arg.cpp 139 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328
  1. #include "gguf.h" // for reading GGUF splits
  2. #include "arg.h"
  3. #include "common.h"
  4. #include "log.h"
  5. #include "sampling.h"
  6. #include "chat.h"
  7. // fix problem with std::min and std::max
  8. #if defined(_WIN32)
  9. #define WIN32_LEAN_AND_MEAN
  10. #ifndef NOMINMAX
  11. # define NOMINMAX
  12. #endif
  13. #include <windows.h>
  14. #endif
  15. #include <algorithm>
  16. #include <climits>
  17. #include <cstdarg>
  18. #include <filesystem>
  19. #include <fstream>
  20. #include <regex>
  21. #include <set>
  22. #include <string>
  23. #include <thread>
  24. #include <vector>
  25. //#define LLAMA_USE_CURL
  26. #if defined(LLAMA_USE_CURL)
  27. #include <curl/curl.h>
  28. #include <curl/easy.h>
  29. #include <future>
  30. #endif
  31. #include "json-schema-to-grammar.h"
  32. using json = nlohmann::ordered_json;
  33. std::initializer_list<enum llama_example> mmproj_examples = {
  34. LLAMA_EXAMPLE_LLAVA,
  35. // TODO: add LLAMA_EXAMPLE_SERVER when it's ready
  36. };
  37. static std::string read_file(const std::string & fname) {
  38. std::ifstream file(fname);
  39. if (!file) {
  40. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  41. }
  42. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  43. file.close();
  44. return content;
  45. }
  46. static void write_file(const std::string & fname, const std::string & content) {
  47. std::ofstream file(fname);
  48. if (!file) {
  49. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  50. }
  51. file << content;
  52. file.close();
  53. }
  54. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  55. this->examples = std::move(examples);
  56. return *this;
  57. }
  58. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  59. this->excludes = std::move(excludes);
  60. return *this;
  61. }
  62. common_arg & common_arg::set_env(const char * env) {
  63. help = help + "\n(env: " + env + ")";
  64. this->env = env;
  65. return *this;
  66. }
  67. common_arg & common_arg::set_sparam() {
  68. is_sparam = true;
  69. return *this;
  70. }
  71. bool common_arg::in_example(enum llama_example ex) {
  72. return examples.find(ex) != examples.end();
  73. }
  74. bool common_arg::is_exclude(enum llama_example ex) {
  75. return excludes.find(ex) != excludes.end();
  76. }
  77. bool common_arg::get_value_from_env(std::string & output) {
  78. if (env == nullptr) return false;
  79. char * value = std::getenv(env);
  80. if (value) {
  81. output = value;
  82. return true;
  83. }
  84. return false;
  85. }
  86. bool common_arg::has_value_from_env() {
  87. return env != nullptr && std::getenv(env);
  88. }
  89. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  90. std::vector<std::string> result;
  91. std::istringstream iss(input);
  92. std::string line;
  93. auto add_line = [&](const std::string& l) {
  94. if (l.length() <= max_char_per_line) {
  95. result.push_back(l);
  96. } else {
  97. std::istringstream line_stream(l);
  98. std::string word, current_line;
  99. while (line_stream >> word) {
  100. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  101. if (!current_line.empty()) result.push_back(current_line);
  102. current_line = word;
  103. } else {
  104. current_line += (!current_line.empty() ? " " : "") + word;
  105. }
  106. }
  107. if (!current_line.empty()) result.push_back(current_line);
  108. }
  109. };
  110. while (std::getline(iss, line)) {
  111. add_line(line);
  112. }
  113. return result;
  114. }
  115. std::string common_arg::to_string() {
  116. // params for printing to console
  117. const static int n_leading_spaces = 40;
  118. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  119. std::string leading_spaces(n_leading_spaces, ' ');
  120. std::ostringstream ss;
  121. for (const auto arg : args) {
  122. if (arg == args.front()) {
  123. if (args.size() == 1) {
  124. ss << arg;
  125. } else {
  126. // first arg is usually abbreviation, we need padding to make it more beautiful
  127. auto tmp = std::string(arg) + ", ";
  128. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  129. ss << tmp << spaces;
  130. }
  131. } else {
  132. ss << arg << (arg != args.back() ? ", " : "");
  133. }
  134. }
  135. if (value_hint) ss << " " << value_hint;
  136. if (value_hint_2) ss << " " << value_hint_2;
  137. if (ss.tellp() > n_leading_spaces - 3) {
  138. // current line is too long, add new line
  139. ss << "\n" << leading_spaces;
  140. } else {
  141. // padding between arg and help, same line
  142. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  143. }
  144. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  145. for (const auto & line : help_lines) {
  146. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  147. }
  148. return ss.str();
  149. }
  150. //
  151. // downloader
  152. //
  153. struct common_hf_file_res {
  154. std::string repo; // repo name with ":tag" removed
  155. std::string ggufFile;
  156. std::string mmprojFile;
  157. };
  158. #ifdef LLAMA_USE_CURL
  159. bool common_has_curl() {
  160. return true;
  161. }
  162. #ifdef __linux__
  163. #include <linux/limits.h>
  164. #elif defined(_WIN32)
  165. # if !defined(PATH_MAX)
  166. # define PATH_MAX MAX_PATH
  167. # endif
  168. #elif defined(_AIX)
  169. #include <sys/limits.h>
  170. #else
  171. #include <sys/syslimits.h>
  172. #endif
  173. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  174. //
  175. // CURL utils
  176. //
  177. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  178. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  179. struct curl_slist_ptr {
  180. struct curl_slist * ptr = nullptr;
  181. ~curl_slist_ptr() {
  182. if (ptr) {
  183. curl_slist_free_all(ptr);
  184. }
  185. }
  186. };
  187. #define CURL_MAX_RETRY 3
  188. #define CURL_RETRY_DELAY_SECONDS 2
  189. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
  190. int remaining_attempts = max_attempts;
  191. char * method = nullptr;
  192. curl_easy_getinfo(curl, CURLINFO_EFFECTIVE_METHOD, &method);
  193. while (remaining_attempts > 0) {
  194. LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  195. CURLcode res = curl_easy_perform(curl);
  196. if (res == CURLE_OK) {
  197. return true;
  198. }
  199. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  200. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  201. remaining_attempts--;
  202. if (remaining_attempts == 0) break;
  203. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  204. }
  205. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  206. return false;
  207. }
  208. // download one single file from remote URL to local path
  209. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token) {
  210. // Initialize libcurl
  211. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  212. curl_slist_ptr http_headers;
  213. if (!curl) {
  214. LOG_ERR("%s: error initializing libcurl\n", __func__);
  215. return false;
  216. }
  217. // Set the URL, allow to follow http redirection
  218. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  219. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  220. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  221. // Check if hf-token or bearer-token was specified
  222. if (!bearer_token.empty()) {
  223. std::string auth_header = "Authorization: Bearer " + bearer_token;
  224. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  225. }
  226. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  227. #if defined(_WIN32)
  228. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  229. // operating system. Currently implemented under MS-Windows.
  230. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  231. #endif
  232. // Check if the file already exists locally
  233. auto file_exists = std::filesystem::exists(path);
  234. // If the file exists, check its JSON metadata companion file.
  235. std::string metadata_path = path + ".json";
  236. nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
  237. std::string etag;
  238. std::string last_modified;
  239. if (file_exists) {
  240. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  241. std::ifstream metadata_in(metadata_path);
  242. if (metadata_in.good()) {
  243. try {
  244. metadata_in >> metadata;
  245. LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  246. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  247. etag = metadata.at("etag");
  248. }
  249. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  250. last_modified = metadata.at("lastModified");
  251. }
  252. } catch (const nlohmann::json::exception & e) {
  253. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  254. }
  255. }
  256. // if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
  257. } else {
  258. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  259. }
  260. // Send a HEAD request to retrieve the etag and last-modified headers
  261. struct common_load_model_from_url_headers {
  262. std::string etag;
  263. std::string last_modified;
  264. };
  265. common_load_model_from_url_headers headers;
  266. bool head_request_ok = false;
  267. bool should_download = !file_exists; // by default, we should download if the file does not exist
  268. // get ETag to see if the remote file has changed
  269. {
  270. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  271. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  272. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  273. static std::regex header_regex("([^:]+): (.*)\r\n");
  274. static std::regex etag_regex("ETag", std::regex_constants::icase);
  275. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  276. std::string header(buffer, n_items);
  277. std::smatch match;
  278. if (std::regex_match(header, match, header_regex)) {
  279. const std::string & key = match[1];
  280. const std::string & value = match[2];
  281. if (std::regex_match(key, match, etag_regex)) {
  282. headers->etag = value;
  283. } else if (std::regex_match(key, match, last_modified_regex)) {
  284. headers->last_modified = value;
  285. }
  286. }
  287. return n_items;
  288. };
  289. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  290. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  291. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  292. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  293. // we only allow retrying once for HEAD requests
  294. // this is for the use case of using running offline (no internet), retrying can be annoying
  295. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0);
  296. if (!was_perform_successful) {
  297. head_request_ok = false;
  298. }
  299. long http_code = 0;
  300. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  301. if (http_code == 200) {
  302. head_request_ok = true;
  303. } else {
  304. LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  305. head_request_ok = false;
  306. }
  307. }
  308. // if head_request_ok is false, we don't have the etag or last-modified headers
  309. // we leave should_download as-is, which is true if the file does not exist
  310. if (head_request_ok) {
  311. // check if ETag or Last-Modified headers are different
  312. // if it is, we need to download the file again
  313. if (!etag.empty() && etag != headers.etag) {
  314. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  315. should_download = true;
  316. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  317. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  318. should_download = true;
  319. }
  320. }
  321. if (should_download) {
  322. std::string path_temporary = path + ".downloadInProgress";
  323. if (file_exists) {
  324. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  325. if (remove(path.c_str()) != 0) {
  326. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  327. return false;
  328. }
  329. }
  330. // Set the output file
  331. struct FILE_deleter {
  332. void operator()(FILE * f) const {
  333. fclose(f);
  334. }
  335. };
  336. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  337. if (!outfile) {
  338. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  339. return false;
  340. }
  341. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  342. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  343. return fwrite(data, size, nmemb, (FILE *)fd);
  344. };
  345. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  346. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  347. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  348. // display download progress
  349. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  350. // helper function to hide password in URL
  351. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  352. std::size_t protocol_pos = url.find("://");
  353. if (protocol_pos == std::string::npos) {
  354. return url; // Malformed URL
  355. }
  356. std::size_t at_pos = url.find('@', protocol_pos + 3);
  357. if (at_pos == std::string::npos) {
  358. return url; // No password in URL
  359. }
  360. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  361. };
  362. // start the download
  363. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  364. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  365. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
  366. if (!was_perform_successful) {
  367. return false;
  368. }
  369. long http_code = 0;
  370. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  371. if (http_code < 200 || http_code >= 400) {
  372. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  373. return false;
  374. }
  375. // Causes file to be closed explicitly here before we rename it.
  376. outfile.reset();
  377. // Write the updated JSON metadata file.
