.headers['Access-Control-Allow-Origin'] == origin
- assert response.headers['Content-Type'] == "application/json; charset=utf-8"
- chat_completion_raw = await response.json()
- completion_response = {
- 'content': chat_completion_raw['choices'][0]['message'],
- 'timings': {
- 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
- 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
- }
- }
- else:
- return response.status
- else:
- try:
- openai.api_key = user_api_key
- openai.base_url = f'{base_url}{base_path.removesuffix("chat")}'
- assert model is not None
- chat_completion = openai.chat.completions.create(
- messages=payload['messages'],
- model=model,
- max_tokens=n_predict,
- stream=enable_streaming,
- response_format=payload.get('response_format') or openai.NOT_GIVEN,
- seed=seed,
- temperature=payload['temperature']
- )
- except openai.AuthenticationError as e:
- if expect_api_error is not None and expect_api_error:
- return 401
- else:
- assert False, f'error raised: {e}'
- if enable_streaming:
- chat_completion = cast(openai.Stream[ChatCompletionChunk], chat_completion)
- for chunk in chat_completion:
- assert len(chunk.choices) == 1
- delta = chunk.choices[0].delta
- if delta.content is not None:
- completion_response['content'] += delta.content
- completion_response['timings']['predicted_n'] += 1
- completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
- else:
- assert len(chat_completion.choices) == 1
- assert chat_completion.usage is not None
- completion_response = {
- 'content': chat_completion.choices[0].message.content,
- 'timings': {
- 'predicted_n': chat_completion.usage.completion_tokens,
- 'prompt_n': chat_completion.usage.prompt_tokens
- },
- 'truncated': chat_completion.choices[0].finish_reason != 'stop'
- }
- if debug:
- print("OAI response formatted to llama.cpp:", completion_response)
- return completion_response
- async def request_embedding(content, seed, base_url=None) -> list[list[float]]:
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{base_url}/embedding',
- json={
- "content": content,
- }) as response:
- assert response.status == 200
- response_json = await response.json()
- return [response_json['embedding']]
- async def request_oai_embeddings(input, seed,
- base_url=None, user_api_key=None,
- model=None, async_client=False) -> list[list[float]]:
- # openai client always expects an api_key
- user_api_key = user_api_key if user_api_key is not None else 'nope'
- if async_client:
- origin = 'llama.cpp'
- headers=[]
- if user_api_key is not None:
- headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
- async with aiohttp.ClientSession() as session:
- async with session.post(f'{base_url}/v1/embeddings',
- json={
- "input": input,
- "model": model,
- },
- headers=headers,
- timeout=3600) as response:
- assert response.status == 200, f"received status code not expected: {response.status}"
- assert response.headers['Access-Control-Allow-Origin'] == origin
- assert response.headers['Content-Type'] == "application/json; charset=utf-8"
- response_json = await response.json()
- assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
- assert response_json['object'] == 'list'
- if isinstance(input, Sequence):
- embeddings = []
- for an_oai_embeddings in response_json['data']:
- embeddings.append(an_oai_embeddings['embedding'])
- else:
- embeddings = [response_json['data']['embedding']]
- return embeddings
- else:
- openai.api_key = user_api_key
- openai.base_url = f'{base_url}/v1/'
- assert model is not None
- oai_embeddings = openai.embeddings.create(
- model=model,
- input=input,
- )
- return [e.embedding for e in oai_embeddings.data]
- def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
- content = completion_response['content']
- n_predicted = completion_response['timings']['predicted_n']
- assert len(content) > 0, "no token predicted"
- if re_content is not None:
- p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
- matches = p.finditer(content)
- last_match = 0
- highlighted = ''
- for match in matches:
- start, end = match.span()
- highlighted += content[last_match: start]
- highlighted += '\x1b[33m'
- highlighted += content[start: end]
- highlighted += '\x1b[0m'
- last_match = end
- highlighted += content[last_match:]
- if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
- print(f"Checking completion response: {highlighted}")
- assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
- if expected_predicted_n and expected_predicted_n > 0:
- assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
- f' {n_predicted} <> {expected_predicted_n}')
- def assert_all_predictions_equal(completion_responses):
- if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
- for i, response_i in enumerate(completion_responses):
- content_i = response_i['content']
- print(f"content {i}: {content_i}")
- for i, response_i in enumerate(completion_responses):
- content_i = response_i['content']
- for j, response_j in enumerate(completion_responses):
- if i == j:
- continue
- content_j = response_j['content']
- assert content_i == content_j, "contents not equal"
- def assert_all_predictions_different(completion_responses):
- if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
- for i, response_i in enumerate(completion_responses):
- content_i = response_i['content']
- print(f"content {i}: {content_i}")
- for i, response_i in enumerate(completion_responses):
- content_i = response_i['content']
- for j, response_j in enumerate(completion_responses):
- if i == j:
- continue
- content_j = response_j['content']
- assert content_i != content_j, "contents not different"
- def assert_all_token_probabilities_equal(completion_responses):
- n_predict = len(completion_responses[0]['completion_probabilities'])
- if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
- for pos in range(n_predict):
- for i, response_i in enumerate(completion_responses):
- probs_i = response_i['completion_probabilities'][pos]['probs']
- print(f"pos {pos}, probs {i}: {probs_i}")
- for pos in range(n_predict):
- for i, response_i in enumerate(completion_responses):
- probs_i = response_i['completion_probabilities'][pos]['probs']
- for j, response_j in enumerate(completion_responses):
- if i == j:
- continue
- probs_j = response_j['completion_probabilities'][pos]['probs']
- assert probs_i == probs_j, "contents not equal"
- async def gather_tasks_results(context):
- n_tasks = len(context.concurrent_tasks)
- if context.debug:
- print(f"Waiting for all {n_tasks} tasks results...")
- for task_no in range(n_tasks):
- context.tasks_result.append(await context.concurrent_tasks.pop())
- n_completions = len(context.tasks_result)
- return n_completions
- async def wait_for_slots_status(context,
- base_url,
- expected_http_status_code,
- timeout=3,
- params=None,
- slots_idle=None,
- slots_processing=None):
- if context.debug:
- print(f"Starting checking for health for expected_http_status_code={expected_http_status_code}")
- interval = 0.5
- counter = 0
- if 'GITHUB_ACTIONS' in os.environ:
- timeout *= 2
- async with aiohttp.ClientSession() as session:
- while True:
- async with await session.get(f'{base_url}/slots', params=params) as slots_response:
- status_code = slots_response.status
- slots = await slots_response.json()
- if context.debug:
- print(f"slots responses {slots}\n")
- if status_code == 503 and status_code == expected_http_status_code:
- return
- if status_code == 200 and status_code == expected_http_status_code:
- n_slots_idle = sum(1 if slot["state"] == 0 else 0 for slot in slots)
- n_slots_processing = sum(1 if slot["state"] != 0 else 0 for slot in slots)
- if ((slots_idle is None or slots_idle == n_slots_idle)
- and (slots_processing is None or slots_processing == n_slots_processing)):
- return
- await asyncio.sleep(interval)
- counter += interval
- if counter >= timeout:
- # Sometimes health requests are triggered after completions are predicted
- if expected_http_status_code == 503:
- if len(context.tasks_result) == 0:
- print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
- " busy health check missed, probably too fast inference\x1b[0m\n")
- n_completions = await gather_tasks_results(context)
- if n_completions > 0:
- return
- assert False, f'slots check timeout exceeded {counter}s>={timeout}'
- def assert_embeddings(embeddings):
- assert len(embeddings) > 0
- embeddings_computed = False
- for emb in embeddings:
- if not isinstance(emb, float):
- assert False, f"Bad embeddings: {embeddings}"
- if emb != 0:
- embeddings_computed = True
- assert embeddings_computed, f"Embeddings: {embeddings}"
- async def request_slots_status(context, expected_slots):
- async with aiohttp.ClientSession() as session:
- async with await session.get(f'{context.base_url}/slots') as slots_response:
