| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565 |
- # Test libllama tokenizer == AutoTokenizer.
- # Brute force random words/text generation.
- #
- # Sample usage:
- #
- # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
- #
- from __future__ import annotations
- import time
- import logging
- import argparse
- import subprocess
- import random
- import unicodedata
- from pathlib import Path
- from typing import Any, Iterator, cast
- from typing_extensions import Buffer
- import cffi
- from transformers import AutoTokenizer
- logger = logging.getLogger("test-tokenizer-random")
- class LibLlama:
- DEFAULT_PATH_LLAMA_H = "./include/llama.h"
- DEFAULT_PATH_INCLUDES = ["./ggml/include/", "./include/"]
- DEFAULT_PATH_LIBLLAMA = "./build/src/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
- def __init__(self, path_llama_h: str | None = None, path_includes: list[str] = [], path_libllama: str | None = None):
- path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
- path_includes = path_includes or self.DEFAULT_PATH_INCLUDES
- path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
- (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_includes, path_libllama)
- self.lib.llama_backend_init()
- def _load_libllama_cffi(self, path_llama_h: str, path_includes: list[str], path_libllama: str) -> tuple[cffi.FFI, Any]:
- cmd = ["gcc", "-O0", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)="]
- cmd += ["-I" + path for path in path_includes] + [path_llama_h]
- res = subprocess.run(cmd, stdout=subprocess.PIPE)
- assert (res.returncode == 0)
- source = res.stdout.decode()
- ffi = cffi.FFI()
- if True: # workarounds for pycparser
- source = "typedef struct { } __builtin_va_list;" + "\n" + source
- source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
- source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
- source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
- source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
- ffi.cdef(source, override=True)
- lib = ffi.dlopen(path_libllama)
- return (ffi, lib)
- def model_default_params(self, **kwargs):
- mparams = self.lib.llama_model_default_params()
- for k, v in kwargs.items():
- setattr(mparams, k, v)
- return mparams
- def context_default_params(self, **kwargs):
- cparams = self.lib.llama_context_default_params()
- for k, v in kwargs.items():
- setattr(cparams, k, v)
- return cparams
- class LibLlamaModel:
- def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
- self.lib: Any = libllama.lib
- self.ffi = libllama.ffi
- if isinstance(mparams, dict):
- mparams = libllama.model_default_params(**mparams)
- self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
- if not self.model:
- raise RuntimeError("error: failed to load model '%s'" % path_model)
- if isinstance(cparams, dict):
- cparams = libllama.context_default_params(**cparams)
- self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
- if not self.ctx:
- raise RuntimeError("error: failed to create context for model '%s'" % path_model)
- n_tokens_max = self.lib.llama_n_ctx(self.ctx)
- self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
- self.text_buff = self.ffi.new("uint8_t[]", 1024)
- def free(self):
- if self.ctx:
- self.lib.llama_free(self.ctx)
- if self.model:
- self.lib.llama_free_model(self.model)
- self.ctx = None
- self.model = None
- self.lib = None
- def tokenize(self, text: str, add_special: bool = False, parse_special: bool = False) -> list[int]:
- encoded_text: bytes = text.encode("utf-8")
- num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
- while num < 0 and len(self.token_ids) < (16 << 20):