  378. metadata.update({
  379. {"url", url},
  380. {"etag", headers.etag},
  381. {"lastModified", headers.last_modified}
  382. });
  383. write_file(metadata_path, metadata.dump(4));
  384. LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  385. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  386. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  387. return false;
  388. }
  389. } else {
  390. LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
  391. }
  392. return true;
  393. }
  394. // download multiple files from remote URLs to local paths
  395. // the input is a vector of pairs <url, path>
  396. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token) {
  397. // Prepare download in parallel
  398. std::vector<std::future<bool>> futures_download;
  399. for (auto const & item : urls) {
  400. futures_download.push_back(std::async(std::launch::async, [bearer_token](const std::pair<std::string, std::string> & it) -> bool {
  401. return common_download_file_single(it.first, it.second, bearer_token);
  402. }, item));
  403. }
  404. // Wait for all downloads to complete
  405. for (auto & f : futures_download) {
  406. if (!f.get()) {
  407. return false;
  408. }
  409. }
  410. return true;
  411. }
  412. static bool common_download_model(
  413. const common_params_model & model,
  414. const std::string & bearer_token) {
  415. // Basic validation of the model.url
  416. if (model.url.empty()) {
  417. LOG_ERR("%s: invalid model url\n", __func__);
  418. return false;
  419. }
  420. if (!common_download_file_single(model.url, model.path, bearer_token)) {
  421. return false;
  422. }
  423. // check for additional GGUFs split to download
  424. int n_split = 0;
  425. {
  426. struct gguf_init_params gguf_params = {
  427. /*.no_alloc = */ true,
  428. /*.ctx = */ NULL,
  429. };
  430. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  431. if (!ctx_gguf) {
  432. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  433. return false;
  434. }
  435. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  436. if (key_n_split >= 0) {
  437. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  438. }
  439. gguf_free(ctx_gguf);
  440. }
  441. if (n_split > 1) {
  442. char split_prefix[PATH_MAX] = {0};
  443. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  444. // Verify the first split file format
  445. // and extract split URL and PATH prefixes
  446. {
  447. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  448. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  449. return false;
  450. }
  451. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  452. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  453. return false;
  454. }
  455. }
  456. std::vector<std::pair<std::string, std::string>> urls;
  457. for (int idx = 1; idx < n_split; idx++) {
  458. char split_path[PATH_MAX] = {0};
  459. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  460. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  461. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  462. if (std::string(split_path) == model.path) {
  463. continue; // skip the already downloaded file
  464. }
  465. urls.push_back({split_url, split_path});
  466. }
  467. // Download in parallel
  468. common_download_file_multiple(urls, bearer_token);
  469. }
  470. return true;
  471. }
  472. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
  473. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  474. curl_slist_ptr http_headers;
  475. std::vector<char> res_buffer;
  476. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  477. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  478. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  479. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  480. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  481. auto data_vec = static_cast<std::vector<char> *>(data);
  482. data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
  483. return size * nmemb;
  484. };
  485. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  486. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
  487. #if defined(_WIN32)
  488. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  489. #endif
  490. if (params.timeout > 0) {
  491. curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
  492. }
  493. if (params.max_size > 0) {
  494. curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
  495. }
  496. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  497. for (const auto & header : params.headers) {
  498. http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
  499. }
  500. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  501. CURLcode res = curl_easy_perform(curl.get());
  502. if (res != CURLE_OK) {
  503. std::string error_msg = curl_easy_strerror(res);
  504. throw std::runtime_error("error: cannot make GET request: " + error_msg);
  505. }
  506. long res_code;
  507. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  508. return { res_code, std::move(res_buffer) };
  509. }
  510. /**
  511. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  512. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  513. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  514. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  515. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  516. *
  517. * Return pair of <repo, file> (with "repo" already having tag removed)
  518. *
  519. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  520. */
  521. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token) {
  522. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  523. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  524. std::string hf_repo = parts[0];
  525. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  526. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  527. }
  528. std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
  529. // headers
  530. std::vector<std::string> headers;
  531. headers.push_back("Accept: application/json");
  532. if (!bearer_token.empty()) {
  533. headers.push_back("Authorization: Bearer " + bearer_token);
  534. }
  535. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  536. // User-Agent header is already set in common_remote_get_content, no need to set it here
  537. // we use "=" to avoid clashing with other component, while still being allowed on windows
  538. std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
  539. string_replace_all(cached_response_fname, "/", "_");
  540. std::string cached_response_path = fs_get_cache_file(cached_response_fname);
  541. // make the request
  542. common_remote_params params;
  543. params.headers = headers;
  544. long res_code = 0;
  545. std::string res_str;
  546. bool use_cache = false;
  547. try {
  548. auto res = common_remote_get_content(url, params);
  549. res_code = res.first;
  550. res_str = std::string(res.second.data(), res.second.size());
  551. } catch (const std::exception & e) {
  552. LOG_WRN("error: failed to get manifest: %s\n", e.what());
  553. LOG_WRN("try reading from cache\n");
  554. // try to read from cache
  555. try {
  556. res_str = read_file(cached_response_path);
  557. res_code = 200;
  558. use_cache = true;
  559. } catch (const std::exception & e) {
  560. throw std::runtime_error("error: failed to get manifest (check your internet connection)");
  561. }
  562. }
  563. std::string ggufFile;
  564. std::string mmprojFile;
  565. if (res_code == 200 || res_code == 304) {
  566. // extract ggufFile.rfilename in json, using regex
  567. {
  568. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  569. std::smatch match;
  570. if (std::regex_search(res_str, match, pattern)) {
  571. ggufFile = match[1].str();
  572. }
  573. }
  574. // extract mmprojFile.rfilename in json, using regex
  575. {
  576. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  577. std::smatch match;
  578. if (std::regex_search(res_str, match, pattern)) {
  579. mmprojFile = match[1].str();
  580. }
  581. }
  582. if (!use_cache) {
  583. // if not using cached response, update the cache file
  584. write_file(cached_response_path, res_str);
  585. }
  586. } else if (res_code == 401) {
  587. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  588. } else {
  589. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  590. }
  591. // check response
  592. if (ggufFile.empty()) {
  593. throw std::runtime_error("error: model does not have ggufFile");
  594. }
  595. return { hf_repo, ggufFile, mmprojFile };
  596. }
  597. #else
  598. bool common_has_curl() {
  599. return false;
  600. }
  601. static bool common_download_file_single(const std::string &, const std::string &, const std::string &) {
  602. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  603. return false;
  604. }
  605. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &) {
  606. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  607. return false;
  608. }
  609. static bool common_download_model(
  610. const common_params_model &,
  611. const std::string &) {
  612. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  613. return false;
  614. }
  615. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &) {
  616. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  617. return {};
  618. }
  619. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
  620. if (!url.empty()) {
  621. throw std::runtime_error("error: built without CURL, cannot download model from the internet");
  622. }
  623. return {};
  624. }
  625. #endif // LLAMA_USE_CURL
  626. //
  627. // utils
  628. //
  629. struct handle_model_result {
  630. bool found_mmproj = false;
  631. common_params_model mmproj;
  632. };
  633. static handle_model_result common_params_handle_model(
  634. struct common_params_model & model,
  635. const std::string & bearer_token,
  636. const std::string & model_path_default) {
  637. handle_model_result result;
  638. // handle pre-fill default model path and url based on hf_repo and hf_file
  639. {
  640. if (!model.hf_repo.empty()) {
  641. // short-hand to avoid specifying --hf-file -> default it to --model
  642. if (model.hf_file.empty()) {
  643. if (model.path.empty()) {
  644. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token);
  645. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  646. exit(1); // built without CURL, error message already printed
  647. }
  648. model.hf_repo = auto_detected.repo;
  649. model.hf_file = auto_detected.ggufFile;
  650. if (!auto_detected.mmprojFile.empty()) {
  651. result.found_mmproj = true;
  652. result.mmproj.hf_repo = model.hf_repo;
  653. result.mmproj.hf_file = auto_detected.mmprojFile;
  654. }
  655. } else {
  656. model.hf_file = model.path;
  657. }
  658. }
  659. std::string model_endpoint = get_model_endpoint();
  660. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  661. // make sure model path is present (for caching purposes)
  662. if (model.path.empty()) {
  663. // this is to avoid different repo having same file name, or same file name in different subdirs
  664. std::string filename = model.hf_repo + "_" + model.hf_file;
  665. // to make sure we don't have any slashes in the filename
  666. string_replace_all(filename, "/", "_");
  667. model.path = fs_get_cache_file(filename);
  668. }
  669. } else if (!model.url.empty()) {
  670. if (model.path.empty()) {
  671. auto f = string_split<std::string>(model.url, '#').front();
  672. f = string_split<std::string>(f, '?').front();
  673. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  674. }
  675. } else if (model.path.empty()) {
  676. model.path = model_path_default;
  677. }
  678. }
  679. // then, download it if needed
  680. if (!model.url.empty()) {
  681. bool ok = common_download_model(model, bearer_token);
  682. if (!ok) {
  683. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  684. exit(1);
  685. }
  686. }
  687. return result;
  688. }
  689. const std::vector<ggml_type> kv_cache_types = {
  690. GGML_TYPE_F32,
  691. GGML_TYPE_F16,
  692. GGML_TYPE_BF16,
  693. GGML_TYPE_Q8_0,
  694. GGML_TYPE_Q4_0,
  695. GGML_TYPE_Q4_1,
  696. GGML_TYPE_IQ4_NL,
  697. GGML_TYPE_Q5_0,
  698. GGML_TYPE_Q5_1,
  699. };
  700. static ggml_type kv_cache_type_from_str(const std::string & s) {
  701. for (const auto & type : kv_cache_types) {
  702. if (ggml_type_name(type) == s) {
  703. return type;
  704. }
  705. }
  706. throw std::runtime_error("Unsupported cache type: " + s);
  707. }
  708. static std::string get_all_kv_cache_types() {
  709. std::ostringstream msg;
  710. for (const auto & type : kv_cache_types) {
  711. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  712. }
  713. return msg.str();
  714. }
  715. //
  716. // CLI argument parsing functions
  717. //
  718. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  719. std::string arg;
  720. const std::string arg_prefix = "--";
  721. common_params & params = ctx_arg.params;
  722. std::unordered_map<std::string, common_arg *> arg_to_options;
  723. for (auto & opt : ctx_arg.options) {
  724. for (const auto & arg : opt.args) {
  725. arg_to_options[arg] = &opt;
  726. }
  727. }
  728. // handle environment variables
  729. for (auto & opt : ctx_arg.options) {
  730. std::string value;
  731. if (opt.get_value_from_env(value)) {
  732. try {
  733. if (opt.handler_void && (value == "1" || value == "true")) {
  734. opt.handler_void(params);
  735. }
  736. if (opt.handler_int) {
  737. opt.handler_int(params, std::stoi(value));
  738. }
  739. if (opt.handler_string) {
  740. opt.handler_string(params, value);
  741. continue;
  742. }
  743. } catch (std::exception & e) {
  744. throw std::invalid_argument(string_format(
  745. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  746. }
  747. }
  748. }
  749. // handle command line arguments
  750. auto check_arg = [&](int i) {
  751. if (i+1 >= argc) {
  752. throw std::invalid_argument("expected value for argument");
  753. }
  754. };
  755. for (int i = 1; i < argc; i++) {
  756. const std::string arg_prefix = "--";
  757. std::string arg = argv[i];
  758. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  759. std::replace(arg.begin(), arg.end(), '_', '-');
  760. }
  761. if (arg_to_options.find(arg) == arg_to_options.end()) {
  762. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  763. }
  764. auto opt = *arg_to_options[arg];
  765. if (opt.has_value_from_env()) {
  766. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  767. }
  768. try {
  769. if (opt.handler_void) {
  770. opt.handler_void(params);
  771. continue;
  772. }
  773. // arg with single value
  774. check_arg(i);
  775. std::string val = argv[++i];
  776. if (opt.handler_int) {
  777. opt.handler_int(params, std::stoi(val));
  778. continue;
  779. }
  780. if (opt.handler_string) {
  781. opt.handler_string(params, val);
  782. continue;
  783. }
  784. // arg with 2 values
  785. check_arg(i);
  786. std::string val2 = argv[++i];
  787. if (opt.handler_str_str) {
  788. opt.handler_str_str(params, val, val2);
  789. continue;
  790. }
  791. } catch (std::exception & e) {
  792. throw std::invalid_argument(string_format(
  793. "error while handling argument \"%s\": %s\n\n"
  794. "usage:\n%s\n\nto show complete usage, run with -h",
  795. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  796. }
  797. }
  798. postprocess_cpu_params(params.cpuparams, nullptr);