- assert slots_response.status == 200
- slots = await slots_response.json()
- assert_slots_status(slots, expected_slots)
- def assert_slots_status(slots, expected_slots):
- assert len(slots) == len(expected_slots)
- for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
- for key in expected:
- assert expected[key] == slot[key], (f"invalid slot {slot_id}"
- f" expected[{key}] != slot[{key}]"
- f" = {expected[key]} != {slot[key]}")
- async def completions_seed(context, num_seeds=None):
- if hasattr(context, "seed") and context.seed is not None:
- assert len(context.seed) == context.n_prompts
- if num_seeds is None:
- num_seeds = context.n_prompts
- assert num_seeds <= context.n_prompts
- seeds = context.seed[:num_seeds]
- context.seed = context.seed[num_seeds:] if num_seeds < context.n_prompts else None
- return seeds
- if hasattr(context, "server_seed") and context.server_seed is not None:
- if num_seeds is None:
- return [context.server_seed] * context.n_prompts
- else:
- return [context.server_seed] * num_seeds
- return None
- def context_text(context):
- return context.text.replace('\r', '')
- def start_server_background(context):
- if os.name == 'nt':
- context.server_path = '../../../build/bin/Release/llama-server.exe'
- else:
- context.server_path = '../../../build/bin/llama-server'
- if 'LLAMA_SERVER_BIN_PATH' in os.environ:
- context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
- server_listen_addr = context.server_fqdn
- server_args = [
- '--host', server_listen_addr,
- '--port', context.server_port,
- ]
- if context.model_file:
- server_args.extend(['--model', context.model_file])
- if context.model_url:
- server_args.extend(['--model-url', context.model_url])
- if context.model_hf_repo:
- server_args.extend(['--hf-repo', context.model_hf_repo])
- if context.model_hf_file:
- server_args.extend(['--hf-file', context.model_hf_file])
- if context.n_batch:
- server_args.extend(['--batch-size', context.n_batch])
- if context.n_ubatch:
- server_args.extend(['--ubatch-size', context.n_ubatch])
- if context.n_threads:
- server_args.extend(['--threads', context.threads])
- if context.n_gpu_layer:
- server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
- if context.draft is not None:
- server_args.extend(['--draft', context.draft])
- if context.server_continuous_batching:
- server_args.append('--cont-batching')
- if context.server_embeddings:
- server_args.append('--embedding')
- if context.server_metrics:
- server_args.append('--metrics')
- if context.model_alias:
- server_args.extend(['--alias', context.model_alias])
- if context.n_ctx:
- server_args.extend(['--ctx-size', context.n_ctx])
- if context.n_slots:
- server_args.extend(['--parallel', context.n_slots])
- if context.n_server_predict:
- server_args.extend(['--n-predict', context.n_server_predict])
- if context.slot_save_path:
- server_args.extend(['--slot-save-path', context.slot_save_path])
- if context.server_api_key:
- server_args.extend(['--api-key', context.server_api_key])
- if context.n_ga:
- server_args.extend(['--grp-attn-n', context.n_ga])
- if context.n_ga_w:
- server_args.extend(['--grp-attn-w', context.n_ga_w])
- if context.debug:
- server_args.append('--verbose')
- if context.lora_file:
- server_args.extend(['--lora', context.lora_file])
- if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
- server_args.extend(['--log-format', "text"])
- args = [str(arg) for arg in [context.server_path, *server_args]]
- print(f"bench: starting server with: {' '.join(args)}")
- flags = 0
- if 'nt' == os.name:
- flags |= subprocess.DETACHED_PROCESS
- flags |= subprocess.CREATE_NEW_PROCESS_GROUP
- flags |= subprocess.CREATE_NO_WINDOW
- pkwargs = {
- 'creationflags': flags,
- 'stdout': subprocess.PIPE,
- 'stderr': subprocess.PIPE
- }
- context.server_process = subprocess.Popen(
- [str(arg) for arg in [context.server_path, *server_args]],
- **pkwargs) # pyright: ignore[reportArgumentType, reportCallIssue]
- def server_log(in_stream, out_stream):
- for line in iter(in_stream.readline, b''):
- print(line.decode('utf-8'), end='', file=out_stream)
- thread_stdout = threading.Thread(target=server_log, args=(context.server_process.stdout, sys.stdout))
- thread_stdout.start()
- thread_stderr = threading.Thread(target=server_log, args=(context.server_process.stderr, sys.stderr))
- thread_stderr.start()
- print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")
|