- self.token_ids = self.ffi.new("llama_token[]", -2 * num)
- num = self.lib.llama_tokenize(self.model, encoded_text, len(encoded_text), self.token_ids, len(self.token_ids), add_special, parse_special)
- return list(self.token_ids[0:num])
- def detokenize(self, ids: list[int], remove_special: bool = False, unparse_special: bool = False) -> str:
- if len(self.token_ids) < len(ids):
- self.token_ids = self.ffi.new("llama_token[]", 2 * len(ids))
- for i, id in enumerate(ids):
- self.token_ids[i] = id
- num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
- while num < 0 and len(self.text_buff) < (16 << 20):
- self.text_buff = self.ffi.new("uint8_t[]", -2 * num)
- num = self.lib.llama_detokenize(self.model, self.token_ids, len(ids), self.text_buff, len(self.text_buff), remove_special, unparse_special)
- return str(cast(Buffer, self.ffi.buffer(self.text_buff, num)), encoding="utf-8", errors="replace") # replace errors with '\uFFFD'
- class Tokenizer:
- def encode(self, text: str) -> list[int]:
- raise NotImplementedError
- def decode(self, ids: list[int]) -> str:
- raise NotImplementedError
- class TokenizerGroundtruth (Tokenizer):
- def __init__(self, dir_tokenizer: str):
- self.model = AutoTokenizer.from_pretrained(dir_tokenizer)
- # guess BOS and EOS
- ids = self.encode("a")
- assert 1 <= len(ids) <= 3
- add_bos_token = len(ids) > 1 and self.model.bos_token_id == ids[0]
- add_eos_token = len(ids) > 1 and self.model.eos_token_id == ids[-1]
- self.add_bos_token = getattr(self.model, "add_bos_token", add_bos_token)
- self.add_eos_token = getattr(self.model, "add_eos_token", add_eos_token)
- # build vocab
- tokens = list(self.model.get_vocab().values())
- self.vocab = self.model.batch_decode(tokens, skip_special_tokens=True)
- self.vocab = list(sorted(self.vocab))
- # tokens and lists
- self.special_tokens = list(self.model.all_special_tokens)
- self.added_tokens = list(self.model.added_tokens_encoder)
- self.bos_token = self.model.bos_token
- self.eos_token = self.model.eos_token
- def encode(self, text: str) -> list[int]:
- return self.model.encode(text, add_special_tokens=True)
- def decode(self, ids: list[int]) -> str:
- return self.model.decode(ids, skip_special_tokens=False)
- class TokenizerLlamaCpp (Tokenizer):
- libllama: LibLlama | None = None
- def __init__(self, vocab_file: str):
- if not self.libllama:
- self.libllama = LibLlama()
- self.model = LibLlamaModel(self.libllama, vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
- def encode(self, text: str) -> list[int]:
- return self.model.tokenize(text, add_special=True, parse_special=True)
- def decode(self, ids: list[int]) -> str:
- return self.model.detokenize(ids, remove_special=False, unparse_special=True)
- def generator_custom_text() -> Iterator[str]:
- """General tests"""
- yield from [
- "",
- " ",
- " ",
- " ",
- "\t",
- "\n",
- "\n\n",
- "\n\n\n",
- "\t\n",
- "Hello world",
- " Hello world",
- "Hello World",
- " Hello World",
- " Hello World!",
- "Hello, world!",
- " Hello, world!",
- " this is 🦙.cpp",
- "w048 7tuijk dsdfhu",
- "нещо на Български",
- "កាន់តែពិសេសអាចខលចេញ",
- "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
- "Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello",
- " Hello\n Hello",
- " (",
- "\n =",
- "' era",
- "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
- "3",
- "33",
- "333",
- "3333",
- "33333",
- "333333",
- "3333333",
- "33333333",
- "333333333",
- ]
- def generator_custom_text_edge_cases() -> Iterator[str]:
- """Edge cases found while debugging"""
- yield from [
- '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
- '¼-a', # unicode_ranges_digit, 0x00BC
- '½-a', # unicode_ranges_digit, 0x00BD