  799. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  800. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  801. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  802. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  803. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  804. }
  805. // handle model and download
  806. {
  807. auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH);
  808. if (params.no_mmproj) {
  809. params.mmproj = {};
  810. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  811. // optionally, handle mmproj model when -hf is specified
  812. params.mmproj = res.mmproj;
  813. }
  814. // only download mmproj if the current example is using it
  815. for (auto & ex : mmproj_examples) {
  816. if (ctx_arg.ex == ex) {
  817. common_params_handle_model(params.mmproj, params.hf_token, "");
  818. break;
  819. }
  820. }
  821. common_params_handle_model(params.speculative.model, params.hf_token, "");
  822. common_params_handle_model(params.vocoder.model, params.hf_token, "");
  823. }
  824. if (params.escape) {
  825. string_process_escapes(params.prompt);
  826. string_process_escapes(params.input_prefix);
  827. string_process_escapes(params.input_suffix);
  828. for (auto & antiprompt : params.antiprompt) {
  829. string_process_escapes(antiprompt);
  830. }
  831. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  832. string_process_escapes(seq_breaker);
  833. }
  834. }
  835. if (!params.kv_overrides.empty()) {
  836. params.kv_overrides.emplace_back();
  837. params.kv_overrides.back().key[0] = 0;
  838. }
  839. if (!params.tensor_buft_overrides.empty()) {
  840. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  841. }
  842. if (params.reranking && params.embedding) {
  843. throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
  844. }
  845. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  846. throw std::runtime_error(string_format(
  847. "error: the supplied chat template is not supported: %s%s\n",
  848. params.chat_template.c_str(),
  849. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  850. ));
  851. }
  852. return true;
  853. }
  854. static void common_params_print_usage(common_params_context & ctx_arg) {
  855. auto print_options = [](std::vector<common_arg *> & options) {
  856. for (common_arg * opt : options) {
  857. printf("%s", opt->to_string().c_str());
  858. }
  859. };
  860. std::vector<common_arg *> common_options;
  861. std::vector<common_arg *> sparam_options;
  862. std::vector<common_arg *> specific_options;
  863. for (auto & opt : ctx_arg.options) {
  864. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  865. if (opt.is_sparam) {
  866. sparam_options.push_back(&opt);
  867. } else if (opt.in_example(ctx_arg.ex)) {
  868. specific_options.push_back(&opt);
  869. } else {
  870. common_options.push_back(&opt);
  871. }
  872. }
  873. printf("----- common params -----\n\n");
  874. print_options(common_options);
  875. printf("\n\n----- sampling params -----\n\n");
  876. print_options(sparam_options);
  877. // TODO: maybe convert enum llama_example to string
  878. printf("\n\n----- example-specific params -----\n\n");
  879. print_options(specific_options);
  880. }
  881. static void common_params_print_completion(common_params_context & ctx_arg) {
  882. std::vector<common_arg *> common_options;
  883. std::vector<common_arg *> sparam_options;
  884. std::vector<common_arg *> specific_options;
  885. for (auto & opt : ctx_arg.options) {
  886. if (opt.is_sparam) {
  887. sparam_options.push_back(&opt);
  888. } else if (opt.in_example(ctx_arg.ex)) {
  889. specific_options.push_back(&opt);
  890. } else {
  891. common_options.push_back(&opt);
  892. }
  893. }
  894. printf("_llama_completions() {\n");
  895. printf(" local cur prev opts\n");
  896. printf(" COMPREPLY=()\n");
  897. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  898. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  899. printf(" opts=\"");
  900. auto print_options = [](const std::vector<common_arg *> & options) {
  901. for (const common_arg * opt : options) {
  902. for (const char * arg : opt->args) {
  903. printf("%s ", arg);
  904. }
  905. }
  906. };
  907. print_options(common_options);
  908. print_options(sparam_options);
  909. print_options(specific_options);
  910. printf("\"\n\n");
  911. printf(" case \"$prev\" in\n");
  912. printf(" --model)\n");
  913. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  914. printf(" return 0\n");
  915. printf(" ;;\n");
  916. printf(" --grammar-file)\n");
  917. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  918. printf(" return 0\n");
  919. printf(" ;;\n");
  920. printf(" --chat-template-file)\n");
  921. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  922. printf(" return 0\n");
  923. printf(" ;;\n");
  924. printf(" *)\n");
  925. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  926. printf(" return 0\n");
  927. printf(" ;;\n");
  928. printf(" esac\n");
  929. printf("}\n\n");
  930. std::set<std::string> executables = {
  931. "llama-batched",
  932. "llama-batched-bench",
  933. "llama-bench",
  934. "llama-cli",
  935. "llama-convert-llama2c-to-ggml",
  936. "llama-cvector-generator",
  937. "llama-embedding",
  938. "llama-eval-callback",
  939. "llama-export-lora",
  940. "llama-gen-docs",
  941. "llama-gguf",
  942. "llama-gguf-hash",
  943. "llama-gguf-split",
  944. "llama-gritlm",
  945. "llama-imatrix",
  946. "llama-infill",
  947. "llama-mtmd-cli",
  948. "llama-llava-clip-quantize-cli",
  949. "llama-lookahead",
  950. "llama-lookup",
  951. "llama-lookup-create",
  952. "llama-lookup-merge",
  953. "llama-lookup-stats",
  954. "llama-parallel",
  955. "llama-passkey",
  956. "llama-perplexity",
  957. "llama-q8dot",
  958. "llama-quantize",
  959. "llama-qwen2vl-cli",
  960. "llama-retrieval",
  961. "llama-run",
  962. "llama-save-load-state",
  963. "llama-server",
  964. "llama-simple",
  965. "llama-simple-chat",
  966. "llama-speculative",
  967. "llama-speculative-simple",
  968. "llama-tokenize",
  969. "llama-tts",
  970. "llama-vdot"
  971. };
  972. for (const auto& exe : executables) {
  973. printf("complete -F _llama_completions %s\n", exe.c_str());
  974. }
  975. }
  976. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  977. std::vector<ggml_backend_dev_t> devices;
  978. auto dev_names = string_split<std::string>(value, ',');
  979. if (dev_names.empty()) {
  980. throw std::invalid_argument("no devices specified");
  981. }
  982. if (dev_names.size() == 1 && dev_names[0] == "none") {
  983. devices.push_back(nullptr);
  984. } else {
  985. for (const auto & device : dev_names) {
  986. auto * dev = ggml_backend_dev_by_name(device.c_str());
  987. if (!dev || ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_GPU) {
  988. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  989. }
  990. devices.push_back(dev);
  991. }
  992. devices.push_back(nullptr);
  993. }
  994. return devices;
  995. }
  996. static void add_rpc_devices(std::string servers) {
  997. auto rpc_servers = string_split<std::string>(servers, ',');
  998. if (rpc_servers.empty()) {
  999. throw std::invalid_argument("no RPC servers specified");
  1000. }
  1001. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  1002. if (!rpc_reg) {
  1003. throw std::invalid_argument("failed to find RPC backend");
  1004. }
  1005. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  1006. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  1007. if (!ggml_backend_rpc_add_device_fn) {
  1008. throw std::invalid_argument("failed to find RPC device add function");
  1009. }
  1010. for (const auto & server : rpc_servers) {
  1011. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  1012. if (dev) {
  1013. ggml_backend_device_register(dev);
  1014. } else {
  1015. throw std::invalid_argument("failed to register RPC device");
  1016. }
  1017. }
  1018. }
  1019. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1020. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  1021. const common_params params_org = ctx_arg.params; // the example can modify the default params
  1022. try {
  1023. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  1024. ctx_arg.params = params_org;
  1025. return false;
  1026. }
  1027. if (ctx_arg.params.usage) {
  1028. common_params_print_usage(ctx_arg);
  1029. if (ctx_arg.print_usage) {
  1030. ctx_arg.print_usage(argc, argv);
  1031. }
  1032. exit(0);
  1033. }
  1034. if (ctx_arg.params.completion) {
  1035. common_params_print_completion(ctx_arg);
  1036. exit(0);
  1037. }
  1038. } catch (const std::invalid_argument & ex) {
  1039. fprintf(stderr, "%s\n", ex.what());
  1040. ctx_arg.params = params_org;
  1041. return false;
  1042. } catch (std::exception & ex) {
  1043. fprintf(stderr, "%s\n", ex.what());
  1044. exit(1); // for other exceptions, we exit with status code 1
  1045. }
  1046. return true;
  1047. }
  1048. static std::string list_builtin_chat_templates() {
  1049. std::vector<const char *> supported_tmpl;
  1050. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  1051. supported_tmpl.resize(res);
  1052. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  1053. std::ostringstream msg;
  1054. for (auto & tmpl : supported_tmpl) {
  1055. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  1056. }
  1057. return msg.str();
  1058. }
  1059. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1060. // load dynamic backends
  1061. ggml_backend_load_all();
  1062. common_params_context ctx_arg(params);
  1063. ctx_arg.print_usage = print_usage;
  1064. ctx_arg.ex = ex;
  1065. std::string sampler_type_chars;
  1066. std::string sampler_type_names;
  1067. for (const auto & sampler : params.sampling.samplers) {
  1068. sampler_type_chars += common_sampler_type_to_chr(sampler);
  1069. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  1070. }
  1071. sampler_type_names.pop_back();
  1072. /**
  1073. * filter options by example
  1074. * rules:
  1075. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  1076. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  1077. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  1078. */
  1079. auto add_opt = [&](common_arg arg) {
  1080. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  1081. ctx_arg.options.push_back(std::move(arg));
  1082. }
  1083. };
  1084. add_opt(common_arg(
  1085. {"-h", "--help", "--usage"},
  1086. "print usage and exit",
  1087. [](common_params & params) {
  1088. params.usage = true;
  1089. }
  1090. ));
  1091. add_opt(common_arg(
  1092. {"--version"},
  1093. "show version and build info",
  1094. [](common_params &) {
  1095. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1096. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1097. exit(0);
  1098. }
  1099. ));
  1100. add_opt(common_arg(
  1101. {"--completion-bash"},
  1102. "print source-able bash completion script for llama.cpp",
  1103. [](common_params & params) {
  1104. params.completion = true;
  1105. }
  1106. ));
  1107. add_opt(common_arg(
  1108. {"--verbose-prompt"},
  1109. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  1110. [](common_params & params) {
  1111. params.verbose_prompt = true;
  1112. }
  1113. ));
  1114. add_opt(common_arg(
  1115. {"--no-display-prompt"},
  1116. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1117. [](common_params & params) {
  1118. params.display_prompt = false;
  1119. }
  1120. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1121. add_opt(common_arg(
  1122. {"-co", "--color"},
  1123. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1124. [](common_params & params) {
  1125. params.use_color = true;
  1126. }
  1127. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1128. add_opt(common_arg(
  1129. {"-t", "--threads"}, "N",
  1130. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1131. [](common_params & params, int value) {
  1132. params.cpuparams.n_threads = value;
  1133. if (params.cpuparams.n_threads <= 0) {
  1134. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1135. }
  1136. }
  1137. ).set_env("LLAMA_ARG_THREADS"));
  1138. add_opt(common_arg(
  1139. {"-tb", "--threads-batch"}, "N",
  1140. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1141. [](common_params & params, int value) {
  1142. params.cpuparams_batch.n_threads = value;
  1143. if (params.cpuparams_batch.n_threads <= 0) {
  1144. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1145. }
  1146. }
  1147. ));
  1148. add_opt(common_arg(
  1149. {"-C", "--cpu-mask"}, "M",
  1150. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1151. [](common_params & params, const std::string & mask) {
  1152. params.cpuparams.mask_valid = true;
  1153. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1154. throw std::invalid_argument("invalid cpumask");
  1155. }
  1156. }
  1157. ));
  1158. add_opt(common_arg(
  1159. {"-Cr", "--cpu-range"}, "lo-hi",
  1160. "range of CPUs for affinity. Complements --cpu-mask",
  1161. [](common_params & params, const std::string & range) {
  1162. params.cpuparams.mask_valid = true;
  1163. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1164. throw std::invalid_argument("invalid range");
  1165. }
  1166. }
  1167. ));
  1168. add_opt(common_arg(
  1169. {"--cpu-strict"}, "<0|1>",
  1170. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1171. [](common_params & params, const std::string & value) {
  1172. params.cpuparams.strict_cpu = std::stoul(value);
  1173. }
  1174. ));
  1175. add_opt(common_arg(
  1176. {"--prio"}, "N",
  1177. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams.priority),
  1178. [](common_params & params, int prio) {
  1179. if (prio < 0 || prio > 3) {
  1180. throw std::invalid_argument("invalid value");
  1181. }
  1182. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1183. }
  1184. ));
  1185. add_opt(common_arg(
  1186. {"--poll"}, "<0...100>",
  1187. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1188. [](common_params & params, const std::string & value) {
  1189. params.cpuparams.poll = std::stoul(value);
  1190. }
  1191. ));
  1192. add_opt(common_arg(
  1193. {"-Cb", "--cpu-mask-batch"}, "M",
  1194. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1195. [](common_params & params, const std::string & mask) {
  1196. params.cpuparams_batch.mask_valid = true;
  1197. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1198. throw std::invalid_argument("invalid cpumask");
  1199. }
  1200. }
  1201. ));
  1202. add_opt(common_arg(
  1203. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1204. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1205. [](common_params & params, const std::string & range) {
  1206. params.cpuparams_batch.mask_valid = true;
  1207. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1208. throw std::invalid_argument("invalid range");
  1209. }
  1210. }
  1211. ));
  1212. add_opt(common_arg(
  1213. {"--cpu-strict-batch"}, "<0|1>",
  1214. "use strict CPU placement (default: same as --cpu-strict)",
  1215. [](common_params & params, int value) {
  1216. params.cpuparams_batch.strict_cpu = value;
  1217. }
  1218. ));
  1219. add_opt(common_arg(
  1220. {"--prio-batch"}, "N",
  1221. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1222. [](common_params & params, int prio) {
  1223. if (prio < 0 || prio > 3) {
  1224. throw std::invalid_argument("invalid value");
  1225. }
  1226. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1227. }
  1228. ));
  1229. add_opt(common_arg(
  1230. {"--poll-batch"}, "<0|1>",
  1231. "use polling to wait for work (default: same as --poll)",
  1232. [](common_params & params, int value) {
  1233. params.cpuparams_batch.poll = value;
  1234. }
  1235. ));
  1236. add_opt(common_arg(
  1237. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1238. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1239. [](common_params & params, const std::string & value) {
  1240. params.lookup_cache_static = value;
  1241. }
  1242. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1243. add_opt(common_arg(
  1244. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1245. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1246. [](common_params & params, const std::string & value) {
  1247. params.lookup_cache_dynamic = value;
  1248. }
  1249. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1250. add_opt(common_arg(
  1251. {"-c", "--ctx-size"}, "N",
  1252. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1253. [](common_params & params, int value) {
  1254. params.n_ctx = value;
  1255. }
  1256. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1257. add_opt(common_arg(
  1258. {"-n", "--predict", "--n-predict"}, "N",
  1259. string_format(
  1260. ex == LLAMA_EXAMPLE_MAIN || ex == LLAMA_EXAMPLE_INFILL
  1261. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1262. : "number of tokens to predict (default: %d, -1 = infinity)",
  1263. params.n_predict),
  1264. [](common_params & params, int value) {
  1265. params.n_predict = value;
  1266. }
  1267. ).set_env("LLAMA_ARG_N_PREDICT"));
  1268. add_opt(common_arg(
  1269. {"-b", "--batch-size"}, "N",
  1270. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1271. [](common_params & params, int value) {
  1272. params.n_batch = value;
  1273. }
  1274. ).set_env("LLAMA_ARG_BATCH"));
  1275. add_opt(common_arg(
  1276. {"-ub", "--ubatch-size"}, "N",
  1277. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1278. [](common_params & params, int value) {
  1279. params.n_ubatch = value;
  1280. }
  1281. ).set_env("LLAMA_ARG_UBATCH"));
  1282. add_opt(common_arg(
  1283. {"--keep"}, "N",
  1284. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1285. [](common_params & params, int value) {
  1286. params.n_keep = value;
  1287. }
  1288. ));
  1289. add_opt(common_arg(
  1290. {"--no-context-shift"},
  1291. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1292. [](common_params & params) {
  1293. params.ctx_shift = false;
  1294. }
  1295. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1296. add_opt(common_arg(
  1297. {"--chunks"}, "N",
  1298. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1299. [](common_params & params, int value) {
  1300. params.n_chunks = value;
  1301. }
  1302. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1303. add_opt(common_arg(
  1304. {"-fa", "--flash-attn"},
  1305. string_format("enable Flash Attention (default: %s)", params.flash_attn ? "enabled" : "disabled"),
  1306. [](common_params & params) {
  1307. params.flash_attn = true;
  1308. }
  1309. ).set_env("LLAMA_ARG_FLASH_ATTN"));
  1310. add_opt(common_arg(
  1311. {"-p", "--prompt"}, "PROMPT",
  1312. "prompt to start generation with; for system message, use -sys",
  1313. [](common_params & params, const std::string & value) {
  1314. params.prompt = value;
  1315. }
  1316. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1317. add_opt(common_arg(
  1318. {"-sys", "--system-prompt"}, "PROMPT",
  1319. "system prompt to use with model (if applicable, depending on chat template)",
  1320. [](common_params & params, const std::string & value) {
  1321. params.system_prompt = value;
  1322. }
  1323. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1324. add_opt(common_arg(
  1325. {"--no-perf"},
  1326. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1327. [](common_params & params) {
  1328. params.no_perf = true;
  1329. params.sampling.no_perf = true;
  1330. }
  1331. ).set_env("LLAMA_ARG_NO_PERF"));
  1332. add_opt(common_arg(
  1333. {"-f", "--file"}, "FNAME",
  1334. "a file containing the prompt (default: none)",
  1335. [](common_params & params, const std::string & value) {
  1336. params.prompt = read_file(value);
  1337. // store the external file name in params
  1338. params.prompt_file = value;
  1339. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1340. params.prompt.pop_back();
  1341. }
  1342. }
  1343. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1344. add_opt(common_arg(
  1345. {"-sysf", "--system-prompt-file"}, "FNAME",
  1346. "a file containing the system prompt (default: none)",
  1347. [](common_params & params, const std::string & value) {
  1348. params.system_prompt = read_file(value);
  1349. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1350. params.system_prompt.pop_back();
  1351. }
  1352. }
  1353. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1354. add_opt(common_arg(
  1355. {"--in-file"}, "FNAME",
  1356. "an input file (repeat to specify multiple files)",
  1357. [](common_params & params, const std::string & value) {
  1358. std::ifstream file(value);
  1359. if (!file) {
  1360. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1361. }
  1362. params.in_files.push_back(value);
  1363. }
  1364. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1365. add_opt(common_arg(
  1366. {"-bf", "--binary-file"}, "FNAME",
  1367. "binary file containing the prompt (default: none)",
  1368. [](common_params & params, const std::string & value) {
  1369. std::ifstream file(value, std::ios::binary);
  1370. if (!file) {
  1371. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1372. }
  1373. // store the external file name in params
  1374. params.prompt_file = value;
  1375. std::ostringstream ss;
  1376. ss << file.rdbuf();
  1377. params.prompt = ss.str();
  1378. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1379. }
  1380. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1381. add_opt(common_arg(
  1382. {"-e", "--escape"},
  1383. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1384. [](common_params & params) {
  1385. params.escape = true;
  1386. }
  1387. ));
  1388. add_opt(common_arg(
  1389. {"--no-escape"},
  1390. "do not process escape sequences",
  1391. [](common_params & params) {
  1392. params.escape = false;
  1393. }
  1394. ));
  1395. add_opt(common_arg(
  1396. {"-ptc", "--print-token-count"}, "N",
  1397. string_format("print token count every N tokens (default: %d)", params.n_print),
  1398. [](common_params & params, int value) {
  1399. params.n_print = value;
  1400. }
  1401. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1402. add_opt(common_arg(
  1403. {"--prompt-cache"}, "FNAME",
  1404. "file to cache prompt state for faster startup (default: none)",
  1405. [](common_params & params, const std::string & value) {
  1406. params.path_prompt_cache = value;
  1407. }
  1408. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1409. add_opt(common_arg(
  1410. {"--prompt-cache-all"},
  1411. "if specified, saves user input and generations to cache as well\n",
  1412. [](common_params & params) {
  1413. params.prompt_cache_all = true;
  1414. }
  1415. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1416. add_opt(common_arg(
  1417. {"--prompt-cache-ro"},
  1418. "if specified, uses the prompt cache but does not update it",
  1419. [](common_params & params) {
  1420. params.prompt_cache_ro = true;
  1421. }
  1422. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1423. add_opt(common_arg(
  1424. {"-r", "--reverse-prompt"}, "PROMPT",
  1425. "halt generation at PROMPT, return control in interactive mode\n",
  1426. [](common_params & params, const std::string & value) {
  1427. params.antiprompt.emplace_back(value);
  1428. }
  1429. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1430. add_opt(common_arg(
  1431. {"-sp", "--special"},
  1432. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1433. [](common_params & params) {
  1434. params.special = true;
  1435. }
  1436. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1437. add_opt(common_arg(
  1438. {"-cnv", "--conversation"},
  1439. "run in conversation mode:\n"
  1440. "- does not print special tokens and suffix/prefix\n"
  1441. "- interactive mode is also enabled\n"
  1442. "(default: auto enabled if chat template is available)",
  1443. [](common_params & params) {
  1444. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1445. }
  1446. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1447. add_opt(common_arg(
  1448. {"-no-cnv", "--no-conversation"},
  1449. "force disable conversation mode (default: false)",
  1450. [](common_params & params) {
  1451. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1452. }
  1453. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1454. add_opt(common_arg(
  1455. {"-st", "--single-turn"},
  1456. "run conversation for a single turn only, then exit when done\n"
  1457. "will not be interactive if first turn is predefined with --prompt\n"
  1458. "(default: false)",
  1459. [](common_params & params) {
  1460. params.single_turn = true;
  1461. }
  1462. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1463. add_opt(common_arg(
  1464. {"-i", "--interactive"},
  1465. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1466. [](common_params & params) {
  1467. params.interactive = true;
  1468. }
  1469. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1470. add_opt(common_arg(
  1471. {"-if", "--interactive-first"},
  1472. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1473. [](common_params & params) {
  1474. params.interactive_first = true;
  1475. }
  1476. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1477. add_opt(common_arg(
  1478. {"-mli", "--multiline-input"},
  1479. "allows you to write or paste multiple lines without ending each in '\\'",
  1480. [](common_params & params) {
  1481. params.multiline_input = true;
  1482. }
  1483. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1484. add_opt(common_arg(
  1485. {"--in-prefix-bos"},
  1486. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1487. [](common_params & params) {
  1488. params.input_prefix_bos = true;
  1489. params.enable_chat_template = false;
  1490. }
  1491. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1492. add_opt(common_arg(
  1493. {"--in-prefix"}, "STRING",
  1494. "string to prefix user inputs with (default: empty)",
  1495. [](common_params & params, const std::string & value) {
  1496. params.input_prefix = value;
  1497. params.enable_chat_template = false;
  1498. }
  1499. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1500. add_opt(common_arg(
  1501. {"--in-suffix"}, "STRING",
  1502. "string to suffix after user inputs with (default: empty)",
  1503. [](common_params & params, const std::string & value) {
  1504. params.input_suffix = value;
  1505. params.enable_chat_template = false;
  1506. }
  1507. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  1508. add_opt(common_arg(
  1509. {"--no-warmup"},
  1510. "skip warming up the model with an empty run",
  1511. [](common_params & params) {
  1512. params.warmup = false;
  1513. }
  1514. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING}));
  1515. add_opt(common_arg(
  1516. {"--spm-infill"},
  1517. string_format(
  1518. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1519. params.spm_infill ? "enabled" : "disabled"
  1520. ),
  1521. [](common_params & params) {
  1522. params.spm_infill = true;
  1523. }
  1524. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_INFILL}));
  1525. add_opt(common_arg(
  1526. {"--samplers"}, "SAMPLERS",
  1527. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1528. [](common_params & params, const std::string & value) {
  1529. const auto sampler_names = string_split<std::string>(value, ';');
  1530. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1531. }
  1532. ).set_sparam());
  1533. add_opt(common_arg(
  1534. {"-s", "--seed"}, "SEED",
  1535. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1536. [](common_params & params, const std::string & value) {
  1537. params.sampling.seed = std::stoul(value);
  1538. }
  1539. ).set_sparam());
  1540. add_opt(common_arg(
  1541. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1542. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1543. [](common_params & params, const std::string & value) {
  1544. params.sampling.samplers = common_sampler_types_from_chars(value);
  1545. }
  1546. ).set_sparam());
  1547. add_opt(common_arg(
  1548. {"--ignore-eos"},
  1549. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1550. [](common_params & params) {
  1551. params.sampling.ignore_eos = true;
  1552. }
  1553. ).set_sparam());
  1554. add_opt(common_arg(
  1555. {"--temp"}, "N",
  1556. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1557. [](common_params & params, const std::string & value) {
  1558. params.sampling.temp = std::stof(value);
  1559. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1560. }
  1561. ).set_sparam());
  1562. add_opt(common_arg(
  1563. {"--top-k"}, "N",
  1564. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1565. [](common_params & params, int value) {
  1566. params.sampling.top_k = value;
  1567. }
  1568. ).set_sparam());
  1569. add_opt(common_arg(
  1570. {"--top-p"}, "N",
  1571. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1572. [](common_params & params, const std::string & value) {
  1573. params.sampling.top_p = std::stof(value);
  1574. }
  1575. ).set_sparam());
  1576. add_opt(common_arg(
  1577. {"--min-p"}, "N",
  1578. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1579. [](common_params & params, const std::string & value) {
  1580. params.sampling.min_p = std::stof(value);
  1581. }
  1582. ).set_sparam());
  1583. add_opt(common_arg(
  1584. {"--top-nsigma"}, "N",
  1585. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1586. [](common_params & params, const std::string & value) {
  1587. params.sampling.top_n_sigma = std::stof(value);
  1588. }
  1589. ).set_examples({LLAMA_EXAMPLE_MAIN}).set_sparam());
  1590. add_opt(common_arg(
  1591. {"--xtc-probability"}, "N",
  1592. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1593. [](common_params & params, const std::string & value) {
  1594. params.sampling.xtc_probability = std::stof(value);
  1595. }
  1596. ).set_sparam());
  1597. add_opt(common_arg(
  1598. {"--xtc-threshold"}, "N",
  1599. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1600. [](common_params & params, const std::string & value) {
  1601. params.sampling.xtc_threshold = std::stof(value);
  1602. }
  1603. ).set_sparam());
  1604. add_opt(common_arg(
  1605. {"--typical"}, "N",
  1606. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1607. [](common_params & params, const std::string & value) {
  1608. params.sampling.typ_p = std::stof(value);
  1609. }
  1610. ).set_sparam());
  1611. add_opt(common_arg(
  1612. {"--repeat-last-n"}, "N",
  1613. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1614. [](common_params & params, int value) {
  1615. if (value < -1) {
  1616. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1617. }
  1618. params.sampling.penalty_last_n = value;
  1619. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1620. }
  1621. ).set_sparam());
  1622. add_opt(common_arg(
  1623. {"--repeat-penalty"}, "N",
  1624. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1625. [](common_params & params, const std::string & value) {
  1626. params.sampling.penalty_repeat = std::stof(value);
  1627. }
  1628. ).set_sparam());
  1629. add_opt(common_arg(
  1630. {"--presence-penalty"}, "N",
  1631. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1632. [](common_params & params, const std::string & value) {