- '¾-a', # unicode_ranges_digit, 0x00BE
- 'a 〇b', # unicode_ranges_digit, 0x3007
- 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
- '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
- 'Cửa Việt', # llama-3, ignore_merges = true
- '<s>a', # Phi-3 fail
- '<unk><|endoftext|><s>', # Phi-3 fail
- 'a\na', # bert fail
- '"`', # falcon
- ' \u2e4e', # falcon
- 'a\xa0\xa0\x00b', # jina-v2-es
- 'one <mask>', # jina-v2-es <mask> lstrip=true
- 'a </s> b', # rstrip phi-3
- 'a <mask> b', # lstrip jina-v2
- '\xa0aC', # deepseek
- '\u2029 \uA3E4', # deepseek-llm
- "a ?",
- 'å', # mpt
- '\U000ac517', # utf-8 encode error, falcon
- '\U000522f4', # utf-8 encode error, starcoder
- "<s><s><unk><s>a<s>b<s>c<unk>d<unk></s>",
- "<s> <s> <unk><s>a<s>b<s>c<unk>d<unk></s>",
- ]
- def generator_vocab_words(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
- """Brute force check all vocab words"""
- yield from tokenizer.vocab
- def generator_ascii_lr_strip() -> Iterator[str]:
- WHITESPACES = ["", " ", " "]
- CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
- for char1 in CHARACTERS:
- for char2 in CHARACTERS:
- for lstrip in WHITESPACES:
- for rstrip in WHITESPACES:
- yield lstrip + char1 + char2 + rstrip
- yield lstrip + char1 + rstrip + char2
- yield char1 + lstrip + char2 + rstrip
- def generator_apostrophe() -> Iterator[str]:
- WHITESPACES = ["", " ", " "]
- CHARACTERS = list(chr(i) for i in range(1, 0x80)) + [""]
- for char1 in CHARACTERS:
- for char2 in CHARACTERS:
- for lstrip in WHITESPACES:
- for rstrip in WHITESPACES:
- yield char1 + lstrip + "'" + rstrip + char2
- yield char1 + char2 + lstrip + "'" + rstrip + "z"
- yield "a" + lstrip + "'" + rstrip + char1 + char2
- def generator_added_lr_strip(tokenizer: TokenizerGroundtruth) -> Iterator[str]:
- WHITESPACES = ["", " ", " ", "\n", "\r\n", "\n\n", "\t", "\t\t"]
- all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens)))
- for token in all_tokens:
- for lstrip in WHITESPACES:
- for rstrip in WHITESPACES:
- yield lstrip + token + rstrip
- yield "a" + lstrip + token + rstrip
- yield lstrip + token + rstrip + "z"
- yield "a" + lstrip + token + rstrip + "z"
- def generator_random_added_tokens(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
- separations = [" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"]
- all_tokens = list(sorted(set(tokenizer.special_tokens + tokenizer.added_tokens + separations)))
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- words = rand.choices(all_tokens, k=500)
- if words and words[0] == tokenizer.bos_token: # skip spam warning of double BOS
- while len(words) > 1 and words[1] == tokenizer.bos_token: # leave one starting BOS
- words.pop(0)
- if tokenizer.add_bos_token: # drop all starting BOS
- words.pop(0)
- if words and words[-1] == tokenizer.eos_token: # skip spam warning of double EOS
- while len(words) > 1 and words[-2] == tokenizer.eos_token: # leave one trailing EOS
- words.pop(-1)
- if tokenizer.add_bos_token: # drop all trailing EOS
- words.pop(-1)
- yield "".join(words)
- def generator_random_chars(iterations=100) -> Iterator[str]:
- """Brute force random text with simple characters"""
- NUM_WORDS = 400
- WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
- CHARS = list(sorted(set("""
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- abcdefghijklmnopqrstuvwxyz
- ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
- áéíóúàèìòùâêîôûäëïöü
- .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
- """)))
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = []
- for _ in range(NUM_WORDS):
- k = rand.randint(1, 7)
- word = rand.choices(CHARS, k=k)