  1633. params.sampling.penalty_present = std::stof(value);
  1634. }
  1635. ).set_sparam());
  1636. add_opt(common_arg(
  1637. {"--frequency-penalty"}, "N",
  1638. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1639. [](common_params & params, const std::string & value) {
  1640. params.sampling.penalty_freq = std::stof(value);
  1641. }
  1642. ).set_sparam());
  1643. add_opt(common_arg(
  1644. {"--dry-multiplier"}, "N",
  1645. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1646. [](common_params & params, const std::string & value) {
  1647. params.sampling.dry_multiplier = std::stof(value);
  1648. }
  1649. ).set_sparam());
  1650. add_opt(common_arg(
  1651. {"--dry-base"}, "N",
  1652. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1653. [](common_params & params, const std::string & value) {
  1654. float potential_base = std::stof(value);
  1655. if (potential_base >= 1.0f)
  1656. {
  1657. params.sampling.dry_base = potential_base;
  1658. }
  1659. }
  1660. ).set_sparam());
  1661. add_opt(common_arg(
  1662. {"--dry-allowed-length"}, "N",
  1663. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1664. [](common_params & params, int value) {
  1665. params.sampling.dry_allowed_length = value;
  1666. }
  1667. ).set_sparam());
  1668. add_opt(common_arg(
  1669. {"--dry-penalty-last-n"}, "N",
  1670. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1671. [](common_params & params, int value) {
  1672. if (value < -1) {
  1673. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1674. }
  1675. params.sampling.dry_penalty_last_n = value;
  1676. }
  1677. ).set_sparam());
  1678. add_opt(common_arg(
  1679. {"--dry-sequence-breaker"}, "STRING",
  1680. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1681. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1682. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1683. params.sampling.dry_sequence_breakers.end(),
  1684. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1685. [](const std::string& a, const std::string& b) {
  1686. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1687. return a + ", '" + formatted_b + "'";
  1688. }).c_str()),
  1689. [](common_params & params, const std::string & value) {
  1690. static bool defaults_cleared = false;
  1691. if (!defaults_cleared) {
  1692. params.sampling.dry_sequence_breakers.clear();
  1693. defaults_cleared = true;
  1694. }
  1695. if (value == "none") {
  1696. params.sampling.dry_sequence_breakers.clear();
  1697. } else {
  1698. params.sampling.dry_sequence_breakers.emplace_back(value);
  1699. }
  1700. }
  1701. ).set_sparam());
  1702. add_opt(common_arg(
  1703. {"--dynatemp-range"}, "N",
  1704. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1705. [](common_params & params, const std::string & value) {
  1706. params.sampling.dynatemp_range = std::stof(value);
  1707. }
  1708. ).set_sparam());
  1709. add_opt(common_arg(
  1710. {"--dynatemp-exp"}, "N",
  1711. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1712. [](common_params & params, const std::string & value) {
  1713. params.sampling.dynatemp_exponent = std::stof(value);
  1714. }
  1715. ).set_sparam());
  1716. add_opt(common_arg(
  1717. {"--mirostat"}, "N",
  1718. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1719. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1720. [](common_params & params, int value) {
  1721. params.sampling.mirostat = value;
  1722. }
  1723. ).set_sparam());
  1724. add_opt(common_arg(
  1725. {"--mirostat-lr"}, "N",
  1726. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1727. [](common_params & params, const std::string & value) {
  1728. params.sampling.mirostat_eta = std::stof(value);
  1729. }
  1730. ).set_sparam());
  1731. add_opt(common_arg(
  1732. {"--mirostat-ent"}, "N",
  1733. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1734. [](common_params & params, const std::string & value) {
  1735. params.sampling.mirostat_tau = std::stof(value);
  1736. }
  1737. ).set_sparam());
  1738. add_opt(common_arg(
  1739. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1740. "modifies the likelihood of token appearing in the completion,\n"
  1741. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1742. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1743. [](common_params & params, const std::string & value) {
  1744. std::stringstream ss(value);
  1745. llama_token key;
  1746. char sign;
  1747. std::string value_str;
  1748. try {
  1749. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1750. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1751. params.sampling.logit_bias.push_back({key, bias});
  1752. } else {
  1753. throw std::invalid_argument("invalid input format");
  1754. }
  1755. } catch (const std::exception&) {
  1756. throw std::invalid_argument("invalid input format");
  1757. }
  1758. }
  1759. ).set_sparam());
  1760. add_opt(common_arg(
  1761. {"--grammar"}, "GRAMMAR",
  1762. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1763. [](common_params & params, const std::string & value) {
  1764. params.sampling.grammar = value;
  1765. }
  1766. ).set_sparam());
  1767. add_opt(common_arg(
  1768. {"--grammar-file"}, "FNAME",
  1769. "file to read grammar from",
  1770. [](common_params & params, const std::string & value) {
  1771. params.sampling.grammar = read_file(value);
  1772. }
  1773. ).set_sparam());
  1774. add_opt(common_arg(
  1775. {"-j", "--json-schema"}, "SCHEMA",
  1776. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1777. [](common_params & params, const std::string & value) {
  1778. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1779. }
  1780. ).set_sparam());
  1781. add_opt(common_arg(
  1782. {"-jf", "--json-schema-file"}, "FILE",
  1783. "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1784. [](common_params & params, const std::string & value) {
  1785. std::ifstream file(value);
  1786. if (!file) {
  1787. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1788. }
  1789. std::string schema;
  1790. std::copy(
  1791. std::istreambuf_iterator<char>(file),
  1792. std::istreambuf_iterator<char>(),
  1793. std::back_inserter(schema)
  1794. );
  1795. params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
  1796. }
  1797. ).set_sparam());
  1798. add_opt(common_arg(
  1799. {"--pooling"}, "{none,mean,cls,last,rank}",
  1800. "pooling type for embeddings, use model default if unspecified",
  1801. [](common_params & params, const std::string & value) {
  1802. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  1803. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  1804. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  1805. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  1806. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  1807. else { throw std::invalid_argument("invalid value"); }
  1808. }
  1809. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  1810. add_opt(common_arg(
  1811. {"--attention"}, "{causal,non-causal}",
  1812. "attention type for embeddings, use model default if unspecified",
  1813. [](common_params & params, const std::string & value) {
  1814. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  1815. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  1816. else { throw std::invalid_argument("invalid value"); }
  1817. }
  1818. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  1819. add_opt(common_arg(
  1820. {"--rope-scaling"}, "{none,linear,yarn}",
  1821. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  1822. [](common_params & params, const std::string & value) {
  1823. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  1824. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  1825. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  1826. else { throw std::invalid_argument("invalid value"); }
  1827. }
  1828. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  1829. add_opt(common_arg(
  1830. {"--rope-scale"}, "N",
  1831. "RoPE context scaling factor, expands context by a factor of N",
  1832. [](common_params & params, const std::string & value) {
  1833. params.rope_freq_scale = 1.0f / std::stof(value);
  1834. }
  1835. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  1836. add_opt(common_arg(
  1837. {"--rope-freq-base"}, "N",
  1838. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  1839. [](common_params & params, const std::string & value) {
  1840. params.rope_freq_base = std::stof(value);
  1841. }
  1842. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  1843. add_opt(common_arg(
  1844. {"--rope-freq-scale"}, "N",
  1845. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  1846. [](common_params & params, const std::string & value) {
  1847. params.rope_freq_scale = std::stof(value);
  1848. }
  1849. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  1850. add_opt(common_arg(
  1851. {"--yarn-orig-ctx"}, "N",
  1852. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  1853. [](common_params & params, int value) {
  1854. params.yarn_orig_ctx = value;
  1855. }
  1856. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  1857. add_opt(common_arg(
  1858. {"--yarn-ext-factor"}, "N",
  1859. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  1860. [](common_params & params, const std::string & value) {
  1861. params.yarn_ext_factor = std::stof(value);
  1862. }
  1863. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  1864. add_opt(common_arg(
  1865. {"--yarn-attn-factor"}, "N",
  1866. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  1867. [](common_params & params, const std::string & value) {
  1868. params.yarn_attn_factor = std::stof(value);
  1869. }
  1870. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  1871. add_opt(common_arg(
  1872. {"--yarn-beta-slow"}, "N",
  1873. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  1874. [](common_params & params, const std::string & value) {
  1875. params.yarn_beta_slow = std::stof(value);
  1876. }
  1877. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  1878. add_opt(common_arg(
  1879. {"--yarn-beta-fast"}, "N",
  1880. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  1881. [](common_params & params, const std::string & value) {
  1882. params.yarn_beta_fast = std::stof(value);
  1883. }
  1884. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  1885. add_opt(common_arg(
  1886. {"-gan", "--grp-attn-n"}, "N",
  1887. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  1888. [](common_params & params, int value) {
  1889. params.grp_attn_n = value;
  1890. }
  1891. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  1892. add_opt(common_arg(
  1893. {"-gaw", "--grp-attn-w"}, "N",
  1894. string_format("group-attention width (default: %d)", params.grp_attn_w),
  1895. [](common_params & params, int value) {
  1896. params.grp_attn_w = value;
  1897. }
  1898. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  1899. add_opt(common_arg(
  1900. {"-dkvc", "--dump-kv-cache"},
  1901. "verbose print of the KV cache",
  1902. [](common_params & params) {
  1903. params.dump_kv_cache = true;
  1904. }
  1905. ));
  1906. add_opt(common_arg(
  1907. {"-nkvo", "--no-kv-offload"},
  1908. "disable KV offload",
  1909. [](common_params & params) {
  1910. params.no_kv_offload = true;
  1911. }
  1912. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  1913. add_opt(common_arg(
  1914. {"-ctk", "--cache-type-k"}, "TYPE",
  1915. string_format(
  1916. "KV cache data type for K\n"
  1917. "allowed values: %s\n"
  1918. "(default: %s)",
  1919. get_all_kv_cache_types().c_str(),
  1920. ggml_type_name(params.cache_type_k)
  1921. ),
  1922. [](common_params & params, const std::string & value) {
  1923. params.cache_type_k = kv_cache_type_from_str(value);
  1924. }
  1925. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  1926. add_opt(common_arg(
  1927. {"-ctv", "--cache-type-v"}, "TYPE",
  1928. string_format(
  1929. "KV cache data type for V\n"
  1930. "allowed values: %s\n"
  1931. "(default: %s)",
  1932. get_all_kv_cache_types().c_str(),
  1933. ggml_type_name(params.cache_type_v)
  1934. ),
  1935. [](common_params & params, const std::string & value) {
  1936. params.cache_type_v = kv_cache_type_from_str(value);
  1937. }
  1938. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  1939. add_opt(common_arg(
  1940. {"--perplexity", "--all-logits"},
  1941. string_format("return logits for all tokens in the batch (default: %s)", params.logits_all ? "true" : "false"),
  1942. [](common_params & params) {
  1943. params.logits_all = true;
  1944. }
  1945. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1946. add_opt(common_arg(
  1947. {"--hellaswag"},
  1948. "compute HellaSwag score over random tasks from datafile supplied with -f",
  1949. [](common_params & params) {
  1950. params.hellaswag = true;
  1951. }
  1952. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1953. add_opt(common_arg(
  1954. {"--hellaswag-tasks"}, "N",
  1955. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  1956. [](common_params & params, int value) {
  1957. params.hellaswag_tasks = value;
  1958. }
  1959. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1960. add_opt(common_arg(
  1961. {"--winogrande"},
  1962. "compute Winogrande score over random tasks from datafile supplied with -f",
  1963. [](common_params & params) {
  1964. params.winogrande = true;
  1965. }
  1966. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1967. add_opt(common_arg(
  1968. {"--winogrande-tasks"}, "N",
  1969. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  1970. [](common_params & params, int value) {
  1971. params.winogrande_tasks = value;
  1972. }
  1973. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1974. add_opt(common_arg(
  1975. {"--multiple-choice"},
  1976. "compute multiple choice score over random tasks from datafile supplied with -f",
  1977. [](common_params & params) {
  1978. params.multiple_choice = true;
  1979. }
  1980. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1981. add_opt(common_arg(
  1982. {"--multiple-choice-tasks"}, "N",
  1983. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  1984. [](common_params & params, int value) {
  1985. params.multiple_choice_tasks = value;
  1986. }
  1987. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1988. add_opt(common_arg(
  1989. {"--kl-divergence"},
  1990. "computes KL-divergence to logits provided via --kl-divergence-base",
  1991. [](common_params & params) {
  1992. params.kl_divergence = true;
  1993. }
  1994. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  1995. add_opt(common_arg(
  1996. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  1997. "set logits file",
  1998. [](common_params & params, const std::string & value) {
  1999. params.logits_file = value;
  2000. }
  2001. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2002. add_opt(common_arg(
  2003. {"--ppl-stride"}, "N",
  2004. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  2005. [](common_params & params, int value) {
  2006. params.ppl_stride = value;
  2007. }
  2008. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2009. add_opt(common_arg(
  2010. {"--ppl-output-type"}, "<0|1>",
  2011. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  2012. [](common_params & params, int value) {
  2013. params.ppl_output_type = value;
  2014. }
  2015. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2016. add_opt(common_arg(
  2017. {"-dt", "--defrag-thold"}, "N",
  2018. string_format("KV cache defragmentation threshold (default: %.1f, < 0 - disabled)", (double)params.defrag_thold),
  2019. [](common_params & params, const std::string & value) {
  2020. params.defrag_thold = std::stof(value);
  2021. }
  2022. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  2023. add_opt(common_arg(
  2024. {"-np", "--parallel"}, "N",
  2025. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  2026. [](common_params & params, int value) {
  2027. params.n_parallel = value;
  2028. }
  2029. ).set_env("LLAMA_ARG_N_PARALLEL"));
  2030. add_opt(common_arg(
  2031. {"-ns", "--sequences"}, "N",
  2032. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  2033. [](common_params & params, int value) {
  2034. params.n_sequences = value;
  2035. }
  2036. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  2037. add_opt(common_arg(
  2038. {"-cb", "--cont-batching"},
  2039. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  2040. [](common_params & params) {
  2041. params.cont_batching = true;
  2042. }
  2043. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  2044. add_opt(common_arg(
  2045. {"-nocb", "--no-cont-batching"},
  2046. "disable continuous batching",
  2047. [](common_params & params) {
  2048. params.cont_batching = false;
  2049. }
  2050. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  2051. add_opt(common_arg(
  2052. {"--mmproj"}, "FILE",
  2053. "path to a multimodal projector file. see examples/llava/README.md",
  2054. [](common_params & params, const std::string & value) {
  2055. params.mmproj.path = value;
  2056. }
  2057. ).set_examples(mmproj_examples));
  2058. add_opt(common_arg(
  2059. {"--mmproj-url"}, "URL",
  2060. "URL to a multimodal projector file. see examples/llava/README.md",
  2061. [](common_params & params, const std::string & value) {
  2062. params.mmproj.url = value;
  2063. }
  2064. ).set_examples(mmproj_examples));
  2065. add_opt(common_arg(
  2066. {"--no-mmproj"},
  2067. "explicitly disable multimodal projector, useful when using -hf",
  2068. [](common_params & params) {
  2069. params.no_mmproj = true;
  2070. }
  2071. ).set_examples(mmproj_examples));
  2072. add_opt(common_arg(
  2073. {"--no-mmproj-offload"},
  2074. "do not offload multimodal projector to GPU",
  2075. [](common_params & params) {
  2076. params.mmproj_use_gpu = false;
  2077. }
  2078. ).set_examples(mmproj_examples));
  2079. add_opt(common_arg(
  2080. {"--image"}, "FILE",
  2081. "path to an image file. use with multimodal models. Specify multiple times for batching",
  2082. [](common_params & params, const std::string & value) {
  2083. params.image.emplace_back(value);
  2084. }
  2085. ).set_examples({LLAMA_EXAMPLE_LLAVA}));
  2086. if (llama_supports_rpc()) {
  2087. add_opt(common_arg(
  2088. {"--rpc"}, "SERVERS",
  2089. "comma separated list of RPC servers",
  2090. [](common_params & params, const std::string & value) {
  2091. add_rpc_devices(value);
  2092. GGML_UNUSED(params);
  2093. }
  2094. ).set_env("LLAMA_ARG_RPC"));
  2095. }
  2096. add_opt(common_arg(
  2097. {"--mlock"},
  2098. "force system to keep model in RAM rather than swapping or compressing",
  2099. [](common_params & params) {
  2100. params.use_mlock = true;
  2101. }
  2102. ).set_env("LLAMA_ARG_MLOCK"));
  2103. add_opt(common_arg(
  2104. {"--no-mmap"},
  2105. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  2106. [](common_params & params) {
  2107. params.use_mmap = false;
  2108. }
  2109. ).set_env("LLAMA_ARG_NO_MMAP"));
  2110. add_opt(common_arg(
  2111. {"--numa"}, "TYPE",
  2112. "attempt optimizations that help on some NUMA systems\n"
  2113. "- distribute: spread execution evenly over all nodes\n"
  2114. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  2115. "- numactl: use the CPU map provided by numactl\n"
  2116. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  2117. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  2118. [](common_params & params, const std::string & value) {
  2119. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2120. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2121. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2122. else { throw std::invalid_argument("invalid value"); }
  2123. }
  2124. ).set_env("LLAMA_ARG_NUMA"));
  2125. add_opt(common_arg(
  2126. {"-dev", "--device"}, "<dev1,dev2,..>",
  2127. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2128. "use --list-devices to see a list of available devices",
  2129. [](common_params & params, const std::string & value) {
  2130. params.devices = parse_device_list(value);
  2131. }
  2132. ).set_env("LLAMA_ARG_DEVICE"));
  2133. add_opt(common_arg(
  2134. {"--list-devices"},
  2135. "print list of available devices and exit",
  2136. [](common_params &) {
  2137. std::vector<ggml_backend_dev_t> rpc_devices;
  2138. std::vector<ggml_backend_dev_t> all_devices;
  2139. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2140. auto * dev = ggml_backend_dev_get(i);
  2141. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_GPU) {
  2142. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  2143. if (ggml_backend_reg_name(reg) == std::string("RPC")) {
  2144. rpc_devices.push_back(dev);
  2145. } else {
  2146. all_devices.push_back(dev);
  2147. }
  2148. }
  2149. }
  2150. // insert RPC devices in front
  2151. all_devices.insert(all_devices.begin(), rpc_devices.begin(), rpc_devices.end());
  2152. printf("Available devices:\n");
  2153. for (size_t i = 0; i < all_devices.size(); ++i) {
  2154. auto * dev = all_devices[i];
  2155. size_t free, total;
  2156. ggml_backend_dev_memory(dev, &free, &total);
  2157. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2158. }
  2159. exit(0);
  2160. }
  2161. ));
  2162. add_opt(common_arg(
  2163. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  2164. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2165. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  2166. if (buft_list.empty()) {
  2167. // enumerate all the devices and add their buffer types to the list
  2168. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2169. auto * dev = ggml_backend_dev_get(i);
  2170. auto * buft = ggml_backend_dev_buffer_type(dev);
  2171. if (buft) {
  2172. buft_list[ggml_backend_buft_name(buft)] = buft;
  2173. }
  2174. }
  2175. }
  2176. for (const auto & override : string_split<std::string>(value, ',')) {
  2177. std::string::size_type pos = override.find('=');
  2178. if (pos == std::string::npos) {
  2179. throw std::invalid_argument("invalid value");
  2180. }
  2181. std::string tensor_name = override.substr(0, pos);
  2182. std::string buffer_type = override.substr(pos + 1);
  2183. if (buft_list.find(buffer_type) == buft_list.end()) {
  2184. printf("Available buffer types:\n");
  2185. for (const auto & it : buft_list) {
  2186. printf(" %s\n", ggml_backend_buft_name(it.second));
  2187. }
  2188. throw std::invalid_argument("unknown buffer type");
  2189. }
  2190. // FIXME: this leaks memory
  2191. params.tensor_buft_overrides.push_back({strdup(tensor_name.c_str()), buft_list.at(buffer_type)});
  2192. }
  2193. }
  2194. ));
  2195. add_opt(common_arg(
  2196. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2197. "number of layers to store in VRAM",
  2198. [](common_params & params, int value) {
  2199. params.n_gpu_layers = value;
  2200. if (!llama_supports_gpu_offload()) {
  2201. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2202. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2203. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2204. }
  2205. }
  2206. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2207. add_opt(common_arg(
  2208. {"-sm", "--split-mode"}, "{none,layer,row}",
  2209. "how to split the model across multiple GPUs, one of:\n"
  2210. "- none: use one GPU only\n"
  2211. "- layer (default): split layers and KV across GPUs\n"
  2212. "- row: split rows across GPUs",
  2213. [](common_params & params, const std::string & value) {
  2214. std::string arg_next = value;
  2215. if (arg_next == "none") {
  2216. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2217. } else if (arg_next == "layer") {
  2218. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2219. } else if (arg_next == "row") {
  2220. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2221. } else {
  2222. throw std::invalid_argument("invalid value");
  2223. }
  2224. if (!llama_supports_gpu_offload()) {
  2225. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2226. }
  2227. }
  2228. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2229. add_opt(common_arg(
  2230. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2231. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2232. [](common_params & params, const std::string & value) {
  2233. std::string arg_next = value;
  2234. // split string by , and /
  2235. const std::regex regex{ R"([,/]+)" };
  2236. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2237. std::vector<std::string> split_arg{ it, {} };
  2238. if (split_arg.size() >= llama_max_devices()) {
  2239. throw std::invalid_argument(
  2240. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2241. );
  2242. }
  2243. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2244. if (i < split_arg.size()) {
  2245. params.tensor_split[i] = std::stof(split_arg[i]);
  2246. } else {
  2247. params.tensor_split[i] = 0.0f;
  2248. }
  2249. }
  2250. if (!llama_supports_gpu_offload()) {
  2251. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2252. }
  2253. }
  2254. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2255. add_opt(common_arg(
  2256. {"-mg", "--main-gpu"}, "INDEX",
  2257. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2258. [](common_params & params, int value) {
  2259. params.main_gpu = value;
  2260. if (!llama_supports_gpu_offload()) {
  2261. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2262. }
  2263. }
  2264. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2265. add_opt(common_arg(
  2266. {"--check-tensors"},
  2267. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2268. [](common_params & params) {
  2269. params.check_tensors = true;
  2270. }
  2271. ));
  2272. add_opt(common_arg(
  2273. {"--override-kv"}, "KEY=TYPE:VALUE",
  2274. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2275. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2276. [](common_params & params, const std::string & value) {
  2277. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2278. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2279. }
  2280. }
  2281. ));
  2282. add_opt(common_arg(
  2283. {"--lora"}, "FNAME",
  2284. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2285. [](common_params & params, const std::string & value) {
  2286. params.lora_adapters.push_back({ std::string(value), 1.0, nullptr });
  2287. }
  2288. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2289. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2290. add_opt(common_arg(
  2291. {"--lora-scaled"}, "FNAME", "SCALE",
  2292. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2293. [](common_params & params, const std::string & fname, const std::string & scale) {
  2294. params.lora_adapters.push_back({ fname, std::stof(scale), nullptr });
  2295. }
  2296. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2297. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2298. add_opt(common_arg(
  2299. {"--control-vector"}, "FNAME",
  2300. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2301. [](common_params & params, const std::string & value) {
  2302. params.control_vectors.push_back({ 1.0f, value, });
  2303. }
  2304. ));
  2305. add_opt(common_arg(
  2306. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2307. "add a control vector with user defined scaling SCALE\n"
  2308. "note: this argument can be repeated to add multiple scaled control vectors",
  2309. [](common_params & params, const std::string & fname, const std::string & scale) {
  2310. params.control_vectors.push_back({ std::stof(scale), fname });
  2311. }
  2312. ));
  2313. add_opt(common_arg(
  2314. {"--control-vector-layer-range"}, "START", "END",
  2315. "layer range to apply the control vector(s) to, start and end inclusive",
  2316. [](common_params & params, const std::string & start, const std::string & end) {
  2317. params.control_vector_layer_start = std::stoi(start);
  2318. params.control_vector_layer_end = std::stoi(end);
  2319. }
  2320. ));
  2321. add_opt(common_arg(
  2322. {"-a", "--alias"}, "STRING",
  2323. "set alias for model name (to be used by REST API)",
  2324. [](common_params & params, const std::string & value) {
  2325. params.model_alias = value;
  2326. }
  2327. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2328. add_opt(common_arg(
  2329. {"-m", "--model"}, "FNAME",
  2330. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2331. ? std::string("model path from which to load base model")
  2332. : string_format(
  2333. "model path (default: `models/$filename` with filename from `--hf-file` "
  2334. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2335. ),
  2336. [](common_params & params, const std::string & value) {
  2337. params.model.path = value;
  2338. }
  2339. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2340. add_opt(common_arg(
  2341. {"-mu", "--model-url"}, "MODEL_URL",
  2342. "model download url (default: unused)",
  2343. [](common_params & params, const std::string & value) {
  2344. params.model.url = value;
  2345. }
  2346. ).set_env("LLAMA_ARG_MODEL_URL"));
  2347. add_opt(common_arg(
  2348. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2349. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2350. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2351. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2352. "(default: unused)",
  2353. [](common_params & params, const std::string & value) {
  2354. params.model.hf_repo = value;
  2355. }
  2356. ).set_env("LLAMA_ARG_HF_REPO"));
  2357. add_opt(common_arg(
  2358. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2359. "Same as --hf-repo, but for the draft model (default: unused)",
  2360. [](common_params & params, const std::string & value) {
  2361. params.speculative.model.hf_repo = value;
  2362. }
  2363. ).set_env("LLAMA_ARG_HFD_REPO"));
  2364. add_opt(common_arg(
  2365. {"-hff", "--hf-file"}, "FILE",
  2366. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2367. [](common_params & params, const std::string & value) {
  2368. params.model.hf_file = value;
  2369. }
  2370. ).set_env("LLAMA_ARG_HF_FILE"));
  2371. add_opt(common_arg(
  2372. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2373. "Hugging Face model repository for the vocoder model (default: unused)",
  2374. [](common_params & params, const std::string & value) {
  2375. params.vocoder.model.hf_repo = value;
  2376. }
  2377. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2378. add_opt(common_arg(
  2379. {"-hffv", "--hf-file-v"}, "FILE",
  2380. "Hugging Face model file for the vocoder model (default: unused)",
  2381. [](common_params & params, const std::string & value) {
  2382. params.vocoder.model.hf_file = value;
  2383. }
  2384. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2385. add_opt(common_arg(
  2386. {"-hft", "--hf-token"}, "TOKEN",
  2387. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2388. [](common_params & params, const std::string & value) {
  2389. params.hf_token = value;
  2390. }
  2391. ).set_env("HF_TOKEN"));
  2392. add_opt(common_arg(
  2393. {"--context-file"}, "FNAME",
  2394. "file to load context from (repeat to specify multiple files)",