- word.append(rand.choice(WHITESPACES))
- text.append("".join(word))
- yield "".join(text)
- def generator_unicodes() -> Iterator[str]:
- """Iterate unicode characters"""
- MAX_CODEPOINTS = 0x30000 # 0x110000
- def _valid(cpt):
- if cpt >= 0x30000: # unassigned and supplementary
- return False
- # if cpt == 0x2029: # deepseek-llm
- # return False
- if unicodedata.category(chr(cpt)) in ("Cn", "Cs", "Co"): # undefined, surrogates, private
- return False
- return True
- characters = [chr(cpt) for cpt in range(0, MAX_CODEPOINTS) if _valid(cpt)]
- yield from characters
- def generator_random_unicodes(iterations=100) -> Iterator[str]:
- """Brute force random text with unicode characters"""
- NUM_WORDS = 200
- WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
- characters = list(generator_unicodes())
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = []
- for _ in range(NUM_WORDS):
- k = rand.randint(1, 7)
- word = rand.choices(characters, k=k)
- word.append(rand.choice(WHITESPACES))
- text.append("".join(word))
- yield "".join(text)
- def generator_random_vocab_chars(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
- """Brute force random text with vocab characters"""
- vocab_chars = set()
- for word in tokenizer.vocab:
- vocab_chars.update(word)
- vocab_chars = list(sorted(vocab_chars))
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = rand.choices(vocab_chars, k=1024)
- yield "".join(text)
- def generator_random_vocab_words(tokenizer: TokenizerGroundtruth, iterations=100) -> Iterator[str]:
- """Brute force random text from vocab words"""
- vocab = [w.strip() for w in tokenizer.vocab]
- yield from vocab
- rand = random.Random()
- for m in range(iterations):
- rand.seed(m)
- text = []
- num_words = rand.randint(300, 400)
- for i in range(num_words):
- k = rand.randint(1, 3)
- words = rand.choices(vocab, k=k)
- sep = rand.choice(" \n\r\t")
- text.append("".join(words) + sep)
- yield "".join(text)
- def compare_tokenizers(tokenizer1: TokenizerGroundtruth, tokenizer2: TokenizerLlamaCpp, generator: Iterator[str]):
- def find_first_mismatch(ids1: list[int] | str, ids2: list[int] | str):
- for i, (a, b) in enumerate(zip(ids1, ids2)):
- if a != b:
- return i
- if len(ids1) == len(ids2):
- return -1
- return min(len(ids1), len(ids2))
- def check_detokenizer(text: str, text1: str, text2: str) -> bool:
- if text1 == text2: # equal to TokenizerGroundtruth?
- return True
- # equal to source text?
- if tokenizer1.add_bos_token: # remove BOS
- if text2.startswith(tokenizer1.bos_token):
- text2 = text2[len(tokenizer1.bos_token):]
- if tokenizer1.add_eos_token: # remove EOS
- if text2.endswith(tokenizer1.eos_token):
- text2 = text2[:-len(tokenizer1.eos_token)]
- return text == text2
- t_encode1 = 0
- t_encode2 = 0
- t_decode1 = 0
- t_decode2 = 0
- t_start = time.perf_counter()
- encode_errors = 0
- decode_errors = 0
- MAX_ERRORS = 10
- logger.info("%s: %s" % (generator.__qualname__, "ini"))
- for text in generator:
- # print(repr(text), text.encode())
- # print(repr(text), hex(ord(text[0])), text.encode())
- t0 = time.perf_counter()
- ids1 = tokenizer1.encode(text)
- t1 = time.perf_counter()
- ids2 = tokenizer2.encode(text)
- t2 = time.perf_counter()
- text1 = tokenizer1.decode(ids1)
- t3 = time.perf_counter()
- text2 = tokenizer2.decode(ids1)
- t4 = time.perf_counter()
- t_encode1 += t1 - t0
- t_encode2 += t2 - t1
- t_decode1 += t3 - t2
- t_decode2 += t4 - t3
- if encode_errors < MAX_ERRORS and ids1 != ids2:
- i = find_first_mismatch(ids1, ids2)
- ids1 = list(ids1)[max(0, i - 2) : i + 5 + 1]
- ids2 = list(ids2)[max(0, i - 2) : i + 5 + 1]
- logger.error(" Expected: " + str(ids1))