  2395. [](common_params & params, const std::string & value) {
  2396. std::ifstream file(value, std::ios::binary);
  2397. if (!file) {
  2398. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2399. }
  2400. params.context_files.push_back(value);
  2401. }
  2402. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2403. add_opt(common_arg(
  2404. {"--chunk-size"}, "N",
  2405. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2406. [](common_params & params, int value) {
  2407. params.chunk_size = value;
  2408. }
  2409. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2410. add_opt(common_arg(
  2411. {"--chunk-separator"}, "STRING",
  2412. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2413. [](common_params & params, const std::string & value) {
  2414. params.chunk_separator = value;
  2415. }
  2416. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2417. add_opt(common_arg(
  2418. {"--junk"}, "N",
  2419. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2420. [](common_params & params, int value) {
  2421. params.n_junk = value;
  2422. }
  2423. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2424. add_opt(common_arg(
  2425. {"--pos"}, "N",
  2426. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2427. [](common_params & params, int value) {
  2428. params.i_pos = value;
  2429. }
  2430. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2431. add_opt(common_arg(
  2432. {"-o", "--output", "--output-file"}, "FNAME",
  2433. string_format("output file (default: '%s')", params.out_file.c_str()),
  2434. [](common_params & params, const std::string & value) {
  2435. params.out_file = value;
  2436. }
  2437. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS}));
  2438. add_opt(common_arg(
  2439. {"-ofreq", "--output-frequency"}, "N",
  2440. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2441. [](common_params & params, int value) {
  2442. params.n_out_freq = value;
  2443. }
  2444. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2445. add_opt(common_arg(
  2446. {"--save-frequency"}, "N",
  2447. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2448. [](common_params & params, int value) {
  2449. params.n_save_freq = value;
  2450. }
  2451. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2452. add_opt(common_arg(
  2453. {"--process-output"},
  2454. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2455. [](common_params & params) {
  2456. params.process_output = true;
  2457. }
  2458. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2459. add_opt(common_arg(
  2460. {"--no-ppl"},
  2461. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2462. [](common_params & params) {
  2463. params.compute_ppl = false;
  2464. }
  2465. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2466. add_opt(common_arg(
  2467. {"--chunk", "--from-chunk"}, "N",
  2468. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2469. [](common_params & params, int value) {
  2470. params.i_chunk = value;
  2471. }
  2472. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2473. add_opt(common_arg(
  2474. {"-pps"},
  2475. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2476. [](common_params & params) {
  2477. params.is_pp_shared = true;
  2478. }
  2479. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2480. add_opt(common_arg(
  2481. {"-npp"}, "n0,n1,...",
  2482. "number of prompt tokens",
  2483. [](common_params & params, const std::string & value) {
  2484. auto p = string_split<int>(value, ',');
  2485. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2486. }
  2487. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2488. add_opt(common_arg(
  2489. {"-ntg"}, "n0,n1,...",
  2490. "number of text generation tokens",
  2491. [](common_params & params, const std::string & value) {
  2492. auto p = string_split<int>(value, ',');
  2493. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2494. }
  2495. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2496. add_opt(common_arg(
  2497. {"-npl"}, "n0,n1,...",
  2498. "number of parallel prompts",
  2499. [](common_params & params, const std::string & value) {
  2500. auto p = string_split<int>(value, ',');
  2501. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2502. }
  2503. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2504. add_opt(common_arg(
  2505. {"--embd-normalize"}, "N",
  2506. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2507. [](common_params & params, int value) {
  2508. params.embd_normalize = value;
  2509. }
  2510. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2511. add_opt(common_arg(
  2512. {"--embd-output-format"}, "FORMAT",
  2513. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2514. [](common_params & params, const std::string & value) {
  2515. params.embd_out = value;
  2516. }
  2517. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2518. add_opt(common_arg(
  2519. {"--embd-separator"}, "STRING",
  2520. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2521. [](common_params & params, const std::string & value) {
  2522. params.embd_sep = value;
  2523. }
  2524. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2525. add_opt(common_arg(
  2526. {"--host"}, "HOST",
  2527. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2528. [](common_params & params, const std::string & value) {
  2529. params.hostname = value;
  2530. }
  2531. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2532. add_opt(common_arg(
  2533. {"--port"}, "PORT",
  2534. string_format("port to listen (default: %d)", params.port),
  2535. [](common_params & params, int value) {
  2536. params.port = value;
  2537. }
  2538. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2539. add_opt(common_arg(
  2540. {"--path"}, "PATH",
  2541. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2542. [](common_params & params, const std::string & value) {
  2543. params.public_path = value;
  2544. }
  2545. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2546. add_opt(common_arg(
  2547. {"--no-webui"},
  2548. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2549. [](common_params & params) {
  2550. params.webui = false;
  2551. }
  2552. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2553. add_opt(common_arg(
  2554. {"--embedding", "--embeddings"},
  2555. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2556. [](common_params & params) {
  2557. params.embedding = true;
  2558. }
  2559. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2560. add_opt(common_arg(
  2561. {"--reranking", "--rerank"},
  2562. string_format("enable reranking endpoint on server (default: %s)", params.reranking ? "enabled" : "disabled"),
  2563. [](common_params & params) {
  2564. params.reranking = true;
  2565. }
  2566. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2567. add_opt(common_arg(
  2568. {"--api-key"}, "KEY",
  2569. "API key to use for authentication (default: none)",
  2570. [](common_params & params, const std::string & value) {
  2571. params.api_keys.push_back(value);
  2572. }
  2573. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2574. add_opt(common_arg(
  2575. {"--api-key-file"}, "FNAME",
  2576. "path to file containing API keys (default: none)",
  2577. [](common_params & params, const std::string & value) {
  2578. std::ifstream key_file(value);
  2579. if (!key_file) {
  2580. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2581. }
  2582. std::string key;
  2583. while (std::getline(key_file, key)) {
  2584. if (!key.empty()) {
  2585. params.api_keys.push_back(key);
  2586. }
  2587. }
  2588. key_file.close();
  2589. }
  2590. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2591. add_opt(common_arg(
  2592. {"--ssl-key-file"}, "FNAME",
  2593. "path to file a PEM-encoded SSL private key",
  2594. [](common_params & params, const std::string & value) {
  2595. params.ssl_file_key = value;
  2596. }
  2597. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2598. add_opt(common_arg(
  2599. {"--ssl-cert-file"}, "FNAME",
  2600. "path to file a PEM-encoded SSL certificate",
  2601. [](common_params & params, const std::string & value) {
  2602. params.ssl_file_cert = value;
  2603. }
  2604. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2605. add_opt(common_arg(
  2606. {"-to", "--timeout"}, "N",
  2607. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2608. [](common_params & params, int value) {
  2609. params.timeout_read = value;
  2610. params.timeout_write = value;
  2611. }
  2612. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2613. add_opt(common_arg(
  2614. {"--threads-http"}, "N",
  2615. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2616. [](common_params & params, int value) {
  2617. params.n_threads_http = value;
  2618. }
  2619. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2620. add_opt(common_arg(
  2621. {"--cache-reuse"}, "N",
  2622. string_format("min chunk size to attempt reusing from the cache via KV shifting (default: %d)", params.n_cache_reuse),
  2623. [](common_params & params, int value) {
  2624. params.n_cache_reuse = value;
  2625. }
  2626. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2627. add_opt(common_arg(
  2628. {"--metrics"},
  2629. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2630. [](common_params & params) {
  2631. params.endpoint_metrics = true;
  2632. }
  2633. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2634. add_opt(common_arg(
  2635. {"--slots"},
  2636. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2637. [](common_params & params) {
  2638. params.endpoint_slots = true;
  2639. }
  2640. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2641. add_opt(common_arg(
  2642. {"--props"},
  2643. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2644. [](common_params & params) {
  2645. params.endpoint_props = true;
  2646. }
  2647. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2648. add_opt(common_arg(
  2649. {"--no-slots"},
  2650. "disables slots monitoring endpoint",
  2651. [](common_params & params) {
  2652. params.endpoint_slots = false;
  2653. }
  2654. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2655. add_opt(common_arg(
  2656. {"--slot-save-path"}, "PATH",
  2657. "path to save slot kv cache (default: disabled)",
  2658. [](common_params & params, const std::string & value) {
  2659. params.slot_save_path = value;
  2660. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2661. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2662. params.slot_save_path += DIRECTORY_SEPARATOR;
  2663. }
  2664. }
  2665. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2666. add_opt(common_arg(
  2667. {"--jinja"},
  2668. "use jinja template for chat (default: disabled)",
  2669. [](common_params & params) {
  2670. params.use_jinja = true;
  2671. }
  2672. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2673. add_opt(common_arg(
  2674. {"--reasoning-format"}, "FORMAT",
  2675. "reasoning format (default: deepseek; allowed values: deepseek, none)\n"
  2676. "controls whether thought tags are extracted from the response, and in which format they're returned. 'none' leaves thoughts unparsed in `message.content`, 'deepseek' puts them in `message.reasoning_content` (for DeepSeek R1 & Command R7B only).\n"
  2677. "only supported for non-streamed responses",
  2678. [](common_params & params, const std::string & value) {
  2679. /**/ if (value == "deepseek") { params.reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK; }
  2680. else if (value == "none") { params.reasoning_format = COMMON_REASONING_FORMAT_NONE; }
  2681. else { std::invalid_argument("invalid value"); }
  2682. }
  2683. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2684. add_opt(common_arg(
  2685. {"--chat-template"}, "JINJA_TEMPLATE",
  2686. string_format(
  2687. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2688. "if suffix/prefix are specified, template will be disabled\n"
  2689. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2690. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2691. ),
  2692. [](common_params & params, const std::string & value) {
  2693. params.chat_template = value;
  2694. }
  2695. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_LLAVA}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2696. add_opt(common_arg(
  2697. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2698. string_format(
  2699. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2700. "if suffix/prefix are specified, template will be disabled\n"
  2701. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2702. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2703. ),
  2704. [](common_params & params, const std::string & value) {
  2705. params.chat_template = read_file(value);
  2706. }
  2707. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2708. add_opt(common_arg(
  2709. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  2710. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  2711. [](common_params & params, const std::string & value) {
  2712. params.slot_prompt_similarity = std::stof(value);
  2713. }
  2714. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2715. add_opt(common_arg(
  2716. {"--lora-init-without-apply"},
  2717. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  2718. [](common_params & params) {
  2719. params.lora_init_without_apply = true;
  2720. }
  2721. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2722. add_opt(common_arg(
  2723. {"--simple-io"},
  2724. "use basic IO for better compatibility in subprocesses and limited consoles",
  2725. [](common_params & params) {
  2726. params.simple_io = true;
  2727. }
  2728. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
  2729. add_opt(common_arg(
  2730. {"--positive-file"}, "FNAME",
  2731. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  2732. [](common_params & params, const std::string & value) {
  2733. params.cvector_positive_file = value;
  2734. }
  2735. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2736. add_opt(common_arg(
  2737. {"--negative-file"}, "FNAME",
  2738. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  2739. [](common_params & params, const std::string & value) {
  2740. params.cvector_negative_file = value;
  2741. }
  2742. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2743. add_opt(common_arg(
  2744. {"--pca-batch"}, "N",
  2745. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  2746. [](common_params & params, int value) {
  2747. params.n_pca_batch = value;
  2748. }
  2749. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2750. add_opt(common_arg(
  2751. {"--pca-iter"}, "N",
  2752. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  2753. [](common_params & params, int value) {
  2754. params.n_pca_iterations = value;
  2755. }
  2756. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2757. add_opt(common_arg(
  2758. {"--method"}, "{pca, mean}",
  2759. "dimensionality reduction method to be used (default: pca)",
  2760. [](common_params & params, const std::string & value) {
  2761. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  2762. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  2763. else { throw std::invalid_argument("invalid value"); }
  2764. }
  2765. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  2766. add_opt(common_arg(
  2767. {"--output-format"}, "{md,jsonl}",
  2768. "output format for batched-bench results (default: md)",
  2769. [](common_params & params, const std::string & value) {
  2770. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  2771. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  2772. else { std::invalid_argument("invalid value"); }
  2773. }
  2774. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2775. add_opt(common_arg(
  2776. {"--log-disable"},
  2777. "Log disable",
  2778. [](common_params &) {
  2779. common_log_pause(common_log_main());
  2780. }
  2781. ));
  2782. add_opt(common_arg(
  2783. {"--log-file"}, "FNAME",
  2784. "Log to file",
  2785. [](common_params &, const std::string & value) {
  2786. common_log_set_file(common_log_main(), value.c_str());
  2787. }
  2788. ));
  2789. add_opt(common_arg(
  2790. {"--log-colors"},
  2791. "Enable colored logging",
  2792. [](common_params &) {
  2793. common_log_set_colors(common_log_main(), true);
  2794. }
  2795. ).set_env("LLAMA_LOG_COLORS"));
  2796. add_opt(common_arg(
  2797. {"-v", "--verbose", "--log-verbose"},
  2798. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  2799. [](common_params & params) {
  2800. params.verbosity = INT_MAX;
  2801. common_log_set_verbosity_thold(INT_MAX);
  2802. }
  2803. ));
  2804. add_opt(common_arg(
  2805. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  2806. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  2807. [](common_params & params, int value) {
  2808. params.verbosity = value;
  2809. common_log_set_verbosity_thold(value);
  2810. }
  2811. ).set_env("LLAMA_LOG_VERBOSITY"));
  2812. add_opt(common_arg(
  2813. {"--log-prefix"},
  2814. "Enable prefix in log messages",
  2815. [](common_params &) {
  2816. common_log_set_prefix(common_log_main(), true);
  2817. }
  2818. ).set_env("LLAMA_LOG_PREFIX"));
  2819. add_opt(common_arg(
  2820. {"--log-timestamps"},
  2821. "Enable timestamps in log messages",
  2822. [](common_params &) {
  2823. common_log_set_timestamps(common_log_main(), true);
  2824. }
  2825. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  2826. // speculative parameters
  2827. add_opt(common_arg(
  2828. {"-td", "--threads-draft"}, "N",
  2829. "number of threads to use during generation (default: same as --threads)",
  2830. [](common_params & params, int value) {
  2831. params.speculative.cpuparams.n_threads = value;
  2832. if (params.speculative.cpuparams.n_threads <= 0) {
  2833. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  2834. }
  2835. }
  2836. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2837. add_opt(common_arg(
  2838. {"-tbd", "--threads-batch-draft"}, "N",
  2839. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  2840. [](common_params & params, int value) {
  2841. params.speculative.cpuparams_batch.n_threads = value;
  2842. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  2843. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  2844. }
  2845. }
  2846. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2847. add_opt(common_arg(
  2848. {"-Cd", "--cpu-mask-draft"}, "M",
  2849. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2850. [](common_params & params, const std::string & mask) {
  2851. params.speculative.cpuparams.mask_valid = true;
  2852. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  2853. throw std::invalid_argument("invalid cpumask");
  2854. }
  2855. }
  2856. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2857. add_opt(common_arg(
  2858. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  2859. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  2860. [](common_params & params, const std::string & range) {
  2861. params.speculative.cpuparams.mask_valid = true;
  2862. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  2863. throw std::invalid_argument("invalid range");
  2864. }
  2865. }
  2866. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2867. add_opt(common_arg(
  2868. {"--cpu-strict-draft"}, "<0|1>",
  2869. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  2870. [](common_params & params, int value) {
  2871. params.speculative.cpuparams.strict_cpu = value;
  2872. }
  2873. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2874. add_opt(common_arg(
  2875. {"--prio-draft"}, "N",
  2876. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  2877. [](common_params & params, int prio) {
  2878. if (prio < 0 || prio > 3) {
  2879. throw std::invalid_argument("invalid value");
  2880. }
  2881. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  2882. }
  2883. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2884. add_opt(common_arg(
  2885. {"--poll-draft"}, "<0|1>",
  2886. "Use polling to wait for draft model work (default: same as --poll])",
  2887. [](common_params & params, int value) {
  2888. params.speculative.cpuparams.poll = value;
  2889. }
  2890. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2891. add_opt(common_arg(
  2892. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  2893. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  2894. [](common_params & params, const std::string & mask) {
  2895. params.speculative.cpuparams_batch.mask_valid = true;
  2896. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  2897. throw std::invalid_argument("invalid cpumask");
  2898. }
  2899. }
  2900. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2901. add_opt(common_arg(
  2902. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  2903. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  2904. [](common_params & params, const std::string & range) {
  2905. params.speculative.cpuparams_batch.mask_valid = true;
  2906. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  2907. throw std::invalid_argument("invalid cpumask");
  2908. }
  2909. }
  2910. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2911. add_opt(common_arg(
  2912. {"--cpu-strict-batch-draft"}, "<0|1>",
  2913. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  2914. [](common_params & params, int value) {
  2915. params.speculative.cpuparams_batch.strict_cpu = value;
  2916. }
  2917. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2918. add_opt(common_arg(
  2919. {"--prio-batch-draft"}, "N",
  2920. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  2921. [](common_params & params, int prio) {
  2922. if (prio < 0 || prio > 3) {
  2923. throw std::invalid_argument("invalid value");
  2924. }
  2925. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  2926. }
  2927. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2928. add_opt(common_arg(
  2929. {"--poll-batch-draft"}, "<0|1>",
  2930. "Use polling to wait for draft model work (default: --poll-draft)",
  2931. [](common_params & params, int value) {
  2932. params.speculative.cpuparams_batch.poll = value;
  2933. }
  2934. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  2935. add_opt(common_arg(
  2936. {"--draft-max", "--draft", "--draft-n"}, "N",
  2937. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  2938. [](common_params & params, int value) {
  2939. params.speculative.n_max = value;
  2940. }
  2941. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  2942. add_opt(common_arg(
  2943. {"--draft-min", "--draft-n-min"}, "N",
  2944. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  2945. [](common_params & params, int value) {
  2946. params.speculative.n_min = value;
  2947. }
  2948. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  2949. add_opt(common_arg(
  2950. {"--draft-p-split"}, "P",
  2951. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  2952. [](common_params & params, const std::string & value) {
  2953. params.speculative.p_split = std::stof(value);
  2954. }
  2955. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  2956. add_opt(common_arg(
  2957. {"--draft-p-min"}, "P",
  2958. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  2959. [](common_params & params, const std::string & value) {
  2960. params.speculative.p_min = std::stof(value);
  2961. }
  2962. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  2963. add_opt(common_arg(
  2964. {"-cd", "--ctx-size-draft"}, "N",
  2965. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  2966. [](common_params & params, int value) {
  2967. params.speculative.n_ctx = value;
  2968. }
  2969. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  2970. add_opt(common_arg(
  2971. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  2972. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  2973. "use --list-devices to see a list of available devices",
  2974. [](common_params & params, const std::string & value) {
  2975. params.speculative.devices = parse_device_list(value);
  2976. }
  2977. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2978. add_opt(common_arg(
  2979. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  2980. "number of layers to store in VRAM for the draft model",
  2981. [](common_params & params, int value) {
  2982. params.speculative.n_gpu_layers = value;
  2983. if (!llama_supports_gpu_offload()) {
  2984. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  2985. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2986. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2987. }
  2988. }
  2989. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  2990. add_opt(common_arg(
  2991. {"-md", "--model-draft"}, "FNAME",
  2992. "draft model for speculative decoding (default: unused)",
  2993. [](common_params & params, const std::string & value) {
  2994. params.speculative.model.path = value;
  2995. }
  2996. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  2997. add_opt(common_arg(
  2998. {"-mv", "--model-vocoder"}, "FNAME",
  2999. "vocoder model for audio generation (default: unused)",
  3000. [](common_params & params, const std::string & value) {
  3001. params.vocoder.model.path = value;
  3002. }
  3003. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3004. add_opt(common_arg(
  3005. {"--tts-use-guide-tokens"},
  3006. "Use guide tokens to improve TTS word recall",
  3007. [](common_params & params) {
  3008. params.vocoder.use_guide_tokens = true;
  3009. }
  3010. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3011. add_opt(common_arg(
  3012. {"--tts-speaker-file"}, "FNAME",
  3013. "speaker file path for audio generation",
  3014. [](common_params & params, const std::string & value) {
  3015. params.vocoder.speaker_file = value;
  3016. }
  3017. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3018. // model-specific
  3019. add_opt(common_arg(
  3020. {"--tts-oute-default"},
  3021. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3022. [](common_params & params) {
  3023. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3024. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3025. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3026. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3027. }
  3028. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3029. add_opt(common_arg(
  3030. {"--embd-bge-small-en-default"},
  3031. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  3032. [](common_params & params) {
  3033. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  3034. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  3035. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3036. params.embd_normalize = 2;
  3037. params.n_ctx = 512;
  3038. params.verbose_prompt = true;
  3039. params.embedding = true;
  3040. }
  3041. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3042. add_opt(common_arg(
  3043. {"--embd-e5-small-en-default"},
  3044. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  3045. [](common_params & params) {
  3046. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  3047. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  3048. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3049. params.embd_normalize = 2;
  3050. params.n_ctx = 512;
  3051. params.verbose_prompt = true;
  3052. params.embedding = true;
  3053. }
  3054. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3055. add_opt(common_arg(
  3056. {"--embd-gte-small-default"},
  3057. string_format("use default gte-small model (note: can download weights from the internet)"),
  3058. [](common_params & params) {
  3059. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  3060. params.model.hf_file = "gte-small-q8_0.gguf";
  3061. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3062. params.embd_normalize = 2;
  3063. params.n_ctx = 512;
  3064. params.verbose_prompt = true;
  3065. params.embedding = true;
  3066. }
  3067. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3068. add_opt(common_arg(
  3069. {"--fim-qwen-1.5b-default"},
  3070. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3071. [](common_params & params) {
  3072. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3073. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3074. params.port = 8012;
  3075. params.n_gpu_layers = 99;
  3076. params.flash_attn = true;
  3077. params.n_ubatch = 1024;
  3078. params.n_batch = 1024;
  3079. params.n_ctx = 0;
  3080. params.n_cache_reuse = 256;
  3081. }
  3082. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3083. add_opt(common_arg(
  3084. {"--fim-qwen-3b-default"},
  3085. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3086. [](common_params & params) {
  3087. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3088. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3089. params.port = 8012;
  3090. params.n_gpu_layers = 99;
  3091. params.flash_attn = true;
  3092. params.n_ubatch = 1024;
  3093. params.n_batch = 1024;
  3094. params.n_ctx = 0;
  3095. params.n_cache_reuse = 256;
  3096. }
  3097. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3098. add_opt(common_arg(
  3099. {"--fim-qwen-7b-default"},
  3100. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3101. [](common_params & params) {
  3102. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3103. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3104. params.port = 8012;
  3105. params.n_gpu_layers = 99;
  3106. params.flash_attn = true;
  3107. params.n_ubatch = 1024;
  3108. params.n_batch = 1024;
  3109. params.n_ctx = 0;
  3110. params.n_cache_reuse = 256;
  3111. }
  3112. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3113. add_opt(common_arg(
  3114. {"--fim-qwen-7b-spec"},
  3115. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3116. [](common_params & params) {
  3117. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3118. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3119. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3120. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3121. params.speculative.n_gpu_layers = 99;
  3122. params.port = 8012;
  3123. params.n_gpu_layers = 99;
  3124. params.flash_attn = true;
  3125. params.n_ubatch = 1024;
  3126. params.n_batch = 1024;
  3127. params.n_ctx = 0;
  3128. params.n_cache_reuse = 256;
  3129. }
  3130. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3131. add_opt(common_arg(
  3132. {"--fim-qwen-14b-spec"},
  3133. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3134. [](common_params & params) {
  3135. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3136. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3137. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3138. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3139. params.speculative.n_gpu_layers = 99;
  3140. params.port = 8012;
  3141. params.n_gpu_layers = 99;
  3142. params.flash_attn = true;
  3143. params.n_ubatch = 1024;
  3144. params.n_batch = 1024;
  3145. params.n_ctx = 0;
  3146. params.n_cache_reuse = 256;
  3147. }
  3148. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3149. return ctx_arg;
  3150. }