- logger.error(" Result: " + str(ids2))
- encode_errors += 1
- logger.error(f" {encode_errors=}")
- if decode_errors < MAX_ERRORS and not check_detokenizer(text, text1, text2):
- i = find_first_mismatch(text1, text2)
- text1 = list(text1[max(0, i - 2) : i + 5 + 1])
- text2 = list(text2[max(0, i - 2) : i + 5 + 1])
- logger.error(" Expected: " + " ".join(hex(ord(x)) for x in text1))
- logger.error(" Result: " + " ".join(hex(ord(x)) for x in text2))
- decode_errors += 1
- logger.error(f" {decode_errors=}")
- if encode_errors >= MAX_ERRORS and decode_errors >= MAX_ERRORS:
- logger.error(f" EXIT: {encode_errors=} {decode_errors=}")
- # raise Exception()
- break
- t_total = time.perf_counter() - t_start
- logger.info(f"{generator.__qualname__}: end, {t_encode1=:.3f} {t_encode2=:.3f} {t_decode1=:.3f} {t_decode2=:.3f} {t_total=:.3f}")
- def main(argv: list[str] | None = None):
- parser = argparse.ArgumentParser()
- parser.add_argument("vocab_file", type=str, help="path to vocab 'gguf' file")
- parser.add_argument("dir_tokenizer", type=str, help="directory containing 'tokenizer.model' file")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- args = parser.parse_args(argv)
- logging.basicConfig(level = logging.DEBUG if args.verbose else logging.INFO)
- logger.info(f"VOCABFILE: '{args.vocab_file}'")
- tokenizer1 = TokenizerGroundtruth(args.dir_tokenizer)
- tokenizer2 = TokenizerLlamaCpp(args.vocab_file)
- # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text())
- # compare_tokenizers(tokenizer1, tokenizer2, generator_custom_text_edge_cases())
- compare_tokenizers(tokenizer1, tokenizer2, generator_ascii_lr_strip())
- compare_tokenizers(tokenizer1, tokenizer2, generator_apostrophe())
- compare_tokenizers(tokenizer1, tokenizer2, generator_unicodes())
- compare_tokenizers(tokenizer1, tokenizer2, generator_vocab_words(tokenizer1))
- compare_tokenizers(tokenizer1, tokenizer2, generator_added_lr_strip(tokenizer1))
- # compare_tokenizers(tokenizer1, tokenizer2, generator_random_added_tokens(tokenizer1, 10_000))
- # compare_tokenizers(tokenizer1, tokenizer2, generator_random_chars(10_000))
- # compare_tokenizers(tokenizer1, tokenizer2, generator_random_unicodes(10_000))
- # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_chars(tokenizer1, 10_000))
- # compare_tokenizers(tokenizer1, tokenizer2, generator_random_vocab_words(tokenizer1, 5_000))
- tokenizer2.model.free()
- if __name__ == "__main__":
- # main()
- if True:
- logging.basicConfig(
- level = logging.DEBUG,
- format = "%(asctime)s.%(msecs)03d %(name)s %(levelname)s %(message)s",
- datefmt = "%Y-%m-%d %H:%M:%S",
- filename = logger.name + ".log",
- filemode = "a"
- )
- logging.basicConfig(
- level = logging.DEBUG,
- format = "%(levelname)s %(message)s",
- )
- path_tokenizers = Path("./models/tokenizers/")
- path_vocab_format = "./models/ggml-vocab-%s.gguf"
- tokenizers = [
- "llama-spm", # SPM
- "phi-3", # SPM
- "gemma", # SPM
- "gemma-2", # SPM
- "baichuan", # SPM
- "bert-bge", # WPM
- "jina-v2-en", # WPM
- "llama-bpe", # BPE
- "phi-2", # BPE
- "deepseek-llm", # BPE
- "deepseek-coder", # BPE
- "falcon", # BPE
- "mpt", # BPE
- "starcoder", # BPE
- "gpt-2", # BPE
- "stablelm2", # BPE
- "refact", # BPE
- "qwen2", # BPE
- "olmo", # BPE
- "jina-v2-es", # BPE
- "jina-v2-de", # BPE
- "smaug-bpe", # BPE
- "poro-chat", # BPE
- "jina-v2-code", # BPE
- "viking", # BPE
- "jais", # BPE
- ]
- logger.info("=" * 50)
- for tokenizer in tokenizers:
- logger.info("-" * 50)
- logger.info(f"TOKENIZER: '{tokenizer}'")
- vocab_file = Path(path_vocab_format % tokenizer)
- dir_tokenizer = path_tokenizers / tokenizer
- main([str(vocab_file), str(dir_tokenizer), "--verbose"])
|